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Abstrakt: Dynamické modely zemětřesného zdroje umožňují simulovat vývoj napětí a skluzu
na tektonických zlomech spojením pohybových rovnic v objemu obklopujícím zlom s konstitu-
tivním zákonem, který představujíce plošné síly působící na zlomu. V první části práce shrnu-
jeme důležité vlastnosti smykových trhlin pro ideálně křehké trhliny a konstitutivní zákony
typu linear slip-weakening a rate-and-state. Ve druhé části práce představujeme dvě studie
využívající 3-D dynamické modelování zlomů na dlouhém (stovky let) i krátkém (sekundy)
časovém měřítku. V první ze studií modelujeme seismické cykly pomocí rate-and-state zákona
tření a provádíme parametrický průzkum účinků náhlých perturbací smykového napětí během
cyklu na uspíšení nebo zpoždění následujícího zemětřesení. Zjišťujeme, že pokud je perturbace
aplikována během speciálních malých časových intervalů, zemětřesení následující po perturbaci
jsou malá a neuvolní zcela napětí na celém zlomu. Doba trvání mezi velkými zemětřeseními
se pak může prodloužit až o 80 % ve srovnání s neperturbovanými cykly. Toto chování repro-
dukujeme na numerickém heterogenním modelu parkfieldského segmentu zlomu San Andreas
a demonstrujeme, že tento mechanismus mohl být zodpovědný za velké zpoždění zemětře-
sení na tomto segmentu v roce 2004 o magnitudu Mw 6. Ve druhé studii využíváme linear
slip-weakening zákona tření a 12parametrický eliptický model, abychom provedli bayesovskou
dynamickou inverzi zemětřesení na ostrově Lesbos o magnitudu Mw 6,3 z roku 2017. Vy-
počítáváme nejpravděpodobnější hodnoty a nejistoty jednotlivých parametrů, spolu s jejich
vzájemnými korelacemi. Navrhujeme také metodu jak ocenit, do jaké míry jsou modelové
parametry a další veličiny rozlišeny různými omezeními. Konkrétně zkoumáme vliv apriorních
předpokladů, minimální podmínky na šíření trhliny, informace o momentovém magnitudu a
seismických vlnových obrazů na konečný tvar hustot pravděpodobnosti různých veličin.

Klíčová slova: Dynamické modely zemětřesného zdroje, Rate-and-state model tření, Slip-
weakening model tření, Bayesovská inverze
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Introduction 5

Introduction

An earthquake is the shaking of ground due to elastic waves, typically emitted by a source
in the Earth’s lithosphere. The consensus today is that the overwhelming majority of large
earthquakes arise from two processes in the Earth’s lithosphere: fracture of originally intact
rock and frictional sliding along preexisting tectonic faults. In the most dramatic cases, large
potential energy (up to millions of terajoules) that has been stored in the rocks for up to
hundreds of years is released within a few seconds, in a fast, unstable process that generates
destructive seismic waves, which then propagate to the surface. But the speed and vigor of the
process are not the meaning of the word “dynamic” in the title of this thesis: Dynamic models
of the earthquake source.

Rather, it refers to the branch of physics concerned with forces and their effect on the
motion of matter. In the dynamic approach to earthquake modeling, the earthquake sources
are described by the forces that govern their movement. As such, dynamic models are to
be contrasted with kinematic (dislocation) models, which ignore the causative forces and
directly prescribe the relative motion (slip) between tectonic fault surfaces. A great advantage
of kinematic models is that they allow fast calculation of displacement outside of the fault.
With suitable parametrization, they lead to linear problems and provide a more direct and
transparent connection between slip and synthetic seismograms than dynamic models, which
are non-linear and take more time to solve. But even though any kinematic model in an elastic
medium has an associated surface force distribution, these distributions are often not realistic
and violate reasonable assumptions such as continuity and causality.

The most common dynamic earthquake source models are those rooted in the field of fracture
mechanics. Early studies modeled earthquakes as propagating ideally brittle cracks, assuming
sudden release of stress behind the crack front. Even though such models can provide valid
insights and approximate more realistic models in certain situations, they lead to infinite
stresses and slip rates. They are also not consistent with laboratory and seismologic studies
which show that the stress on the fault has a complicated dependence on slip, slip rate, and
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other field quantities.
These problems can be solved in the framework of cohesive fracture. Here, the spatial distri-

bution of stress and slip rate on the fault is made finite and continuous by means of a suitably
chosen constitutive law. This is a rule relating traction to other physical quantities, most
notably the slip, the slip rate, the normal stress and position, but possibly also time, temper-
ature, porosity, or certain abstractly defined state variables. The constitutive law represents
the forces acting during the rupture process and it is mathematically posed as a boundary
condition on the fault. As such, it allows describing fracture and friction in a unified manner.
Coupling the constitutive law with continuum equations of motion in a volume surrounding
the fault allows calculating the displacement everywhere in the volume, including the slip.

The problem of determining the correct constitutive law is crucial for earthquake physics
and has been the subject of theoretical, laboratory, and field studies. The most prominent
constitutive law used in dynamic modeling of fast rupture is the linear slip-weakening law. It
is mainly used for simplicity and efficiency but captures the most dominant feature of fast
rupture, the rapid decrease of traction with slip.

An important piece of the puzzle is the values of parameters of this constitutive law on
seismic faults. Their extrapolation from laboratory experiments, typically conducted on scales
much smaller than seismic faults and at low values of slip rate, is not straightforward. One
method in which they can be uncovered is dynamic source inversion. Unlike the forward
problem described in the previous paragraph, in which initial conditions and the constitutive
law are used to obtain displacement on the ground, this is an inverse problem, which uses
ground motion measurements (seismograms and/or GPS data) to infer the parameters of the
constitutive law and the initial conditions on the fault.

However, the interpretation of the inversion results is not straightforward. The first issue is
that neither the ground motion measurements nor the solutions of the forward problem are
exact, due to, for example, seismogram errors, inaccuracies in the rheological model of the
crust, imprecise geometry of the fault, numerical errors, etc. This leads to inaccuracy in the
obtained model parameters. Another source of uncertainty is that a large (possibly infinite)
number of models can fit seismic data equally well, which may lead to non-uniqueness of the
inverse problem. A natural way to understand and quantify these uncertainties is to frame the
inversion as a problem of Bayesian inference on the model parameters. In this approach, the
result of the inversion is not a single model, but rather a joint probability density function on
the space of model parameters. This function, called the posterior probability density function,
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quantitatively describes the plausibility of every model.
The second issue, inherent to every inverse method, is that the results are strongly affected

by the starting assumptions, be they implicit or explicit. An important part of these is the
prior assumptions about the model parameters. A key feature of Bayesian inverse methods
is that these initial assumptions can, indeed must, be clearly formulated, in the form of the
prior probability density function. However, another set of assumptions is that on the forward
problem itself. What if inversions that assume a particular class of dynamic models tend to
be biased toward certain values of the initial stress or frictional parameters, regardless of
the seismic data? For example, the condition that a fracture propagates at all will cause the
inversion to select or prefer a certain subset of the model space, depending on the assumed
constitutive law, fault geometry, etc. Bias may also appear when we constrain the models in
a way that is independent of the seismogram time series observed at the stations, e.g., by
requiring that they produce a given moment magnitude. In this thesis, we present a Bayesian
dynamic inversion method in which we try to separate the effects of different constraints on the
resulting posterior probability density function. We do this by calculating and quantitatively
comparing multiple intermediate probability density functions, each of which corresponds to
adding progressively more information to the inversion. We apply the method to the 2017 Mw

6.3 Lesvos, Greece earthquake.
The fast rupture process that generates seismic waves – the co-seismic phase of rupture -

is but one portion of dynamic earthquake source modeling. Another important component is
the slow and often complicated evolution of slip and stress between the earthquakes, the so-
called inter-seismic phase. Unlike the first process, which is over in seconds to tens of seconds,
the latter process may occur on the time scale of hundreds of years. Because of the vastly
different time scales, it has been difficult to study the inter-seismic and the co-seismic phases
in a unified manner. The most common constitutive law used to study the inter-seismic phase
is the so-called rate-and-state friction law, a phenomenological frictional law derived from
laboratory experiments conducted at low slip rates. The rate-and-state friction laws predict
that under certain ideal conditions, faults undergo simply periodic seismic cycles, hosting
large characteristic earthquakes separated by regular inter-seismic periods. However, when
shear or normal stress on the fault is suddenly increased or decreased, the cycle is disturbed
and the arrival of the next earthquake in the cycle is either hastened or delayed. In this thesis,
we thoroughly examine the dependence of the earthquake occurrence time on the properties
of the perturbation, in particular its timing during the cycle, and show that in some cases,
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a very large delay can be induced, even for a positive stress perturbation. We numerically
demonstrate that this mechanism could have been the cause of the significant delay of the Mw

6 2004 earthquake observed on the Parkfield segment of the San Andreas fault

The structure of the thesis

Chapters 1, 2, 3, and 4 comprise the theoretical background of the thesis. Original research is
presented in chapters 5 and 6.

In chapter 1, we present the mathematical formulation of dynamic earthquake modeling,
posing it as a problem in fracture mechanics. We also explain key terms and classifications.

In chapter 2, we review solutions to simple problems in brittle fracture mechanics. We
discuss the results and features which generalize to constitutive problems.

In chapter 3, we review and discuss important properties of the earthquake models that use
the slip-weakening constitutive law.

In chapter 4, we discuss the rate-and-state law, and in particular its application to modeling
seismic cycles.

In chapter 5, published as Kostka & Gallovič (2016), we examine the effect of a sudden
change of fault traction on the long-term behavior of seismic cycles. In some cases, these
changes may significantly delay the arrival of the following large earthquake. We numerically
demonstrate that such a mechanism could have contributed to the extreme delay of the 2004
Mw 6 Parkfield earthquake.

In chapter 6, an overwhelming part of which was published as Kostka et al. (2022), we use
the slip-weakening law to perform a detailed Bayesian dynamic inversion of the 2017 Mw 6.3
Lesvos earthquake. We also present a method for distinguishing the importance of various
constraints for the resolution of quantities characterizing the rupture.
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1 Formulation of the dynamic source
problem and basic definitions

1.1 Introduction

In this chapter, we formulate a framework suitable for dynamic earthquake source modeling
and review basic notions and classifications.

Let Ω ⊂ R3 represent a referential configuration of a linearly elastic body at time t = 0.
Points in this referential body are labeled by x. The configuration of the body at time t is
specified by a smooth, invertible mapping χt : Ω → R3, x ↦→ x̃ = χt(x). The vector field
u(t,x) = χt(x)− x is called displacement.

Let S be an oriented surface in Ω and let νt denote a field of unit vectors normal to
its image χt(S) at time t. According to Cauchy’s stress theorem, there exists, under mild
conditions (Gurtin et al., 1968; Šilhavý, 1991), a second-order tensor field σ(t,x) such that
the traction (surface force density) T (t,x) on the νt side of χt(S) is given by

T (t, ξ) = σ(t, ξ) · νt(χt(ξ)) ∀ξ ∈ S. (1.1)

The tensor σ(t,x) is called the Cauchy stress tensor.
We assume that the body is initially in static equilibrium and denote the initial stress tensor

by σ0(x). The incremental stress tensor τ(t,x) is defined as

τ(t,x) = σ(t,x)− σ0(x). (1.2)

In the absence of body forces and when the spatial derivatives of the deviatoric part of σ0 are
negligible, the equation of motion in the body, correct to first order in the gradient of u, can
be written as (Martinec, 2019, ch. 9.6):
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ρ(x)∂ttui(t,x) = τij,j(t,x) ∀x ∈ Ω. (1.3)

Under the approximation of linear elasticity, the stress increment is linearly related to the
gradient of u through the fourth-order stiffness tensor c:

τij(t,x) = cijkl(x)uk,l(t,x). (1.4)

The tensor c has the symmetry cijkl = cjikl. In general, it depends on the deviatoric part
of σ0. When the dependence on the deviatoric part of σ0 is neglected, c has the additional
symmetries cijkl = cklij = cijlk (Dahlen, 1972). As is common in classical seismology, we assume
the infinitesimal strain theory, in which the undeformed and deformed configurations are not
distinguished, and x ≈ x̃, νt(χt(ξ)) ≈ ν(ξ), χt(S) ≈ S.

The classical elastodynamic problem consists of finding a displacement field u(t,x) that i)
solves Eqs. (1.3)-(1.4), ii) satisfies the initial conditions u(0,x) = u0(x) and ∂tu(0,x) = v0(x)
for ∀x ∈ Ω, and iii) satisfies specified boundary conditions on ∂Ω. According to the classical
linear-elastic uniqueness theorem (Knops & Payne, 1971; Aki & Richards, 2002), when the
boundary ∂Ω is partitioned into two disjoints subsets on which either u or T is specified, and
c is a positive-definite tensor (i.e. AijcijklAkl > 0 for all non-zero second-order tensors A),
then the problem admits at most one solution. For isotropic elasticity, the latter requirement
is equivalent to the conditions µ > 0 and −1 < ν < 1/2, where µ is the elastic shear modulus
and ν is the Poisson’s ratio (Knops & Payne, 1971).

To allow modeling tectonic earthquake sources, the above problem is modified by introducing
a fixed two-dimensional simple oriented surface Γ ⊂ Ω, the fault, across which u (but not T )
is allowed to be discontinuous. The discontinuity s of u across Γ is called slip:

s(t, ξ) = lim
ϵ→0

[u(t, ξ + ϵn(ξ))− u(t, ξ − ϵn(ξ))], ξ ∈ Γ, (1.5)

where n is the field of unit vectors normal to Γ. Flipping the orientation of n corresponds to
multiplying s by −1. Here, we adopt the convention that when we speak of traction and slip,
we use the same orientation of n.

Prescribing the slip s(t, ξ) at all times everywhere on the fault, we would obtain a kinematic
(dislocation) model of rupture. In dynamic models, however, we leave the slip unspecified and
instead postulate the existence of a (not necessarily connected) surface of fracture γ(t) ⊆ Γ
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(Fig. 1.1). The set γ(t) may be prescribed or it may dynamically evolve according to a specified
crack-propagation criterion. We then prescribe mixed boundary conditions on Γ which require
that:

1. No slip occurs outside of γ(t):

s(t, ξ) = 0 ∀ξ ∈ Γ\γ(t). (1.6)

2. The traction within γ(t) is constrained by a constitutive law of the form:

T (t, ξ) ∈ T (t, ξ, p1(t, ξ), p2(t, ξ)..., pn(t, ξ)) ∀ξ ∈ γ(t). (1.7)

Here, T is the set of admissible tractions on the crack and pi are scalar or vector fields.
The most important examples of pi include the slip s, slip rate ṡ, normal stress

σn := T · n = n · σ · n, (1.8)

temperature, porosity, or abstract scalar variables that characterize the state of the
sliding interface. Note that the constraint is imposed on the total traction, not only on
the traction increment.

For simplicity, it is often assumed that the fault Γ is straight and very long or infinite along one
direction (which we take here, without loss of generality, to be the y-axis) and the displacement
depends on only two spatial coordinates that span the plane perpendicular to this direction
(which we take to be x and z). When u(t, x, z) = (ux(t, x, z), 0, uz(t, x, z)) we speak of plane
strain. When u(t, x, z) = (0, uy(t, x, z), 0) we speak of anti-plane strain. Alternatively, the
traction on the planes perpendicular to the y-axis can be assumed zero, which is appropriate
for thin plates with free surfaces, this state is called plane stress. In all these cases, the problem
can be studied on a cross-section C perpendicular to the y-axis (e.g., the x − z plane), so it
effectively reduces to a 2-D problem. As is common in literature, we refer to these cases
simply as 2-D problems, although, strictly speaking, they still take place in a 3-D body (and
the definition of anti-plane strain even requires 3 spatial dimensions).

The above framework is used in many studies concerning dynamic earthquake source physics.
However, modeling of fracture and friction is a vast field of mechanics, and we only barely
scratch the surface. The limitations and assumptions behind the above formulation include:



1.1. Introduction 13

Figure 1.1: a) Crack γ(t) at time t on fault Γ contained in a three-dimensional elastic body
Ω. Slip s outside of γ(t) is zero. The traction T within γ(t) is constrained by
the constitutive law T ∈ T . The boundary ∂γ(t) between γ(t) and Γ/γ(t) is
called the crack edge or the crack front. The fracture propagation modes I, II,
and III correspond to the slip being proportional to the vectors m1, m2, and
m3, respectively. b) The cross-section C of a three-dimensional body Ω for the
effectively two-dimensional case, in which both the fault Γ and the crack γ(t)
(unrelated to Fig. a) are assumed to extend straight in a direction perpendicular
to the picture and field variables depend only on time and two spatial coordinates
that span C. The projection of the crack edge on C is called the crack tip.
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1. The whole fracture is confined to the prescribed surface Γ. For 2-D problems, this im-
plies that the crack γ(t) proceeds along a predetermined path. For 3-D problems, this
corresponds to fracture on a predefined fault, without the generation of new faulting
surfaces. Constraining the problem this way makes it easier to solve, as it reduces the di-
mensionality of the crack (in the sense that γ(t) may be described by a predefined set of
n− 1 coordinates for all t), and allows using less complex criteria for the crack growth.
It is justified when we are modeling a fracture problem on a (retrospectively) known
surface, on faults confined by large lithostatic stress, on surfaces with weak (relative to
their surroundings) fracture resistance, or when modeling friction during sliding of pre-
cut surfaces. As recent alternatives, we mention the models of Preuss et al. (2019, 2020),
and Okubo et al. (2020) that include a predefined main fault and allow its spontaneous
growth or creation of secondary branches in its vicinity.

2. The fracture may accurately be modeled using continuum mechanics. Alternatives in-
clude molecular dynamics models (Rountree et al., 2002; Brochard et al., 2016), lattice
models (Pan et al., 2017), discrete element methods (Scholtès & Donzé, 2012; van den
Ende, 2018), cellular automata models (Burridge & Knopoff, 1967; Gobron & Chiba,
2001; Castellaro & Mulargia, 2001), and large-scale models such as RSQSim (Dieterich
& Richards-Dinger, 2010; Richards-Dinger & Dieterich, 2012) in which time evolution
is realized by transitions between discrete states of large blocks (∼km), allowing to
efficiently model whole fault systems.

3. The medium outside of the crack surface is linearly elastic. We do not consider off-fault
damage (Xu et al., 2014; Thomas et al., 2017; Okubo et al., 2020), non-local elasticity
(Polizzotto, 2002), viscosity (Allison & Dunham, 2018; Miyake & Noda, 2019), plasticity
(Templeton & Rice, 2008; Dunham et al., 2011; Erickson et al., 2017) or porosity (Viesca
et al., 2008).

4. The fracture is modeled as a discontinuity in displacement, sharply localized to a surface
of zero volume measure. In the seismological context, this may be justified by geological
observations indicating that most slip is accommodated along principle fracture zones
which are relatively thin (on the order of mm-cm, Sibson, 2003) compared to the obser-
vational scale and resolution available in numerical models. Among alternatives to this is
the approach of continuum damage mechanics, which is concerned with modeling defects
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such as pores, voids, and microcracks (Lyakhovsky & Ben-Zion, 2014; Altenbach & Öch-
sner, 2020). These are represented by damage variables that affect macroscopic material
properties of the medium (e.g., decrease its effective shear modulus and induce non-
linear elasticity). Another alternative to the discontinuous model is diffuse models such
as the phase-field fracture model, in which the displacement is continuous everywhere
and fracture is instead characterized by an additional scalar field localized in a small
band of finite thickness. This phase-field can take continuous values between 0 and 1,
representing intact and completely broken material, respectively (Wu et al., 2019). Both
the displacement and the phase-field jointly evolve according to equations of motion
which can be naturally obtained in variational formulations by including their energetic
contribution to the action functional (or to the potential energy for quasi-static prob-
lems) and using the continuum version of Hamilton’s principle (Bedford, 1985; Bourdin
et al., 2008). This contribution depends, among others, on the gradient of the phase-field,
which gives rise to second-order spatial derivatives of the phase-field in the governing
equations. A different example of a diffuse model is that of Gabriel et al. (2021), which
also includes scalar phase fields but is instead governed by a complicated system of
first-order partial differential equations.

5. The model is deterministic, as opposed to stochastic models in which some aspects of
the material failure are described probabilistically. One of the simplest models in this
class is fiber-bundle models in which discrete cells (fibers) are arranged on a lattice and
are assigned random failure thresholds, along with post-failure redistribution rules for
stress (Moreno et al., 2001; Monterrubio-Velasco et al., 2019). For example, the stress
may be transferred only to the nearest neighbors of the failed fiber or shared equally
among all remaining fibers. In random fuse networks (De Arcangelis et al., 1985; Zapperi
et al., 2005), suitable for anti-plane strain, an analogy is made between the displacement
and voltage, stress and current, and Hooke’s law and Ohm’s law. In the simplest form,
fracture is modeled as an electrical system composed of fuses with linear I − V curves
which burn out when the current density in them surpasses a threshold, sampled from
a random distribution. When a fuse fails, the current (stress) is redistributed according
to Kirchhoff’s circuit laws. For an extensive treatment of the statistical approach to
fracture, we refer the reader to Alava et al. (2006) or Biswas et al. (2015).

In the rest of this section, we build on the presented formulation to explain important classi-
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fications and notions in earthquake and fracture mechanics.

1.2 Fracture propagation modes

Following G. R. Irwin (1958), the direction of slip s(t, ξ) at a given time t and point ξ
on the crack front ∂γ(t) is often decomposed into three special crack propagation modes.
These correspond to the following mutually orthogonal unit vectors (Fig. 1.1): 1) the normal
m1(ξ) = n(ξ) to the fault Γ at ξ, 2) the vector m2(ξ) orthogonal to both m1(ξ) and the
crack front and pointing away from the crack and 3) the vector m3(ξ) = m1(ξ) ×m2(ξ)

tangent to the crack front:

1. s ∥ m1: Mode I, also called the opening or tensile mode. It causes separation between
the two faces of the crack. It is by far the most common mode in engineering structures
(Broberg, 1999; Stephens et al., 2000) and the easiest to produce in laboratory settings.
In homogeneous solids, crack naturally tend to turn into this mode (Rosakis, 2002). For
these reasons, it is the most thoroughly studied propagation mode in fracture mechanics.
This is rather unfortunate for earthquake physics because the importance of this mode is
limited in the Earth’s crust due to high lithostatic pressure, which prevents crack opening
and favors fracture propagation in the other two modes (Melin, 1986; Udias et al., 2013).
However, mode I fracture may occur in places with large fluid pore pressure (Vavryčuk,
2002; Saraò et al., 2010), which acts against the lithostatic pressure. They don’t seem to
play a crucial role for tectonic earthquakes and are usually not considered in dynamic
earthquake modeling. Consequently, we mostly avoid discussing this mode in the thesis.

2. s ∥m2: Mode II, also called the in-plane shear mode, or the sliding mode. For a moving
crack, this mode corresponds to slip in the direction of the crack velocity. For 2-D fracture
in isotropic elastic media, this mode generates displacement with pure P-SV polarization
(Aki & Richards, 2002).

3. s ∥ m3: Mode III, also called anti-plane shear mode, or the tearing mode. For 2-D
fracture in isotropic elastic media, this mode generates pure SH polarized displacement.
Since this displacement is described by a single component, this mode is often the sim-
plest to analyze.
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Some authors (e.g., Broberg, 1999) require additional symmetries for displacement and stress,
but for our purposes, this classification suffices. Note that the definitions require a preexisting
crack. However, they do not require that the crack front be moving.

Examples of mode I fracture include splitting wood with an ax, pulling apart a thin pre-
cut piece of paper or advancing open scissors through it. Using the scissors to cut into the
paper in the usual way is an example of mode III. Puncturing the paper with a hole-puncher
produces mode II fracture (Davies et al., 1994). Good examples of shear modes are provided
by earthquake faulting - for pure strike-slip, a horizontally spreading fracture is in mode II
and a vertically spreading fracture is in mode III. For pure dip-slip, the situation is reversed.
For the case of a self-similarly expanding circular crack with slip oriented in the direction of
0◦ everywhere along the perimeter of the crack, the fracture is locally in mode II at 0◦and
180◦ and in mode III at 90◦ and 270◦. In all other directions, the rupture mode is mixed.

1.3 Constitutive laws

In this section, we discuss important special forms of the constitutive law (1.7): ideal brittle
and cohesive models of fracture.

1.3.1 Ideally brittle fracture

When the traction right behind the crack edge sharply drops, so that the body is perfectly
elastic until fracture, we speak of ideal elastic brittle fracture (also referred to as brittle fracture
in the following text for the sake of brevity). In the simplest case,

T = {0}, (1.9)

which corresponds to a sudden and total loss of cohesion on the crack. This is appropriate for
mode I fracture, in which the faces of the crack get spatially separated. For the shear modes
II and III, the cracks remain in frictional contact, so that the stress instead drops to dynamic
friction T d:

T = {T d}. (1.10)
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The field of mechanics developed to study brittle fracture in ambient linearly elastic media
is called Linear Elastic Fracture Mechanics (LEFM). Prior to the 1960s, most concepts and
problems in fracture mechanics were developed in the framework of LEFM (Anderson, 2017).
An essential result due to Wieghardt (1907), rediscovered by Irwin (1957) (see Yarema, 1996;
Gross, 2014), is that for each propagation mode, the stress field at the tip of static brittle
cracks in 2-D is inverse square root singular, having the form

τij(r, θ) = τSij(r, θ) +O(1)

=
K√
2πr

qij(θ) +O(1),
(1.11)

where r is the distance from the crack tip and qij are universal functions of the polar angle θ,
independent of the geometrical configuration, applied loads, or elastic constants. The last three
are instead encoded in the factor of proportionality K, the stress-intensity factor. Because the
singular field is dominant at short distances from the crack tip, the stress-intensity factor is
a very important quantity in fracture mechanics. Eq. (1.11) is also valid for dynamic cracks
propagating below the shear velocity, but the stress-intensity factor is then additionally a
function of time and the speed of the crack (Freund, 1990).

For mixed-mode fracture in 3-D, the singular part of the stress tensor at a point η near a
point ξ ∈ ∂γ(t) can be written as (Hartranft & Sih, 1977):

τSij(r, θ, ϕ) =
∑︂

m∈{I,II,III}

Km(ξ)√
2πr

qmij (θ, ϕ), (1.12)

where Km and qmij are the stress-intensity factors and angular functions, respectively, for mode
m, and (r, θ, ϕ) are spherical coordinates of the vector η − ξ, with origin at ξ. The stress-
intensity factors may vary along ∂γ(t). They can be explicitly defined as:

Km(ξ) = lim
r→0+

√
2πrT (ξ + rm2) ·mm(ξ). (1.13)

Since unbounded stress is unphysical, some inelastic processes are necessarily present in real
rupture. In LEFM, the domain of this inelasticity, the cohesive zone, is considered negligible in
comparison to the modeling scale - a condition called small-scale yielding. When the problem
is examined at smaller scales at which the inelastic behavior is important, the results of LEFM
may still be used as a condition on the far field behavior of the solution (Freund, 1990). The
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elastic uniqueness theorem may be extended to dynamic plane brittle crack problems, provided
that the total mechanical energy of the body-crack system is finite (Freund & Clifton, 1974).
Simple brittle problems are reviewed in chapter 2.

1.3.2 Cohesive models of fracture

When the traction on the crack front does not drop to the residual value instantly, but instead
over a cohesive zone of finite length, we speak of cohesive models. The concept of the cohesive
zone was introduced by Barenblatt (1959) and Dugdale (1960) for mode I fracture. Its inclusion
allows regularizing the singular solutions found in ideally brittle fracture mechanics.

Cohesive models are applicable for both the tensile and the shear modes of fracture, but the
physical mechanisms are different. Specifically, the cohesive zone in mode I fracture is due to
bonding forces between atoms. As the surfaces lose contact with each other, the force quickly
vanishes and the size of the cohesive zone is very small. In contrast, in the shear modes of
fracture, the surfaces remain in frictional contact and strongly interact with each other, which
means that the cohesive zone tends to be larger and geometric irregularities of the sliding
surfaces play a greater role (Ohnaka, 2013).

Fractional and frictional processes may coexist in the cohesive zone. Sometimes, the phys-
ical distinction between friction and cohesive fracture may not even be meaningfully defined.
For example, one proposed mechanism of friction in brittle materials is fracturing of contact
asperities (Byerlee, 1967; Aghababaei & Budzik, 2020; Malekan et al., 2021). Since both phe-
nomena can be described with the constitutive law formalism, the language of friction and
fracture tends to be used interchangeably in studies on dynamic simulations. For example,
the linear slip-weakening law reviewed below in subsection 1.3.2.1 may describe an originally
intact material that starts fracturing when local stress reaches the yield stress and then pro-
gressively loses all cohesion except for friction between the two newly created surfaces, or it
may describe a frictional process on two already precut surfaces in which friction continuously
drops from static to dynamic values. One important difference is that for fracture, the fault
plane Γ may evolve spontaneously, while in frictional models, it is determined from the outset.
However, we exclude the former case by assumption, so the two cases are equivalent here.

Two classes of the constitutive law (1.7) are particularly common in earthquake physics
models: the slip-dependent laws used primarily for modeling fast rupture and the rate-and-
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state laws used mainly for modeling long-term (hundreds and thousands of years) behavior of
faults. In both cases, it is often assumed (e.g., Andrews, 1976b,a; Madariaga et al., 1998; Day
et al., 2005; Daub & Carlson, 2008; Premus et al., 2020) that the shear stress

T s := T − σnn = T − (n · T )n (1.14)

acts against the shear slip rate
ss := s− (n · s)n (1.15)

during sliding, so that:

T (t, ξ, ...) =

{︃
T : T s = −F (t, ξ, ...) ṡs(t, ξ)

∥ṡs(t, ξ)∥

}︃
∀ξ ∈ γ(t) : ṡs(t, ξ) ̸= 0, (1.16)

where the function F is called shear strength, and the ellipses represent the dependence on
the fields p1(t, ξ), ..., pn(t, ξ). When ṡs = 0, only the condition that the magnitude of T s is
bounded by the shear strength is imposed:

T (t, ξ, ...) = {T : ∥Ts(t, ξ)∥ ≤ F (t, ξ, ...)} ∀ξ ∈ γ(t) : ṡs(t, ξ) = 0. (1.17)

We discuss the slip-dependent and rate-and-state laws below. For simplicity, we assume that
the normal component of slip is zero, so that s = ss. For an extensive discussion of various
constitutive laws, we refer the reader to Bizzarri (2011).

1.3.2.1 Slip-dependent laws

The slip-dependent cohesive laws were first introduced by Barenblatt (1959, 1962) for tensile
(mode I) cracks, where they model the dependence of cohesive forces on the separation of
the broken surfaces. They were mathematically introduced to the shear crack problems by
Ida (1972). A strong dependence of traction on slip was later corroborated by laboratory
experiments (Okubo & Dieterich, 1984; Ohnaka & Yamashita, 1989; Hirose, 2005) and studies
based on kinematic earthquake source inversions (e.g., Ide & Takeo, 1997; Tinti et al., 2005;
Abercrombie & Rice, 2005; Burjánek & Zahradník, 2007)

The simplest slip-dependent law is probably the step slip-weakening law, to which Dunham
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(2007) refers to as the Dugdale model:

F (∥s∥) :=

⎧⎨⎩Tu for 0 ≤ ∥s∥≤Dc

Td for ∥s∥ > Dc

. (1.18)

Here, Tu is the yield strength, Td is dynamic friction and Dc is the characteristic slip-weakening
distance. The difference ∆σbr between the yield strength Tu and dynamic friction Td is called
the breakdown stress drop. This model is mostly used for simplicity as it facilitates certain
analytic calculations (Ida & Aki 1972; Fialko 2007; Dunham 2007).

The simplest model with a gradual decrease from Tu to Td is the piecewise linear slip-
weakening (linear softening) law, introduced formally by Ida (1972) and first utilized for rup-
ture modeling by Andrews (1976a,b). It has the form

F (∥s∥) :=

⎧⎨⎩(Tu − Td)(1− ∥s∥/Dc) + Td for 0 ≤ ∥s∥≤Dc

Td for ∥s∥ > Dc

. (1.19)

It is the most common law employed in earthquake modeling, even though it has no proper
empirical support in laboratory experiments. Moreover, for a 2-D infinite anti-plane crack with
prescribed velocity, this law, just as Eq. (1.18) and many other piecewise polynomial laws,
leads to infinite slip acceleration (Ida, 1973). Nevertheless, it is simple to use and captures
the observed decrease of traction at larger values of slip (Ohnaka & Yamashita, 1989; Hirose,
2005; Sone & Shimamoto, 2009; Ohnaka, 2013). We are also not aware that the issue of infinite
slip acceleration persists in spontaneous 3-D problems.

The linear slip-weakening law was originally formulated under the assumption of fixed di-
rection of slip, so that slip only had one degree of freedom. The dependence on the magnitude
of slip ∥s∥ presented above is just one way to generalize that situation to 3-D. Another possi-
bility (Day, 1982; Day et al., 2005; Bizzarri, 2014) is to replace ∥s∥ with the slip-path length
s:

s(t, ξ) =

ˆ t

0

|ṡ(t′, ξ)|dt′. (1.20)

In this version, if the slip vector makes a round trip along a closed curve, the resulting shear
strength is weaker than the initial strength. In the version that depends only on the magnitude,
the shear strengths would be identical.
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Figure 1.2: Examples of slip-dependent constitutive laws. Tu, Ti, and Td are the yield strength,
initial magnitude of traction, and dynamic friction, respectively. To is the value of
traction at the onset of slip for the Ohnaka-Yamashita law. Dc is the characteristic
slip-weakening distance. The area between each slip-dependent curve and the line
y = Td is the corresponding fracture energy surface density Gc.

As an example of a law based on laboratory rock observations, we mention the one proposed
by Ohnaka & Yamashita (1989) that reads:

F (∥s∥) = (To − Td) [1 + α ln(1 + β∥s∥)] exp(−∥s∥/d) + Td. (1.21)

Here, α and β are positive constants and the term in the brackets corresponds to an initial
slip-strengthening phase in which traction increases with slip from the value of To at the
onset of slip to a peak value which is attained some distance behind the crack front. This
strengthening phase usually ends at a very small value of slip as the exponential weakening
term starts to dominate. The traction finally decreases to the dynamic value of Td. The linear
slip-weakening model (1.19) may be understood as an approximation of (1.21) when the short
strengthening phase is neglected and the exponential decrease is replaced by a linear one.

Explicit dependence on the spatial coordinate, i.e. F =F (ξ, s(t, ξ)), may be introduced in
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the above laws by allowing heterogeneous distributions of parameters. For example, local areas
of large Tu may act as barriers to rupture (Madariaga & Olsen, 2000; Page et al., 2005) and
heterogeneous distribution of Dc may be used to model the roughness of the sliding surfaces
(Ide & Aochi, 2005).

Another possible extension, common when modeling friction, is to make F explicitly depend
on the normal stress σn:

F (ξ, s(t, ξ), σn(t, ξ)) = σn(t, ξ)f(ξ, s(t, ξ)). (1.22)

The quantity f in this factorization is called the coefficient of friction.
A potential disadvantage of slip-dependent laws is that they do not allow for fault restrength-

ening and modeling long-term evolution of faults (e.g., seismic cycles). This can be fixed by
enriching the laws with a suitable explicit dependence on time (Aochi & Matsu’ura, 2002;
Bizzarri, 2012).

1.3.2.2 Rate-and-state dependent friction laws

The rate-and-state (RS) friction laws were postulated to explain the behavior of friction acting
on precut rock surfaces mutually sliding at low values of slip rate (⪅ 1 mm/s) (e.g. Scholz et al.,
1972; Dieterich, 1972, 1979; Scholz & Engelder, 1976; Johnson, 1981). Two types of experiments
were particularly important for their establishment. In the velocity stepping tests (Dieterich,
1979; Marone et al., 1990; Bhattacharya et al., 2015; Bohloli et al., 2020) a rock specimen is
sheared under externally imposed constant normal stress and slip rate. After some time, the
shear stress reaches a steady-state value. When the imposed slip rate is abruptly changed,
the coefficient of friction jumps in proportion to the difference in logarithms of the new and
the old slip rate. After the jump, it is observed that the shear stress starts evolving towards
a new steady-state value that depends on the new slip rate. The second type of founding
experiments are the slide-hold-slide tests (e.g., Dieterich, 1972; Johnson, 1981; Beeler et al.,
1994; Marone, 1998b; Renard et al., 2012; Marone & Saffer, 2015), in which a steadily sliding
block is (almost) stopped for some time ∆t and then forced to slide again. For a wide variety
of materials, it was observed that the “static” coefficient of friction (the traction at the onset of
sliding) increases approximately in proportion to the logarithm of ∆t. This is probably caused
by an increase in the area of contact between the two surfaces (Dieterich & Kilgore, 1994)
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and adhesive effects (Renard et al., 2012). To model the described behavior, it was proposed
(Dieterich 1979; Ruina 1983; in a somewhat different but equivalent form) to use the following
constitutive law (denoting V := ∥ṡ∥):

F (σn, V, θ) = σnf(V, θ), (1.23)

with the coefficient of friction f(V, θ) given by:

f(V, θ) = f ∗ + a ln
V

V ∗ + b ln
V ∗θ

L
, (1.24)

where f ∗, V ∗, a, b and L are positive (and possibly position dependent) parameters. The first
term of Eq. (1.24), f ∗, is simply a referential value of the coefficient of friction such that σnf ∗

is the friction measured when two surfaces are steadily sliding over another at the constant
referential slip rate V ∗. The second term models the direct velocity (slip rate) effect observed
in the velocity-stepping tests. The third term describes the evolutionary behavior - the gradual
increase of static friction and the relaxation to the steady-state - which cannot be explained
by a purely rate-dependent law. They are encoded in the state variable θ(t) which figures in
the third term. The state variable evolves with time according to an evolution law which is a
first-order ordinary differential equation for θ(t):

dθ

dt
= H(V, θ), (1.25)

where H(V, θ) is a differentiable function of V and θ.
The two most popular evolution laws are the aging law (Ruina, 1980, 1983):

H(V, θ) = 1− V θ

L
(1.26)

and the slip law (Dieterich, 1979; Kosloff & Liu, 1980):

H(V, θ) = −V θ
L

ln
V θ

L
. (1.27)

Neither of these laws can perfectly explain all qualitative features of the experiments, see
Marone (1998a) for a thorough review. The aging law better describes healing behavior at
small velocities (as V → 0, the state variable correctly grows with time, whereas the slip law
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predicts zero evolution), but it doesn’t reproduce symmetric relaxation of stress after positive
and negative velocity jumps observed in experiments, which the slip law does perfectly. The
slip law also generally better predicts behavior at the stepping tests (Bhattacharya et al.,
2015). Many other laws have been proposed (e.g., Linker & Dieterich, 1992; Perrin et al.,
1995; Kato & Tullis, 2001; Nagata et al., 2012; Molinari & Perfettini, 2017), but there does
not yet seem to be consensus on the correct formulation.

A potentially startling feature of the law (1.24) is that the friction diverges to negative
infinity as V → 0 or θ → 0. This is not necessarily a problem in numerical simulations,
since these quantities may be kept high enough everywhere on the fault by setting up suitable
initial conditions. Nevertheless, regularized versions are sometimes used instead (e.g., Perrin
et al., 1995; Rice & Ben-Zion, 1996; Daub & Carlson, 2008; Lapusta et al., 2000). One such
regularization, based on a model of energetically activated forward and backward jumps at
asperity contacts of the sliding rocks (Lapusta et al., 2000), reads

f(V, θ) = a sinh−1

(︃
V

2V ∗ exp

(︃
f ∗ + b ln(V ∗θ/Dc

a

)︃)︃
. (1.28)

The great advantage of the RS law is that it allows modeling many features of the fault
behavior, such as nucleation, propagation, arrest, healing, triggering, aseismic creep, slow
earthquakes, etc., in a unified manner (see chapter 4), which is very convenient for numerical
modeling. The whole fault is usually considered to be slipping, i.e. γ(t) = Γ ∀t (so only the
sliding part of the constitutive law, Eq. (1.16), needs to be considered), but the slip rate at
certain parts of the fault is so slow that they are effectively locked. The boundary between the
effectively locked and slipping parts can be understood as the crack edge and its evolution can
be modeled without supplying any explicit fracture criterion. On the other hand, the scope
of validity of the RS friction laws is limited by the fact that the experiments that motivated
them were performed under small slip rates, in the range of ≈ 10−8−10−3 m/s. This is several
orders lower than co-seismic slip rates, which may be as large as ≈ 101 m/s (McGarr, 2003).
Experiments at slip rates larger than ≈ 10−3 m/s showed that steady-state friction rapidly
decreases with slip rate as co-seismic slip rates are reached, an effect which has been attributed
to heating due to the shearing motion (see e.g., Hirose, 2005; Beeler et al., 2008; Di Toro et al.,
2011; Goldsby & Tullis, 2011; Aharonov & Scholz, 2018). In addition, at seismic speeds, the RS
laws behave similarly to the linear slip-weakening law, which is simpler to use. Therefore, the
RS laws are better suited to simulate quasi-static and long-term evolution of faults, although
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modifications have been developed that take the fast velocity weakening effect into account
(Ampuero & Ben-Zion, 2008; Dunham et al., 2011; Gabriel et al., 2012; Zelst et al., 2019; etc.).

1.4 Spontaneous and prescribed rupture propagation

In spontaneous rupture problems, the shape of γ(t) is not prescribed in advance but instead
evolves dynamically according to a pre-defined fracture propagation criterion. The evolution
of γ(t) is therefore obtained as a part of the complete solution of the fracture problem. We
discuss some fracture criteria in the following section.

Only few analytic solutions for spontaneous problems are known. The evolution of infinite,
straight (effectively 2-D) spontaneous brittle cracks is briefly discussed in chapter 3. No ana-
lytic solutions seem to exist for finite spontaneous 3-D rupture problems. This makes intuitive
sense when we consider the complex pattern of elastic wave diffraction at the crack front.
The waves are affected by the crack front shape and position and themselves influence it.
Spontaneous cracks modeled with the slip-weakening friction are discussed in chapters 3 and
6.

The fracture problem is significantly simplified when the shape of γ(t) is pre-assigned, so
boundary conditions at each time are known a priori. Despite such simplification, only special
types of prescribed propagation problems are typically amenable to analytic solutions:

When the inertial term ρ∂ttu in Eq. (1.3) is neglected and no time-dependence is present
in the boundary conditions (including those on the fault, i.e. γ(t) = γ(0) ∀t > 0, ∂tF = 0), so
that

u(t, x, y, z) = u(x, y, z) (1.29)

we speak of a static problem. When only the inertial term is neglected, but time dependence
in boundary conditions is allowed, we speak of quasi-static problems.

If it is assumed that the displacement can be written, for some spatial coordinates {x, y, z},
as

u(t, x, y, z) = u(x− vt, y, z), (1.30)

for a constant crack speed v, we speak of steady-state (or just steady) problems.
Finally, when the displacement is sought under the constraint that it is a homogeneous
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function of degree n, i.e. it satisfies

u(ζt, ζx, ζy, ζz) = ζnu(t, x, y, z), ∀ζ > 0 (1.31)

we speak of self-similar problems (Willis, 1973; Nielsen & Madariaga, 2003). Specifically, taking
ζ = t0/t for an arbitrary but fixed t0 > 0, this condition can be written as:

u(t0, t0x/t, t0y/t, t0z/t) = (t0/t)
nu(t, x, y, z). (1.32)

Therefore, the solution satisfies (suppressing the explicit dependence on t0):

u(t, x, y, z) ∝ tnũ(x/t, y/t, z/t), (1.33)

where ũ(x/t, y/t, z/t) is a dimensionless function of the quantities x/t, y/t and z/t. The degree
n can be constrained by regularity conditions. For example, requiring that the displacement
or the velocity remains finite as t → 0 and t → ∞ fixes n to 0 or 1, respectively. Self-similar
cracks have the form γ(t) =

{︂
t

tref
ξref ; ξref ∈ γ(tref )

}︂
for some tref > 0, i.e. they radially

expand from the origin with spatially variable crack velocity v that depends on γ(tref ) and is
constant on rays extending from the origin. Specifically, v

(︂
ξ= t

tref
ξref

)︂
= ξref/tref .

Solutions to some of these problems are discussed in chapter 2.

1.5 Fracture criteria

Before the 20th century, fracture criteria were based on the concept of critical stress or strain,
and brittle fracture was not clearly differentiated from plastic deformation (Gross, 2014). Well-
known in geophysics is the Mohr-Coulomb criterion, which states that failure occurs when the
shear stress at any point and plane equals the prescribed (often linear or affine) function of
the normal stress (Labuz & Zang, 2012). Such point criteria can be used to model the onset
of fracture in an intact brittle material. However, as displayed in Eq. (1.12), the stress field
at the tip of brittle cracks is infinite. Therefore, criteria based on point values of stress or
strain are not feasible for problems with pre-existing brittle cracks, since any infinitesimal
load would lead to crack growth. One solution is to consider some characterization of the
spatial distribution of stress (strain), e.g., the integral of stress (strain) over a small area at
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the crack edge (Wieghardt, 1907, trans. Rossmanith, 1995).
A famous energy-based criterion was put forward by A. A. Griffith (1921). He observed that

the fracture strength of brittle specimens (metal, glass) decreases with increasing diameter
(fracture size effect). Similar size effects were observed long before Griffith, dating back to
Leonardo da Vinci, who noted that fracture strength of iron wires decreases with their length
(see Gdoutos, 1990; and references therein). Therefore, the fracture strength is not an intrinsic
material constant but depends on the macroscopic properties of the specimen. Griffith also
noted that if the specimen is scratched, its fracture strength decreases in proportion to the
size of the scratch. In addition, the strength is several orders smaller than would correspond to
simple estimates based on strength of atomic bonds. This could be explained by the assumption
that the scratches and other defects amplify the ambient stress. Indeed if the defects are
modeled as elliptical voids in a linearly elastic material, it can be shown that they concentrate
stress at the tips. However, the maximum amplification of stress depends only on the shape
of the void, not on its size, so a criterion based on point values of stress cannot explain the
size-dependent reduction of strength.

To resolve this paradox, Griffith proposed a fracture criterion based on global energy balance.
He considered a pre-existing straight quasi-static crack of area A located in a homogeneous
isotropic body, possibly loaded by external forces. He postulated that the surfaces of the crack
are associated with surface (or fracture) energy Ec(A). If the crack expands, the potential
energy W (A) of the body (composed of its internal elastic energy minus the work of external
forces) is reduced. The body-crack system is in equilibrium if this decrease is balanced by an
increase in the crack surface energy, so that:

∂A(W (A) + Ec(A)) = 0. (1.34)

Griffith postulated that the surface of the crack does not decrease and that it may extend
quasi-statically only if Eq. (1.34) holds. This is called the Griffith criterion of rupture. Using
this criterion, Griffith calculated the critical loading stress required for the growth of a straight
crack in an infinite elastic plate, finding that it decreases with the length of the crack. This
explains the dependence of fracture strength on the scratch size. Further, the specimen size
effect is explained by assuming that brittle materials contain small defects, and that the
maximum size of these defects scales with the volume of the specimen (a statistical model
explaining the size effect was developed in 1939 by W. Weibull in his so-called worst-flaw
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theory, see Rossmanith, 1997).
Important work on brittle cracks was done by G. R. Irwin. He generalized the surface energy

to effective surface energy, including in it the work of plastic forces (Irwin, 1948, according to
Yarema, 1996). Irwin (1957) introduced the concept of the energy release rate G (also called
the crack-driving force; the letter G is likely a reference to Griffith):

G := −∂AW (A). (1.35)

Assuming that the fracture energy is equal to

Ec(A) = 2γcA, (1.36)

where γc is specific effective surface energy and the factor of 2 corresponds to contributions
from both sides of the surface, the Griffith criterion (1.34) reads:

G = 2γc. (1.37)

Therefore, the crack advances when the energy release rate is equal to the critical value Gc :=

2γc. When G < Gc, the crack cannot grow.
For quasi-static, straight-ahead extending cracks in isotropic elastic materials, Irwin (1957,

1958) related the energy release rate to the stress-intensity factors Km (Eq. 1.12) as:

G =
∑︂

m∈{I,II,III}

Cm(µ, ν)K
2
m, (1.38)

where Cm depends on the fracture propagation mode m ∈ {I, II, III}, the shear modulus µ
and the Poisson’s ratio ν, see e.g., Scholz (2002) and chapter 2 of this thesis for particular
expressions. For m ∈ {I, II}, the function Cm slightly differs for plane-stress and plane-strain
conditions. When only a single mode m of fracture is present, Eq. (1.38) implies that the
Griffith criterion (1.37) on the critical value of the energy release rate is equivalent, for static
straight cracks, to the following condition on the criticality of the respective stress-intensity
factor:

Km = Kc. (1.39)

Eq. (1.39) is called the Irwin criterion of fracture. The quantity Kc is called the fracture
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toughness of the material. It may differ for each propagation mode. Shimada et al. (2015)
demonstrated that the Griffith/Irwin criteria are applicable even at the nanoscale, breaking
down at 2− 3 nm.

When G > Gc, the crack does not increase quasi-statically, but instead dynamically. In
dynamic conditions, the kinetic energy is generally nonzero and the decrease in elastic energy
no more needs to be balanced only by the surface energy as in the quasi-static case. The
Griffith criterion then generalizes to

Gdyn(v) = Gc, (1.40)

where v is the instantaneous speed of the crack front and Gdyn(v) is the dynamic energy release
rate.

In 2-D, Gdyn can be defined (Freund, 1990) by enclosing the crack tip in a small contour Πϵ

of circumference ϵ, and considering the flux F(Πϵ) per unit time and unit thickness of the total
mechanical energy across Πϵ. Because the stresses around the crack tip are singular in ideally
brittle materials, F(Πϵ) is generally non-zero even as ϵ→ 0. The dynamic energy release rate
is the influx of the total mechanical energy to the crack tip per unit area increase of the crack:

Gdyn(v) := lim
ϵ→0

F(Πϵ)

v
(1.41)

(Freund, 1990; see his Ch. 5 for an explicit formula for F and a demonstration that the
limit is well defined). For a steadily growing crack (v = const), F(Πϵ) is independent of the
enclosing contour Πϵ (even for large ϵ) and it is proportional to the crack tip speed v. Then
limv→0G

dyn(v) = limv→0
F(Πϵ)
v

is finite, and it coincides with the static energy release rate G.
Due to this correspondence, we omit the dyn superscript and simply write G for both the static
and the dynamic energy release rates.

In 3-D, the crack tip is replaced by a point on the crack edge and the contour is replaced
by a small tube of surface ϵ surrounding this point. The energy release rate then depends on
the position along the crack edge.

In dynamic conditions, the Irwin relation (1.38) no longer holds. However, the additive
structure of the formula remains, and it simply generalizes to:

G(v) =
∑︂

m∈{I,II,III}

Cm(µ, ν)gm(v, µ, ν, β)K
2
m(v), (1.42)
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where gm are functions increasing in v such that gm(v → 0, ...) → 1 and β =
√︂

µ
ρ

is the phase
speed of shear elastic (S) body waves. Therefore, the evolution of dynamic cracks under the
Griffith (G(v) = Gc) and Irvin (Km(v) = Kc) criteria differs even for pure modes of fracture,
according to the functions gm(v, ...) (see Das & Aki, 1977). The functions gm do not depend
on the loading applied at the boundary or on the geometry of the problem (Freund, 1990, ch.
5).

A drawback of both criteria is that they cannot predict the direction of crack growth and
that they require the existence of preexisting cracks. Among many extensions that address the
former issue, we mention criteria such as the 2-D maximum circumferential stress criterion
according to which the crack grows under the polar angle θ along which σθθ is maximum, or
the maximum energy release rate criterion (Erdogan & Sih, 1963) according to which the crack
grows in the direction that maximizes the energy release rate (see, e.g. Bouchard et al., 2003).
Among approaches that can solve both issues simultaneously is the strain energy density
criterion (Sih, 1973; Sih & Macdonald, 1974), in which the fracture is governed by a finite
volumetric field quantity (see, e.g., chapter 6 of Gdoutos, 1990) and variational formulations,
such as that of Francfort & Marigo (1998) for quasi-static growth, in which the crack γ(t) is
the surface that minimizes total potential energy among a certain constrained set of cracks.

In cohesive models with appropriate constitutive laws, the singularities at the crack edges are
removed and criteria based on maximum local values of fields may be introduced. For example,
in the maximum nominal strain criterion, fracture at a point occurs when any component of
strain exceeds a critical value. In linear slip-weakening models, the crack extends when the
magnitude of shear stress reaches the yield strength Tu.

A connection between brittle and slip-weakening constitutive models is made by equating
the area below the cohesive curves in Fig. 1.2 and above Td to the fracture energy surface
density (critical energy release rate) Gc, so that (Palmer & Rice, 1973; Rice, 1980):

Gc =

ˆ Dc

0

(F (s)− Td)ds, (1.43)

where Dc is the slip at which the magnitude of traction reaches the final value Td (Dc = ∞ for
the Ohnaka-Yamashita law 1.21). This expression is valid only for cases in which the cohesive
zone is small in comparison to the total crack size.
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2 Analytic solutions for simple ideally
brittle shear cracks

In this chapter, we review solutions to selected problems of linear elastic fracture mechanics
in infinite, homogeneous, isotropic elastic media. Analytical solutions for crack problems are
typically very complicated and only a few solutions to fully 3-D problems are known. Therefore,
we restrict ourselves to a small set of problems with simple geometries, which nevertheless
illustrate important features of brittle rupture. For an extensive reference to various problems,
we refer the reader to (Freund, 1990; Broberg, 1999) and Tada et al. (2000).

In isotropic elastic media, the stiffness tensor relating the stress tensor increment τ and the
displacement u has the form:

cijpq = λδijδpq + µ(δipδjq + δiqδjp), (2.1)

where λ = 2µν
1−2ν

is Lamé’s first parameter (e.g., Stein & Wysession, 2003, ch. 2). In a ho-
mogeneous medium, combining the relation (2.1) with Eqs. (1.3) and (1.4) shows that the
displacement u satisfies the equation:

ρ

µ
∂ttui(t,x) =

1

1− 2ν
uj,ji(t,x) + ui,jj(t,x), ∀x ∈ Ω/Γ,∀t ∈ R, (2.2)

which is to be solved along with initial conditions, boundary conditions at ∂Ω, and mixed
boundary conditions (1.6) and (1.7) with T ≡ {T 0(x)−∆σ(t,x)} on the fault plane Γ. Here,
T 0 is the initial traction and ∆σ is the shear stress drop. Except for subsection 2.1.3, we
consider ∆σ constant in space and time. We suppose that Ω = R3 and that the fault Γ is the
x− y plane, Γ = {(x, y, z) ∈ R3; z = 0}.

We only discuss solutions for slip and traction on Γ. Displacement (and hence also the stress
increment) elsewhere can be calculated from slip s on Γ according to the elastic representation
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theorem (Aki & Richards, 2002, ch. 3):

ui(t,x) =

ˆ
Γ

sk(t, ξ) ∗ cklpqGip,q(t,x, ξ)nldS, (2.3)

where the Green’s function Gip(t,x, ξ) is the ith component of displacement induced in homo-
geneous space at (t,x) by a unit impulse force oriented in the direction of the pth axis and
applied at (0, ξ), s is slip, n is the normal to the fault plane and ∗ is the temporal convolution
operator.

It is worth pointing out that the form of the solutions can be restricted by dimensional
arguments. For static problems, assume that the solution depends only on the stress drop
∆σ, the shear modulus µ, the Poisson’s ratio ν, a finite characteristic length L and k non-
dimensional geometric parameters p1, p2, p3, ..., pk. Dimensional analysis, formalized by the
Buckingham Π theorem (e.g., Barenblatt, 2003) then implies that the magnitude of slip s

must depend on these parameters as:

s = Lh(
∆σ

µ
, ν, p1, p2, ..., pk, x/L, y/L), (2.4)

where h is a non-dimensional function of non-dimensional arguments. The particular form of
h depends on boundary conditions, including the shape of the crack. Since the stress drop and
slip are linearly related by the assumption of linear elasticity, the preceding relation simplifies
to

s = L
∆σ

µ
h(ν, p1, p2, ..., pk, x/L1, y/L1), (2.5)

where we have reused the notation h for the new function of the remaining parameters. For
example, s on cracks in 2-D of half-length a must have the form:

s = a
∆σ

µ
h(ν, x/a), (2.6)

while on a static circular crack with radius r = L1, it has the form

s = r
∆σ

µ
h(ν, x/r, y/r). (2.7)

The slip magnitude on an elliptic crack with semi-axis b, aspect ratio b/a and inclination ψ
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must have the form:
s = b

∆σ

µ
h(ν, b/a, ψ, x/b, y/b). (2.8)

Steady-state problems are additionally characterized by the shear wave phase speed β and the
rupture speed v. For steady-state cracks propagating along the x-axis, s has the form:

s = a
∆σ

µ
h(ν, v/β,

x− vt

a
), (2.9)

where a is the half-length of the crack. If the problem is instead self-similar and the rupture
growth can be fully characterized by two rupture speeds v and w, then:

s = vt
∆σ

µ
h(ν,

v

β
,
w

v
,
x

vt
,
y

vt
). (2.10)

2.1 Straight shear cracks infinite in the anti-plane

direction

In this section, we consider cracks that are infinite and straight along the y-axis, so that they
can be described as γ(t) = {(x, y, z);L(t) ≤ x ≤ R(t); z = 0} for some functions L and R

(L ≤ R). Both the displacement and the stress are assumed independent of the y-coordinate,
so these are effectively 2-D problems. They may be understood as approximations to problems
with more complicated geometries on small enough spatial scales, at which the curvature of
the crack may be neglected.

For anti-plane cracks, the only non-zero component of displacement is uy(t, x, z) (SH polar-
ization) and Eq. (2.2) reduces to a simple scalar wave-equation for uy:

1

β2
∂ttuy(t, x, z) = (∂xx + ∂zz)uy(t, x, z), (2.11)

where β =
√︂

µ
ρ

is the shear wave phase velocity. Because of the symmetry of the problem, the
uy component is anti-symmetric with respect to the fault plane (Das & Aki, 1977), so that
sy(t, x) = 2uy(t, x, z = 0).

In the in-plane case, the slip points in the direction of the x-axis. Displacement with the P-SV
polarization is induced (Aki & Richards, 2002), with two non-zero components ux(t, x, z) and
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uz(t, x, z) which are coupled in the resulting equations of motion. In homogeneous conditions,
two scalar potentials ϕ and ψ may be introduced such that u = ∇ϕ + ∇ × (0, ψ, 0), and
the vector problem decomposes into two scalar wave equations of the form (2.11) for each
potential (with phase velocities α = β

√︂
2 1−ν
1−2ν

and β, respectively). However, the potentials
remain coupled through the boundary conditions on displacement and traction. Therefore, the
in-plane problem remains more complicated than the anti-plane problem, despite the identical
equations of motion in the bulk volume. The shear component of displacement ux is anti-
symmetric with respect to the fault plane (Das & Aki, 1977) and sx(t, x) = 2ux(t, x, z = 0).
The uz component is symmetric, so sz ≡ 0.

2.1.1 Semi-infinite straight cracks

The simplest non-trivial solutions are obtained for the problem of a semi-infinite straight crack
occupying a left half-plane of the fault (L = −∞), with zero stress increment at infinity and
zero stress drop, i.e. γ(t) = γ = {(x, y, z) ∈ Γ;x < R(t)}, limx2+z2→∞ τij(x, z) = 0, ∆σ = 0. In
this subsection, we consider two special cases, R(t) = 0 (static crack) and R(t) = vt (steadily
propagating crack). The more general case of arbitrary increasing R(t) is treated in subsection
2.1.3.

2.1.1.1 Static case

In static problems, the inertial terms in the equations of motion are zero. For the anti-plane
case (2.11), this implies that the static displacement u0y solves the Laplace equation:

(∂xx + ∂zz)u
0
y(x, z) = 0. (2.12)

This crack problem was solved for all modes by Irwin (1958) by the Westergaard method, in
which displacements and stresses are expressed through a single harmonic complex function.
It was re-derived on the basis of the elastic representation theorem (2.3) by Ida & Aki (1972).
For the anti-plane case, non-zero components of slip and traction increment on the fault plane
are:

s0y(x) = A
√
−xH(−x); τ 0yz(x, 0) = KIII(A)

H(x)√
2πx

, (2.13)
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where A ∈ R is any constant with the dimension of m1/2, H is the Heaviside step function
and KIII is the anti-plane stress-intensity factor:

KIII(A) =

√
2π

4
Aµ. (2.14)

The stress is infinite at the crack front, decaying with the inverse square root of the distance.
This is in accordance with the general form seen in Eq. (1.11). In this case, the solution is
exceptionally simple, containing only the singular term. We note that ∂xsy and τxy also have
inverse square root singularities at the crack-tip, but their support coincides with the crack.

The in-plane problem (also solved by Irwin, 1958) has a similar solution:

s0x(t, x) = A
√
−xH(−x′); τ 0xz(t, x, 0) = KII(A)

H(x)√
2πx

, (2.15)

but the stress-intensity factor is now given by:

KII(A) =

√
2π

4
A

µ

1− ν
. (2.16)

Therefore, the two solutions are identical except for the factor 1/(1− ν) that appears in Eq.
(2.16). This factor seems to be ubiquitous in mode II (and also mode I) problems. Denoting

µ∗ =

⎧⎨⎩
µ

1−ν for mode II

µ for mode III
, (2.17)

the stress-intensity factors for both modes can be written compactly as

KII,III(A) =

√
2π

4
Aµ∗. (2.18)

A general shear crack solution would be obtained as a superposition of the anti-plane and
in-plane cases.

2.1.1.2 Steady propagation

The preceding problem may be generalized to the case of a semi-infinite crack steadily propa-
gating with rupture speed v, i.e. γ(t) = {(x, y, z) ∈ R3;x < vt, z = 0}. In the anti-plane case,
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the steady solution uvy(t, x, z) can be obtained from the solution u0y(x, z) of the static problem
by using the transformation (McClintock, 1960; Eshelby, 1969; Aki & Richards, 2002, ch. 11)

x→ η(t, x) = (x− vt)/γβ(v), (2.19)

where

γβ(v) =

√︄
1− v2

β2
, (2.20)

so η is a function analogical to the spatial part of the Lorentz transformation.
The transformed displacement

uvy(t, x, z) = u0y (η(t, x), z) , (2.21)

solves the body equation of motion (2.11), as can be confirmed by direct substitution of
(2.21) into Eq. (2.11), applying the chain rule ∂xuvy(t, x, z) = 1

γβ(v)
∂ηu

0
y(η, z), ∂tu

v
y(t, x, z) =

−v
γβ(v)

∂ηu
0
y(η, z), ∂zu

v
y(t, x, z) = ∂zu

0
y(η, z), and using the fact that u0y solves the static equation

(2.12).
For τ vyz, Eq. (2.21) implies

τ vyz(t, x, z) = µ
∂uvy(t, x, z)

∂z
= µ

∂u0y (η(t, x), z)

∂z
= τ 0yz (η(t, x), z) . (2.22)

Evaluating formulas (2.21) and (2.22) at z = 0 shows that since u0y fulfills the mixed bound-
ary conditions for the static problem, the transformed solution uvy fulfills the mixed boundary
conditions for the steady problem. Therefore, uvy is indeed the solution of the steady problem.

Applying Eqs. (2.21) and (2.22) to Eq. (2.13), we obtain:

svy(t, x) =
A√︁
γβ(v)

√
−x′H(−x′); τ vyz(t, x, 0) = KIII(A)

√︂
γβ(v)

H(x′)√
2πx′

, (2.23)

where
x′ = x− vt. (2.24)

Since A is undetermined, we may replace it by another undetermined constant B through
the substitution:
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B = A
√︂
γβ(v). (2.25)

Using Eqs. (2.14) and (2.25), we see that:

KIII(A)
√︂
γβ(v) =

√
2π

4
µA
√︂
γβ(v)

=

√
2π

4
µB

= KIII(B).

(2.26)

Therefore, Eq. (2.23) can be rewritten as (dropping the v superscript):

sy(t, x) =
1

γ(v)
B
√
−x′H(−x′); τyz(t, x, 0) = KIII(B)

H(x′)√
2πx′

, (2.27)

which differs from the static result (2.14) only by a speed dependent factor that modifies the
slip.

For straight-extending cracks, the relation between the dynamic energy release rate G(v)
and the stress-intensity factor KIII is (Freund, 1990, ch. 5):

G(v,KIII) =
K2
III

2µ

1

γβ(v)
. (2.28)

Comparing this relation with Eqs. (1.38) and (1.42) introduced in section 1.5 we can identify
the anti-plane functions CIII and gIII :

CIII(µ, ν) = CIII(µ) =
1

2µ
(2.29)

and
gIII(v, µ, ν, β) = gIII(v, β) = 1/γβ(v). (2.30)

Combining Eqs. (2.26) and (2.28) yields the explicit expression for G(v):

G(v) =
π

16
µB2/γβ(v), (2.31)

which diverges as v → β. In fact, β is the limiting speed for all, even cohesive, purely anti-plane
cracks (Broberg, 1996).
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For the in-plane problem, even though the potentials ϕ and ψ satisfy scalar wave equations
of the same form (2.11) as the anti-plane displacement uy, applying the transformation (2.19)
to the x argument of the static potentials does not suffice to obtain the steady solution. This
is because boundary conditions for displacement and traction on the fault are not fulfilled by
the transformed potentials.

Nevertheless, the solution for the subshear (v < β) steady in-plane problem has the same
structure as the anti-plane solution, differing in the crack speed dependent factor modifying
the slip (see Freund, 1979; Aki & Richards, 2002, ch. 11):

sx(t, x) =
γβ(v)

P (v)
B
√
−x′H(−x′); τxz(t, x, 0) = KII(B)

H(x′)√
2πx′

, (2.32)

where

P (v) =
4β2(1− ν)

v2

[︄
γα(v)γβ(v)−

(︃
1− v2

2β2

)︃2
]︄

(2.33)

for v > 0 and
P (v = 0) = lim

v→0
P (v) = 1 (2.34)

for v = 0. Here, α = β
√︂

2 1−ν
1−2ν

is the phase speed of longitudinal elastic (P) body waves and

KII(B) =

√
2π

4
Bµ∗ (2.35)

as in the static case (Eq. 2.18).
The relationship between G and KII for straight-extending cracks in plane-strain is (Freund,

1990, ch. 5):

G(v,KII) =
K2
II

2µ∗
γβ(v)

P (v)
. (2.36)

Comparing with Eqs. (1.38) and (1.42) and noting that the speed dependent factor equals 1
for v = 0, we identify the functions CII and gII for (plane-strain) mode II cracks:

CII(µ, ν) =
1

2µ∗ (2.37)

and
gII(v, µ, ν, β) =

γβ(v)

P (v)
. (2.38)
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The dynamic energy release rate for mode II can be calculated by combining Eqs. (2.35)
and (2.36):

G(v) =
π

16
µ∗B2γβ(v)

P (v)
. (2.39)

This expression provides a constraint on steady-state rupture speeds for ideally brittle cracks.
This is because, for physically admissible solutions, the energy release rate must be real,
finite, and non-negative (so that the crack is not a source of energy, which would correspond
to negative fracture energy). Since the speed-independent factors all fulfill these conditions,
the admissibility at different speeds v is determined by the function γβ(v)/P (v).

For v < β, γβ(v)/P (v) is real, finite, and non-negative on the interval [0, cR), where cR is the
speed of Rayleigh surface waves1, and negative on the interval (cR, β). Therefore, steady-state
propagation at speeds v ∈ [cR, β) is not realistic for ideally brittle purely in-plane cracks and
the interval has been labeled as “forbidden” (Burridge et al., 1979).

For v > β, γβ(v)/P (v) is complex-valued, except for the Eshelby speed cE =
√
2β, for which

it is real and positive. Solutions for the speed range [β, α]/{cE} exist, but they differ from the
subshear result (2.32) (Freund, 1979). In particular, they contain singular Mach wavefronts
traveling with speed β that are radiated from the crack front. The stress at the crack front is
still infinite, but the singularity exponent ζ, defined by

τSxz(x
′, 0) ∝ x′−ζ , (2.40)

where τSxz is the singular part of τxz, is smaller than the subRayleigh value of 1/2. It smoothly
increases as a function of the crack speed from 0 at v = β to 1/2 as v → cE and then again
decreases to ζ = 0 at v = α.2 Accordingly, the stress-intensity factorKII ∝ limx′→0+ x

′1/2x′−ζ =

0. Hence the energy release rates of these solutions vanish and no energy can be supplied to the
crack at these speeds. According to the Irwin or Griffith criteria, propagation of such cracks
would only be possible for strictly zero values of Kc (Gc). Therefore, steady-state propagation
with speeds v ∈ [β, α]/{cE} is not realistic either. Indeed, disregarding the special speed cE, cR
is the limiting speed of pure mode II ideally brittle cracks propagating under the Irwin/Griffith

1The speed cR can be defined as the only root of P (v) which is positive, real and smaller then α, see Schröder
& Scott, 2001. In general, cR < β and cR/β is a slowly changing function of ν. For ν = 1/4 (Poisson solids),
cR ≈ 0.92β.

2As explained in Rosakis (2002), the underlying mathematical reason for this quantitative change is that
the scalar equation governing the steady shear wave potential (expressed in the co-moving coordinates
x′ = x− vt, t′ = t), changes from an elliptic partial equation to a hyperbolic one as v passes β.
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criteria. (Craggs, 1960; Freund, 1979). It is also the limiting speed of mode I cracks (Barenblatt
& Cherepanov, 1960; Broberg, 1996), even for cohesive constitutive models.

For mode II cohesive cracks, analytical (Andrews, 1976a; Freund, 1979) and numerical stud-
ies (see sections 3.1 and 3.5 and references therein) show that steady supershear rupture speeds
are physically plausible. Indeed, when a finite cohesive zone behind the crack front is included,
the energy flux can be positive even for v > β (Broberg, 1989, 1994; Rosakis, 2002). For the
forbidden zone (cR, β), positive flux is also possible in cohesive models, but likely only for
transient (non-steady) propagation. Rapid passage of the crack speed through the forbidden
zone has been observed in numerical studies (Geubelle & Kubair, 2001; Bizzarri & Das, 2012;
Liu et al., 2014; Payne & Duan, 2015).

For the ideally brittle special case of v = cE, the Mach waves are not present, the solution
retains the inverse square root singularity of the subRayleigh propagation and the energy
release rate is positive. Therefore, steady brittle propagation is theoretically possible at this
speed. Convergence of transient supershear cracks to a steady crack propagating very close to
cE was observed in laboratory experiments of Rosakis (2002).

Finally, we note that ideally brittle mode I and II problems with crack speeds in the interval
(cR, β) in fact admit non-unique solutions (Freund, 1990, ch. 7). In particular, a non-trivial
solution with zero energy release rate exists (Freund, 1979). However, as for the v > β case,
propagation of these cracks according to the traditional Irwin or Griffith criteria would only
be possible for strictly zero values of Kc (Gc).

2.1.2 Finite straight cracks

2.1.2.1 Static case

The simplest finite crack problem is that of a static straight anti-plane crack with length 2a:
γ(t) = {(x, y, z) ∈ R3; |x| ≤ a, z = 0} and stress drop equal to ∆σ = (0,∆σ, 0). At infinity,
we require limx2+z2→∞ τyz(x, y, z) = 0. From dimensional analysis (Eq. 2.5) and reflection
symmetry of the problem along the plane x = 0, we may anticipate that the slip on the crack
has the form:

sy(x) = a
∆σ

µ
f(ν, x/a), (2.41)
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with f an even or odd function of x/a. Indeed, the exact solution by Knopoff (1958), who
derived it based on an analogy with a known solved problem of electrostatics (as both uy in
the static crack problem and the electric potential in absence of charge satisfy the Laplace
equation), reads:

sy(x) = 2a
∆σ

µ

√︁
1− (x/a)2I[−a,a](x), (2.42)

τyz(x, 0) = ∆σ
x√

x2 − a2
IR\[−a,a](x)−∆σ, (2.43)

where IA is the indicator function of set A. As in the semi-infinite example, τyz is infinite at
the crack fronts, but non-singular terms are now present as well. For example, introducing the
translated coordinate r = x − a, the solution (2.43) may be expanded around the right edge
of the crack as:

τyz(a+ r, 0) =
∆σ√
r

a+ r√
2a+ r

−∆σ =
∆σ√
r

a+ r√
2a

(︂
1− r

4a
+ o(r)

)︂
−∆σ (2.44)

=∆σ

(︄√︃
a

2
r−1/2 − 1 +

3

4
√
2a
r1/2 +

∞∑︂
i=1

ki(a)r
(2i+1)/2

)︄
, (2.45)

where ki(a) are expansion coefficients of the form fia
−(2i+1)/2 for some non-dimensional con-

stants fi, and the expansion is valid for 0 < r ≤ 2a.
The stress-intensity factor (Eq. 1.13) at the right edge is

KIII(a) = lim
r→0+

[︂√
2πrτyz(a+ r)

]︂
= ∆σ

√
πa. (2.46)

It depends on both the stress drop and the geometry of the problem. At the left edge, KIII

has the same size, but opposite sign.
The energy release rate may be calculated from Eqs. (2.28) and (2.46) as:

G =
π∆σ2

2µ
a. (2.47)

According to the Griffith criterion, which posits that the crack is stable when G<Gc, where
Gc is the critical energy release rate, larger cracks are weaker than smaller cracks, sustaining
smaller maximum stress drop. From Eq. (2.47), the critical length aIIIc above which cracks are
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unstable is:
aIIIc =

2µ

π∆σ2
Gc. (2.48)

When the crack size increases towards infinity, the stress drop has to go to zero if KIII and
G are to remain finite. The solution for slip and traction, expressed in terms of the translated
coordinate r = x− a, then converges to that of the semi-infinite crack (2.13). Indeed, writing
Eq. (2.42) as:

sy(x) =
2∆σ

µ

√︁
(a− x)(a+ x)I[−a,a](x) =

2∆σ

µ

√︁
−r(r + 2a)I[−2a,0](r) (2.49)

and calculating the limit for a→ ∞ yields:

lim
a→∞

sy(a+ r) = lim
a→∞

2
√
2a

∆σ

µ

√︁
−r(1 + r/2a)H(−r) = A

√
−rH(−r), (2.50)

where we have labeled
A = lim

a→∞
2
√
2a

∆σ

µ
. (2.51)

Similarly, the limit of the stress-intensity factor is, from Eqs. (2.46) and (2.51):

lim
a→∞

KIII(a) = lim
a→∞

(2
√
2a

∆σ

µ
)

√
πµ

2
√
2
=

√
2π

4
Aµ. (2.52)

By assumption, the above limit and thus also A are finite. Relations (2.50) and (2.52) there-
fore correspond to the semi-infinite results (2.13) and (2.14). A similar calculation shows the
correspondence for τyz(x, 0).

The static in-plane case, with ∆σ = (∆σ, 0, 0), was solved by Starr (1928). It has the same
dependence on x as the anti-plane case, but µ is replaced with µ∗ (Eq. 2.17):

sx(x) = 2a
∆σ

µ∗

√︁
1− (x/a)2I[−a,a](x), (2.53)

τxz(x, 0) = ∆σ
x√

x2 − a2
IR\[−a,a](x)−∆σ. (2.54)

The energy release rate is

G =
π∆σ2

2µ∗ a. (2.55)
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For ν > 0, and mode II, µ∗ > µ. Therefore, the critical crack in mode II:

aIIc =
2µ∗

π∆σ2
Gc (2.56)

is larger than the critical mode III crack (assuming the values of Gc for mode II and mode III
are equal).

2.1.2.2 Steady and self-similar propagation

The solution for a steadily moving finite anti-plane crack, i.e. γ(t) = {(x, y, z) ∈ R3; |x− vt| ≤
a, z = 0} (so-called Yoffe problem, first discussed for mode I cracks by Yoffe, 1951) can be
obtained from the static solution discussed above by applying the transformations (2.21) and
(2.22) to Eq. (2.42) and (2.43), respectively. The transformations take the static crack with
tips L = −b and R = b to a moving crack with tips L(t) = vt− γ(v)b and R(t) = vt+ γ(v)b.
Since our steadily moving crack has tips L(t) = vt− a and R(t) = vt+ a, we need to use the
solution for the static crack with reduced half-length b = a/γβ(v). The result is

sy(t, x) =
2a

γβ(v)

∆σ

µ

√︁
1− (x′)2/a2I[−a,a](x

′), (2.57)

τyz(t, x, 0) = ∆σ
x′√︁

(x′)2 − a2
IR\[−a,a](x

′)−∆σ, (2.58)

where x′ = x− vt.
Since γβ(v) < 1 for v > 0, the slip gets amplified with the crack speed. On the other hand,

the on-fault traction is independent of it and the stress-intensity factor is equal to the static
case, KIII = ∆σ

√
πa. In any case, the slip instantaneously returns to zero behind the crack,

so the problem does not seem to correspond to a realistic situation.
More physically relevant is the assumption that the slip rate, rather than slip, behind the left

edge L(t) is zero. In this case, we obtain a simple model of a self-healing pulse-like earthquake
and the set γ(t) defined at the beginning of this subsection should be called a pulse or a
slipping zone, rather than a crack. A solution is given in Broberg (1999, ch. 6.4) for the case
in which the pulse closes smoothly at the left edge, in the sense that ∂xsy(t, x = −a) = 0. It
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reads

sy(t, x) =
2πa

γβ(v)

∆σ

µ
I(−∞,−a)(x

′) +
2

γβ(v)

∆σ

µ

(︃√︁
a2 − (x′)2 + a arccos(

x′

a
)

)︃
I[−a,a](x

′), (2.59)

τyz(t, x, 0) = ∆σ

√︃
x′ + a

x′ − a
IR\[−a,a](x

′)−∆σ. (2.60)

The first formula implies that the slip rate is a pulse of the form:

∂tsy(t, x) =
2v

γβ(v)

∆σ

µ

√︃
a+ x′

a− x′
I[−a,a)(x

′). (2.61)

As in the previous problem, sy is amplified by 1/γβ(v), and the traction is independent of the
pulse speed. The stress-intensity factor at the right edge of the pulse is equal to 2∆σ

√
πa,

which is twice as large as the crack result. At the left edge, τyz is continuous and the stress-
intensity factor is zero. Nevertheless, the slip acceleration ∂ttsy ∝ (x′ + a)−1/2(x′ − a)−3/2

diverges at both edges. Note that τyz behind the pulse gradually returns to zero, i.e. the total
traction returns to its original value.

Nielsen & Madariaga (2003) considered (among other problems) a related case of a uni-
lateral, self-healing, self-similar pulse which starts propagating from the origin at t = 0. The
healing front and the rupture front move at speeds l̇ = vh and ṙ = vr, respectively. Remark-
ably, the slip rate function for this problem can be obtained from the solution of the above
steady-state problem by replacing a with the instantaneous length of the pulse, a→ (vr−vh)t.
The formula for traction, on the other hand, is far more complicated. Due to the unilateral
nature of the problem and the sudden start of the pulse, τyz has a singularity not only at the
rupture front but also at the origin.

Another physically relevant problem is that of a self-similar anti-plane crack expanding in
both directions from the origin with constant speed v, i.e. γ(t) = {(x, y, z) ∈ R3; |x| ≤ vt, z =

0} (so-called Broberg problem, who first solved it for mode I cracks in Broberg, 1960). The
initial displacement and velocity at t = 0 are zero. This problem may be used as a model
of a bilaterally expanding seismic rupture. It was examined by Broberg (1998) for generally
anisotropic media, though he found that solutions only exist for special symmetries of the
stiffness tensor. For the case of an isotropic medium, the slip is given by:



2.1. Straight shear cracks infinite in the anti-plane direction 46

sy(t, x) =
2∆σ

µE (γβ(v))

√︁
(vt)2 − x2I[−vt,vt](x), (2.62)

where E(k) =
´ π/2
0

(︁
1− k2 sin2 θ

)︁1/2
dθ is the complete elliptic integral of the second kind3.

The stress-intensity factor is:

KIII(v) = ∆σ
√
πvt

γβ(v)

E (γβ(v))
. (2.63)

Therefore, the solution for slip and the singular part of traction is obtained from the static
case simply by substituting the instantaneous radius vt for a and multiplying by factors that
depend only on the ratio v/β (but we note that the full solution for traction has a more
complicated structure). The stress-intensity factor and the energy release rate both vanish at
v = β.

The in-plane case (Kostrov, 1964) has the same temporal and spatial dependence as the
anti-plane case but differs in the velocity-dependent proportionality factors. The in-plane
stress-intensity factor vanishes at the Rayleigh wave speed.

2.1.3 Spontaneous propagation of a finite straight anti-plane crack

The final straight crack problem we discuss is that of a spontaneous expansion of an anti-plane
crack that suddenly appears at t = 0 and starts propagating from homogeneous conditions
uy(0, x, z) ≡ ∂tuy(0, x, z) ≡ 0. The crack surface is defined by γ(t) = {(x, y, z) ∈ R3;L(t) ≤
x ≤ R(t), z = 0}, for some non-increasing (non-decreasing) functions L and R, respectively
(L ≤ R). These functions may be prescribed or may be left unspecified a priori, modeling
spontaneous propagation. The stress drop at the crack is prescribed, but unlike the previous
cases, it is allowed to vary with space and time, ∆σ = (0,∆σ(t, x), 0).

3E(k) is equal to one-quarter of the circumference of an ellipse (possibly degenerate) with semi-axes of
lengths 1 and

√
1− k2 (i.e. k is the eccentricity of the ellipse). It is a decreasing function of k such that

E(0) = π/2 and E(1) = 1. The complete elliptic integral of the first kind K(k), which turns up in
subsection 2.2.1, is defined as K(k) =

´ π/2
0

(1− k2 sin2 θ)−1/2dθ. It appears as a correction in the formula
for the exact period T of a mathematical pendulum with amplitude θ0 and whose small-amplitude period
is T0: T = 2

πT0K(sin2 θ0/2) (Beléndez et al., 2007). It is an increasing function of k, with K(0) = π/2 and
limk→1 K(k) = ∞.
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Kostrov (1966) solved this general problem with the use of a representation formula for
displacement on the fault:

uy(t, x) =
1

π

ˆ
S(t,x)

dx′dt′
τyz(t

′, x′, 0)√︁
(x− x′)2 + (t− t′)2

, (2.64)

where S(x, t) is the domain of dependence of the space-time point (event) (t, x), i.e. the set of
on-fault space-time events that can reach it by signals propagating no faster than the shear
wave speed:

S(t, x) = {(t′, x′) ∈ R× R; |x− x′| ≤ β(t− t′)}. (2.65)

However, since τyz is zero everywhere for t < 0 and it starts propagating from the crack at
t = 0, with speeds of at most β, τyz(t, x, 0) vanishes outside the set K = {(t′, x′) ∈ R+

0 ×R; x′ ∈
[L(0)− βt’,R(0)+ βt′]}. The integration domain in Eq. (2.64) can therefore be reduced to the
set S0(t, x) = S(t, x) ∩K.

For simplicity, let us first restrict ourselves to events to the right of the crack which are not
influenced by the left edge of the crack, i.e. events (t, x) for which

x > L(0) + βt. (2.66)

Then S0(t, x) does not contain points to the left of the crack and can be partitioned into
two disjoint connected subsets Sc(t, x) = {(t′, x′) ∈ S0(t, x); x

′ ∈ γ(t′)} (crack history) and
SR(t, x) ={(t′, x′) ∈ S0(t, x); x′ > R(t′)} (the part of S0 to the right of the crack), such that
S0(t, x) = Sc(t, x) ∪ SR(t, x).

For events in Sc(t, x), τyz(t′, x′, 0) is known and equal to the prescribed function −∆σ(t′, x′).
For points in SR(t, x), the slip (and hence uy) is zero by definition, so Eq. (2.64) there leads
to the integral identity

ˆ
Sc(t,x)

dx′dt′
−∆σ(t′, x′)√︁

(x− x′)2 + (t− t′)2
+

ˆ
SR(t,x)

dx′dt′
τyz(t

′, x′, 0)√︁
(x− x′)2 + (t− t′)2

= 0. (2.67)

Eq. (2.67) can be transformed into so-called Abel’s integral equation, which in turn allows
inverting for τyz :

τyz(t, x, 0) =
1

π
√︁
x−R(tr)

ˆ R(tr)

x−βt
∆σ

(︃
t− x− x′

β
, x

)︃ √︁
R(tr)− x′

x− x′
dx′. (2.68)



2.1. Straight shear cracks infinite in the anti-plane direction 48

Here, tr is the solution to the equation x = R(tr) + β(t − tr), i.e. it is the source time of
a shear wave sent from the right edge of the crack that reaches x at time t. The formula
at points on the left side of the crack is almost identical to Eq. (2.68), except for signs of
spatial coordinates. Once the traction is known, displacement (and slip on the crack) can be
calculated from equation (2.64).

The stress-intensity factor KIII =limr→0+
[︁√

2πrτyz(R(t) + r)
]︁

at the right edge turns out
to be

KIII

(︂
t, R(t), Ṙ(t)

)︂
=

√︃
2

π

√︂
1− Ṙ(t)/β

ˆ R(t)

R(t)−βt
∆σ

(︃
t− R(t)− x′

β
, x′
)︃

dx′√︁
R(t)− x′

. (2.69)

It depends on the instantaneous speed of the right edge, but also on its instantaneous position
and on the history of stress drop on the crack. It vanishes for Ṙ = β, which is the anti-plane
terminal speed. Moreover, unless the integral vanishes (which is possible for cohesive cracks
with suitably chosen ∆σ(t, x)), β is the only speed that leads to finite traction. Otherwise, the
stress once again has the expected inverse square root singularity at the crack edge.

In formula (2.69), the instantaneous crack speed Ṙ(t) appears only in the square root term
in front of the integral, which is equal to 1 for Ṙ = 0. In addition, the history of the crack
motion influences the formula only indirectly, through the history of the stress drop. Therefore,
the following relationship holds:

KIII

(︂
t, R, Ṙ

)︂
=

√︂
1− Ṙ/βK∗

III (t, R) , (2.70)

where K∗
III is the stress-intensity factor of the crack with a static right edge R and which

has the same history of stress drop as the original crack. Using the generalized Irwin relation
(2.28) yields a similar universal identity for the energy release rate:

G
(︂
t, R, Ṙ

)︂
=
K2
III

(︂
t, R, Ṙ

)︂
γβ(v) · 2µ

=
1− Ṙ/β√︃
1−

(︂
Ṙ/β

)︂2 (K∗
III(t, r))

2

2µ

=

√︄
1− Ṙ/β

1 + Ṙ/β
G∗ (t, R) .

(2.71)
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Eshelby (1969) studied an alternative problem in which the crack does not appear suddenly at
t = 0, but has instead existed forever, subject to time-independent loading ∆σ(x′). He showed
that Eqs. (2.70) and (2.71) are then valid if one interprets K∗

III and G∗ as the stress-intensity
factor and energy release rate, respectively, of a static crack of the same length and subject
to the same loading as the moving crack. Relations similar to (2.70) and (2.71) but with a
different dependence on Ṙ also exist for mode II cracks (Fossum & Freund, 1975; Kostrov,
1975, ch. 6). For example,

KII(t, R, Ṙ) =
1− Ṙ/cR√︂
1− Ṙ/β

K∗
II(t, R). (2.72)

For prescribed propagation, R(t) is known beforehand, and Eqs. (2.67) and (2.64) can be
used to calculate the displacement and traction on the fault. For spontaneous rupture, in
which R(t) is unspecified, a rupture criterion needs to be supplied instead, as discussed in
section 1.5. The evolution of R(t) is then determined from the crack tip equation of motion.
For example, using the Irwin criterion, this equation is:

KIII

(︂
t, R(t), Ṙ(t)

)︂
= Kc, (2.73)

where KIII is given by Eq. (2.69). It is an ordinary first-order differential equation in R(t),
which, along with the initial condition R(0) = R0, can be solved for R(t). Similarly, using the
Griffith criterion, we obtain the equation

G
(︂
Ṙ(t), KIII

(︂
t, R(t), Ṙ(t)

)︂)︂
= Gc, (2.74)

where the function G(Ṙ,KIII) is given by Eq. (2.28). Analogical equations can be deduced
for mode II cracks (Fossum & Freund, 1975). Indeed, experimental confirmation of such an
equation can be found in Svetlizky et al. (2019), who found that it can predict the rupture
front position of a laboratory in-plane crack to a good degree of accuracy.

Analytical results of the crack equation of motion are available for simple configurations.
For example, for a semi-infinite (L(t) ≡ −∞) crack suddenly appearing at t = 0 with uniform
stress drop ∆σ, the Griffith criterion leads to the result (Kostrov, 1966):

R(t) = H(t− ts) (βt− βts [1 + 2 arctan(t/ts)− π/2]) , (2.75)
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where ts is the time at which the crack starts to propagate:

ts =
µπGc

4β∆σ2
. (2.76)

The velocity vR of the right-edge is:

Ṙ(t) = H(t− ts)β

(︃
1− 2

1 + (t/ts)2

)︃
. (2.77)

Thus, the anti-plane crack starts propagating from zero velocity at t = ts > 0 and asymptot-
ically accelerates to the shear wave velocity as t≫ ts. Slightly different formulae are obtained
if Irwin’s criterion (i.e., a velocity independent critical stress-intensity factor) is used instead
(Das, 2003), but the acceleration from zero to terminal velocity is a persistent feature in ho-
mogeneous settings. A similar result holds for in-plane cracks, for which the limiting speed is
the Rayleigh velocity (see Fossum & Freund, 1975; Broberg, 1996; Dunham, 2007).

Acceleration of the crack towards terminal speeds is not inevitable in more general settings.
If ∆σ is allowed to decrease along the crack path, such as when the crack front travels from
areas of high initial stress to areas of low initial stress (assuming complete stress drop), then
the crack can be slowed down. The crack equation of motion (2.73) and (2.74) can also be
generalized by considering Kc (Gc) as functions of the position, so that Kc → Kc (R(t)) or
Gc → Gc (R(t)). This corresponds to heterogeneous resistance to rupture on the fault, which
can slow down (when the resistance increases along the crack path) or accelerate (when the
resistance decreases) the crack. Curiously, as noted in Eshelby (1969), since no second or higher
derivatives of R(t) appear in the equations of motion, the crack front, regarded as a moving
particle, has no inertia and its speed can suddenly change upon reaching a discontinuous jump
in ∆σ or in rupture resistance.

The formulas (2.68) and (2.69) are exact at all times only for semi-infinite cracks. For
finite cracks, it is valid at given x only for times t small enough to satisfy Eq. (2.66), before
the arrival of waves from the left of the crack. For events (t, x) to the right of the crack
that do not satisfy this condition, the decomposition of the set S0(t, x) changes to S0(t, x) =

SL(t, x) ∪ Sc(t, x) ∪ SR(t, x) with SL(t, x) ={(t′, x′) ∈ S0(t, x); x
′ < L(t′)} and the solution

(2.68) is no more applicable, because τyz is unknown on SL(t, x). However, if we could calculate
the traction there, then we could put −∆σ(t′, x′) = τyz(t

′, x′, 0) for (t′, x′) in SL(t, x) and use
the formula (2.68) with Sc(t, x) →Sc(t, x)∪SL(t, x). The traction may be obtained iteratively
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(see a similar description in Kostrov, 1975): Let U (1) be the set of points in A(1) = SL(t, x)

whose domains of dependence S include the right edge of the crack. Then we can calculate
the traction on A(1)\U (1) from the left side analogy of formula (2.68). If U (1) is empty, then
we are done. If not, we need to calculate the traction on the set A(2) =

⋃︁
(t′,x′)∈U(1) SR(t

′, x′).
To do so, we repeat the iteration on A(2), exchanging the left and right sides. The iteration
ends when U (n) is empty for some n. Since traction in each step of this ladder is given by
an integral formula, this procedure leads to the appearance of additional multiple (double,
triple...) integrals in the result (2.68). They correspond to repeated diffraction at the crack
edges. Closed-form solutions of these integrals are typically unavailable and as pointed out by
Madariaga (1976), it is more practical to solve the problem with numerical methods.

2.2 Elliptic shear cracks

2.2.1 Static elliptical cracks

Only few 3-D crack problems have known analytical solutions. One of them is that of a static
elliptic crack. It is defined by γ = {(x, y, z) ∈ R3; x

2

a2
+ y2

b2
≤ 1, z = 0} with constant shear

stress drop on the crack face with general orientation

∆σ = ∆σ(cosψ, sinψ, 0). (2.78)

At infinity, τij → 0.
Assuming, without loss of generality, that b ≤ a, the solution for the slip was found by

Eshelby (1957, 1963) and can be written as:

s(x, y) = b
∆σ

µ
A(b/a, ν, ψ)

(︃
1− x2

a2
− y2

b2

)︃1/2

Iγ(x, y). (2.79)

Here, A is a constant vector field given by

A(b/a, ν, ψ) := (AL(b/a, ν) cosψ,AT (b/a, ν) sinψ, 0), (2.80)

where AL and AT are functions of the aspect ratio p = b/a and the Poisson’s ratio ν:
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AL(p, ν) = 2/

(︃
E(k) +

ν

1− ν

p2

k2
[K(k)− E(k)]

)︃
, (2.81)

AT (p, ν) = 2/

(︃
E(k) +

ν

1− ν

1

k2
[︁
K(k)− p2E(k)

]︁)︃
, (2.82)

k=
√︁

1− p2, (2.83)

where K(k) and E(k) are the complete elliptic integrals of the first and second kind, respec-
tively. For Poisson solids (ν = 1/4, which is close to the value of ν = 0.27 used in chapters 3
and 6), we plot the functions AL and AT in Fig. 2.1 (a similar figure is shown in Madariaga,
1979). They are decreasing functions of the aspect ratio p, with AL(p, ν) > AT (p, ν) ∀p ∈ [0, 1),

and
AL(1, ν) = AT (1, ν) =

8(1− ν)

π(2− ν)
. (2.84)

We point out that Eq. (2.79) has the form (2.8) required by Buckingham’s theorem.
For circular crack (a = b =: r), we have

∆σA(b/a, ν, ψ) = AL(1, ν)∆σ(cosψ, sinψ) =
8(1− ν)

π(2− ν)
∆σ

and the slip is

s(x, y) =
∆σ

µ

8(1− ν)

π(2− ν)
r

(︃
1− ρ2

r2

)︃1/2

, (2.85)

where ρ =
√︁
x2 + y2. This relation was explicitly derived by Neuber (1937) and Keilis-Borok

(1959).
The average slip on the circular crack is:

s̄ =
1

πr2

ˆ r

0

ˆ 2π

0

s(ρ)ρdρdϕ =
16(1− ν)

3π(2− ν)

∆σ

µ
r. (2.86)

Using this expression in the formula for the scalar seismic moment:

M0 = µA|s̄|, (2.87)



2.2. Elliptic shear cracks 53

where A = πr2 is the area of the crack, we obtain

M0 =
16(1− ν)

3(2− ν)
∆σr3. (2.88)

For the usually considered case of Poisson’s solid (ν = 1/4), this yields the often used relation
(Madariaga & Ruiz, 2016):

M0 =
16

7
∆σr3. (2.89)

For a general aspect ratio, the solution (2.79) contains an important 3-D feature: unlike
the simpler half-plane problems, the slip is generally not parallel to the stress drop. The only
exception is when the stress drop is parallel to one of the axes of the ellipse, or for circular
cracks (Eq. 2.85). The angle ζ between the slip and the semi-major axis is readily obtained
from Eqs. (2.79) and (2.80):

tan ζ =
AT (b/a, ν)

AL(b/a, ν)
tanψ (2.90)

We plot the deviation ζ−ψ for ν = 1/4 and different aspect ratios b/a in Fig. 2.2. The deviation
increases with decreasing aspect ratio, but even in the limit of zero aspect ratio (elongated
crack), its maximum value is about 8◦(at ψ ≈ 41◦). For the limiting case of ν = 1/2 (not
shown), the maximum deviation increases to 20◦.

Note that since the slip points everywhere in the same direction, the fracture propagation
mode is mixed almost everywhere on the crack edge, with pure anti-plane or in-plane fracture
obtained only at four special points on the boundary. Taking the limit a→ ∞ or b→ ∞ yields
the static anti-plane and in-plane, respectively, solutions for 2-D cracks (Kostrov & Das, 1984).

The displacement and stress outside of the crack were calculated by Kassir & Sih (1966) and
Kostrov & Das (1984). Once again, inverse square root singularities for the stress appear. For
stress drop oriented along the semi-major axis, ∆σ = (∆σ, 0, 0), the stress-intensity factors
for modes II and III are:

KII(ϕ, a, b, ν) =
1

2

√
πb∆σAL(b/a, ν)

nx(ϕ)

(1− ν)
√︁
∥n(ϕ)∥

, (2.91)

KIII(ϕ, a, b, ν) =
1

2

√
πb∆σAL(b/a, ν)

ny(ϕ)√︁
∥n(ϕ)∥

, (2.92)
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Figure 2.1: The coefficient functions AL and AT given by Eqs. (2.81) and (2.82) for ν = 1/4.
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Figure 2.2: The deviation ζ − ψ between the direction of slip and stress drop as a function of
the stress drop angle ψ, calculated from Eq. (2.90) for ν = 1/4.
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where ϕ is the parametric angle of the ellipse x = a cos(ϕ), y = b sin(ϕ) and

n(ϕ) =

(︃
b

a
cos(ϕ), sin(ϕ), 0

)︃
.

The total stress-intensity factor

K(ϕ, a, b, ν) =
√︂
K2
II(ϕ, a, b, ν) +K2

III(ϕ, a, b, ν)

varies smoothly and slowly along the edge of the ellipse. It has extremes in the pure in-plane
(ϕ ∈ {0, π}) and the pure anti-plane (ϕ ∈ {π/2, 3π/2}) directions, with K(ϕ = 0) = KII(ϕ =

0) > KIII(ϕ = π/2) = K(ϕ = π/2) if and only if b/a > (1 − ν)2. We plot K(ϕ, a, b, ν) for
ν = 1/4 and four different aspect ratios in Fig. 2.3. For the case of circular crack and ν > 0,
the stress-intensity factor in the in-plane direction is always larger (by a factor of 1

1−ν ) than
the stress-intensity factor in the anti-plane direction. According to Irwin’s criterion (assuming
equal Kc for modes II and III), the circular crack is, therefore, less stable in the in-plane
direction. As in the 2-D case, larger cracks are less stable than smaller cracks, since for circular
cracks with radius r, K is proportional to ∆σ

√
r. Indeed, the generality of this proportionality

can be expected from dimensional analysis.
The energy release rate for the elliptic crack is a function of the position along the edge.

Here, we calculate the energy release rate for a self-similarly expanding circular crack, for
which we may use the Irwin relation (1.38) with functions (2.37) and (2.29) (Gao, 1988) to
calculate the the energy release rate from the stress-intensity factor:

G(ϕ, r, µ, ν) =
K2
II(ϕ, r, ν)(1− ν)

2µ
+
K2
III(ϕ, r, ν)

2µ
. (2.93)

Using formulas (2.91) and (2.92) with a = b = r, we obtain:

G(ϕ, r, µ, ν) =
πr∆σ2A2

L(1, ν)

8µ

(︃
cos(ϕ)2

1

1− ν
+ sin(ϕ)2

)︃
, (2.94)

which again has extremes at the purely in-plane and anti-plane directions, and the in-plane
value is larger than the anti-plane value if and only if ν > 0. Averaging (2.94) over the
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circumference of the circle and using the formula (2.84) yields:

Gavg(r, µ, ν) =
1

2π

ˆ 2π

0

G(ϕ, r, µ, ν)dϕ

=
πr∆σ2A2

L(1, ν)

16µ

2− ν

1− ν

=
πr∆σ2

16µ

(︃
8(1− ν)

π(2− ν)

)︃2
2− ν

1− ν

=
4

π

1− ν

2− ν

∆σ2

µ
r.

(2.95)

For the sake of completeness, we note that the stress-intensity factors for stress drop
(0,∆σ, 0) along the semi-minor axis can be obtained by replacing AL with AT and rotat-
ing the coordinate system by 90 degrees. The stress-intensity factors for an arbitrary direction
of the stress drop can be obtained as a superposition of the two special cases.

2.2.2 Self-similarly expanding elliptical cracks

As a final example, we look at the problem of an elliptic crack expanding self-similarly with
constant speeds va and vb in the directions of the major and minor axes, respectively, i.e.
γ(t) = {(x, y, z) ∈ R3; x

2

v2a
+ y2

v2b
≤ t2, z = 0}. The special problem of the expanding circular

crack (va = vb) was solved by Kostrov (1964) and the general elliptic problem was solved by
Burridge & Willis (1969) and Richards (1973).

The solution for the slip is

s(t, x, y) = (V0x, V0y)

√︄
t2 − x2

v2a
− y2

v2b
Iγ(t)(x, y), (2.96)

where V0x, V0y are proportional to the projections of ∆σ to the semi-major and semi-minor
axes, respectively, and are complicated functions of µ, ν and the crack speeds va and vb. At
the center of the crack, we have

s(t, 0, 0) = (V0xt, V0yt), (2.97)

so slip grows linearly with time and V0x, V0y are the corresponding slip rates. Thus, analogically
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Figure 2.3: The total intensity factor K(ϕ) as a function of the elliptic parametric angle ϕ,
normalized by its maximum value Kmax = maxϕK(ϕ) for ν = 1/4. The stress drop
is oriented along ϕ = 0.
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to the case of self-similarly expanding straight crack, the solution is obtained from the static
solution by replacing a → vat, b → vbt and multiplying each component by factors that do
not depend on spatial or temporal coordinates.

The expression for the stress-intensity factors are too cumbersome to justify their inclu-
sion here, but the anti-plane stress-intensity factor depends on the function γβ(vn) (Eq. 2.20),
evaluated at the local speed of propagation vn, while the in-plane stress-intensity factor also
depends on the function P (vn) (Eq. 2.33). As in the previous self-similar examples, the anti-
plane and in-plane singularities vanish at the shear wave velocity β and the Rayleigh velocity
cR, respectively. These are again the limiting speeds in the pure mode directions. However, in
mixed-mode directions, in which the slip is composed of both anti-plane and in-plane compo-
nents, the in-plane component may surpass the Rayleigh velocity. This is because while the
in-plane mode acts as an energy source for cR < vn < β, the anti-plane component acts as a
sink, so the overall energy dissipation may still be positive (Richards, 1976; Andrews, 1994).
Therefore, the energetic argument forbidding superRayleigh in-plane speed does not strictly
apply to fracture at the mixed-mode directions.
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In the following two chapters, important features of ruptures governed by the slip-weakening
and the rate-and-state constitutive laws are reviewed. Focus is put on the main applications
of each law. For the slip-weakening law, examined in chapter 3, this is the fast (seconds to
tens of seconds) co-seismic evolution of slip-weakening cracks. We show example calculations
in simple settings and review the literature on selected features. In chapter 4, we review basic
properties of the rate-and-state law and its application to modeling the long-term evolution
of faults, in particular models of seismic cycles.
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3 Fast cohesive rupture: The linear
slip-weakening law on
almost-homogeneous faults

In this chapter, we briefly review important features of rupture governed by the linear slip-
weakening constitutive law, which was introduced in subsection 1.3.2.1. Only shear fracture is
considered here, i.e. the slip s has no component normal to the fault. The shear traction T s

is then equal to

T s(s, ṡ) = −F (s) ṡ
∥ṡ∥

, (3.1)

when ṡ ̸= 0. When ṡ = 0, only an upper bound on the magnitude of the shear traction is
imposed:

∥T s(s, ṡ)∥ ≤ F (s). (3.2)

Here, F is the shear strength given by:

F (s) :=

⎧⎨⎩(Tu − Td)(1− s/Dc) + Td for 0 ≤ s ≤ Dc

Td for s > Dc

, (3.3)

and s is either the magnitude of slip ∥s∥ or the slip-path length s (Eq. 1.20). The free param-
eters of the slip-weakening law are the yield strength Tu, the magnitude of dynamic friction
Td, and the characteristic weakening distance Dc (see Fig. 1.2).

In the absence of time-dependent boundary conditions, a completely homogeneous slip-
weakening fault model with constant initial traction Ti and zero initial slip and slip rate leads
either to a trivial solution (when the magnitude of the initial traction ∥Ti∥ < Tu) or to rupture
starting from everywhere on the fault (when ∥Ti∥ ≥ Tu), which is not realistic. Therefore, seed
heterogeneity is introduced in slip-weakening models such that the slip starts from a small part
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of the fault. The preparatory process in which quasi-static rupture transitions to fast, unstable
rupture is called nucleation. For example, Andrews (1985) (in 2-D), and Bizzarri et al. (2001)
or Weng & Ampuero (2020) (in 3-D) use a time-weakening scheme in which a patch of small
strength is prescribed that expands from the origin with a constant speed, until spontaneous
propagation takes over. Favreau et al. (2002) and Badea et al. (2004) prescribe a small volume
of non-zero initial particle velocity. A comparison of different nucleation strategies can be
found in Bizzarri (2010).

The most straightforward way of implementing nucleation is to directly introduce an initially
overstressed nucleation zone (NZ), so that ∥Ti(x)∥ > Tu ∀x ∈ NZ. The traction inside the NZ
can smoothly transition to the values at the rest of the fault, but it is commonly set equal to
a constant vector with magnitude Tnucl. Moreover, to constrain the extent of the rupture, the
fault is sometimes divided into a weakened patch, with low yield strength Tu, and the rest of
the fault with a very large strength (e.g., 10 · Tu), so that rupture cannot propagate outside
of the weakened patch.

In this thesis, we restrict our discussion to almost-homogeneous models, by which we mean
planar fault models with homogeneous properties (either on a weakened patch or on the whole
fault), except for the initial heterogeneity needed to initiate rupture. They are characterized
by Tu, Td, Dc, the direction of the initial traction, the magnitudes of initial traction Te and
Tnucl outside and inside, respectively, of the nucleation zone (with the constraints that Tnucl ≥
Tu ≥ Te > Td), and the geometry of the weakened patch and the nucleation zone.

The magnitude of the initial traction Te is typically replaced by one of the following non-
dimensional parameters: The first, so-called S-parameter, is defined as

S =
Tu − Te
Te − Td

. (3.4)

When the magnitude of the final traction is equal to Td, S is the ratio of the distance of the
initial stress (outside the NZ) from Tu to the total stress drop (see Fig. 1.2, with Ti = Te).
Since ∂S/∂Te = (Td− Tu)/(Te− Td)

2 and Tu > Td, S is a decreasing function of Te. The other
parameter, which we denote here by γ, is defined as

γ =
Te − Td
Tu − Td

. (3.5)

When the magnitude of the final traction is equal to Td, the parameter γ is the ratio between
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the total stress drop (outside the NZ) and the breakdown stress drop Tu − Td. The two
parameters are related as:

γ =
1

S + 1
. (3.6)

3.1 Example calculations

In this section, we show five example calculations with the linear slip-weakening law, calcu-
lated with the program FD3D_TSN (Premus et al., 2020). The code employs finite differences
on a staggered grid of 4th order in space and of 2nd order in time. The elastodynamic equation
is solved in the cuboid Ω = EL × EW × ED, where EX = [0, X] and L,W,D are its length,
width, and depth, respectively. The fault Γ is one of the vertical faces of the cuboid, having
dimensions L ×W . In the following examples, all the remaining faces are absorbing bound-
aries; we do not consider the effect of the free surface for simplicity (unlike the simulations
in section 3.7 and chapter 6). The absorbing boundaries are implemented using the perfectly
matched layers technique (Berenger, 1994). The frictional boundary condition at the fault is
implemented using the traction-at-split-node method, following Dalguer & Day (2007). We
set the initial particle displacement and velocity to zero and assume a homogeneous isotropic
elastic medium. The version of the slip-weakening law that depends on the slip-path length
s (Eq. 1.20) is assumed. For models without strong heterogeneity, the results are similar to
those of the version that depends on the slip magnitude (Bizzarri, 2014). In particular, gross
(integral) quantities such as the seismic moment or the energy flux to the crack edge differ by
at most 1%. The setup of the calculations is shown in Fig. 3.1 and their parameters are listed
in Table 3.1.

In the first calculation (model 1), we set up a pseudo-2-D geometry by prescribing a weak-
ened rectangular patch with initial conditions that are invariant along dip. The initial traction
points up-dip and its magnitude Tnucl is constant on the whole weakened patch. The dynamic
traction Td is set to a large value of 1000 MPa, which prevents potential rotation of traction
during the simulation (as discussed in section 3.7). The initial traction outside the patch is
set to Td.

These conditions lead to the evolution of an anti-plane crack with a fixed size. The traction
and slip calculated at selected times along the middle horizontal cross-section of the fault are
shown in Fig. 3.2. At the initial stage of rupture, the traction inside the crack starts falling
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Figure 3.1: The magnitude of initial traction (which points from bottom to top) for a) model
1 and b) model 2b examined in section 3.1. The black curves show boundaries
of the weakened patches inside of which rupture can develop. The red lines show
cross-sections on which various fields are shown in Figs. 3.2-3.10. Three additional
models, 2a, 2b, and 2d, are considered in this section. Model 2a differs from model
2b only by its smaller nucleation zone, while models 2c and 2d differ from model
2b only by the magnitude Te of the initial traction inside the weakened patch (and
outside the nucleation zone), see table 3.1.
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Model 1 Models 2a-2d
Parameter Meaning Value Parameter Meaning Value
x0 (km) Along-strike position

of the center of the
patch

70 x0 (km) Along-strike
position of the
center of the

patch

25

y0 (km) Along-dip position of
the center of the

patch

70 y0 (km) Along-dip
position of the
center of the

patch

25

a (km) Half-length of the
weakened patch

7 a (km) Radius of the
weakened patch

22

Tu (MPa) Yield strength 1010 Tu (MPa) Yield strength 1010
Td (MPa) Dynamic friction 1000 Td (MPa) Dynamic

friction
1000

Dc (m) Characteristic
slip-weakening

distance

0.5 Dc (m) Characteristic
slip-weakening

distance

0.25

γ Non-
dimensional
initial stress

(Eq. 3.5)

0.5 (2a,b),
0.95 (2c),
0.65 (2d)

xnucl (km) Along-strike
position of the
nucleation zone

25

ynucl (km) Along-dip
position of the
nucleation zone

25

rnucl (km) Radius of the
nucleation zone

1.5 (2a),
2.0

(2b,c,d),
Tnucl

(MPa)
Traction within the
nucleation zone (i.e.
the whole weakened

patch)

1010.5 Tnucl

(MPa)
Traction within
the nucleation

zone

1010.5

L (km) Length of the fault 140 L (km) Length of the
fault

50

W (km) Width of the fault 140 W (km) Width of the
fault

50

D (km) Depth of the box 35 D (km) Depth of the
box

10

∆h (km) Grid size 0.2 ∆h (km) Grid size 0.1
∆t (s) Time step 0.003 ∆t (s) Time step 0.003
µ (GPa) Shear modulus 48.37 µ (GPa) Shear modulus 48.37
β (km/s) Shear wave speed 3.95 β (km/s) Shear wave

speed
3.95

ν Poisson’s ratio 0.27 ν Poisson’s ratio 0.27

Table 3.1: Parameters for the example models (see also Fig. 3.1) discussed in section 3.1.
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Figure 3.2: Evolution of a) anti-plane traction and b) slip along the middle horizontal cross-
section of the pseudo-2-D model shown in Fig. 3.1a. The predictions of LEFM
(Eqs. 2.43 and 2.42, respectively) for the final static traction and slip are shown as
dashed red lines, see the inset in Fig. a) for a better comparison with the numerical
result. Note that figure b) is zoomed to the crack surface.

from Tnucl to Td. By 2 s, the slip on most of the crack has surpassed the value of Dc = 0.5 m
and the traction has fallen to Td. At around 5 s, the crack stops slipping and the traction inside
the crack starts decreasing below Td, eventually maintaining a nearly uniform and constant
value near the center. Outside of the crack, traction starts increasing above Td behind a pulse
traveling at or near the Rayleigh velocity. At around 20 s a small additional pulse arrives
from the lower and upper edges of the patch. By 30 seconds, static traction gets established.
The distribution of the final traction outside of the crack has an excellent match with the
theoretical static brittle crack distribution (2.43), when we put ∆σ = Tnucl − Tmin, where
Tmin is the minimum final traction inside the crack. Similarly, the slip inside the crack matches
the theoretical elliptical static brittle distribution (2.42).

For the remaining four examples (models 2a-d) we prescribe the weakened patch and the
nucleation zone as concentric circles at the center of the fault (Fig. 3.1b). The only parameters
that vary across the models are the nucleation radius r (1.5 km for model 2a and 2.0 km for
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models 2b,c,d) and the relative initial stress γ (Eq. 3.5, equal to 0.5 for models 2a,b, 0.95 for
model 2c and 0.65 for model 2d), see Table 3.1.

Snapshots of the slip rate at different times for model 2a are shown in Fig. 3.3. The complete
evolution of the slip rate at the horizontal (i.e. pure anti-plane) and vertical (i.e. pure in-plane)
cross-sections passing through the center of the fault is shown in Fig. 3.4. The slip rate starts
from the circular nucleation zone and very slowly expands. At this initial stage of rupture, the
slip at no part of the fault has yet surpassed Dc. That happens at around 0.6 s at the center of
the fault. At that point, the inner edge of the cohesive zone (which corresponds to the portion
of the fault on which the slip is between 0 m and Dc) starts propagating outwards, along with
the peak of slip rate (≈ 0.8 m/s). By 1.5 s, the crack visibly stops being circular and instead
gets elongated in the in-plane direction. However, it soon stops expanding and the rupture
gets completely arrested before 3 s. The final length of the crack is 6 km in the anti-plane
direction and 7.8 km in the in-plane direction. The final length of the cohesive zone is 1.0 km
in the anti-plane direction and 1.4 km in the in-plane direction. Because the crack stops by
itself, even before reaching the outer barrier, this style of rupture is called spontaneously- or
self-arrested rupture (Galis et al. 2015; Xu et al. 2015).

The initial setup of model 2b differs from model 2a only by a larger value of the nucleation
zone (1.5 km in model 2a vs 2 km in model 2b). The evolution of slip rate for model 2b is shown
in Figs. 3.5 and 3.6. During the first second, the slip rate evolves quite similarly to model 2a
(though the initial phase is 0.1 s shorter, lasting 0.5 s). However, instead of spontaneously
arresting, the crack keeps propagating until it hits the edge of the circular patch. As in the
first example, the rupture propagates faster in the in-plane direction at the beginning (≈ 1-5
s), so that the contour of the slip rate resembles an in-plane-elongated ellipse. At later times
(≈ 5-7 s), however, the rupture in the pure anti-plane direction accelerates to about 95% of
the shear wave speed, while the rupture in the in-plane direction accelerates to about 95% of
the Rayleigh-wave speed, see Fig. 3.6. Since these speeds are similar (the Rayleigh speed being
about 92% of the shear wave speed), the shape of the rupture starts resembling a circle. At 7 s
and 7.5 s, the rupture hits the barrier in the in-plane and the anti-plane directions, respectively.
This induces “healing” pulses that propagate from the edges of the patch back to its center
and which act to decrease the slip rate. In the in-plane direction, the pulse moves with the P-
wave speed (clearly visible in 3.6), while in the anti-plane direction, it moves with the S-wave
speed. However, from around 9 s, a 3-D effect starts being visible in which the healing S-wave
pulse from the pure anti-plane direction is overtaken by waves from other directions. Since the
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Figure 3.3: Snapshots of the slip rate for model 2a. The large black circle is the boundary of
the weakened patch.
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(a)

(b)

Figure 3.4: The evolution of slip rate for model 2a in a) the horizontal middle cross-section
(pure anti-plane) and b) the vertical middle cross-section (pure in-plane). The
dashed straight lines show S-wave (green), Rayleigh-wave (red), and P-wave (blue)
speeds. The black dashed lines are contours of slip at s = 0 m and s = Dc, and
delineate the cohesive zone.
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healing pulses are faster in the in-plane direction than in the anti-plane direction (and also
start propagating sooner), the shape of the slip rate contour again becomes asymmetrical, but
this time elongated in the anti-plane direction. Note that there is an additional near-Rayleigh
speed pulse, trailing behind the P-wave pulse in the in-plane direction, which momentarily
increases the slip rate. However, the slip rate returns to its original value immediately after
the passage of the pulse. At around 15 s, the slip stops.

In an absence of the outer barrier or another obstacle, the model would likely propagate
indefinitely. The style of rupture of model 2b would then correspond to sustained sub-shear
propagation. Using the bisection search method, we found that the critical radius separating
the self-arresting and sustained sub-shear propagation for the assumed model parameters is
about 1.55 km. We review various estimates for the critical radius in section 3.2. Unlike the
previous example, the cohesive zone in both directions shrinks with time.

In Figs. 3.7 and 3.8, we show the evolution of slip rate for model 2c. This model differs
from model 2b a larger value of the relative initial stress, γ = 0.95 (about twice as large as in
model 2b). Consequently, a much greater amount of strain energy is available for the rupture.
Indeed, we can see that at 1 s, the slip patch is already considerably larger than for model 2b.
After the initial phase (≈ 0.5 s), the rupture rapidly starts spreading at supershear speeds,
nearly reaching the P-wave speed in the pure in-plane direction. In the anti-plane direction,
it accelerates to the shear wave speed. As the rupture hits the edges of the circular patch (≈
3.6 s in the in-plane direction and 5.7 s in the anti-plane direction), the same healing waves
appear as for model 2b and the rupture comes to a halt, which is briefly interrupted only by
the Rayleigh-wave speed pulses. The maximum slip rate for this model is about twice as large
as in model 2b. As in that model, the cohesive zone shrinks as the crack expands, which is
especially pronounced in the anti-plane direction, where it almost vanishes, even before the
rupture front hits the edge of the patch.

For the final example, we keep the same parameters as in example 2c, but reduce γ to
0.65, which corresponds to smaller initial stress. This results in the peculiar behavior shown
in Figs. 3.9 and 3.10. At first, the rupture spreads with subshear speeds. However, at around 3
s, two small rupture fronts appear in the positive and negative in-plane direction ahead of the
original front (by fronts, we mean in this context local maxima of slip rate, rather than the
edges of the crack). These fronts, to which Madariaga & Olsen (2000) refer as “ears”, travel
with supershear speed. Once the ears develop, they propagate simultaneously with the original
front, which remains subshear. At 5 s, the ears hit the edge of the circular patch. The resulting
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Figure 3.5: Same as Fig. 3.3, but for model 2b.
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(a)

(b)

Figure 3.6: Same as Fig. 3.4, but for model 2b.
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Figure 3.7: Same as Fig. 3.3, but for model 2c.
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(a)

(b)

Figure 3.8: Same as Fig. 3.4, but for model 2c.
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healing waves reduce the slip rate at the subshear front but do not slow the front down. Later,
the subshear front also hits the boundary of the patch, generating additional healing pulses.

If there were no outer barriers, models 2c and 2d would be examples of sustained supershear
ruptures. However, in model 2c, a direct transition to a single front supershear propagation
is seen, while for model 2d, the transition is more gradual and the supershear front coexists
with the original subshear front. We note that setting γ = 0.6 resulted in pure subshear
rupture, while γ = 0.7 already resulted in the direct supershear transition. The conditions
for the appearance of the ears hence seem delicate, though we are not aware of a systematic
parametric study exploring this problem.
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Figure 3.9: Same as Fig. 3.3, but for model 2d.
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(a)

(b)

Figure 3.10: Same as Fig. 3.4, but for model 2d.
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3.2 Critical nucleation size

In examples 2a and 2b of the previous section, one value of the nucleation radius resulted in
self-arresting rupture, while another resulted in sustained propagation. Indeed, the conditions
for successful nucleation have traditionally been described in terms of a critical nucleation
size, expressed for a given geometry of the NZ as a function of parameters Tu, Te, Td, Dc and
possibly Tnucl.

The oldest estimates (Andrews, 1976a,b; Day, 1982) for the critical sizes are based on
the assumption that the rupture begins from a pre-existing crack with constant stress drop
∆σ = Te − Td and a small (relative to the crack size) cohesive zone, so the Griffith criterion
for static brittle cracks may be applied. For straight 2-D cracks, the critical crack half-length
for both anti-plane and in-plane modes is given by Eq. (2.47):

ac =
2µ∗

π∆σ2
Gc, (3.7)

where µ∗ is defined in Eq. (2.17) and Gc is the critical energy release rate. An estimate of the
latter quantity is obtained for the slip-weakening law by plugging Eq. (3.3) into the expression
for the fracture energy density (1.43):

Gc =

ˆ Dc

0

(Tu − Td)(1− s/Dc)ds

=
1

2
(Tu − Td)Dc.

(3.8)

Using ∆σ = Te − Td then leads to the critical nucleation half-length estimate of Andrews
(1976b):

aAc =
µ∗

π

(Tu − Td)Dc

(Te − Td)2
. (3.9)

Similarly, equating the average energy release rate of a circular crack, Eq. (2.95), with the
critical rupture energy, Eq. (3.8), leads to the estimate for the critical radius of a circular NZ:

rDc =
π(2− ν)µ

8(1− ν)

(Tu − Td)Dc

(Te − Td)2
. (3.10)
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For ν = 1/4, this yields

rDc =
7πµ

24

(Tu − Td)Dc

(Te − Td)2
, (3.11)

which was presented in Day (1982). However, Madariaga & Olsen (2000); Galis et al. (2015)
showed that except for small values of S, this formula overestimates the critical radius. For
the example models 2a and 2b considered in section 3.1, it yields 4.5 km, almost three times
the value of the actual critical radius, which is around 1.55 km. For model 2c, it yields 1.2 km
(vs the actual value of 0.7 km) and for model 2d, it yields 2.6 km (vs the actual value of 0.7
km).

Uenishi & Rice (2003) considered the case of nucleation in 2-D realized by spatially peaked
traction, slowly increasing above Tu. In this case, the slip slowly expands from the center
of the stress peak, until a critical radius of the crack is reached, at which point the crack
starts behaving unstably. It is assumed that up to that instant, the slip on the whole crack is
less than Dc (the so-called initiation phase, see section 3.4). This assumption, along with the
condition for instability of the slip at the onset of nucleation leads to an eigenvalue problem
whose solution yields the critical nucleation half-length

aURc ≈ 0.579µ∗ Dc

Tu − Td
. (3.12)

Unlike the Griffith criterion-based estimates, Eq. (3.12) does not depend on the stress drop
Te − Td. Uenishi (2009, 2018) generalized the 2-D estimate to a 3-D case with an elliptical
nucleation zone and found that the critical lengths of its semi-axes in the in-plane and anti-
plane directions, respectively, are given by

aUc = h(ν)
µ

1− ν

Dc

Tu − Td
, bUc = h(ν)µ

Dc

Tu − Td
, (3.13)

where h(ν) is a function that can be expressed using the complete elliptic integrals and h(ν =

1/4) ≈ 0.98. Note that these expressions could again be written compactly using µ∗, but we
emphasize here that there are two critical lengths for a single 3-D problem. For the usual case
of ν > 0, the critical ellipse is elongated in the in-plane direction.

Galis et al. (2015) investigated the nucleation problem for different shapes (square, circle
and an ellipse with the aspect ratio of 4:3) of the nucleation zone in 3-D. From numerical
experiments with the three shapes, they found that the critical transition from self-arresting
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to sustained rupture is better described by a critical nucleation area, rather than critical
length. They also found that for small values of the parameter S (≲ 0.75, which corresponds
to γ ≳ 0.57), the nucleation area is independent of S and coincides with the area πaUc bUc of
the critical ellipse (Eq. 3.13) of Uenishi (2009, 2018). For larger values of S, they applied
the Irwin criterion to analytically derive an expression for the critical area, which proved
to accurately describe their numerical results. The explicit form of the expression is rather
cumbersome, but they also provide an approximate formula (which slightly overestimates the
exact formula) that reads (for ν = 1/4):

AGc =
(3π)3

211
(Tu − Td)

2

(Tnucl − Te)(Te − Td)3
µ2D2

c . (3.14)

For a circular nucleation zone, this corresponds to the critical radius

rGc ≈ 0.11π
µ(Tu − Td)Dc√︁

(Tnucl − Te)(Te − Td)3
. (3.15)

Note that unlike the previous estimates, which were independent of Tnucl, rGc depends on Tnucl
as rGc ∝ (Tnucl − Te)

−1/2. This leads to the intuitive result that small size of the nucleation
zone can be compensated by a large value of Tnucl. However, the difference Te − Td is more
dominant, as rGc ∝ (Te − Td)

−3/2. For the examples 2a,b in section 3.1 (which have γ = 0.5),
the formula yields 1.65 km, which is 7% larger than the found critical radius. For examples
2c and 2d (γ = 0.95 and γ = 0.65), the radius rUc =

√︁
aUc b

U
c corresponding to the area of the

ellipse (3.13) (which should be the appropriate estimate, because γ > 0.57 in both cases) is
1.37 km, which overestimates the found radii by 80% and 17%, respectively.

Galis et al. (2019) further investigated the nucleation problem for rectangular nucleation
zones of varying aspect ratios. They found that depending on the aspect ratio, the critical
transition is either controlled by the nucleation area (for aspect ratios close to 1, which is the
case discussed by Galis et al., 2015), by the shorter length (for very large aspect ratios), or by
neither of the two (for intermediate aspect ratios, precise boundaries for these three regimes
are described in the paper). In the length-controlled regime, the rupture problem effectively
behaves as in 2-D. In this regime, if S ≲ 2.75, the critical length is again independent of
S and the results coincide with the 2-D formula (3.12) of Uenishi & Rice (2003). Note that
the transitional value of S is larger for the 2-D geometry than for the 3-D geometry. For
S ≳ 2.75, they derived an analytical formula for the critical length. Here, we again show only
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the approximate version, which reads

aGc ≈ 0.12µ∗ Dc(Tu − Td)

(Tnucl − Te)(Te − Td)
. (3.16)

Unlike the 3-D case (3.15), the powers of Te− Td and Tnucl− Te are the same in this formula.

3.3 Directional asymmetry of the rupture propagation

As seen in the example calculations shown in Figs. 3.3-3.10, even though the initial crack
(i.e. the nucleation zone) is circular, the evolution of rupture is not axially symmetrical - the
crack soon becomes elongated along the in-plane direction (which coincides with the direction
of initial traction). This could have been anticipated from section 2.2.1, where it is shown that
for static brittle circular cracks, the stress-intensity factor and the energy release rate attain
maxima and minima in the in-plane and anti-plane direction, respectively. In fact, according
to Galis et al. (2015), the rupture becomes elongated regardless of the initial shape. According
to Madariaga et al. (1998), the reason for the in-plane elongation is that the radiation pattern
of stress S waves radiated from the crack has a peak in the in-plane direction, but not in the
anti-plane direction. The in-plane elongation is also seen in the study of Favreau et al. (2002)
on the initial phase of rupture, which we discuss in the following section.

3.4 Initial phase of rupture

In the initial phase of rupture, when the slip has not yet exceeded Dc at any point on
the fault, the traction is an affine function of slip. This was first exploited by Campillo &
Ionescu (1997), who found an analytical solution for this phase in a 2-D unbounded anti-plane
geometry. They assumed that the initial traction on the fault is everywhere on the verge of
instability, ∥T i(ξ)∥ = Tu ∀ξ ∈ Γ. The increment of traction on the fault during the initial
phase is then negatively linearly proportional to the slip and the fracture problem reduces
to a system of linear partial differential equations (with the linear wave equation in the bulk
and the linear friction law on the fault). Campillo & Ionescu (1997) were able to transform
the problem to a 2-D wave-equation on a half-plane with homogeneous boundary conditions
and used the Fourier transform method to find its solution. The solution can be divided into
a wave part and a dominant part. The wave part oscillates with time and soon becomes
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negligible in comparison to the dominant part, which has approximately exponential growth.
Assuming zero initial displacement and small initial velocity perturbation that quickly decays
with distance from the fault, they numerically calculated the evolution of slip rate in the initial
phase and compared it to the analytical expression for the dominant part. They found that
the two have an excellent match, with maxima of velocity differing at most by a few percent.

An insight into the problem is obtained when it is solved by decomposing the displacement
field into functions of the form exp(βλkt)uk(x). This leads to an eigenvalue-eigenfunction
problem with eigenvalues λ2k. Campillo & Ionescu (1997) showed that the eigenvalue spectrum
(which is continuous, k ∈ R, as the problem domain is infinite, and real, because the eigenvalue
problem is self-adjoint; Favreau et al., 1999) is constrained by the condition

λ2k < α2
c , (3.17)

where
αc =

Tu − Td
µDc

(3.18)

is proportional to the weakening rate of the SW law and has the dimension of inverse length.
Moreover, the dominant part corresponds to the non-negative part of the spectrum, i.e. λ2k ∈
[0, α2

c ] ⇔ λk ∈ [−αc, αc]. For an infinite domain, the eigenfunctions are plane-waves and it can
be shown that the on fault spatial wavenumbers k lie in the same range as the λk, k ∈ [−αc, αc].
This can be physically interpreted as the existence of a minimum length-scale for the initiation
problem:

Lc =
π

αc
. (3.19)

We note that this length is proportional to the critical nucleation length (3.12) of Uenishi &
Rice (2003), which is in fact derived from an equivalent eigenvalue problem.

Campillo & Ionescu (1997) also derived an approximate relation (with an error of about 7%
when compared to their numerical calculation) for the duration of the initial phase (initiation
time), finding that it is approximately proportional to the inverse of βαc and only weakly
depends on the amplitude of the initial perturbation. Favreau et al. (1999) directly used the
eigenvalue approach to study the same problem for mode II and derived analogical results.
They found that the wavenumbers k for the dominant part now lie in the range [−αc(1 −
ν), αc(1−ν)], so the in-plane characteristic length Lc = π/kmax is larger than the characteristic
anti-plane length by the familiar factor 1

1−ν . To unify the results for the in-plane and anti-
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plane, one may thus replace αc with α∗
c , obtained by simply replacing µ in Eq. (3.18) with µ∗

(Eq. 2.17). The bound on the dominant wavenumbers can then be written as:

|k| ≤ α∗
c . (3.20)

The case of the finite 2-D anti-plane fault was examined by Dascalu et al. (2000). He showed
that on the finite fault, the spectrum of λ2k is discrete (k ∈ N) and the number N of eigenvalues
corresponding to the dominant part is finite. In addition, if the product Lαc, where L is the
length of the fault, is less than a certain critical value, then N = 0, which means that the
dominant part vanishes and the fault is stable. Like Campillo & Ionescu (1997) and Favreau
et al. (2002), they derived a formula for the initiation time, which additionally depends on the
size of the fault (diverging as L reaches a critical threshold between instability and stability).

Favreau et al. (2002) studied and solved the initiation problem in 3-D. Like for the 2-D
problems, the dominant part of their solution fits the numerical solutions very well. On an
infinite domain, the dominant wavenumber spectrum is again continuous and bounded, with
the bound now depending on the polar angle θ = atan2(ky, kx) with respect to the pure
in-plane direction:

∥k∥ ≤ kc(θ) =
αc

1
1−ν cos(θ)

2 + sin(θ)2
. (3.21)

For in the pure in-plane (θ = 0, π) and anti-plane directions (θ = ±π/2), this precisely
corresponds to the 2-D result (3.20). In analogy to Eq. (3.19), they defined a characteristic
slip patch:

r(θ) ≤ π

kc(θ)
, (3.22)

which has a roughly elliptical shape elongated in the in-plane direction. Indeed, the maximum
wavelength of the dominant mode in the in-plane direction is 1

1−ν times larger than for the
anti-plane direction. Their numerical results show that a crack started from a small spherical
perturbation of particle velocity centered at the fault rapidly starts extending with a shape
similar to r(θ). After the front passes through r(θ), the similarity disappears, but the in-plane
elongation remains.

Favreau et al. (2002) also studied the case of a finite weakened patch surrounded by areas of
infinite yield strength. In this case, the dominant spectrum is discrete. For unstable faults, the
slip soon becomes dominated by the mode (eigenfunction) s0(x) with the largest eigenvalue
λ0, i.e. it evolves in time as s(t, x) = s0(x) exp(λ0t). The duration of the initiation phase
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scales as λ−1
0 . The eigenvalue λ0 depends on the shape of the patch and non-linearly increases

(for a given shape) with the patch area A. As A→ ∞, λ0 → 1. On the other hand, λ0 → 0 as
A→ Ac for some critical area Ac. Below Ac, the fault behaves stably. For patches geometrically
similar to the characteristic slip patch (3.22), Ac is about 1.3− 1.6 times of the critical patch
area.

3.5 Rupture regimes and supershear propagation

For the purely anti-plane mode of rupture, numerical experiments show that the rupture
speed is always smaller than the shear wave speed β (as seen in all the examples in section
3.1 and confirmed by numerical simulations of Andrews, 1976b; Day, 1982; Bizzarri & Das,
2012; Xu et al., 2015; and many others), in accordance with the predictions of linear elastic
fracture mechanics. In contrast, supershear rupture speeds appeared in the very first published
2-D in-plane numerical simulations with the slip-weakening law (Andrews, 1976a). In these
simulations, the crack first spreads bilaterally and asymptotically accelerates to the Rayleigh
speed cR (which is the limiting speed of steady-state solutions in LEFM under the Griffith or
Irwin criteria). A stress-peak propagating at shear wave speed is radiated from the rupture-
front. Eventually, the peak gets large enough to surpass the strength Tu and a secondary,
daughter, crack propagating near the shear wave speed is formed ahead of the main, mother
crack. The daughter crack is spatially separated from the mother crack, so there is momentarily
an unfractured space between the two cracks. After some time, they merge and the new fracture
front soon starts propagating at a speed slightly exceeding the Eshelby speed cE =

√
2β. This

process of transition from sub-shear to supershear rupture speed was predicted analytically by
Burridge, 1973 for self-similarly expanding cracks governed by the classical Coulomb friction
model (based on analytic calculations, Burridge et al., 1979 also conjectured that supershear
speeds below vE are unstable). It is referred to as the mother-daughter, or the Burridge-
Andrews mechanism. It was also observed in laboratory experiments (Xia et al., 2005; Mello
et al., 2016). The “forbidden zone” of rupture speeds (cR, β) (subsection 2.1.1.2) is never
reached by this mechanism.

Geubelle & Kubair (2001) conducted 2-D numerical experiments in which they also observed
the Burridge-Andrews mechanism but discovered that it is not the only way in which rupture
can transition to supershear speeds. Their simulations show that the supershear transition can
also occur by a direct, sudden acceleration of the crack front from subRayleigh to supershear



3.5. Rupture regimes and supershear propagation 85

speeds (as seen in the 3-D model 2c of section 3.1). In addition, the “forbidden zone” is traversed
in a continuous, albeit rapid, manner. The direct transition mechanism was confirmed by
subsequent studies (e.g., Festa & Vilotte, 2006; Liu & Lapusta, 2008; Liu et al., 2014). The
possibility of pure mode II transient propagation at the forbidden zone was also observed in
3-D simulations (Bizzarri & Das, 2012; Payne & Duan, 2015).

Festa & Vilotte (2006) and Liu et al. (2014) also studied the conditions determining which
of the two transition mechanisms occurs. They showed that the direct mechanism is favored
by low values of the parameter S (Eq. 3.4) and large values of the nucleation length. When the
nucleation length is small, both studies agree that the boundary between the direct mechanism
and the Burridge-Andrews mechanism in 2-D lies at S ≈ 0.7− 0.8.

The question of whether rupture transitions to supershear speeds or not has been studied in
terms of non-dimensional quantities. Andrews (1976a) used the parameter S and showed that
as S increases, so does the ratio Lt/aA,IIc , where Lt is the length of the main crack at which
the supershear transition happens, and aA,IIc is the in-plane critical nucleation half-length (Eq.
3.9). At a critical value Sc of S, the transitional length diverges to infinity so that the rupture
is always subshear for S > Sc. The existence of the S-dependent transitional length was also
found in later numerical 2-D (Andrews, 1985; Festa & Vilotte, 2006; Liu et al., 2014; Geubelle
& Kubair, 2001; Weng et al., 2015), 3-D (Dunham, 2007; Kaneko & Lapusta, 2010; Xu et al.,
2015) and laboratory (Xia et al., 2004) studies. The critical value Sc depends on the rupture
and fault geometry. For bilateral 2-D ruptures on an infinite fault, Sc ≈ 1.77. For unilateral
ruptures, Sc ≈ 1.42 (Dunham, 2007).

In 3-D slip-weakening numerical simulations, supershear speeds in the in-plane direction
were first observed by Day (1982), although the supershear propagation was not sustained,
but only momentary. A transition to supershear via secondary fronts (“ears”, as exhibited
by model 2d of section 3.1) was demonstrated in numerical experiments of Madariaga et al.
(1998).

The first systematic study examining the occurrence of various rupture regimes in 3-D was
presented by Madariaga & Olsen (2000). Keeping Tu/µ constant and setting Td = 0 MPa,
they explored the space of non-dimensional parameters (Dc/b, γ) for a long rectangular patch
of width 2b immersed in full elastic space. The nucleation zone radius rnucl and initial stress
Tnucl were set to rnucl = b/2 and Tnucl = Tu. They found that the parameter space can be
divided into three connected domains that correspond to three rupture regimes: self-arrested
rupture (for large values of Dc/b or small values of γ), supershear rupture (small values of
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Dc/b or large values of γ) and subshear rupture (an intermediate region). They found that the
parameter region for the subshear behavior was quite small, so most ruptures either did not
rupture at all or transitioned to supershear speeds. They proposed that the boundary between
the rupture regimes could be described by a single non-dimensional similarity parameter κ,
defined as:

κ =
(Te − Td)

2b

µ(Tu − Td)Dc

. (3.23)

For crack models, this parameter is roughly proportional to the ratio of the average available
energy surface density:

∆W =
1

2A

ˆ
fault

∆σ(x, t) · s(x, t)dS, (3.24)

and the critical fracture energy Gc (Eq. 3.8). This is because for a static crack of characteristic
length b, s ∝ ∆σ

µ
b (Eq. 2.7), so taking ∆σ = Te − Td, yields

∆W ∝ (Te − Td)
2b

µ
(3.25)

and thus
∆W

Gc

=
∆W

1/2(Tu − Td)Dc

= C
(Te − Td)

2b

µ(Tu − Td)Dc

= Cκ. (3.26)

for some constant C that depends on elastic parameters and the geometry of the problem.
For an elliptical crack elongated along the stress drop (section 2.2.1), for example, a direct
calculation shows that C = 2

3
AL(b/a, ν), with AL given by Eq. (2.81). For a circular crack with

ν = 0.25, C ≈ 0.73. In Madariaga & Olsen (2000), the boundaries between the no rupture
regime and subshear propagation and between the subshear and supershear propagation lie
at κ = κ1 and κ = κ2, respectively, with κ1 < κ2. The critical numbers κ1 and κ2 are of order
1 and depend on the geometry. In addition, since only the space (Dc/b, γ) was explored in
Madariaga & Olsen (2000), they may also depend on other parameters, such as Tu/µ, rnucl
and Tnucl. Note that if rnucl is used instead of b in Eq. (3.23), then the limiting criterion that
κ = κ1 for successful nucleation is equivalent to Day’s (1982) estimate (3.11) of the critical
nucleation radius with κ1 = 7π/24.

Dunham (2007) explored the supershear transition mechanism for different geometries and
piecewise power-law slip-weakening constitutive laws (of which the linear slip-weakening is
a special case) in full elastic space and found that κ2 strongly depends on the parameter
S, i.e. κ2 = κ2(S). He examined the supershear transition length Lt and found that it is
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an increasing function of S that depends on the problem geometry, the direction of rupture
(with the pure mode II direction being the most conducive for supershear), and the chosen
constitutive law. For elliptical 3-D cracks on unbounded faults, it diverges for Sc = 1.19 (i.e.
no supershear transition occurs for S > Sc), which is smaller than what was found in 2-D.
According to Dunham (2007), this is caused by defocusing of stress waves due to the convex
shape of the crack (a similar inequality between 2-D and 3-D geometries was already seen for
the transitional S value at which the nucleation size starts depending on S, see section 3.2).
On the other hand, Dunham et al. (2003) showed that when a circular barrier is encountered
by a propagating planar crack, waves are focused at the barrier which can induce supershear
transition. For finite faults, Dunham (2007) found that Sc decreases and the transitional length
Lt increases with a decrease in the fault width (which is the shorter size of the fault in his
model, aligned in the anti-plane direction), so that higher relative stress γ is required for
narrow faults to initiate the supershear transition. He proposed that this happens due to
healing waves reflected from the edges of the fault, which, for narrow faults, inhibit the crack
before the supershear behavior can develop.

A thorough exploration of the rupture regimes was published by Xu et al. (2015). They
explored strike-slip and dip-slip (fixing the direction of traction) ruptures in both the full
elastic space and in half-space with the free surface, assuming Td = 0 and a square nucleation
zone of size a on rectangular faults with a length of 80 km and widths of 40, 30, 20 and 15
km. They explored the space of non-dimensional parameters (D̂c, γ), where

D̂c :=
Dcµ

reffnuclTu
, (3.27)

in which reffnucl =
√︁
a2/π is the effective radius of the nucleation zone.

For strike-slip ruptures in the full-space, the situation described by Xu et al. (2015) is similar
to that found by Madariaga & Olsen (2000) - three regimes appear: self-arresting (small γ,
large D̂c), subRayleigh (intermediate γ, small D̂c), and supershear (large γ, small D̂c). They
found that for dip-slip ruptures, there are only two regimes: self-arresting rupture (the same
parameter region as in the strike-slip case) or sustained sub-shear propagation. We note that
in homogeneous full-space, dip-slip and strike-slip faults of equal dimension differ only by a
90◦ rotation and should behave the same. The difference between strike-slip and dip-slip faults
is therefore likely caused by the assumed rectangularity of their fault geometry, due to which
the rupture is predominantly in-plane in the strike-slip case, and predominantly anti-plane in
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the dip-slip case.
Xu et al. (2015) also showed that as the width of the fault was decreased, larger values of

γ were required for the supershear transition. However, in contrast to the results of Dunham
(2007), as long as the transitional length Lt was finite, it did not depend on the fault width. For
strike-slip faults in half-space, they found that if the nucleation zone is sufficiently shallow, the
ruptures are either self-arresting or supershear, i.e. there is no regime of subRayleigh ruptures.
The enhancing effect of the free surface on the generation of supershear ruptures was studied
in detail by Kaneko & Lapusta (2010), who found three main contributions: decrease of normal
stress and hence the strength near the surface, amplification of slip rate at the surface, and
phase conversion of SV-waves to inhomogeneous P-waves. Xu et al. (2015) also studied the
influence of the fault dip angle, finding that it has only a negligible effect on the boundaries
between the different rupture regimes. On the other hand, faults with lower dip tend to have
larger rupture speeds and slip rates, especially for dip-slip faults and ruptures that reach the
free surface (see also Chen & Zhang, 2006).

Weng & Ampuero (2020) studied the behavior of rupture on elongated faults with oblique
initial traction, i.e. for settings in which the angle θ between the initial traction and the
horizontal direction (parallel to the long sides of the fault) may take any value between 0◦

(dominantly in-plane propagation) and 90◦ (dominantly anti-plane propagation). They used
a finer classification of the rupture behavior than described in this section so far: the self-
arresting regime, sustained subRayleigh regime, sustained forbidden regime (when the steady
rupture speed v is in the “forbidden” zone between cR and β), and two types of sustained
supershear regimes - slow (when v is between β and the Eshelby speed cE =

√
2β) and fast

(when v is greater than cE). They set the diameter of the nucleation zone (implemented by
prescribed time-weakening of the yield strength) equal to the fault width and found that the
five regimes could be well described by two main quantities: the angle θ and the energy ratio
e = Gc/G

III
0 , where Gc is the critical fracture energy at the cohesive zone (Eq. 3.8), and GIII

0

is the static energy release rate in mode III. For pure in-plane or anti-plane directions, this
energy ratio is proportional to the inverse of the similarity parameter κ given by Eq. (3.23). In
the space of these two parameters, the different rupture regimes are associated with connected
regions, with the self-arresting regime corresponding to the largest values of e and the fast
supershear regime to the lowest (for a fixed and low enough value of θ). When the energy
ratio e is larger than ≈ 1.3, the rupture is always self-arresting, regardless of the angle θ.
For the pure in-plane mode (θ = 0◦), only the fast steady supershear speeds are attainable.
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For a certain range of mixed-mode fractures, however, steady speeds in both the forbidden
and the slow supershear ranges are possible. When the angle θ ≳ 60◦, only subshear or self-
arresting ruptures are observed. All four boundaries between the regimes can be described as
curves e = Bi(θ), where Bi, i ∈ {1, 2, 3, 4}, are monotonously decreasing functions of θ - i.e.
it is possible to transition from a slower regime to the faster regime by rotating the initial
traction towards the horizontal (in-plane) direction. Remarkably, the functions Bi well match
the theoretical curves predicted by fracture mechanics (Weng & Ampuero, 2019).

3.6 The cohesive zone

In the examples of section 3.1, it was shown that the size of the cohesive zone may change
during propagation. For the slip weakening law, no exact analytical relationship exists for the
evolution of the cohesive zone size d. However, for a steady subshear (mode III) or subRayleigh
(mode II) crack with speed v, governed by a constitutive law in which friction linearly decreases
with distance from the crack edge (rather than with slip), the following formula was derived
(Palmer & Rice, 1973; Rice, 1980):

dII,III(v) = C
1

gII,III(v)

µ∗

(Tu − Td)
Dc, (3.28)

where C = 9π
16

, and gII(v) and gIII(v) are the in-plane and anti-plane crack speed factors (2.38)
and (2.30), respectively. In this model, therefore, d is directly proportional to Dc and inversely
proportional to the breakdown stress drop Tu − Td. Since the functions gII(v) and gIII(v) are
increasing and approach ∞ as v approaches the respective limiting speed (i.e. cR for mode
II and β for mode III), Eq. (3.28) predicts that d decreases with increasing speed, eventually
shrinking to zero. Indeed, such a decrease was observed in the example calculations 2b,c,d of
section 3.1.

The formula (3.28) is valid when d is small in comparison to the total size of the sliding
zone Ls (the area of non-zero slip rate). For general Ls, Rice et al. (2005) have shown that
Eq. (3.28) differs by a slowly changing function of d/Ls, so there is about 44% difference in d
between the limiting cases d/Ls ≈ 0 and d/Ls = 1. We note that as rupture speed approaches
the limiting speeds, the contraction of the cohesive zone makes it harder to resolve. On the
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other hand, it should also mean that the problem is better approximated by the ideally brittle
theory, in which the size of the cohesive zone has a zero size.

For the step slip-weakening law (1.18), the formula differs only in the constant proportion-
ality factor C = π/4 (see e.g., Rice, 1980 or Fialko, 2007). Therefore, it can be conjectured
that the same form (with a different value of C close to 1) is valid for the slip-weakening law
(Udias et al., 2013). For example, the final (zero crack speed) cohesive zone size of model 2b of
section 3.1 is 1.0 km and 1.4 km in the anti- and in-plane directions, respectively, compared to
the estimates of 1.1 km and 1.5 km predicted by Eq. (3.28). Indeed, Day et al. (2005) showed
that the estimate (3.28) with v = 0 can be used as an upper bound for slip-weakening cohesive
zones.

Huang & Gao (2000) analytically studied supershear cracks governed by the step slip-
weakening law that start propagating from the origin with a constant speed. They showed
that the cohesive zone length at a given distance of the crack tip is zero at the shear and
longitudinal speeds and has a global peak at a certain intermediate speed. Except for the
Eshelby speed, it decreases with time. Bizzarri & Das (2012) studied the behavior of the
cohesive zone in a finely-discretized 3-D slip-weakening simulation. They found that in the
anti-plane direction, d monotonically decreased as the crack accelerated towards the shear
wave speed. In the in-plane direction, they observed a decrease in the subRayleigh range, and
then an increase and subsequent decrease as the crack transitioned into the supershear range,
which is qualitatively consistent with the prediction of Huang & Gao (2000). A peak in the
cohesive zone length (near the Eshelby speed) was also observed in laboratory experiments of
Fukuyama et al. (2016).

3.7 Dependence on the absolute magnitude of stress

The slip-weakening law posits that the slip rate is anti-parallel to the total traction on the
fault. This introduces a dependence of the solution on the total level of traction, not only on
the final stress drop. To show the effect of absolute stress, we set up a reference circular patch
model whose initial traction is shown at Fig. 3.11, with Td = 0 MPa, Tu = 10 MPa (within
the patch), Dc = 0.25 m and free surface at the top face, and compare five models created
from the reference model by shifting Tu, Td and the magnitude of the initial stress Ti(x) on
the fault by constant values ∆T = 0, 0.5, 5, 50 and 500 MPa. The final traction and slip at
the horizontal slices marked in Fig. 3.11 are shown in Fig. 3.12. The evolution of traction and
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Figure 3.11: The magnitude of initial traction (which points from bottom to top) for the
reference model used to assess the effect of the dynamic friction Td. The black
circle is the boundary of the weakened patch inside of which rupture can develop.
The red lines are cross-sections on which traction and slip are shown in Fig. 3.12.
The red stars are points P1 − P3 used in Figs. 3.13 and 3.14.
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slip at the three points marked in Fig. 3.11 is shown in Figs. 3.13. The resulting rotation of
slip rate is shown in Fig. 3.14.

The final spatial distributions and evolution of traction are mostly very similar to each
other for models with Td ≥ 0.5 MPa (except for the z-component of traction at the nucleation
zone, where the Td = 0.5 MPa model differs from the models with larger Td). However, the
traction curves of the Td = 0 MPa model differ significantly. This happens because once the
total traction for this model drops to zero, it stays zero (by definition of the slip-weakening
law), but it gets readjusted below Td for the remaining models. The most obvious difference is
seen in the final slip, which is rather small for the Td = 0 MPa model, when compared to the
Td ≥ 5 MPa models. This is because the Td = 0 MPa model shows a significant rotation of the
slip vector (Fig. 3.14), especially at the two points P1 and P3 outside of the nucleation zone.
This causes reversal of the z-component of slip. Rotation and reversal of slip is also seen for
the Td = 0.5 MPa model, although it is not as significant as for the 0 MPa model. In contrast,
the models with Td ≥ 5 MPa do not rotate at all. This may create noticeable differences in
gross (integral) quantities characterizing rupture. For example, the seismic moment for the
zero Td model is 4.0 ·1019 Nm, but it is 4.6 ·1019 Nm for the Td = 0.5 MPa model and 5.0 ·1019

Nm for the other models. A difference is also seen in slip-weighted stress drop (5.3 MPa vs 6.1
and 6.6 MPa). For many other quantities, only the 0 MPa model stands out; the differences
among the 0.5-500 MPa models are negligible. For example, the energy radiated by the zero
Td model is 1.3×1015J, as opposed to 1.2×1015J for the remaining models.
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Figure 3.12: The x- and z-components of traction and the final slip for models with different
values of Td (see legend) on the three horizontal slices shown in Fig. 3.11, see
annotations at the left part of the figure.
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Figure 3.13: The time evolution of the x- and z-components of traction and slip for models
with different values of Td (see legend) at the three points shown in Fig. (3.11),
see annotations at the left part of the figure.
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Figure 3.14: Temporal evolution of the direction ϕ(t) of the slip rate vector (with respect to
the horizontal line) for models with different values of Td (see legend) at the
three points shown in Fig. 3.11. The size of the markers is proportional to the
magnitude of the slip rate at a given time.

For comparison, we also show in Figs. 3.15-3.18 analogical figures for one of the best-fitting
models found in the inversion of the 2017 Mw 6.3 Lesvos earthquake (chapter 6, Tu = 7.8 MPa,
Dc = 0.14 m). In this case, the Td = 0 MPa model is the only one that stands out, while the
Td ≥ 0.5 MPa models are very similar to each other, except for the x-component of traction
(which is however small in comparison to the z-component). For models with Td ≥ 0.5, the
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Figure 3.15: The magnitude of initial traction (which points from bottom to top) for one of the
best-fitting models found in the inversion of the 2017 Mw 6.3 Lesvos earthquake
(chapter 6). The black ellipse is the boundary of the weakened patch inside of
which rupture can develop. The red lines are cross-sections on which traction and
slip are shown in Fig. 3.16. The red stars are points P1 − P3 used in Figs. 3.17
and 3.18.
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integral quantities are all very close to each other, differing at most by 0.1%.

Figure 3.16: Same as Fig. 3.12, but for the model shown in Fig. 3.15.
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Figure 3.17: Same as Fig. 3.13, but for the model shown in Fig. 3.15.
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Figure 3.18: Same as Fig. 3.14, but for the model shown in Fig. 3.15.

The influence of the total stress was thoroughly analyzed by Spudich (1992), who suggested
that its value on seismic faults could be inferred from temporal rotations of the rake angle of
the slip vector. Andrews (1994) studied mixed-mode II and III propagation and found that the
results depend on the magnitude of the initial stress. He found that the in-plane component of
the solution can be decomposed into smeared-out versions of two singular contributions, one of
which increases with rising absolute stress. Moreover, for ruptures spreading at superRayleigh
speeds, he observed substantial rotation of the traction vector.

Guatteri & Spudich (1998) studied the dependence on absolute stress in homogeneous and
heterogeneous 3-D models (but keeping the stress drop constant and uniform). They found
that the main difference between the results at large and small absolute stress was the rota-
tion of the traction vector, which decreases with increasing absolute stress. For a homogeneous
direction of initial traction, they found that while the final slip vectors were almost colinear
with the initial direction of traction, regardless of the absolute stress, temporal rotations of
the traction/slip rate vector do occur for small values of absolute stress. For models with het-
erogeneous directions of the initial traction direction, the rotations were even larger. Bizzarri
& Cocco (2005) found that the greatest temporal rotation of traction occurs at the cohesive
zone and that it is significantly larger for supershear ruptures. The maximum rotation shown
in Bizzarri & Cocco (2005) is around 20 degrees, for complete stress drop to Td = 0 MPa. An
exception to this occurred at points at which the local rupture velocity was parallel to the
direction of the initial stress, the slip at these points did not rotate at all.

The rotation of slip rake is a matter of active research in geology. It has been confirmed on
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real faults based on observations of slickenlines and fault striations (e.g., Otsubo et al., 2013;
Pan et al., 2014; Kearse & Kaneko, 2020; Pollitz et al., 2020).

In dynamic source inversions, the determination of Td from seismograms is not yet considered
a realistic goal, and the value of Td is set to a fixed value. This is also the case for the inversion
of the 2017 Mw 6.3 Lesvos Earthquake presented in chapter 6.
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4 Long-term behavior of faults:
Rate-and-state friction

In this chapter, we briefly review basic properties of the rate-and-state friction law, particularly
as they relate to the modeling of the long-term evolution of slip on planar tectonic faults. As
elsewhere in the thesis, we suppose that the slip only has shear components.

4.1 Basic properties of the rate-and-state friction law

The shear traction prescribed by the rate-and-state friction law is given by:

T s(ṡ, θ) = −σnf(∥ṡ∥, θ)
ṡ

∥ṡ∥
, (4.1)

where σn is the normal component of traction and f is the coefficient of friction, which depends
on the magnitude of slip rate V := ∥ṡ∥ and the state-variable θ as (see subsection 1.3.2.2):

f(V, θ) = f ∗ + a ln
V

V ∗ + b ln
V ∗θ

L
. (4.2)

Non-zero V everywhere on the fault (γ = Γ) is assumed.
The aging law governing the evolution of θ reads (Eq. 1.26):

dθ

dt |AL
= 1− V θ

L
, (4.3)

while the slip law reads (Eq. 1.27):

dθ

dt |SL
= −V θ

L
ln

−V θ
L

. (4.4)
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For both evolution laws, steady-state sliding, in which both V and θ are constant, can be
achieved only when

θ = θSS(V ) =
L

V
. (4.5)

To quantify the distance from the steady-state sliding state, Rubin & Ampuero (2005)
introduced the non-dimensional quantity

Ω :=
V θ

L
. (4.6)

The steady-state corresponds to V̇ = 0 and Ω = 1. The right hand side of the evolution laws
rewritten in terms of Ω read:

dθ

dt |AL
= 1− Ω (4.7)

and
dθ

dt |SL
= −Ω lnΩ. (4.8)

For V and θ far from the steady-state, i.e. Ω ≪ 1 and Ω ≫ 1, the two laws significantly
differ. On the other hand, writing Ω = 1 + ω, where ω represents a small deviation from the
steady-state, the aging law may be written as

dθ

dt |AL
= −ω, (4.9)

whereas the slip law is
dθ

dt |SL
= −(1 + ω) ln(1 + ω), (4.10)

which, for |ω| < 1, is equal to

dθ

dt |SL
= −ω − ω2

2
+ o(ω2). (4.11)

Therefore, the behavior of both evolution laws agrees to linear order in ω near the steady
state.

Plugging the steady-state value of θ (Eq. 4.5), into Eq. (4.2), one obtains the dependence
of the steady-state friction coefficient fSS on V :

fSS(V ) := f(V, θSS(V )) = f ∗ + (a− b) ln
V

V ∗ . (4.12)
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For a > b (a < b), fSS(V ) is an increasing (decreasing) function of V . The former case is
referred to as the velocity-strengthening (VS) and the latter case is referred to as the velocity-
weakening (VW) parameter regime.

4.2 The spring-slider model

A simple 1-D system in which the dynamics of the rate-and-state friction can be studied is the
spring-slider model, which consists of a rigid block subject to rate-and-state friction that is
connected to an elastic spring. The spring is driven with constant velocity Vpl, which simulates
loading by distant tectonic motion. The equation of motion for the position x(t) of the block
reads (Ruina, 1983; Rice & Tse, 1986):

mẍ(t) + k (x(t)− Vplt) = −sign[ẋ(t)]σnf(|ẋ|, θ), (4.13)

where m is the mass of the block and k is the spring stiffness, both normalized by the area
of the bottom face of the block. This equation is supplemented by an evolution law for θ,
either (4.3) or (4.4), which leads to a coupled system of two non-linear ordinary differential
equations.

General analytic solutions of this system have not been found, but one particular solution
is

xSS(t) = Vplt−
σn
k
fSS(Vpl), θ(t) = θSS(Vpl), (4.14)

i.e. steady-state sliding at the velocity Vpl. Heuristically, it can be argued that the slider should
be stable in the VS regime because an increase in steady-state slip rate causes an increase in
friction, which in turn acts to decrease the slip rate. In the VW regime, on the other hand,
we may expect it to behave unstably.

To quantitatively study stability against small perturbations, the system may be linearized
around the steady-state (4.14) and tested against deviations from it of the form x(t) = xss(t)+

ϵ exp(st) for a given constant ϵ ∈ R and an unknown constant s ∈ C. Such a linear stability
analysis (Ruina, 1983; Rice & Ruina, 1983) shows that the system is linearly stable (Re(s) < 0,
so that the slider converges to the steady-state) if and only if k is greater than the critical
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stiffness kcrit:

k > kcrit = σn
b− a

L
(1 +

V 2
plm

aσnL
). (4.15)

Thus, the stability of the system depends not only on the parameters of the friction law, but
also on the loading rate, normal stress, and the stiffness and mass of the slider. In the quasi-
static approximation, the inertial term of Eq. (4.13) is neglected (m = 0), and expression
(4.15) simplifies to

kcrit=σn
b− a

L
. (4.16)

When a > b, kcrit is negative, so sliding in the VS regime is always stable, in accordance
with the heuristic argument. On the other hand, sliding in the VW regime (a < b) is only
a necessary, not sufficient condition for instability, which occurs if and only if k < kcrit. For
the special case k = kcrit, the slider is at neutral stability and undergoes undamped harmonic
oscillation with circular frequency (Ruina, 1983, eqs. 27 and 32):

ω =
Vpl
L

√︃
b

a
− 1. (4.17)

The oscillations remain for k in a finite neighborhood of kcrit, but they are damped or amplified,
according to k > kcrit or k < kcrit, respectively. Their frequency departs from (4.17) as k
departs from kcrit (see Perfettini et al., 2003b).

For large perturbations, a non-linear analysis needs to be performed and the resulting be-
havior depends on the assumed evolution law. For the aging law, Ranjith & Rice (1999) showed
that, in the quasi-static approximation, the system is stable against any perturbation if and
only if k ≥ kcrit, same as in the linear analysis. For the slip law, on the other hand, Gu et al.
(1984) showed that the system may become unstable in the VW regime even if k ≥ kcrit, with
the necessary destabilizing amplitude growing exponentially with k. Therefore, k ≥ kcrit is a
necessary, but not sufficient condition for stability of slip law spring sliders. Scholz (1998) calls
the parameter region with a < b and k ≥ kcrit conditionally stable.

For spring sliders in the unstable regime, a deviation from the steady-state causes the slip
rate to diverge to infinity when the quasi-static approximation is used. To remedy this, the
so-called quasi-dynamic approximation is often assumed, in which the inertial term of the fully
dynamic Eq. (4.13) is replaced with a radiation damping term directly proportional to the slip
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rate. The equation of motion then takes the form:

ηẋ+ k (x(t)− Vplt) = −sign[ẋ(t)]σnf(|ẋ|, θ), (4.18)

for a constant damping coefficient η. The addition of this rate-dependent term regularizes the
system and the unstable slider undergoes stick-slip behavior, alternating between sliding at
very small speeds below Vpl for most of the cycle (stick phase) and a sudden, short acceleration
to large speeds (slip phase). The average slip rate of the slider is equal to Vpl. The stick-slip
behavior corresponds to a limit cycle in the (V, θ) phase space. In fully dynamic simulations,
such stick-slip limit cycles are present as well, but more complicated behavior also appears,
including aperiodic solutions, quasi-harmonic oscillations, and deterministic chaos (Erickson
et al., 2008; Urata et al., 2017; Im et al., 2019). We note that stick-slip is not unique to rate-
and-state friction and appears even in the classical Coulomb friction model (Elmer, 1997).
Based on the similarity of the stick and slip phases to the inter-seismic and co-seismic phases
of earthquakes, respectively, stick-slip was proposed as a possible mechanism for earthquakes
as soon as by Brace & Byerlee (1966).

4.3 Rate-and-state faults in 2-D and 3-D

The rate-and-state problem in 2-D and 3-D involves coupling the elastodynamic equation (2.2)
with the rate-and-state boundary condition on the fault. In studies of long-term evolution of
rate-and-state faults, the fault is typically subjected to loading due to a plate slipping with a
constant rate Vpl. This can be implemented by imposing this constant slip rate on outer parts
of the fault (e.g., Lapusta et al., 2000; Kato, 2001; Hillers et al., 2006; Rubin, 2008; Gallovič,
2008; Lapusta & Liu, 2009), and/or by adding a term to the total traction that represents
this loading (e.g., Perfettini et al., 2003b; Rubin & Ampuero, 2005; Ampuero & Rubin, 2008;
Gallovič, 2008; Barbot, 2019).

The problem is often studied by boundary integral equation methods (e.g., Cochard &
Madariaga, 1994; Perrin et al., 1995; Geubelle & Rice, 1995; Day et al., 2005; Tada, 2009;
Lapusta & Liu, 2009), in which the differential equation (2.2) in Ω is converted to an integral
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equation on the fault Γ. It has the form:

I[s](t, ξ) + T l(t, ξ) = σn(t, ξ)f (ξ, V (t, ξ), θ(t, ξ))
ṡ(t, ξ)

∥ṡ(t, ξ)∥
∀ξ ∈ Γ, (4.19)

where T l(t, ξ) is the contribution of external loading and I is a linear functional of the slip
distribution that takes into account the elastodynamic interaction over the causal history of
(t, ξ). It can be thought of as a generalization of the inertial and stiffness terms from the spring
slider model (Eq. 4.13) to more dimensions.

In the quasi-static approximation, the dynamic effects are neglected and I only includes
static contributions from elastic interaction on the fault, I = Iel. For example, on an in-plane
or anti-plane fault of width h, infinite in the anti-plane direction (i.e. an effective 2-D setting),
it reads (e.g. Perfettini et al., 2003b; Rubin & Ampuero, 2005):

I2D
el [s](t, ξ) =

µ∗

2π

ˆ h

0

1

ξ − ζ

∂s(t, ζ)

∂ζ
dζ. (4.20)

In the quasi-dynamic approximation, I takes the form

I[s](t, ξ) = Iel[s](t, ξ)− ηṡ(t, ξ). (4.21)

The damping coefficient η is typically put equal to (Rice, 1993):

η =
µ

2β
, (4.22)

which corresponds to the assumption that all radiation has the form of shear waves radiated
perpendicularly away from the fault plane.

The results of the stability analysis for the spring-slider model are sometimes extrapolated
to higher-dimensional models of geological (sub)faults by replacing the stiffness k of the spring-
slider with the effective stiffness

keff = ∆σc/sc, (4.23)

where sc and ∆σc are the shear slip and stress drop, respectively, at the center of the patch
with the same geometry as the (sub)fault, evaluated for some suitable fracture mechanics
problem (Dieterich, 1992). For example, sc may be the slip at the center of a static crack with
constant stress drop ∆σc. Alternatively, ∆σc may be taken as the stress drop at the center
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of a dislocation with constant slip sc; this leads to slightly different values of keff . In fact,
at least during the nucleation phase for homogeneous faults with Ω ≫ 1, the spring-slider
analogy is mathematically justified, because the fault then evolves as if having a single degree
of freedom with stiffness keff (Rubin & Ampuero, 2005). If the geometry of the fault is simple,
so that it can be described by some characteristic half-length h, then dimensional arguments
and linearity between slip and stress drop (see Eq. 2.5) imply that keff must have the form:

keff = g(ν)
µ

h
, (4.24)

where g(ν) is a function of the Poisson’s ratio ν that depends on the geometry and the assumed
fracture mechanical substitution problem. For example, using the static crack solutions (2.42)
and (2.53) for a 2-D fault with half-length h yields the effective stiffness

k2Deff =
µ∗

2h
, (4.25)

where µ∗ is given by Eq. (2.17). For the constant slip problem, the formula would be multiplied
by 2/π (Dieterich, 1992). When the fault is a circle with radius r, the static crack result (2.85)
may be used, yielding

kcircleeff =
π(2− ν)

8(1− ν)

µ

r
. (4.26)

These formulas allow defining the critical patch half-length hcrit as the h corresponding to
keff = kcrit (Eq. 4.16):

hcrit = g(ν)
µL

σn(b− a)
. (4.27)

For 2-D faults, this yields

h2Dcrit =
µ∗L

2σn(b− a)
, (4.28)

while for a circular fault:
rcrit =

π(2− ν)

8(1− ν)

µL

σn(b− a)
. (4.29)

To the extent that the correspondence between the k of the spring slider model and the
effective stiffness keff holds, a fault should be linearly stable against perturbations from the
steady-state if h < hcrit. Rice (1993) proposed that when continuum rate-and-state problems
are discretized, the grid half-size ∆h should be much smaller than hcrit to achieve correct
resolution. This is because a cell of half-size ∆h ⪆ hcrit may reach instability on its own,
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independently of the elastic interaction with the other cells. Nevertheless, for simulations
containing dynamic rupture, an additional criterion on the resolution of the cohesive zone
needs to be added (Lapusta et al., 2000; Lapusta & Liu, 2009), which is stricter than the one
based on hcrit.

long-term behavior of rate-and-state friction is often analyzed on faults that contain a single
VW patch enclosed by a VS region (e.g., Tse & Rice, 1986; Rice, 1993; Lapusta et al., 2000;
Lapusta & Rice, 2003; Kato, 2003; Perfettini et al., 2003b; Gallovič, 2008; Chen & Lapusta,
2009; Wu & Chen, 2014; Cattania & Segall, 2019; Barbot, 2019). The simplest case in which
seismic events (with slip rates on the order of ∼ mm/s−m/s, at which the inertial dynamic
or quasi-dynamic terms start being significant) occur are simply periodic seismic cycles on
faults containing a single homogeneous circular VW patch. In these cycles, the VS regions are
steadily slipping (creeping) at the plate velocity. The whole VW region is effectively locked at
the beginning of each cycle, slipping at a negligible slip rate. This leads to an accumulation of
stress. As time progresses, the creep from the VS region gradually penetrates the VW region
and the locked area shrinks towards the center. Finally, a nucleation zone is established,
from which fast, seismic sliding eventually spreads to the whole fault, completely releasing
the accumulated stress. The system is thus “restarted” and the process repeats, producing
periodic cycles of aseismic stress build-up and seismic release. As the earthquakes at the end
of each cycle rupture the whole fault and are (almost) identical, they are the ideal examples
of characteristic earthquakes (Schwartz & Coppersmith, 1984). We note that before the fault
settles into these periodic cycles, it may first exhibit irregular behavior, corresponding to a
convergence of the system from initial conditions to a limit cycle.

Nevertheless, the actual spectrum of possible fault behaviors is much richer than the simply
periodic cycles described above. We briefly review different types of long-term fault behavior
and their dependence on parameters of the rate-and-state law in subsection 4.3.3. In the
following two subsections, we discuss the co-seismic and nucleation phases of rupture, focusing
mainly on the aging law, which we adopt in chapter 5.

4.3.1 The co-seismic phase and equivalent slip-weakening parameters

In the fast, co-seismic phase, the rate-and-state law behaves predominantly as a slip-weakening
law (Cocco & Bizzarri, 2002; Bizzarri & Cocco, 2003; Lapusta & Liu, 2009; Bizzarri, 2011). The
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weakening is mostly, but not entirely linear and a short strengthening phase is also present,
so the traction-slip curve resembles the Ohnaka-Yamashita law (see subsection 1.3.2.1). Biz-
zarri (2011) simulated the 3-D evolution of spontaneous dynamic ruptures on a homogeneous
vertical fault reaching the free surface and compared results for the aging version of the rate-
and-state law and for the linear slip-weakening law. The rate-and-state simulation was run
first and the parameters of the slip-weakening model were set up to match the a posteriori
determined effective yield stress, dynamic friction, and fracture energy density of the rate-
and-state simulation. He showed that the two models behave almost identically in terms of
(effective) rupture speed and slip rate. Synthetic seismograms, calculated on a free surface
synthetic station, were also similar, with only a mild difference at low frequencies, where the
slip-weakening simulation produced larger spectral amplitudes.

Due to the similar behavior of the two models in the co-seismic phase, it is sensible to esti-
mate equivalent slip-weakening parameters of the rate-and-state law. For example, assuming
that the slip rate is constrained to move in a single direction, the weakening rate

w = −dT
ds

(4.30)

(equal to [Tu − Td]/Dc for the slip-weakening law) can be evaluated as (using Eqs. 4.1, 4.2):

w = −dT
dt

dt

ds

= −σn

(︄
a
V̇

V
+ b

θ̇

θ

)︄
dt

ds

= −σn

(︄
a
V̇

V
+ b

θ̇

θ

)︄
1

V

(4.31)

At the steady-state, the weakening rate is zero (V̇ = θ̇ = 0). Far from the steady-state, when
Ω = V θ/L ≫ 1, the results differ for the aging law and for the slip law (Ampuero & Rubin,
2008). For the aging law (4.3), θ̇ ≈ −V θ/L and so

w ≈ −σn

(︄
a
V̇

V 2
− b

L

)︄
. (4.32)

When aV̇ /V 2 is small enough so that the first term can be neglected (which is appropriate
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in most of the co-seismic phase), the RS law approaches linear slip-weakening with a velocity
independent slip-weakening rate:

w ≈ bσn
L
, (4.33)

a relation confirmed numerically by Lapusta & Liu (2009). For the slip law (4.4), θ̇ is addi-
tionally proportional to the logarithm of −V θ/L, which results in w depending on the slip
rate.

An estimate for the cohesive-zone size can be obtained by replacing the slip-weakening
weakening rate (Tu−Td)/Dc in Eq. (3.28) with the rate-and-state estimate. For the aging law
this yields (using Eq. 4.33):

dRSII,III ≈ C
1

gII,III(v)

µ∗

bσn
L, (4.34)

where C ≈ 1 and gII,III are given by Eqs. (2.38) and (2.30).
Assuming that before and after the passage of the cohesive zone, the rock is sliding at

steady-slip rates Vi and Vf , respectively, the stress drop can be calculated from Eq. (4.12) as:

∆σ = σn(b− a) ln

(︃
Vf
Vi

)︃
. (4.35)

The equivalent value of Dc, i.e. the slip at which the traction drops to the minimum value of
T eqd , was estimated for the aging law by Bizzarri & Cocco (2003) as:

Deq
c ≈ L ln

Vm
Vi
, (4.36)

where Vm is the slip rate when traction reaches T eqd (they propose that Vm is related to the
final steady-state velocity Vf as Vm ≈ 2Vf ). This estimate is obtained under the additional
assumptions that Ω ≫ 1 within most of the cohesive zone and that the state variable θ is close
to its steady-state value as the slip reachesDeq

c , as observed in numerical simulations of Bizzarri
& Cocco (2003). The estimates of Deq

c and w allow estimating the equivalent breakdown (peak
to residual, equal to Tu − Td for the slip-weakening law) stress drop ∆σeqbr as:

∆σeqbr = Deq
c w ≈ bσn ln

Vm
Vi
. (4.37)

Using these expressions, the equivalent fracture energy density (critical energy release rate)
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can be estimated as:

Geq
c =

1

2
Deq
c ∆σ

eq
br ≈

1

2
bσnL ln

(︃
Vm
Vi

)︃2

. (4.38)

Since Vm ≈ 2Vf , the energy depends on the second power of the ln(Vf ). This only holds for
the aging law. For the slip law, Ampuero & Rubin (2008) showed that Geq

c instead depends
only on the first power of ln(Vf ).

4.3.2 Nucleation

The critical fault length hcrit ∝ (b− a)−1 (Eq. 4.27) is an estimate of the minimum size that
a fault should assume to exhibit seismic behavior. However, analytical and numerical studies
have shown (Dieterich 1992; Rubin & Ampuero 2005; Ampuero & Rubin 2008; Viesca 2016)
that the size hnuc of the nucleation zone, i.e. the part of the fault which is slipping (faster
than the plate rate) as the fault enters the seismic speed range, is different from hcrit, and its
scaling with a and b depends on the ratio a/b.

Rubin & Ampuero (2005) and Ampuero & Rubin (2008) numerically and analytically stud-
ied the nucleation process governed by the aging and the slip law for quasi-static 2-D faults.
For the aging law, they found that when a/b ≲ 0.38, the fault departs from the steady-state
and the quantity Ω (Eq. 4.6) increases towards large values, Ω ≫ 1, a so-called no-healing
limit. In this limit, the slip rate evolves approximately as a function separable in time and
space on a nucleation zone of fixed length hFLnuc, i.e.

V (t, ξ) = Vt(t)Vs(ξ/h
FL
nuc)I[−1,1](ξ/h

FL
nuc), (4.39)

where Vs(0) = 1. The temporal part of the slip rate Vt(t) evolves with time as a single-degree
spring-slider model with effective stiffness keff (Eq. 4.23). During most of the nucleation
process, it increases with time. Therefore, this solution corresponds to an accelerating crack
of fixed length. Requiring that the stress at the tip of this nucleation zone be finite can be
formulated as a requirement that the stress-intensity factor of the equivalent static crack
vanish. The stress-intensity factor is given by an integral formula similar to Eq. (2.69) (but for
static cracks), so this leads to an integral equation whose numerical solution yields the unique
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nucleation half-length (Rubin & Ampuero, 2005):

hFLnuc ≈ 1.38
µ∗L

bσn
. (4.40)

Indeed, Rubin & Ampuero (2005) found that in their numerical experiments conducted for a
variety of initial and boundary conditions, the actual size of the nucleation zone matches Eq.
(4.40) within ≈ 4%. Unlike the estimate (4.27), this expression is independent of a, scaling as
hFLnuc ∝ b−1. This scaling is consistent with previous results of Dieterich (1992), who derived
it on the basis of the spring-slider analogy. Due to the quasi-static assumption, the slip rate
Vt(t) eventually diverges. The time t∞ at which this happens approximately corresponds to
the onset of seismic speeds in fully dynamic models. It is inversely proportional to the initial
velocity Vt(0):

t∞ ∝ a

b

L

Vt(0)
. (4.41)

The proportionality of t∞ to the reciprocal value of Vt(0) is approximately also seen in formulas
derived for the spring-slider model by Dieterich (1992) and Perfettini et al. (2003b).

Rubin & Ampuero (2005) show that the no-healing limit is only achievable when the effective
stiffness of the nucleation zone is smaller than the value of kcrit given by Eq. (4.16). They also
show that this corresponds to the condition a/b < 0.38. As a/b gets larger (a/b ⪆ 0.5), Ω
starts tending towards a constant value close to 1. In this regime, the nucleation zone slowly
grows with time, resembling a propagating slip-weakening crack. To obtain an estimate for the
limiting half-length of the nucleation zone just as it reaches seismic speeds, Rubin & Ampuero
(2005) applied the Griffith criterion for the rate-and-state law and obtained the result:

h∞nuc =
µ∗Lb

πσn(b− a)2
. (4.42)

This formula can be obtained by using the stress drop estimate (4.35) in the formula for the
energy release rate of finite 2-D cracks (Eq. 2.55), equating the latter with an estimate of the
effective fracture energy density (4.38) and calculating the limit as the slip rate goes to infinity
(which corresponds to the onset of the co-seismic phase; we note that Rubin & Ampuero, 2005
used slightly different estimates to arrive at the same result). The formula fits their numerical
results well, except for models with a/b close to 1 and heterogeneous initial distribution of
the state variable. For a 3-D circular patch, the result (2.95) for the energy release rate of a
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circular crack can be used instead, yielding the nucleation radius:

r∞nuc =
π

8

2− ν

1− ν

µLb

σn(b− a)2
. (4.43)

This estimate was confirmed to a good accuracy by numerical simulations of Noda & Hori
(2014). Note that because the square of the difference b − a appears in these formulas, the
final nucleation zone for the expanding crack regime can grow much larger than the critical
length (4.27) and the no-healing nucleation estimate (4.40) when a ≈ b. As in the no-healing
regime, the time to instability is inversely proportional to the initial velocity.

The existence of the different characteristic length scales hFLnuc and h∞nucand the dependence on
a/b was also found in 2-D stability analysis of the aging law by Viesca (2016). He numerically
demonstrated that the two nucleation lengths correspond to fixed-point solutions of the 2-D
rate-and-state problem for a/b < 0.38 and a/b → 1, respectively. He also pointed out that
taking a/b → 1 corresponds to taking the small-scale yielding limit in an equivalent slip-
weakening crack problem.

For the slip law, Ampuero & Rubin (2008) showed that the separation into two Ω controlled
regimes is present as well. For Ω ≫ 1, the initial nucleation zone size is smaller than for
the aging law and it shrinks with time until reaching instability. For the Ω ≈ 1 regime, the
nucleation instead behaves as an accelerating and unilateral pulse.

4.3.3 Seismic cycles

The long-term evolution of rate-and-state fault may exhibit a wide spectrum of qualitatively
different behaviors. Systematic studies of these behaviors have often been conducted in terms
of one or more non-dimensional parameters. The most studied parameters are the ratios of
the size of the VW patch to one of the characteristic sizes described in previous sections, such
as h2Dcrit (Eq. 4.28), hFLnuc (Eq. 4.40), h∞nuc (Eq. 4.42), rcrit (Eq. 4.29) or r∞nuc (Eq. 4.43). These
parameters are related by the important non-dimensional parameter

q = 1− a/b (4.44)

as
hFLnuc ≈ 2.75h2Dcritq, (4.45)
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h∞nuc =
2

π
h2Dcrit/q, (4.46)

and
r∞nuc = rcrit/q. (4.47)

For example, Kato (2003) considered a homogeneous circular VW patch with radius r and
studied, assuming the quasi-dynamic approximation, the behavior of the fault as a function of
r/rcrit, where rcrit is given by Eq. (4.29). Kato (2014) examined the effect of the characteristic
slip distance L on the fault behavior, interpreting the results in terms of r/rcrit (unlike the
following papers which consider the aging law, Kato 2003, 2014 consider a composite version
of the aging law and the slip law, see Kato & Tullis, 2001). Liu & Rice (2007) studied a
2-D in-plane fault with VW zone of width h, and the dependence of the fault behavior on a
parameter proportional to

h̃ =
h

h2Dcrit
, (4.48)

where h2Dcrit is given by Eq. (4.28). Wu & Chen (2014) explored the same ratio (for values
that produce seismic events), as well as the ratio a/b = 1 − q, for anti-plane faults. Chen &
Lapusta (2009) studied the effect of the size of a circular VW zone in a fully dynamic 3-D
setting. Cattania & Segall (2019) explored the circular problem in a quasi-dynamic setting,
focusing on the ratios r/r∞nuc and r/hFLnuc, and 1−q. Cattania (2019) analytically and numerically
explored the behavior of 2-D anti-plane faults in terms of h/h∞nuc. Perhaps the most exhaustive
exploration was performed by Barbot (2019), who studied 2-D anti-plane and in-plane 2-D
faults as well as 3-D circular faults and examined the parameters q, h̃, as well as the value
of the referential coefficient f ∗. Clearly then, the behavior of rate-and-state cycles may be
very complex and cannot be simply characterized by a single non-dimensional parameter.
Nevertheless, at the danger of oversimplification, a summary is attempted below.

When the size of the VW patch is sufficiently small (in comparison to h2Dcrit, h∞nuc, hFLnuc, r∞nuc,
etc.), the faults produce only negligible, aseismic oscillations in slip rate that eventually decay
to the plate velocity Vpl (Kato, 2003; Liu & Rice, 2007; Barbot, 2019; Wu & Chen, 2014).
As the length ratios increase, the decay stops and aseismic slow-slip events appear (Liu &
Rice, 2007; Chen & Lapusta, 2009; Barbot, 2019). The duration of these slow slip events
may range from days or months (long-term slow-slip) to hours (short-term slow-slip). Next,
aseismic bursts with an even shorter duration, but within the aseismic slip rate range (to which
Barbot, 2019 refers to as slow earthquakes) appear. Eventually, the regime of seismic events
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is reached. In the lower range of the seismic regime ratios, the seismic events are bilateral,
nucleating from the center of the VW patch and rupturing the whole patch. However, as the
length ratio increases, the faults start rupturing unilaterally from the edges (Chen & Lapusta,
2009; Barbot, 2019; Wu & Chen, 2014; Cattania & Segall, 2019). Eventually, some of these
unilateral events begin rupturing the fault only partially. The evolution of the fault then starts
containing both whole-fault and partial earthquakes. The seismic events may be accompanied
by slow slip and aseismic burst precursors. The complexity of the cycles and the regularity
of the event recurrence times also depend on the length ratios. On 2-D faults, the recurrence
time of the events seems to progress from simply periodic to aperiodic, so that increasing the
length ratios leads to greater complexity. On 3-D finite faults, the situation is more complicated
and two-periodic (event recurrence times follow the pattern ABABAB...), multi-periodic and
aperiodic patterns of whole system seismic ruptures appear, possibly even before the simply
periodic cycles (Kato, 2014; Barbot, 2019).

Cattania (2019) invoked brittle crack models and the Irwin criterion to derive that the
number of partial earthquakes per one cycle should scale as

√︁
h/h∞nuc for large h/h∞nuc. This

estimate fits her numeric experiments fairly well. Heuristically, this monotonous dependence
on h/h∞nuc arises because the slip required to nucleate a partial event scales with h∞nuc, whereas
the slip required to rupture the whole fault scales with h. Cattania (2019) also showed that
the distribution of inter-event times Ti for large h/h∞nuc is well approximated by a truncated
power law. Cattania & Segall (2019) used crack models and arguments based on the Irwin
criterion to show that Ti should scale with the seismic moment M0 of each event as

Ti ∼M
1/6
0 . (4.49)

This is satisfied by their own numerical experiments as well as those by Chen & Lapusta
(2009) and real observations of small repeating earthquakes (Nadeau & Johnson, 1998). Re-
markably, the mechanism that leads to this scaling is different for small and large earthquakes.

The transition between aseismic and seismic behavior can also be achieved by increasing the
parameter q, i.e. low values of q at fixed and moderate values of h̃ tend to produce slow slip
events and aseismic bursts, and increasing q moves the fault towards seismicity (Wu & Chen,
2014; Barbot, 2019). A possible explanation for the effect of q is its influence on the nucleation
regime. For q < 1/2, the nucleation is in the growing crack regime and h∞nuc is the relevant
nucleation length. The ratio of the VW patch size to the actual nucleation size h/h∞nuc ∝ h̃q
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(Eqs. 4.46 and 4.48) decreases with decreasing q, which might explain why aseismic cycles are
produced at low values of q. At q ≈ 0.62, the fixed crack regime is reached and hFLnuc is the
relevant nucleation length. Indeed, no quantitative changes in behavior seem to occur in the
simulations of Barbot (2019) for fixed h̃ and q ⪆ 0.7.

Even though the parameters h̃ and q can compensate each other to an extent, their effects
are not interchangeable. The ratio h̃ seems to control the complexity of the seismic cycle, with
large values corresponding to great complexity, regardless of the value of q. The ratio q, on
the other hand, rather seems to be connected to the transition between slow and fast rupture,
though it also controls complexity to a degree (on 3-D faults, for example, its change may
induce a transition between one-period and two-period seismic cycles). In any case, the fault
depends on the combination of the two parameters in a complicated manner.

In the above discussion, it was assumed that the external load Tl acting on the system
throughout the seismic cycle is exclusively due to the constant external plate loading. When
an additional load perturbs the stress on the fault, the behavior of the cycles can significantly
depart from the unperturbed case (e.g., Dieterich, 1988; Gomberg et al., 1998; Kato & Hira-
sawa, 2000; Perfettini et al., 2003b; Gallovič, 2008; Cho et al., 2009; van der Elst & Savage,
2015; Yoshida et al., 2020). In particular, when an external stress perturbation is suddenly
applied to the fault, the next event can be delayed, advanced, or even instantly triggered. The
difference in the earthquake occurrence times of the unperturbed and the perturbed case is
called the clock advance. It has been conjectured that the effect of both shear and normal
perturbations, ∆τ and ∆σn, respectively, can be characterized by the Coulomb stress change
∆CS:

∆CS = ∆τ − f ∗∆σn, (4.50)

see, e.g., King et al. (1994); Harris (1998); Cattania et al. (2015). In chapter 5, we examine
the effect of changes in Coulomb stress, realized by shear stress perturbations, on the clock
advance of faults undergoing simply periodic earthquakes.
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5 Static Coulomb stress load on a
three-dimensional rate-and-state
fault: Possible explanation of the
anomalous delay of the 2004
Parkfield earthquake

This chapter was published as Kostka & Gallovič (2016). Minor corrections, including nota-
tional and stylistic edits, were made.

Abstract

We perform quasi-dynamic modeling of earthquake cycles using laboratory-derived rate-and-
state laws of friction on a homogeneous three-dimensional fault model. We study the effects
of the static Coulomb stress load on clock advance and clock delay of the subsequent event.
We carefully investigate the dependence of the clock advance on the onset time of the stress
load, its amplitude, area, and place of application of the load. We find that this dependence is
complex, being controlled by the actual slip velocity on the fault, especially at the domain of
the stress load. In particular, the stress (un)load can initiate the occurrence of quasi-periodic
creep-like episodes, which could be associated with episodic increases of microseismicity on real
faults, such as observed on the locked Parkfield segment of the San Andreas Fault. Depending
on the load parameters, including its timing within the earthquake cycle, one of such creep-
like events may trigger the next (clock advanced) system-size earthquake. In some cases, the
nucleation of the main shock can fail, and the fault experiences one or several seismic events of
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smaller magnitudes instead. In such a case the next main shock becomes significantly delayed.
We speculate that such a mechanism could have contributed to the extreme delay of the Mw 6
2004 Parkfield earthquake. Indeed, the Parkfield segment was subject to Coulomb stress unload
due to the 1983 Coalinga-Nuñez earthquakes and then experienced Mw 4.9 events in 1993–
1994, when the system-size event was expected. Instead, these failed main shock nucleations
delayed the Parkfield earthquake by another ≈10 years.

5.1 Introduction

Many earthquake faults undergo a quasi-periodic seismic cycle, where long-term tectonic load-
ing is released in a form of characteristic earthquakes (Wesnousky, 1994; Stirling et al., 1996).
The characteristic earthquakes are believed to be large enough to dominate the seismic mo-
ment release and substantially reduce the average stress. Such behavior is especially evident
for subduction zone megathrusts, where the characteristic earthquakes have large magnitudes
(>8) and relatively short recurrence times. Nevertheless, even smaller (intraplate), mainly
mature, faults have characteristic earthquake distributions with maximum magnitude earth-
quakes occurring quasi-periodically. Correct estimation of the timings of such characteristic
(or system-size) earthquakes in terms of a probability density function is one of the main
keys to improving seismic hazard assessment. The shape of the probability density function is
controlled by two main phenomena. First, real faults are characterized by frictional and geo-
metrical complexities that result in heterogeneity in the stress redistribution along the fault,
altering the occurrence of the characteristic earthquakes. Second, the faults do not exist indi-
vidually, and thus the earthquake occurrence is affected by stress load/unload due to slip on
nearby faults. Understanding these effects is thus one of the main goals of earthquake physics.
In the present paper, we address the effect of stress load and unload by means of earthquake
cycle simulations on a planar 3-D rate-and-state fault model. The effect of stress transfer is
typically associated with increasing or decreasing rate of occurrence of small events (Freed,
2005; Steacy et al., 2005, and references therein). For larger-magnitude events, the effect of
stress transfer on earthquake triggering can be assessed by the so-called clock advance (CA),
i.e., the change of the occurrence time of the next earthquake on the fault under study. CA can
be potentially taken into account in time-dependent earthquake forecasting (Stein et al., 1997)
and in renewal models of characteristic earthquakes in seismic hazard assessment (Gomberg
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et al., 2005; Console et al., 2009; Pace et al., 2014).
From simple considerations assuming a standard Coulomb criterion and spring slider model,

it follows that the clock advance CAS due to a static Coulomb stress increase ∆CS is given
by:

CAS =
∆CS

τ̇ f
=

∆CS

keffVpl
, (5.1)

where τ̇ f = keffVpl is a constant shear stressing rate due to far field loading, and Vpl is the
plate velocity. The effective fault stiffness keff is related to the length of the fault R as

keff = cµ/R, (5.2)

where µ is the rigidity of the medium and c ≈ 1 is a geometric constant. In this model, the
clock advance is independent of the onset time of the stress load within the earthquake cycle.
Gomberg et al. (1998) employed a simple single degree-of-freedom (1-D) spring slider model
governed by the rate-and-state friction, obtaining CAS as a monotonously decreasing function
of the load onset time. We point out that such a model is still too simplified, neglecting effects
related to the finite geometry of the real earthquake faults. For example, it cannot take into
account possible spatial inhomogeneity of the stress load. Therefore, the clock advance needs
to be analyzed considering a more realistic fault model in order to correctly take such effects
into account in advanced time-dependent earthquake hazard models.

An examination of the effect of external stress perturbation on a finite-extent fault with
rate-and-state friction was first presented by Kato & Hirasawa (2000), considering a two-
dimensional dip-slip fault embedded in a half-space. They analyzed the effect of stress change
due to a nearby compressional or tensional outer rise event on the earthquake cycle, finding
that the clock advance depends non-linearly on the timing of the stress change. They reported
that tensional earthquakes advance the occurrence of the next earthquake, and compressional
earthquakes delay it, except for later parts of the cycle, where clock advance occurs. The
research was followed by Kato (2004) and Kuroki et al. (2004), who examined the effects of
nearby earthquakes on earthquake cycles of large interplate earthquakes at subduction zones.
Kuroki et al. (2004) used a realistic 3-D fault geometry and evaluated the effects of three large
earthquakes on the Tōkai earthquake, which is expected to occur in central Japan. Perfettini
et al. (2003b) systematically analyzed CA on a 2-D rate-and-state fault by means of loading
the whole fault at various onset times within the earthquake cycle. They found that while the
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CA is constant when the load is applied at the beginning of the earthquake cycle, it exhibits
oscillations when the fault is loaded later. The authors associated this effect with oscillations
of an equivalent spring slider model. Liu & Rice (2007) simulated aseismic transients on a
plate boundary caused by static stress changes. Cho et al. (2009) extensively investigated the
effect of static stress changes on the occurrence of the next earthquake for various times and
amplitudes of the static stress load, reporting discontinuities in the dependence of CA on the
loading time.

Gallovič (2008) analyzed the position of the nucleation point of the event following the stress
load on a 3-D rate-and-state fault model, confirming the oscillatory character of the CA. He
also noticed the dependence of the CA on the spatial extent of the stress load.

Here we extend these studies by performing a detailed systematic analysis of the clock
advance on a 3-D rate-and-state strike-slip fault model. We investigate the dependence of the
clock advance on the onset time of the stress load, its amplitude, area, and place of application.
We point out that many of the observed dependencies are related to 3-D effects of the slip
velocity/stress evolution and thus cannot be modeled by a simple spring slider model (in
accordance with earlier studies). We recognize that in some cases the advanced event may
rupture only a portion of the fault (having a smaller magnitude), causing a significant clock
delay of the next main shock. We suggest that a related mechanism may have played a role in
the surprisingly long delay of the 2004 Mw 6 Parkfield earthquake (Bakun et al., 2005).

5.2 Model

5.2.1 Quasi-Dynamic Rate-and-State Fault Modeling

We use a model of a two-dimensional square vertical fault of dimensions R × R embedded in
a homogeneous isotropic half-space. The fault is discretized into N ×N equally sized square
cells with dimensions ∆R = R/N . The frictional stress on cell i is given by the well-established
Dieterich-Ruina constitutive rate-and-state law (Dieterich, 1979; Ruina, 1983):

τi (Vi(t), θi(t)) = σi

(︃
f ∗ + ai ln

Vi(t)

V ∗ + bi ln
θi(t)V

∗

Li

)︃
, (5.3)



5.2. Model 122

where Vi and θi represent the slip velocity and state variable, respectively, at cell i, σi is the
normal stress, Li, ai and bi are frictional parameters, and f ∗ and V ∗ are the referential values
of the frictional coefficient and velocity, respectively. The evolution of the state variables is
governed by the Dieterich aging law:

dθi(t)

dt
= 1− Vi(t)θi(t)

Li
. (5.4)

On the fault, the frictional stress must be balanced by both elastic and radiative contributions,
as well as the externally imposed stress ∆τi(t):

τi(t) =
∑︂
j

Kij (δj(t)− Vplt)−
µ

2β
Vi(t) + ∆τi(t), (5.5)

where δj is the slip on the cell j, Vpl is the constant driving plate velocity, µ is the Young
shear modulus, and β is the S-wave velocity. Kernel Kij of elastic interactions represents static
stress induced on cell i by unit slip on cell j, which we evaluate using the analytical solutions
by Okada (1992). The middle term on the right-hand side of Eq. (5.5) corresponds to the
(standardly added) viscous term introduced by Rice (1993), also called the radiation damping
term, which approximates the effect of seismic wave radiation. Outside the model fault zone,
continuous stable sliding is assumed (V = Vpl).

After setting (5.3) and (5.5) equal, differentiating, and doing simple algebra, one arrives at a
system of ordinary differential equations (see a detailed description in Perfettini et al., 2003b
or Gallovič, 2008). This system is solved using the Runge-Kutta algorithm with fifth-order
adaptive step-size control (Press et al., 1992).

5.2.2 Catalog Extraction

During the earthquake cycle simulation, we extract a seismic catalog by breaking the slip
velocity history into separate events using criteria similar to those described by Hillers et al.
(2006). Specifically, an event is comprised of cells with slip rates greater than a given threshold
and that share a common hypocenter. If two cells belonging to different events touch each
other, they are merged into a single event. For each event, we record its hypocentral time and
calculate its moment magnitude Mw.
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One possibility of defining the threshold slip velocity is to use the critical velocity 2βaσ/µ

for which the forces of radiation damping and friction compensate (Noda & Hori, 2014).
This would result in 0.23 m/s in our setting. Nevertheless, we use a smaller value of 1 mm/s
as a standard value also considered by other authors when performing similar simulations
(Perfettini et al., 2003b; Hillers et al., 2006; Gallovič, 2008; Murphy et al., 2013). We note
that the conclusions of this work are not affected by this choice.

5.2.3 Stress Load and Clock Advance

We pick a reference time tr after several earthquake cycles. Without applying external Coulomb
stress, an event occurs at time tu > tr. Starting from time t0 such that tu > t0 > tr, we apply
stress perturbation ∆τi(t) at cell i of the form

∆τi(t) =

⎧⎨⎩1
2
∆CSi

(︁
1− cos π

(︁
t−t0
∆t

)︁)︁
for t0 < t < t0 +∆t

∆CSi for t ≥ t0 +∆t
. (5.6)

The stress perturbation thus increases during the time interval ∆t from ∆τ(t0) = 0 to ∆τ(t0+

∆t) = ∆CSi, where ∆CSi is the amplitude of the static Coulomb stress change.
As a result of the stress perturbation, one or more events will nucleate at hypocentral times

which will generally differ from tu. The magnitudes of the events will also generally differ from
the unperturbed case. The clock advance CA is defined as

CA = tu − tp, (5.7)

where tp refers either to the occurrence time of the subsequent event regardless of its magnitude
(referred to as a magnitude-unconstrained CA), or the subsequent event with magnitude larger
than threshold magnitude Mtr (referred to as the magnitude-constrained CA). Negative values
of CA are also called clock delay.

Note that we have tried to apply shear stress and normal stress perturbations that corre-
spond to the same amplitude of Coulomb stress change, obtaining almost identical results (as
also observed by Perfettini et al. 2003b). Therefore, we only apply shear stress perturbations
to realize the Coulomb stress change.
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Quantity Notation Value
Fault dimensions R×R 25 × 25 km2

Fault discretization N ×N 128× 128
Shear modulus µ 30 GPa

Lamé’s first parameter λ 20 GPa
Friction parameters a 0.015

b 0.019
L 2 cm

Referential friction coefficient f ∗ 0.6
Referential velocity V ∗ 1 µm/s

Loading plate velocity Vpl 3.5 cm/year
S-wave velocity β 3 km/s
Normal stress σ 75 MPa

Table 5.1: Parameters of the fault model. The setup leads to periodic occurrences of Mw 6.9
earthquakes.

5.3 Modeling results

We consider a homogeneous fault in the velocity-weakening regime (a− b = 0.004) embedded
in a homogeneous elastic space with constant normal stress σ. The model parameters are listed
in Table 5.1. The fault homogeneity allows us to focus solely on the effect of the properties
of Coulomb stress change (i.e., amplitude, placement, duration, etc.), without introducing
additional complexities due to, e.g., the effect of heterogeneity of frictional parameters or free
surface. At the beginning of the simulation, the model is initiated by setting slip velocities to
twice the plate velocity Vpl on the whole fault. After one or two earthquakes, the fault reaches a
stable cycle of repeating events of magnitude Mw = 6.9. The average stress drop ∆τavg of these
events is 6.2 MPa according to the formula ∆τavg = (b − a)σ ln(Vco/Vint), where Vco = 1m/s

is the co-seismic slip velocity and Vint = Vpl is the estimate of the average inter-seismic
slip velocity (Barbot et al., 2012, supplemental material); this value is similar to the actual
difference between maximum and minimum values of average shear stress, which gives the
stress drop of 5.2 MPa. The duration of the unperturbed inter-seismic cycle is approximately
89 years. The graph of the average and maximum velocities on the fault is shown in Fig. 5.1a,
and the graph of slip velocities at five regularly spaced points on the fault are shown in Fig.
5.1b. Just after an event ends, the slip rates decrease to values about 4 orders smaller than
Vpl, bringing the fault into an effectively locked state. Then, slip velocities at the fault start to
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increase to ≈Vpl, and this creep gradually penetrates into the locked area, building conditions
for nucleation of the subsequent system-size event in the center of the fault (Rubin & Ampuero,
2005). This nucleation style corresponds to the bilateral rupture propagation style described
by Lapusta & Liu (2009). Therefore, our simulation results are to be considered representative
of models of this type. We point out that in the modeling of the Parkfield fault in subsection
5.4.2, the rupture behavior rather corresponds to the second style described by Lapusta &
Liu (2009), where the velocity-weakening regions are penetrated by only a small amount of
aseismic creep, the events nucleate closer to the fault borders, and rupture unilaterally.

5.3.1 Clock Advance Due to Stress Perturbation

We set the origin of the time coordinate to tr = 733.0 years since the start of the simulation,
which corresponds to the beginning of the eighth earthquake cycle. To see the effect of the
stress load on the clock advance (CA), we run the earthquake cycle 500 times, applying the
shear stress increase or decrease of magnitude ∆CS = ±0.01 σ (i.e., approximately 14% of
the main shock stress drop) to the whole fault at various onset times t0 and measure the
resulting CA. We let ∆t = 10 s, which effectively corresponds to an instantaneous Coulomb
stress change. Fig. 5.2 shows the dependence of the magnitude-constrained (Mw > Mtr = 6)
and the magnitude-unconstrained CA on the load time t0 for both positive and negative loads.
After an interval corresponding to constant CA, the dependence has an oscillatory character.
Such behavior of the (unconstrained) CA was first observed by Perfettini et al. (2003b) and
later by Gallovič (2008) on 2-D and 3-D rate-and-state faults, respectively. Here we analyze
the behavior of the CA in more detail.

The magnitude-unconstrained CA curves in Fig. 5.2 can be separated into three to four
phases: static, increasing, and decreasing. The fourth phase, corresponding to instantaneous
triggering, is present only in the case of positive stress load. The increasing and decreasing
phases are jointly referred to as the oscillatory phase of CA.

During the static phase, CA is a constant independent of t0. In each decreasing phase, CA
decreases approximately linearly, with a slope close to -1. Recalling the definition of clock
advance (5.7), this means that events occur after approximately constant time intervals from
the CS load application. In the static and decreasing periods, the subsequent earthquake
corresponds to a system-size event with magnitudes ranging from 6.5 to 7. This means that
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Figure 5.1: a) Evolution of the average (green) and maximum (red) slip velocities on the homo-
geneous rate-and-state fault model (see Table 5.1 for its parameters). b) Evolution
of slip velocities from tr = 733 to 900 years at five equidistant points in the middle
width of the left half of the fault (see legend); note that the two halves of the fault
evolve in the same way due to the symmetry of the problem. Just after an event,
the slip velocities on the fault decrease to values about 4 orders of magnitude
smaller than Vpl. Velocity at the borders of the asperity then starts increasing to
values close to Vpl, and this creep gradually penetrates into the locked area, build-
ing conditions for nucleation of the subsequent system-size event in the center of
the fault.
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the magnitude-constrained and magnitude-unconstrained CA curves coincide (see Fig. 5.2).
However, the situation is more complex in the increasing phase, where the smooth magnitude-
unconstrained CA is related to the occurrence of events with magnitudes between 3.5 and
6 (see Fig. 5.2). In the magnitude-constrained case, i.e., when considering the occurrence of
the system-size event, CA is characterized by abrupt changes with significant values of clock
delay. We note that the intervals of t0 associated with such clock delays are rather short, 1.3
years on average in the present example. Nevertheless, since there are six such intervals within
the earthquake cycle (with average time spacing of 7.0 years), they altogether amount to 7.6
years, which corresponds to 8.5% of the whole cycle.

5.3.2 Fault Evolution After Stress Perturbation

To better understand the behavior of the CA, we analyze the evolution of slip velocities on
the fault after the stress load. We do not discuss here the effect of instantaneous triggering,
which is, in the present context, relatively straightforward.

Fig. 5.3 shows maximum velocity as a function of time for several examples of (positive)
stress onset times t0. In Fig. 5.4a we plot slip velocities at five different equidistant points
located in the middle width of the fault. Immediately after the stress load, the slip velocities
increase at the affected cells. For a simple spring slider model, one can derive an approximate
formula for the change of velocity following Coulomb stress steps ∆CS (e.g., Perfettini et al.
2003b):

V (t+0 ) = V (t−0 ) exp

(︃
∆CS

aσ

)︃
, (5.8)

where V (t−0 ) and V (t+0 ) are the slip velocities before and after the stress step, respectively.
The formula predicts that the response to the stress step depends not only on its amplitude
∆CS (exponentially) but also linearly on the actual slip velocity V (t−0 ). We remind the reader
that during the earthquake cycle, the slip velocities increase inward from the borders of the
asperity from values corresponding to the locked fault to values corresponding to a creeping
(≈Vpl) fault, which differ by approximately 4 orders of magnitude. Therefore, the effect of the
load is the most significant when applied to the creeping portion of the fault. For example,
Fig. 5.4a demonstrates that only the creeping parts of the fault at the fault edge start to
oscillate after the stress load. This response then in turn alters the stress field, which may lead
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Figure 5.2: Clock advance CA (lines, left axes) and magnitude of the triggered events (sym-
bols, right axes) as functions of stress load onset time t0 for a) positive and b)
negative loads. The red lines represent CA corresponding to the very first subse-
quent (triggered) event, regardless of its magnitude. The green lines correspond
to CA of the first subsequent event with a magnitude larger than 6 (so-called
magnitude-constrained CA). Note that the two curves depart only in the intervals
of increasing CA, where the system-size events are significantly delayed for both
the load and unload. The blue line corresponds to instantaneous triggering.
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to destabilization of the fault.
In particular, when the stress load is applied early after an event, the initial velocity jump

is relatively small, because the fault is locked almost everywhere. In such a case the resulting
slip velocity perturbations are relatively weak and get damped after a relatively short time
(see Fig. 5.3a). Nevertheless, the overall velocity (and thus stress) increase remains stored in
the system, leading to the observed independence of the CA on t0 in the constant CA phase
(see Fig. 5.2).

During the oscillatory phase of CA, the initial velocity jump results in quasi-periodic os-
cillations in maximum slip velocity, which do not get damped. Depending on the timing of
the CS load, one of the episodic slip velocity increases, taking place close to the occurrence of
the regular event, can either trigger the system-size event or fail in doing so. The former case
would correspond to the decaying part of the CA curve (see Fig. 5.2), while the latter case
would correspond to the increasing part of the magnitude-unconstrained CA curve. During
the failed (small magnitude) event, the slip velocities reach normal seismic values (≈1 m/s),
just as during the system-size event, but only on a part of the total fault area. Moreover,
several such small events can happen in a relatively short time. Since the small earthquakes
can release a relevant part of the accumulated stress on the fault, the system-size event may
get delayed by a significant fraction of the whole earthquake cycle duration.

A similar example of such failed nucleation is shown in Fig. 5.4b for a shear stress pertur-
bation of amplitude +0.01σ applied to the fault edge at t0 = 39.0 years. The figure shows slip
velocity histories at five equidistant points on the fault. We can observe that the slip velocities
at the perturbed points at the right edge of the asperity gain an immediate increase. As a
result of the perturbation, the point at 9/10R undergoes oscillatory creep, whereas the slip
velocity at the other side of asperity at 1/10R remains steady until 83 years, where a small
peak is observed. At 84 years, the center of the fault reaches seismic velocities, but this rupture
is confined to a small area around the center and does not spread to either of the points close
to the borders of the asperity (although the slip velocities at both points undergo small sharp
peeks a few years before this event). This results in an event of magnitude 4.9. Later, another
event is produced at 106 years, rupturing a larger area (but not the whole asperity) and having
a magnitude of 5.3. Eventually, the whole asperity is ruptured at 149 years, causing an event
of magnitude 6.9, corresponding to the magnitude of the unperturbed main shock. Thus, this
perturbation results in a delay of 60 years.
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Figure 5.3: a) Evolution of the maximum slip velocities over the fault for selected stress loading
times t0 (see legend), corresponding to various parts of the CA plot in Fig. 5.2a.
Loading times of 3.1 and 8.2 years correspond to the flat phase of the CA (see
Fig. 5.2a). Loading times of 41.1 and 46.2 years were selected from the period of
the CA decrease in Fig. 5.2a. The evolution of the slip velocities at five points for
the case of loading at 41.1 years (here in magenta) is shown in Fig. 5.4a. b) The
evolution of maximum slip velocities for two scenarios with t0 only 2 months apart,
at the boundary between the decreasing interval of the CA and the clock delay
interval (Fig. 5.2a). Until the occurrence of the first smaller event, the evolution of
the maximum slip velocities is very similar. Nevertheless, while for the smaller t0,
the first event is followed by a (clock advanced) system-size rupture of Mw = 6.8,
for the larger t0, the second event fails to rupture the whole fault (thus having
smaller magnitude), even though its maximum slip velocity is larger than for the
main shock triggered in the case of the smaller t0. The whole fault is then ruptured
65 years later.
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Figure 5.4: a) Evolution of slip velocities at five equidistant points along the middle horizon-
tal cross-section of the fault (see legend) assuming a shear stress perturbation of
amplitude +0.01σ applied to the whole fault at t0 = 41.1 years. The curves cor-
responding to the opposite sides of the fault overlap due to the symmetry of the
model and the perturbation. Note the slow-slip oscillations at the edges of the
fault. After the whole fault has been ruptured, it starts evolving in the same way
as the unperturbed fault. b) Evolution of slip velocities at the same points as in
a) when a shear stress perturbation of the same amplitude is applied to the edge
of the fault at t0 = 39.0 years. In this case, the oscillations are present only at
the side of the fault affected by the stress increase. At 84 years only the center
of the fault reaches seismic velocities, resulting in an event of magnitude 4.9. It is
followed at 106 years by another event of magnitude 5.3, which ruptures a larger
area. Eventually, the whole fault ruptures at 149 years, causing an event of mag-
nitude 6.9 (equal to the original unperturbed magnitude), which is thus delayed
by 60 years.
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5.3.3 Dependence of Clock Advance on the Stress Load Parameters

In this section, we explore the dependence of CA on parameters of the shear stress loading,
such as its amplitude and domain of application. For the sake of clarity, we show here only the
magnitude-unconstrained CA curves. In all cases, the relatively narrow intervals of increasing
CA are always associated with significantly delayed system-size events. Fig. 5.5a shows the
dependence of the magnitude-unconstrained CA on t0 for different values of the stress load
amplitude ∆CS applied to the whole fault. Fig. 5.5b shows the same dependence as Fig. 5.5a
but considering the application of the load on the central square covering one-half of the fault
area. The stress drop during the mainshock, 5.2 MPa, corresponds to about 7% of the confining
normal stress. For perturbations greater than this, there is instantaneous triggering for all t0.
Below we discuss the static and oscillatory phases separately in detail. We also interpret the
observed dependences using arguments developed in subsection 5.3.2.

Static Phase

The static phase is observed for early onset times of the stress load in all cases. We denote the
CA during this phase by CA0 and calculate it for the onset time t0 = 1 year. The dependence
of CA0 on ∆CS is explored in Fig. 5.6, assuming loading over the whole fault and at two
smaller rectangular areas located in the middle of the fault or at its corner. As we can see,
CA0 depends approximately linearly on ∆CS as predicted by the standard Coulomb failure
model (see Eq. 5.1). However, the slope of the curve, which should only depend on the fault
stiffness, varies according to the extent of the loaded area and its position. The steepest slope
is for the case of loading the whole fault. In the case of partial loading, CA0 is larger for the
central loading than the corner loading (for the same ∆CS). Assuming CA0 = ∆CS/(kaVpl),
as suggested by the Coulomb failure model (5.1) but with keff replaced by ka, we can obtain
the “apparent” stiffness ka by means of linear regression. For the whole fault loading we obtain
the minimum value of kmina = 1.93 MPa/m, which is larger than the effective fault stiffness
keff ≈ µ/R = 1.2 MPa/m. For loading the central half of the fault ka = 2.38 MPa/m.

To explore the role of the loading area further, Fig. 5.6b shows the dependence of CA0 on
the extent of the loading (square) area, assuming three locations of the load—center, middle
edge, and corner. The loading amplitude is constant in this case, ∆CS = 0.2σ. Generally, CA0

is an increasing, yet nonlinear function of the loading area. Moreover, we can also see that
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Figure 5.5: Dependence of the magnitude-unconstrained CA on the loading time t0 for various
amplitudes of the stress load expressed as a fraction of the normal stress σ (see
legend). The load is applied either a) to the whole fault or b) to a square covering
the central half of the total fault area.
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Figure 5.6: a) The dependence of CA0 (the value of CA corresponding to the flat phase of
the CA graph, see, e.g., Fig. 5.5) on the stress load amplitude (x−axis) and the
loading area (see legend), evaluated for a stress load application at t0 = 1 year.
The loading is applied to the whole fault (red line) and at two smaller rectangular
areas located at the middle of the fault (pink lines) and at its corner (blue lines)
with areas equal to one half (thick lines) and one fourth (thin lines) of the total
fault area Atot. b) Dependence of CA0 on the area of the stress load for three
different locations of the loading domains (see legend), assuming fixed stress load
amplitude of 0.2% σ.
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the dependence of CA0 on the loading area differs according to the particular location of the
load. We interpret the behavior of CA0 following the argumentation in subsection 5.3.2. Slip
velocities affected by the stress load increase according to Eq. (5.8). In particular, the increase
is linearly dependent on the slip velocities prior to the stress load. Since the slip velocity is
inhomogeneously distributed along the fault (e.g., at the beginning of the earthquake cycle,
large values are constrained to the fault borders), the change in the velocities (and stress) is
also inhomogeneous. Although any consequent slip velocity oscillations diminish in time, the
additional stress heterogeneity introduced by the load is preserved by means of the memory
effect of the friction state variable, which leads to the complex behavior of CA0.

Oscillatory Phase

The onset of the oscillatory phase tosc strongly depends on the extent and position of the
CS loading area. To explore this issue, Fig. 5.7 shows CA for various Coulomb stress loading
amplitudes ∆CS applied to square areas of three sizes located at the center of the fault (Fig.
5.7a) and at its edge (Fig. 5.7b). For the stress load at the fault center (Fig. 5.7a) the larger
the CS area, the smaller the tosc. On the other hand, when the CS load is applied at the edge
of the fault, tosc is rather small and independent of the load area.

The observed behavior can again be related to the stronger response of the creeping part
of the fault to the applied load, as discussed in subsection 5.3.2. Indeed, tosc is the smallest
when the loading is applied at the edge of the fault (Fig. 5.7a), since the fault edges are the
first to start creeping after the preceding event. Contrarily, if the stress load is applied at
the fault center (Fig. 5.7b), the smaller the area, the later the CA oscillations begin. This
happens because the load is applied to the locked section of the fault for a longer fraction of
the earthquake cycle period.

5.4 Discussion and Conclusions

We have studied the effect of static Coulomb stress change on the clock advance or delay
of a characteristic earthquake on a 3-D fault model with rate-and-state friction. The present
dynamic fault model is rather simple (planar fault, homogeneous frictional parameters, etc.)
to isolate the effect of the stress load from other features. Despite this simplification, the
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Figure 5.7: a) Dependence of the magnitude-unconstrained CA on the loading time t0. The
stress load has various amplitudes expressed as a fraction of the normal stress σ
and sizes of the loading domains (see legend). The load is applied either a) at the
central part of the whole fault or b) at the fault corner.
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response of the fault to the stress load is complicated. For example, in agreement with other
studies (Perfettini et al., 2003b; Gallovič, 2008), we observe that the clock advance (CA) is
an oscillatory function of the stress load onset time t0. We point out that such a complexity
of the CA is related not only to the nonlinear character of the rate-and-state friction model
but also to the 3-D fault geometry. Indeed, a simple spring slider model with rate-and-state
friction law predicts CA due to a static stress loading to be a monotonously decreasing function
of t0 within the whole earthquake cycle (Gomberg et al., 1998). We observe that the stress
load disturbs the otherwise stable fault evolution by increasing slip velocity on the loaded
part of the fault. The elevated slip velocities may lead to instantaneous nucleation of the
main (system-size) earthquake. If the fault is not ready to go, the nucleation is arrested and
such a failed nucleation becomes a creep-like event, introducing an additional heterogeneity in
the stress distribution on the fault. If the load is applied at the beginning of the earthquake
cycle, the fault returns to its stable evolution. Otherwise, the stress heterogeneity leads to
an excitation of a quasi-periodic occurrence of additional creep events traveling along the
fault. Eventually, one of these events leads to the nucleation of a seismic event. Depending
on the timing and the amplitude of the stress load, this earthquake may rupture the whole
fault (system-size event), or just a part of it, corresponding to a smaller-magnitude event.
We demonstrate that in the latter case, the next system-size earthquake can be significantly
delayed from its regular (unperturbed) occurrence. We note that such delayed occurrence of
the main shock can happen for both the positive and negative loads (Fig. 5.2).

5.4.1 Induced Slip Velocity Oscillations

Inter-seismic slip velocity oscillations of an apparently locked fault seem to be an intrinsic fea-
ture of the rate-and-state friction on finite-extent faults (see examples in Figures 5.3 and 5.4).
They can be induced even on a fault with homogeneous frictional parameters and previously
stable evolution by an external stress load, especially if the load has a spatially inhomogeneous
amplitude and if the load is applied later in the earthquake cycle. Perfettini et al. (2003b) as-
sociated the slip velocity oscillations with oscillations of a spring slider model governed by
the rate-and-state friction. We were not able to match the fault oscillations to those of a
spring slider model with stiffness equal to the effective stiffness of the fault. Moreover, the
observed complex spatial evolution of the stress/slip velocity field on the fault suggests that
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the oscillations are related to the multidimensional character of the fault. During the slip
velocity oscillations, the fault undergoes quasi-periodic creep events. The question is whether
such behavior is realistic and whether it could be proven by observations. We note that the
creep events are hardly detectable by surface measurements due to very small associated slip.
Nevertheless, they might be manifested by other related phenomena such as episodic increases
of microseismicity as observed on the locked Parkfield segment (Nadeau et al., 1995; Nadeau
& Guilhem, 2009). We note that similar variations of recurrence intervals of characteristically
repeating microearthquakes have been observed on the creeping section of the San Andreas
Fault (SAF) (Nadeau & McEvilly 1999, 2004). These slip rate oscillations have been recently
confirmed by modern geodetic data (Turner et al., 2015).

5.4.2 Possible Explanation of the Anomalous Delay of the Parkfield

Earthquake

Our study is to be understood as a qualitative analysis of conceptual fault behavior after being
perturbed by a stress load or unload. Nevertheless, particularly the observed significant clock
delays, occurring when the stress (un)load is applied at specific periods within the seismic
cycle, prompt for comparison with real fault observations. A perfect candidate is the locked
Parkfield segment of the SAF. This fault is well known for its quasi-periodic occurrence of
Mw ≈ 6 events with a mean interval of about 22 years (see Fig. 5.8a). The striking similarity
of waveforms recorded in the 1922, 1934, and 1966 events suggests that the ruptured area of
the fault is similar for all those events (Bakun et al., 2005). After the 1966 earthquake, the
next Mw 6 event was anticipated to take place between 1988 and 1993. Interestingly, the event
occurred as late as 2004, being delayed by approximately 15 years (Fig. 5.7b). The reason for
this exceptional delay, representing a significant portion of the whole seismic cycle, remains
enigmatic. Here we link it with the perturbation of the stress field by two nearby strong
earthquakes that occurred northeast of the Parkfield section of SAF in 1983, Mw 6.5 Coalinga
and Mw 6.0 Nuñez. Toda & Stein (2002) studied the response of SAF to these events. Their
Coulomb stress calculations showed that these two earthquakes increased stress on the creeping
section of the SAF, raising the rate of small shocks for the next ≈18 months. Conversely, the
Coalinga-Nuñez earthquakes decreased stress on the locked Parkfield segment up to 0.5 bars,
causing surface creep and a drop of occurrence rates of small earthquakes for more than 6
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Figure 5.8: a) Occurrence time of the main shocks on the locked Parkfield segment of the
San Andreas Fault. The green line corresponds to a recurrence time of 22 years.
b) Clock advance of the main shocks evaluated as a difference between the actual
year of occurrence and the estimated one from the 22 year recurrence period (green
line in Fig. 5.8a). c) Real seismicity on the Parkfield fault (red symbols, obtained
from the NCEDC archive, 2014). Black arrows denote the occurrence of the last
two Parkfield main shocks. The blue line denotes the time of the nearby Mw 6.5
Coalinga earthquake (followed by the Mw 6.0 Nuñez shock), which unloaded the
Parkfield fault by approximately 0.15 bars (Toda & Stein, 2002). The time period
in yellow denotes the expected occurrence of the next main shock after the 1966
event. Note that instead of the large system-size event, smaller earthquakes of
Mw ⪅ 4.9 occurred in that period.



5.4. Discussion and Conclusions 140

years. Toda & Stein (2002) converted the Coulomb stress decrease to a 22% drop of 10-year
probability of the next Mw 6 Parkfield earthquake. This hardly explains the absence of the
main shock until 2004. Barbot et al. (2012) developed a rate-and-state dynamic model of the
seismic cycle of the Parkfield segment of SAF. The authors replicated basic characteristics
of the cycle including the swap of hypocenters of the 1966 and 2004 events. Nevertheless,
they did not explain the anomalous delay of the latter event. Although they neglected the
external unloading due to the nearby 1983 Coalinga-Nuñez events, the authors also raised the
possibility that the delay of the 2004 Mw 6.0 Parkfield event may have been at least partially
caused by smaller earthquakes occurring from 1993 to 1994, being perhaps a series of arrested
Mw 6 nucleations (see Fig. 5.8c).

To support this hypothesis by simulation, we consider a fault model with conditions closer to
the properties of the Parkfield segment, following Barbot et al. (2012). In particular, we assume
a strike-slip model with dimensions of 36 km × 18 km, which covers both seismogenic and
aseismic parts of the SAF. For the sake of computational efficiency, we simplify the distribution
of frictional parameters of Barbot et al. (2012), removing small seismogenic patches and using
a simple rectangular seismogenic zone of 24 × 4 km (see Figures 5.9a and 5.9b). We use the
same depth dependence of effective normal stress as Barbot et al. (2012); see Fig. 5.9c. The
fault is discretized by 256 × 128 cells corresponding to a meshing twice as coarse in each
dimension as that considered by Barbot et al. (2012). We assume larger L = 6 mm, constant
along the fault.

After initialization, the fault quickly settles into a periodic regime with a period of 20.4
years. We apply a negative Coulomb stress change of 0.6 MPa to the velocity-weakening zone
at 130 equidistant onset times t0. The resulting dependence of both magnitude-constrained
and magnitude-unconstrained CA on t0 is shown in Fig. 5.9d, which is analogous to Fig. 5.2.
We observe three intervals of significant clock delay. As in the homogeneous model, the large
earthquake is delayed by one or two preceding smaller events. Their hypocenters generally
differ from that of the main shock; in most cases, the main shock hypocenter is located closer
to the edges of the velocity-weakening area. The stress perturbations also generate creep
episodes with irregularly spaced peaks in slip velocity with intervals ranging between 0.4 and
3 years, i.e. covering the 2 year period of the repeating microearthquakes observed at Parkfield
(Nadeau & McEvilly 1999, 2004). Nevertheless, we stress that the qualitative behavior of the
fault is quite sensitive to variations of the model parameters. For example, no significant delays
appear when considering a purely rectangular velocity-weakening zone. More comprehensive
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Figure 5.9: Parameters and the results for our model of the Parkfield fault segment. a) The
spatial distribution of friction parameter a−b, simplified after Barbot et al. (2012).
The blue area corresponds to the velocity-weakening zone. b) The spatial distri-
bution of friction parameter b simplified from Barbot et al. (2012). c) Depth de-
pendence of the effective normal stress, adopted from Barbot et al. (2012). d) The
dependence of the clock advance CA and magnitude of the triggered events as a
function of stress load onset time t0. We apply a negative Coulomb stress change
on the velocity-weakening zone. The figure is analogous to Fig. 5.2. Note the sig-
nificant time delays of the system-size (Mw ≈ 6) events, which are preceded by
Mw < 5 events, within the three intervals of load time t0.
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modeling of the Parkfield segment that would explain the fault behavior in full detail is left
for further study.

Our results support the hypothesis of Barbot et al. (2012), suggesting that the stress unload
due to the 1983 Coalinga-Nuñez earthquakes took place during a specific phase of the Parkfield
seismic cycle (corresponding to the increasing phase of the CA curve; see Fig. 5.2). This
resulted in the failure of the ≈Mw 4.9 events from 1993 to 1994 to rupture the whole fault.
Instead, they significantly delayed the 2004 Mw 6 main shock. We note that this proposed
mechanism is not unique. For example, simulations by Ben-Zion et al. (1993) showed that
accounting for viscoelasticity below the brittle crust can also produce a delay of the 2004 Mw

6 Parkfield earthquake; for some parameters, their calculations predicted the next Parkfield
earthquake to occur in the time interval 1995 ± 11, which includes 2004.

5.4.3 Clock Advance Concept in Earthquake Hazard Assessment

The present results pose a challenge for time-dependent earthquake forecasting and for building
characteristic earthquake renewal models in seismic hazard assessment. Both of those practical
applications need an estimate of the CA of the next earthquake due to the Coulomb stress
change invoked by a nearby event. Complex dependencies of CA, including the possibility of
a clock delay as observed in the present study, seem to preclude a simple prediction. Indeed,
CA is strongly affected by the actual state of the stress/slip velocities on the fault at the time
of the stress load, especially on the part of the fault to which the stress load is applied. Details
of the fault behavior are also controlled by the actual frictional parameters of the fault, which
are hard to obtain.

A promising way to overcome this problem in the future is a “full” simulation of the earth-
quake cycle. Such a dynamic simulation of a single fault was performed for the Parkfield
segment of SAF in the above-mentioned paper by Barbot et al. (2012); considering the rate-
and-state friction law. Another possibility is to avoid trying to explicitly estimate the CA

for a given fault. Instead, the potential hazard study can rely on dynamic simulations of
whole earthquake fault systems. For example, Richards-Dinger & Dieterich (2012) introduced
the earthquake simulator RSQSim, which takes into account all known mutually interacting
locked and creeping faults in California governed by the rate-and-state friction. The model
successfully reproduces basic characteristics of the real earthquake catalog. In principle, such
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physics-based models take into account the complex behavior of CA inherently by considering
the complex stress interactions among the faults in the fault system.

Data and Resources

Waveform data, metadata, or data products for this study were accessed through the Northern
California Earthquake Data Center (2014), doi:10.7932/NCEDC.
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6 Assessing the role of selected
constraints in Bayesian dynamic
source inversion: Application to the
2017 Mw 6.3 Lesvos earthquake

A version of this chapter, mainly differing by a slightly shorter methodical part, was published
as Kostka et al. (2022).

Summary

A dynamic finite-fault source inversion for stress and frictional parameters of the Mw 6.3 2017
Lesvos earthquake is carried out. The mainshock occurred on June 12, offshore the southeastern
coast of the Greek island of Lesvos in the north Aegean Sea. It caused 1 fatality, 15 injuries, and
extensive damage to the southern part of the island. Dynamic rupture evolution is modeled
on an elliptic patch, using the linear slip-weakening friction law. The inversion is posed as a
Bayesian problem and the Parallel Tempering Markov Chain Monte Carlo algorithm is used to
obtain posterior probability distributions by updating the prior distribution with progressively
more constraints. To calculate the first posterior distribution, only the constraint that the
model should expand beyond the nucleation patch is used. Then, we add the constraint that the
model should reach a moment magnitude similar to that obtained from our centroid moment
tensor inversion. For the final posterior distribution, 15 acceleration records from Greek and
Turkish strong-motion networks at near regional distances (≈ 30-150 km) in the frequency
range of 0.05-0.15 Hz are used. The three posterior distributions are compared to understand
how much each constraint contributes to resolving different quantities. The most probable
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values and uncertainties of individual parameters are also calculated, along with their mutual
trade-offs. The features best determined by seismograms in the final posterior distribution
include the position of the nucleation region, the mean direction of rupture (towards WNW),
the mean rupture speed (with 68% of the distribution lying between 1.4-2.6 km/s), radiated
energy (12-65 TJ), radiation efficiency (0.09-0.38), and the mean stress drop (2.2-6.5 MPa).

6.1 Introduction

Dynamic inversions of earthquake rupture aim at finding parameters governing frictional and
stress conditions on a fault. This can be done in two ways. In the first approach, the stress on
the fault is calculated from the history of slip obtained via inversion for a kinematic model,
and the two fields are then used to estimate parameters of the constitutive law relating slip
and friction (e.g. Fukuyama & Mikumo, 1993; Ide & Takeo, 1997; Pulido & Irikura, 2000;
Peyrat et al., 2001; Tinti et al., 2005; Burjánek & Zahradník, 2007). A more recent approach,
used here, is the fully dynamic inversion (e.g. Peyrat & Olsen, 2004; Di Carli et al., 2010;
Ruiz & Madariaga, 2011, 2013; Díaz-Mojica et al., 2014; Twardzik et al., 2014; Herrera et al.,
2017; Gallovič et al., 2019a,b; Mirwald et al., 2019; Gallovič et al., 2020). In this approach,
simulations in which the elastodynamic equation is coupled with the constitutive law are used
and the parameters describing the law and the initial stress on the fault are searched directly.
The history of slip during the rupture is obtained as a by-product and it is guaranteed to be
consistent with physical laws. Solving a fully dynamic inversion problem thus solves an asso-
ciated kinematic inversion problem. However, dynamic inversions also permit interpretation
of the earthquake properties in terms of physics. This is crucial for understanding processes
of rupture nucleation, propagation, and arrest, eventually enabling realistic simulations of
near-source ground motions (e.g. Aochi & Ulrich, 2015).

There are several issues with dynamic inversions that complicate interpretations of their
results and prevent their widespread use. First, the appropriate form of the constitutive law
that describes friction on geological faults is still a topic of intense research. Widely applied
empirical friction laws have been derived from small-scale laboratory experiments (Dieterich,
1979; Ruina, 1983; Ohnaka & Yamashita, 1989; Chen & Spiers, 2016, etc.), but little is known
about their applicability to the Earth’s crust (see Perfettini et al., 2003a; Marone et al., 2009;
Viesca & Garagash, 2015 for an extensive discussion on the topic). Since the differences between
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the relevant laws are negligible at low frequencies and hard to distinguish within the precision
and accuracy of current seismological data, we use the linear slip-weakening law (Ida, 1972),
which was introduced to regularize problems in fracture mechanics. Owing to its simplicity,
it has been used in almost all dynamic inversions published to date. For an overview of other
important friction laws, we refer the reader to Bizzarri (2011).

Second, just as kinematic inversions, dynamic inversions are non-unique, and it is desirable to
describe their uncertainty (Ruiz & Madariaga, 2013; Gallovič et al., 2019a,b). We achieve this
by casting the problem in a probabilistic, Bayesian framework and expressing the information
about model parameters in the form of a posterior probability density function. This function
provides a formal basis for analyzing uncertainties of model parameters and their trade-offs.
Another advantage of the Bayesian framework is that it enables researchers to clearly formulate
their prior assumptions (in the form of the prior probability density function) and to identify
how they affect the resulting inference.

Third, running a fully dynamic rupture simulation (representing the forward part of the
inverse problem) is computationally demanding. Due to the non-linear relationship between
model parameters and data, many such simulations must be run to solve the inverse problem,
even in non-Bayesian methods. That is why the dynamic rupture solver must be as fast as
possible. To achieve this, we use the highly efficient finite difference code FD3D_TSN (Premus
et al., 2020), which utilizes GPU acceleration and requires approximately 1 s of seconds to
finish a single GPU computational time per 1 s of rupture simulation in our application. An
important strategy for making the inversion computationally feasible is to keep the dimension
of the parameter space low; there have been only a few inversions directly seeking a discretized
distribution of stress and friction on the fault (Fukuyama & Mikumo, 1993; Peyrat et al.,
2001; Peyrat & Olsen, 2004; Corish et al., 2007; Gallovič et al., 2019a,b, 2020). Instead, simple
parametrization is typically considered, such as models consisting of one or two elliptic sub-
faults (Ruiz & Madariaga, 2011, 2013; Twardzik et al., 2014; Di Carli et al., 2010; Díaz-Mojica
et al., 2014; Herrera et al., 2017).

Finally, and most importantly for this study, interpreting the results of the inversion is
difficult because it is not clear which constraints are responsible for the appearance of particular
features. For example, anti-correlation between the average slip and the ruptured area is likely
to be observed in every earthquake with a well-constrained seismic moment. In contrast,
fine geometric and temporal features of the rupture propagation may only be constrained by
using detailed seismic waveforms specific to the earthquake. We investigate this issue by using
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progressively more information to calculate three posterior distributions. For the first posterior
distribution, we use only the constraint that the rupture breaks at least twice the area of the
nucleation zone and lasts more than 1 second. This condition removes uninteresting models
that produce negligible wave radiation. For the second distribution, we add information about
the moment magnitude. The resulting distribution will characterize models with mechanisms
and magnitude similar to the one from the moment tensor inversion, regardless of the observed
waveforms. For the final posterior distribution, we use both moment magnitude and waveforms
observed at near-regional seismic stations. Comparing the three posterior distributions allows
us to separate features that are determined by the rupture condition, those determined by
magnitude, and those determined by waveforms.

We apply our method to the Mw 6.3 Lesvos earthquake that occurred on June 12, 2017,
12:28 GMT, offshore the southeastern coast of the Greek island of Lesvos in the Lesvos Basin,
Aegean Sea. According to the Geophysical Institute of the National Observatory of Athens
(GI-NOA), it was a shallow crustal event with a hypocentral depth of 12.0 ± 1.7 km. The
stress state in the area is characterized as transtensional, with minimum principal stress axis
σ3 oriented in the NNE-SSW direction (Konstantinou et al., 2017). The earthquake likely
ruptured the eastern segment of the Lesvos Basin fault, oriented perpendicular to σ3, dipping
SSW with a normal faulting mechanism (Kiratzi, 2018). We show a map of the epicentral area
in Fig. 6.1.

Most of the damage caused by the earthquake occurred on the southern coast of Lesvos. In
what has been called the “Vrisa paradox” (Papadimitriou et al., 2018), the heaviest structural
damage was observed in the small village of Vrisa about 20 km toward NW from the mainshock
epicenter, despite the presence of closer towns and villages. (e.g., Plomari, Akrasi, Vatera,
etc.). One woman in Vrisa died, and at least 15 people were injured. This has been attributed
to site effects, vulnerable infrastructure (Lekkas et al., 2017), and the large spatial extent
of slip and source directivity. The last two have been examined by a kinematic inversion
of seismic data (Kiratzi, 2018), a kinematic inversion of GPS data (Chousianitis & Konca,
2018), and an analysis of the aftershock sequence (Papadimitriou et al., 2018). Both kinematic
inversions conclude that the slip was concentrated in a large patch with unilateral propagation
of rupture from the hypocenter toward the northwest, as also indicated by centroid position
reported shortly after the event at EMSC by Sokos & Zahradník (2017). Here we use data
from local Greek and Turkish stations to reanalyze the earthquake in a fully dynamic, Bayesian
framework.
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Figure 6.1: Map of the epicentral area of the 2017Mw 6.3 Lesvos earthquake (see the inset for a
wider geographic view). Strong-motion stations used for the dynamic inversion are
shown as red triangles. The black rectangle shows the projection of the assumed
fault plane used in the inversion. The blue solid line is the top fault edge at
the surface. The blue beachball shows the centroid moment tensor of the Mw 6.3
mainshock inferred in this study, while the red beachball shows the GCMT centroid
for the same event. Black dots are the aftershocks within two months after the
event, as determined by GI-NOA. The hypocenter located by GI-NOA is denoted
by a blue star. Fault traces from The European Database of Seismogenic Faults
(EDSF; Basili et al., 2013) are shown as black lines. The red lines show inferred
and mapped faults from Chatzipetros et al. (2013) and Ganas et al. (2013).
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6.2 Method

6.2.1 Forward problem

The forward problem consists of a dynamic rupture simulation and a calculation of synthetic
waveforms in a layered isotropic medium. For the former, we use the Fortran code FD3D_TSN
(Premus et al., 2020), which employs finite differences on a staggered grid of 4th order in space
and of 2nd order in time. The code solves the elastodynamic equation in a 3-D box, allowing
for discontinuous displacement (slip) on a pre-defined fault. The mechanical conditions on
the fault, which is placed at one of the vertical faces of the box and implemented using the
traction-at-split-node approach, are governed by the linear slip-weakening friction law (Ida,
1972). This law relates shear traction T (x, t) and slip s(x, t) at each point x on the fault and
time t and consists of two parts:

1. The rupture criterion: The slip rate at x is zero until the magnitude of shear traction at
that point reaches the strength Tu.

2. Constitutive law: The on-fault traction during slip is a function of the accumulated slip
(slip-path length)

s(t,x) =

ˆ t

0

∥ṡ(t′,x)∥dt′ (6.1)

and the slip rate direction:

T (t,x) = −f(s(t,x)) ṡ(t,x))
∥ṡ(t,x)∥

, (6.2)

where (see Fig. 6.2a):

f(s) :=

⎧⎨⎩(Tu − Td)(1− s/Dc) + Td for 0 ≤ s≤Dc

Td for s > Dc

. (6.3)

Here Dc is the so-called characteristic slip distance and Td is dynamic friction.

The initial shear traction Ti points in the up-dip direction (to represent normal faulting),
approximating the centroid rake direction of the event (-83°, see subsection 6.2.3.4). The di-
rection of traction is not fixed, but it changes only negligibly during the dynamic simulation.
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We set Td to zero, as is commonly done in dynamic inversions (e.g. Ruiz & Madariaga, 2011,
2013; Twardzik et al., 2014; Gallovič et al., 2019a,b). However, we also include a small sta-
bilizing cohesion term of 0.5 MPa, which effectively moves Td to 0.5 MPa. Indeed, we have
verified that shifting ∥T i∥, Tu and Td by a fixed positive value has a negligible effect on the
simulation results. The friction law is summarized in Fig. 6.2.

The boundary conditions at the remaining faces of the computational box consist of a free
surface enforced by the stress-imaging technique (Levander, 1988; Graves, 1996; Kristek et al.,
2002) at the top face, and perfectly matched layers (Berenger, 1994) as absorbing conditions
at the remaining faces. We note that a significant speed-up in FD3D_TSN is achieved by
assuming that the fault is vertical. To partially compensate for neglecting the actual dip of
the fault, we stretch the along-dip positions of the velocity model interfaces, so that they
conform to the actual depths along the fault. Since the synthetic ruptures do not reach the
surface, the error caused by ignoring the actual dip in the first stage of the calculation is
negligible (Gallovič et al., 2019b). As a result of the dynamic rupture simulation, we obtain
the evolution of traction and slip rate at each grid point on the fault. The slip rates are then
convolved with Green’s functions pre-calculated using the Axitra software (Cotton & Coutant,
1997). But unlike the FD3D_TSN simulation, we supply Axitra with the centroid dip and rake
to calculate the Green’s functions (see application and validation of this approach by Gallovič
et al., 2019b). The resulting elementary seismograms are summed over every grid point and as
a result, synthetic displacements on specified stations are obtained. As a final step, we apply
the fourth-order causal Butterworth filter to each of the seismograms, the same as used for
the data (see subsection 6.2.3.4).

6.2.2 Dynamic model parametrization

The distribution of friction and initial stress on the fault is defined by a single elliptic patch
model Ruiz & Madariaga, 2011, 2013; Díaz-Mojica et al., 2014; Herrera et al., 2017, see
Fig. 6.2b. It is relatively simple, which is appropriate due to the small complexity of the
event indicated by i) previous studies of the earthquake (Kiratzi, 2018; Chousianitis & Konca,
2018), ii) our moment tensor inversion (performed by J. Zahradník and E. Sokos, see text S1.1),
and iii) the limited frequency range we use. In addition, the limited number of parameters
makes the elliptic patch model suitable for a Bayesian inversion. The geometry of the patch is
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parameterized by five parameters (Fig. 6.2b): The position of its center along strike, xc, and
along dip (measured from bottom to top), yc, the components of the vector connecting the
center and the tip of the semi-major axis, ax, ay, and the length of the semi-minor axis, b.
The strength is set to a constant value of Tu inside the patch and to a very large value outside
of it, so the patch is the only region in which rupture may propagate. The characteristic slip
distance is set to a constant value of Dc everywhere on the fault. The magnitude of the initial
shear traction Ti inside the patch is a piecewise constant function:

Ti(x) =

⎧⎨⎩Tu(1 + δ) for x ∈ NZ

Tuγ for x /∈ NZ
, (6.4)

where δ > 0, and γ ∈ [0, 1] are parameters and NZ is a small circular nucleation zone from
which rupture begins. Finally, the geometry of the nucleation zone is determined by 3 param-
eters: the along-strike and along-dip locations xnucl, ynucl of its center and its radius rnucl. To
sum up, we parameterize the model by 12 model parameters (Fig. 6.2b): 8 that describe the
geometry of the elliptic patch and the nucleation zone (xc, yc, ax, ay, b, rnucl, xnucl, ynucl), 2 that
define the magnitude of the initial shear stress (γ, δ), and 2 that define frictional properties
(Tu, Dc).

6.2.3 The inverse problem

6.2.3.1 Bayesian framework

We describe our knowledge about the parameters in terms of a probability density function
on the 12-dimensional space M of model parameters defining the elliptic models described in
subsection 6.2.2. This is a function f : M → R+

0 such that the true value of the parameter
combination m = (m1,m2...,m12) is contained in a Borel set A ⊂M with probability:

P (A) =

ˆ
A

f(m1,m2, ...,m12)dm. (6.5)

For the sake of brevity, we also refer to probability density functions as (probability) distri-
butions or simply pdf s.

The parametrization of the model space M presented in subsection 6.2.2 is not unique.
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Figure 6.2: a) The linear slip weakening friction law. The magnitude of the shear stress at
each point x on the fault has the initial value Ti(x) (see Fig. b) and obeys linear
elasticity until it is larger than or equal to Tu (yield strength). It then decreases
linearly with accumulated slip (slip-path) s until it reaches the final stress Tf = Td
at s = Dc. The inset shows the case when slip stops before reaching Dc, in which
case Tf > Td. Stress drop is defined as Ti − Tf . The area ∆W under the red
dotted line is the available strain energy surface density. The area GF under the
blue curve is the dissipated fracture energy surface density (energy dissipated from
∆W per area of rupture). The quantity GR = ∆W − GF is the radiated energy
density. Integrals of these quantities over the fault plane are the available strain
energy change ∆E, the dissipated fracture energy EF , and radiated energy ER,
respectively. For the extension to 3-D, see Ripperger et al. (2007) and Eq. (6.35). b)
The elliptic parametrization used for the dynamic inversion. The yield strength Tu
is finite and constant inside an elliptic patch and infinite elsewhere. The geometry
of the ellipse is defined by the along-strike and along-dip coordinates of its center, xc
and yc, the along-strike and along-dip components ax and ay of the semi-major axis,
and the length of the semi-minor axis, b. The angle between the semi-major axis
and the horizontal line is denoted by ϕ. The geometry of the nucleation zone (red)
is parameterized by the coordinates of its center xnucl, ynucl, and the radius rnucl.
The magnitude of the shear stress inside the nucleation zone is defined relatively
to Tu by the positive parameter δ: Ti = Tu(1 + δ). Elsewhere on the patch, Ti has
a constant value of γTu. Outside of the patch, it is zero.
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When a different parametrization is used, the probability P (A) is left invariant. Therefore,
since the volume element dm in Eq. (6.5) is transformed upon a change of coordinates, the
pdf also needs to transform, but in an inverse manner. Specifically, let {xi, i = 1, . . . , 12}
and {yi, i = 1, . . . 12} be two coordinate systems on M . Let yi = ψi(x1, x2, . . . x12}, where
ψ : R12 → R12 is an invertible differentiable function. Then the pdf f with respect to {xi}
and the pdf g with respect to {yi} are related as (Gelman et al., 2004):

g(y) = f
(︁
ψ−1(y)

)︁
|Jψ−1(y)|, (6.6)

where Jψ−1(y) is the Jacobian determinant of ψ−1, evaluated at y:

Jψ−1(y) := det

(︃
∂(ψ−1)j
∂yi

(y)

)︃
. (6.7)

Consequently, a uniform pdf with respect to one set of coordinates typically results in a non-
uniform pdf with respect to a different set of coordinates.

Even before analyzing the observational constraints c on the earthquake in detail, we have
some prior knowledge about the parameters. For example, we know that the hypocenter of
the earthquake is located near Lesvos island, we have some estimates about the extent of the
rupture, maximum stress drop, etc. We formalize this knowledge in terms of a prior probability
density function ρpr(m), which we fully describe in subsection 6.2.3.3. We then update our
prior knowledge by taking c into account. Mathematically, this is represented by passing to
the posterior probability density function ρ(m|c) using Bayes’ formula:

ρ(m c) = kL(m c)ρpr(m). (6.8)

Here,
L(m c) = p(c|m) (6.9)

is the likelihood function, which represents the probability density function of c given that the
true model parameters are equal to m, and k is a normalizing constant such that ρ(m c)

integrates to 1.
In this study, we divide our updating process into three steps. In the first step, we assume

that we have no information about the earthquake other than that it lasted for at least one
second and ruptured more than twice the area of the nucleation zone. This rupture condition,
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which we label r, leaves only models that successfully rupture beyond their nucleation zone
and excludes uninteresting models that cannot produce any ground displacements at seismic
stations. Formally, the likelihood function for this condition can be written as

L0(m r) ∝ IR(m), (6.10)

where R is the set of all models that meet the rupture condition and IR is its indicator function.
Plugging Eq. (6.10) into Eq. (6.8) with c = r, we obtain the posterior distribution

ρ0(m|r) = k0IR(m)ρpr(m), (6.11)

where k0 is a normalizing constant. Since the exact shape of R is unknown, neither the value
of k0 nor the precise form of IR can be determined beforehand. However, this is not important
when estimating the distribution with a suitable Monte-Carlo method, such as the Parallel
Tempering algorithm (see the next part of this subsection).

In the second step, we add to c an estimate of the earthquake’s moment magnitude M0
w, so

that c = (r,M0
w). When we solve the forward problem with model m, we obtain the corre-

sponding moment magnitude Mw(m). Due to observational and modeling errors, neither M0
w

nor Mw(m) will be exact. However, if we suppose that the errors are normally distributed, it
turns out (Tarantola, 2005) that the combined error is also normally distributed with variance
σ2
Mw

equal to the sum of the original variances. The likelihood function is then:

L1(m|M0
w) ∝ exp

(︄
−(Mw(m)−M0

w)
2

2σ2
Mw

)︄
. (6.12)

Using ρ0 as the prior distribution and updating it using Eq. (6.8), we obtain the posterior
distribution

ρ1(m|r,M0
w) = k1L1(m|M0

w)ρ0(m|r) = k1 exp

(︄
−(Mw(m)−M0

w)
2

2σ2
Mw

)︄
IR(m)ρpr(m), (6.13)

where k1 is again a normalizing constant. This pdf is independent of ground displacement
observations, except for the information about the moment magnitude. As such, it allows us
to identify model parameters and features that are required for the earthquake to rupture with
approximately the given magnitude, but are not necessarily specific to the actual earthquake.
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In the final step, we supplement the preceding constraints with the observed seismograms
dobs, i.e. c = (r,M0

w,dobs). The vector dobs consists of the three components of displacement
at each time sample and at each station. Assuming normally distributed errors as before, the
likelihood function for this update is

L2(m|dobs) ∝ exp

(︄
−∥d(m)− dobs∥2

2σ2
d

)︄
, (6.14)

where d(m) are synthetic seismograms calculated from the model m, ∥·∥ is the regular Eu-
clidean norm and σ2

d is the total observational and modeling variance. Using this likelihood
function and using ρ1 as the prior distribution, Eq. (6.8) now yields

ρ2(m|r,M0
w,dobs) = k2IR(m) exp

(︄
−∥d(m)− dobs∥2

2σ2
d

− (Mw(m)−M0
w)

2

2σ2
Mw

)︄
ρpr(m), (6.15)

where k2 is another normalizing constant. In subsection 6.3.2, we compare the prior distribution
and the three posteriors to extract information obtained by each piece of observational data.

Since the model space M has 12 dimensions, the pdfs are hard to visualize and interpret.
Nevertheless, if we decompose M as a Cartesian product of spaces A and B such that M =

A × B, we can calculate, for any pdf ρ on M , its marginal pdf ρA(mA|y) for mA ∈ A by
integrating ρ(mA,mB|y) over B:

ρA(mA|y) =
ˆ
B

ρ(mA,mB|y)dmB. (6.16)

Plots of the marginal distributions give us a picture about the original (joint) distribution, but
they must be approached with caution because some information is lost by the integration. In
particular, that the marginal distribution ρA has a maximum at some mA ∈ A is neither a
sufficient nor necessary condition for the joint distribution to have a maximum at (mA,mB)

for some mB ∈ B. To simplify notation in the following text, we use the same symbols for
both the marginal and the joint distributions.
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6.2.3.2 Sampling the posterior distributions with the Parallel Tempering algorithm

Even though formulas (6.11), (6.13), and (6.15) show the theoretical form of the sought pos-
terior pdfs, a major complication immediately arises when one wants to calculate them in
practice. The values of the functions IR(m), Mw(m) and d(m) which appear in these for-
mulas are only available through costly numerical simulations; we do not have analytical
expressions for them. If we try to numerically evaluate the distributions on a regular grid
spanning the model space, the calculation quickly becomes unfeasible as the dimension of the
model space increases and most time is spent on models with negligible probability density
(curse of dimensionality). Moreover, the values of the normalizing constants are unknown.

Monte Carlo methods solve this problem by efficiently drawing samples of a posterior dis-
tribution and using the obtained ensemble to approximately characterize the distribution. A
popular technique employed for Monte Carlo sampling is the Metropolis-Hastings (MH) algo-
rithm (Metropolis et al., 1953; Hastings, 1970; see also Sambridge & Mosegaard, 2002), which
employs a random walker that moves through the model space according to a prescribed pro-
posal distribution, and accepts or rejects models according to a mathematically derived rule.
The rule guarantees that given enough steps, the accepted models will sample the target dis-
tribution. However, the original MH algorithm works best for distributions with a single local
maximum. For distributions with multiple local maxima, the walker may get trapped in a
close neighborhood of a particular one without ever exploring the others.

One of the extensions of the MH algorithm that solve this problem, already utilized for
dynamic source inversion by Gallovič et al. (2019a; 2019b), is the Parallel Tempering algorithm
(also known as Replica exchange Monte Carlo; Swendsen & Wang, 1986). This algorithm
samples the target distribution by performing the MH algorithm on multiple chains, each of
which, if working independently, would sample a tempered distribution

ρT (m|y) := kT [ρ(m|y)]1/T . (6.17)

Here, T is a parameter called temperature, generally different for each chain, and kT are
normalizing constants, the knowledge of which is not required by the algorithm. The target
distribution is sampled by chains at T = 1. The chains at higher temperatures are auxiliary and
their purpose is to help the T = 1 chains jump over areas of low probability. This is achieved
by allowing the chains at different temperatures to randomly swap their models. Indeed, since
the tempered distributions, sampled by chains at T > 1, are flatter than the target distribution
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(converging to the uniform distribution as T → ∞), these chains can traverse areas that would
be unavailable for chains at T = 1. For more details, see Sambridge (2013).

Once a large enough ensemble of samples is obtained, it can be used to approximate the
important integrals characterizing the distribution, including the normalizing constant. For
example, the mean and the variance of the distribution are estimated by calculating the mean
and the variance, respectively, of the sampled ensemble. Samples of the marginal probability
density functions (see Eq. 6.16) are obtained by projecting samples of the joint distribution
to the target space of interest.

To approximately reconstruct the original pdf from its samples, we use the kernel density
estimation technique (KDE, see, e.g., Zambom & Dias, 2013). In the case of one-dimensional
spaces (generalization to higher dimensions is straightforward), the pdf is estimated by the
formula:

ρest(x) =
1

|S|h
∑︂
s∈S

K

(︃
x− s

h

)︃
, (6.18)

where S is the collection of the obtained samples, |S| is its size, h is a positive real parameter
called the bandwidth, and K(x) is a smooth even function with unit integral, called the kernel.
Here we use the Gaussian kernel:

K(x) =
1√
2π

exp (−x
2

2
). (6.19)

Compared to the more standard method of plotting histograms of the samples, KDE estimates
are smooth functions and on average, converge faster to the true distribution as the number
of samples increases (Wasserman, 2004). Nevertheless, the dependence on the bin width is
replaced by the dependence on the bandwidth h. We choose h equal to 1/40 of the respective
parameter range. This value is similar to the bandwidths calculated according to the rule of
thumb suggested by Scott (1992).

6.2.3.3 Prior pdf on the model space

The joint prior distribution ρpr, with respect to the model parameters introduced in subsection
6.2.2, is assumed to be uniform on the set P ⊂M defined by the following 4 constraints:

1. All parameters lie within the intervals specified in Table 6.1.
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2. The parameter b specifying the length of the semi-minor axis is smaller or equal to the
length of the semi-major axis a:

b ≤ a =
√︂
a2x + a2y. (6.20)

3. The center of the nucleation zone lies within the patch.

4. The patch is completely contained within the fault.

The purpose of constraint #2 is to avoid ambiguity in specifying the semi-major and semi-
minor axes. Constraint #3 ensures that rupture always initiates within the patch, which
represents a weakened area on the fault. Constraint #4 ensures that the patch always has an
elliptic shape (i.e. the ellipse is not cropped). We note that we allow both ax and ay to take
positive and negative values, permitting occurrences of pairs (ax, ay) and (−ax,−ay), which
represent the same model. This introduces redundancy into the inversion, but it is nevertheless
convenient as it eliminates unnecessary barriers in the Monte Carlo sampling.

We sample the prior distribution ρpr with a random number generator, uniformly generating
models within the bounds given by constraint #1 and then only accepting those that satisfy
constraints #2-4. KDE estimates of 1-D marginal priors of ρpr, reconstructed from 100 000
samples, are shown as black curves in Fig. 6.3.

The 1-D pdfs of Cartesian components ax and ay are not very informative about the size
and orientation of the semi-major axis. Similarly, xc and yc have, due to constraint #3, very
similar distributions to xnucl and ynucl. We therefore transform these four parameters to more
illustrative ones. Instead of ax and ay, we use the quantities a (length of the semi-major axis,
Eq. 6.20) and ϕ, which is the angle between the vector (ax, ay) and the horizontal line. We
also identify values of ϕ differing by 180°, since they describe the same model, that is:

ϕ = atan2(ay, ax) mod 180◦. (6.21)

Instead of xc and yc we show two derived quantities that characterize the connecting vector

∆r = (xc − xnucl, yc − ynucl). (6.22)

The first quantity, Cdist, is the length of ∆r relative to the elliptic patch (equal to 0 when the
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nucleation is at the center of the patch and equal to 1 when it is at the boundary). Formally,

Cdist =

√︄(︃
∆r′x
a

)︃2

+

(︃
∆r′y
b

)︃2

, (6.23)

where ∆r
′
x and ∆r

′
y are the orthogonal projections of ∆r on the semi-major and semi-minor

axis, respectively. The second quantity, Cang, is the angle between ∆r and the horizontal axis:

Cang = atan2(∆ry,∆rx). (6.24)

The 1-D marginal priors for this new set of parameters are shown as black curves in Fig. 6.4.
We note that while the joint prior pdf of the model parameters is uniform on P , marginal

distributions of the geometric model parameters (except for rnucl) shown in Fig. 6.4 are non-
uniform. There are two reasons for this. First, due to constraints #2-4, P has a non-rectangular
shape, and the effective bounds over which the joint distribution is integrated (Eq. 6.16) may
depend on the value of the target parameter. Second, the derived parameters a, ϕ, Cdist and
Cang were obtained by a coordinate transformation, and the joint distribution is therefore
modified by the Jacobian factor (6.7).

As an example of the former effect, consider the 2-D marginal prior pdf ρ(ax,ay)pr of the pair
(ax, ay). If condition #1 were the only constraint, ρ(ax,ay)pr would be uniform. However, for a
given value of (ax, ay), the conditions #2-#4 constrain the allowed ranges of the parameters
b, xc, yc, xnucl and ynucl. Integrating the joint pdf over the constrained ranges according to Eq.
(6.16) results in the pdf ρ(ax,ay)pr shown in Fig. S6. Conditions #2 and #3 cause it to be denser
at large values of ax and ay, while condition #4 has the opposite (but smaller) effect. Finally,
integrating ρ(ax,ay)pr over ay (ax) yields the 1-D pdfs for ax (ay) shown in Fig. 6.3.

The joint pdf ρ(a,ϕ)pr for (a, ϕ) can be obtained by transforming ρ(ax,ay)pr according to Eq. (6.6)
with (ax, ay) = ψ

−1(a, ϕ) = (a cosϕ, a sinϕ), Jψ−1(a, ϕ) = a:

ρ(a,ϕ)pr (a, ϕ) = ρ(ax,ay)pr (a cosϕ, a sinϕ)a. (6.25)

When approximating the pdf from its samples via histogram estimation or the KDE method,
the above mathematical transformation is taken care of automatically. Integrating ρ(a,ϕ)pr over
ϕ and a yields the 1-D marginal distributions for a and ϕ, respectively, shown in Fig. 6.4.

Let us remark that, conversely, for any non-uniform positive pdf f(x) on P = [0, 1]n,
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Figure 6.3: KDE estimates of 1-D marginal prior distributions for the model parameters.
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we can always find coordinates y = ψ(x) with respect to which the transformed pdf g(y)
is constant. Indeed, it can immediately be seen from the transformation law (6.6) (using
|Jψ−1(y)|=|Jψ(ψ−1(y))|−1 and x = ψ−1(y)):

g(ψ(x)) |Jψ(x)| = f(x),

that requiring g ≡ 1/c for an arbitrary positive constant c > 0 amounts to:

|Jψ(x)| = cf (x) , (6.26)

This is a non-linear partial differential equation for the vector function ψ. There are infinitely
many functions ψ satisfying Eq. (6.26). Indeed, every function of the form U ◦ ψp, where U
is a volume preserving transformation (e.g., a rotation or translation) and ψp is a particular
solution, is also a solution. Here we find a particular solution ψp by specializing to the case
when only one (for example the first) component is transformed:

ψp(x1, x2, ..., xn) = (χ(x1, x2, ..., xn), x2, x3, ..., xn), (6.27)

where χ is a scalar function of x1, x2, ..., xn. We then obtain

Jψ(x) =

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓
⃓

∂χ/∂x1 ∂χ/∂x2 · · · · · · ∂χ/∂xn

0 1 0 0 0

0 0 1 0 0
... . . . . . . . . . ...
0 · · · · · · 0 1

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓
⃓
(x) = ∂χ/∂x1(x). (6.28)

Therefore, Eq. (6.26) simplifies to

|∂χ/∂x1(x)| = cf(x), (6.29)

which has a particular solution

χ(x1, x2, ..., xn) = c

ˆ x1

0

f(x′1, x2, ..., xn)dx
′
1. (6.30)

As an example, we consider the pdf f(x, y) = 3
2
(x2 + y2) on P = [0, 1]2 and sample it
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with the ordinary Metropolis-Hastings algorithm. The KDE estimate of f obtained from the
samples is shown in Fig. S7a.

Applying the transformation (6.30) with x = x1, y = x2, we obtain

χ(x, y) =
x3

2
+

3

2
y2x. (6.31)

The pdf g w.r. to the transformed coordinates ψ(x, y) = (χ(x, y), y) is shown in Fig. S7b. We
see that g is indeed constant on the transformed domain ψ(P ) (bounded by the green curves),
which is however no longer a square.

Note that the transformation ψ can be used to obtain samples of a non-uniform pdf by
sampling a uniform pdf on ψ(P ) and then applying the inverse transformation ψ−1 to the
obtained samples. This assumes that ψ is known analytically. Moreover, in large dimensions,
most samples will likely be transformed to values close to zero due to the curse of dimensional-
ity. Therefore, Monte Carlo methods are more suitable for our inversion. In 1-D, the described
procedure reduces to the so-called inverse sampling method (e.g., Tarantola, 2005).

6.2.3.4 Data and model setup

Based on the full-waveform centroid moment tensor (CMT) inversion performed before the dy-
namic inversion by the software ISOLA (Zahradník & Sokos, 2018), as summarized in the sup-
plementary text S1.1, we adopt the fault plane geometry and mechanism with strike/dip/rake
values 113°/40°/-83° and M0

w = 6.24 (Eqs. 6.12, 6.13 and 6.15). The map projection of the
fault plane is shown in Fig. 6.1.

Within 150 km from the centroid, the earthquake was recorded by 55 strong-motion sta-
tions of the Geodynamic Institute of the National Observatory of Athens (GI-NOA) and
Bogazici University Kandilli Observatory and Earthquake Research Institute (KOERI). For
the dynamic inversion, we excluded stations very close to each other (with almost the same
waveforms) to reduce station redundancy.

For the computation of Green’s functions, we adopt a five-layer model after Karagianni
et al. (2002), Fig. S8. Many of the recordings are affected by significant basin and site effects,
which are not accounted for in the 1-D model. To select stations suitable for the inversion,
we used Axitra to calculate synthetic seismograms for a point source located at the GI-NOA
hypocenter in the low-frequency range of 0.05-0.08 Hz and excluded stations with visibly poor
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fits with the observed seismograms. For example, stations in the city of Izmir were removed
because of a significant path effect likely caused by the presence of the Izmir basin, which
cannot be reproduced in our 1-D model. In the end, we selected the 15 stations shown in Fig.
6.1. The event has good angular coverage of stations to the east (azimuths from -10° to 170°),
but poor coverage to the west as that direction corresponds to the open sea.

Acceleration records were tapered with a rectangular time window starting at the origin time
of 2017/06/12 12:28:37 GMT and with a duration of 80 s. The records were then bandpass
filtered between 0.05 and 0.15 Hz by the 4th order Butterworth filter, and integrated into
displacements. The lower frequency bound is necessary to remove low-frequency instrumental
noise from the data. The upper bound is chosen to lower the influence of the imperfect velocity
model, as well as uncertainties in fault geometry.

We set the standard deviation σMw (Eqs. 6.12, 6.13 and 6.15) to 0.1, representing roughly the
variability of magnitudes from different studies/agencies, see Table S1. The total seismogram
standard deviation σd (Eqs. 6.15 and 6.15) is set to 2.5 cm. A similar relative estimate of
seismogram uncertainty was also used in the dynamic inversions by Gallovič et al. (2019a,b).
We note that it is close to the theoretical estimate by Hallo & Gallovič (2016), which is based
on synthetic simulations with randomly varied velocity models. To account for the uncertainty
in the origin time and to balance for relatively weak or strong nucleation of dynamic rupture,
we uniformly shift synthetic seismograms at all stations by the time ∆t within (-3.2 s,3.2 s)
that results in the minimum misfit.

6.3 Results

Let us describe the sampling of the individual posterior distributions ρ0, ρ1 and ρ2. For the
rupture-constrained posterior distribution ρ0, we took 100 000 samples of the prior distribution
and accepted only models that satisfied the predefined rupture condition r, i.e. with rupture
lasting at least one second and breaking more than twice the area of the nucleation zone.
About 70% of prior samples did not meet the condition, leaving approximately 30 000 samples
of ρ0.

We sampled the posterior distributions ρ1 and ρ2 by two independent runs of the Parallel
Tempering algorithm, employing Eqs. (6.13) and (6.15), respectively. Initial models (different
for each chain) were randomly picked from the prior distribution ρpr. MCMC proposals for
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each parameter were sampled from normal probability densities centered around the present
value of the parameter and with a standard deviation equal to 2% of its allowed range. We
employed parallel computing on 6 GPUs of our in-house cluster, with 2 MPI threads per
GPU and 8 MCMC chains per MPI thread. The temperature of two chains in each thread
was set to 1, so they sampled the target distribution, while the remaining temperatures were
randomly sampled from a log-normal distribution between 1 and 100. An additional MPI
thread controlled the swapping of models among the chains.

For each distribution, the number of models visited by all chains was approximately 2 500
000 within 35 days. To ensure more accurate sampling, only every tenth accepted sample was
recorded and the first sixth of the recorded samples were discarded to account for the so-called
burn-in phase. Finally, we discarded the samples that did not satisfy the rupture condition r

and kept only models sampled at T = 1. This way, about 50 000 samples were obtained for ρ1
and ρ2 each.

The quantities which emerge as results of dynamic simulations and are not analytically
calculable from the model parameters, are denoted as emergent quantities. The main emergent
quantities we discuss here are the scalar seismic moment:

M0 =

ˆ
Sel

µ(x)∥sf (x)∥dS, (6.32)

where sf is the final slip distribution, the moment magnitude

Mw =
2

3
(log10(M0)− 9.1) , (6.33)

the area of rupture Srupt (defined as the area of the portion of the fault with non-zero slip),
the slip-weighted average stress drop:

∆σ =

´
Sel

∆σ(x) · sf (x)dS´
Sel

∥sf (x)∥dS
, (6.34)

where ∆σ(x) is defined as the difference between the shear stress at the beginning and the
end of the simulation (see Fig. 6.2), the radiated energy (Ripperger et al., 2007):

ER= − 1

2

ˆ
Sel

∆σ(x) · sf (x)dS −
ˆ tf

0

ˆ
Sel

(T (t,x)− Ti(x)) · ṡ(t,x)dtdS, (6.35)



6.3. Results 165

where tf is the duration of rupture, the ordinary average GF of the dissipated surface energy
density GF :

GF =

ˆ sf

0

(T (s)− Td)ds =

⎧⎨⎩Tusf (1−
sf
2Dc

) for 0 < s < Dc

TuDc/2 for s ≥ Dc

dS, (6.36)

where sf is the final slip-path length, the total dissipated surface energy:

EF =

ˆ
Sel

GF (sf (x))dS, (6.37)

the radiation efficiency

η =
ER

ER + EF
, (6.38)

and the slip-weighted average rupture speed:

Vr :=

´
Sel

1
∥p(x)∥∥sf (x)∥dS´
Sel

∥sf (x)∥dS
, (6.39)

where p is the gradient of rupture time.
To explore rupture directivity, we examine the slip-weighted mean direction of rupture ψ,

defined as the angle between the horizontal line and the slip-weighted mean rupture velocity
vector:

ψ = angle

(︃
e1,

ˆ
Sel

∥sf (x)∥
p(x)

∥p(x)∥2
dS

)︃
, (6.40)

where e1 is the unit horizontal vector pointing along strike.
To quantify the fit of synthetic data d(m) and the observed data dobs, we calculate the

variance reduction (VR):

VR (d(m),dobs) := 1− ||d(m)− dobs||2

||dobs∥|2
. (6.41)

Unlike the misfit ||d(m)−dobs||2, the variance reduction is not additive over stations. Instead,
the total variance reduction is a weighted average of variance reductions at individual stations.
To see this, write

M s = ||ds(m)− dsobs||2 (6.42)
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and
N s = ||dsobs∥2, (6.43)

where ds(m) and dsobs are the synthetic and observed data, respectively, at station s. Then

∥d(m)− dobs∥2 =
∑︂
s

M s, (6.44)

∥dobs∥2 =
∑︂
s

N s, (6.45)

and the variance reduction VRs at station s is

VRs = 1− M s

N s
. (6.46)

The total variance reduction (6.41) can therefore be written as

VR = 1−
∑︁

sM
s∑︁

sN
s

= 1−
∑︁

sN
sMs

Ns∑︁
sN

s

= 1−
∑︁

sN
s(1− VRs)∑︁
sN

s

= 1−
∑︁

s(N
s −N sVRs)∑︁
sN

s

=
∑︂
s

N s∑︁
sN

s
V s
R

, (6.47)

which shows that is the average of variance reductions at individual stations, weighted by
the sum of squares of the data. Therefore, closer stations with larger amplitudes have greater
effect on the total variance reduction than far away stations with small amplitudes.

6.3.1 Best-fitting models

To provide the reader with an intuitive sense of the parameters and robust features of the
sampled models, we first examine three models sampled from ρ2 that best fit the observed
seismograms. Spatial distributions of their slip, stress drop, and rupture time are shown in
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Fig. 6.5. The fits between the observed and the synthetic waveforms for these models have
variance reductions of 63-64%. In Fig. 6.6 we plot the waveform fit of the best-fitting model
along with KDE estimates of synthetic seismograms generated from the whole ensemble. The
KDE of variance reduction for ρ2 is shown in Fig. 6.4. We note that 65%, 30% and 3% of
models have variance reductions larger than 50%, 55% and 60%, respectively.

The feature in which the models are the most similar is the center coordinates of their
nucleation zones, within 2 km. The dimensions of the elliptic patch are similar for the best-
fitting models, though model #1 is somewhat more elongated than the other two. However,
the rupture in model #1 only breaks 85% of the whole patch, stopping before reaching its
lower left tip. The inclination angles ϕ of each elliptic patch differ quite strongly and this
parameter is rather broadly distributed in the ρ2 ensemble. Nevertheless, for all three models,
the nucleation zone is to the right of the center of the ellipse, as is the case for 90% of models
in the ensemble. The rupture propagates predominantly to the WNW, as it is soon arrested at
the ESE edges of the patch. However, in contrast to the relatively robust directional preference
with respect to the strike direction, the data do not seem to distinguish between upward or
downward spreading. We note that kinematic inversions of Kiratzi (2018) and Chousianitis &
Konca (2018) suggest even more pronounced unilateral rupture propagation.

The average slip-weighted stress drops ∆σ of the three models are 5.7 MPa, 3.4 MPa, and
3.1 MPa, respectively. Model #1 has the lowest slip-weighted average rupture speed Vr (1.25
km/s vs 1.38 km/s and 1.91 km/s). It also has larger values of both Tu and Dc than the other
two models (9.6 MPa vs 8.5 MPa vs 7.8 MPa, and 0.43 m vs 0.12 m vs 0.14 m). Consequently,
model #1 also has the largest average fracture energy surface density GF (1.6 MJ/m2 vs 0.7
MJ/m2 vs 0.6 MJ/m2). The total radiated energies (see Fig. 6.2 here or fig. 1 and eq. C2 of
Ripperger et al., 2007) of all three models range from 20 TJ (model #1) to 40 TJ (model
#2). As we discuss below, this is the quantity best resolved by the seismograms. The seismic
moments of the models are similar (3.4-3.7 ×1018 Nm). All three models have pronounced
nucleation, which is a common feature in the ρ2 ensemble.

6.3.2 Characteristics of the posterior pdfs

In this subsection, we analyze various parameters and how well they are constrained when
incrementally updating the prior distribution ρpr by the rupture condition (posterior distribu-



6.3. Results 168

Figure 6.4: KDE estimates of 1-D marginal distributions for the model parameters and quanti-
ties derived from them, obtained with the Parallel Tempering algorithm. Different
colors correspond to the prior distribution (ρpr) and posterior distributions incre-
mentally constrained by the rupture condition (ρ0), moment magnitude (ρ1), and
seismograms (ρ2) (see legend). Vertical bars show the modes of each distribution.
The numbers show the Hellinger distances between distributions, with color-coding
representing the respective pair of distributions under comparison (for example,
the distance between ρpr and ρ0 is shown as a black-and-green number). Only the
12 parameters in the first three rows are independent, the quantities Sel = πab,
rnucl/r

G
c (Eq. 6.51) and κ (Eq. 6.52) were calculated from them. The KDE of seis-

mogram variance reduction (VR) for samples of ρ2 is shown at the bottom right.
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Figure 6.5: Distributions of the final slip, stress drop, and rupture time (rows) for the three
best-fitting models (columns). Only the positive part of the stress drop is shown.
The red ellipses show the boundaries of the elliptic patches within which rupture
may propagate.
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Figure 6.6: Displacement seismograms at the 15 selected stations in the frequency range of
0.05-0.15 Hz. Observed seismograms are black, synthetic seismograms of the best-
fitting model are red. KDE estimates of synthetic seismogram posterior distri-
bution, calculated at each time step, are blue. Numbers on the right show the
maximum amplitude of the observed seismograms (black) and variance reduction
at individual stations for the best-fitting model (red). The red number at the bot-
tom is the overall variance reduction of the best-fitting model. The time axis begins
on 12 Jun 2017, 12:28:38.26 GMT.
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Figure 6.7: KDE estimates of 1-D marginal distributions for emergent quantities obtained
with the Parallel Tempering algorithm. Different colors correspond to the poste-
rior distributions incrementally constrained by the rupture condition (ρ0), moment
magnitude (ρ1), and seismograms (ρ2) (see legend). Vertical bars show the modes
of each distribution. The numbers show the Hellinger distances between distri-
butions, with color-coding representing the respective pair of distributions under
comparison.
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Figure 6.8: KDE estimates of 2-D marginal distributions of the posteriors ρ0, ρ1 and ρ2 for
selected pairs of quantities. The distributions are normalized by their respective
maxima. SC denotes the value of the Spearman correlation coefficient.
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tion ρ0), the constraint on the moment magnitude (ρ1), and the observed seismograms (ρ2).
A comparison of KDE estimates of marginal distributions of ρpr, ρ0, ρ1 and ρ2 for model pa-
rameters (or parameters derived from them, such as a, ϕ, Cang and Cdist) is shown in Fig. 6.4.
Fig. 6.7 shows marginal posterior distributions for emergent quantities.

To compare the information contained in ρpr, ρ0, ρ1 and ρ2, we measure their mutual dis-
similarity in terms of the Hellinger distance H (Shemyakin, 2014):

H(ρi, ρj) = (1−
ˆ
R

√︂
ρi(x)ρj(x)dx)

1/2. (6.48)

It is a metric on the space of probability density functions, equal to 0 for (almost everywhere)
identical pdfs and 1 for (a.e.) disjoint pdfs. For the sake of conciseness, we use the notation

Hi,j = H(ρi, ρj). (6.49)

Large values of H1,2, for example, suggest that the information contained in seismograms is
very different from that contained in the moment magnitude. Evaluating data informativeness
by comparing the prior and posterior distributions was also emphasized by Minson et al. (2014)
in their Bayesian kinematic inversion of the great Tōhoku earthquake. In Tables 6.3 and 6.4
we list each model parameter and emergent quantity, respectively, sorted by H0,1 and H1,2. We
note that since H is a metric, it satisfies the triangle inequality, e.g., |H0,1 − H1,2| ≤ H0,2 ≤
H0,1 +H1,2.

To quantify the uncertainty of the parameters, we evaluate the size of their 68% highest
density regions (HDR). These are the regions that contain 68% of the posterior density, such
that the density within them is always larger than the density outside (Hyndman, 1996). In
particular, they always contain the largest mode of the distribution. For Gaussian distributions,
the size of the HDR corresponds to two times their standard deviation. We list the modes and
the HDRs of ρ0, ρ1 and ρ2 in Tables 6.1 and 6.2. We use the notation p ∼ [lMu] to denote that
the distribution of parameter p has mode M and l and u are the lower and upper bounds of its
HDR. To compare the relative resolution of a parameter in distribution ρi and in its updated
distribution ρj, we calculate the inverse ratios of their HDR sizes:

rHDRi,j =
|HDRj |
|HDRi |

. (6.50)
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Low values of rHDRi,j signify good relative resolution. We list the values of rHDR0,1 and
rHDR1,2 in Table 6.3 (for model parameters) and in Table 6.4 (for emergent quantities).

2-D marginal distributions for selected 2-D pairs of quantities are shown in Fig. 6.8. To
quantify their correlation, we use the Spearman correlation coefficient (SC). 2-D distributions
for a more extensive list of quantities are shown in Figs. S9-S11.

6.3.2.1 Model parameters

The model parameters whose distributions appreciably change upon transition from ρpr to ρ0
(Hpr,0 > 0.1) are Tu, δ and rnucl (Fig. 6.4). In ρpr, the distributions are flat, while in ρ0 they
are increasing (the sharp decay to zero at the boundaries is an artifact of the KDE method).
This transition from a uniform to a monotonous distribution is also seen in parameters γ
(increasing) and Dc (decreasing), although there the change is only small. Distributions of
these 5 parameters change only negligibly upon the update from ρ0 to ρ1 (Fig. 6.4), which
shows that they are not further affected by the magnitude. Nevertheless, distributions of
parameters Tu and γ do visibly change after the seismogram (ρ1 → ρ2) update (H1,2 ≈ 0.2),
developing peaks in the lower halves of their allowed ranges.

The only model parameters that strongly change in the transition from ρ0 to ρ1 are the
lengths of the semi-major axis a and the semi-minor axis b, with H0,1 = 0.33 and 0.47, respec-
tively. The ρ1 distributions of both parameters peak at lower values than the ρ0 distributions.
In the case of a, the shift in the mode position is the main contributor to the change, and
the uncertainty does not decrease very much (rHDR0,1 = 0.93). In the case of b, there is a
significant reduction of uncertainty (rHDR0,1 = 0.42), the largest among model parameters
in the ρ0 → ρ1 transition. Nevertheless, the total area of the elliptic patch, Sel = πab (whose
KDE is also shown in Fig. 6.4), gets resolved even more sharply than a or b individually
(rHDR0,1 = 0.28). The distributions of these three quantities are adjusted only a little when
passing to the posterior ρ2. Hence, they are mostly determined by moment magnitude.

The only other parameter for which ρ0 and ρ1 appreciably differ (H0,1 > 0.1) is the incli-
nation angle of the patch, ϕ. In ρ0, it peaks near 45° and 135°, as more elliptic patches fit
within the fault (prior constraint #4 in subsection 6.2.3.3) at these angles. Contrarily, the
ρ1 distribution of ϕ is much flatter, probably because the elliptic patches sampled from this
posterior tend to be smaller, so their orientation only weakly affects the probability of them
fitting within the fault. In ρ2, ϕ has a single peak around 0° (≡180°), suggesting that elon-
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Parameter Meaning Prior min. Prior max.
Mode and 68% HDR

ρ0 ρ1 ρ2

ax (km)* Along-strike component

of the semi-major axis

-17.5 17.5 −11.1[18.8] −6.0[17.0] −8.6[15.5]

ay (km)* Along-dip component of

the semi-major axis

-17.5 17.5 −11.3[18.4] 5.9[16.5] [−7.5−0.37.5]

a (km) Length of the semi-major

axis

- - [10.114.317.4] [5.98.012.6] [7.119.013.5]

b (km)* Length of the semi-minor

axis

0.0 24.75 [12.917.622.1] [10.217.423.3] [15.217.620.0]

ϕ (degrees) Angle of the semi-major

axis

- - [13.217.722.3] [11.717.623.6] [18.020.922.9]

xc (km)* Along-strike position of

the elliptic center

1 34 [0.460.780.96] [0.350.600.85] [0.330.620.84]

yc (km)* Along-dip position of the

elliptic center

1 34 268[232] 270[227] [115180226]

Cdist Elliptic distance of the

nucleation zone and the

elliptic center

- - [0.500.960.99] 0.68[0.51] [0.240.410.61]

Cang (degrees) Angle of the vector

connecting the nucleation

zone with the elliptic

center

- - 268[232] 270[227] [115180226]

γ* Initial background shear

traction in the elliptic

patch, relative to Tu

0.2 1.0 [0.500.960.99] 0.68[0.51] [0.240.410.61]

Tu (MPa)* Yield strength 1 18 [10.416.917.8] [8.814.017.1] [3.96.412.0]

δ* Initial shear stress excess

at the nucleation zone,

relative to Tu

0.0 0.2 [0.090.180.20] [0.100.180.19] [0.110.170.19]

rnucl (km)* Radius of the nucleation

zone

0.1 3 [1.52.72.9] [1.62.83.0] [1.72.52.9]

Dc (m)* Characteristic

slip-weakening distance

0.05 0.5 0.08[0.26] [0.050.080.28] [0.050.080.25]

xnucl (km)* Along-strike position of

the nucleation zone

1 34 [10.016.525.1] [9.114.224.2] [16.919.322.3]

ynucl (km)* Along-dip position of the

nucleation zone

1 34 [11.016.725.7] [11.017.924.7] [16.620.123.0]

Sel (km) Area of the elliptic patch - - [97285550] [53109182] [77137215]

rnucl/r
G
c Ratio of rnucl to rGc (Eq.

6.51)

- - [0.561.182.60] [0.781.232.60] [0.901.242.10]

κ Similarity parameter (Eq.

6.52)

- - [0.291.326.10] [0.331.233.17] [0.511.111.97]

Table 6.1: Prior ranges of model parameters and modes and 68% high density regions of posterior distri-
butions ρ0, ρ1 and ρ2 for model quantities. The symbols denoted by asterisks are the model
parameters directly searched in the inversion, the rest is derived from them using explicit formu-
las. In the last three columns, we use the notation [lMu], where l and u are the lower and upper
bounds of the 68% HDR and M is the mode of the distribution. When the HDR is not an interval,
we instead write M [S], where S is the size of the HDR.
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Parameter Meaning
Mode and 68% HDR

ρ0 ρ1 ρ2
Mw Moment magnitude [6.436.937.34] [6.146.276.39] [6.086.186.28]

Sr (km2) Ruptured area [036463] [57105161] [76126187]

∆σ (MPa) Slip-weighted mean stress

drop

[4.88.112.1] [4.17.410.9] [2.23.66.5]

Vr (km/s) Slip-weighted mean

rupture speed

[2.33.04.7] [1.42.73.4] [1.41.72.6]

ER (TJ) Radiated energy 8[272] [1568210] [123565]

EF (TJ) Dissipated fracture

energy

[018217] [026149] [3880174]

GF (MJ/m2) Mean fracture energy

surface density

[0.00.41.4] [00.31.3] [0.10.41.3]

η Radiation efficiency [0.750.921.00] 0.90[0.44] [0.090.200.38]

ψ (°) Slip-weighted mean

rupture direction

89[222] 90[222] 180[103]

Tr (s) Equivalent duration of

rupture

5.7[8.2] [2.43.66.0] [4.46.28.3]

Table 6.2: The 68% high density regions of posterior distributions ρ0, ρ1 and ρ2 for emergent
quantities. We use the notation [lMu], where l and u are the lower and upper bounds
of the 68% HDR and M is the mode of the distribution. When the HDR is not an
interval, we instead write M [S], where S is the size of the region.
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Rank Parameter H(ρ0, ρ1) rHDR0,1 Parameter H(ρ1, ρ2) rHDR1,2

1 Sel 0.48 0.28 xnucl 0.48 0.36
2 b 0.47 0.42 ynucl 0.34 0.47
3 a 0.33 0.93 Cang 0.33 0.48
4 κ 0.25 0.49 κ 0.26 0.51
5 ϕ 0.12 1.17 γ 0.20 0.72
6 rnucl/r

G
c 0.10 0.89 Tu 0.19 0.98

7 Tu 0.09 1.13 ϕ 0.16 0.72
8 Cdist 0.07 1.02 rnucl/r

G
c 0.15 0.66

9 rnucl 0.07 0.90 Sel 0.14 1.07
10 γ 0.06 1.04 a 0.12 0.95
11 Dc 0.05 0.91 b 0.11 1.15
12 ynucl 0.05 0.93 rnucl 0.06 0.91
13 xnucl 0.03 1.00 Dc 0.06 0.87
14 δ 0.03 0.94 δ 0.05 0.91
15 Cang 0.03 0.98 Cdist 0.01 1.00

Table 6.3: Model parameters and derived quantities sorted according to the value of the
Hellinger distance H0,1 between posteriors ρ0 and ρ1, and the Hellinger distance
H1,2 between posteriors ρ1 and ρ2. The ratios of the sizes of the respective HDRs,
rHDR0,1 and rHDR1,2, are also shown.

Rank Parameter H(ρ0, ρ1) rHDR0,1 Parameter H(ρ1, ρ2) rHDR1,2

1 Mw 0.73 0.28 ER 0.50 0.27
2 Sr 0.59 0.22 η 0.40 0.66
3 ER 0.35 0.72 ψ 0.38 0.46
4 Tr 0.34 0.44 ∆σ 0.34 0.63
5 η 0.21 1.79 Tr 0.33 1.07
6 Vr 0.21 0.83 Vr 0.32 0.61
7 EF 0.20 0.69 Mw 0.29 0.82
8 GF 0.11 0.94 EF 0.21 0.91
9 ∆σ 0.08 0.93 Sr 0.13 1.07
10 ψ 0.01 1.00 GF 0.12 0.94

Table 6.4: Emergent quantities sorted according to the value of the Hellinger distance H0,1

between posteriors ρ0 and ρ1, and the Hellinger distance H1,2 between posteriors ρ1
and ρ2. The ratios of the sizes of the respective HDRs, rHDR0,1 and rHDR1,2, are
also shown.
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gation of the patch along strike (anti-plane direction) is preferred when the seismograms are
included (most patches in ρ1 and ρ2 tend to be elongated, with the aspect ratio b : a peaking
around 1 : 3 and having a median of about 1 : 2). However, the peak in ϕ is rather broad (the
size of the HDR is 86°, which is 48% of its possible range, and rHDR1,2 = 0.72). As we have
shown in subsection 6.3.1, ϕ considerably varies even among the best-fitting models.

Finally, the ρ2 distributions of the parameters xnucl, ynucl, and Cang are strongly determined
by seismograms only, with H1,2 of 0.48, 0.34 and 0,33, respectively. The along-strike location of
the nucleation zone, xnucl, has the greatest reduction in uncertainty among model parameters,
rHDR1,2 = 0.36. Its HDR size is 5.4 km, compared to the 6.4 km observed in the along-dip
location ynucl (rHDR1,2 = 0.47). The distance of the most probable nucleation zone location
and the GI-NOA hypocenter (see the 2-D distribution of (xnucl, ynucl) in Fig. S9c) is 6.3 km.
Finally, parameter Cang, which is better resolved than ϕ (with the absolute HDR size equal
to 31% of its allowed range and rHDR1,2 = 0.48), peaks around 180°. This corresponds to the
nucleation zone being located to the ESE from the center of the ellipse. We consider the fact
that we can resolve the position of the nucleation zone and the rupture direction as evidence
that the seismograms are sensitive to finite-fault features of the source.

6.3.2.2 Emergent quantities

For emergent quantities, the differences between the ρ0 posterior and the other two posteriors
are often more pronounced than for most model parameters, and their Hellinger distances are
larger on average (see Fig. 6.7 and Table 6.4). The ρ0 posterior for Mw is wide and asymmetric,
spanning values from 4.5 to 7.6, with a peak at 6.93. The ρ1 posterior for Mw has a symmetric
peak at 6.27, only slightly larger than the target value of M0

w = 6.24. The size of its HDR is
0.25. The ρ2 posterior has a slightly lower mode (6.18) and smaller HDR (0.2).

Ruptures sampled from ρ0 are fast, with mean slip-weighted rupture speed Vr ∼ [2.33.04.7]

km/s and tend to have large radiation efficiency η ([0.750.921.00]). Both quantities (which are
strongly correlated in all distributions, see Fig. 6.8) are shifted towards lower values in the
remaining two posteriors, especially in ρ2.

Since the shear wave speed β is between 3.36-3.95 km/s on most of the fault, an appreciable
fraction of models sampled from ρ0 and even ρ1 have a supershear average rupture speed. For
ρ2, this is true only for a negligible number of models. We note that for some models in ρ2

with subshear average speed, the rupture speed does surpass β on a small part of the fault,
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but this supershear propagation is unsustained.
The total ruptured area Sr has similar distributions to Sel and like that parameter, it is

strongly resolved by magnitude (rHDR0,1 = 0.22, the lowest among all emergent quantities).
However, the distributions of Sr are slightly denser in lower values, because not all models
rupture the whole elliptic patch. Note that some distributions of the quantities η, Vr, Sr, and
Tr have two peaks; the minor peaks correspond to the partially ruptured models.

The distributions of the slip-weighted mean stress drop ∆σ are similar for ρ0 and ρ1. In
ρ2, the peak of the distribution gets shifted to lower values by about 50% and narrowed
(rHDR1,2 = 0.63, ∆σ ∼ [2.23.66.5] MPa).

The quantity whose uncertainty is reduced the most when seismograms are used, having
rHDR1,2 = 0.27, is the radiated energy ER ([123665] TJ in ρ2). Its Hellinger distance H1,2 is
0.50, the largest among both model and emergent quantities. In contrast, the fracture energy
EF ([3880174] TJ) and its average area density GF ([0.10.41.3] MJ/m2) have rHDR1,2 = 0.91,
H1,2 = 0.21 and rHDR1,2 = 0.94, H1,2 = 0.12, respectively. This makes EF and GF , together
with Sr, the emergent quantities whose distributions are the least resolved by the seismogram
information.

Marginal distributions of ρ0 and ρ1 for the mean direction of rupture ψ are nearly identical. It
is strongly correlated to the model parameter Cang, with SC > 0.7 for all posterior distributions
(Fig. 6.8). Local peaks are distributed at multiples of 90°, but only the peaks at 0° and 180°
have the same height. This is not surprising, because the dynamic problem is symmetric
only with respect to the strike. The distribution of ψ changes substantially in the ρ1 → ρ2

(H1,2 = 0.38) transition. Its rHDR1,2 is 0.46, the second-largest reduction in uncertainty among
emergent quantities after Er. The HDR of the ρ2 distribution lies approximately between 112°
and 215°, which shows a strong seismogram preference for rupture spreading in the negative
strike direction (towards WNW).

The final important quantity which is strongly affected by the waveform data is the equiv-
alent duration of rupture Tr, calculated by dividing the seismic moment of each model by the
maximum of its source time function. Even though the sizes of its ρ1 and ρ2 HDRs are similar
(rHDR1,2 = 1.07), the ρ2 posterior peaks at ≈ 6.2 s, which is about 70% larger than for ρ1.
We plot the KDEs of source time functions sampled from ρ1 and ρ2 in Fig. 6.9, in which the
different duration is clearly visible. While the ρ1 STFs (Fig. 6.9a) form a diffuse large peak at
the beginning, the ρ2 STFs (Fig. 6.9b) are sharper, consisting of two lower peaks connected
by a 3-4 s long plateau.
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Figure 6.9: KDE estimates of source-time functions for a) ρ1 and b) ρ2, normalized at each time
instance by the respective maximum. The source time function for the best-fitting
model of this study is shown as the blue curve. The source time functions from the
SCARDEC database (Vallée & Douet, 2016) and Kiratzi (2018) are shown as the
red and green curves, respectively.

6.4 Discussion

We have performed a detailed Bayesian analysis of the dynamic inversion of the 2017 Mw 6.3
Lesvos earthquake, assuming an elliptic patch model. Thanks to careful sampling with the
Parallel Tempering algorithm, we have identified how different quantities become resolved as
progressively more information is added into the inversion. In particular, we analyze the chain
of distributions ρpr→ρ0→ρ1→ρ2, corresponding to updating the prior (ρpr) by constraints on
the rupture condition (ρ0), magnitude (ρ1) and seismograms (ρ2), according to the Bayes’
formula (6.8). We emphasize that if the inversion were performed by considering only the
final posterior distribution, ρ2, one could mistakenly attribute the resolution of a particular
parameter only to the seismograms, even though the parameter may have gotten resolved
mainly by the rupture or the magnitude constraints. Therefore, careful interpretation of results
is needed.

We found that the final marginal posteriors ρ2 of every model parameter are appreciably
different from the prior distributions ρpr, with the minimum value of Hellinger distance Hpr,2

equal to 0.15 for parameter Cdist (see the black-and-blue numbers in Fig. 6.4). However, the
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update causing the biggest change varies among parameters. The quantities whose distribu-
tions are mainly affected by the rupture criterion (i.e., the greatest change happens in the
ρpr → ρ0 transition, while the ρ1 and ρ2 distributions are very close to ρ0) are δ and rnucl.
Parameters a and b are mostly constrained by the moment magnitude (ρ0 → ρ1), as is the
total ruptured area Sr. The distributions of the model parameters xnucl, ynucl, Cang and γ,
and emergent quantities Er, η, ψ, ∆σ and Vr are mainly affected by seismograms (ρ1 → ρ2).
Finally, the distributions of parameters Dc and Cdist do not change very much in either tran-
sition, but the small changes accumulate and their ρ2 distributions are appreciably different
from ρpr.

The seismogram information seems to push both Tu and γ towards lower values. This may
be because seismograms require lower values of the background initial stress Te = Tuγ, in
accordance with the preference of lower values of the slip-weighted stress drop ∆σ in ρ2

(Fig. 6.7). Indeed, Tu and γ are weakly negatively correlated in ρ2 (see Fig. 6.8), suggesting a
tendency to keep Tuγ. Low values of γ mean large contrast between the stress at the nucleation
zone and the rest of the patch. They are also more likely to lead to subshear rupture speeds
(e.g., Andrews, 1976a; Dunham, 2007; Xu et al., 2015; see section 3.5 of this thesis) which
could be significant for fitting the observed seismograms.

The change in distributions of parameters Tu, δ and rnucl due to the rupture condition
(ρpr→ρ0 transition, see subsection 6.3.2.1) calls for an explanation. A natural way to interpret
it is that there exists a parameter-dependent minimum nucleation radius, rm, such that a model
does not meet the rupture condition unless rnucl > rm. Since there is no analytic formula for
rm, we adopt an approximate closed-form expression for the critical radius from Galis et al.
(2015), presented in this thesis as Eq. (3.15). In the parametrization of this study, it reads

rGc =

√︃
33

211
πµDc

Tuγ3/2
√
1 + δ − γ

. (6.51)

It was derived for runaway ruptures, which break the whole patch, and should be considered
as an upper bound for rm. We plot the KDE of the non-dimensional ratio rnucl/rGc in Fig. 6.4.
The distribution of the parameter changes significantly between ρpr (in which it is essentially
decreasing from zero since the small peak is an artifact of the KDE method) and ρ0, in which
it peaks at ≈1.2. The remaining posteriors also peak near that value. Importantly, less than
1% of all models sampled from ρ0 have rnucl/rGc smaller than ≈ 0.3. We interpret this as the
nucleation condition choosing only models with rnucl/rGc greater than this minimum value.
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It also explains why the ρ0 distribution of Dc is decreasing, while the ρ0 distributions of
parameters Tu, δ and rnucl are increasing. Further, since the parameters in Eq. (6.51) can
mutually compensate their effects on rGc , we can expect that they are not independent in the
posteriors (as they are in ρpr.) This is most noticeable in the 2-D marginal distributions of the
pair (δ, Tu), which have a roughly semi-circular shape with non-zero values only when both
Tu and δ are large enough (Fig. 6.8).

Another non-dimensional parameter, which was shown to control the transition between
failed and successful rupture in elongated homogeneous barrier patches with sufficient width
(Madariaga & Olsen, 2000) is the similarity parameter κ (Eq. 3.23), defined in our parametriza-
tion as:

κ =
bTuγ

2

µDc

. (6.52)

Ruiz & Madariaga (2011, 2013); Twardzik et al. (2014); Herrera et al. (2017); Mirwald et al.
(2019) and Mirwald et al. (2019) inverted for its value and obtained relatively similar values
for well-fitting models, between 1.0 and 2.0. We plot its marginal distributions in Fig. 6.4. We
find that its HDR in the ρ2 posterior is [0.5, 2.0], compared to its ρpr HDR of [0.14,3.5], which
is a good reduction in uncertainty. The peak in all three posterior distributions is centered
around similar values (≈ 1.1-1.3), but it gets narrower in both the ρ0 → ρ1 (rHDR0,1 = 0.49)
and the ρ1 → ρ2 (rHDR1,2 = 0.51) transitions. The first sharpening is likely related to the
resolution of parameter b by the magnitude information (rHDR0,1 = 0.49), while the second
is either caused by the resolution of γ (rHDR1,2 = 0.72), or it cannot be attributed to a single
parameter.

The quantity whose uncertainty is reduced the most when seismograms are used is the
radiated energy ER. That ER is better resolved by seismograms than the fracture energy
EF seems reasonable, as it is the energy carried away from the fault by elastic waves that
reach seismic stations. In addition, since for a fully fractured patch, the fracture energy is
proportional to TuDcSr, and Sr is well determined, there are two ways in which EF could
be resolved. Either both Tu and Dc need to be well resolved, or they may be individually
unresolved, but mutually anti-correlated so that their product is approximately constant.
Instead, neither parameter is strongly resolved and their correlation coefficients are small and
positive in all posterior distributions (Fig. 6.8). The chosen frequency band (0.05-0.15 Hz) may
be the reason for this weak (relative to other parameters) resolution. As higher frequencies
become available, finer details of the earthquake might become visible, possibly permitting
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better resolution of Dc (Guatteri & Spudich, 2000), and consequently EF .
As seen above, statistical dependencies between pairs of parameters can be explored by

examining 2-D marginal distributions. However, like the 1-D marginals, these need to be in-
terpreted carefully. Some dependencies are observed in all three posteriors (Fig. 6.8), such as
the positive correlation between Vr and η, expected from simple rupture-mechanical models
(e.g., Kanamori & Brodsky, 2004), or the weak negative correlation between Vr and Dc (noted
also by Mirwald et al., 2019, in their inversion of the 2017 Mw 7.1 Puebla-Morelos earthquake).
However, conservation of correlations across successive distributions should not be taken for
granted, even when we might expect the correlations from physical considerations. For exam-
ple, since for constant µ, M0 = µSrsf , where sf is the average magnitude of the final slip
(Eq. 6.32), we would expect M0 to be positively correlated to sf . Indeed, the two parameters
are strongly positively correlated in ρ0 (SC > 0.9). But when passing to ρ1 and ρ2, M0 and
sf become weakly negatively correlated instead. We note the parameters M0 and Sr remain
positively correlated, but the correlation weakens in the transition from ρ0 to ρ1 and ρ2 (see
Fig. S10).

On the other hand, quantities that are almost completely uncorrelated in ρ0 may become
correlated in ρ1 and ρ2 (Fig. 6.8). For example, we observe a weak positive correlation between
xnucl and Vr in ρ2, i.e. models sampled from ρ2 tend to rupture faster when nucleating far-
ther along strike. The quantities ∆σ and Sr are other examples; a strong negative correlation
(also observed by Mirwald et al., 2019) appears upon the passage from ρ0 to the magnitude
constrained ρ1. This scaling is what we would expect from the circular crack model, in which
M0 ∝ ∆σS

3/2
r (Eq. 2.89 with r = π−1/2S

1/2
r ). The anti-correlation between emergent parame-

ters ∆σ and Sr translates to an anti-correlation between model parameters γ and b (Fig. 6.8).
We note that one of these parameters is geometric, while the other controls initial shear stress.
Therefore, fixing geometric model parameters (e.g., to those of the best fitting model, Twardzik
et al., 2014), and exploring only stress-frictional parameters underestimates the uncertainty
of the latter, though faster exploration is obtained as a trade-off.

6.5 Conclusion

We have carried out a Bayesian dynamical inversion of the 2017 Mw 6.3 Lesvos earthquake
using a single elliptic model with stress and friction defined by 12 parameters. We have cal-
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culated three different posterior probability distributions for those parameters by requiring 0)
only that the model they describe continues to rupture after nucleation, 1) that it produces
moment magnitude close to a value determined from a CMT inversion, and 2) that it produces
displacement waveforms that fit recordings from near regional stations.

We compared the distributions to assess the degree to which each piece of information
constrains various parameters. We found that the parameters δ (nucleation stress overshoot
relative to yield strength) and rnucl (radius of nucleation zone) are sensitive mainly to the
rupture condition, so neither the magnitude nor the seismograms strongly constrain them
further. Lengths of the semi-major and semi-minor axes of the elliptic patch, a and b, are
mainly determined by moment magnitude. Finally, the along-strike and along-dip coordinates
of the nucleation zone xnucl, ynucl, the relative angle between nucleation and center of the
patch Cang, the yield strength Tu and the ratio γ of the initial traction to the yield strength
are determined chiefly by seismograms.

We also examined emergent quantities, obtained as results of dynamic rupture simulations.
The surface area of rupture is the emergent quantity best resolved by the magnitude infor-
mation. The quantity best resolved by the seismogram information is the radiated energy,
with its final posterior distribution peaking at 35 TJ and with 68% of values between 12 TJ
and 65 TJ. Most models sampled from the final posterior are characterized by slow mean
rupture velocity (1.4-2.6 km/s), low radiation efficiency (10-40%), and low slip-weighted mean
stress drop (2.2-6.5 MPa). The rupture is further characterized by pronounced nucleation and
subshear propagation directed predominantly towards WNW.

The presented analysis of resolvability of source parameters is limited to the considered
elliptic models and seismogram frequency range and station distribution similar to this study.
Nevertheless, our approach to assessing the roles of various constraints in Bayesian inversion
by comparing 1-D distributions can be generalized to other dynamic earthquake source stud-
ies. Even for more complex source models with a large number of possibly correlated model
parameters, the approach could prove useful for analyzing gross rupture properties, such as
radiated energy, seismic moment, average stress drop, or average rupture velocity.
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S1 Supplemental material

S1.1 Estimation of M 0
w and the fault plane based on centroid

moment tensor inversion

To determine the fault plane geometry and obtain an estimate of the moment magnitude of the
Lesvos earthquake, we performed a full-waveform centroid moment tensor (CMT) inversion

https://github.com/JanPremus/fd3d TSN
http://www.iearth.org.a u/codes/ParallelTempering/
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with the help of the software ISOLA (Zahradník & Sokos, 2018). We summarize the analysis
below.

We used non-clipped broadband records from stations located 180 to 350 km away from the
epicenter, filtered between 0.01 and 0.05 Hz, finding the centroid position shifted from the GI-
NOA epicenter by ∼7 km in the NW direction. Then we used strong-motion stations located
30 to 90 km away from the hypocenter (Fig. S1) to improve the CMT solution. Using a 3D grid
search and records filtered between 0.03 and 0.07 Hz, we found the optimum centroid position
at a depth of 8 km, shifted 2 km west and 6 km north of the GI-NOA epicenter, centroid time
of 3.76 s after origin time; we found the moment magnitude to be 6.24 (M0 = 2.89 · 1018 Nm),
see Figs. S2 and S3. We use this value for our estimate of M0

w in the Bayesian inversion (Eqs.
6.12, 6.13 and 6.15). The double-couple percentage (although not a priori constrained) was
very high, DC≥90%.

Of the two moment-tensor nodal planes of our CMT, we adopt the fault with strike/dip/rake
values 113°/40°/-83° for the following reasons: i) it has been preferred by seismic, geologic and
bathymetric data in previous studies (Kiratzi, 2018), and ii) the distance of the GI-NOA
hypocenter (H) from this fault plane passing through the centroid (C) is only 0.03 km. The
latter is the so-called H-C consistency (Zahradník et al., 2008), a useful tool for identifying
fault planes. A comparison of our solution for the centroid with other studies is shown in Table
S1.

In the dynamic inversion, we assume a fault plane with a dimension of 35×35 km (spatial
sampling of 200 m), which is large enough to encompass the rupture within a comfortable mar-
gin. During initial tests, it became evident that models tend to rupture in the WNW direction
from the centroid. For this reason, the fault center was shifted along the strike direction by
5 km from the inferred centroid to allow more space for rupture. The map projection of the
fault is shown in Fig. 6.1 of the main text.

Having obtained the centroid solution, it is also useful to increase the frequency range and
check a multiple-point source model, because it can provide a preliminary estimate of rupture
propagation and rupture complexity. We used the range 0.05-0.10 Hz, calculated a three-point
model (see Figs. S4 and S5), and found a stable normal-faulting mechanism, indicating a
simple rupture geometry of the mainshock and rupture propagation towards the northwest.
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Lat. (°) Lon. (°) Depth (km) M0 (1018 Nm) Mw Strike (°) Dip (°) Rake (°)

This study 38.8928 26.3392 8 2.89 6.24 113 40 -83

SCARDEC 38.93 26.365 11 4.02 6.34 118 41 -74

Papadimitriou et al. (2018) 38.8529 26.3509 13 3.49 6.3 122 40 -83

GCMT 38.81 26.32 12 4.31 6.36 110 77 -87

GFZ 38.83 26.34 10 4.3 6.36 112 42 -84

USGS 38.93 26.365 11.5 3.98 6.33 114 57 -82

Table S1: Comparison of centroid solutions found by different studies. Only the nodal plane
used in this study is shown.
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S1.2 Supplemental figures

Figure S1: Map view of the stations used in the centroid moment tensor inversion (text S1.1
and Figs. S2-S5). The blue star is the GI-NOA hypocenter.
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Figure S2: Horizontal grid search (36 trial positions, increments of 2 km) for the centroid at
a depth of 8 km. The star shows the NOA epicenter for reference. The centroid
position, characterized by the largest correlation between observed and synthetic
displacements in the frequency range of 0.03 and 0.07 Hz, located 2 km west and 6
km north from the epicenter, is shown by the largest beachball, trial position #28.
The balls are color-coded according to the double-couple percentage (all > 90%).
Note the stability of the focal mechanism across the grid.
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Figure S3: Waveform fit for the CMT solution (position #28 in Fig. S2, strike/dip/rake =
113°/40°/-83°, frequency range from 0.03 Hz to 0.07 Hz, the total variance reduction
VR=79%). Real and synthetic displacements are shown as black and red lines,
respectively. The blue numbers denote the variance reductions of the individual
components.
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Figure S4: a) A three-point source model. Three point-source models with deviatoric moment
tensors are searched by iterative deconvolution of ISOLA (Zahradník & Sokos,
2018) software in the assumed fault plane, using the frequency range of 0.05-0.10
Hz. The sources are shown by circles, sized according to their scalar moment, and
color-coded according to their rupture time (t = 0 s is the origin time). The large
black circle at the top is a referential moment scale, not a solution. The 3-point so-
lution was calculated repeatedly, each time removing one station (jackknifing), thus
producing multiple triplets of circles (some of them coincide) to estimate uncer-
tainty. The plot demonstrates a stable evolution of the rupture from the southeast
to the northwest. The process starts with an early subevent (turquoise-colored)
near the epicenter (marked by an isolated diamond near the trial position #52),
continues with the major subevent in the middle of the fault, and ends with a third
moment-release episode at about 6-8 seconds after origin time. Variance reduction
from the stations shown in Fig. S5 varied during jackknifing from VR = 0.69 to
0.76. The focal mechanism of the major subevent was almost constant, the mecha-
nisms of the remaining two subevents varied within 30° Kagan angle from the CMT
solution during the jackknifing. b) The mechanisms of the best solution from all
stations. The largest subevent is at position #38, followed by positions #32 and
#12. Strong stability of the mechanism is seen.
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Figure S5: Waveform fit for the three-point source model of Figure S4b. The frequency range
is 0.05-0.10 Hz, the total variance reduction VR=71% (when considering only the
two largest subevents, or just a single largest subevent, variance reduction drops
to VR = 66% and 60%, respectively). The real and synthetic displacements are
shown as black and red lines, respectively. The blue numbers denote the variance
reductions of the individual components.
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Figure S6: KDE estimate of the 2-D marginal prior pdf for the model pair (ax, ay) discussed
in subsection 6.2.3.3.
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(a)

(b)

Figure S7: a) KDE estimate for samples drawn with the ordinary MC algorithm from the pdf
f(x, y) = 3

2
(x2 + y2). b) The KDE estimate from the samples in a) transformed

according to Eq. (6.30). The support of the latter pdf is bounded by the green
curves. Both pdfs are normalized by their maximum values.
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Figure S8: The seismic velocity and mass density model assumed in the inversion adapted
from Karagianni et al. (2002) by removing its low-velocity channel. The quality
factors are QP = 300 and QS = 150 for depths smaller than 32 km. At larger
depths, QP = QS = 1000.
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(a) ρ0

Figure S9: KDE estimates of 2-D marginal posteriors of a) ρ0 b) ρ1 c) ρ2 for pairs of model
parameters. The letters SC stand for Spearman’s correlation coefficient. The color
scale is relative to the maximum value of the distribution in each plot. The blue
star and the red circle in the last panel of each figure denote the position of the
GI-NOA hypocenter and the centroid inferred by our CMT inversion, respectively.
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(b) ρ1

Figure S9
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(c) ρ2

Figure S9
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(a) ρ0

Figure S10: KDE estimates of 2-D marginal posteriors of a) ρ0 b) ρ1 c) ρ2 for pairs of emergent
quantities. The letters SC stand for Spearman’s correlation coefficient. The color
scale is relative to the maximum value of the distribution in each plot.
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(b) ρ1

Figure S10
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(c) ρ2

Figure S10
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(a) ρ0

Figure S11: KDE estimates of 2-D marginal posteriors of a) ρ0 b) ρ1 c) ρ2 for pairs of model
(vertical axes) and emergent (horizontal axes) quantities. The letters SC stand
for Spearman’s correlation coefficient. The color scale is relative to the maximum
value of the distribution in each plot.
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(b) ρ1

Figure S11
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(c) ρ2

Figure S11
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Conclusions

This thesis focuses on dynamic source modeling of tectonic earthquakes. We study the
problem at both short (seconds) and long (hundreds of years) time scales. We use the linear
slip-weakening law for the former case and the rate-and-state friction law for the latter case.

In chapter 1 we provide a basic review of a fracture mechanical framework suitable for
dynamic source modeling. In chapters 2, 3, and 4, we review basic solutions, and their fea-
tures, for ideally brittle, slip-weakening, and rate-and-state models, respectively, and highlight
common features and differences between these models.

In chapter 5, we focus on the influence of externally applied shear stress perturbations during
simply periodic seismic cycles on the occurrence time of earthquakes. We examine this problem
using the aging version of the rate-and-state law on finite strike-slip faults immersed in a 3-
D homogeneous, isotropic elastic half-space, utilizing the quasi-dynamic approximation. We
systematically study the dependence of the clock advance (the difference between earthquake
occurrence times on the unperturbed and perturbed faults) on the application time of the
stress load, its amplitude, and spatial extent, highlighting the importance of slip rate at the
time and place of application.

For positive stress perturbations, the clock advance can be both positive and negative,
while for negative change, it is only negative (earthquake delay). For a given amplitude and
geometry of the stress perturbation, the graph of clock advance vs application time can be
divided into three distinct parts (as also seen in previous studies, e.g., Perfettini et al. 2003b;
Gallovič 2008; Cho et al. 2009): the static phase, the oscillatory phase, and the instantaneous
triggering phase.

During the static phase, which occurs at the beginning of the seismic cycle, the graph is
constant, so the clock advance does not depend on the timing of the load. In the instantaneous
triggering phase, which occurs near the end of the cycle and only for positive stress perturba-
tions, the perturbation immediately destabilizes the whole fault and triggers an earthquake. In
these two phases, the earthquakes following the perturbation are always whole system events,
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rupturing the whole fault.
The oscillatory phase, in which the clock advance graph is (non-periodically) increasing and

decreasing, occurs in between the two phases. In the majority of the decreasing part of the
oscillatory phase, whole system events are launched, as in the other two phases. But in a small
portion of the decreasing part and in the increasing part, the earthquakes following the pertur-
bation are only partial ruptures that do not completely release stress on the whole fault. The
whole system earthquakes eventually get launched as well, but they are significantly delayed;
the duration between large earthquakes may be prolonged by up to 80% when compared to
the unperturbed cycles. This occurs even for positive perturbations, which normally tend to
advance the upcoming earthquake.

We link this mechanism to the behavior observed on the Parkfield segment of the San-
Andreas, California fault. This segment underwent quasi-periodic Mw 6 earthquakes with a
mean recurrence time of 22 years and the nextMw 6 earthquake was expected to arrive between
1988 and 1993. Instead, it arrived in 2004, which corresponds to a significant delay. Moreover,
the segment experienced a stress perturbation due to the 1983 Coalinga-Nuñez earthquakes
and only smaller events (with Mw of at most 4.9) occurred on the segment in the expected
period. We reproduce the mechanism described in the previous paragraph on a heterogeneous
model of the Parkfield segment, adapted from Barbot et al. (2012), to demonstrate that it
could have been responsible for the delay.

In chapter 6, we present a Bayesian dynamic inversion for a 12-parameter elliptic model
governed by the slip-weakening law, applied to the 2017 Lesvos Mw 6.3 Earthquake. Beginning
with a prior probability density function (pdf) ρpr on the 12 parameters, we obtain three
posterior pdfs by updating the prior with progressively more constraints on the model. To
calculate the initial posterior pdf ρ0, we use the constraint that the model results in a rupture
that breaks at least twice the area of the nucleation zone and lasts more than 1 second. This
condition removes uninteresting models that produce negligible wave radiation. As ρ0 does not
yet depend on seismic data, it may be understood as a corrected prior pdf. For the second pdf
ρ1, we require that the magnitude produced by the model is close to the value obtained from
a prior centroid moment inversion. For the final pdf ρ2, we add seismic waveforms from fifteen
near-regional seismic stations and require that the model produces synthetic waveforms close
to the observed ones.

We evaluate correlations and trade-offs of different pairs of parameters by examining their
2-D marginal pdfs. To quantify uncertainties for each parameter, we calculate the sizes of the
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highest density region (HDR) of the respective 1-D marginal pdfs. By comparing, for each
quantity, the successive 1-D marginal pdfs for the chain ρpr → ρ0 → ρ1 → ρ2, we determine
the step at which the quantity becomes the most resolved. We quantify this resolution by
comparing the HDR sizes of successive distributions. We also evaluate the mutual dissimilarity
of the pdfs by calculating the Hellinger distances between them.

We find that pdfs of some parameters either change only mildly in each update or sig-
nificantly change only due to the first, minimum rupture, constraint. Therefore, neither the
observed moment magnitude nor the waveforms are important for the shape of their final
posterior (ρ2) pdf. These parameters include the size of the nucleation zone, the initial stress
(relative to the yield strength) inside the nucleation, the distance of the nucleation zone from
the center of the patch, and the characteristic slip-weakening distance.

Pdfs of the dimensions of the patch and the total ruptured area are almost completely
determined by adding the magnitude constraint — they changed only negligibly after adding
the constraint on seismic waveforms.

Finally, we identify quantities strongly resolved by adding the waveform constraint. From
model parameters, these include the location of the hypocenter, its orientation with respect to
the center of the patch, and the ratio of the initial stress to the yield strength. From quantities
that emerge as results of the simulation, the best resolved was radiated energy, but a good
resolution is also seen for the radiation efficiency, the mean angle of rupture propagation, and
the slip-weighted average stress drop and rupture speed.

The present study has several limitations which should be addressed in the future. For in-
stance, Gaussian distributions for the observational and modeling observational errors were
considered and their joint standard deviation was not based on a thorough analysis (Dettmer
et al., 2007; Duputel et al., 2014; Minson et al., 2014; Hallo & Gallovič, 2016). Erring on the
side of caution, we set it to a conservative estimate larger than the maximum seismogram
amplitude, which could have diluted some of the results. Modeling uncertainties are caused
by unknown elastic velocity structure, fault position and geometry, or numerical errors. Ob-
servational uncertainties include those of the centroid moment tensor inversion, as well as
errors in seismograms. A crude sensitivity analysis of the effect of the standard deviations
could be made by repeating the inversion with different values and comparing the results.
At the moment, this is difficult for dynamic inversions due to the prohibitive computational
cost of forward solvers. The standard deviations could also be incorporated in a hierarchical
approach (Sambridge et al., 2013; Mustać & Tkalčić, 2015) as inverted hyper-parameters, with
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the uncertainties about their values encoded in their own prior probability density functions.
Another limitation is given by the assumption of the simple elliptic patch model. Even

though it probably suffices for the specific application to the Lesvos earthquake, given the
utilized low-frequency range of the seismograms, relatively large station distances, and small
complexity suggested by the prior moment tensor inversion, more general models should be
used for modeling synthetic seismograms at higher frequencies and for more complicated earth-
quakes. This is not trivial, because increasing the number of free parameters may increase the
non-uniqueness of the inversion (manifesting, for example, as correlations among model pa-
rameters) and also rapidly compromises our ability to properly sample the whole model space.
One route is to consider Bayesian inversion methods with classes of models defined by a vari-
able number of parameters (such as in the trans-dimensional kinematic inversion of Hallo &
Gallovič, 2020), balancing the complexity of the model and its ability to fit data.

The analysis was limited to one earthquake and the results cannot naively be generalized
to earthquakes with different seismogram frequency ranges and station distributions. Never-
theless, the approach of assessing the roles of various constraints by comparing progressively
updated posterior pdfs can be applied to any Bayesian dynamic source inversion. In addition,
the calculation of the posterior distributions ρ0 and ρ1 did not require seismic waveforms. We
propose that similar distributions could be pre-calculated for a wide range of settings (i.e.
fault geometry, moment magnitude). Such pre-calculated distributions could then be used as
a basis for prior distributions in future Bayesian waveform inversions. As seen in this study,
even though the posterior distributions are usually appreciably different from the prior, they
are still influenced by it to a large degree. Therefore, such standardized priors would enable
greater comparability between studies and better assessments of inversion results.

The rate-and-state and the slip-weakening law could be combined in future inversions. For
instance, the initial stress field of a seismic event could be estimated from long-term rate-and-
state modeling of the fault or even the whole fault system (Barbot et al., 2012). For example,
the earthquake simulator RSQSim (Richards-Dinger & Dieterich, 2012) takes into account all
known mutually interacting locked and creeping faults in California governed by the rate-and-
state friction and successfully reproduces basic characteristics of the real earthquake catalog.
An inversion utilizing the slip-weakening law (which is more efficient than the rate-and-state
law for modeling the co-seismic phase of rupture) could then be launched with fixed initial
stress given by the long-term modeling, inverting only for frictional parameters, which would
allow for faster exploration of the parameter space.
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One of the big goals of earthquake physics is to find a constitutive law that governs the
entire rupture process, accurate at both small and large values of slip and slip-rate, and
suitable for modeling both the co-seismic and the inter-seismic phases in a unified manner. No
matter how brilliant the laboratory and theoretical studies proposing new constitutive laws
may be, the validity of models based on these laws will ultimately have to be tested against the
behavior of tectonic faults. To find parameters of such models, dynamic source inversions will
be required. The inversions should utilize not only seismic waveforms from the event but also
long-term seismological, geodetic, and morphological data about afterslip and other types of
inter-seismic deformation. With advancements in computational capabilities, a great number
of dynamic source inversions for different earthquakes could be performed automatically, with
only minimal human input, yielding many competing dynamic earthquake source models.
These models will in turn produce falsifiable predictions about the evolution of seismicity in
the world, which can then be compared against observed data to assess the plausibility of
each candidate constitutive law. This will not only advance our understanding of fundamental
earthquake physics but, if done in a Bayesian framework, could be naturally incorporated in
probabilistic models for seismic forecast and hazard assessment.
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