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Abstract: Enceladus is one of the icy moons in the outer solar system. The Cassini

mission has found out direct evidence on existing subsurface ocean. These evi-

dences showed that the water contains organic molecules and nutrient, such that

it could create suitable environment for emergence of life. However, the mecha-

nism how the ocean is maintained in a liquid state, is still unknown. We studied

the effect of the tidal force on maintaining the ocean in a liquid state, where the

effect of the elastic ice shell is modelled through boundary condition. We mod-

elled the ocean with the three dimensional linearised incompressible Navier-Stokes

equations in the time domain. Then, we solved the equations numerically with

spectral method. The numerical methods are written in to Fortran 90 program.

We tested the various properties of the numerical methods. We, then, investigate

the tidal dissipation for various ocean thicknesses and viscosities. We conclude

that the tidal dissipation heavily depends on the thickness and the viscosity.

These results show us that the tidal force could have significant contribution to

the total heat budget of Enceladus for given viscosities of the ocean.
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Introduction
Over the past two decades, observations of the Cassini-Huygens mission showed

us that several icy moons of the outer solar system have liquid oceans underneath

their ice shells (e.g. Europa, Enceladus, Io, Ganymede). These icy moons became

an interesting subject due to their possibility of holding life. However, before

exploring whether it is possible to find living forms in these oceans, it is equally

important that we understand how these oceans are maintained. As presented in

Nimmo and Pappalardo (2016), there are several mechanisms which maintain a

liquid ocean under the ice shell, but we focus on tidal dissipation. In particular,

we study the small moon of Saturn, Enceladus.

Through the observations from its south polar region, the Cassini spacecraft

collected evidence showing that there is a subsurface ocean under the ice shell.

From Thomas et al. (2016), we know that Enceladus’ ocean is global and it

separates the ice shell and the core. The total heat production of Enceladus

is estimated around 15.8 ± 3.1 GW, where the estimated radiogenic heating is

0.3 GW (Howett et al., 2011; Porco et al., 2006). Therefore, it is evident that

there must be another source of heat. One main source of heat production is

considered to be tidal potential (Nimmo et al., 2018). Due to its orbit around

Saturn, Enceladus is under the effect of time dependent tidal potential. The

impact of the tidal potential on the icy moons is that it deforms the ice shell and

the core, and creates flow within the ocean. However, it is not clear where the

most dissipation appears. In the papers by Souček et al. (2016) and Souček et al.

(2019), the effect of the ice shell on the total heat production is investigated. It is

observed that the dissipation within the viscoelastic ice shell is concentrated on

the south polar region. However, it is also clear that the dissipation from the ice

shell would not be sufficient to keep the ocean liquid. Thus, the dissipation must

come from either the core or the ocean. We assume that the core of Enceladus is

rigid and does not deform. Hence, we focus on the heat produced by the ocean.

The impact of the tidal potential on the subsurface oceans might play a crucial

role in keeping the ocean liquid. However, whether tidal potential would be

enough to keep the oceans liquid is still unknown. Most of the previous studies
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are carried out with shallow water approximation. The studies assumes that the

horizontal flow scale is greater than the vertical flow scale. They, then, introduce

the Laplace tidal equations (LTE) and carry out the computations (Vallis, 2017).

In Matsuyama et al. (2018), an elastic ice shell on the top is assumed and tidal

dissipation is investigated through LTE. It is found out that eccentricity tides can

generate enough heat if the ocean is unrealistically thin. (Hay and Matsuyama,

2019) investigate the tidal dissipation due to non-linear drag. Their results show

that the tidal dissipation with bottom drag is not sufficient to produce the heating

that is observed. The heat production is still several orders smaller than the

observed values. They found out, though, that obliquity tides produce more

heat than the eccentricity tides. Moreover, in (Chen and Nimmo, 2011), we see

that the obliquity tides do not play a substantial role in the total dissipation

of Enceladus. (Matsuyama, 2014) shows that eccentricity tides might explain

the heating of the ocean on Enceladus. They found that the heat flux from the

eccentricity tides is couple of orders greater than the observed values, for the

ocean with thickness of 1 km. They also conclude that the obliquity tides are not

a significant source of heat, compared to eccentricity tides. Chen et al. (2014)

discuss that the ocean tidal heating is not significant compared to the radiogenic

heating, and dissipation occurs in solid parts of the moons, either in the ice shell

or in the core. However, all the previously mentioned works use shallow water

approximation, where the problems are formulated in two dimensions and the

ocean is assumed to be in hydrostatic equilibrium. It is proposed in Rovira-

Navarro et al. (2019) that three-dimensional approach can show the effect of the

inertial waves on dissipation. The problem is modelled in the frequency domain

and with linearised Navier-Stokes equations. Solving the equations with spectral

methods, they conclude that the tidal heating is several orders smaller than the

observed values for Enceladus.

In this thesis, we develop a three-dimensional model of the tidal dissipation

problem in the time domain. We assume an elastic ice shell on the top boundary

of the ocean. In order to solve the model, we employ spectral methods and write

two programs in Fortran 90. The first program is to solve the elastic equations

in order to find the top boundary condition for the ocean. The second program
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is to solve the linearised Navier-Stokes equations. The organization of the thesis

is as follows: in the first chapter, we introduce the governing equations, make

the necessary simplifications, introduce the numerical schemes, both temporal

and spatial, and present the numerical properties of the schemes. In the second

chapter, we present the results for tidal dissipation depending on viscosity and

thickness, and compare them with Rovira-Navarro et al. (2019). Then we discuss

the results and conclude the thesis.
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1. Methodology
The objective of this thesis is to develop a three dimensional model to describe

the tidal dissipation in icy moons with subsurface oceans. The model explores

the dissipation in the ocean caused by the tidal deformation of the ice shell. We

consider a simplified linear model where the ocean and ice shell is decoupled

and the affect of ice shell is prescribed through a boundary condition on the top

surface of the ocean. As it can be seen from figure 1.1, we denote the two spatial

domains corresponding to the ocean and ice shell as Ωw and Ωi, respectively, and

we assume that the icy moon has a perfectly spherical geometry.

Ice
Γt

Ωi

OceanΓc

Ωw

CoreΓb

Figure 1.1: The computation domain is separated into two parts, Ωi and Ωw,

corresponding to the ice shell and the ocean, respectively

1.1 Governing equations

The model is based on two fundamental balance laws of continuum mechanics

(Málek and Průša, 2016). The first one is the balance of mass,

∂ρ

∂t
+ div (ρv) = 0, (1.1)

and the second one is the balance of linear momentum,

ρ

(︄
∂v

∂t
+ v · ∇v

)︄
= divT + b − 2ρω × v, (1.2)

where t is the time, ρ is the density of water, v is the velocity, T is the Cauchy

stress tensor, b is the external body force, ω is the angular frequency and the last
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term in equation (1.2) is the Coriolis force. Since the ocean is incompressible,

and we consider a linearized model, the governing equations (1.1) and (1.2) take

the following forms:

divv = 0, in Qw (1.3a)

ρ
∂v

∂t
= divT + b − 2ρω × v, in Qw (1.3b)

where Qw = Ωw × [0, Tf ] and Tf > 0 is the final time. The external body force

can be expressed in terms of the tidal potential V ,

b = −ρ∇V, (1.4)

with

V (t, r, θ, ϕ) = r2ω2e
[︂
P20(cos θ) cos ωt+

P22(cos θ) (3 cos ωt cos 2ϕ + 4 sin ωt sin 2ϕ)
]︂
,

(1.5)

where r, θ, ϕ are the spherical coordinates, e is the eccentricity and P20 and P22

are the associated Legendre polynomials of degree 2, order 0 and 2, respectively.

Moreover, the Cauchy stress tensor T satisfies the following constitutive equation

T = −pI + η
(︂
∇v + (∇v)T

)︂
, (1.6)

where p is the pressure and η is the viscosity.

1.2 Boundary conditions

We assume no slip boundary condition on the bottom of the ocean, where it is

in contact with the core, i.e.,

v = 0 on Γb. (1.7)

On the top boundary of the ocean we assume that the surface deforms accordingly

to the deformation of the ice shell. Therefore, we prescribe the normal component

of the traction vector as

(Tn) · n = −ur (ρ − ρi) g on Γc, (1.8)
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and the tangential velocity as

v − (v · n) n = 0 on Γc, (1.9)

where ur = u·n is the normal component of the displacement of the ice shell, ρi is

the density of the ice, g is the gravitational acceleration and n is the unit outward

vector. The displacement u is the solution to the system which governs the

deformation of the ice shell due to the tidal forces. In this system, we assume that

ice shell is elastic, incompressible and its deformation is small. Thus, according

to these assumptions we have the following system

divu = 0, in Ωi (1.10a)

divS = b, in Ωi (1.10b)

where S is the Cauchy stress tensor in the ice shell and b = ρi∇V . Moreover, S

satisfies the following constitutive equation:

S = −piI + µ
(︂
∇u + (∇u)T

)︂
(1.11)

where pi is the pressure in the ice and µ is the shear modulus. We assume that

the top boundary of the ice shell is stress free and the deformation is small, which

implies that the boundary condition can be written in the reference configuration

as follows

Sn = −urρign on Γt. (1.12)

For the bottom boundary of the ice shell, i.e. the boundary separating the ice

domain from the water ocean, we assume that the ocean is in hydrostatic state,and

we take into account the pressure due to the tidal potential in the ocean. The

bottom boundary condition in the reference configuration then takes the following

form

−Sn + ur (ρ − ρi) gn = −ρV n on Γc. (1.13)

1.3 Time integration

For the system (1.3)-(1.6), we split the (1.3b) into two parts: the part that we

can treat implicitly, I(t), and the part that we treat explicitly, E(t). Thus, we
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rewrite equation (1.3b) as

−ρ
∂v

∂t
= −I (t) + E (t) , (1.14)

where E (t) = 2ρω × v and I (t) = divT + b. Then for the implicit part we

employ θ-scheme where θ ∈ [0, 1] and for the explicit part we employ the 3rd

order Adams-Bashforth method (Griffiths and Higham, 2010). Therefore, we can

write the discrete form of (1.14) as follows

−ρ
vk+1

∆t
+ θI (tk+1) = −ρ

vk

∆t
− (1 − θ) I (tk)

+
(︃23

12E (tk) − 16
12E (tk−1) + 5

12E (tk−2)
)︃ (1.15)

where ∆t = tk+1 − tk is the time step and k = 1, 2, .... It is observed that when

θ ≤ 0.5, the numerical scheme produces unstable results and, therefore, we use

the values θ > 0.5 in computations.

1.4 Spatial discretization

The spatial discretization is the same for both the ice shell and the ocean, there-

fore we will explain only for the ocean model. We prescribe finite difference

approximation on a staggered grid for each time instant tk, where k = 1, 2, ....

In order to discretize the governing equations we first write them in terms of

spherical harmonics (Appendix A.1 ) and obtain a system of ordinary differential

equations which depend on radius. Then, as shown in figure 1.2, we prescribe

the stress field on interfaces along with the equation of balance of mass, whereas

the velocity field and the equation of balance of linear momentum are prescribed

in the middle of the layers. We use homogeneous spatial discretization with the

spatial step

∆r = rt − rb

n − 1 , (1.16)

where rt and rb are the top and the bottom radius of the ocean, respectively, and

n is the number of interfaces. Then, the discretization takes the following form:

ri+1 = ri + ∆r for i = 2, ..., n − 1,

r̃i+1 = r̃i + ∆r for i = 2, ..., n,
(1.17)

where r1 = rb and r̃1 = r1 − ∆r
2 .
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vl
jm (r̃n+1)

Γc

Ωw

...

vl
jm (r̃n)

T lk
jm (r2)

vl
jm (r̃2)

∆r

T lk
jm (r1)

Core

Γb

vl
jm (r̃1)

Figure 1.2: Spatial discretization of the domain of the ocean, Ωw.

Therefore, we can approximate the derivative of velocity and stress fields as

dvl
jm(ri)
dr

=
vl

jm(r̃i+1) − vl
jm (r̃i)

∆r
,

dT lk
jm (r̃i)
dr

=
T lk

jm (ri+1) − T lk
jm (ri)

∆r
,

(1.18)

where vl
jm and T lk

jm are the spherical harmonic coefficients, which depends on

radius.

1.5 Numerical Tests

In the following section, various numerical aspects of the method will be studied.

The numerical schemes described above, are written into a program of Fortran

90. The numerical aspects will be studied in order to test the accuracy and

efficiency of this program. We will investigate the parameters, such as time and

spatial step, and cut-off degree. These parameters is investigated to determine

the convergence properties of the numerical schemes. Numerical parameters of

the system, depends on the value of viscosity. For higher values of viscosities,

we can use lower resolution in the model. However, as the values of viscosity

decreases, we require higher resolutions.

We make the computation for the viscosities between η = 106-103 Pa·s. The

lower values of viscosities requires such high resolutions that the computations
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become too cumbersome, where the values less than η = 1 Pa·s requires resolu-

tions that we can not attain. Thus, we can not obtain high enough resolution to

compute the realistic value of viscosity of water, η = 10−3 Pa·s.

In all the computations, we use constant spatial and time step. Therefore, to

ensure the numerical stability and increase the accuracy of the method, we employ

the 3rd order Adams-Bashforth method, given as in equation (1.15). Using this

method allows us to maintain numerically stable solution for higher values of time

and spatial steps.

Outer radius 252.1 km

Radius of ice/water boundary 232.1 km

Core radius 194.1 km

Shear modulus of the ice (µ) 3.3 109 Pa

Period (T ) 118387 s

Eccentricity (e) 0.0047

Gravitational acceleration (g) 0.113 m/s2

Density of ice (ρi) 925 kg/m3

Density of ocean (ρ) 1000 kg/m3

Viscosity of the water (η) 106-103 Pa·s

Table 1.1: Parameters of Enceladus

In order to investigate numerical aspects of the method, we use the parameters

of Enceladus, given in Table 1.1, and we look time evolution of the dissipation

value, defined as

D (t) :=
∫︂

Ωw

Td : Td

2η
dx, (1.19)

where Td is the deviatoric part of the Cauchy stress tensor and

Td : Td =
3∑︂

i=1

3∑︂
j=1

T d
ij

2
. (1.20)

The system is under the effect of periodic tidal force, therefore it is expected that

the dissipation value over time would be steady periodic curve. However, due

to the initial value, that is prescribed as v = 0, we observe a transition regime
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first, and afterwards, we can see the steady periodic behaviour, as it can be seen

from Figures 1.3a - 1.3d. For higher values of viscosity, the transition regime

is short and the system reaches the steady regime in small number of periods,

see Figure 1.3a. As viscosity decreases, we can observe that, the system requires

more number of periods to reach steady solution, see Figures 1.3b-1.3d. The

necessary number of periods to obtain a steady solution for even lower viscosities

can increase dramatically, for example, η = 10 Pa·s requires almost 1000 periods.

(a) η = 106 Pa·s
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(b) η = 105 Pa·s

(c) η = 104 Pa·s
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(d) η = 103 Pa·s

Figure 1.3: Stability of the system

Once the steady solution is reached, to investigate the convergence behaviour

of the system for time step, we fix the value of the spatial step and compute several

time steps. For each viscosity, we plot the dissipation curve over one period and

compare the curves. As we can see from Figures 1.4a-1.4d, the dissipation curves

converge as ∆t decreases.
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(a) η = 106 Pa·s

(b) η = 105 Pa·s

Higher values of viscosities can tolerate larger values of time steps, such as

∆t = T/100, see Figure 1.4a, whereas we lose accuracy as viscosity decreases,

therefore, we require smaller time steps, for example η = 103 Pa·s requires ∆t ≤

T/300. Moreover, smaller viscosities require even smaller time step to ensure the

accuracy and stability of the system.
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(c) η = 104 Pa·s

(d) η = 103 Pa·s

Figure 1.4: Convergence of the dissipation curve with respect to time, ∆t, for

different values of viscosities.

Then to observe the effect of the spatial step size, we fix the time step as

constant and compute several radial steps. In Figures 1.5a-1.5d, we plot the
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dissipation curves for different number of interfaces, n, which is related to radial

step through equation (1.16). We can observe that, higher values of viscosity

does not require high number of interfaces, see Figure 1.5a. However, as viscosity

gets lower, it is necessary to increase the number of interfaces.

(a) η = 106 Pa·s

(b) η = 105 Pa·s
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(c) η = 104 Pa·s

(d) η = 103 Pa·s

The analysis of time and spatial step shows us that the method we have pre-

scribed in equation (1.15) is convergent. For the correctness of the computations

we investigate the following equation

ρw
d
dt

∫︂
Ωw

v · vdx =
∫︂

∂Ωw

Tn · vds −
∫︂

Ωw

Td : Td

2η
dx +

∫︂
Ωw

b · vdx, (1.21)

which we compare the right-hand side(RHS) and the left-hand side(LHS) of equa-

17



tion (1.21) for viscosity η = 106 Pa·s.

Figure 1.6: The correctness of the method is observed through comparing LHS

and RHS of the (1.21).

As we can see from Figure 1.6, for each time instant, the method proposed

in this thesis yields an accurate and correct solution. Lastly, for each of the

viscosities, we investigate the number of cut-off degree necessary for the compu-

tations. Cut-off degree is chosen in such way that the magnitude of dissipation

drops approximately by two orders of magnitude. For higher viscosities, a low

resolution on spectrum can capture this accuracy, e.g. see Figure 1.7a. However,

as viscosity decreases, number of degrees required to obtain the same accuracy

increases, see Figures 1.7b-1.7d.
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(a) η = 106 Pa·s

(b) η = 105 Pa·s

19



(c) η = 104 Pa·s

(d) η = 103 Pa·s

Figure 1.7: Spectrum for different values of viscosities

For even lower viscosities, the spectrum increases dramatically. For example,

it is estimated that for η = 1 Pa·s, we require cut-off degree to be approximately

1000.
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As mentioned in the beginning of this section, we observed that higher values

of viscosity, η = 106 Pa·s, admits lower resolutions, where ∆t ≤ T/100, n ≥ 100

and cut-off degree equals 15 yields an accurate solution within short number of

periods. However, we observe that as viscosity becomes η = 103 Pa·s, we require

∆t ≤ T/300, n ≥ 300 and cut-off degree approximately equals to 85, and greater

number of periods to reach the accurate steady solution.
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2. Results

2.1 Tidal Dissipation

The main focus of this work is to present the tidal dissipation within the ocean

of Enceladus. The dissipation produced due to tidal force in the ocean depends

on the viscosity and the thickness of the ocean, which we will denote as d. For

different values of ocean thicknesses, we investigate the behaviour of the dissipa-

tion value as viscosity varies between η = 106-103 Pa·s. Depending on the ocean

thickness, the dissipation value can increase or decrease as viscosity decreases. If

the dissipation value is increasing with decreasing viscosity, we say that the sys-

tem is in resonance state. Otherwise, we say that the system is in non resonant

state.

For high values of d > 86 km, the amplitudes of dissipation are smooth with

respect to d, and they decrease as the value of the viscosity decreases, see Fig-

ure 2.1. It is estimated that, as viscosity approaches to its realistic value, the

dissipation will continue decrease for high thicknesses. However, for lower values

of d, the behaviour of the system gets complicated. We start to observe some

resonance peaks for some values of d, as viscosity decreases. We observe that on

the neighborhood of d = 70 km and d = 40 km the dissipation value increases

with decreasing viscosity. This would indicate that as viscosity approaches to

η = 10−3 Pa·s, the dissipation value can increase several orders of magnitude if

the resonance state would be attained. Moreover, we can see that as viscosity

decreases, more spikes start to appear on the curves.
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Figure 2.1: Dissipation amplitude depending on the ocean thickness.

Figure 2.2: Zoomed in version of Figure 2.1, between 5 km and 50 km.
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Figure 2.3: The dissipation depending on viscosity computed for 38.25 km thick

ocean.

We can see from Figure 2.3, for thickness d = 38.25 km, the dissipation starts

increasing from η = 2×105 Pa·s and then reaches its maximum around η = 2×104

Pa·s, and then starts decreasing again. With decreasing viscosity the dissipation

begins to decrease, which means d = 38.25 km is no longer in the resonance neigh-

borhood. This due to, the resonance neighborhood gets narrow with decreasing

viscosity, which makes d = 38.25 km to fall out of the neighborhood. This can be

also observed from Figure 2.2, where the width of the peaks gets narrow. If the

precise value of d is not chosen in the resonance neighborhood, then the dissipa-

tion value is going to decrease with decreasing viscosity. In order to capture the

precise values of resonance, we would need lower resolution on thickness, where

current computations are done for resolution of 1000 m.

2.2 Distribution of Tidal Dissipation

Lastly, we would like to investigate the spatial distribution of the tidal heat flux,

which is defined as

q (θ, ϕ) := 1
T

∫︂ Tf

Tf −T

(︄
1
r2

t

∫︂ rt

rb

Td : Td

2η
r2dr

)︄
dt, (2.1)

where the dissipation is averaged over radius and time. The averaging is partic-

ularly important for determining where the tidal heating occurs in ocean. The
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distribution of the heat flux depends on the thickness of the ocean, as well as the

viscosity of water. For thin ocean, e.g. d = 2 km, we observe that the heat flux

is distributed in wide area for high viscosities, Figures 2.4a and 2.4b. As viscos-

ity continues to decrease, we see that, for thin ocean the heat flux concentrates

latitudes 30◦, Figures 2.4c and 2.4d. For thin ocean, the maximum value of the

heat flux increasing with decreasing viscosity, where it reaches approximately 18

Wm−2 for η = 103 Pa·s. The maximum value of the tidal heat flux increases with

the decreasing viscosity. However, at the same time the area where the heat flux

occurs the most gets smaller. This behaviour can be seen in each thickness that

we observe. We can observe heat flux tends to polar regions of the icy moon, with

decreasing viscosity, for thicknesses greater than 10 km, Figures 2.5, 2.6, 2.7.

(a) η = 106 Pa·s (b) η = 105 Pa·s

(c) η = 104 Pa·s (d) η = 103 Pa·s

Figure 2.4: Spatial distribution of tidal heat flux for d = 2 km.
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(a) η = 106 Pa·s (b) η = 105 Pa·s

(c) η = 104 Pa·s (d) η = 103 Pa·s

Figure 2.5: Spatial distribution of tidal heat flux for d = 10 km.

For d = 10 km, the area where the heat flux is dense, dramatically reduces

from η = 104 Pa·s to η = 103 Pa·s, while the maximum value of the heat flux

increases by order of one, Figures 2.5c and 2.5d. Moreover, if we compare the

Figure 2.2 and the heat flux patterns, for d = 10 km and d = 30 km, we can see

that whenever the resonance peak occurs, the heat flux becomes dense the polar

regions, and the area of the heat flux pattern gets smaller, Figures 2.5d and 2.7d.

On the other hand, where there is no peak, e.g. d = 20 km, the distribution and

the maximum value of the heat flux stays the same, Figure 2.6.
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(a) η = 106 Pa·s (b) η = 105 Pa·s

(c) η = 104 Pa·s (d) η = 103 Pa·s

Figure 2.6: Spatial distribution of tidal heat flux for d = 20 km.

For 30 km thick ocean, Figure 2.7, when resonant peak occurs, the increase

of the heat flux becomes steep and the it goes several order bigger than the

observed value. Even for non-resonant thickness, d = 50km, where there is no

peak, the heat flux concentrates on polar regions of the moon with decreasing

viscosity, Figure 2.8. For this case, however, we can observe that the maximum

value of the heat flux is decreasing for lower viscosities. It can be estimated

that for realistic value of the viscosity, the magnitude of the heat flux will drop

significantly at the non resonant states.
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(a) η = 106 Pa·s (b) η = 105 Pa·s

(c) η = 104 Pa·s (d) η = 103 Pa·s

Figure 2.7: Spatial distribution of tidal heat flux for d = 30 km.

(a) η = 106 Pa·s (b) η = 105 Pa·s

(c) η = 104 Pa·s (d) η = 103 Pa·s

Figure 2.8: Spatial distribution of tidal heat flux for d = 50 km.
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3. Discussion
The results presented above are consistent with the results from Rovira-Navarro

et al. (2019), who carry out the computations in the frequency domain and with-

out the effect of the ice shell. We impose the effect of the ice shell through the

top boundary of the ocean and carry out the computations in the time domain.

In this new setting, we show that we are able to obtain resonance peaks similar

to the ones presented in Rovira-Navarro et al. (2019). The frequency domain

and time domain computations behave in a similar way. The dissipation displays

spiky behaviour for thinner oceans, whereas for thick oceans the dissipation de-

creases with decreasing viscosity. Moreover, for given values of viscosities, the

magnitude of dissipation we obtain is greater than what they find out. However,

the minimum viscosity that we can reach in current computations is η = 103 Pa·s.

In Chen et al. (2014) and Matsuyama et al. (2018), it is proposed that, the

tidal heating is not sufficient to heat the icy moons. The approximations from

the shallow water equations presents insufficient tidal dissipation to explain the

heat observed in Enceladus. In the paper by Matsuyama (2014), it is concluded

that the tidal dissipation would be able to compensate the total heat budget

provided that the ocean is thin, d ≤ 10 km. Moreover, in three dimensional

calculations, Rovira-Navarro et al. (2019) concluded that the tidal heating would

not be enough to keep the ocean in a liquid state. However, the dissipation we

obtain, is several orders higher than the ones computed in Rovira-Navarro et al.

(2019) and shallow water approximations. Although, we are unable to reach the

realistic value of the viscosity of the water, this increase in the dissipation might

suggest that, tidal heating can explain the observed values if the resonant state

occurs for some thicknesses of the ocean.

In our general setting, there might be resonant peaks for the realistic value

of the viscosity, where high values of dissipation can be observed. It is evident

that for the high values of viscosity, there are cases where the dissipation is about

∼ 104 GW, e.g. d = 40 km and d = 70 km. Even though d = 70 km is too thick

for representing the ocean on Enceladus, d = 40 km is close to the value of the

realistic thickness of the ocean, when it is assumed that the moon has spherical
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geometry. Therefore if the resonant state occurs for in the neighbourhood of

d = 38 km, there might be enough dissipation produced by the ocean to keep the

ocean liquid and explain the total heat observed in Howett et al. (2011).

In the ice shell, it is estimated that the heat flux is concentrated on south

pole of the moon (Souček et al., 2019). However, paper by Matsuyama et al.

(2018) estimated that the distribution of the heat flux in the ocean is different

than the distribution in the ice shell. In that paper, it is found that the heat flux

occurs on area around the equator. The distribution of the tidal heat flux depends

on the thicknesses for high values of viscosity. The heat flux in thinner oceans

spreads large area around the equator. These results show different behaviour

when compared with results from paper by Matsuyama et al. (2018), where they

found similar the heat flux distribution but for thicker ocean. For greater values of

thicknesses, with high viscosity, the tidal heat flux distribution changes between

equator and slightly higher degrees of longitudes. With decreasing viscosity the

heat flux moves to the poles, for all thicknesses given except for very thin oceans,

e.g. d = 2 km. Since the heat flux in the ice shell appears on the poles, in

particular at the south pole (Souček et al., 2019), the tidal heating in ocean

could significantly contribute to the dissipation in ice shell for lower values of

viscosity.

The value of globally averaged heat flux is estimated from Howett et al. (2011)

as 20 ± 4 mWm−2. For viscosities several order higher than the realistic value

of viscosity, we see that the tidal heat flux can easily produce enough heat flux

to compensate the observed value. In Matsuyama (2014), it is estimated that

the eccentricity tides can produce the observed value of the heat flux, provided

that the ocean is thin. Our results, given in Figure 2.4, are consistent with

this conclusion. The thin ocean can produce enough heat flux to compensate

the observed value. Moreover, we observe that for the given viscosities and ocean

thicknesses, the maximum heat flux is above the observed values. The thicknesses

d = 30 km and d = 10 km represents the resonant peaks for the ocean. For

these thicknesses, we observe that the heat flux increases unrealistically. For non

resonant thickness, e.g. d = 50 km, the heat flux has lower values, which could

indicate that if resonant state is not attained, the maximum value of the heat flux
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could decrease several orders of magnitude as viscosity approaches to η = 10−3

Pa·s.
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Conclusion
In this thesis, we address to problem of tidal dissipation in icy moons. In par-

ticular, we choose Enceladus to be our basis model. In order to address this

problem, we write the general balance laws and make simplifications, so that the

system becomes linear. We consider the effect of the Coriolis force and the ice

shell, just within the top boundary. In order to find the dissipation, we employ

the spectral method and reduce the equations such that they would depend on

time and radius. Then, we solve the equations using the method described in

Section 1.4 and Section 1.3. In order to implement these methods, we write a

Fortran 90 code and test it for convergence and accuracy in Section 1.5. Then we

present the results of the tidal dissipation on Enceladus and discuss these results

in the discussion section. We conclude that the dissipation behaviour is similar

to Rovira-Navarro et al. (2019) and the system behaves in analogically when we

include the time domain. The dissipation depends heavily on viscosity and ocean

thickness. Moreover, the dissipation that we find is several orders higher than the

previous works estimated. Therefore, tidal potential still has an important role in

heating Enceladus. However, we made several assumptions that can be improved.

Firstly, we omitted the non-linear turbulent term (v · ∇v) in the Navier-Stokes

equations. The effect of non-linear term might have important contributions to

the heat budget of Enceladus. The method given in the time domain allows us

to include the non-linear term in the future calculations. Secondly, we only im-

posed the effect of the ice shell through top boundary and we assumed that the

ice shell is elastic. However, the viscoelastic models of the ice shell could change

the dissipation behaviour. We also omitted the effect of the ocean on the ice

shell. Finally, we assumed that the ice shell and ocean has constant thickness,

but the ice shell and ocean do not have constant thickness; rather, the thickness

of the ice shell and ocean varies from the poles to the equator (Čadek et al., 2016;

Beuthe et al., 2016). This can lead to different heat flux patterns and change the

behaviour on the resonant peaks.
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A. Appendix
In this appendix, we summarize basic properties of spherical harmonics. We use

the spherical harmonics to reduce the partial differential equations to ordinary

differential equations.

A.1 Functions in terms of Spherical Harmonics

Spherical harmonics forms an orthonormal basis for scalar, vector and tensor

functions that are square integrable, i.e. L2(S), where S is the unit sphere (Matas,

1995, Varshalovich et al., 1988 ). Therefore, functions f(r, θ, ϕ), f(r, θ, ϕ) and

F(r, θ, ϕ) can be written as linear combination of the spherical harmonics as,

f(r, θ, ϕ) =
∞∑︂

j=0

j∑︂
m=−j

fjm(r)Yjm(θ, ϕ), (A.1)

f(r, θ, ϕ) =
∞∑︂

j=0

j∑︂
m=−j

j+1∑︂
l=j−1

f l
jm (r) Y l

jm(θ, ϕ), (A.2)

F(r, θ, ϕ) =
∞∑︂

j=0

j∑︂
m=−j

j+k∑︂
l=|j−k|

2∑︂
k=0

F lk
jm (r)Ylk

jm(θ, ϕ). (A.3)

By the orthonormal relations of the spherical harmonics, coefficients fjm(r),

f l
jm(r) and F lk

jm(r) are given as

fjm(r) =
∫︂ π

0

∫︂ 2π

0
f(r, θ, ϕ)Y ∗

jm(θ, ϕ) sin θdθdϕ, (A.4)

f l
jm (r) =

∫︂ π

0

∫︂ 2π

0
f(r, θ, ϕ) · Y l∗

jm(θ, ϕ) sin θdθdϕ, (A.5)

F lk
jm(r) =

∫︂ π

0

∫︂ 2π

0
F(r, θ, ϕ) : Ylk∗

jm(θ, ϕ) sin θdθdϕ, (A.6)

where ∗ denotes the complex conjugate of the spherical harmonics.

A.2 Formulas

Formulas that are used in the computations are summarized in this section. Let

er be the unit vector normal to the surface of the sphere. The functions f , f and
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F have the following forms when multiplied by unit normal vector er:

[fer]j−1
jm =

√︄
j

2j + 1fjm,

[fer]j+1
jm = −

√︄
j + 1
2j + 1fjm,

(A.7)

[f · er]jm =
√︄

j

2j + 1f j−1
jm −

√︄
j + 1
2j + 1f j+1

jm , (A.8)

[Fer]j−1
jm = −

√︄
j

3(2j + 1)F j,0
jm +

√︄
j − 1
2j − 1F j−2,2

jm −

⌜⃓⃓⎷ (j + 1) (2j + 3)
6 (2j + 1) (2j − 1)F j,2

jm, (A.9)

[Fer]jjm =
√︄

j − 1
2 (2j + 1)F j−1

jm −
√︄

j + 2
2 (2j + 1)F j+1

jm , (A.10)

[Fer]j+1
jm =

√︄
j + 1

3 (2j + 1)F j,0
jm −

√︄
j + 2
2j + 3F j−2,2

jm +

⌜⃓⃓⎷ j (2j − 1)
6 (2j + 1) (2j + 3)F j,2

jm. (A.11)

The cross product between the normal er and vector spherical harmonics is used

to express the Coriolis force. We give the directly the formula for the Coriolis

force given in (1.3b)

ω × v = (fc)l
jm Y l

jm(θ, ϕ), (A.12)

where the coefficients are given as

(fc)l
jm =

√
6i (−1)l+j

∑︂
j2

vl
j2m

√︂
2j2 + 1C. (A.13)

The constant C is given in terms of Clebsh-Gordon coefficients, Cjm
j2m10, and the

6-j coefficients by (see Matas, 1995 for details)

C = Cjm
j2m10

⎧⎪⎨⎪⎩j2 1 l

1 j 1

⎫⎪⎬⎪⎭ . (A.14)

We continue the summary of the formulas with the differential operators, such as

gradient and divergence. The gradient of scalar function f is given by

∇f(r, θ, ϕ) = [∇f ]j−1
jm Y j−1

jm (θ, ϕ) + [∇f ]j+1
jm Y j+1

jm (θ, ϕ), (A.15)
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where

[∇f ]j−1
jm =

√︄
j

2j + 1

(︄
∂fjm

∂r
+ j + 1

r
fjm

)︄
,

[∇f ]j+1
jm = −

√︄
j + 1
2j + 1

(︄
∂fjm

∂r
− j

r
fjm

)︄
.

(A.16)

The divergence of vector field f is given by

div f = [div f ]jm Yjm(θ, ϕ), (A.17)

where

[div f ]jm =
√︄

j

2j + 1

⎛⎝∂f j−1
jm

∂r
− j − 1

r
f j−1

jm

⎞⎠
−
√︄

j + 1
2j + 1

⎛⎝∂f j+1
jm

∂r
+ j + 2

r
f j+1

jm

⎞⎠ .

(A.18)

The divergence of tensor field F is given by

divF(r, θ, ϕ) =
j+1∑︂

l=|j−1|
[divF]ljm Y l

jm(θ, ϕ), (A.19)

where the coefficients have the following forms

[divF]j−1
jm = −

√︄
j

3(2j + 1)

⎛⎝∂F j0
jm

∂r
+ j + 1

r
F j0

jm

⎞⎠
−

⌜⃓⃓⎷ (j + 1)(2j + 3)
6(2j − 1)(2j + 1)

⎛⎝∂F j,2
jm

∂r
+ j + 1

r
F j,2

jm

⎞⎠
+
√︄

j − 1
2j − 1

⎛⎝∂F j−2,2
jm

∂r
− j − 2

r
F j−2,2

jm

⎞⎠ ,

(A.20)

[divF]jjm =
√︄

j − 1
2j − 1

⎛⎝∂F j−1,2
jm

∂r
− j − 2

r
F j−1,2

jm

⎞⎠
−
√︄

j + 2
2(2j + 1)

⎛⎝∂F j+1,2
jm

∂r
+ j + 2

r
F j+1,2

jm

⎞⎠ ,

(A.21)

[divF]j+1
jm =

√︄
j + 1

3(2j + 1)

⎛⎝∂F j0
jm

∂r
− j

r
F j0

jm

⎞⎠
+

⌜⃓⃓⎷ j(2j − 1)
6(2j + 3)(2j + 1)

⎛⎝∂F j,2
jm

∂r
− j

r
F j,2

jm

⎞⎠
−
√︄

j + 2
2j + 3

⎛⎝∂F j+2,2
jm

∂r
+ j + 3

r
F j+2,2

jm

⎞⎠ .

(A.22)
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Let us denote the symmetric part of the ∇f as Df = 1
2

(︂
∇f + (∇f)T

)︂
, then for

each j = 1, 2, ... and m = −j, ..., j, we have

Df =
j+2∑︂

l=|j−2|
[Df ]l,2jm Yl,2

jm(θ, ϕ). (A.23)

Then the coefficients are given as

[Df ]j−2,2
jm =

√︄
j − 1
2j − 1

⎛⎝∂f j−1
jm

∂r
+ j

r
f j−1

jm

⎞⎠ , (A.24)

[Df ]j−1,2
jm =

√︄
j − 1

2(2j + 1)

⎛⎝∂f j
jm

∂r
+ j + 1

r
f j

jm

⎞⎠ , (A.25)

[Df ]j,2
jm = −

⌜⃓⃓⎷ j(j + 1)(2j + 3)
6(2j − 1)(2j + 1)

⎛⎝∂f j−1
jm

∂r
− j − 1

r
f j−1

jm

⎞⎠
+

⌜⃓⃓⎷ j(2j − 1)
6(2j + 3)(2j + 1)

⎛⎝∂f j+1
jm

∂r
+ j + 2

r
f j+1

jm

⎞⎠ ,

(A.26)

[Df ]j+1,2
jm = −

√︄
j + 2

2(2j + 1)

⎛⎝∂f j
jm

∂r
− j

r
f j

jm

⎞⎠ , (A.27)

[Df ]j+2,2
jm = −

√︄
j + 2
2j + 3

⎛⎝∂f j+1
jm

∂r
− j + 1

r
f j+1

jm

⎞⎠ . (A.28)

A.3 Equations

In this last section of appendix, we give the final forms of the equations for elastic

displacement, equations (1.10), and Navier-Stokes equations, given in equations

(1.3). By using the expansions given in equations (A.1)- (A.3) and the formulas

above, we can write the system given in equations (1.10) as in the following form

[div u]jm = 0,

[div S]j−1
jm = bj−1

jm ,

[divS]j+1
jm = bj+1

jm ,

Sj−2,2
jm −2µ [Du]j−2,2

jm = 0,

Sj,2
jm−2µ [Du]j,2

jm = 0,

Sj+2,2
jm −2µ [Du]j+2,2

jm = 0.

(A.29)
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The boundary conditions for this system, which are given in equations (1.12) and

(1.13), are written as follows in terms of spherical harmonic coefficients, for top

boundary of ice,

[Ser]j−1
jm = −ρig [urer]j−1

jm ,

[Ser]j+1
jm = −ρig [urer]j+1

jm ,
(A.30)

and for the bottom boundary of the ice shell

− [Ser]j−1
jm + (ρ − ρi)g [urer]j−1

jm = ρ [V er]j−1
jm ,

− [Ser]j+1
jm + (ρ − ρi)g [urer]j+1

jm = ρ [V er]j+1
jm .

(A.31)

The tidal potential given in equation (1.5), in terms of spherical harmonics coef-

ficients, is given as

bj−1
jm = ρirω2e

√
18π cos ωt,

bj+1
jm = −ρirω2e

(︂√
27π cos ωt − i

√
48π sin ωt

)︂
.

(A.32)

Tidal potential has only components for degree 2, and order 0 and 2, therefore

the elastic equations (A.29) are only solved for these degree and orders, by the

method prescribed in Section 1.4. The solution to system is then prescribed as the

boundary condition for the Navier-Stokes equations (1.3). The solution to this

system can be found separately for each order, because the systems are indepen-

dent of each other for each degree. The normal component of the displacement

u is then found for the degree 2, order 0 and 2 as given in Figure A.1 for one

period. The radial displacement is found 1 m on average for 20 km thick of ice

shell.
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Figure A.1: Normal component of the displacement of the elastic ice shell, found

for degree 2, order 0 and 2.

Finally, we can write the Navier-Stokes equations (1.3) in terms of spheroidal

and toroidal parts. The spheroidal part of the system is given as

[div v]jm = 0,

−
∂vj−1

jm

∂t
+ [divT]j−1

jm = bj−1
jm − (fc)j−1

jm ,

−
∂vj+1

jm

∂t
+ [divT]j+1

jm = bj+1
jm − (fc)j+1

jm ,

T j−2,2
jm −2η [Dv]j−2,2

jm = 0,

T j,2
jm−2η [Dv]j,2

jm = 0,

T j+2,2
jm −2η [Dv]j+2,2

jm = 0,

(A.33)

and the toroidal part of the system is given by

−
∂vj

jm

∂t
+ [divT]jjm = − (fc)j

jm ,

T j−2,j−1
jm −2η [Dv]j−2,j−1

jm = 0,

T j,j+1
jm −2η [Dv]j,j+1

jm = 0.

(A.34)

The system given in equations (A.33) and (A.34) are no longer independent for

degree and orders, due to the Coriolis force. Therefore, the Coriolis force term
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is treated in explicit form in the time integration, given in equation (1.14). The

boundary conditions for Navier-Stokes equations, which are given in equations

(1.7), (1.8) and (1.9), are written in terms of spherical harmonic coefficients. For

the bottom boundary of the ocean, given in equation (1.7), has the following

form,

vl
jm = 0, (A.35)

both for spheroidal and toroidal part, i.e. l = j − 1, j, j + 1. The top boundary

of the ocean, equation (1.8) has the form

[(Ter) · er]jm = − [u · er]jm (ρ − ρi)g, (A.36)

and equation (1.9) has the form

vj−1
jm − [(v · er)er]j−1

jm = 0. (A.37)

Note that, the equation (A.37) is only the one of the components of the vector,

however it is linearly dependent with the other component, thus we take only this

condition.
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