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Abstract: The ocean modelling community commonly use several renown ocean
general circulation models (OGCMs) such as NEMO, MOM and FESOM. These
models have been developed by research groups for many years, which resulted in
complex mathematical and numerical algorithms. There are geophysically rele-
vant problems, such as the glacial isostatic adjustment, in which the global ocean
plays an important role. Ocean circulation does not need to be modeled extremely
complex, but other phenomena such as time changing geometry of ocean domain
needs to be considered. Geophysical applications motivated us to develop a new
OGCM called LSOMG. The LSOMG model is not meant to substitute the ex-
isting OGCMs but to provide a modelling framework for geophysical rather than
purely oceanographic applications. LSOMG is a 3-D baroclinic ocean model fully
parallelized using the MPI standard. It is forced by atmospheric fluxes (wind
stresses, heat fluxes, etc.) but also by tides. The model can be run in a simplified
2-D barotropic version if 3-D effects can be neglected. LSOMG was tested in a
series of simplified barotropic numerical tests: the tsunami and tidal numerical
tests and the Munk problem. In the full baroclinic version, we tested the genera-
tion of the Ekman layer and the advection of tracers. Finally, we present realistic
wind and tidally driven ocean circulations computed by the LSOMG model.

The second part of the thesis is devoted to the study of ocean-induced magnetic
field (OIMF). The ultimate goal is to extract information about the ocean circu-
lation from the observed OIMF, e.g., by Swarm satellites, and assimilate it into
an OGCM. However, it is a challenging task since the OIMF has small amplitudes
of about 2 nT maximum at Swarm altitudes. It is overlaid by the main, iono-
spheric and magnetospheric magnetic fields that are several orders of magnitude
larger. We thus focus on the precision of forward modelling and study the impact
of physical and numerical approximations. Namely, we inspected the impact of
galvanic coupling, vertical stratification of ocean flow and electrical conductiv-
ity, self-induction and horizontal resolution on the numerically predicted OIMF.
Another possibility is to use localized magnetic measurements at the sea bot-
tom instead of satellite data. Consequently, we studied the toroidal magnetic
field inside the ocean using fully 3-D versions of both LSOMG and the magnetic-
induction solver Elmgiv. The toroidal magnetic field is zero at the surface but
it is significant inside the ocean. According to our computations, its magnitude
can reach 15 nT, i.e., it is about one order of magnitude larger than the OIMF
at satellite altitudes.
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Abstrakt: Komunita věnuj́ıćı se modelováńı oceán̊u použ́ıvá několik renomovaných
model̊u (OGCM) jako jsou NEMO, MOM a FESOM. Tyto modely jsou vyv́ıjeny
vědeckými týmy po mnoho let a využ́ıvaj́ı složité matematické a numerické al-
goritmy. Existuj́ı geofyzikálně relevantńı problémy, jako např́ıklad post-glaciálńı
výzdvih, ve kterých globálńı oceán hraje významnou roli. Oceánská cirkulace zde
nemuśı být namodelována extrémně přesně, ale naopak je třeba uvážit ostatńı
jevy jako např. v čase proměnnou geometrii oceánského dna a pobřež́ı. Geo-
fyzikálńı aplikace byly naš́ı motivaćı pro vývoj nového OGCM pojmenovaného
LSOMG. Model LSOMG nemá nahradit stávaj́ıćı OGCM. Měl by poskytnout
nástroj pro geofyzikálńı sṕı̌se než čistě oceánografické aplikace. LSOMG je 3-D
baroklinńı oceánský model plně paralelizovaný pomoćı MPI standardu. Model je
buzen atmosférickými toky (třeńı větru, tepelné toky, atd.) ale také slapy. Model
lze spustit ve zjednodušené 2-D barotropńı verzi, pokud je možné zanedbat 3-D
efekty. LSOMG byl testován v řadě zjednodušených barotropńıch numerických
test̊u: tsunami a slapových numerických testech a v Munkově úloze. V kompletńı
baroklinńı verzi jsme otestovali tvorbu Ekmanovy vrstvy a advekci tracer̊u. Na
závěr prezentujeme realistická prouděńı buzená větrem a slapy napočtená pomoćı
LSOMG modelu.

Druhá část této práce je věnována studii oceánem indukovaného magnetického
pole (OIMF). Ćılem je źıskat informace o oceánské cirkulaci z pozorovaného
OIMF, např. ze satelit̊u Swarm, a asimilovat je do OGCM. Jedná se o složitou
úlohu, protože amplitudy OIMF nabývaj́ı maximálně 2 nT ve výškách, kde ope-
ruje Swarm. OIMF je překryto hlavńım, ionosferickým a magnetosférickým pole,
jež jsou o několik řádu větš́ı. Proto se soustřed́ıme na př́ımé modelováńı a studu-
jeme dopad fyzikálńıch a numerických aproximaćı na jeho přesnost. Prozkoumali
jsme dopad galvanického couplingu, vertikálńıho zvrstveńı oceánského prouděńı a
elektrické vodivosti, self-indukce a horizontálńıho rozlǐseńı na numericky prediko-
vané OIMF. Daľśı možnost́ı je mı́sto satelitńıch dat použ́ıt lokalizovaná měřeńı
magnetického pole na oceánském dně. Proto jsme studovali toroidálńı magnetické
pole uvnitř oceánu pomoćı plně 3-D verźı LSOMG a magnetického indukčńıho
řešiče Elmgiv. Toroidalńı magnetické pole je nulové na hladině oceánu, ale je
významné uvnitř oceánu. Podle našich výpočt̊u může jeho amplituda dosáhnout
až 15 nT, takže je asi o řád větš́ı než OIMF ve výškách, kde měř́ı satelity.

Kĺıčová slova: modelováńı oceán̊u, globalńı cirkulace, oceánem indukované mag-
netické pole
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Introduction

0.1 Basic facts about ocean
The global ocean covers around three quarters of the Earth surface and it accu-
mulates 97% of the total volume of water on the planet Earth. Human mankind
is affected by the ocean in many ways. The ocean currents are important for
the fisheries and ship transport. The ocean interacts with the atmosphere and
it plays a key role in the Earth’s climate. The ocean water has high thermal
capacity which allows global ocean to store a significant amount of heat. If the
atmospheric temperature suddenly drops, the heat stored in the ocean is released
and vice versa. Consequently, the ocean mitigates temperature fluctuations in
the atmosphere. The ocean also accumulates dissolved gasses. Some of them are
greenhouse gasses such as water vapour or carbon dioxide. If they were released,
it would influence climate. The presence of oceans brings benefits but it may
also be dangerous. The tsunami waves can hit the coastal areas with incredible
destructive power. Some endangered countries have developped systems of early
warning which have already saved human lives. To sum it up, it is important to
understand ocean dynamics and be able to predict the ocean circulation.

The global ocean circulation is mainly driven by the surface fluxes of mo-
mentum, heat and fresh water as well as the pressure gradients due to density
variations. People sometimes refer to the wind- and buoyancy-driven circulation
rather than the global circulation. Another commonly used term is the merid-
ional overturning circulation (MOC) since the zonally integrated flow “overturns”
from surface to the abyss and vice versa. The older term is the thermohaline cir-
culation since the density variations are caused by the variations of temperature
and salinity. The global ocean circulation can be divided to the surface and deep
circulations [Siedler et al., 2013].

The surface surface circulation is dominated by six large-scale ocean gyres,
out of which five are located in the ocean basins. The western boundary currents
in these gyres are typically warm, fast (up to 2 m/s), narrow but strong (around
50 Sv; 1 Sv=103 m3/s) currents such as the Gulf Stream or the Kuroshio cur-
rent. The eastern boundary currents are typically cold, slower, wider but weaker
currents such as the Peru (also Humboldt) Current or the Benguela Current.
Both western and eastern boundary currents affect the climate. For example, the
Gulf Stream makes the climate of east coast of North America and west coast
of Europe warmer. The Peru Current takes part in the climate disruption called
El-Nino. During this event, Peru Current weakens, surface waters in the eastern
tropical Pacific gets warmer which is accompanied by heavy rainfalls. The sixth
gyre does not sit in an ocean basin but it rather circumvents the Antarctica due
to the absence of continental barriers. It is called the Antarctic Circumpolar
Current (ACC) and it is the strongest ocean current with the average transport
of 130 Sv [Cunningham et al., 2003].

If the ocean waters are very cold or salty, they become dense enough to sink
into the abyss and form deep waters. There are a few locations of deep-water
formation in the global ocean. For example, deep waters form in the North
Atlantic (salty waters) and around Antarctica (cold waters) in Wedell and Ross
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seas Stewart [2008]. The deep waters are transported for long distances (several
thousands of kilometers) and then uplifted back to the surface. Broecker et al.
[1991] used a simple ribbon model to depict the deep circulation. The ribbon
model has become popular and it has been adopted by many other authors. Its
detailed version is depicted in Fig. II-8 in Schmitz Jr [1996] but the structure of
the real circulation is even more complicated [Bower et al., 2009].

0.2 History of oceanography
The oceanography has a long history. According to Stewart [2008], the Polynesian
navigators used their experience and knowledge about ocean during their sails as
early as in 4000 BC. Pytheas, Arabs, Romans or Vikings also proved to be great
sailors which would not be possible without certain oceagraphic knowledge. The
Indian Vedic scripts from 2000 to 1400 BC mention the connection between tides
and the Moon and Sun. The Europeans started to study oceans in the 15th
and 16th centuries AD, during the exploratory voyages of Bartholomew Dias,
Christopher Columbus, Vasco da Gama and Ferdinand Magellan. They were
followed by scientific voyages of James Cook, Charles Darwin, Sir James Clark
Ross, Sir John Ross and Edward Forbes. Noticably, Edmond Halley descibed the
system of trade winds in the 17th century, Benjamin Franklin created the first
map of Gulf stream in the 18th century and Matthew Fontaine Maury published
the first thorough oceanographic book Physical Geography of the Sea [Maury,
1874].

The pioneering works focused on the ocean surface and its shallow parts. In
the 19th century, the Challenger, Gazelle and Fram expeditions initiated the
studies of deeper parts of the ocean. However, a real breakthrough in the ocean
exploration came in the 20th century due to the progress in instrumental science.
In the 1920s, the expedition Meteor studied the South Atlantic using an early
version of sonar and it brought the first bathymetry maps of the South Atlantic.
After the Second World War, a number of international projects have been orga-
nized. The NORPAC expedition which studied the Pacific Ocean was one of them.
Various studies were conducted during the International Geophysical Year (July
1957 - December 1958) as summarized in Gordon and Baker [2013], and during
the International Decade of Ocean Exploration (1971-1980) [Intergovernmental
Oceanographic Commission, 1974]. For example, Mid-Ocean Dynamics Experi-
ment (MODE) studied the mid-ocean mesoscale eddies [Mode Group and others,
1978], the POLYMODE project [Collins and Heinmiller, 1989] was its US-Soviet
successor and Climate: Long Range Mapping and Prediction (CLIMAP) was a
paleoclimate project which studied the global climate during the last interglacial
[CLIMAP Project, 1981].

Finally, the satellite era started with the SeaSat mission. It was launched in
1978 and it was the first oceanographic satellite mission. SeaSat collected more
data than all ship measurements during the past 100 years despite its short op-
erational time of 110 days. SeaSat was followed by many oceanographic satellite
missions such as GEOSAT, Topex/Poseidon, Jason missions (1-3), OceanSat mis-
sions (1-2) or SMOS. At about the same time, ocean researchers have started to
install large arrays of floats and buoys to acquire data from the ocean interior.
It is worth to mention World Ocean Circulation Experiment (WOCE) and the
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Tropical Ocean Global Atmosphere program (TOGA) which led to the construc-
tion of the TAO/TRITON array of moored buoys in the Pacific Ocean, PIRATA
array in the Atlantic Ocean and RAMA array in the Indian Ocean. Besides that,
a global array of free-drifting profiling floats called ARGO has been built.

Of course, data science goes hand in hand with computer science. The com-
puter processing power has increased dramatically during the last three decades.
It has made the calculations of ocean circulation feasible which stimulated the
development of various numerical models. The ocean modelling is also the key
subject of this thesis.

0.3 Modelling of oceans and the ocean-induced
magnetic field

The global ocean circulation includes physical processes on many different spatial
and temporal scales. Fig. 1 in Ruhl et al. [2011] shows that spatial scales are
ranging from centimeters (molecular processes such as molecular diffusion) and
meters (surface gravity waves) over kilometers (internal tides) up to thousands of
kilometers (ocean gyres). Temporal scales are ranging from seconds (molecular
processes) and days (internal waves and internal motions) over months (seasonal
cycle) up to thousands of years (climate change). In this thesis, we use one of
the so-called ocean general circulation models (OGCMs) which are designed to
simulate the circulation in the global ocean, a single ocean basin or sea. However,
as the spectrum of processes in the ocean is broad, there also exist models which
are dedicated to a particular oceanic process such as tsunami or wave models.
These dedicated models are based on the similar principles as the OGCMs and it
may seem that they are only a subset of OGCMs which is used for certain special
cases. This is not true. For example, the tsunami models solve the so-called
shallow-water equations for the tsunami propagation. These equations are also
contained in the OGCMs, see Sec. 4, but tsunami models resolve not only the
tsunami propagation on the open ocean but also the innundation process. These
two processes represent two rather different flow regimes which complicates the
choice of suitable numerical methods George [2006]. The modern tsunami models
are also able to simulate the debris transport during the inundation process.
These processes are not considered in the OGCMs.

An OGCM is a complex system; a mixture of primitive equations, physi-
cally motivated parameterizations and numerical schemes. It is not surprising
that there are many options for the individual parts of the model which creates
many possibilities how to put the model together. OGCMs can be divided into
categories based on the selection criteria as follows.

Coupling with other environmental models. The global ocean is not an iso-
lated system. It exchanges fluxes of heat, momentum and mass with the other
parts of the global ecosystem such as the atmosphere, ice-sheets or rivers. An
OGCM can read these fluxes from the input data file. These are ocean-only sim-
ulations. A more complex approach is to run two or more environmental models
simultaneously and exchange the fluxes between them on the fly. The ocean-only
simulations are faster but they are missing feedback, which can be both posi-
tive and negative, between the interacting systems. It depends on the particular
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application whether the feedbacks play a key role and coupled model is needed.
For example, the climate predictions require coupled models but the modelling
of Gulf stream can be done in ocean-only simulations.

Modelling era. We distinguish two large groups: The models of the present-
day ocean circulation and the models of paleocean circulation. A typical OGCM
is a representant of the first group. These models are used for sensitivity experi-
ments, hindcast simulations, short-term or climate predictions. Both ocean-only
and coupled models are used, typically in eddy-permiting or eddy-resolving con-
figurations (see Sec. 1 for definitions). After the spin up, the model is usually run
for a few months or years and the output sampling period varies from days to
months. The paleocean models contribute to the understanding of ocean dynam-
ics by studying the past events. Paleoceanographers typically perform scenario
testing to inspect model sensitivity on forcing, input parameters and subgrid
scale parameterizations. The paleocean models are commonly run for hundreds
or even thousands of years which significantly increases computational demands.
Additionally, the coupled models are preferred over the ocean-only models since
data which can be used to prescribe forcing are not available in the sufficient
spatial and temporal resolutions. Consequently, certain modelling compromises
are inevitable. The most common are eddy-parameterized configurations, the
eddy-resolving configurations are far beyond the computational limits. It is also
common to use light-weight models, sometimes older versions of the renowned
OGCMs, which are missing the most recent features of the state-of-art OGCMs
but are less computationally demanding. These light-weight coupled models are
sometimes called EMICs which is an acronym for Earth system models of inter-
mediate complexity.

Vertical coordinate. Three major vertical coordinates are used in OGCMs:
geopotential (z), isopycnal (ρ) and terrain-following (σ) coordinates. Each of
them has its advantages and drawbacks. The choice of vertical coordinate is
fundamental since it affects model’s performance and capabilities and it is com-
plicated to switch between two types. The z and ρ coordinates are commonly
used in global models. The σ-coordinate is preferred in regional models. See
Sec. 2.3.1 for more details.

Structure of the computational grid. The majority of OGCMs models is built
upon structured Arakawa grids. Some OGCMs use unstructured spatial grids,
e.g., FESOM [Danilov et al., 2004, 2017], FVCOM [Chen et al., 2003, Lai et al.,
2010] and ICON [Korn, 2017]. The strength of these models is the accurate
representation of complex coastlines. The grid is coarse on the deep ocean but
it is smoothly refined in coastal areas. That is extremely useful for the regional
OGCMs, especially in the presence of narrow straits [Fix, 1975, Le Provost, 1986].
On the other hand, there are still some open challenges in the use of unstructured
grids in ocean modelling [Siedler et al., 2013].

An attentive reader might be surprised that we have not talked about tides
so far. The reason is that tides were not considered by OGCMs for a long time.
Certain technical issues complicated the implementation of tides into OGCMs.
Tides have traditionally been modelled using the 2-D barotropic models which
are based on the approximate shallow water equations. Despite their physical
deficiencies, barotropic models proved to be a useful tool for modelling of ocean
tides. Tidal models are used to calculate tidal corrections for studies of nonti-
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dal signals in satellite altimetry [Fu and Cazenave, 2001] and gravimetry [Visser
et al., 2010, Seeber, 2003]. However, the advances in both computational tech-
nologies and ocean modelling itself have recently made the implementation of
tides into OGCMs possible. It may improve the OGCM performance since tides
contribute significantly to the ocean mixing [Munk and Wunsch, 1998, Egbert
and Ray, 2000]. Müller et al. [2010] reported more realistic convection in the
Labrador Sea, modified pathway of the North Atlantic Current and consequently
a reduced North-Atlantic sea surface temperature bias in the climate model with
tides included. Schiller and Fiedler [2007] performed a regional modelling around
South-East Asia and Australia and they found a strong influence of tidal mixing
on the mixed-layer in certain areas. There were also a few promising attempts
to model baroclinic tides [Müller et al., 2012, Arbic et al., 2010, Simmons et al.,
2004, Niwa and Hibiya, 2011] but it is still an open topic due to extremely high
requirements on the spatial resolution, see Sec. 5.10.

The motivation for this thesis was a demand at our department for a global
three-dimensional model for geophysical applications. In particular, a model that
would replace the so-called sea level equation in the modelling of glacial isostatic
adjustement. The desired model was expected to fit into the class of paleocean
unstructured z-coordinate models. We intended to start with the ocean-only
model and replace it by the ocean-atmosphere coupled model. In the spirit of
EMIC modelling, we have chosen the simplified quasi-geostrophic ocean model
LSG (see Sec. 3.1) and a one-layer energy balance atmospheric model. However,
plans have changed when our team took part in the ESA satellite mission Swarm.

The Swarm mission was designed to precisely measure the Earth’s magnetic
field. It is a successor of POGO, Magsat (1979-1980), Oersted (1999-2008),
Champ (2000-2008) and Sac-C (2000-2008) satellite missions. Swarm has been
launched in 2013 and it is still operational. As its name suggests, the measure-
ments are conducted by the “swarm” of three satellites. The two satellites are
orbiting side-by-side at the mean altitude of 470 km, the third satellite is orbiting
in a different plane and it also flies higher, with a mean altitude of 520 km. The
primary objectives of the Swarm mission has been to improve the models of main
[Finlay et al., 2016, Olsen et al., 2016], litospheric [Kotsiaros, 2016], magneto-
spheric and ionospheric [Chulliat et al., 2016, Laundal et al., 2016, Aakjær et al.,
2016] fields and also enrich our knowledge about the electrical conductivity of the
Earth’s mantle. One of the secondary objectives of the mission was to identify
the ocean-induced magnetic field (OIMF). It is not a simple task since the OIMF
represents a weak signal (several nT) compared to the signal generated by the
Earth’s core, litosphere, magnetosphere and ionosphere. Another complication is
that the OIMF contains contributions from both tidally-driven and wind-driven
circulations. The wind-driven field has longer periods and it may erroneously be
attributed to the litospheric field.

The modelling of ocean-induced magnetic field obviously requires a coupled
model: the model of ocean circulation and the electromagnetic (EM) induction
solver. A suitable ocean circulation model falls into the category of OGCMs for
the present-day rather than paleo circulation. The capability to simulate not only
the wind-driven but also the tidally-driven circulation is not required but it is
beneficial. The first and key objective of this thesis was to create such model. As
already mentioned, we started with the LSG model but we have rebuilt it com-
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pletely and created a new model which we call LSOMG. The second objective of
this thesis was to use an EM solver to study the OIMF. The spectrum of EM
induction solvers is not as broad as the spectrum of OGCMs. Nevertheless, it
encompasses “heavy but complete” 3-D solvers equiped with the full physics as
well as certain “light-weight but aproximate” 2-D solvers based on approximate
equations. It was clear that approximate solvers are less accurate but studies
that would quantify the discrepancies were missing. We thus cooperated with
our collegues from GFZ, DIAS, Freie Universität Berlin and CIRES and studied
how the wind-driven OIMF is affected by certain modelling choices. We presented
our results in Šachl et al. [2019]. We also participated in the companion paper
Veĺımský et al. [2018] which studied the tidally-driven rather than wind-driven
OIMF. Finally, we inspected the toroidal magnetic field using the first-ever cou-
pled run in which both ocean model and EM induction solver were 3-D. The
results of these calculations are summarized in Veĺımský et al. [2019].

We did not manage to identify the wind-driven OIMF in the Swarm data.
It turned out that the model of magnetospheric field is the weak spot. Our
group used the up-to-date Swarm Level 2 magnetospheric field model but its
performance was not satisfactory. We participated in the creation of a competing
magnetospheric field model that is better suited our purposes. The model is
explained and tested in Martinec et al. [2017].

The thesis is structured as follows. The purpose of the first part is to provide
a theoretical background in ocean modelling. Chapter 1 explains the physical
principles on which OGCMs are based. Chapter 2 introduces numerical methods
and schemes commonly used in ocean modelling. The second part describes the
LSOMG model. Chapter 3 discusses our motivations and requirements on the
ocean model which we outlined here in more details. It also provides a comparison
between LSG and LSOMG models to demonstrate the number of improvements
done in the LSOMG model. Chapter 4 continues with the barotropic part of the
model. LSOMG is a 3-D baroclinic model but it can be run in a simplified 2-D
barotropic version; the barotropic part composes a stand-alone model. Chapter 5
is devoted to the baroclinic part of the LSOMG model. The third and last
part of the thesis contains the results of our simulations. Chapters 6 and 7
present the ocean-only simulations calculated by the LSOMG model. The results
from simplified numerical tests are discussed in Chapter 6. Sec. 6.1 is based on
Šachl et al. [2020]. The full LSOMG capabilities are demostrated in the realistic
simulations in Chapter 7. Chapter 8 summarizes our study published in Šachl
et al. [2019] on the numerical modelling of wind-driven OIMF. Paper Veĺımský
et al. [2019] on the toroidal part of OIMF is included separately since I was the
second not the first author.
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Part I

Introduction to ocean modelling
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1. Physical principles in OGCMs
OGCMs solve a set of so-called primitive equations that govern the dynamics of
the system, see Sec. 1.1. The primitive equations are local versions of global bal-
ance laws which express the conservation of some physical quantity such as mass
or linear momentum. In principle, the primitive equations are capable to describe
even the very fine-scale dynamical processes, but we are limited by the available
computational power of computers. We distinguish three classes of OGCMs with
respect to the spatial resolution: The eddy-parameterized models with the hori-
zontal resolution coarser than approximately 1◦, the eddy-permitting models with
the resolution finer than 1◦ but coarser than 1/6◦ and eddy-resolving models with
the resolution finer than 1/6◦ [Siedler et al., 2013]. As the nomenclature suggests,
the resolution of eddy-parameterized models is too coarse to resolve mesoscale
processes such as ocean eddies, the circulation in eddy-permitting models is more
vigorous with the presence of mesoscale activity but the fully developed mesoscale
turbulence is present only in eddy-resolving models. Nonetheless, even nowadays
state-of-art eddy-resolving ocean models are unable to capture relevant processes
on the smallest scales and it is questionable if it might be ever possible in the
future. The processes that occur on spatial scales that are smaller than the model
grid spacing are called subgrid scale (SGS) processes. Ocean modellers use exter-
nal parameterizations to include the SGS processes into the OGCMs. We discuss
the SGS processes and their parameterizations in the following text, see Secs. 1.2
and 1.3.

1.1 Governing equations of the OGCMs

1.1.1 Primitive equations
The primitive equations are derived within the framework of the continuum me-
chanics, see Martinec [2019]. It is common to apply certain approximations such
as hydrostatic and Boussinesq approximations. The hydrostatic approximation
assumes that the ocean is close to the hydrostatic balance which reduces the
vertical component of the momentum equation to a balance between the vertical
pressure gradient and the buoyancy force [Pedlosky, 1987].

The non-Boussinesq primitive equations under the hydrostatic approximation
are the horizontal momentum equation, hydrostatic balance (vertical momentum
equation), continuity equation and evolution equations for tracers and vertical-
column mass budget,

u,t + ∇ · (v ⊗ uρ) +Me3 × vρ = −fe3 × v − ∇hp

ρ0
+ F(u), (1.1)

p,z = −ρg, (1.2)
ρ,t + ρ0∇ · v = 0, (1.3)

(ρC),t + ρ0∇ · (vC) = −ρ0∇ · F + ρSC , (1.4)
(hρ̄z),t = −ρ0∇h · U + ρ0qw, (1.5)

where v = u+we3 is the complete velocity vector, u = ue1 +ve2 is the horizontal
velocity, e1 and e2 are orthogonal unit vectors in the horizontal plane and e3 is
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the unit vector parallel to the local vertical direction, M is the advective metric
frequency, f is the Coriolis parameter,

f = 2Ω sinϕ, (1.6)

where Ω is the angular velocity of the Earth’s rotation and ϕ is the latitude, p
is pressure, g is the gravitational acceleration, ρ is the density of water, ρ0 is the
constant reference density, vρ is the velocity defined by the linear momentum
density,

ρvρ = ρ0v, (1.7)

C is the tracer (typically temperature or salinity), U is the vertically integrated
horizontal velocity, F(u) is the friction force, F is the turbulent tracer flux, re-
spectively, SC is the volume source of tracer C, h is the water-column height, qw
is the surface water flux, a,t and a,z denote partial derivatives of a with respect
to time and vertical coordinate z, respectively, āz is vertically averaged quantity
a, ∇ is the three-dimensional (3-D) gradient operator and subscript h denotes
horizontal component, i.e., ∇h is the two-dimensional (2-D) horizontal gradient
operator [Griffies, 2004].

The whole system is completed by the equation of state which characterizes
the material properties of the continuum and it is derived from measurements,
see Sec. 1.4.

The Boussinesq approximation means that the true density ρ is replaced by
the reference density ρ0 everywhere except for the gravitational force and equation
of state [McWilliams, 2006]. The primitive equations under the Boussinesq and
hydrostatic approximations are

u,t + ∇ · (v ⊗ u) +Me3 × v = −fe3 × v − ∇hp

ρ0
+ F(u), (1.8)

p,z = −ρg, (1.9)
∇ · v = 0, (1.10)

C,t + ∇ · (vC) = −∇ · F + SC , (1.11)
η,t = −∇h · U + qw, (1.12)

where η is the sea surface height (SSH) [Griffies, 2004]. Eq. (1.10) is sometimes
called the incompressibility condition and we call Eq. (1.12) the SSH equation.

Ocean models have traditionally employed the hydrostatic and Boussinesq
approximations and it is still the most common implementation of the primitive
equations. Hence, we will focus on hydrostatic Boussinesq models hereinafter.
Nevertheless, it is good to keep in mind that some models attempt to omit these
assumptions, e.g., the Massachusetts Institute of Technology General Circulation
Model (MITgcm) has a non-hydrostatic capability [Adcroft et al., 2014] and the
Geophysical Fluid Dynamics Laboratory (GFDL) Modular Ocean Model (MOM)
allows employing non-Boussinesq kinematics [Griffies, 2012].
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1.1.2 Semi-discrete form of the primitive equations
Consider the boundary conditions at the ocean surface, z = η, and at the ocean
bottom, z = −H, in the form,

w = dη

dt
− qw = η,t + u · ∇η − qw at z = η, (1.13)

w = d(−H)
dt

= −u · ∇H. at z = −H, (1.14)

If we recall that the normal to the implicitly given surface S(x, y, z) = 0 is ∇S,
we can rewrite boundary conditions (1.13) and (1.14) into the equivalent form,

N · v = η,t − qw at z = η, (1.15)
N · v = 0 at z = −H, (1.16)

where N is the normal to the ocean surface (z − η = 0) and ocean bottom
(z +H = 0),

N = −∇η + e3 at z = η, (1.17)
N = ∇H + e3 at z = −H. (1.18)

It is useful to transform the primitive equations into the semi discrete form before
discretizing them in the numerical model. Griffies [2004] vertical integrates the
momentum and tracer equations and applies the boundary conditions to derive
the semi-discrete forms of the respective equations. The Leibniz integration rule
is used in the derivation to exchange the time differentiation and the vertical
integration,

z1∫
z2

C,tdz =
⎛⎝ z1∫
z2

Cdz

⎞⎠
,t

+ C(z1)z1,t + C(z2)z2,t, (1.19)

where C is a scalar, and to exchange the spatial divergence and the vertical
integration,

z1∫
z2

∇ · vdz = ∇h ·
z1∫
z2

udz − u(z1) · ∇hz1 + u(z2) · ∇hz2 + w(z1) − w(z2)

= ∇h ·
z1∫
z2

udz + (v · N) (z1) − (v · N) (z2), (1.20)

where v is a 3-D vector, u is its projection onto the horizontal plane and w is its
vertical component. The derivation is performed for a z-coordinate (see Sec. 2.3.1
for further details) model. The numbering of layers in the model is depicted in
Fig. 5.3. The total number of layers in the model is kmax. We summarize the
results in the following text. In order to shorten the notation, we write Ak instead
of A(zk), where A is an arbitrary quantity.

1.1.3 Semi-discrete form of the primitive equations: Tracer
budget for a grid cell

The tracer budget of the k-th interior grid cell is

∂t(hC)k = −∇h ·(huC+hFh)k−(wC)k−1+(wC)k−(F z
k−1−F z

k )+(hSC)k, (1.21)
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where Fh and F z are horizontal and vertical components of the turbulent tracer
flux, respectively,

F = (Fh, F z). (1.22)

Surface grid cells need to be treated more carefully. First, it is due to the inter-
action with atmosphere or ice. Second, the volume of a surface grid cell changes
in time due to the SSH variations in time. The tracer budget of the surface grid
cell can be expressed using the surface boundary condition (1.15) in the form,

∂t(hC)1 = −∇h · (huC + hFh)1 + (wC)1 + F z
1 − FC + (hSC)1, (1.23)

where FC is the total tracer flux which crosses the ocean surface,

FC = − [qwC0 − (F · N)0] . (1.24)

The ocean model can not provide sufficient information to evaluate this flux. It
needs to be supported by a boundary layer model or parameterization. Boundary
layer models give tracer flux QC crossing the ocean surface from other components
of the climate system such as atmosphere, rivers and sea ice. The form of QC is
given by

QC = −qwCw +Qturb
C , (1.25)

where Cw is the tracer concentration in the fresh water and Qturb
C is the turbulent

flux. If we assume a continuous tracer flux at the ocean surface,

FC = QC , (1.26)

we can rewrite Eq. (1.23) using information from the boundary layer model,

∂t(hC)1 = −∇h ·
(
huC + hFh

)
1
+ (wC + F z)1 +

[
qwCw −Qturb

C

]
+ (hS)1. (1.27)

Eq. (1.27) can be equivalently written as

h1∂tC1 = − ∇h ·
(
huC + hFh

)
1

+ (wC + F z)1 + qw (Cw − C1) −Qturb
C

+ (hS)1 + C1∇h · U, (1.28)

which is the form used if the time evolution of tracer concentration instead of
thickness weighted tracer concentration.

Remark that the only information about the tracer concentration in fresh
water Cw and turbulent flux Qturb

C is needed to close the tracer budget of a surface
grid cell. Let us focus on QC . The turbulent flux Qturb

C in the Eq. (1.25) can be
written in the form

Qturb
C = Vpiston

(
C1 − Cdata

)
+Qturb,0

C , (1.29)

where the first term is the restoring flux and the second term is the turbulent
flux from data or another model. In Eq. 1.29, Cdata is the data prescribed tracer
concentration and Vpiston is the so-called piston velocity,

Vpiston = γCh1, (1.30)
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where γC is the inverse restoring time. The larger piston velocity, the stronger
restoring of tracer concentration to the data prescribed tracer concentration. In-
deed, if C1 > Cdata, then Vpiston(C1 − Cdata) is positive and it acts as a tracer
flux out of the model which damps larger values of ocean surface tracer towards
Cdata. Similarly for C1 < Cdata.

Consider now two special cases of potential temperature and salinity. Tem-
perature is a neutral tracer,

Cw ≈ C1. (1.31)
For neutral tracers, the explicit contribution of fresh water influx disappears from
Eq. (1.28), although it is still present implicitly via ∇h · U. Salinity does not
generally cross the ocean surface (with the exception of ocean-ice interactions),
FC = QC = 0, which causes the salt content in the whole ocean to remain
reasonably constant. One can thus prescribe a fresh water flux to eliminate the
salt flux,

qw = Vpiston

(
1 − Sdata

S1

)
, (1.32)

where we set Qturb,0
C = 0.

1.1.4 Semi-discrete form of the primitive equations: Mo-
mentum budget for a grid cell

The momentum budget of the k-th interior grid cell is

(∂t + fe3×)(hu)k = − (hMe3 × u)k − ∇h · (hu ⊗ u)k − hk
∇hpk
ρ0

+
(
hF(u)

H

)
k

− [(wu)k−1 − (wu)k] + [(AV u,z)k−1 − (AV u,z)k], (1.33)

where the friction force F(u) has been split into horizontal F(u)
H and vertical F(u)

V

friction,
F(u) = F(u)

H + F(u)
V . (1.34)

The vertical friction in (1.33) is considered in the form

F(u)
V = (AV u,z),z, (1.35)

where AV is the non-negative vertical viscosity.
The momentum budget of the surface grid cell can be expressed using the

surface boundary condition (1.15) in the form,

(∂t + fe3×)(hu)1 = − (hMe3 × u)1 − ∇h · (hu ⊗ u)1 − h1
∇hp1

ρ0
+
(
hF(u)

H

)
1

+ (wu)1 − (AV u,z)1 − Fz
0, (1.36)

where Fz
0 is the vertical flux of horizontal momentum at the sea surface,

Fz
0 = − [qwu0 + (AV u,z)0] . (1.37)

The negative sign is used in order to have a positive flux (outflow from the ocean),
if qw < 0 (w > 0), or if horizontal velocity decreases upward. The first term in
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Eq. (1.37) is the vertical advective flux of horizontal momentum and the second
term is the vertical diffusive flux of horizontal momentum that parameterizes
subgrid scale processes.

Notice that the momentum budget of the surface grid cell looks formally the
same as the momentum budget of the interior cell in which the vertical advection
velocity at the sea surface is equal to the negative fresh-water flux, w0 = −qw.
The thickness h1 of the surface grid cell is, of course, not constant because it
depends on the SSH.

Similar to the tracer budget, neither horizontal velocity u0 nor the vertical
shear (u,z)0 at the sea surface can be determined from the ocean model. The
solution of the problem is to employ a boundary layer model that is capable of
providing the total momentum flux Qmom across the ocean surface and assume
that the total flux is continuous across the ocean surface,

Qmom = −Fz
0. (1.38)

The momentum flux Qmom is usually written as

Qmom = qwuw + τw
ρ0
, (1.39)

where uw is the fresh water velocity and τw is the surface wind stress, see
Sec. 5.14.4. The flux Fz

0 in Eq. (1.36) can now be expressed using Eqs. (1.38)
and (1.39),

(∂t + fe3×)(hu)1 = − (hMe3 × u)1 − ∇h · (hu ⊗ u)1 − h1
∇hp1

ρ0
+
(
hF(u)

H

)
1

+ (wu)1 − (AV u,z)1 +
[
qwuw + τw

ρ0

]
. (1.40)

We may further apply the assumption that the fresh water velocity is equal to
the horizontal velocity u1 which is already computed by the ocean model,

uw = u1. (1.41)

An alternative approach is to step forward the velocity u instead of the thick-
ness weighted velocity hu,

h1(∂t + fe3×)u1 = − (hMe3 × u)1 − ∇h · (hu ⊗ u)1 − h1
∇hp1

ρ0
+
(
hF(u)

H

)
1

+ (wu)1 − (AV u,z)1 +
[
−u1η,t + qwuw + τw

ρ0

]
. (1.42)

The SSH equation (1.12) is further used to express η,t,

h1(∂t + fe3×)u1 = − (hMe3 × u)1 − ∇h · (hu ⊗ u)1 − h1
∇hp1

ρ0
+
(
hF(u)

H

)
1

+ (wu)1 − (AV u,z)1 +
[
u1∇h · U + qw(uw − u1) + τw

ρ0

]
.

(1.43)
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Notice that under the assumption (1.41), the term qw(uw − u1) is equal to zero
and the surface water flux is then not explicitly present in Eq. (1.43). However,
the surface water flux still influences the horizontal velocity in the surface grid
cell by the change of term ∇h · U in Eq. (1.43) through the SSH equation (1.12).

Finally, consider the bottom grid cell, k = kmax. The derivation is similar to
the derivation for the surface grid cell, however, the thickness is usually assumed
to be constant and there is no flux of fresh water into the ocean across the bottom.
Hence, Eqs. (1.37) and (1.39) reduce for the bottom grid cell to

Fz
kmax

= −(AV u,z)kmax , (1.44)
Qmom = τb, (1.45)

where τb is the bottom friction, see Sec. 4.3.

1.2 Friction in ocean models
According to [Griffies and Hallberg, 2000], there are two central roles of friction:

• Friction in ocean models parameterizes the effect of frictional dissipation of
SGS processes in the presence of turbulence and hydrodynamic instabilities
on the scales which are resolved by the model.

• Numerical closure to suppress numerical instabilities.

As a consequence of the second point, the frictional dissipation in ocean mod-
els is much larger than in real oceans. The friction in ocean models is tuned
and it should be kept as low as possible. The need to tune the friction can be
one of the weak points in the ocean-model construction. It is known that certain
phenomena such as the Gulf Stream separation point [Chassignet and Garraffo,
2001] or the equatorial undercurrent strength [Large et al., 2001] are affected by
the friction. Generally speaking, there is no purely physically motivated closure
for linear momentum in ocean models [Griffies and Hallberg, 2000]. A straight-
forward choice is to apply a linear momentum closure in the form of a diffusion of
linear momentum. However, the SGS transport of linear momentum differ from
the tracer transport because of the pressure effects [Griffies, 2004]. Hence, the
frictional dissipation in the form of diffusion of linear momentum is questionable.

1.2.1 Form of the friction force
The friction force can be expressed as a divergence of a tensor,

F(u) = ∇ · σ, (1.46)

where σ is a deviatoric stress tensor,

σ11 + σ22 + σ33 = 0. (1.47)

We consider a Newtonian fluid, for which a linear relation between stress
and strain is assumed, i.e., the stress tensor is assumed to follow the generalized
Hooke’s Law,

σ

ρ
= A : e, (1.48)
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where A is the viscosity tensor and e is the strain-rate tensor,

e = 1
2
[
∇v + (∇v)T

]
. (1.49)

We further assume that the friction does not change the angular momentum.
It also means that the friction needs to vanish for the solid body rotation and
under uniform translations on a plane. It can be proved that the stress tensor
must be symmetric if the angular momentum is conserved [Martinec, 2019].

Finally, we assume that the ocean is in a hydrostatic balance or very close to
it. In this case, σ33 should be negligible [Williams, 1972] and thus we set it equal
to zero, σ33 = 0.

If we consider the dissipative feature of friction, it is straightforward to choose
the friction force in the form of a Laplacian operator acting on velocity. Unfor-
tunately, the Laplacian friction suffers from certain deficiencies.

First, it has not been derived from the first principles.
Second, the above mentioned assumptions are not completely fulfilled. Waj-

sowicz [1993] derived the correct form of the friction force under the constraints
given above. Assume for simplicity a fluid transversely isotropic with respect to
the vertical coordinate axis with constant horizontal and vertical viscosities, AH
and AV , respectively. The zonal component of the friction force in the spherical
coordinates is given by

F
(u)
λ = AH∆hu+ AV

∂2u

∂z2 + AH

(
1 − tan2 ϕ

a2

)
u− AH

2 sinϕ
a2 cos2 ϕ

∂v

∂λ
, (1.50)

where a is the Earth’s radius, λ is the longitude and ϕ is the latitude. The last two
terms in Eq. (1.50) are missing if the standard Laplacian operator is considered.
Another example is a transversely isotropic fluid in the Cartesian geometry with
spatially varying viscosities. The x component of the friction force is given by

F (u)
x = ∂

∂x

(
AH

∂u

∂x

)
+ ∂

∂y

(
AH

∂u

∂y

)
+ ∂

∂z

(
AV

∂u

∂z

)
+ ∂AH

∂y

∂v

∂x
− ∂AH

∂x

∂v

∂y
. (1.51)

The last two terms in Eq. (1.51) are needed, otherwise a solid body rotation
generates a viscous stress [Wajsowicz, 1993].

Third, as already mentioned at the beginning of this section, it is desirable
to have the friction force that removes a minimal amount of kinetic energy from
the scales of physical interest. Nonetheless, Griffies and Hallberg [2000] men-
tioned that the Laplacian operator removes both kinetic energy and enstrophy
over a broad range of spatial scales. Consequently, for a high-resolution model,
they suggested to use the biharmonic operator which has better scale-selective
properties.

1.2.2 Viscosity
The viscosity tensor can not be arbitrary, it has to meet three constraints:

• The strain tensor is symmetric, which implies that the viscosity tensor needs
to have the symmetry,

Amnpq = Amnqp, (1.52)
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since

0 = (A : e)mn − (A : e⊺)mn = Amnpqepq − Amnpqeqp = (Amnpq − Amnqp)epq
(1.53)

must hold for arbitrarily chosen strain tensor.

• The symmetry of the stress tensor implies that

Amnpq = Anmpq, (1.54)

which can be proved in a similar way as the previous symmetry rela-
tion (1.52).

• The last constraint comes from the horizontal kinetic energy budget. If we
require the friction to act in a dissipative manner at each point of the fluid,
the strain tensor must have the property,

Amnpq = Apqmn. (1.55)

The simplest approach is to use a constant viscosity. However, Griffies et al.
[2000] pointed out a problem if the spherical coordinates are used. A viscosity
which is appropriate for low latitudes may become too large for high latitudes
since meridians converge and the zonal grid spacing decreases. To overcome this
problem, we may taper the viscosity to smaller values at higher latitudes [Gent
et al., 1998]. Similarly, the viscosity can be prescribed to vary with the grid
spacing d. A quadratic dependence d2 can be used for the Laplacian friction and
a cubic dependence d3 can be used for the biharmonic friction.

Smagorinsky [1963, 1993] suggested to set the viscosity values according to
the velocity resolved in the model. More specifically, the horizontal Smagorinsky
viscosity is a function of the horizontal tension DT and the horizontal shearing
strain DS,

DT = e11 − e22, (1.56)
DS = 2e12, (1.57)

where eij are the strain rate components.
Leith [1968] and Leith [1996] proposed an alternative method to the approach

of Smagorinsky. It is based on the theory of the 2-D turbulence and the enstro-
phy flux. The approach should theoretically outperform the previous one since
Smagorinsky assumed a 3-D isotropic turbulence whereas the ocean is closer to
the quasi 2-D geostrophic turbulence. However, the results of tests in which both
viscosities were employed showed only little difference. Moreover, the Leith vis-
cosity is less convenient to calculate. As a consequence, this parameterization is
not frequently used in ocean modelling [Griffies et al., 2000].

It is common to assume that the ocean is transversely isotropic with respect
to the vertical axis. However, other possibilities have also been inspected. For
example, Large et al. [2001] suggested to use two horizontal viscosities instead of
a single one. This concept has improved their simulations especially currents in
the equatorial region.
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1.3 Neutral physics
The tracer transport in the ocean interior occurs predominantly along neutral
directions, which are the directions tangent to the local potential density sur-
face. As a consequence, the mass of fluid living between two isopycnals remains
nearly constant. The processes in the neutral direction are often called epineutral
whereas the processes that cross the neutral directions are called dianeutral. The
diffusion of tracers in the neutral direction and their stirring by mesoscale eddies
are called neutral physics.

1.3.1 SGS tracer transport tensor
The turbulent tracer fluxes F in Eq. (1.11) may be written in the form

F = −J · ∇C, (1.58)

where J is the second-order tracer transport tensor, which is generally a function
of the fluid flow and tracer field. Eq. (1.58) fulfills the compatibility condition
that ∇·F = 0 if the tracer field is constant everywhere. Each second-order tensor
can be decomposed to its symmetric part K and antisymmetric part R,

J = K + R. (1.59)

If we combine Eq. (1.58) and (1.59) and insert them into Eq. (1.11), we obtain

C,t + ∇ · (vC) = ∇ · [(K + R) · ∇C] , (1.60)

where the source term SC has been dropped out.
We further define the global tracer variance ν,

ν =
∫
V

C2ρ̃dV −

⎡⎣∫
V

Cρ̃dV

⎤⎦2

, (1.61)

where ρ̃ is the normalized density,

ρ̃ = ρ∫
V
ρdV

= ρ

m
. (1.62)

If we assume a global ocean with the constant fluid mass m and constant tracer
mass, the time evolution of tracer variance is governed by the first term in
Eq. (1.61). If we further neglect the effect of the boundary terms, the time
tendency of tracer variance is expressed by

mν,t = 2ρ0

∫
F · ∇CdV. (1.63)

The term F · ∇C is rewritten using Eqs. (1.58) and (1.59) to yield,

F · ∇C = −∇C · (R + K) · ∇C = −∇C · K · ∇C, (1.64)

since R is an asymmetric tensor. We require the tracer variance ν to decrease in
time which requires tensor K to be positive semidefinite,

∇C · K · ∇C ≥ 0. (1.65)
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Note that the tracer flux −R · ∇C is directed perpendicular to the tracer
gradient since (−R · ∇C) · ∇C = −∇C · R · ∇C = 0. The fluxes with this
orientation are called skew fluxes. They are related to the advection; they are
stirring tracers without mixing.

The local tracer extremum satisfies ∇C = 0. If we insert this condition into
Eq. (1.60), we get the evolution equation

C,t = K : ∇(∇C), (1.66)

where : stands for a double dot product of tensors. It means that tracer extrema
are unaffected by advection and skew diffusion but they are blurred and smoothed
by diffusion.

1.3.2 Neutral diffusion
Consider three orthogonal unit vectors e1, e2, e3, where e1, e2 are horizontal
vectors and e3 is the pointing in the vertical direction and it is positive upwards,
see also Sec. 5.1. Vectors e1, e2, e3 are base vectors of a coordinate frame which
we call the z frame. In order to mathematically express the neutral diffusion of
tracers, it is useful to introduce another coordinate frame, the so-called neutral
frame. It is given by another triplet of orthogonal unit vectors, e1, e2, e3 ,

e1 = e3 × ∇ρ
|e3 × ∇ρ|

, (1.67)

e2 = e3 × e1, (1.68)

e3 = ∇ρ
|∇ρ|

, (1.69)

where the density gradient ∇ρ is computed with pressure held fixed (locally
referenced),

∇ρ = ∇θ
(
∂ρ

∂θ

)
S,p

+ ∇S
(
∂ρ

∂S

)
θ,p

= ρ(−αT∇θ + βS∇S), (1.70)

where αT and βS are the thermal expansion and saline contraction coefficients,
respectively,

αT = −1
ρ

(
∂ρ

∂θ

)
S,p

, βS = 1
ρ

(
∂ρ

∂S

)
θ,p

. (1.71)

Since the z frame and the neutral frame are orthogonal, the transformation be-
tween them is provided by the orthogonal rotation matrix Λ where Λmn = em ·en
. It can be proved that the transformation matrix is equal to

Λ =

⎛⎜⎜⎝
sy

s
sx

s
√

1+s2
−sx√
1+s2

− sx

s
sy

s
√

1+s2
−sy√
1+s2

0 s√
1+s2

1√
1+s2,

⎞⎟⎟⎠ , (1.72)

where s is the magnitude of the vector s which is the neutral direction slope with
respect to the horizontal,

s = sxe1 + sye2 = ∇ρz = −∇hρ

ρ,z
= −αT∇θ + βS∇S

−αT θ,z + βS∇S,z
, (1.73)
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where ∇ρ is the horizontal gradient taken along the neutral direction. It can be
shown that

∇ρ = ∇h + s∂z. (1.74)

Redi [1982] suggested to write the diffusion tensor K in the neutral frame in
a diagonal form,

K =

⎛⎜⎝ KH 0 0
0 KH 0
0 0 KV

⎞⎟⎠ , (1.75)

where KH and KV are non-negative epineutral and dianeutral diffusivities, re-
spectively. Both diffusivities can be space and time dependent but the epineutral
diffusivity KH is generally much larger than the dianeutral diffusivity KV ,

ϵ = KV

KH

≈ 10−8. (1.76)

The diffusion tensor K in the z frame is called the Redi diffusion tensor and it
is obtained by transforming the diffusion tensor K from the neutral frame to the
z frame,

K = ΛKΛT = KH

(1 + s2)

⎛⎜⎝ 1 + s2
y + ϵs2

x (ϵ− 1)sxsy (1 − ϵ)sx
(ϵ− 1)sxsy 1 + s2

x + ϵs2
y (1 − ϵ)sy

(1 − ϵ)sx (1 − ϵ)sy ϵ+ s2

⎞⎟⎠ , (1.77)

where superscript T denotes the transposition. Gent and McWilliams [1990]
derived a small slope approximation of the Redi tensor,

Kssa = KH

⎛⎜⎝ 1 0 sx
0 1 sy
sx sy ϵ+ s2

⎞⎟⎠ . (1.78)

Note that the term s2 is retained in the (3,3) element. It is small under the small
slope approximation but it is not negligible with respect to ϵ.

The corresponding small slope diffusive flux in the z frame is

Fd = −Kssa · ∇C = −Kssa · (∇hC + e3C,z) = −Kssa · (∇ρC − sC,z + e3C,z)
= −KH∇ρC + (−KHs · ∇ρC −KVC,z) e3, (1.79)

where we used Eq. (1.74) in the third equality. It is possible to prove that the
errors in the neutral and dianeutral fluxes due to the use of the small slope
approximation are of the order of KHs

2 and KV s
2, respectively. Remark that

the dianeutral diffusive term under the small slope approximation reduces to a
vertical downgradient diffusive flux.

Note that if we used the form of the diffusion tensor given by Eq. (1.75)
also in the z-frame instead of the small slope approximation (1.78), we would
introduce first- and second-order errors in slope in the off-diagonal and diagonal
terms, respectively. The most significant, however, would be the error in the (3,3)
element since it may seriously change the dianeutral diffusion.
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1.3.3 Stirring by mesoscale eddies
Tracer transport in the ocean is a challenging process to be modelled. Large-
scale ocean currents and mesoscale eddies are the dominant mechanisms for the
tracer transport in the ocean. In the ocean interior, the tracers are mostly stirred
by mesoscale eddies and tracer gradients are dissipated by small scale mixing
processes. The eddy-parameterized ocean models do not resolve mesoscale eddies
and thus they need to parameterize the effect of stirring. However, the so-called
neutral physics schemes (see below) are important even for the eddy-permitting
ocean models and it is generally recommended to use them since, as already
mentioned, there still remain unresolved scales.

Gent and McWilliams [1990] and Gent et al. [1995] proposed the SGS stirring
of tracers based on the following assumptions:

• mesoscale eddies locally provide an adiabatic sink of available potential
energy

• mesoscale eddies act on all tracers in the same fashion

They suggest to use an eddy-induced velocity v∗ which is divergence free,

∇ · v∗ = 0, (1.80)

and it is written in the form,

v∗ = −∂z(κs) + e3∇h · (κs), (1.81)

where κ is a positive diffusivity. The velocity v∗ is simply added to the velocity
v resolved in the model when advecting tracers.

Griffies [1998] presented an alternative form by exploiting the relation between
the advective and skew fluxes. The velocity v∗ is divergence free, hence it can be
expressed by a vector stream function γ,

v∗ = ∇ × γ. (1.82)

The stream function is not unique because a gradient of an arbitrary scalar func-
tion µ can be added to γ,

γ = γ + ∇µ, (1.83)

without changing the value of v∗ because

∇ × ∇µ = 0. (1.84)

This property is called a gauge freedom and the function µ is called a gauge
function. Consider the advective flux Fa

e due to the eddy-induced velocity,

Fa
e = v∗C, (1.85)

and the skew flux Fs
e,

Fs
e = −∇C × γ = −R · ∇C, (1.86)
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where R is the second-order tensor,

R =

⎛⎜⎝ 0 γ3 −γ2
−γ3 0 γ1
γ2 −γ1 0

⎞⎟⎠ . (1.87)

The dynamical effects of the advective flux Fa
e and the skew flux Fs

e on the tracer
evolution are identical since

∇ · Fs
e = −∇ · (∇C × γ) = ∇ ·

[
(∇ × γ)C − ∇ × (Cγ)

]
= ∇ ·

[
(∇ × γ)C

]
= ∇ · (v∗C) = ∇ · Fa

e , (1.88)

where we used Eq. (1.82) and the second and third equalities are due to vector
identities. Consequently, if we knew the generating stream function γ, we could
use the skew-flux form instead of the advective-flux form. Griffies [1998] showed
that the stream function associated with the velocity v∗ given by Eq. (1.81) can
be written as

γgm = e3 × (κs), (1.89)

which implies

Rgm =

⎛⎜⎝ 0 0 −κsx
0 0 −κsy
κsx κsy 0

⎞⎟⎠ . (1.90)

Thus, for an arbitrary tracer, the skew flux which is dynamically equivalent to
the advective flux induced by v∗ is equal to

Fs
e = κ

[
sC,z − e3(s · ∇hC)

]
. (1.91)

If we combine the stirring by mesoscale eddies and neutral diffusive mixing, we
end up with the tracer flux,

F = Fd + Fs
e = sκC,z −KH(∇hC + sC,z)

− e3
[
KH

(
s · ∇hC + s2C,z

)
+KVC,z + κs · ∇hC

]
(1.92)

If the diffusivities associated with the stirring and neutral diffusion are equal,
KH = κ, the tracer flux simplifies,

F = −KH∇hC − e3
[
KH(2s · ∇hC + s2C,z) +KVC,z

]
. (1.93)

According to Griffies [2004], Eq. (1.93) provides two key benefits:

• The computation cost of the combination of these two schemes is less than
the cost of either one alone due to the simplicity of the horizontal flux. In
fact, the tracer flux (1.93) and the standard downgradient tracer flux given
by tensor (1.75) in the z frame differ only in the vertical component. The
neutral diffusion and stirring by eddies added the term KH(2s·∇hC+s2C,z)
to the vertical component.

• The discretized skew flux can be less prone to discretization errors relative
to the advective flux.
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1.4 Density in ocean models

1.4.1 State equation of sea water
The first attempts to derive a reliable state equation of sea water date back to
the beginning of the 20th century. The first equation of state (EOS) was built
on the efforts of Knudsen [1901], density measurements of Forch et al. [1902] and
high pressure measurements of Ekman [1908] for the deep waters. It is known
as the Knudsen formula. It became a standard and it has been used for many
years. Nevertheless, certain problems of this EOS has been discovered over time.
Thompson and Wirth [1931] reported 2 × 10−2 kg m−3 discrepancies between
the Knudsen formula and their own measurements. Later on, Cox et al. [1970],
Kremling [1972] and Millero et al. [1976] pointed out that systematic differences
are introduced when using the Knudsen formula.

Consequently, it became clear that a more suitable representation of the sea
water properties is needed. The work of Millero and Poisson [1981a], Millero and
Poisson [1981b], Millero et al. [1980] and Millero et al. [1981] has finally led to
the formulation of the new International Equation of State of Seawater (EOS-80)
approved by the Joint Panel for Oceanographic Tables and Standards in 1980.
The density ρ is computed as a function of in-situ temperature T , salinity S and
pressure p,

ρ(S, T, p) = ρ(S, T, 0)
1 − p

K(S,T,p)
(1.94)

where ρ(S, T, 0) is given by the one atmosphere International Equation of State
1980 and K(S, T, p) is the secant bulk modulus. The expressions for ρ(S, T, 0)
and K(S, T, p) can be found in the previously mentioned papers and they are
summarized in UNESCO [1981]. The overall standard error of EOS-80 estimated
by Millero et al. [1980] and Fofonoff [1985] is 9 × 10−3 kg m3, the error reduces to
5×10−3 kg m3 in the oceanographic ranges of temperature, salinity and pressure.

From the ocean-modeling point of view, there are at least two problems with
EOS-80. First, the equation may become computationally expensive. Wright
[1997] reported that the evaluation of the full EOS-80 consumes approximately
a half of the computation time in the low-order climate model developed by
Wright and Stocker [1991]. Second, EOS-80 is formulated in terms of the in-situ
temperature T which is in contrast to the representation in ocean models where
the potential temperature θ is typically used. Hence, it would be useful to have
the EOS formulated directly in the potential temperature.

Bryan and Cox [1972] proposed an algorithm to improve the EOS compu-
tational requirements. The algorithm was originally designed for the Knudsen
formula, however, it can also be applied to EOS-80. The idea is to replace the
general formula at each depth level in the model by an approximate formula
which is less computationally demanding. The depth levels are supposed to be
determined in advance. The density in the k-th depth level is then computed as

ρk(S, T ) = ρ0k+
[
x1k∆T + x2k∆S + x3k(∆T )2

+ x4k(∆S)2 + x5k(∆T∆S) + x6k(∆T )3

+ x7k(∆S)2∆T + x8k(∆T )2∆S + x9k(∆S)3
]

× 10−3, (1.95)
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where x1k, x2k, . . . , x9k are level-specific coefficients, ∆T = (T − T0k) and ∆S =
(S − S0k). The coefficients are determined for the chosen range of temperatures
and salinities (see table 1 in the paper) with T0k, S0k and ρ0k corresponding to the
mid-point values. Two versions of the proposed scheme applied to the Knudsen
formula were tested: A simplified scheme which contains only three coefficients
and a full scheme with all nine coefficients. The maximum error in density of
the nine-coefficient formula is approximately one order better than the error of
the three-coefficient formula. Both approximate formulas are more accurate at
greater depths where temperature and salinity ranges are narrower.

Unfortunately, the algorithm proposed by Bryan and Cox [1972] is not univer-
sal. For example, it can not be applied to a sigma-coordinate ocean model, where
levels of constant vertical coordinate does not correspond to constant depth levels.
This motivated Mellor [1991] to derive an approximate but less computationally
expensive formula to the full EOS-80 formula. Additionally, the input variable is
the potential temperature instead of the in-situ temperature. The proposed form
is

ρ(S, θ, p) = ρ(S, θ, 0) + 104 p

c2
m

(
1 − 0.2 p

c2
m

)
, (1.96)

where

cm = 1449.2 + 1.34(S − 35) + 4.55θ − 0.045θ2 + 0.00821p+ 15 × 10−9p2 (1.97)

and ρ(S, θ, 0) is the same as in the original EOS-80 formula because θ = T for
p = 0. The units of ρ, S, θ and p in Eqs. 1.96 and 1.97 are kg m−3, parts
per thousand, ◦C and decibars, respectively. The new formula is compared with
EOS-80 using the conversion relation θ = θ(S, T, p) from in-situ to potential
temperature provided by the formula of Bryden [1973]. The maximum density
error reaches 7 × 10−3 kg m−3 in the deepest waters which is of the same order
as the standard error of the full formula. The maximum errors in calculating the
density gradients are about 1%. They are also located in the deepest waters and
decrease with decreasing depth.

Wright [1997] proposed another approximate formula which is more compu-
tationally efficient than EOS-80. It is formulated in the potential density and it
is based on the Tumlirz equation of state,

ρ = p+ pw
λw + αw(p+ pw) , (1.98)

where αw, pw and λw are given by

αw = aw0 + aw1 θ + aw2 S, (1.99)
pw = bw0 + bw1 θ + bw2 θ

2 + bw3 θ
3 + bw4 S + bw5 Sθ, (1.100)

λw = cw0 + cw1 θ + cw2 θ
2 + cw3 θ

3 + cw4 S + cw5 Sθ, (1.101)

where awi , bwi and cwi are coefficients. Their values are determined and given in
table 1 in the paper for two parameter ranges, the full range,

0 Pa ≤p ≤ 108 Pa, (1.102)
−2◦C ≤θ ≤ 40◦C, (1.103)

0 PSU ≤S ≤ 40 PSU (1.104)
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and the reduced range,

0 Pa ≤p ≤ 5 × 107 Pa, (1.105)
−2◦C ≤θ ≤ 30◦C, (1.106)

28 PSU ≤S ≤ 38 PSU. (1.107)

The root-mean-square (RMS) and maximum errors in density obtained for the
full parameter range are 1.5 × 10−2 kg m−3 and 7.6 × 10−2 kg m−3, respectively.
The both errors decrease if the fit is performed for the reduced range. The RMS
and maximum errors are then equal to 2.1 × 10−3 kg m−3 and 1.1 × 10−2 kg m−3,
respectively.

Wright’s formula is efficient. Its rational-polynomial form contains only 15
coefficients which is a significant reduction from the original 41 coefficients of
the EOS-80 formula. In fact, the author claims that the formula reduced the
computation time to the less than one half even when compared with the formula
of Mellor [1991]. However, the Wright’s formula is used rarely due to its reduced
accuracy [McDougall et al., 2003].

The third formula which modified EOS-80 was proposed by Jackett and Mc-
Dougall [1995]. In contrast to Mellor’s and Wright’s formulas, this formula does
not decrease the computation time of EOS-80 since it has the same form as EOS-
80. The advantage of Jackett’s and McDougall’s formula is that the input variable
is the potential temperature, instead of the in-situ temperature,

ρ(S, θ, p) = ρ(S, θ, 0)
1 − p

K(S,θ,p)
(1.108)

It is accomplished by slightly adjusting the coefficients of the EOS-80 formula. In
fact, only the coefficients of the secant bulk modulus need to be changed because
ρ(S, θ, 0) = ρ(S, T, 0) due to θ = T for p = 0. The unchanged form of the formula
is justified by the fact that the potential and in-situ temperatures differ by much
less than a degree over most of the ocean. The parameter ranges in which the fit
is performed are chosen to be

0 ba ≤p ≤ 1000 ba, (1.109)
−2◦C ≤T ≤ 40◦C, (1.110)

0 PSU ≤S ≤ 42 PSU. (1.111)

The RMS and maximum absolute errors with respect to the EOS-80 formula are
5.8 × 10−4 kg m−3 and 6.7 × 10−3 kg m−3, respectively. The maximum error of
Jackett’s and McDougall’s EOS is of the same magnitude as the standard error of
EOS-80, which means that it is a suitable replacement of EOS-80. The modified
values of the coefficients are given in table A1 in the paper.

Feistel [1993] described how to determine the Gibbs thermodynamic potential
from the measurements and how to use it to compute physical quantities such
as potential temperature, specific heat or chemical potential. Feistel and Hagen
[1995] employed this method and derived the EOS from the Gibbs function (also
called specific free enthalpy, Gibbs energy, Gibbs free energy, or free energy [Feis-
tel, 2003]). Two important input data sets were included to improve the accuracy
of the new EOS, data on the temperature of maximum density [Caldwell, 1978]
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and sound speed data [Del Grosso, 1974]. The resulting EOS outperforms EOS-
80, but it is even more computationally demanding and it is not expressed as a
function of S, θ, p.

This motivated McDougall et al. [2003] to choose a suitable form of EOS with
S, θ, p as input variables and fit it to the EOS of Feistel and Hagen [1995].
The EOS form is similar to the one used by Wright [1997], however, more terms
are included to improve its accuracy. The new formula has 25 coefficients, the
Wright’s formula has only 15 coefficients. The coefficient values together with
three check values are given in Appendix B of the paper. The formula performs
well. It is faster than the modified EOS-80 of Jackett and McDougall [1995]
and it is significantly more accurate than the Wright’s formula. The maximum
error is four times smaller than the error of EOS-80 and 15 times smaller than
the error of Wright’s formula when compared to the EOS of Feistel and Hagen
[1995]. Specifically, the maximum error of the formula of McDougall et al. [2003]
is not larger than 3 × 10−3 kg m−3.

The EOS of McDougall et al. [2003] is further improved by Jackett et al. [2006].
The accuracy improvement is due to Feistel [2003] who updated the Gibbs po-
tential. The update consists mainly of incorporation of new data and addition
of higher-order terms in the formula. The Gibbs potential of Feistel [2003] con-
tains 101 coefficients instead of 89 coefficients used by Feistel and Hagen [1995].
Additionally, there are some minor improvements such as the incorporation of
the triple point of water in the fit of the Gibbs function. Jackett et al. [2006]
followed the same methodology as McDougall et al. [2003]. They used rational
functions and found the coefficients that give the best fit to the EOS of Feistel
[2003]. Despite the increased number of coefficients in the Gibbs potential, the
form and number of terms in the rational functions that are used for the fit are
kept unchanged. The errors between the resulting EOS and the EOS of Feistel
[2003] are larger by 20%-160% than the errors between the EOS of McDougall
et al. [2003] and the EOS of Feistel and Hagen [1995]. The RMS and maximum
errors in density are 2.4×10−3 kg m−3 and 6.5×10−3 kg m−3, respectively. These
errors are of the same order as the errors already contained in the EOS of Feistel
[2003]. Note, that the attempts to reduce the errors by changing the powers in
the rational functions (5.44) and (5.45) are caused only minor improvements. The
updated values of rational-function coefficients as well as three check values are
given in Appendix A of the paper.

Nonetheless, the updated values of coefficients are not the only contribu-
tion of Jackett et al. [2006]. They argued that the ocean model temperature
should be interpreted as conservative temperature Θ instead of commonly used
potential temperature θ. Consequently, they also derived the EOS in the form
ρ = ρ(S,Θ, p). The rational-function representation is again used and it is given
by Eqs. (5.43), (5.44) and (5.45) where the potential temperature is replaced
by the conservative temperature. The coefficient values together with two check
values are given in Appendix B of the paper.

1.4.2 Conversions between different temperatures
It has been already noted that EOSs formulated in potential temperature are ben-
eficial since temperature is commonly represented by the potential temperature
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in OGCMs. However, the results of temperature measurements, which are used
as initial conditions, are provided in in-situ temperature. Hence, it is necessary
to convert them from in-situ to potential temperature.

One possibility is to use the polynomial formula θ = θ(S, T, p) of Bryden
[1973],

θ = p
{

3.6504 × 10−4

+ T
[
8.3198 × 10−5 + T (−5.4065 × 10−7 + 4.0274 × 10−9T )

] }
− p(S − 35)(1.7439 × 10−5 − 2.9778 × 10−7T )
− p2

[
8.9309 × 10−7 + T (−3.1628 × 10−8 + 2.1987 × 10−10T )

]
+ 4.1057 × 10−9p2(S − 35)
− p3

(
−1.6056 × 10−10 + 5.0484 × 10−12T

)
, (1.112)

where S, T and p are in parts per thousand, ◦C and decibars, respectively.
Another method is provided by McDougall et al. [2003] and it is consistent

with their EOS. The potential temperature θ of a water parcel with respect to
the reference pressure pr is computed by solving the equation,

σe(S, θ, pr) = σe(S, T, p), (1.113)

where σe is the specific entropy, which can be derived from the Gibbs function

G(S, T, p)

,

σe = −
(
∂G

∂T

)
S,p

. (1.114)

The numerical procedure is described in details in Sec. 5.14.
Jackett et al. [2006] provided improved values (see Sec. 1.4.1) of the coefficients

in Eq. (5.197), the initial estimate of
(
∂σe

∂T

)
S,p

remained unchanged. The algorithm
that enables to compute the conservative temperature as a function of salinity
and potential temperature was also provided. It is based on the definition of
conservative temperature,

Θ ≡ hp(S,Θ)
C0
p

, (1.115)

where

C0
p ≡ he(S = 35, θ = 25, pr = 0)

25◦C ≈ 3992.103 J kg−1K−1, (1.116)

where he is the enthalpy and hp is the potential enthalpy. The potential enthalpy
is expressed using the power series,

hp = dh0 + dh1T + dh2T
2 + dh3T

3 + dh4T
4 + dh5T

5 + dh6T
6 + dh7T

7

+ dh8s+ dh9sT + dh10sT
2 + dh11sT

3 + dh12sT
4 + dh13sT

5

+ dh14s
1.5 + dh15s

1.5T + dh16s
1.5T 2 + dh17s

1.5T 3 + dh18s
1.5T 4

+ dh19s
2 + dh20s

2.5 + dh21s
3 + dh22s

3.5, (1.117)
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where s = S/40 is scaled salinity and T = θ/40◦C is scaled potential tempera-
ture. The coefficient values and four check values are given in appendix B of the
paper. The enthalpy is computed from the Gibbs function,

he(S, T, p) = G− (T + 273.15 ◦C)
(
∂G

∂T

)
S,p

. (1.118)
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2. Numerics in OGCMs

2.1 Horizontal grids (Arakawa grids)
A horizontal grid needs to be chosen in both 2-D barotropic and 3-D baroclinic
ocean models. The right choice is of fundamental importance because the grid
serves as a foundation stone or a framework for the discretization. As a conse-
quence, it affects the properties of the discrete form of the governing equations.
Additionally, it is usually not easy to switch from one grid to another.

Ocean modelers often use the so-called Arakawa grids. Those grids are tra-
ditionally used with the finite difference method in which a continuous spatial
derivative is replaced with the finite difference approximation based on the Tay-
lor expansion. Arakawa grids were introduced by Arakawa and Lamb [1977].
There are five Arakawa grids which are denoted by capital letters A-E. Fig. 2.1
depicts Arakawa grids B, C and E, which are used in ocean modelling. Arakawa
grids provide a regular distribution of scalar (SSH, temperature, salinity, etc.)
and vector (velocity, friction force, tidal force, etc.) quantities. Grid A is a sim-
ple collocated grid. Grids B-E are staggered, which means that different physical
quantities are discretized at different grid points (i.e., a staggered grid is com-
posed of several collocated grids). For example, grids B and E contain vector
points where the complete velocity vector is discretized and scalar points where
scalar quantities are discretized. A different placement of grid points with dis-
cretized physical quantities results in a different discretization of the terms in
the governing equations and a different accuracy in modelling certain physical
processes.

Randall [1994] discussed the discretization of linearized shallow-water equa-
tions in terms of inertia-gravity (Poincaré) waves on an f-plane, i.e., the dis-
cretization of the Coriolis, pressure gradient and divergence terms is targeted.
An important aspect is the necessity of averaging these terms on the particular
grid as summarized in Table 2.1. Generally speaking, it is desirable to avoid
averaging. The extensive averaging in the D-grid discretization is thus very un-
favourable and the D-grid behaves badly in numerical simulations. Similarly, the
A-grid solutions are extremely noisy and so it is recommended to avoid A-grid as
well. There is no averaging of pressure gradient and divergence on the C-grid, but
the troublemaker is the Coriolis term in which the averaging is inevitable. The
opposite is the B-grid where the discretization of the Coriolis term is simple, but
the pressure gradient and divergence needs averaging. However, the averaging
used on the B-grid acts perpendicular to the direction of the differentiation while
the averaging used on the A-grid acts in the same direction as the differentiation.
The A-grid differentiation may average out oscillatory behaviour of the field in
this direction. The E-grid seems to be a perfect choice since no averaging is
needed but the E-grid collapses to the A-grid if the solution is uniform in one
direction. To sum it up, the most promising are grids B and C. Their dispersion
relations are studied for two values of the grid spacing d, d = Rr/2 and d = 10Rr,
where Rr is the Rossby radius of deformation. It is found that the C-grid per-
forms well for d = Rr/2, however, it has serious problems when d = 10Rr. The
B-grid behaviour is different. The B-grid has problems for both grid spacings
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Figure 2.1: Sketches of Arakawa grids B, C and E.

34



tested, however, these problems are only moderate.

Grid Coriolis Pressure gradient Divergence
A no yes yes
B no yes yes
C yes no no
D yes yes yes
E no no no

Table 2.1: Averaging needed for the discretization of the Coriolis, pressure gradi-
ent and divergence terms on Arakawa grids A-E.

Batteen and Han [1981] examined consequences of the distorted dispersion re-
lation on the solution in the initial-value problems. They report a checkerboard
pattern of noise regardless of the ratio d/Rr on the B-grid, whereas the depen-
dence on d/Rr is present in the C-grid solution with the concentric noise for large
d/Rr (coarse grid). The incorrect behaviour of the B-grid is attributed to the av-
eraging of the pressure gradient which causes wrong treatment of inertia-gravity
waves. The C-grid problems are attributed to the averaging of the Coriolis force.
The authors also show how the diffusion can suppress the computational noise
on the B-grid and that the diffusion does not help much in suppressing the noise
on the C-grid. The final conclusion is made to use the B-grid with diffusion
in coarse-resolution models (d > 100 km) and C-grid in fine-resolution models
(d < 50 km).

Dukowicz [1995] extended the ideas of Wajsowicz [1986] and studied the dis-
persion relation of Rossby waves rather than the inertia-gravity waves. The dy-
namics of Rossby waves is described in the quasi-geostrophic, β-plane approxi-
mation [Gill, 1982] instead of the linearized shallow water equations on an f-plane
used in the previously mentioned studies. The focus is on the grids B and C. It
is pointed out that the B-grid outperforms the C-grid in modelling Rossby waves
for both resolved and unresolved Rossby radius. This is a surprising conclusion
if we consider the results for inertia-gravity waves.

Finally, we mention a different treatment of the boundary conditions on grids
B and C. The B-grid naturally implements the no-slip boundary conditions be-
cause both velocity components are discretized at the same grid point. In con-
trast, the C-grid discretization allows for a straightforward implementation of the
free-slip boundary conditions with a possibility to implement the no-slip boundary
conditions as well. The free-slip boundary conditions are probably more realistic.
Hsieh et al. [1983] reported more serious problems in the alongshore behaviour
of the baroclinic Kelvin waves under poor resolution on the B-grid than on the
C-grid.

Motivated by all these aspects, ocean modellers usually choose either the B-
grid or the C-grid. Of course, there are exceptions. The CANDIE model is
available in A-grid and C-grid versions [Sheng et al., 1998]; the MITgcm model
supports C-grid and C-D-grid [Adcroft et al., 1999]; and the LSG model, which
was a base for the LSOMG model, is build on the E-grid [Maier-Reimer and
Mikolajewicz, 1992].
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2.2 Generalized horizontal coordinates
Roberts et al. [2006] define five properties that a coordinate grid which is suitable
for ocean modelling should satisfy:

1. Orthogonality

2. Smooth spatial variations in grid spacing

3. east-west alignment of grid parallels near the Equator

4. Placement of singularities sufficiently away from the ocean

5. Grid cell aspect ratios close to unity

Strictly speaking, property 1) is not completely necessary. However, it greatly
simplifies the numerics because the two coordinate directions are independent
of each other and also metric terms in the momentum equations are simplified
[Griffies, 2004]. It is a commonly used assumption. Property 2) is required to
maintain the accuracy of the finite difference solution. Property 3) is useful
to numerically better resolve equatorial ocean dynamics. The importance of
properties 4) and 5) is discussed below in the context of spherical coordinates
(SC).

Ocean models used to employ the SC, but the SC grid fulfills only first three
properties. The main problem is the convergence of meridians at the poles: both
South and North Poles are singular points of the SC. The South-Pole singularity
does not cause any inconveniences because of Antarctica. Antarctica is a land
area and so it is not a part of the computational domain of an ocean model. On
the contrary, the North Pole is located in the Arctic ocean and it needs a special
treatment. The point singularity can be bypassed by including a small artificial
island at the North Pole. Unfortunately, this adjustment solves the problem only
partially because the artificial island distorts dynamics in the polar region. Be-
sides, the zonal grid spacing changes with latitude as cosϕ and it decreases when
approaching a pole. The decrease of zonal grid spacing is not critical near the
South Pole because the Antarctica covers the area south of approximately 80◦S,
but it may result in a serious restriction of time step near the North Pole due to
the Courant–Friedrichs–Lewy (CFL) criterion. Certain methods have been pro-
posed to remedy this problem. A popular solution was the application of Fourier
filtering to selectively damp the shorter wavelengths which cause the main trou-
bles. This is obviously not a neat treatment and it may produce some undesired
phenomena such as static instabilities, noisy vertical velocities and small per-
turbations in the horizontal velocities [Murray and Reason, 2002]. Besides that,
Murray and Reason [2001] pointed out that the aspect ratio of grid cells near the
North Pole is large which is not a positive feature of the computation grid. Such
a grid is computationally inefficient and may not capture the oceanic physical
processes accurately.

There are several possibilities that allow for keeping the SC while improving
their most salient drawbacks. Straightforward idea is to rotate the whole grid.
Semtner [1976], Hibler III and Bryan [1987] and Semtner [1987] used a rotated SC
grid with both South and North Poles located on the Equator for modelling the
Arctic Ocean. This configuration might be useful for the Arctic-Ocean modelling,
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however, it is not suitable for the grid of a global ocean model. Murray [1996]
referred that the land antipodes account for only 10% of the world’s land area and
nowhere lie sufficiently far inland, see also Fig. 1 in his paper. As a consequence, a
rotated SC grid can never fully accomplish property 4) and may violate property
3). Deleersnijder et al. [1993] and Eby and Holloway [1994] proposed another
solution. A composite grid was used instead of a single coordinate grid. The
Arctic and North Atlantic Oceans were modeled on a SC grid rotated by 90◦. The
rotated grid was joined to the standard SC grid on the Equator. The problem
is that the poles of the rotated grid lied in the North Pacific and Indian Oceans.
Hence, the SC grid was used in this region but it can not be joined properly
to the rotated grid at the Bering Strait. Additionally, according to Murray and
Reason [2001], this composite grid suffers from a possibly inadequate resolution in
the Arctic when used in coarse-resolution simulations and a discontinuity in grid
spacing at the join. Eby and Holloway [1994] and Coward et al. [1994] argued that
the distortion of ocean dynamics due to the latter issue is negligible. Although this
grid is used in the Ocean Circulation and Climate Advanced Modelling Project
(OCCAM) model, in which a simple channel model is used in Bering Strait,
more flexible and general approach is needed. It is provided by the orthogonal
curvilinear grids.

A solution to the pole problem is provided by the orthogonal curvilinear grids
with relocated poles. The general idea is to relocate the coordinate singularity
from oceans to continents. The computational domain of an OGCM does not
contain continental areas and thus the presence of coordinate singularities is not
disturbing there. The orthogonal curvilinear grids with relocated poles can be
divided into two main categories: Dipolar grids which contain two poles and
tripolar grids which contain three poles. The dipolar grids have more in common
with the standard SC grid. Tripolar grids are slightly different, probably more
complicated but they may have better properties. The representatives of dipolar
grids are the dipolar reprojected grid of Murray [1996] and the grid of Roberts
et al. [2006]. The examples of tripolar grids are the tripolar reprojected grid of
Murray [1996] and the tripolar confocal grid of Murray [1996]. A dipolar grid
has been supported, e.g., by the MPIOM [Marsland et al., 2003] and POP [Smith
et al., 2010] models. Nevertheless, it seems that the trend is to prefer the tripolar
grids. For example, the up-to-date versions of the MPIOM and POP models as
well as the NEMO [Madec, 2012] and MOM [Griffies, 2012] models use tripolar
grids.

2.3 Vertical discretization
The discretization in a barotropic model is completed by choosing the horizontal
grid. However, the additional choice of an appropriate vertical coordinate has to
be made in a baroclinic model. There are three most common types of vertical
coordinates used in ocean models, geopotential (z) coordinate, isopycnal (ρ) co-
ordinate and terrain-following (σ) coordinate, see the figures on the NOM group
webpage (https://www.oc.nps.edu/nom/modeling/vertical grids.html) for
illustration. Each coordinate type is advantageous in a particular region of the
global ocean and experiences problems elsewhere. Consider the following three
parts of the ocean: The surface mixed layer, the ocean interior and the bottom.
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The surface mixed layer provides a transition zone between the ocean and
the other parts of the climate system, such as the atmosphere, sea ice or rivers.
It is a region where ocean waters are efficiently mixed by turbulent convective
processes, so the stratification is very weak. The resolution needed to capture
these turbulent processes is on the scale of meters or even shorter. Such small
scales are impossible to reach even in high-resolution state-of-art ocean models,
hence parameterizations are required. The description of the surface mixed layer
is natural in the z coordinate.

The ocean interior is different. Tracer transport processes that occur here
are predominantly directed along surfaces of constant potential density. In other
words, the isopycnal mixing is much stronger that the diapycnal. Consequently,
it is suitable to use the ρ coordinate in this region.

The last part is the ocean bottom. We must capture the shape of the bottom
topography because it influences the direction of currents. Moreover, similar
to the surface boundary, there exists a turbulent bottom boundary layer (BBL)
where so-called overflows occur. These density driven near-bottom currents may
cross ridges of sills between ocean basins or slide down the continental slopes
affecting the deep water [Beckmann and Döscher, 1997]. σ coordinate provides
a suitable framework for the BBL and representation of the bathymetry. We
discuss each vertical coordinate in more details in the following text based on
Griffies [2004].

2.3.1 z coordinate
The most straightforward choice is the z-coordinate. Undisturbed ocean surface
is given by z = 0 in this representation. Vertical axis is traditionally oriented
upwards, so that the bottom is given by z = −H. Bryan [1969], Semtner [1974]
and Cox [1984] established the basic methods for the z-coordinate models. Their
efforts finally lead to the MOM ocean model which is currently available to the
community in version 6 [Adcroft et al.]. The z-coordinate is the most extensive
choice of ocean modellers throughout the history. Many renowned models are
based on it. We mention the MITgcm model, the Los Alamos Parallel Ocean
Program (POP), the Southampton Oceanography Centre OCCAM model and
ocean part of the Hadley Centre Global Environmental Model (HadGEM) model.
The main advantages of the z-coordinate are:

• Simple numerical discretization.

• World-wide use of this model class reflects in decent knowledge about their
pitfalls and ways how to (at least partly) overcome them.

• Natural parameterization of the surface mixed layer.

• State equation of sea water, which is a nonlinear function of pressure, tem-
perature and density, can be accurately expressed.

• No problems with the horizontal pressure gradients (see σ-coordinate mod-
els).

Unfortunately, there are also disadvantages:
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• The precise representation of bottom topography is troublesome. The
Bryan [1969] “full cell” (“staircase”) approach can be modified to the “par-
tial cell” and “shaved cell” approaches [Adcroft et al., 1997, Pacanowski and
Gnanadesikan, 1998]. However, the representation of the BBL processes re-
mains difficult.

• The cell thickness of the first grid cell is not completely arbitrary. The
depressed ocean surface is not allowed to cause negative thickness of the
first grid cell. This may restrict the high resolution of the model when tidal
simulation is intended or when coupling to the sea ice model.

• Tracer advection and diffusion driven by mesoscale eddies in the interior
of the ocean requires special care. Horizontal diffusion results in an un-
physically large diapycnal mixing, therefore it is necessary to perform a
transformation into isopycnal direction.

2.3.2 σ coordinate
Phillips [1957] first suggested to use the σ-coordinate. His motivation was to find
a coordinate system for an atmospheric model in which the ground is a coordinate
surface. He proposed to define this coordinate as

σ = p

pg
, (2.1)

where p is the pressure and pg is the pressure at the ground level. In ocean
models, it is common to define the σ-coordinate in a slightly different way,

σ = z − η

H + η
. (2.2)

Hence, σ = 0 and σ = −1 at the ocean surface, z = η, and at the bottom,
z = −H, respectively. Additionally, σ is a monotonic function of z, which means
that there exists a unique mapping between the space and time dependent interval
⟨−H(λ, ϕ), η(λ, ϕ, t)⟩ in the z-coordinate and the constant interval ⟨−1, 0⟩ in the
σ-coordinate. Note that the space and time dependencies have moved to the
transformation rule.

The σ-coordinate brings the following advantages:

• The representation of the bottom is smooth and representation of the BBL
natural.

• The accurate representation of the state equation of sea water.

The main disadvantages are:

• The representation of the surface mixed layer may be imperfect. The dis-
tance between isolines grow with the increasing ocean depth which may
result in an insufficient coverage in the mixed layer. Song and Haidvogel
[1994] provided an example of a coastal model with 21 σ-levels which gives
a sufficient mixed-layer resolution of 4 m on the shelf but a crude resolution
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of 230 m in the depth of 4600 m. As a remedy, he designed the s-coordinate
which is a generalized σ-coordinate:

z = η(1 + s) +Hcs+ (H −Hc)Cs(s, as, bs), (2.3)

where s is in range 1 ≤ s ≤ 0, Hc is the minimum depth and Cs(s, as, bs) is
the nonlinear function of coordinate s given by

Cs(s, as, bs) = (1 − bs)
sinh(ass)
sinh as

+ bs
tanh[as(s+ 1/2)] − tanh(as/2)

2 tanh(as/2) , (2.4)

which can be tuned by control parameters as and bs in ranges

0 ≤ as ≤ 20, (2.5)
0 ≤ bs ≤ 1. (2.6)

The s-coordinate becomes the σ-coordinate in the limit as → 0. There are
three terms in the definition Eq. (2.3). Their purpose is to follow the free
surface, prevent possible linear instability and stretch the interior coordinate
plus follow the bottom, respectively. It is shown that the resolution in the
surface layer is significantly improved if s-coordinate is used, see Figs. 1b, 1c
of Song and Haidvogel [1994].

• σ-coordinate models experience similar problems as the z-coordinate models
in modelling isopycnal advection and diffusion. However, the problem is
more serious here. The isopycnal surfaces are usually only slightly inclined
so that they are close to the z-coordinate surfaces. In contrast, the σ-
coordinate surfaces in the ocean interior may be inclined much more if the
bottom-topography is steep.

• The accurate computation of horizontal pressure gradients is a controversial
issue [Haney, 1991, Berntsen, 2002]. The horizontal pressure gradient is a
sum of two terms

∇hp = ∇σp+ ρg∇σz, (2.7)

where ∇σ is a gradient along surfaces of constant σ. The magnitude of the
two terms may become of the same order in certain ocean regions (next to
continental shelves and sea mounts). Hence, it requires to compute both
terms very accurately.

The first σ-coordinate ocean model was designed by Blumberg and Mellor
[1987]. Well-known σ-coordinate models are the Princeton Ocean Model (POM)
and the Regional Ocean Modeling System (ROMS). The models from this class
have been traditionally used in regional and coastal ocean studies. There exist
studies that apply σ-coordinate models to basin-scale problems, e.g., Ezer and
Mellor [1994], Haidvogel et al. [2000], Willebrand et al. [2001], but these models
are usually not used for studies of the global ocean. As far as we know, the only
σ-coordinate models that have been used to study the world ocean circulation
are the INMOM [Gusev and Diansky, 2014] and MASNUM [Lei, 2014] models.
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2.3.3 ρ coordinate
The isopycnal models use the potential density as the vertical coordinate. It is
defined as the density that a fluid parcel would have if moved adiabatically and
with constant composition to a reference pressure ([Vallis, 2006], page 25). The
potential density is a valid vertical coordinate if it is a monotonic function of
ocean depth. This assumption is valid if a simplified equation of state is used.

The main advantages are:

• The isopycnal models are able to capture the physics of ocean interior. For
example, the problems with diapycnal mixing that occur in the z-coordinate
and σ-coordinate models are implicitly solved in isopycnal models.

• The overflow simulations in isopycnal models show good results. There is
certain superiority over the z-coordinate models [Legg et al., 2006].

The main disadvantages are:

• It is difficult to include a realistic state equation. The potential density
surfaces are also material surfaces in an adiabatic fluid. However, there is
no available materially conserved density coordinate if we employ a realistic
state equation.

• The resolution of an isopycnal model in a particular region is governed
by the present potential-density stratification. It means that the model
has enhanced resolution in dynamically important regions where density
gradients are strong. On the other hand, the resolution is poor in the well-
mixed regions. The latter is the case of the surface mixed layer. In order to
solve this problem, the bulk parameterizations of the surface mixed layer
are used [Bleck et al., 1992, Oberhuber, 1993a].

The representants of this model class are the Hallberg Isopycnal Model (HIM),
the Miami Isopycnic Model (MICOM) and the OPYC (junction of Ocean and
isoPYCnal coordinates) model.

2.4 Advection schemes
The advection in the evolution equation for tracers (1.11) can be discretized using
various numerical schemes. The individual schemes differ by the discretization
of a tracer on the grid-cell face. We distinguish between linear and nonlinear
advection schemes. In linear schemes, the coefficients for interpolation of the
advected tracer are linear and they are functions of the flow, not the tracer
field itself [Adcroft et al., 2014]. We discuss the centered second-order, centered
fourth order, first-order upwind and upwind biased third-order (QUICK) linear
advection schemes in this section. The nonlinear schemes are discussed in Sec. 5.7.
We also distinguish whether the advection scheme is positive or not. If the scheme
is positive (positive definite), then it guarantees that negative tracer values will
not appear if the initial tracer distribution was strictly positive. The schemes that
are not positive are not recommended for passive tracers. It is also desirable to use
the same scheme for both active and passive tracers [Madec, 2012]. Finally, the
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scheme is called monotonic, if the initial monotonic tracer distribution remains
monotonic after the advection process.

In this section, we assume for simplicity that the grid is 1-D and regular with
a unit grid spacing. We define the differencing and averaging operators, δi and
¯i, respectively,

δiA = Ai+ 1
2

− Ai− 1
2
, (2.8)

A
i =

Ai+ 1
2

+ Ai− 1
2

2 , (2.9)

where A is an arbitrary scalar quantity. If we neglect the terms with turbulent
tracer fluxes and the source term in Eq. (1.11), the evolution equation for tracers
reduces to

C,t + δiF = 0, (2.10)
where F = uC is the tracer flux.

2.4.1 Centered second-order scheme
The centered second-order scheme is simple, the tracer flux is given by

Fi+ 1
2

= ui+ 1
2
C
i+ 1

2 . (2.11)

The scheme is non diffusive and so it conserves the tracer variance, but it is
very noisy due to its dispersive nature. It must be used in conjunction with an
explicit diffusion operator to produce a meaningful solution [Madec, 2012]. It may
lead to unphysical oscillatory behaviour in an implicit solution or to a disastrous
nonconvergence in an explicit computation in regions where convection strongly
dominates diffusion [Leonard, 1979]. The centered second-order scheme can be
used with the leapfrog time stepping scheme but it is unstable with the explicit
Euler time stepping scheme.

2.4.2 First-order upwind scheme
Another simple scheme with virtually opposite characteristics to the centered
second-order scheme is the first-order upwind scheme,

Fi+ 1
2

= ui+ 1
2
CI , (2.12)

where index I depends on the sign of advecting velocity

I =
{ i if ui+ 1

2
> 0,

i+ 1 if ui+ 1
2
< 0. (2.13)

The scheme is known to be very diffusive. Gerdes et al. [1991] refers that the
upwind scheme is too diffusive to be of practical use except in coarse-resolution
models. On the other hand, it is a positive and monotonic scheme [Guan and
Zhang, 2004]. Some more sophisticated schemes which are nearly monotonic are
based on the first-order upwind scheme [Durran, 1999]. Remark that explicit
time scheme is necessary for the upwind scheme regardless of its order (first-
order, third-order, etc.) due to the diffusive nature of the upwind scheme. The
prove for a simplified 1-D tracer equation with constant velocities and without
diffusion terms can be found in Griffies [2004].
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2.4.3 Centered fourth-order scheme
The centered fourth-order scheme,

Fi+ 1
2

= ui+ 1
2

(
C − 1

6δiδi+
1
2
C
)i+ 1

2

, (2.14)

may be appealing for high-resolution simulations where dynamical scales are well
resolved. However, the scheme is noisy similar to the centered second-order
scheme and certain amount of diffusion is again needed. The biharmonic dif-
fusion is recommended because it is more scale selective [Adcroft et al., 2014].

2.4.4 Quadratic Upstream Interpolation for Convective
Kinematics (QUICK)

The QUICK scheme is also known as the Upwind-Biased Scheme (UBS). It is
based on the third-order upwind-biased quadratic interpolation [Leonard, 1979],

Fi+ 1
2

= ui+ 1
2

(
C − 1

8δiδi+
1
2
C
)i+ 1

2

+ 1
16
⏐⏐⏐ui+ 1

2

⏐⏐⏐ δi+ 1
2
δiδi+ 1

2
C. (2.15)

The scheme is not positive but it offers a relatively good compromise between the
accuracy and smoothness [Adcroft et al., 2014]. It is less diffusive than the stan-
dard upwind scheme and less dispersive than the centered second-order scheme
[Prange et al., 2003]. The over-shooting inherent in the centered second-order
advection scheme is significantly reduced [Pacanowski and Griffies, 2000].

The scheme is unstable if leapfrog or explicit Euler time stepping schemes are
employed. Farrow and Stevens [1995] suggested to use a two time level predictor-
corrector time integration scheme with the centered second-order scheme for the
predictor step. Another possibility implemented in the NCAR model is to use
the leapfrog time stepping scheme but evaluate the intrinsic diffusive term in the
previous not the current time step [Holland et al., 1998]. This modification solves
the stability issue and it less computationally expensive.

2.4.5 Summary
The existence of different advection schemes suggests that it might be tricky to
find the best option. Indeed, Adcroft et al. [2014] argued that there is no perfectly
universal advection scheme and the determination of the most suitable scheme for
the particular application is often a matter of trial. The model resolution could
also be decisive. In a coarse-resolution model, Adcroft et al. [2014] suggested
that the simplest scheme might be the best one. In a high-resolution model, they
preferred either a higher-order scheme with (optionally) scale-selective diffusion
or the flux limited methods (see Sec. 5.7).

Figures 2.13, 2.14 and 2.15, 2.16, 2.17 in Adcroft et al. [2014] may also provide
useful hints for the right choice of the advection scheme. Figures 2.13, 2.14
depict a comparison between different advection schemes in one dimension for
the Courant numbers 0.05 and 0.89. Figures 2.15, 2.16, 2.17 show the advection
of a Gaussian bell in a rectangular basin for the Courant numbers 0.01, 0.27 and
0.47.
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Part II

Ocean model LSOMG
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3. Introduction

3.1 Motivations and requirements
The LSOMG model is a z-coordinate baroclinic OGCM. It solves the primitive
equations under the Boussinesq, hydrostatic and shallow ocean approximations,
see Sec. 1.1. Our motivation for the development of the LSOMG model was the
intention to have an OGCM that is

• a global primitive-equation ocean model

• fully 3-D not only barotropic and thus it is capable of generating the 3-D
distribution of 3-D velocities (important, for example, for the modelling of
toroidal magnetic field in the ocean)

• open for modifications

• understood on a code level by our group

• usable for geophysical purposes, such as modelling the ocean induced mag-
netic field

We have chosen the LSG ocean model which was developed at the Max–Planck–
Institut für Meteorologie in Germany. The main reason for our choice was the
model designation for large-scale long-term simulations, for example, climate
studies. Such model is certainly not suitable for regional studies of eddy activity
but its complexity could be sufficient for the geophysical applications. On top of
that, a simplified numerical core implies faster computations and a light-weight
tool for the user/programmer.

The model fulfils our first and second requirements. The third requirement
is also fulfilled. We obtained the LSG code from Dr. Butzin and we were free to
modify it. The fourth requirement is fulfilled only partly. The model is described
in Maier-Reimer and Mikolajewicz [1992]. The text is meant to be the LSG
manual but it is incomplete. The code is not commented frequently either, which
makes its understanding difficult. The fifth requirement is invalid. It turned
out during the development that the LSG model is obsolete. We have gradually
rewritten the whole code with the exception of several parts, such as the advection
scheme QUICK or the sea-ice model. The major modifications are summarized in
Sec. 3.2 and in Table 3.1. As a consequence, we call the resulting model LSOMG
since the original acronym LSG is now inaccurate and misleading. The LSOMG
is the shortcut for the “Libor Sachl Ocean Model for Geophysics”.

Note that the LSOMG model is fully 3-D but it can also be run in a barotropic
version. We call this version LSOMG-BT. The LSOMG-BT model is described
in details in Sec. 4. It can be used to test the barotropic part of the LSOMG
model, see Sec. 6.1, or to model the tidal circulation, see Sec. 7.1.
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3.2 Summary of differences between the LSG
and LSOMG models

Both the LSG and LSOMG models discretize the governing equations using the
finite difference method. The LSG model uses the Arakawa E-grid while the
LSOMG model is build on the Arakawa C-grid. The main motivation to switch
from the E-grid to C-grid was to avoid the coexistence of two solutions that
evolve independently of each other on the E-grid . A more natural treatment of
boundary conditions and simpler indexing of grid points are additional advan-
tages. Barotropic LSOMG-BT also supports Arakawa grids B and E for certain
time stepping schemes as an alternative to the default C-grid.

The governing equations in the LSG model are expressed in the spherical
coordinates. It is a valid option but it is not free of deficiencies, as discussed in
Sec. 2.2. In the LSOMG model, we rather implemented the governing equations
in their general form using the metric coefficients of the particular coordinate
system. Consequently, the LSOMG model is able to handle arbitrary orthogonal
horizontal coordinates. The suitable coordinate grids are listed in Sec. 2.2. There
are three generalized grids available in the LSOMG model, see Sec. 5.11. The
tripolar reprojected grid of Murray [1996] is our preferred choice. Note that apart
from the general forms of operators in the model, the programs that regrid data
on the computational grids also need special attention. We calculate the model
bathymetry by averaging data values within model grid cells which requires an
algorithm to determine the position of data point with respect to the particular
grid cell, see Sec. 5.14.1. Besides that, vector data such as 10-m wind speed
need to be rotated into the direction of coordinate axes of the chosen coordinate
system, see Sec. 5.14.4.

The ad-hoc choice of vertical layers in the LSG model has been replaced
by a semi-automatically generated distribution of vertical layers in the LSOMG
model. The distribution is determined from a prescribed smooth distribution
of level depths and thicknesses. The scheme is not fully automatic because it
contains one tunable parameter, see Sec. 5.3.

The original LSG model propagates the barotropic part of the momentum
equation in time using the implicit time stepping scheme. The implicit scheme
allows to step the model forward in time with a significantly larger time step than
the explicit scheme. On the other hand, the implicit scheme requires to solve a
system of linear equations in each time step. Our primary goal was to model the
wind- and buoyancy-driven ocean circulation but we also intended to force the
model by tides. The accurate tidal modelling requires the time step to be “small
enough” to resolve the tidal periods. The period of principal lunar semidiurnal M2
tide is approximately 12.4 hours, which means that a tidally-driven model needs
to resolve much finer time scales than a purely wind-driven model. The implicit
time-stepping scheme with a short time step could become time consuming due
to the need to repeatedly solve the system of linear equations. The explicit time-
stepping scheme is thus better suited for the tidal modelling. The time-stepping
schemes for the barotropic system that are available in the LSOMG model are
discussed in Sec. 4.1.

The baroclinic circulation is forced by the vertically dependent forcing terms
in the momentum equation. The baroclinic forcing in the original LSG model
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includes pressure gradient and horizontal friction force while the vertical friction
force and nonlinear terms are neglected. Both terms are now available:

• The nonlinear terms are expressed either in the vector invariant form, see
Eq. (5.16), or in the flux form, see Eq. (5.18). The implementation follows
Madec [2012].

• The vertical friction arises from the vertical shears of horizontal velocities.
The term is discretized implicitly in time to ensure stability even for large
vertical eddy viscosity.

The horizontal friction force has already been present in the LSG model, how-
ever, its implementation has been improved. The LSG models uses the horizontal
friction in the form of a Laplacian. The LSOMG model retains this option but a
more appropriate form given by Murray and Reason [2001] is also available. Sim-
ilarly, horizontal viscosities are constant in LSG but LSOMG enables viscosities
which adapt according to the actual velocity field [Smagorinsky, 1963, 1993], see
Sec. 1.2.2 and 5.6 for more details.

The form of diffusion operator has also been improved. There are two op-
tions available for the tracer diffusion operator at present. It is either the orig-
inal Laplacian operator or the epineutral (isopycnal) operator. The Laplacian
is a somewhat ad-hoc form, on the contrary, the epineutral operator is based
on oceanographic measurements and observations and it is thus physically justi-
fied, see Sec. 1.3 for details. The implementation of epineutral operator is based
on the triad algorithm of Griffies et al. [1998] with modifications introduced by
Madec [2012] and it is combined with the parameterization of tracer stirring by
mesoscale eddies as explained in Sec. 1.3.3.

The surface heat fluxes are represented by a simple relaxation towards the
prescribed distribution of sea surface temperature in the LSG model. This op-
tion is retained in the LSOMG model but it is supplemented with more realistic
bulk formulas for shortwave, longwave, sensible and latent heat fluxes. The bulk
formulas of Kara et al. [2002], Kondo [1975] and Large and Yeager [2004] are
available.

The tidal forcing is expressed in the form of a gradient of the second-degree
tidal potential. The implementation is adopted from the DEBOT model. The
LSOMG also includes parameterizations of two important physical phenomena:

• The internal wave drag caused by the breaking of internal tidal waves. The
parameterization of Jayne and St. Laurent [2001] has been implemented.

• The change of gravity field due to the effect of self attraction and loading
(SAL). The scalar approximation of SAL has been implemented into the
LSOMG model.

See Sec. 4.4 for further details.
New tracer advection schemes have been implemented to the LSOMG model.

The original QUICK scheme from the LSG model has been supplemented (re-
placed) with three schemes with flux limiters: The Lax-Wendroff scheme, third-
order direct space time scheme [Adcroft et al., 2014] and the scheme of Smith
et al. [2010]. The splitting method of Adcroft et al. [2014] has been implemented
to handle the multidimensional tracer advection.
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The original EOS-80 state equation [UNESCO, 1981] has been replaced by the
state equation of [Jackett et al., 2006], see Sec. 1.4 for further discussion. The
initial potential temperature distribution is obtained from the in-situ temperature
distribution following the method described in Sec. 5.14.5.

The convective adjustment scheme used in the LSG model checks the stability
of a water column from top to bottom and if instability is found, the scheme
mixes the content of two neighbouring grid cells. The procedure is finished when
it reaches the bottom cell, it is not repeated. It is a simple and computationally
favourable scheme but it does not guarantee to stabilize an unstable water column
(although it may work fine in certain cases). The LSOMG model thus employs
a scheme of Rahmstorf [1993] which truly guarantees to stabilize an arbitrary
unstable water column.

The LSG ocean model is coded in the old fashioned way in FORTRAN 77 with
common blocks and static arrays. The LSOMG model is coded in Fortran 90 with
modules and allocatable arrays, see Sec. 5.13.

The LSG ocean model is not parallelized at all and it does not utilize any
numerical library (e.g., a system of linear equations is solved using a hand-made
Gaussian elimination without pivotation). The LSOMG model is parallelized
using the MPI standard and it benefits from the sophisticated Intel MKL library
if certain parts of the model are active, see Sec. 5.13..

The Coriolis term is discretized implicitly in the LSG ocean model. It increases
the model stability at no additional computational costs. On the contrary, the
discretization of the Coriolis term in both space and time is a delicate issue on the
Arakawa C-grid. The Coriolis term in the LSOMG model is discretized using the
Adams-Bashforth method in time and there are several spatial schemes available.
However, none of the discretizations is completely free of the grid-scale noise. In
order to remedy this problem, we implemented the divergence damping and the
dual-step five-point-involved spatial smoothing method of Han [2014] into the
LSOMG model. See Sec. 5.8 for more details.

For the reader’s convenience, we summarize the key differences between LSG
and LSOMG models in Table 3.1.
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LSG LSOMG
Horizontal grid Arakawa E grid Arakawa C grid

Horizontal coord. spherical generalized
Vertical grid manually generated semi-auto generated

Time stepping no splitting, collocated splitting, staggered
Barotropic part implicit explicit (PC, FBgen)
Horiz. friction “rotated” Laplacian Laplacian, “full” form
Vert. friction no yes (explicit, implicit)

Nonlinear terms no yes (2 formulations)
Isopycnal mixing no yes

GM stirring no yes
State equation UNESCO [1981] Jackett et al. [2006]
Tidal forcing no yes (from DEBOT)
Heat fluxes relaxation relaxation, bulk formulas

Tidal parameterizations no yes
Advection scheme QUICK QUICK, LW, DST3

Coriolis term implicit Adams-Bashforth
Convective adj. one sweep [Rahmstorf, 1993]
Programming FORTRAN 77 Fortran 90
Parallelization no MPI, (OpenMP)

Table 3.1: Summary of major differences between LSG and LSOMG models. See
the main text for more details. PC = predictor-corrector, FBgen = generalized
forward-backward, LW = Lax-Wendroff, DST3 = third-order direct space time
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4. Barotropic LSOMG-BT model
The LSOMG-BT model is the barotropic version of the LSOMG model. The
governing equations of the barotropic ocean model are the so-called shallow water
equations (SWE), see Einšpigel and Martinec [2015] for their detailed derivation.
SWE can be expressed in two equivalent forms, the flux form and advective form
[Williamson et al., 1992]. The advective form expressed in the barotropic velocity
ū is

ū,t + ū · ∇hū + fe3 × ū + g∇hη = F, (4.1)
η,t + ∇h · (hū) = 0, (4.2)

the flux form expressed in the vertically integrated transport U = hū is

U,t + ∇h ·
(U ⊗ U

h

)
+ fe3 × U + gh∇hη = hF, (4.3)

η,t + ∇h · U = 0. (4.4)

where F denotes forcing. In the LSOMG-BT model, F contains the horizontal
friction F(u)

H , bottom friction τb, wind stress τw and tidal forcing Ftid,

F = F(u)
H + τw

ρ0h
− τb
h

+ Ftid, (4.5)

see Secs. 5.6, 4.2, 4.3 and 4.4.
The LSOMG-BT model neglects nonlinear advection in the momentum equa-

tion which is represented by the second term on the left-hand side of Eqs. (4.1)
and (4.3). As already mentioned in Sec. 3.1, the expected usage of LSOMG-BT
is either testing of the barotropic part of the full LSOMG model or modelling of
barotropic tidal circulation. Considering the first case, the nonlinear advection
terms are computed in the baroclinic part of the model and then inserted into
the barotropic part as the vertically integrated baroclinic contribution. Consid-
ering the second case, the linear SWE are commonly used in the barotropic tidal
models. The nonlinearities become important in shallow coastal regions but on
the deep ocean they can be neglected.

The governing equations are discretized using the finite difference method in
the LSOMG-BT model. Spatial derivatives are approximated using the centered
differences on Arakawa grids [Arakawa and Lamb, 1977], see Sec. 2.1. We consider
two types of boundary conditions:

Free slip: η = 0, ū · n = 0.
η = 0, U · n = 0. (4.6)

No slip: η = 0, ū = 0.
η = 0, U = 0, (4.7)

where n is the outer normal to the ocean-land boundary. The LSOMG-BT model
supports Arakawa grids B, C and E, see Fig. 2.1 . We apply free-slip boundary
conditions on the Arakawa grid C and no-slip boundary conditions on Arakawa
grids B and E. Free-slip boundary conditions (or its modification) are probably
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more appropriate, however, Griffies and Hallberg [2000] refer that a natural for-
mulation of free-slip on the B-grid does not exist. The grid configuration affects
the design of the numerical schemes and their performance as we will discuss
later.

In the following sections, we discuss the time stepping schemes which are
available in the LSOMG-BT model, implementation of tidal force and tidal pa-
rameterizations for a barotropic tidal model and also the grid-scale noise on the
Arakawa grids B and E.

Note that the overbars in the symbols for barotropic velocities are dropped
out in the rest of this chapter in order to simplify the notation.

4.1 Time stepping schemes in the LSOMG-BT
model

The LSOMG-BT model provides four time-stepping schemes: The Euler implicit
scheme (IMP), the modified Crank-Nicolson (CNmod) scheme [Campin et al.,
2004], the forward-backward (FB) scheme [Gadd, 1974, Mesinger, 1977] (or its
modification the predictor-corrector (PC) scheme) and the generalized forward-
backward (FBgen) scheme [Shchepetkin and McWilliams, 2005, 2008]. However,
the total number of spatio-temporal configurations available in the model is not
3 × 4 since some schemes are applicable at particular spatial grids only. The
available model configurations are FB on the grid B, FB (or PC), FBgen and
CNmod on the grid C and FB (or PC) and IMP on the grid E.

4.1.1 Euler implicit time-stepping scheme from the LSG
model (IMP)

The IMP scheme is the time-stepping scheme originally used in the LSG model
and we use it only on the Arakawa grid E. The scheme employs SWE in the flux
form and integrates them implicitly in time,

u + f (k × u) ∆t = un − g∇η∆t+ Fn∆t, (4.8)
η = ηn − ∇ · (hnu) ∆t, (4.9)

where ∆t is the time step. The quantities with superscript n are evaluated in the
previous time step, otherwise they are evaluated in the current time step. The
SSH in Eq. (4.8) is expressed using Eq (4.9),

u + f (k × u) ∆t− g∇∇ · (hnu) (∆t)2 = un − g∇ηn∆t+ Fn∆t. (4.10)

At the start, we solve Eq. (4.10) for the barotropic velocity. The third term on
the left hand side of Eq. (4.10) contains horizontal velocity in the actual time
step within a differential operator. It introduces coupling between grid points if
differential operators are approximated using the finite difference method. The
system of linear algebraic equations needs to be solved, see Appendix. A.1. The
system matrix is non-symmetric but sparse with at most eight nonzero elements in
each row of the matrix. We use the restarted generalized minimal residual method
(GMRES), which is an iterative method suitable for solving a linear system of
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equations with a general non-symmetric matrix [Saad and Schultz, 1986]. When
the barotropic velocity is know, the SSH is calculated from Eq. (4.9).

Note that the original implementation of the IMP scheme in the LSG model
neglects the SSH in the water-column height. For the purpose of this paper, we
include the SSH explicitly into the water-column height, see hn in Eq. (4.9). The
modified scheme is semi-implicit rather than implicit. The scheme could be kept
implicit by using h instead of hn in Eq. (4.9). In that case, we would solve both
the momentum and SSH equations simultaneously for the barotropic velocity and
SSH. We have not tested this implementation.

4.1.2 Modified Crank-Nicolson time-stepping scheme (CN-
mod)

The scheme is based on two key ideas, the use of Crank-Nicolson time-stepping
scheme and the treatment of the SSH and water-column height as two indepen-
dent variables. The resulting scheme is unconditionally stable and it is claimed
to conserve total mechanical energy (kinetic plus potential energy). The com-
plete derivation of the scheme is given in Campin et al. [2004], and so we merely
summarize the key steps of the computational process below.

1. Update the water-column height,
h = hn − ∇ · (hnun) ∆t. (4.11)

2. Compute the auxiliary velocity u∗,
u∗ = un + f

(
k × un+ 1

2
)

∆t− (1 − γc)g∇η∆t+ Fn∆t, (4.12)

where un+ 1
2 is the velocity extrapolated using the third-order Adams-Bashforth

method (see Eq. 4.18).

3. Update the SSH using the new water-column height from step 1 and aux-
iliary velocities from step 2,

η + βcγcg∇ · (h∇η) (∆t)2 = (h−H) − βc∇ · (hu∗) ∆t. (4.13)

4. Update the barotropic velocity using the auxiliary velocity from step 2 and
the new SSH from step 3,

u = u∗ − γcg∇η∆t. (4.14)

Parameters βc and γc are both equal to 0.5, which corresponds to the Crank-
Nicolson time-stepping scheme.

Similar to Eq. (4.10), the left hand side of Eq. (4.13) contains the SSH in
the actual time step within a differential operator and so a system of linear
equation needs to be solved, see Appendix. A.2. We solve it using the GMRES
method as in the IMP scheme. The computational demands of IMP and CNmod
matrix problems are, however, different. First, the number of unknowns in the
CNmod problem is approximately half than in the IMP problem, since Eq. (4.13)
is a scalar equation, while Eq. (4.10) is a vector equation. Second, the number
of nonzero elements is smaller in the CNmod scheme, with a maximum of five
nonzero elements in one row of the CNmod matrix. Both properties reduce the
computational time.
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4.1.3 Forward-backward time-stepping scheme (FB)
The main idea of the FB scheme is to advance the velocity (vertically integrated
transport) and the SSH gradually, i.e., solve the momentum equation using the
explicit (forward in time) scheme first and then solve the SSH equation using the
implicit (backward in time) scheme.

The FB scheme is second-order accurate similar to the commonly used leapfrog
scheme [Mesinger and Arakawa, 1976]. However, the FB scheme has certain
favourable properties [Mesinger and Popovic, 2010, Lei, 2014]. The FB scheme is
a two-time-level scheme, hence, it does not suffer from the computational mode
that is present in the three-time-level leapfrog scheme. Both FB and leapfrog
time steps are constrained by the CFL criterion for the external gravity waves,

∆t

√gh [ 1
(∆x)2 + 1

(∆y)2

]⏐⏐⏐⏐⏐⏐
max

< Cm, (4.15)

where ∆x and ∆y denote lateral grid spacings. However, the Cm in the FB
scheme is Cm = 1, which is twice as large as in the leapfrog scheme.

The LSOMG implementation of the FB scheme depends on the discretization
of the Coriolis term. The components of velocity (vertically integrated transport)
are discretized at the same points on Arakawa grids B/E but they are spatially
separated on the Arakawa grid C. As a consequence, the Coriolis term on the
Arakawa grid C needs to be treated more carefully. We start with the B/E–grid
implementation. We use the semi-implicit discretization of the Coriolis term in
time,

U + fk ×
(Un + U

2

)
∆t = Un − ghn∇ηn∆t+ hnFn∆t, (4.16)

η = ηn − (∇ · U) ∆t. (4.17)

The momentum equation constitutes a system of two linear equations for the
components of barotropic transport that can be solved analytically (see Griffies
[2004]).

On the Arakawa grid C, the default is the Adams-Bashforth extrapolation of
the third order. However, in Sec. 6.1, we use the method of Sielecki [1968] and
Beckers and Deleersnijder [1993] in order to make the FB scheme more distinct
from the FBgen scheme. The spatial and temporal discretization of the Coriolis
term on the C-grid is discussed in more details in Sec. 5.8.

Note that the FB scheme may solve the SWE in the opposite order; start
with the SSH equation and then continue with the momentum equation. Let
us call this version SSH–MOM and the other one MOM–SSH. Mesinger [1973]
showed that the amplification factors of both versions are the same. He also
argued that the MOM–SSH version should be more suitable for an atmospheric
model but then he reported that there were hardly any differences between the
two solutions in a realistic run. Consequently, we use the MOM–SSH version in
the LSOMG-BT model and we have not tested the SSH–MOM version.
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4.1.4 Generalized forward-backward time-stepping scheme
(FBgen)

The FBgen scheme generalizes the FB scheme by implementing a combination of
a third-order Adams-Bashforth (AB3) step with a fourth-order Adams-Moulton
(AM4) step. The scheme consists of four steps:

1. The AB3 extrapolation of the SSH and velocities,(
η
u

)n+ 1
2

=
(3

2 + βf

)(
η
u

)n
−
(1

2 + 2βf
)(

η
u

)n−1

+ βf

(
η
u

)n−2

. (4.18)

2. Updating η by the SSH equation (4.2),

η = ηn − ∇ ·
(
hn+ 1

2 un+ 1
2
)

∆t, (4.19)

where hn+ 1
2 = H + ηn+ 1

2 .

3. Computing the provisional η′ for the momentum equation using the AM4
interpolation,

η′ =
(1

2 + γf + 2ϵf
)
η +

(1
2 − 2γf − 3ϵf

)
ηn + γfη

n−1 + ϵfη
n−2. (4.20)

4. Updating u and v using the provisional η′ from the previous step,

u =
[
hnun − fk ×

(
hn+ 1

2 un+ 1
2
)

∆t− ghn∇η′∆t+ hnFn∆t
]
/h. (4.21)

The FBgen scheme is second-order accurate for any values of βf , γf and ϵf ,
and is third-order accurate for βf = 5/12 and even up to a fifth-order accuracy
can be achieved, however the scheme can easily become unstable. For practical
purposes, Shchepetkin and McWilliams [2005, 2008] recommend βf = 0.281105,
γf = 0.088 and ϵf = 0.013 to obtain the scheme with a large stability range for
waves, advection, and the Coriolis term. However, the scheme is still constrained
by the CFL criterion (4.15) with Cm ≈ 0.89 for the setting above. Note that the
constrain is slightly more restrictive than in the FB scheme. For more detailed
information about the FBgen scheme, see Shchepetkin and McWilliams [2005,
2008].

4.1.5 Predictor-corrector time-stepping scheme (PC)
The PC scheme is another modification of the FB scheme. The vertically inte-
grated transport (velocity) and the SSH are computed in three steps. In the first
(predictor) step, the SSH is advanced in time using the explicit scheme,

ηp = ηn − (∇ · Un) γpc∆t, (4.22)

where γpc is the parameter. The computed SSH ηp is not the SSH in the actual
time step, it is only its “prediction”. Second, the vertically integrated transport
(velocity) is computed using the “predicted” ηp,

U + fk × Un+ 1
2 ∆t = Un − ghn∇ηp∆t+ hnFn∆t, (4.23)
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where Un+ 1
2 is the AB3-extrapolated transport, see (4.18). Third, the SSH is

“corrected” using the barotropic transport (velocity) from the second step using
Eq. (4.17).

If γpc = 0, the predicted SSH equals the SSH from the previous time step,
ηp = ηn. In that case, the FB and PC schemes are the same. If γpc ̸= 0, the
scheme gains some added dissipation. It can be shown that the scheme damps
fast gravity gravity waves. It is also scale-selective, the damping is more rapid
for small scales. This is the key benefit of the PC scheme with respect to the
FB scheme. At the expense of one additional SSH equation, the PC scheme
selectively damps the grid-scale noise. The scheme is used in the BT part of the
full baroclinic LSOMG model.

4.2 Wind stress
The wind stress is generated by the wind blowing over the ocean surface. It is
calculated from the wind velocity at 10 m height. Trenberth et al. [1990] and
Timmermann et al. [2009] use the bulk formula,

τw = ρaCD |uw| uw, (4.24)

where ρa is the density of air, CD is the drag coefficient and uw is the wind velocity
at 10 meters. Pacanowski [1987] suggests to use a more complex formula:

τw = ρaCD |uw − u| (uw − u), (4.25)

where the ocean surface velocity is not neglected with respect to the wind velocity.
The drag coefficient is either constant as in Timmermann et al. [2009], or

it depends on the wind speed uw, uw = |uw|, as in Yelland and Taylor [1996]
and Yelland et al. [1998],

CD =

⎧⎨⎩10−3
(
0.29 + 3.1

uw
+ 7.7

u2
w

)
if 3 ≤ uw ≤ 6 m/s,

10−3 (0.60 + 0.071uw) if 6 ≤ uw ≤ 26 m/s.
(4.26)

In the baroclinic LSOMG model, the drag coefficient can also be computed from
rather sophisticated bulk formulas in which the stability of atmosphere, its tem-
perature etc. are taken into consideration, see Sec. 5.14.6.

4.3 Bottom friction
The bottom friction τb is commonly parameterized by either a linear or a nonlinear
form. The linear form is simply given by

τb = ru, (4.27)

where r is the friction parameter. The value of r is estimated as

r = H

τdec
, (4.28)
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where τdec is the typical decay time. Weatherly [1984] suggested to use the decay
time between 100 and 200 days, which results in the friction-parameter values
around 10−4 m s−1.

The LSOMG uses the nonlinear form,

τb = Cb |u| u, (4.29)

where Cb is the dimensionless friction coefficient. The typical values are between
1 × 10−3 and 3 × 10−3 [Adcroft et al., 2014]. For example, 2.5 × 10−3 in Timmer-
mann et al. [2009]and 1 × 10−3 in Treguier [1992].

In order to avoid numerical instabilities, we follow Einšpigel and Martinec
[2015] and Backhaus [1983] and use a semi-implicit discretization of the bottom
friction. Consider, for example, the FBgen scheme,

hu − hnun

∆t = −Cbu|un| +X, (4.30)

where X denotes other terms in the momentum equation. The velocity in the
current time step is

u = hnun +X∆t
h+ Cb|un|∆t , (4.31)

which reduces to Eq. (4.21) if there is no bottom friction.
Note that some models, which do not include tides explicitly, add the effect

of tides into the bottom friction,

τb = Cbu
√

|u|2 + |utid|2, (4.32)

where utid is the horizontal velocity due to tides [Rivière et al., 2004]. Willebrand
et al. [2001] and Griffies [2012] used |utid| = 0.05 m s−1.

4.4 Tidal forcing and tidal parameterizations
The tidal force Ftid can be expressed in terms of the second-degree tidal potential
V2 [Melchior, 1983],

V2 = 3
4
GMa2

l3

⎡⎣ cos2 ϕ cos2 δ cos(2τ) + sin(2ϕ) sin(2δ) cos τ

+ 3
(

sin2 ϕ− 1
3

)(
sin2 δ − 1

3

)⎤⎦, (4.33)

where G is the gravitational constant, M is the mass of the celestial body, a
is the Earth’s radius, l is the geocentric distance between the Earth and the
celestial body, δ is the declination of a celestial body and τ is the local hour
angle, τ = ΩtG + λ − α, where tG is the Greenwich sidereal mean time, λ is
the longitude and α is the right ascension of a celestial body. We consider the
gravitational attraction of two celestial bodies, the Moon and the Sun. The
lunisolar tidal force has the form

Ftid = γT∇(V Moon
2 + V Sun

2 ), (4.34)

56



where V Moon
2 and V Sun

2 are tidal potentials of the Moon and the Sun, respectively,
and γT is the so called diminishing factor,

γT = 1 + kT − hT , (4.35)

where kT and hT are the second-degree body tide Love numbers. The diminishing
factor accounts for the elastic response of the Earth to tidal forcing. Values of
the Love numbers are chosen to be equal to kT = 0.302 and hT = 0.612 [Melchior,
1983]. The values of α, δ and l, which determine the positions of the Moon and
Sun, are found at each time step by the package of subroutines NOVAS F3.1
provided by the U.S. Naval Observatory [Kaplan et al., 2011].

The tidal force is applied only in the barotropic system. It means that we
do not consider vertical variations of tidal force within the ocean since they are
negligible. The implementation is adopted from the DEBOT model with the
following speed improvements. The zonal and meridional components of the
gradient of the tidal potential are

(∇V2)λ = −3
4
GMa

l3

[
2 cosϕ cos2 δ sin(2τ) + 2 sinϕ sin(2δ) sin τ

]
, (4.36)

(∇V2)ϕ = 3
4
GMa

l3

[
− sin(2ϕ) cos2 δ cos(2τ) + 2 cos(2ϕ) sin(2δ) cos τ

+ sin(2ϕ)(3 sin2 δ − 1)
]
. (4.37)

The gradient of the tidal potential is computed at each time step. The formu-
las contain goniometric functions which makes the computation time consuming.
Fortunately, it is not necessary to compute all the goniometric functions repeat-
edly. Consider that

sin τ = sin(ΩTGr − α) cosλ+ cos(ΩTGr − α) sinλ, (4.38)
cos τ = cos(ΩTGr − α) cosλ− sin(ΩTGr − α) sinλ (4.39)

and analogically for sin(2τ) and cos(2τ). We thus have

(∇V2)λ = −3
2
GMa

l3

{
cosϕ

[
cos2 δ sin[2(ΩTGr − α)] cos(2λ)

+ cos2 δ cos[2(ΩTGr − α)] sin(2λ)
]

+ sinϕ
[

sin(2δ) sin(ΩTGr − α) cosλ

+ sin(2δ) cos(ΩTGr − α) sinλ
]}
, (4.40)

(∇V2)ϕ = 3
4
GMa

l3

{
sin(2ϕ)

[
− cos2 δ cos[2(ΩTGr − α)] cos(2λ)

+ cos2 δ sin[2(ΩTGr − α)] sin(2λ)
+ (3 sin2 δ − 1)

]
+ 2 cos(2ϕ)

[
sin(2δ) cos(ΩTGr − α) cosλ

− sin(2δ) sin(ΩTGr − α) sinλ
]}
. (4.41)
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The goniometric functions of δ and (ΩTGr − α) are time dependent and are thus
computed repeatedly at each time step. Nevertheless, these terms do not depend
on geographic coordinates of a grid point and so they represent a small computa-
tion burden of a few numbers. On the other hand, the goniometric functions of
λ and ϕ have to be evaluated on the computational grid but they are constant in
time. It is thus sufficient to compute them once at the beginning and store them
for the later use. It means that the time consuming computation of goniometric
functions on a grid can be efficiently reduced to the multiplication of precom-
puted terms. The algorithm is especially useful if the model uses the generalized
horizontal coordinates since the grid is irregular and longitudes and latitudes of
points do not repeat.

As noted in Introduction, the attempts to model tides in a full OGCM exist
but it is still not a common practice. Nevertheless, the tidal modelling itself is
well established and the modern data-constrained models are able to predict tides,
especially on the deep ocean, with reasonable accuracy, see Stammer et al. [2014].
Many tidal models are based on the barotropic models, e.g., FES2012 [Carrère
et al., 2012], HAMTIDE12 [Taguchi et al., 2014] and TPXO8 [Egbert and Ero-
feeva, 2002]. Nevertheless, the experience has shown that the barotropic models
based on the pure SWE are inaccurate. The reason is that the SWE are missing
two important physical phenomena, the effect of self-attraction and loading and
the tidal dissipation due to the breaking of internal tides. The SWE need to be
supplemented with suitable parameterizations of these processes. In both cases,
an additional term is added to the right-hand side of the momentum equation,

u,t = · · · + τsal + τiwd, (4.42)

where τsal denotes the self-attraction and loading term and τiwd denotes the
internal wave drag term.

The self attraction and loading (SAL) describes the change of gravity field
when the load is applied to the non-rigid Earth. In tidal modelling, the load is
represented by water masses uplifted or pushed below the equilibrium surface.
The gravity field is changed by the following three processes [Hendershott, 1972]:

• deformation of the Earth’s surface when the load is applied

• displacement of the Earth’s masses when the load is applied

• self-gravitation of the load itself

The computation of SAL effect should involve the spherical harmonic decomposi-
tion of the tidal SSH. This procedure is numerically demanding especially because
it should be repeated at each time step. The LSOMG-BT model rather uses the
so-called scalar approximation of SAL [Accad and Pekeris, 1978] in which τsal is
proportional to the SSH gradient,

τsal = βsg∇η. (4.43)

The coefficient βs may in principle be spatially dependent but it is a constant
in the LSOMG-BT model. The value of βs varies from 0.060 to 0.095 in the
literature, see Table 4.1. The default value in the LSOMG-BT model is 0.09
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Paper βs
Buijsman et al. [2015a] 0.095

Arbic et al. [2010] 0.060
Arbic et al. [2004] 0.094

Thomas et al. [2001] 0.085
Accad and Pekeris [1978] 0.085

Table 4.1: Values of SAL coefficient βs used by other authors.

which is approximately the average of values in Table 4.1 if we exclude somewhat
anomalously low value of 0.06 used in Arbic et al. [2010].

In the process of tidal dissipation, a part of the tidal energy is transferred
from the barotropic to baroclinic tides. The baroclinic tides then propagate in
the ocean interior in the form of internal waves and they are losing their energy
when breaking on rough topography. The τiwd can be expressed as

τiwd = −Ciwd · u
h

, (4.44)

where Ciwd is the internal wave drag tensor. The term has the form of a linear
friction and so it is called the “internal wave drag” (IWD) or the “internal tide
drag”. Contrary to the bottom drag coefficient, the IWD tensor is not constant,
it is spatially varying.

Several forms of the IWD tensor have been proposed. The LSOMG-BT model
implements the scheme of Jayne and St. Laurent [2001] in which the IWD tensor
is approximated by a scalar,

Ciwd = π

L
Ĥ2Nb, (4.45)

where Ĥ is the bottom roughness, Nb is the buoyancy frequency at the sea bed
and L is a tunable parameter. We set L = 10 km in the LSOMG-BT model in
accordance with Green and Nycander [2013] and Buijsman et al. [2015b]. The
buoyancy frequency is computed from the definition,

N2 = −
(
g

ρ0

)
∂ρ

∂z
, (4.46)

using the World Ocean Atlas 2013 [Locarnini et al., 2013, Zweng et al., 2013] tem-
perature and salinity data. The density gradient in Eq. 4.46 is either computed
using the chain rule,

∂ρ

∂z
= ∂ρ

∂θ

∂θ

∂z
+ ∂ρ

∂S

∂S

∂z
, (4.47)

or it can alternatively be computed from the formula,

∂ρ

∂z
= ρ∗(z) − ρ(z + ∆z)

∆z , (4.48)

where ρ∗(z) is the density of a water parcel that was adiabatically displaced from
depth z to z+∆z [Smith et al., 2010]. We numerical proved that both approaches
give virtually the same results.
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The computed spatial distribution of buoyancy frequency is depicted in Fig. 4.1
(left panel). We compared our map with the result of Michael Schindelegger who
computed the buoyancy frequency from the older World Atlas Ocean 2005. The
resolutions of Schindelegger’s and our maps are 1◦ and 0.25◦, respectively. The
Schindelegger’s map is thus less detailed but the large-scale structures are quali-
tatively the same (not shown).

We have also computed the map of buoyancy frequency according to the
approximate formula of Zaron and Egbert [2006],

Nb = Nb0 exp
(

z

1300

)
, (4.49)

where Nb0 = 5.24 × 10−3. The result is depicted in Fig. 4.1 (right panel). There
is a significant mismatch between the “full” and “approximate” maps. The full
map contains small scale features that are missing in the approximate map and
also the amplitudes are significantly larger in the full map in many regions. The
approximation of Zaron and Egbert [2006] is merely a 1-D depth profile that is
applied globally. The discrepancies are thus expected but they are surprisingly
large.

Figure 4.1: Buoyancy frequency [hour−1] computed using the full formula (left
panel) and approximate formula of Zaron and Egbert [2006] (right panel).

The bottom roughness Ĥ at the point with the geographic coordinates λ, ϕ
is computed as a standard deviation of bathymetry data,

Ĥ(λ, ϕ) =
√ 1
n

∑
λ′,ϕ′

[H(λ, ϕ) −H(λ′, ϕ′)]2, (4.50)

where the summation goes over all wet grid points within the 1◦ × 1◦ rectan-
gle centered to the point (λ, ϕ) and n is the total number of grid point in the
summation.

The bottom roughness computed from the GEBCO [IOC, IHO and BODC,
2003] bathymetry data is depicted in the left panel of Fig. 4.2. We have not found
any bottom-roughness maps in the literature thus we could not validate our map.
However, if we compare the bottom roughness with the bottom topography, see
the right panel of Fig. 4.2, the roughness seems to be correct. For example, the
sharp bathymetry features in the West Pacific have large roughness while the
ridges in the East Pacific are clearly visible in the bathymetry figure but their
roughness is small since they are rising slowly from the deep ocean.
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Figure 4.2: Bottom roughness [m] (left panel) computed from the GEBCO data
and the GEBCO bathymetry [m] (right panel) on a 0.25◦ grid.

Note that Green and Nycander [2013] tested four fairly different schemes, the
scheme of Nycander [2005] (NY), Jayne and St. Laurent [2001] (JS), Zaron and
Egbert [2006] (ZE) and Baines [1982] (BA). The NY, JS and ZE schemes produce
realistic global tidal dissipations around 1 TW, the BA scheme is out of range with
10 TW. The JS scheme has certain flaws. It is empirical (based on dimensional
analysis) and the spatial structure of its dissipation rate below the 500-m depth
is different than in the NY and ZE schemes. Nonetheless, Green and Nycander
[2013] compared the computed SSH with the satellite measurements and the
results were favourable. The best RMS difference of 7 cm was achieved by the
NY scheme, the JS and ZE schemes achieved similar RMSs of 11 cm and 12 cm.
We do not consider these differences to be significant for our purposes. On top of
that, the IWD tensor is frequency-dependent in the NY and ZE schemes, which
makes these schemes suitable for the frequency-domain models but not for the
time-domain models such as LSOMG-BT.

4.5 Suppression of grid-scale noise on Arakawa
grids B and E

Both Arakawa grids B and E are prone to generate grid-scale noise that affects
velocity (vertically integrated transport) and SSH fields. In both cases, the noise
has a checkerboard pattern, which is rotated by 45◦ on the Arakawa grid E.

On Arakawa grid B, the problem is caused by averaging present in the discrete
form of the pressure gradient term. The pressure gradient of a two-grid-interval
(checkerboard-like) wave is zero. The B-grid thus allows the stationary two-grid-
interval wave to be a legitimate gravity-wave solution of the linear SWE without
the Coriolis term. If the Coriolis term is present, the two-grid-interval waves
appear as low-frequency inertia waves [Mesinger and Arakawa, 1976].

Janjic [1974] showed that the gravity-wave part of the linear SWE is fully
discretized on the Arakawa grid C. The Arakawa grid E is composed of two
Arakawa grids C which are shifted in a diagonal direction with respect to each
other. The solutions on these subgrids are independent of each other and they
may freely separate. In the full nonlinear SWE, there is communication between
the subgrids via the Coriolis and advection terms, but the typical time-scale is
much larger [Mesinger and Arakawa, 1976].

In the LSOMG model, we implement an additional term Fs on the right-hand
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side of the SSH equation to suppress the grid-scale noise. Griffies [2004] suggested
to use a biharmonic operator on Arakawa grid B,

Fs = −∇h · As∇h(∇h · As∇hη), (4.51)

where As is a spatially varying diffusivity. We express the governing equations
in the geographic coordinates and use a diffusivity that scales with the quadrate
of zonal grid spacing. The largest (equatorial) diffusivity is chosen to be lower
than the maximum stable value Amaxs of the diffusivity for centered differences
and explicit discretization in time [Griffies et al., 2000], Amaxs = (∆xeq)2/

√
32∆t.

On the Arakawa grid E, we also use the biharmonic operator, but in the form,

Fs = −∇×
h · As∇×

h (∇×
h · As∇×

h η), (4.52)

where ∇×
h is the nabla operator rotated by 45◦. Note that Mesinger and Popovic

[2010] derived a form of the smoothing term which is suitable for the Arakawa
grid E,

Fs = −gh(∆t)2

4
(
∆×
h η

n − ∆hη
n
)
, (4.53)

where ∆h is the standard horizontal Laplacian and ∆×
h is the horizontal Laplacian

rotated by 45◦. However, the scheme was unstable in our computations unless
we multiplied Fs by a suitable diminishing factor. Consequently, we rather use
the biharmonic smoothing where the stability limits for the diffusivity are clearly
stated.

4.6 Global singularity-free grids
We discussed the properties of the SC grid and introduced the dipolar/tripolar
grids with relocated poles in Sec. 2.2. The SC grid as well as the dipolar/tripolar
grids with relocated poles have singularities. The SC grid has singularities on
poles. The grids with relocated poles have singularities in land areas which is
favourable for the ocean modelling on the Earth since land areas are out of model’s
computational domain. However, if our task was to calculate the flow on a planet
which is completely covered by oceans, there would be nowhere to relocate the
poles. The so-called aqua-planet simulations require global grids that are free of
singularities.

There exist several global singularity-free grids such as the cubed-sphere grid
and the icosahedral grid. The cubed sphere grid is used in the MITgcm model
Adcroft et al. [2014]. However, neither cubed-sphere grid nor icosahedral grid are
orthogonal. We have rather chosen two different grids, the Yin-Yang (YY) grid
and the reduced spherical coordinate (RSC) grid, and implemented them into the
LSOMG model.

So far, we have tested both grids only in simple barotropic numerical tests
that are presented in Sec. 6.2. Nevertheless, global singularity-free grids could
also be useful for coupled simulations and paleocean models:

• The ocean model is typically coupled to the atmospheric model for which
the computational domain covers the whole surface of the Earth. The relo-
cation of singularities does not help similar to aqua-planet simulations. It is
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possible to use a different grid in each model and interpolate results, but the
interpolation may introduce errors and reduce the accuracy of calculations.

• Paleocean models are sometimes used for long simulations. The land mask
in these simulations may change due to melting of ice sheets. A fixed
dipolar/tripolar configuration may not be suitable for such a simulation.

We bare these possible future applications in mind when we assess the perfor-
mance of YY and RSC grids in our simple numerical tests.

4.6.1 Yin-Yang grid
The YY grid was introduced by Kageyama and Sato [2004]. Its name comes from
the Chinese symbol for complementarity since the YY consists of two identical
parts that are rotated by 90◦ and put together to cover the whole sphere.

The YY grid can either be non-optimized or optimized. The difference is that
Yin and Yang subgrids overlap in certain regions in the non-optimized YY grid
while there are no overlaps in the optimized YY grid. The Yin part (λi, ϕi) of
non-optimized YY grid is a rectangle in the spherical coordinates (SC):

45◦ ≤ λi ≤ 315◦, −45◦ − δ1 ≤ ϕi ≤ 45◦ + δ2 (4.54)

see the left panel in Fig. 4.3 and fig. 3 in Kageyama and Sato [2004]. The
parameters δ1 and δ2 are discussed below.

There is an infinite number of optimized YY grids. We have chosen the YY
grid which resembles a baseball, see the right panel in Fig. 4.3 and figs. 3 (a,c) in
Kageyama and Sato [2004].

Figure 4.3: Non-optimized (left panel) and optimized (right panel) Yin (blue)
and Yang (red) subgrids with Yin halo regions (black).

The transformation between Yin (λi, ϕi) and Yang (λa, ϕa) subgrids is [Baba
et al., 2010]:

ϕa = arcsin(cosϕi sin λi) (4.55)

λa = arcsin
(

sinϕi
cosϕa

)
(4.56)

The optimized YY grid is created from the non-optimized YY grid by dismissing
all grid points that fulfill⏐⏐⏐λi⏐⏐⏐ < 90◦, |ϕa| < 45◦ − δ3, (4.57)
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where ϕa is computed from Eq. (4.55) and the parameter δ3 is discussed below.
Both Yin and Yang parts of the YY grid are covered with the spherical co-

ordinates. It brings two benefits. First, YY grid has a good grid cell aspect
ratio. The SC grid has bad grid cell aspect ratio in polar regions that are not
considered in the YY grid. Second, the usage of SC coordinates simplifies the
implementation into the LSOMG model.

On the other hand, the use of a staggered C-grid complicates the implemen-
tation of YY grid into the LSOMG model since there are four types of grid points
instead of only one. We construct the S-point grid first. The U-, V- and C-point
grids are constructed from the S-point grid. The respective Yin part is shifted
in zonal and/or meridional direction according to the point type and the Yang
part is then constructed according to Eqs. (4.55) and (4.56). The consequence
of our procedure is that all C-, S-, U- and V-point grids have the same number
of inner and halo grid points. This may not be true if the individual grids were
constructed independently to each other.

The Yin and Yang grids are coupled through their halo regions. We tested the
bilinear and the inverse-distance-weighting (IDW) interpolations. Both interpo-
lation techniques are described in Appendix D.1. Moreover, we have to consider
that the Yin and Yang base vectors are mutually rotated. A similar problem is
mentioned in Secs. 5.11.5 and 5.14.4. Let u = uieiλ + vieiϕ = uaeaλ + vaeaϕ be
a vector, where eiλ, eiϕand eaλ, eaϕ are SC base vectors in Yin and Yang parts,
respectively. Kageyama and Sato [2004] derived the transformation between the
Yin and Yang vector components,(

ua

va

)
= R

(
ui

vi

)
=
(

− sin λi sin λa cosλi/ cosϕa
− cosλi/ cosϕa − sin λi sin λa

)(
ui

vi

)
, (4.58)

where R is the rotation matrix from Yin to Yang coordinate systems. The trans-
formation from Yang to Yin components has exactly the same form only the
Yin and Yang coordinates are exchanged since the Yin and Yang parts are com-
plementary to each other. A further complication of C-grid is that zonal and
meridional components are located at different points; U and V points. To com-
pute zonal component at halo U points, we interpolate both zonal and meridional
components to the U points, rotate the vector components at the U-points at keep
the zonal component. The procedure is analogical at V points.

Eqs. (4.54) and (4.57) with δ1 = δ2 = δ3 = 0 can be used to successfully
create Yin and Yang segments on a sphere. However, if a grid with a finite grid
spacing is considered, it may happen that some Yin halo grid points will not be
surrounded by four Yang inner grid points and vice versa. The requirement of
four points is given by bilinear and IDW interpolations, it could be different for
other interpolation types. The purpose of parameters δ1, δ2 and δ3 is to adjust
the YY grid. Parameters δ1 and δ2 are chosen in multiples of grid spacing d and
δ3 is a suitable positive real number. Notice that due to the rotation of vector
components mentioned above, we have to check not only the interpolation at C-,
S-, U- and V-point grids but also the interpolation from U- to V-point grids and
vice versa.

For example, consider 1◦ resolution. The choice δ1 = d, δ2 = 0, δ3 = 0.2
leads to a correct S- and V-point grids but C- and U-point grids still contain
problematic halo grid points. If we further set δ2 = d, C- and U-point grids
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become also correct. We use another setup which is given by δ1 = δ2 = 0,
δ3 = 1.1 in our numerical tests. The reason is that the number of inner and halo
grid points in this YY grid is lower than in the previous case.

Finally, the Coriolis term on the YY grid has the same form as on the SC
grid. The proof is provided in Appendix D.2. The SWE are thus implemented
as on the SC grid.

4.6.2 Reduced spherical coordinate grid
The RSC grid was introduced by Gates and Riegel [1962] and Kurihara [1965].
It is a modified SC grid. The key idea is to reduce the number of grid points in
the zonal direction with the increasing latitude to increase the zonal grid spacing
in higher latitudes. The early attempts to implement the RSC grid using the
finite difference method were not successful due to large numerical errors in polar
regions. The problem was attributed to the increased curvature of the parallel in
the polar regions [Staniforth and Thuburn, 2012]. However, Starius [2014] argued
that the real culprit is not the curvature but the small number of grid-points along
the parallel.

Consider a standard SC grid with I grid points in the zonal direction and J =
I/2 grid points in the meridional direction. The both latitudinal and longitudinal
spacings are constant, ∆λ = ∆ϕ = 2π/I. The RSC grid has the same number of
parallels and thus also the same latitudinal spacing. The RSC grid of Staniforth
and Thuburn [2012] is constructed from segments of parallels. The number of
grid points on a parallel is constant within each segment and it is determined
from the condition that the zonal grid interval is

√
2 times smaller/larger than

the meridional grid step at maximum,

1√
2

≤ ∆ϕ
cosϕ∆λ ≤

√
2, (4.59)

where ∆λ = (2π/I)/2n−1 in the n-th segment. The first segment is located around
equator. Notice that the number of grid points on a parallel does not change
gradually with increasing latitude. Instead, it is halved if the zonal grid step
becomes too small. The segment which is closest to the South/North Pole always
contains a single parallel with 8 grid points. The next two segments contain two
parallels with 16 grid points and four parallels with 32 points, respectively. The
RSC grid with C, S, U and V points is shown in Fig. 4.4.

Fig. 4.5 depicts a section of a RSC grid which corresponds to the five north-
ernmost parallels. For simplicity, we depicted only S (blue circles) and U (red
circles) points since C and V points are treated analogously. If a parallel has
twice as many grid grid points as its neighbouring parallel, we call it a “dense”
parallel and its neighbour a “coarse” parallel. The parallels J − 3 and J − 1 are
dense, parallels J − 2 and J are coarse, see Fig. 4.5.

It is straightforward to use the standard finite difference schemes in each
segment of the RSC grid. However, a special attention is needed at bounding
parallels of each segment since particular grid points in the neighbouring parallel
could be missing. Let us start with S points. We interpolate in the zonal direction
on coarse parallels to get values at “missing” S points. In Fig. 4.5, the missing
S points have indeces (3, J − 2), (7, J − 2) and (5, J) and are denoted by blue

65



Figure 4.4: The reduced spherical coordinate grid viewed from the North Pole
with C (blue), S (light blue), U (yellow) and V (red) points.

1 2 3 4 5 6 7 8 9
J-4

J-3

J-2

J-1

J

Figure 4.5: Sketch of the reduced spherical grid. Computational S and U points
are denoted by blue and red circles, respectively. The S and U points at which
we interpolate are denoted by blue and red squares, respectively.

squares. We use eight-point interpolation formula (D.23) as suggested in Starius
[2014]. If C-grid was a collocated grid, no other considerations would be necessary.
However, C-grid is a staggered grid and we also need to consider U points. Each
U point is located in between two S points on a parallel. Consequently, U-
point locations in coarse parallels are zonally shifted with respect to the U-point
locations in dense parallels. We thus need to interpolate in both coarse and
dense parallels to correctly couple U-point segments. We again use Eq. (D.23)
to interpolate on coarse parallels but we use Eq. (D.24) to interpolate on dense
parallels and get the missing U-point values.

If we linearize SWE (4.3), (4.4) and express them in spherical coordinates, we
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get:

U,t − fV + gH

a cosϕη,λ = HFλ, (4.60)

V,t + fU + gH

a
η,ϕ = HFϕ, (4.61)

η,t + 1
a cosϕ [U,λ + (cosϕV ),ϕ] = 0. (4.62)

Function (cosϕ)−1 in Eqs. (4.60) and (4.62) goes to infinity at the poles. Our
solution is to cover the whole sphere with S-point cells. Eqs. (4.60) and (4.62)
can then be numerically solved in all U and S points. There is a V point on both
North and South Poles. It would be possible to calculate meridional velocity
components using Eq. (4.61) at the poles. The problem is that velocity is a
vector quantity and vector directions are well defined in the vicinity of the poles
in the SC coordinates but not at the poles. Starius [2014] suggested to project the
polar cap onto the plane which is tangent to the sphere at the pole and replace
the SC with the Cartesian coordinates. Let ex, ey be the base vectors of the
Cartesian coordinate system. The projection P of the base SC vectors to the
Cartesian base is

Peλ = cosλex + sin λey, (4.63)
Peϕ = (− sin λex + cosλey) sinϕ (4.64)

and thus the SC velocity components U , V transform to the Cartesian velocity
components Ũ , Ṽ according to(

Ũ
Ṽ

)
=
(

cosλ − sin λ
sin λ cosλ

)(
U

V sinϕ

)
. (4.65)

Motivated by Starius [2014], we apply transformation (4.65) and then interpolate
in the meridional direction using Eqs. (D.26) and (D.25) from U and V points
to the poles, respectively. We use 16 meridians which correspond to the eight
U and eight V points in the parallels closest the poles. Finally, we average the
interpolated vector components to get one single vector at the pole. The inverse
transformation is then used to determine the meridional component in the SC
coordinates along the particular meridian. The truth is that the neat way is to
transform Eqs. (4.60) and (4.61) into the Cartesian coordinates and solve the
SWE on the tangent plane. We have not tested it. It is doable on a collocated
grid but it is complicated on a staggered grid since we would need to average
or interpolate the missing vector component and then use transformation (4.65).
We suspect that especially the averaging of the zonal component in the zonal
direction could be harmful due to the high curvature of parallels close to the
poles.
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5. Baroclinic LSOMG model
The LSOMG model solves the primitive equations 1.8-1.12 with the following
boundary conditions at the surface,

w = η,t − qw, (5.1)

qwu + AV u,z = qwuw + τw
ρ0
, (5.2)

p = 0, (5.3)
qwC − F · N = qwCw − γCh1

(
C1 − Cdata

)
+Qturb,0

C , (5.4)

at the bottom,

w = 0, (5.5)
AV u,z = τb, (5.6)
F · N = 0, (5.7)

and at lateral boundaries,

u · N = F(u) · N = F · N = 0, (5.8)

where N is the normal to the particular boundary. The boundary conditions
are in accordance with Sec. 1.1 with the exception of boundary conditions (5.1)
and (5.5) for the vertical velocity, see Sec. 1.1.2. The reason is that the equations
presented in the first chapter are written for a model with a fully non-linear free
surface while the LSOMG model uses an approximate linear free surface. The
difference is that the barotropic transport U takes the full form U =

∫ η
−H udz in

the non-linear free surface approach but it is approximated by U =
∫ 0

−H udz in
the linear free surface. At the same time, the horizontal advective and diffusive
tracer fluxes above the reference surface z = 0 should be neglected, see secs. 4.5.1
and 5.2.1 in Smith et al. [2010] for further details.

5.1 Primitive equations in curvilinear coordi-
nates

In order to discretize the primitive equations, which were described and discussed
in Sec. 1.1, in the ocean model, they need to be written in certain coordinates.
Consider a general orthogonal curvilinear coordinates with grid variables ξ1, ξ2, ξ3.
According to [Martinec, 2011], the unit base vectors e1, e2, e3 of the coordinate
system are given by

ek = 1
hk

∂r
∂ξk

, k ∈ {1, 2, 3} (5.9)

where r is the radius vector and metric coefficients (or Lamé coefficients) h1, h2,
h3 are determined as follows,

hk =
√
∂r
∂ξk

· ∂r
∂ξk

, k ∈ {1, 2, 3} , (5.10)
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In LSOMG, we suppose that e3 is parallel to the local vertical direction (positive
upwards) and thus e1 and e2 are located in the horizontal plane tangent to the
Earth’s surface. The examples of horizontal coordinate grids were mentioned in
Sec. 2.2. See also Sec. 5.11.

If the mapping between the orthogonal curvilinear system and the geographic
coordinate system is known analytically, we can compute the metric terms an-
alytically. Madec [2012] expresses r in the Cartesian base ẽx, ẽy, ẽz using the
geographic coordinates,

r = (a+ z) (cosϕ cosλex + cosϕ sin λey + sinϕez) (5.11)

and compute the metric coefficients from Eq. 5.10,

h1 = (a+ z)

√( ∂λ
∂ξ1

cosϕ
)2

+
(
∂ϕ

∂ξ1

)2

, (5.12)

h2 = (a+ z)

√( ∂λ
∂ξ2

cosϕ
)2

+
(
∂ϕ

∂ξ2

)2

, (5.13)

h3 = ∂z

∂ξ3
, (5.14)

where he assumed that e3 is parallel to the local vertical direction (positive up-
wards). The horizontal metric coefficients h1, h2 are then independent of ξ3,

∂h1

∂ξ3
= ∂h2

∂ξ3
= 0. (5.15)

Additionally, term a + z in Eqs. 5.12 and 5.13 can be approximated by a since
the value of z within the ocean is small with respect to the Earth’s radius. This
approximation is called the shallow ocean approximation (do not mix it up with
the shallow water approximation) .

The supplementary programs that generate the computational grid for the
LSOMG model do not use the analytic formulas 5.12-5.14. The reason is simple.
We do not know the mapping between the orthogonal curvilinear system and the
geographic coordinate system analytically for the grids listed in Sec. 5.11. We
thus compute the metric coefficients numerically from Eq. 5.10 and the LSOMG
model reads them from the input file.

If metric coefficients of a coordinate system are known, they can be used to
express the differential operators in the governing equations. Murray and Reason
[2001] and Madec [2012] provide forms of the individual terms which appear
in the primitive equations (1.8)-(1.12) in the curvilinear coordinates that fulfil
Eq. (5.15):

The momentum advection terms in Eq. (1.8) are expressed either in the so-
called vector invariant form or the flux form. The vector invariant form is given
by

[∇ · (v ⊗ v)]h =
[
(∇ × v) × v + 1

2∇(v · v)
]
h

= ζe3 × u + 1
2∇h(u · u) + 1

h3
w
∂u
∂ξ3

,

(5.16)
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where subscript h means the horizontal components of the 3-D vector and ζ is
the relative vorticity defined by

ζ = e3 · (∇ × v) = 1
h1h2

[
∂(h2v)
∂ξ1

− ∂(h1u)
∂ξ2

]
. (5.17)

The nonlinear advection in the vector invariant form is thus composed of the rel-
ative vorticity term, the gradient of the kinetic energy and the vertical advection
term. Note that the vector invariant form is natural on the C-grid, but it is not
common in the B-grid models since it requires a larger grid stencil [Griffies et al.,
2000]. The flux form yields

[∇ · (v ⊗ v)]h = ∇ · (v ⊗ u) +Me3 × v
= [∇ · (vu) +Mv] e1 + [∇ · (vv) −Mu] e2

=
{

1
h1h2h3

[
∂

∂ξ1
(h2h3uu) + ∂

∂ξ2
(h1h3vu)

]
+ 1
h3

∂

∂ξ3
(wu) + (L1u− L2v)

}
e1

+
{

1
h1h2h3

[
∂

∂ξ1
(h2h3uv) + ∂

∂ξ2
(h1h3vv)

]
+ 1
h3

∂

∂ξ3
(wv) + (L2v − L1u)

}
e2,

(5.18)

where M is the advective metric frequency, M = L1u − L2v, and L1 and L2 are
the grid-dependent coefficients,

L1 = 1
h1h2

∂h1

∂ξ2
, L2 = 1

h1h2

∂h2

∂ξ1
, (5.19)

which are proportional to the divergence of grid lines in the directions of e2 and
e1 vectors, respectively. Note that in the special case of spherical coordinates,
the coefficient L2 is equal to zero since the parallels do not converge,

L1 = −tanϕ
a

, L2 = 0. (5.20)

Each component of the momentum advection in Eq. (5.18) is composed of two
terms: The divergence of momentum flux and the horizontal advective metric
term. That is the reason why it is called the flux form. In Eq. 5.18, the di-
vergence of momentum flux is further expanded to the horizontal advective term
(first term) and vertical advection of horizontal momentum (second term) in each
component.

Horizontal pressure gradients normalized by the reference density in Eq. (1.8)
are expressed as

−∇hp

ρ0
= − 1

ρ0

(
1
h1

∂p

∂ξ1
e1 + 1

h2

∂p

∂ξ2
e2

)
. (5.21)

The continuity equations (1.10) becomes:

∇ · v = 1
h1h2h3

[
∂(h2h3u)
∂ξ1

+ ∂(h1h3v)
∂ξ2

]
+ 1
h3

∂w

∂ξ3
= 0. (5.22)

The advective term in Eq. (1.11) has the form:

∇ · (vC) = 1
h1h2h3

[
∂(h2h3uC)

∂ξ1
+ ∂(h1h3vC)

∂ξ2

]
+ 1
h3

∂(wC)
∂ξ3

. (5.23)
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If we use the small slope diffusive flux (1.79), the diffusive term in Eq. (1.11)
is

∇ · F = 1
h1h2h3

{
∂

∂ξ1

[
h2h3

(
KH

1
h1

∂C

∂ξ1
+KHsx

1
h3

∂C

∂ξ3

)]

+ ∂

∂ξ2

[
h1h3

(
KH

1
h2

∂C

∂ξ2
+KHsy

1
h3

∂C

∂ξ3

)]}

+ 1
h3

∂

∂ξ3

[
KH

(
sx

1
h1

∂C

∂ξ1
+ sy

1
h2

∂C

∂ξ2

)
+ (KHs

2 +KV ) 1
h3

∂C

ξ3

]
, (5.24)

where s is given by Eq. (1.73) in which the gradients of temperature and salinity
are expressed similarly to the pressure gradient (5.21). If we combine the neutral
diffusion with the stirring by eddies according to Eq. 1.93, we obtain

∇ · F = 1
h1h2h3

[
∂

∂ξ1

(
h2h3KH

1
h1

∂C

∂ξ1

)
+ ∂

∂ξ2

(
h1h3KH

1
h2

∂C

∂ξ2

)]

+ 1
h3

∂

∂ξ3

[
2KH

(
sx

1
h1

∂C

∂ξ1
+ sy

1
h2

∂C

∂ξ2

)
+ (KHs

2 +KV ) 1
h3

∂C

ξ3

]
. (5.25)

The convergence of the barotropic transport in Eq. (1.12) is given by

−∇h · U = − 1
h1h2

[
∂(h2U)
∂ξ1

+ ∂(h1V )
∂ξ2

]
, (5.26)

where U = Ue1 + V e2.

5.2 Time stepping
The LSOMG model is using a linear free surface. Contrary to the rigid-lid method
that was commonly used in the OGCMs in the past, the linear free surface allows
modelling of tides. However, the wave field is richer in the free-surface model
which makes the numerical solution of the governing equations more complicated.
In particular, the incompressibility condition 1.10 excludes sound waves, but
the surface (external) gravity waves (such as tidal waves) are retained, they are
filtered out only if the rigid-lid method is used. Unfortunately, the surface gravity
waves are rather fast. It can be shown by solving the linear SWE that these
nondispersive waves propagate with the speed of vg =

√
gH. The speed of surface

gravity waves may thus reach 200 m/s in the regions where the ocean is deep.
Consequently, the presence of surface gravity waves severely restricts the time
step of explicit time-stepping schemes via the CFL criterion (4.15).

Madala and Piacseki [1977], Berntsen et al. [1981] and Killworth et al. [1991]
suggested to use the split-explicit scheme in which they split the fast (barotropic,
external) and slow (baroclinic, internal) dynamical modes and evolve them with
different time steps. The speed of the fastest (first) baroclinic mode is approxi-
mately 2 m/s which is about two orders of magnitude smaller than the speed of
the barotropic mode. A stable baroclinic time step is thus much larger than the
stable barotropic time step (or the time step of the unsplitted system) provided
the advective and diffusive CFL criteria are less restrictive. Besides that, the
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t0 t0 + ∆t t0 + 3∆t

ū, η,u′ ū, η,u′ ū, η,u′

t0 t0 + ∆t t0 + 3∆t

u′

ū, η ū, η ū, η

Figure 5.1: Time stepping of the barotropic velocity ū, the barotropic SSH η and
the baroclinic velocity u′ in the unsplitted (left panel) and split-explicit (right
panel) scheme. In the unsplitted scheme, both the barotropic and baroclinic
time steps are the same. In the split-explicit scheme, the baroclinic time step is
extended and the barotropic system is subcycled.

baroclinic system is 3-D but the barotropic system is only 2-D. The split-explicit
scheme thus allows us to evolve the 3-D part of the system with a significantly
extended time step. The unsplitted and split-explicit schemes are compared in
Fig. 5.1.

In the LSOMG model, we separate the barotropic modes by vertical aver-
aging of the governing equations. It is known that this method is not flawless,
the vertically averaged system is the same as the barotropic system only in an
idealized case, see Sec. 4.3 in Smith et al. [2010]. Nonetheless, the experience
from other OGCMs proves that the split by vertical averaging is useful and the
energy leakage between the vertically averaged and baroclinic systems is not a
critical issue. Let us write the momentum equation 1.8 in the form:

u,t + fe3 × v = −g∇hη + Ftid + G, (5.27)

where the first term on the right-hand side is the surface pressure gradient, Ftid

is the tidal force and G is the baroclinic forcing which contains all the terms in
the momentum equation that depend on the vertical coordinate,

G = −∇hp

ρ0
+ F(u)

H + F(u)
V − [∇ · (v ⊗ v)]h , (5.28)

where p denotes the baroclinic part of the total pressure,

p(z) = g

0∫
z

ρ(z′)dz′. (5.29)

The vertically integrated momentum equation and the evolution equation for the
SSH compose the barotropic system,

ū,t + fe3 × ū = −g∇η + Ftid + Ḡ, (5.30)
η,t = −∇h · (Hū), (5.31)

where Ḡ is assumed to be constant during one time step. Note that the barotropic
system is equivalent to the linear SWE with forcing Ftid + Ḡ on the right-hand
side of the vertically integrated momentum equation.

The baroclinic velocities u′ are computed in two steps. First, the provisional
velocities up are computed from the momentum equation without the depth-
independent surface pressure gradient and tidal forcing on the right-hand side,
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up,t + f(k × up) = G, (5.32)
where the baroclinic forcing G is evaluated explicitly in time using the actual
velocities v not the provisional velocities up. The baroclinic velocities are then
computed from the provisional velocities by removing their vertical mean,

u′ = up − ūp. (5.33)
The LSOMG model propagates the velocity, SSH, temperature and salinity in

time. We use the time stepping scheme described in Griffies [2004] in which the
physical quantities are staggered in time. The barotropic and baroclinic velocities
are discretized on integer time steps, whereas the SSH, tracer C (temperature and
salinity) and thus also density and pressure are discretized on half integer time
steps. The time staggering ensures the second-order accurate discretization in
time. One model time step is depicted in Fig. 5.2.

t0 − ∆τ
2

t0 t0 + ∆τ
2

t0 + ∆τ t0 + 3∆τ
2

t0 + 2∆τ

η, C u′

ūb, ηb

ū, η

ū,u p

Figure 5.2: Time stepping used in the LSOMG model.

The SSH and tracer values are known at time t = t0 − ∆τ
2 , where ∆τ is the

baroclinic time step, and velocities are known at t = t0. We first advance surface
elevations to t = t0 + ∆τ

2 using the barotropic velocities at t = t0 and modify the
thicknesses of the surface-layer cells by the newly computed elevations. We then
compute temperature and salinity fields at t = t0 + ∆τ

2 using the total velocities
at t = t0. The density at t = t0 + ∆τ

2 is computed from the updated temperature
and salinity distributions. Baroclinic forcing such as the pressure gradients is
computed at t = t0 + ∆τ

2 . We compute the vertical average of the baroclinic
forcing and advance the barotropic system in time. As already mentioned, the
LSOMG model uses the split-explicit method which means that the barotropic
system is discretized explicitly in time and thus the barotropic time step ∆t is
small but the baroclinic time step ∆τ is significantly larger. We typically use
the baroclinic time step that is 60 times larger than the barotropic time step. In
the practical usage, there can arise some stability issues. We thus propagate the
barotropic system not only to t = t0 + ∆τ but to t = t0 + 2∆τ and then average
the barotropic quantities computed during subcycling to obtain the final value at
t = t0 + ∆τ ,

ū(t+ ∆τ) = 1
N

N−1∑
n=0

ūb(t+ n∆t), (5.34)

η(t+ ∆τ) = 1
N + 1

N∑
n=0

ηb(t+ n∆t), (5.35)
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where ūb and ηb are barotropic velocities and SSH computed in the barotropic
system prior to the averaging and N is the total number of barotropic subcycles
per one baroclinic time step,

N = 2∆τ
∆t . (5.36)

The averaging ensures the stability of the splitting method. Finally, the baroclinic
velocities are advanced to t = t0 + ∆τ using the baroclinic forcing from t =
t0 + ∆τ

2 and the total velocities are assembled by adding barotropic and baroclinic
velocities together.

5.3 Vertical grid
The LSOMG model provides two options how to set up the vertical grid, see
Fig. 5.3. The first option is to give the depths of tracer points (blue dots in
the figure). The depths of vertical-velocity points (blue crosses in the figure) are
then computed, the vertical-velocity points are located exactly between the two
neighbouring tracer points. The second option is to do this in an exactly opposite
way; the depths of vertical-velocity points are defined and the depths of tracer
points are computed.

×0
1× ×

×1
2× ×

×2

3× ×

×0
1× ×

×1

2× ×

×2

3× ×

Figure 5.3: Vertical grid-point discretizations available in the LSOMG model.
Tracers (temperature and salinity), density and pressure are discretized at blue
dots. Horizontal and vertical velocities are discretized at red and blue crosses,
respectively. The discretization in the left panel is used in the LSG model. It is
retained also in the LSOMG model, but LSOMG uses the discretization in the
right panel by default.

The first option was used in the original LSG model. In the LSOMG model,
we prefer the second option since it is more suitable for the computation of vertical
velocity and tracers are discretized in the middle of tracer cells, which is assumed
in the implemented tracer advection schemes.

The original ad-hoc choice of vertical layers has been replaced by a semi-
automatically generated distribution. The purpose is to provide a better dis-
tribution of layer thicknesses that varies smoothly with depth. It is determined
from prescribed smooth distributions of thicknesses h and level depths z of Madec
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[2012],

h(K) =
⏐⏐⏐⏐⏐−ha − hb tanh

(
K − hth
hcr

)⏐⏐⏐⏐⏐ , (5.37)

z(K) = hsur − haK − hbhcr log
[
cosh

(
K − hth
hcr

)]
. (5.38)

Eqs. (5.37) and (5.38) contain four unknowns ha, hb, hth, hsur and a tunable
parameter hcr. The smooth thickness and depth distributions have to fulfill the
following four conditions,

h(0.5) = h3(1), (5.39)
h(kmax − 0.5) = h3(kmax), (5.40)

z(0) = 0, (5.41)
z(kmax) = Hmax, (5.42)

where kmax is the total number of layers, h3(1) and h3(kmax) are thicknesses of
the first and last layer, respectively, and Hmax is the maximum depth. Eqs (5.39)-
(5.42) constitute a system of four nonlinear equations for the four unknown
variables. We solve the system in Matlab using the Levenberg-Marquardt al-
gorithm with the initial guess taken from Madec [2012]. Fig. 5.4 shows results
for kmax = 11, h3(1) = 50 m, h3(kmax) = 1000 m, hcr = 2.3 and Hmax = 5000 m
in the left panel and kmax = 22, h3(1) = 25 m, h3(kmax) = 500 m, hcr = 3 and
Hmax = 5000 m in the right panel.

Figure 5.4: Computed depth and thickness distributions. Left panels: kmax = 11,
h3(1) = 50 m, h3(kmax) = 1000 m, hcr = 2.3 and Hmax = 5000 m. Right panels:
kmax = 22, h3(1) = 25 m, h3(kmax) = 500 m, hcr = 3 and Hmax = 5000 m.

Note that the LSOMG model uses the partial bottom cells. It means that the
depth of vertical layers are the same in each water column with the exception of
the bottom face of the deepest wet cell. This cell is allowed to stretch or shrink to
fit the bathymetry. However, the shift of bottom face is limited by the positions
of the nearest tracer points.
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5.4 Density and related variables

5.4.1 Density
The state equation in the LSOMG model is the EOS of McDougall et al. [2003]
with the values of coefficients from Jackett et al. [2006] . The density is expressed
in the rational form,

ρ(S, θ, p) = P1(S, θ, p)
P2(S, θ, p)

, (5.43)

where P1(S, θ, p) and P2(S, θ, p) are polynomials,

P1 = a0 + a1θ + a2θ
2 + a3θ

3 + a4S + a5Sθ + a6S
2 + a7p+ a8pθ

2

+ a9pS + a10p
2 + a11p

2θ2, (5.44)
P2 = b0 + b1θ + b2θ

2 + b3θ
3 + b4θ

4 + b5S + b6Sθ + b7Sθ
3 + b8S

3
2

+ b9S
3
2 θ2 + b10p+ b11p

2θ3 + b12p
3θ, (5.45)

where S, θ and p are expressed in PSU, ◦C and db, respectively. The polynomials
P1 and P2 are evaluated numerically using the Horner scheme to reduce the
number of multiplications,

P1 = a0 + θ [a1 + θ (a2 + a3θ)] + S (a4 + a5θ + a6S)
+ p

[
a7 + a8θ

2 + a9S + p
(
a10 + a11θ

2
)]
, (5.46)

P2 = b0 + θ {b1 + θ [b2 + θ(b3 + b4θ)]}
+ S

[
b5 + θ

(
b6 + b7θ

2
)

+ S1/2
(
b8 + b9θ

2
)]

+ p
[
b10 + p

(
b11θ

2 + b12p
)
θ
]
. (5.47)

Further details about this EOS, such as its accuracy and comparison with the
EOS-80 which is the EOS used in the LSG model, can be found in Sec 1.4.1.

5.4.2 Thermal expansion and saline contraction coefficients
Thermal expansion and saline contraction coefficients are needed for the compu-
tation of neutral direction slopes according to Eq. (1.73). In fact, only the ratio
of the two coefficients is needed since

s =
−αT

βS
∇θ + ∇S

−αT

βS
θ,z + S,z

. (5.48)

The ration αT/βS is expressed using the definition (1.71),

αT
βS

= −

(
∂ρ
∂θ

)
S,p(

∂ρ
∂S

)
θ,p

= −
∂P1
∂θ

− ρ∂P2
∂θ

∂P1
∂S

− ρ∂P2
∂S

, (5.49)
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where we inserted the density in the rational form (5.43). The derivatives in
Eq. (5.49) are expressed using Eqs. (5.46) and (5.47) as

∂P1

∂θ
= a1 + θ(2a2 + 3a3θ) + a5S + 2pθ(a8 + a11p), (5.50)

∂P2

∂θ
= b1 + θ [2b2 + θ(3b3 + 4b4θ)] + S

[
b6 + θ(3b7θ + 2b9

√
S)
]

+ p2(3b11θ
2 + b12p), (5.51)

∂P1

∂S
= a4 + a5θ + 2a6S + a9p, (5.52)

∂P2

∂S
= b5 + θ

(
b6 + b7θ

2
)

+ 1.5
√
S
(
b8 + b9θ

2
)
. (5.53)

5.5 Diffusion of tracers

5.5.1 Form of diffusion term
In the LSOMG model, tracers are diffused either in the horizontal-vertical direc-
tions or in the epineutral-vertical directions. In both cases:

• The diffusion is characterized by two diffusivity values: The diffusivity in the
horizontal/epineutral direction and the diffusivity in the vertical direction.

• The horizontal/epineutral diffusion is treated explicitly in time while the
vertical diffusion is treated implicitly in time. The implicit discretization
in time is used to ensure numerical stability even for large values of vertical
diffusivity. In certain LSOMG configurations, large vertical diffusivities are
prescribed in gravitationally unstable grid cells to substitute the unresolved
convection processes, see Sec. 5.9.

In the horizontal-vertical diffusion, the horizontal diffusion is represented by
the Laplacian operator. The epineutral-vertical diffusion is more complicated.
The epineutral diffusion in the LSOMG is implemented under the small slope
approximation (see Sec. 1.3.2) and it is combined with the parameterization
of mesoscale eddies of Gent and McWilliams [1990], Gent et al. [1995] (see
Sec. 1.3.3). The resulting tracer flux is available in two forms in the LSOMG
model. The general form is given by Eq. (1.92). However, if the epineutral and
eddy-induced diffusivities are the same, the simplified form given by Eq. (1.93)
is also directly available.

The standard C-grid discretization of epineutral flux contains combined dif-
ferencing and averaging of the tracer in one direction. The resulting operator has
a null space and it does not damp the two-grid-interval noise in that particular
direction. It can be used in combination with certain adjustments such as the
filtering of neutral direction slopes. We rather implemented a different technique.
It is the triad algorithm of Griffies et al. [1998]. The algorithm is similar to the
EEN scheme for the Coriolis term in 5.8. In contrast to the standard discretiza-
tion of epineutral flux, the tracer gradient is multiplied by other terms before
it is averaged to the grid-cell face which solves the null-space problem. In more
details, the flux is computed as an area-weighted average from four terms from
the neighbouring points. Each term contain the differencing (gradient) of tracer
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multiplied by the diffusivity and the component of the slope (or its quadrate).
The algorithm is called the triad algorithm since each slope component is com-
puted from three points. The horizontal gradients in the numerator of (1.73) are
computed at the horizontal faces of tracer cells without averaging. Similarly, the
vertical gradients in the denominator of (1.73) are computed at the vertical faces
of tracer cells without averaging. The algorithm is explained in details in Madec
[2012].

5.5.2 Diffusivity
Vertical diffusivity

The LSOMG model provides two options for the vertical diffusivity. It is either
the vertical profile of Bryan and Lewis [1979] or the Richardson-number based
parameterization of Pacanowski and Philander [1981].

A constant vertical diffusivity is a crude approximation of the real distribution
in the ocean, which varies in both lateral and vertical directions. The first-order
approximation is a vertical diffusivity which varies with depth. Bryan and Lewis
[1979] suggested to use a depth-dependent vertical diffusivity in the form

KV = 10−4
{

0.8 + 1.05
π

arctan
[
4.5 × 10−3(|z| − 2500)

]}
. (5.54)

The dependency (5.54) is based on the measurements of Gregg [1977] that showed
a minimum vertical mixing in the thermocline and its increase down to the abyss.
The surface value of vertical diffusivity, 3 × 10−5 m2/s, is based on the work of
Rooth and Östlund [1972] and the value in the deep ocean, 1.3 × 10−4 m2/s,
was suggested by Munk [1966] for the deep Pacific ocean. Griffies et al. [2005]
preferred slightly different values. They use 1.2 × 10−4 m2/s in the deep ocean.
In the upper ocean, they use either 1 × 10−5 m2/s or 3 × 10−5 m2/s; the higher
value is used in high latitudes.

KV = 10−4
{

0.647 + 1.160
π

arctan
[
4.5 × 10−3(|z| − 2500)

]}
in low latitudes,

(5.55)

KV = 10−4
{

0.748 + 0.949
π

arctan
[
4.5 × 10−3(|z| − 2500)

]}
in high latitudes.

(5.56)

The choice of latitudinal dependence of vertical diffusivity is based on observa-
tions. However, Griffies et al. [2005] also noted that the main motivation was
to reduce the model bias in the subpolar North Atlantic which they found to be
caused by the biased wind stress.

The LSOMG model adopts the vertical profile from the LSG model,

KV = 10−4
{

0.95 + 0.75
π

arctan
[
4.5 × 10−3(|z| − 2500)

]}
. (5.57)

The values in the deep ocean are similar to the original (5.57) but the upper ocean
is more diffusive than in the original or the MOM implementation, see Fig. 5.5.

The major flaw of the vertical profile of Bryan and Lewis [1979] is that the
lateral dependence is completely neglected. Pacanowski and Philander [1981]

78



Figure 5.5: Comparison of depth profiles of vertical diffusivity according to Bryan
and Lewis [1979] and the implementations in the LSG and MOM models.

suggested to use a parameterization in which both vertical viscosity and diffusivity
depend on the Richardson number Ri,

Ri = N2

|u,z|2
, (5.58)

where N is the buoyancy frequency given by Eq. (4.46).

AV = AV 0

(1 + 5Ri)2 + AV b, (5.59)

KV = AV
1 + 5Ri +KV b (5.60)

where AV b and KV b are constant background values of vertical viscosity and dif-
fusivity, respectively, and AV 0 is a tunable parameter. Pacanowski and Philander
[1981] used AV b = 1 × 10−4 m2/s, KV b = 1 × 10−5 m2/s and proposed to use AV 0
between 5 × 10−3 m2/s and 1.5 × 10−2 m2/s.

The implementations in the CLIO, MPI-OM and NEMO models use slightly
modified equations. They keep Eq. (5.59) for the viscosity but Eq. (5.60) for the
diffusivity is replaced by

KV = KV 0

(1 + 5Ri)3 +KV b. (5.61)

All three implementations attempt to increase the mixing in the surface mixed
layer. However, the methods how it is done and how the mixed-layer depth is
calculated are different.

• In the CLIO model, AV 0 and KV 0 are not constant [Goosse et al., 1999].
They are both set equal to 1×10−2 m2/s from the bottom to 50 m depth and
then they increase to the surface value of 1 × 10−1 m2/s. Minimum surface
values are also prescribed, AV = 1 × 10−3 m2/s and KV = 3 × 10−5 m2/s.
The background vertical viscosity is AV b = 1 × 10−4 m2/s and the vertical
profile of Bryan and Lewis [1979] type is used for the vertical diffusivity.
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Paper AV 0 [10−2 m2s−1] AV b [10−4 m2s−1] KV b [10−5 m2s−1]
PP81 0.5-1.5 1 1
G99 1 1 profile

M2003 1 1 1
L2001 0.5 0.5 0.1
F2017 0.5 0.01 0.01

Table 5.1: Comparison of coefficient values used in different implementations
of the Richardson number based parameterization of Pacanowski and Phi-
lander [1981] in the deep ocean. PP81=Pacanowski and Philander [1981],
G99=Goosse et al. [1999], M2003=Marsland et al. [2003], L2001=Lermusiaux
[2001], F2017=Federico et al. [2017]

• The implementation in the MPI-OM model as explained in Marsland et al.
[2003] use constant AV 0 and KV 0, AV 0 = KV 0 = 1 × 10−2 m2/s. The
mixing is the surface mixed layer is increased by adding an additional term
in both Eqs. (5.59) and (5.61). The new term represents a wind induced
contribution that is proportional to the cube of wind speed (with a factor 5×
10−4 m2/s) and it decays exponentially with depth. The penetration depth
in which the wind-induced mixing decreases to e−1 is chosen to be 40 m.
The local static stability and ice cover are also taken into consideration.
The background values are AV b = 1 × 10−4 m2/s and KV b = 1 × 10−5 m2/s.

• The implementation in the NEMO model is based on the paper of Lermusi-
aux [2001]. The scheme is also discussed in Federico et al. [2017]. The quan-
tities AV 0, KV 0, AV b and KV b are constant as in the MPI-OM model but
their values are different: AV 0 = KV 0 = 5 × 10−3 m2/s in both Lermusiaux
[2001] and Federico et al. [2017], AV b = 5×10−5 m2/s, KV b = 1×10−6 m2/s
in Lermusiaux [2001] and AV b = 1 × 10−6 m2/s, KV b = 1 × 10−7 m2/s in
Federico et al. [2017]. The mixed-layer depth is given by the Ekman depth
HE,

HE = CE
uf
f
, (5.62)

where CE is the empirical parameter and uf is the turbulent friction velocity,

uf =
√

|τ |
ρ0
. (5.63)

Lermusiaux [2001] uses CE = 0.04 but Federico et al. [2017], Madec [2012]
and Griffies [2012] use CE = 0.7. Within the surface mixed layer, Lermusi-
aux [2001] used AV = 1.5 × 10−3 m2/s, KV = 7.5 × 10−5 m2/s and Federico
et al. [2017] used AV = 1.5 × 10−3 m2/s, KV = 5 × 10−4 m2/s.

The values of AV 0, AV b and KV b used in the above mentioned papers are sum-
marized in Table 5.1 for a quick reference.

The LSOMG model offers the simple implementation with a constant mixed-
layer depth from the CLIO model and the more sophisticated implementation
from the NEMO model.
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Epineutral (horizontal) diffusivity

The epineutral (horizontal) diffusivity in the LSOMG model is given by the ver-
tical profile of Bryan and Lewis [1979],

KH = KHb + (KHs −KHb)e− |z|
500 , (5.64)

where KHb is the epineutral diffusivity in the deep ocean (to be exact for z→ −∞)
and KHs is the epineutral diffusivity at the ocean surface. Contrary to the vertical
diffusivity, the epineutral diffusivity is decreasing with depth according the this
profile. The same profile was used in the LSG model and we also kept the same
values of coefficients, KHs = 1000 m2/s, KHb = 500 m2/s.

5.6 Friction force

5.6.1 Form of friction force
The friction force in the LSOMG model is implemented according to Murray and
Reason [2001]. The partial bottom cells are not considered in the original paper
but we discuss in Appendix B.1 that the formulas remain valid. The fluid is
assumed to be transversely isotropic with respect to the vertical coordinate ξ3.
The friction force can then be written as

F(u) · e1 = 1
h1h2h3

{
1
h2

∂

∂ξ1

{
h2

2h3AH

[
h2

h1

∂

∂ξ1

(
u

h2

)
− h1

h2

∂

∂ξ2

(
v

h1

)]}

+ 1
h1

∂

∂ξ2

{
h2

1h3AH

[
h2

h1

∂

∂ξ1

(
v

h2

)
+ h1

h2

∂

∂ξ2

(
u

h1

)]}}

+ 1
h3

∂

∂ξ3

(
AV
h3

∂u

∂ξ3

)
, (5.65)

F(u) · e2 = 1
h1h2h3

{
1
h2

∂

∂ξ1

{
h2

2h3AH

[
h2

h1

∂

∂ξ1

(
v

h2

)
+ h1

h2

∂

∂ξ2

(
u

h1

)]}

− 1
h1

∂

∂ξ2

{
h2

1h3AH

[
h2

h1

∂

∂ξ1

(
u

h2

)
− h1

h2

∂

∂ξ2

(
v

h1

)]}}

+ 1
h3

∂

∂ξ3

(
AV
h3

∂v

∂ξ3

)
. (5.66)

The terms that contain viscosity AH represent the horizontal friction, the terms
that contain viscosityAV represent the vertical friction in accordance with Eqs. 1.34
and 1.35. Eqs. (5.65) and (5.66) can be expressed in a more compact form,

F(u) · e1 = 1
h1h2h3

[
1
h2

∂

∂ξ1

(
h2

2h3AHDT

)
+ 1
h1

∂

∂ξ2

(
h2

1h3AHDS

)]

+ 1
h3

∂

∂ξ3

(
AV
h3

∂u

∂ξ3

)
, (5.67)

F(u) · e2 = 1
h1h2h3

[
1
h2

∂

∂ξ1

(
h2

2h3AHDS

)
− 1
h1

∂

∂ξ2

(
h2

1h3AHDT

)]

+ 1
h3

∂

∂ξ3

(
AV
h3

∂v

∂ξ3

)
, (5.68)

81



where the horizontal tension DT and the horizontal shearing strain DS given by
Eqs. (1.56) and (1.57) are equal to

DT = h2

h1

∂

∂ξ1

(
u

h2

)
− h1

h2

∂

∂ξ2

(
v

h1

)
, (5.69)

DS = h2

h1

∂

∂ξ1

(
v

h2

)
+ h1

h2

∂

∂ξ2

(
u

h1

)
. (5.70)

Notice that although the transverse isotropy is described by five independent eddy
viscosities, Eqs. (5.67) and (5.68) contain only two viscosities, AH and AV . The
number is reduced by the trace-free condition for the stress tensor, Eq. (1.47), the
incompressibility condition, Eq. (1.10), and the quasi-hydrostatic approximation
(the last assumption in Sec. 1.2.1).

From the numerical point of view, the choice of Arakawa grid C is advanta-
geous since both DT and DS can be discretized without any averaging. The DT

term is discretized at SSH points (S points in the left panel of Fig. 5.10) and the
DS term is discretized at the corners of elementary grid cells (C points in the left
panel of Fig. 5.10). The friction force itself can then be also computed without
averaging. Note that we set the DS term equal to zero at dry points, the DT

term is equal to zero at dry points automatically from its definition.
The friction force given by Eqs. (5.67) and (5.68) can also be used in the

purely barotropic LSOMG-BT ocean model if we consider that the barotropic
fluid is moving as a whole column without any variations in the vertical direction.
According to this view, the third metric coefficient is replaced by the water-
column height and the horizontal tension and shearing strain are calculated using
the barotropic velocities. The vertical shears of horizontal velocities are zero in
the whole water column except for the ocean surface and bottom where their
values are prescribed through boundary conditions (5.2) and (5.6) which gives
rise to the second and third term on the right-hand side of Eq. (4.5). A more
rigorous derivation in the spherical coordinates and with a constant eddy viscosity
AH is provided in Einšpigel and Martinec [2015], see Appendix B.2.

The friction force can also be written in an alternative form,

F(u) · e1 = ∇h (AH∇hu) + 1
h3

∂

∂ξ3

(
AV
h3

∂u

∂ξ3

)

+
(
M1

∂v

∂ξ1
−M2

∂v

∂ξ2

)
+ (N1u+N2v), (5.71)

F(u) · e2 = ∇h (AH∇hv) + 1
h3

∂

∂ξ3

(
AV
h3

∂v

∂ξ3

)

+
(
M1

∂u

∂ξ1
−M2

∂u

∂ξ2

)
+ (N1v +N2u). (5.72)

The first two terms in Eqs. (5.71) and (5.72) represent the classical Laplacian
diffusion of linear momentum. The terms in the first and second bracket are the
first- and second-order metric terms, respectively. The particular form of M1,
M2, N1 and N2 can be found in Murray and Reason [2001]. In the special case
of spherical coordinates and constant viscosity, Eq. (5.71) reduces to Eq. (1.50).
In the special case of Cartesian coordinates, Eq. (5.71) reduces to Eq. (1.51).
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The horizontal friction F(u)
H is discretized explicitly in time in the LSOMG

model. The vertical friction F(u)
V can be discretized either explicitly or implicitly

in time, both discretizations are available in the LSOMG model. The implicit
discretization ensures a stable computation. If it is selected, the coupling between
cells within one water column arises for each component of the momentum equa-
tion. Consequently, the system of linear equations needs to be solved to obtain
the velocities within each water column. The system matrix is tridiagonal. The
problem is similar to the implicit treatment of vertical diffusion of temperature
and salinity.

5.6.2 Viscosity
Horizontal viscosity

The horizontal viscosity AH is set according to Smagorinsky [1963] and Smagorin-
sky [1993],

AH =
(
kH

d

π

)2

D, (5.73)

where d is the local grid spacing, kH is the dimensionless scaling parameter and
D is the deformation rate,

D =
√
D2
T +D2

S. (5.74)
The local grid spacing d is computed according to Griffies and Hallberg [2000] as
a minimum of the grid spacings along the horizontal directions e1, e2,

d = min (h1∆ξ1, h2∆ξ2) . (5.75)

The value of viscosity is tuned by parameter kH . Griffies and Hallberg [2000]
suggest values from 2.2 to 4. The default value in the LSOMG model is kH = 4.

The Smagorinsky viscosity is physically more correct than the constant vis-
cosity. It is computed from the tension and shearing strain and thus it is auto-
matically increased when the flow becomes vigorous and it is kept low otherwise.
It is also quite appealing from the numerical point of view since both DT and
DS need to be computed anyway to evaluate the horizontal friction, see Eqs. 5.67
and 5.68.

The value of viscosity is bounded by three criteria in the LSOMG model. One
criterion limits the maximum and the other two criteria the minimum allowed
value of viscosity.

• The horizontal friction is discretized explicitly in time in LSOMG. Conse-
quently, the viscosity can not exceed the value given by the CFL criterion,

AH <
d2

4∆t , (5.76)

otherwise the scheme would become unstable.

• The model needs to resolve the viscous boundary layer. [Munk, 1950] has
shown that the boundary-layer width LM is equal to

LM = π√
3

(
AH
β

) 1
3

, (5.77)
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where β is the meridional gradient of planetary vorticity. In order to resolve
the Munk boundary layer, the grid spacing d needs to be smaller than the
width of the boundary layer, d < LM . If the grid spacing is given, it restricts
the horizontal viscosity,

AH > β

(
d
√

3
π

)3

. (5.78)

Griffies and Hallberg [2000] notes that it is a common practice to resolve
the Munk layer by at least two grid points.

• Besides the minimum viscosity limit imposed by the presence of Munk
boundary layer, there is a condition based on the grid Reynolds number.
Bryan et al. [1975] showed that for centered finite-difference schemes, it is
desirable to ensure that

AH >
URd

2 , (5.79)

otherwise the viscosity is not large enough to dissipate the noise generated
by the advection term and the solution becomes noisy. The coefficient UR
represents the advection velocity. The default value of UR in the LSOMG
model is 0.4 m/s according to Smith and McWilliams [2003].

Fig. 5.6 shows the minimum viscosity according to the Munk and grid Reynolds
criteria at the Equator. The grid Reynolds criterion is more restrictive than the
Munk criterion even for the 2◦ resolution. Since we do not expect to run the
LSOMG model for coarser resolutions than 2◦, the Munk criterion should not be
decisive.

Figure 5.6: Minimum viscosity according to the Munk (red) and grid Reynolds
(blue) criteria.

Table 5.2 summarizes the values of horizontal viscosity used in other OGCMs.
Models are run using different resolutions, the viscosity values are thus not di-
rectly comparable. In order to do such comparison, we recompute the viscosity
values to 1◦ resolution assuming the viscosity is proportional to the grid size
squared, AH ∝ d2, as in Eq. (5.73). The viscosity based on the grid Reynolds
number is equal to AH = 2.2 × 104 m2/s which is roughly comparable to the
recomputed constant viscosities used in other OGCMs.
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OGCM Resolution AH [m2s−1] A1dg
H [m2s−1] Paper

HadGEM1 1/3◦ 2.0 × 103 1.80 × 104 Johns et al. [2006]
CLIMBER-3 3.75◦ 3.2 × 105 2.28 × 104 Montoya et al. [2005]

UVIC 3.6◦ 2.5 × 105 1.93 × 104 Weaver et al. [2001]
NCAR CSM 2.3◦ 8.0 × 104 1.51 × 104 Gent et al. [1998]

CLIO 3.0◦ 1.0 × 105 1.11 × 104 Campin and Goosse [1999]
MITgcm 0.9◦ 5.0 × 103 6.20 × 103 Adcroft [1995]

LSG 3.5◦ 4.0 × 105 3.27 × 104 Weijer et al. [2002]
LSG 3.5◦ 5.0 × 104 4.08 × 103 Maier-Reimer et al. [1993]

MOM 4.0◦ 1.0 × 106 6.25 × 104 Danabasoglu et al. [1994]
DYNAMO 1.2◦ 8.0 × 103 5.56 × 103 Gulev et al. [2003]

Table 5.2: Values of horizontal viscosity used in other OGCMs. The value A1dg
H

is the original value AH recomputed to 1◦ resolution.

Vertical viscosity

The vertical viscosity in the ocean is several orders of magnitude smaller than
the horizontal viscosity. Montoya et al. [2005], Gulev et al. [2003], Weaver et al.
[2001] and Gent et al. [1998] used a constant vertical viscosity AV = 1×10−3 m2/s.
Larger values has also been used in the community. Danabasoglu et al. [1994]
used AV = 2 × 10−3 m2/s and the default constant (background) viscosity in the
NEMO 3.4 model is AV = 2 × 10−3 m2/s [Madec, 2012]. The default value in the
LSOMG model is AV = 1 × 10−3 m2/s.

5.7 Advection schemes
The original LSG model uses the QUICK advection scheme of Leonard [1979],
see Sec. 2.4.4. Its implementation follows Farrow and Stevens [1995]. The scheme
is third-order accurate in space and second-order accurate in time. The QUICK
advection scheme is an acceptable choice, but artificial numerical overshoots may
occur in the solution since the scheme does not contain flux limiters.

We mentioned in Sec. 2.4 that simple schemes such as the centered second-
order or first-order upwind schemes are not suitable for a realistic OGCM. On the
other hand, the higher-order schemes have their own drawbacks. Godunov [1959]
showed that only the first-order schemes can be monotonic. The purpose of flux
limiter is to combine the first-order and higher-order advection schemes and take
the best of both. If the solution is smooth without steep gradients and jumps,
it is possible to use a higher order (e.g., second-order or third-order) advection
scheme. On the other hand, if steep gradients and jumps are present, a flux
limiter switches the scheme back to the first-order advection scheme. The truth
is that a flux limiter reduces amplitudes of advected tracers due to the diffusive
nature of the first-order advection scheme. However, a good flux limiter reduces
amplitudes only little.

A flux limiter should also be total-variation diminishing (TVD) where total
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variation νtot in 1-D is defined as

νtot =
b∫
a

⏐⏐⏐⏐⏐∂C∂x
⏐⏐⏐⏐⏐ dx. (5.80)

If we consider an equidistant grid with n grid points, the total variation νtot is
equal to

νtot =
n∑
i=1

|Ci − Ci−1| . (5.81)

A higher total variation thus corresponds to a more oscillatory function. A TVD
scheme does not increase total variation of the tracer when it is stepped forward
in time,

νtot(t+ ∆t) ≤ νtot(t). (5.82)
We have implemented three new advection schemes with flux limiters into the

LSOMG model.

5.7.1 Lax-Wendroff scheme
The scheme is based on the Lax-Wendroff algorithm,

Fi+ 1
2

= F up

i+ 1
2

+
|ui+ 1

2
|

2

⎛⎝∆xI − |ui+ 1
2
|∆t

∆xi+ 1
2

⎞⎠ δi+ 1
2
C, (5.83)

where F up

i+ 1
2

is the first-order upwind flux (2.12) and index I is defined by Eq. (2.13).
The Lax-Wendroff scheme can be viewed as the upwind scheme with the correc-
tion term added. Eq. (5.83) represents its general form, it is valid for both equidis-
tant and non-equidistant grids. The Lax-Wendroff scheme is stable with explicit
time-stepping schemes but it produces spurious oscillations [Leonard, 1991].

It is thus necessary to add a flux limiter ψ,

Fi+ 1
2

= F up

i+ 1
2

+ ψ(γi+ 1
2
)
|ui+ 1

2
|

2

⎛⎝∆xI − |ui+ 1
2
|∆t

∆xi+ 1
2

⎞⎠ δi+ 1
2
C, (5.84)

where

γi+ 1
2

=
{ Ci−Ci−1

Ci+1−Ci
if ui+ 1

2
> 0,

Ci+2−Ci+1
Ci+1−Ci

if ui+ 1
2
< 0. (5.85)

A good flux limiter can not be an arbitrary function of γ although there is a rich
variety of flux limiters. We mention the van Leer [Van Leer, 1974], van Albada
[Van Albada et al., 1997], minmod [Roe, 1986] and Barth-Jespersen [Barth and
Jespersen, 1989] flux limiters. In order to achieve a TVD advection scheme, the
flux limiter has to fall into the TVD region in the Sweby diagram [Sweby, 1984],

0 ≤ ψ(γ) ≤ 2, (5.86)

0 ≤ ψ(γ)
γ

≤ 2, (5.87)

r ≤ ψ(γ) ≤ 1 for γ ≤ 1, (5.88)
1 ≤ ψ(γ) ≤ r for γ ≥ 1. (5.89)
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The Superbee and minmod limiters represent extreme cases since they follow the
boundary of the TVD region. The Superbee limiter is the least diffusive and the
minmod limiter is the most diffusive.

The LSOMG model uses the Superbee flux limiter,

ψ(γ) = max [0,min(1, 2γ),min(2, γ)] , (5.90)

for the horizontal fluxes as it is done in MITgcm Adcroft et al. [2014]. We do
not use the Superbee flux limiter in the vertical direction since Eq. (5.90) is
derived for an equidistant grid. The computational grid can be non-equidistant
in both horizontal and vertical directions but it is expected that the change is
more abrupt in the vertical direction even though we use a thickness distribution
that is changing smoothly, see Sec. 5.3.

We implemented the van Leer flux limiter,

ψ(γ) = γ + |γ|
1 + |γ|

, (5.91)

the Koren flux limiter,

ψ(γ) = max
[
(0,min(2γ, 2 + γ

3 , 2)
]
, (5.92)

and the MC flux limiter,

ψ(γ) = max
[
0,min(2γ, 1 + γ

2 ), 2
]
, (5.93)

for the vertical flux. The van Leer flux limiter seems to work surprisingly well
even for the non-equidistant grid according to the example with linear data in
Berger et al. [2005], section III, paragraph C. The Koren and MC flux limiters
were chosen as a compromise between van Leer and Superbee flux limiters. We
argue that Koren flux limiter is the best choice for the vertical advection based
on the tests in Sec. 6.5, but the differences between the tested flux limiters are
relatively small.

5.7.2 Third order direct space time (DST3) scheme with
flux limiters according to Adcroft et al. [2014]

The DST3 scheme is given be

Fi+ 1
2

=
{ ui+ 1

2
[Ci + d0(Ci+1 − Ci) + d1(Ci − Ci−1)] if ui+ 1

2
> 0,

ui+ 1
2

[Ci+1 − d0(Ci+1 − Ci) − d1(Ci+2 − Ci+1)] if ui+ 1
2
< 0. (5.94)

where

d0 = (2 − c) (1 − c)
6 , (5.95)

d1 = (1 − c) (1 + c)
6 . (5.96)

and

c =

⏐⏐⏐ui+ 1
2

⏐⏐⏐∆t
∆xi+ 1

2

(5.97)
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is the Courant number. Note that the scheme reduces to the third order upwind
method if Courant number is equal to zero, c = 0. Otherwise, the dependence on
the flow through the coefficients d0 and d1 acts in a similar way as the diffusion
added to the centered second-order advection in the Lax-Wendroff scheme. The
scheme is stable for 0 ≤ c ≤ 1 and it must be implemented with explicit time
stepping scheme. The scheme has a remarkable property that its accuracy in-
creases with the Courant number, hence it is extremely accurate for large Courant
numbers with only minor overshoots Adcroft et al. [2014].

The flux limiter is implemented in a following way into the DST3 scheme,

Fi+ 1
2

= F up

i+ 1
2

+
⏐⏐⏐ui+ 1

2

⏐⏐⏐ψ (γi+ 1
2

)
δi+ 1

2
C (5.98)

where ψ is the Sweby limiter

ψ(γ) = max
{

0,min
[
min(1, d0 + d1γ), 1 − c

c
γ
]}
. (5.99)

Currently, we apply this scheme only in the horizontal direction in the LSOMG
model. We use the Lax-Wendroff advection scheme with appropriate flux limiter
in the vertical direction.

5.7.3 Lax-Wendroff scheme with flux limiters according
to Smith et al. [2010]

The scheme is based on the Lax-Wendroff scheme. The flux limiter is the UL-
TIMATE flux limiter of Leonard [1979]. The limiter is constructed in such a
way that the new tracer values are limited by the actual values in the upwind
direction. We consider the advective flux

Fi+ 1
2

= F up

i+ 1
2

+
⏐⏐⏐ui+ 1

2

⏐⏐⏐ψi+ 1
2
δi+ 1

2
C, (5.100)

which is the flux introduced in Eq. (5.98) where ψ
(
γi+ 1

2

)
is replaced by ψi+ 1

2
.

We changed the notation to emphasize that the form of the flux limiter is not
always the same, it depends on the direction of velocity on the grid-cell face and
the direction of velocity in the upwind direction. The following three cases are
considered:

• If ui+ 1
2
> 0, ui− 1

2
> 0, then

ψi+ 1
2

= max
⎡⎣0,min

⎛⎝1, ψ0
i+ 1

2
,
∆xi − ui− 1

2
∆t

ui+ 1
2
∆t γi

⎞⎠⎤⎦ , (5.101)

where ψ0
i+ 1

2
represents the flux without the flux limiter applied, i.e., it cor-

responds to the Lax-Wendroff scheme,

ψ0
i+ 1

2
= 1

2

⎛⎝∆xI − |ui+ 1
2
|∆t

∆xi+ 1
2

⎞⎠ . (5.102)
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• If ui+ 1
2
< 0, ui+ 3

2
< 0, then

ψi+ 1
2

= max
⎡⎣0,min

⎛⎝1, ψ0
i+ 1

2
,−

∆xi+1 + ui+ 3
2
∆t

ui+ 1
2
∆t γi+1

⎞⎠⎤⎦ . (5.103)

• If ui+ 1
2
> 0, ui− 1

2
< 0, then the flux limiters at both grid-cell faces of i-th

tracer volume needs to be set at the same time,

ψi− 1
2

= max

⎡⎢⎢⎣0,min

⎛⎜⎜⎝1, ψ0
i− 1

2
,−

ui+ 1
2

ui− 1
2

max
[
0,min

(
1, ψ0

i+ 1
2

)]
γi

⎞⎟⎟⎠
⎤⎥⎥⎦ , (5.104)

ψi+ 1
2

= −
ui− 1

2
ψi− 1

2

ui+ 1
2
γi

. (5.105)

(5.106)

The ui+ 1
2
< 0, ui+ 3

2
> 0 case is not considered since it is equivalent to the

case ui+ 1
2
> 0, ui− 1

2
> 0 with shifted indeces.

5.7.4 Splitting method of Adcroft et al. [2014]
The flux limiters that were introduced in previous sections are designed for a 1-D
advection. The advection in the LSOMG model is, of course, fully 3-D. However,
it is difficult to derive a 3-D limiter for a 3-D advection. On the other hand, if
we treat the advection independently in each direction, we may compromise the
properties of the scheme such as monotonicity. The preferred way is the multi-
dimensional splitting method described in Adcroft et al. [2014]. It is a variant of
operator splitting technique and allows us to couple the three dimensions without
the need for a 3-D flux limiter.

Consider for simplicity a 3-D advection in the Cartesian coordinates. The
evolution equation for tracers without turbulent fluxes and source terms is then

C,t + ∂xFx + ∂yFy + ∂zFz = 0, (5.107)

where Fx = uC, Fy = vC and Fz = wC. We gradually advect the tracer
concentration in the directions of x, y and z axes.

Cn+ 1
3 = Cn − ∆t [∂xFx (Cn) + Cn∂xu] , (5.108)

Cn+ 2
3 = Cn+ 1

3 − ∆t
[
∂yFy

(
Cn+ 1

3
)

+ Cn∂yv
]
, (5.109)

Cn+ 3
3 = Cn+ 2

3 − ∆t
[
∂zFz

(
Cn+ 2

3
)

+ Cn∂zw
]
. (5.110)

where Cn is the actual tracer concentration and Cn+ 1
3 , Cn+ 2

3 and Cn+ 3
3 are tracer

concentrations after the first, second and third advection. Terms Cn∂xu, Cn∂yv
and Cn∂zw arise due to the fact that the velocity vector is divergence-free but its
components are not. The individual terms do not contribute to Cn+ 3

3 directly,

Cn+ 3
3 = Cn − ∆t

[
∂xFx(Cn) + ∂yFy

(
Cn+ 1

3
)

+ ∂zFz
(
Cn+ 2

3
)]
, (5.111)

however, they modify tracer concentrations Cn+ 1
3 and Cn+ 2

3 which in turn affects
fluxes Fy and Fz and thus also the final tracer distribution Cn+ 3

3 .

89



5.8 Coriolis term on the C-grid
The components of velocity (vertically integrated transport) are discretized at
the same points on Arakawa grids B/E but they are spatially separated on the
Arakawa grid C. As a consequence, the both spatial and temporal discretization
of the Coriolis term on the Arakawa grid C needs to be treated carefully.

Let us start with the spatial discretization. The Coriolis term in the zonal
(meridional) component of the momentum equation requires the meridional (zonal)
component of velocity. In order to collocate the both velocity components, some
kind of averaging procedure is needed. The simplest choice is

(fv)i+ 1
2 ,j

= fvi+
1
2 ,j, (5.112)

−(fu)i,j+ 1
2

= −fui,j+
1
2 . (5.113)

Unfortunately, the Coriolis term then contributes to the total kinetic energy which
is not physical, see Eq. (C.2). More sophisticated schemes that conserve certain
physical variables have been designed. The following schemes are available in the
LSOMG model:

• The energy conserving scheme ENE of Madec [2012],

(fv)i+ 1
2 ,j

= 1
h1

f

h3
(h1h3v)i+

1
2

j

, (5.114)

−(fu)i,j+ 1
2

= − 1
h2

f

h3
(h2h3u)j+

1
2

i

. (5.115)

• The energy conserving scheme ENE2 of Shchepetkin and McWilliams [2005],

(fv)i+ 1
2 ,j

= 1
h3
fh3vj

i+ 1
2 , (5.116)

−(fu)i,j+ 1
2

= − 1
h3
fh3ui

j+ 1
2 . (5.117)

• The enstrophy conserving scheme ENS of Madec [2012],

(fv)i+ 1
2 ,j

= 1
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f
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1
2 ,j, (5.118)

−(fu)i,j+ 1
2

= − 1
h2

f

h3

i

(h2h3u)i,j+
1
2 . (5.119)

• The energy and enstrophy conserving scheme EEN of Madec [2012],
(fv)i+ 1
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= 1
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2
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, (5.121)

90



where T ip,jpI,J is a triad,

T
ip,jp
I,J = 1

12

⎡⎣( f
h3

)
I+ip,J

+
(
f

h3

)
I,J

+
(
f

h3

)
I,J+jp

⎤⎦ , (5.122)

where I, J are grid indeces of the particular C-point and ip, jp are either +1
or −1. We write only the signs of ip and jp in Eqs. 5.120, 5.121 to simplify
the notation.

We also need to concern the temporal discretization of the Coriolis term. On
the Arakawa grids B/E, the semi-implicit discretization of the Coriolis term in
time is commonly used. Such discretization is stable and it does not increase the
computational demands since it does not introduce coupling between neighbour-
ing grid points. The original discretization of the Coriolis term in the LSG model
is implicit in time. The implicit discretization was preferred to the semi-implicit
one since it allows for larger time steps in the model.

On the Arakawa grid C, the both semi-implicit and implicit discretizations
of the Coriolis term in time may in principle be also used. The problem is
that the spatial separation of velocity components results in coupling between
the neighbouring grid points (see Eqs. 5.112-5.122) and the momentum equation
transforms to a system of linear equations that needs to be solved. If the split-
explicit time stepping scheme is used, which is the case of the LSOMG model,
the time step is limited by the CFL criterion and the usage of semi-implicit or
implicit discretization of the Coriolis term becomes costly.

The straightforward explicit discretization of the Coriolis term is not recom-
mended either. The stability analysis of inertial oscillations shows that such a
discretization is formally stable, but growing modes may appear [Durran, 1999].
Note that this is true for the two-time-level schemes that advance velocities from
time step n to time step n+ 1. The explicit discretization may be used together
with the leap-frog time stepping scheme, which is a three-time-level scheme that
advances velocities from time step n−1 to n+1. The discretization of the Coriolis
term on time level n is stable. However, the leap-frog time stepping scheme has
its own problems such as the existence of a computational mode [Griffies et al.,
2000].

The LSOMG model is using two time levels and thus neither explicit, semi-
implicit or implicit discretizations are suitable. One solution of the problem is
to apply the Adams-Bashforth extrapolation. The MITgcm model is using the
quasi-second-order Adams-Bashforth extrapolation,

uAB =
(3

2 + ϵAB

)
un −

(1
2 + ϵAB

)
un−1, (5.123)

where ϵAB is a small number that stabilizes the method with respect to oscil-
latory terms [Adcroft et al., 2014]. The Adams-Bashforth extrapolation of the
third-order is used in the FBgen scheme, see Eq. (4.18), and it is also the de-
fault method in the LSOMG model. Another possibility is to use the method
of Sielecki [1968] and Beckers and Deleersnijder [1993] that somehow mimics the
implicit discretization. Similar to the forward-backward scheme, the method is
based on the idea of gradual update of components of the momentum equation
(not momentum and SSH equations as in the FB scheme). In time step n, the
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Coriolis term is discretized explicitly in the zonal component and implicitly in
the meridional component of the momentum equation. The zonal component is
thus computed first and the computation of the meridional component follows. In
time step n+1, the discretization in time and the computation order are swapped
between the components.

Unfortunately, even the sophisticated discretizations in space and time does
not cure all the difficulties. The Coriolis term is prone to generate a grid-scale
noise on the C-grid. Consider the simplest scheme given by Eqs. 5.112 and 5.113.
The Coriolis term is equal to zero for a velocity field in the form of a checker-
board pattern with alternating +1 and −1 values. The averaging operators used
in Eqs. 5.112 and 5.113 thus have a null space and does not “see” the checker-
board noise. The other discussed schemes (ENE, ENE2, ENS and EEN schemes)
suffer from a similar problem since each of them is in fact a weighted average of
four neighbouring grid points.

The noise is generated at the boundaries. In fact, an unrealistic numerical
boundary layers develop along solid boundaries [Jamart and Ozer, 1986]. The
noise generation can be somewhat suppressed if the averaging procedure distin-
guishes between wet and dry points. On the other hand, if dry points are not
considered in the scheme, the conservation of the particular quantity (energy,
enstrophy etc.) is violated. The LSOMG model thus does not exclude the dry
points from the proposed schemes. Instead, we have implemented the so-called
divergence damping method.

The divergence damping of order 2q adds an additional term into the momen-
tum equation,

u,t = · · · + (−1)q+1∇h

(
Ad∇2q−1

h · u
)
, (5.124)

where q ≥ 1 is a positive integer and Ad is the damping coefficient. The LSOMG
uses the second-order method,

u,t = · · · + ∇h (Ad∇h · u) . (5.125)

If we apply the rotation operator ∇h× to Eq. (5.125), the newly added term
vanishes since ∇h × ∇hA = 0, where A is an arbitrary vector function. It means
that the vorticity dynamics (rotational motions) is unaffected. However, if we
apply the divergence operator ∇h· to Eq. (5.125), we obtain

D,t = · · · + ∆h (AdD) , (5.126)

where D is a divergence of horizontal velocity, D = ∇h · u. The divergence
equation thus has an additional diffusion term. Consequently, the divergence
damping method selectively damps inertia-gravity waves (associated with the di-
vergent part of the flow) and controls numerical noise [Adcroft, 1995, Jablonowski
and Williamson, 2011].

Additionally, we may use some kind of a spatial smoother. We require the
smoother to act on the small-scale features which are supposed to represent noise
and keep the larger scales unaffected. We implemented the dual-step five-point-
involved (DFP) smoother of Lei [2014]. In the first step, we compute the provi-
sional velocity ũ,

ũi+ 1
2 ,j

= ui+ 1
2 ,j

+ s

4Wi+ 1
2 ,j

(
ui+ 3

2 ,j
+ ui− 1

2 ,j
+ ui+ 1

2 ,j+1 + ui+ 1
2 ,j−1 −Kui+ 1

2 ,j

)
(5.127)
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and in the second step, the provisional velocity is used to calculate the final
DFP-smoothed velocity,

ûi+ 1
2 ,j

= ũi+ 1
2 ,j

− s

4Wi+ 1
2 ,j

(
ũi+ 3

2 ,j
+ ũi− 1

2 ,j
+ ũi+ 1

2 ,j+1 + ũi+ 1
2 ,j−1 −Kũi+ 1

2 ,j

)
.

(5.128)
The parameter s in the DFP smoother determines the level of smoothing. The
smoother strength is thus not fixed but it can be adjusted to the particular
situation. We use s = 0.1 as the default value according to Lei [2014].

The benefit of the divergence damping combined with the DFP filter is demon-
strated in Fig. 5.7. The both panels depict zonal surface velocities from the wind-
driven baroclinic LSOMG simulation after one year. However, the velocities in
the left panel are computed without the divergence damping and DFP smoother
while both options are enabled in the right panel. The divergence damping with
the DFP smoother successfully suppress the grid-scale noise around Antarctica,
Greenland or Iceland. The noise is virtually gone. At the same time, the flow
details are preserved, which is the requested behaviour.

Figure 5.7: The suppression of grid-scale noise in the zonal component of surface
velocity [m/s] using the divergence damping and the DFP smoother. Both options
are switched off in the left panel while they are active in the right panel.

5.9 Convective adjustment scheme
The LSOMG model uses the hydrostatic approximation which reduces the vertical
component of the momentum equation to the hydrostatic pressure balance. It
is a suitable approximation since the global ocean is close to the hydrostatic
equilibrium in most regions. However, the unresolved convection processes may
result in gravitationally unstable water columns in certain regions. The purpose
of the so-called convective adjustment scheme is to ensure that all water columns
in the model are gravitationally stable. If instability is found, the scheme mixes
the water in model cells in order to make the column stable.

Note that the mixing process affects the temperature and salinity rather than
the density itself. If we mix two water parcels, the resulting density could be
lower than the initial density of each water parcel due to the non-linearity of
state equation of sea water [Rahmstorf, 1993].

The stability of two model cells is determined by comparison of density of
adiabatically displaced water mass from the upper cell and the density of water
mass from the lower cell. The density of adiabatically displaced water mass
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is calculated from the state equation using the temperature and salinity of the
displaced water mass and the pressure at the interface between the two cells.

The original convective adjustment scheme used in the LSG model checks the
stability of each pair of model cells in the water column. The scheme starts with
the upper most pair and continues to the deeper parts of the water column. The
process is not repeated after processing the whole water column. The scheme is
simple but there is no guarantee that the water column will be stable. According
to Maier-Reimer et al. [1993], around 5% of convective regions remain unstable
after the single sweep in the realistic configuration. The entire process could be
repeated but the number of repetitions could be very large to stabilize the water
column. It may not be a critical issue but we rather implemented the scheme of
Rahmstorf [1993] in which the stabilization of water column is guaranteed.

The key idea of the Rahmstorf’s scheme is that the mixing of multiple model
cells is allowed. The scheme goes through the water column from top to bottom.
If instability is found, the unstable cells are mixed and they are joined into one
cell. The stability of the joined cell with respect to the next lower cell is then
checked. If instability is found, the joined cell is mixed with this cell, the joined
cell is enlarged and the scheme proceeds to the next lower cell. If the scheme
reaches a cell that is stable with respect to the joined cell, the stability between
the joined cell and the cell just above it is checked since the instability could have
been introduced. If there is no instability, it continues down the water column to
find the next unstable part of the water column. If there is instability, the mixing
process is repeated to remove this instability but the joined cell is still considered
to be a one cell. The Rahmstorf’s scheme is obviously more complicated than the
original LSG scheme since it is necessary to remember which cells are joined.

An alternative to the convective adjustment scheme is to increase the vertical
diffusion to some large value if instabilities are found and let the diffusive process
to mix the water parcels. In LSOMG, this method is automatically enabled if
the Richardson-number based viscosities and diffusivities are used, see Sec. 5.5.2.
If the Richardson number is negative, both vertical diffusivity and viscosity are
increased to AV = KV = 50 m2/s. Recall that the vertical diffusion and friction
are treated implicitly which assures the stability.

5.10 Tides in the baroclinic LSOMG
Tides is one of physical processes that were neglected in OGCMs for a long time.
The reasons were mainly technical such as the popular rigid-lid approximation,
which filters out gravity waves (see Sec. 5.2) by assuming that the ocean surface
does not evolve in time which directly precludes the modelling of tides, and
insufficient resolution in space and time. Instead of modelling tides properly, it
was believed that the effect of tides is negligible for climate studies due to their
periodic nature and much shorter time scales. However, Munk and Wunsch [1998]
estimated that 2.1 TW are required to maintain the global ocean circulation and
they pointed out that the wind stresses can not be the only source of energy.
They attributed about half of the total power to the tidal dissipation in the deep
ocean. Egbert and Ray [2000] confirmed this estimate using satellite altimeter
data from Topex/Poseidon. Nowadays, there is a growing interest in tidal effects
in the OGCM’s community. Müller et al. [2010] showed that tides improved the
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skill of a climate model. [Müller et al., 2012, Arbic et al., 2010, Simmons et al.,
2004, Niwa and Hibiya, 2011] presented results from the modelling of baroclinic
tides.

Laurent et al. [2002] were one of the first modelling teams who included tides
into an OGCM. He did not implement tides directly, he rather suggested a pa-
rameterization suitable for models with implicit time stepping schemes. His idea
is to modify the vertical diffusivity by adding a new term. The tidally induced
diffusivity depends on the internal wave energy map derived from a barotropic
tidal model, buoyancy frequency and depths. For further details see Jayne [2009]
who used this parameterization in the POP model.

However, a more natural approach is to implement tides directly as a forcing
on the right-hand side of the momentum equation. This approach was followed
by Schiller and Fiedler [2007], Müller et al. [2010, 2012] and Arbic et al. [2010].
Schiller and Fiedler [2007] and Arbic et al. [2010] implemented eight dominant
constituents of the semi-diurnal (M2, S2, N2 and K2) and diurnal (K1, O1, P1,
Q1) tides into the MOM and HYCOM models, respectively, and Müller et al.
[2010, 2012] implemented the full lunisolar tidal forcing into the MPI-OM model
(the resulting model is called STORMTIDE). We also prefer this approach and
thus tides are implemented directly in the LSOMG model, see Sec. 4.4.

What about the tidal parameterization discussed in Sec. 4.4, especially IWD?
Is IWD needed also in the baroclinic model? In principle, a baroclinic model
should be able to model the breaking of internal tides. However, the problem
is the resolution. According to Arbic et al. [2010], the wavelength of the first
baroclinic M2 internal tide is approximately 100 km in mid-latitudes. As a rule
of thumb, eight grid points per wavelength are needed. If we consider that the
wavelength of n-th mode decreases with 1/n, we realize that even the first few
modes require a resolution than is beyond the limits of the most powerful su-
percomputers in terms of OGCMs. Consequently, the IWD parameterization is
needed also in the baroclinic model. However, the situation in the full OGCM
is more complicated than in the tidal barotropic model. The input for the IWD
parameterization is the vertically integrated tidal flow. That is natural for the
tidal barotropic model but the OGCM which is forced by tides and fluxes of
momentum, heat and fresh water generates the flow which is a superposition
of both tidal and non-tidal (surface currents, meridional overturning circulation,
etc.) circulations. The key issue is thus the separation of these two circulation
types.

Arbic et al. [2010] suggested to use the 25-hour running mean. Tidal velocities
are considered to be deviations from the running mean. Similarly, tidal heights are
thought to be deviations from the dynamic height. Unfortunately, our experience
with the LSOMG model has shown that the implemented split-explicit scheme
considerably damps the amplitudes of tidal circulation. It is the consequence
of averaging of barotropic quantities in time that ensures the stability of the
scheme. We thought that the problem could be solved by decreasing the length
of the baroclinic time step which reduces the number of barotropic subcycles per
one baroclinic time step, see Eq. 5.36. However, the method was not proved to
be useful since we were unable to get rid of the damping. On top of that, it
increases the computational demands and so it devalues the main advantage of
the split-explicit scheme.
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We have rather decided to follow an alternative way and implemented a
barotropic linear tidal model into LSOMG according to Sakamoto et al. [2013].
The idea is to have two barotropic systems instead of just one. The first barotropic
system contains all the forcing (surface pressure gradients and the vertically in-
tegrated baroclinic forcing, see Eqs. 5.30 and 5.28) except for the tidal force.
The second barotropic system is forced by tides and it computes merely the tidal
circulation. It is thus simple to implement the tidal parameterizations. This is
the primary barotropic tidal effect. The baroclinic part of the model provides
the secondary tidal effect. The SSHs and vertically integrated velocities from
the both barotropic systems are added together. The barotropic and baroclinic
velocities are added to get total velocities. The total velocities are stronger due
to the presence of tides. The transports of temperature and salinity are also
larger which effects the density, pressure and finally the pressure gradients. The
pressure gradients provide a forcing to the momentum equation, which in turn
affects the velocities, see Fig. 5.8.

ū, η
tidal model

primary effect

ū, η u, η T , S transports ρ p ∇p

secondary effect

Figure 5.8: Scheme illustrating the implementation of tidal model into the
LSOMG model. The primary effect stands for the barotropic response and the
secondary effect stands for the baroclinic response.

Note that the second (tidal) barotropic system is not affected by the baro-
clinic part of the LSOMG model, it is running independently. Indeed, it is a
separate model that is running together with the baroclinic LSOMG. Conse-
quently, there is no need to ensure the stability of barotropic-baroclinic splitting
and so no averaging in time is needed in the second barotropic system. That
is the principal benefit of this approach. One may, of course, argue that the
one-way coupling between the models is not correct since the baroclinic response
should affect barotropic tides in return. There is no clear argument against this
statement but according to Sakamoto et al. [2013] such interactions have not been
reported. Nevertheless, they anticipate that the proposed scheme is not suitable
for a shallow coastal regions where nonlinearities become important.

5.11 Horizontal coordinates
An arbitrary orthogonal coordinate grid may in principle be used in the LSOMG
model if grid-point positions and metric coefficients are provided in the input file.
We mentioned several orthogonal coordinate grids in Sec. 2.2. Apart from the
standard SC grid, the dipolar grid of Roberts et al. [2006], the tripolar confocal
grid of Murray [1996] and the tripolar reprojected grid of Murray [1996] are
available in the LSOMG model, see Fig. 5.9. The construction of these grids is
explained in details in the original papers, we thus merely highlight the key ideas
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and summarize the formulas. We also discuss the implementation of tripolar grids
such as the tripolar reprojected grid of Murray [1996] into the LSOMG model,
especially the way how to enclose grid at the North Pole.

5.11.1 Dipolar grid of Roberts et al. [2006]
Roberts et al. [2006] proposed a global dipolar grid. Roughly speaking, the grid
looks like a SC grid that is “tilted” towards the new relocated North Pole. The
grid is composed of two parts, the SC grid from the South Pole to the join
latitude ϕJN and the “tilted” grid from the join latitude northward. The “tilted”
grid gradually adjusts with increasing latitude to relocate the North Pole to the
new position with longitude λP and latitude ϕP .

The grid construction is based on the stereographic projection and reprojec-
tion technique. The central point of the reprojection is the Earth’s North Pole.
The grid parallels and meridians are projected to the tangent plane, shifted and
reprojected back to the sphere. Note that the grid parallels are actually con-
structed first, the grid meridians are then constructed from the orthogonality
property (meridians are orthogonal to the parallels). We report eight steps to
construct the grid as they are listed in the appendix of Roberts et al. [2006]:

1. Consider a point with geographic coordinates λc, ϕc. Project the point on
the tangent plane. Its polar coordinates r, θ1 on the tangent plane are

r =
tan(π2 − ϕc)

tan(π2 − ϕJN) , (5.129)

θ1 = λc. (5.130)

Notice that 0 ≤ r ≤ 1 since r = 0 for ϕc = π/2 and r = 1 for ϕc = ϕJN .

2. Rotate the point in the tangent plane,

θ2 = θ1 − λP , (5.131)

while keeping θ2 within 0 ≤ θ2 ≤ 2π.

3. Choose function f that controls the shift of grid-point circles in the tangent
plane. We require

f(1) = 0, f(0) = a, (5.132)
where

a =
tan(π2 − ϕP )
tan(π2 − ϕJN) . (5.133)

According to Eqs. (5.141) and (5.142), the ϕc = ϕJN parallel is then left
unchanged and the North Pole is relocated to x = a and y = 0.

4. Compute the integration constant c,

θ2 ∈ {0, π} ⇒ c = − ln
⏐⏐⏐⏐⏐tan θ2

2

⏐⏐⏐⏐⏐+ F (1), (5.134)

θ2 /∈ {0, π} ⇒ c = 0, (5.135)

where
F (r) =

∫ df(ρ)
dρ

1
ρ
dρ. (5.136)
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5. Update θ,

θ2 = 0 ⇒ θ3 = 0, (5.137)
0 <θ2 < π ⇒ θ3 = 2 arctan

[
eF (r)−c

]
, (5.138)

θ2 = π ⇒ θ3 = π, (5.139)
π <θ2 < 2π ⇒ θ3 = 2π − 2 arctan

[
eF (r)−c

]
. (5.140)

6. Compute Cartesian coordinates of the point on the tangent plane,

x4 = f(r) + r cos θ3, (5.141)
y4 = r sin θ3. (5.142)

7. Remove the rotation that was applied in point 2,

x5 = x4 cosλP − y4 sin λP , (5.143)
y5 = x4 sin λP + y4 cosλP . (5.144)

8. Reproject the point back from the tangent plane to the sphere, its new
geographic coordinates are

λs = atan2(y5, x5), (5.145)

ϕs = π

2 − arctan
[√

x2
5 + y2

5 tan
(
π

2 − ϕJN

)]
. (5.146)
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(a) spherical coordinates

(b) Roberts et al. [2006], Greenland (c) Roberts et al. [2006], Asia

(d) reprojected Murray [1996] (e) confocal Murray [1996]

Figure 5.9: Horizontal grids available in the LSOMG model.
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The choice of f(r) is up to the user. Roberts et al. [2006] proposed either poly-
nomial functions or the cosine function. They tested three polynomial functions,
the linear, parabolic and cubic functions. The best performance is achieved for
the parabolic function, which provides a smooth transition at the join and small
latitudinal grid spacing near the grid pole. The linear case leads to a step in
the latitudinal grid spacing at the join and the cubic function causes the largest
change in the latitudinal grid spacing near the grid pole, see Fig. 5b in Roberts
et al. [2006]. The benefit of using the cosine function is questionable. On one
hand metrics are continuous across the pole, on the other hand the grid spacing
is larger in the polar region than in the case of polynomial functions.

The f(r) and F (r) are

f(r) = a(1 − r)2, (5.147)
F (r) = 2a (r − ln r) , (5.148)

for the parabolic function and

f(r) = a
1 + cos(rπ)

2 , (5.149)

F (r) = −aπSi(rπ)
2 , (5.150)

for the cosine function, where Si(z) is the Sine Integral,

Si(z) =
z∫

0

sin t
t
dt =

∞∑
n=0

(−1)nz2n+1

(2n+ 1)(2n+ 1)! (5.151)

according to Abramowitz and Stegun [1968].
The dipolar grid of Roberts et al. [2006] is depicted in Fig. 5.9, panels (b) and

(c). The North Pole is relocated to Greenland, 40◦ W and 75◦ N, in panel (b)
and to Asia, 60◦ W and 100◦ N, in panel (c). The parabolic function f and join
at the Equator are used in the both cases.

5.11.2 Tripolar reprojected grid of Murray [1996]
Murray [1996] constructed a dipolar grid with relocated poles using the stereo-
graphic projection and reprojection (the form is slightly different than in Sec. 5.11.1)
that is applied to the standard SC grid. First, the SC grid is stereographically
projected from the (grid) sphere onto the tangent plane. The central point of the
projection, which is the point where the plane touches the sphere, is at the Equa-
tor. The grid projected on the tangent plane is then reprojected onto the second
(real) sphere. The central points of projection and reprojection are the same but
the radius of the second sphere is larger. Finally, the reprojected grid can be
shifted and rotated. The key part of the outlined transformation is that the both
projection and reprojection are conformal (angle-preserving) which implies that
the orthogonality of the original SC grid is preserved.

Consider a general transformation with North and South Poles relocated to
(λ1, ϕ1) and (λ2, ϕ2), respectively, and assume without any loss of generality that
the diameter of the second sphere is equal to unity. The diameter of the first
sphere is given by the required stretching of the transformation. Let χP be the
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half of angular distance between the transformed poles then the diameter of the
first sphere is tan(χP/2). The transformation is given by the following steps:

1. Determine the parameters of the transformation: The longitude λQ and
colatitude ϑQ = π

2 − ϕQ of the central point, the angular distance χP and
the angle β which expresses the rotation applied after the reprojection. All
these parameters can be computed from the positions of the North and
South Poles after the transformation,

χP = 1
2fc(λ1 − λ2, ϑ2, ϑ1), (5.152)

α = ft(λ1 − λ2, ϑ2, ϑ1), (5.153)
λQ = λ1 − ft(α, χP , ϑ1), (5.154)
ϑQ = fc(α, ϑ1, χP ), (5.155)
β = ft(α, ϑ1, χP ), (5.156)

where ft and fc are functions in a spherical triangle with vertices A, B and
C opposite to sides a, b and c, respectively, defined by

fc(A, b, c) = cos−1(cosA sin b sin c+ cos b cos c), (5.157)

ft(A, b, c) = atan2
[
sinA,

( sin c
tan b − cos c cosA

)]
. (5.158)

2. Transform geographic coordinates λc, ϕc of the point on the Earth surface
into the natural variables of the projection, θc and χc,

χc = cos−1(cosλc cosϕc), (5.159)
θc = atan2(sinλc, tanϕc), (5.160)

where atan2(x, y) has the meaning of the FORTRAN atan2 function.

3. Apply projection and reprojection which transforms χc to χs,

χs = 2 tan−1
(

tan χP2 tan χc2

)
. (5.161)

4. Rotate by angle β,
θs = θc + β. (5.162)

5. Shift the whole result to have the central point at coordinates (λQ, ϕQ) and
compute the new longitude λs and latitude ϕs of the point,

λs = λQ + ft(θs, χs, ϑQ), (5.163)

ϕs = π

2 − fc(θs, χs, ϑQ). (5.164)

The dipolar grid has the third property from the list in Sec. 2.2 only if the poles
are located on the same meridian and at equal latitudes. Therefore, Murray [1996]
proposed to use this dipolar grid in a composite tripolar grid. It consists of the
SC grid from the South Pole to the join latitude ϕJN on the northern hemisphere
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and the dipolar grid from the join latitude to the North Pole. The dipolar-
grid poles are located opposite to each other on the join latitude, λ2 = λ1 + π,
ϑ1 = ϑ2 = ϑJN . The special positions of poles significantly simplifies Eqs. (5.163)
and (5.164),

λs = λ1 − θc = λ1 − atan2(sinλc, tan θc), (5.165)

ϕs = π

2 − χs = π

2 − 2 tan−1
(

tan ϑ1

2 tan χc2

)
, (5.166)

since χP = ϑ1, α = 0, λQ = λ1, ϑQ = 0, β = 0. Let ∆λc and ∆ϕc be the zonal and
meridional grid spacings of the SC grid in the composite grid, respectively, and
∆λs and ∆ϕs be the zonal and meridional grid spacings of the dipolar grid before
the transformation, respectively. The meridians of the dipolar grid are treated
as parallels in the composite grid and the parallels are treated as meridians. The
choice of meridional grid spacing of the dipolar grid before the transformation
is thus clear, ∆ϕs = ∆λc. The zonal grid spacing of the dipolar grid before the
transformation is chosen to be slightly larger than ∆ϕc to improve the continuity
of grid spacing in the meridional direction on the join of the composite grid,
∆λs = ∆ϕc/ cosϕJN .

The tripolar reprojected grid of Murray (1996) is depicted in Fig. 5.9 (d). The
two poles in the bipolar part of the grid are located at (10◦ ± 90◦) W and 65◦ N.

5.11.3 Tripolar confocal grid of Murray [1996]
The tripolar confocal grid is constructed from families of confocal ellipses and hy-
perbolae. The ellipses represent parallels and hyperbolae represent meridians. It
looks similar to the tripolar reprojected grid of Murray [1996] that was described
in Sec. 5.11.2 but it is constructed as a global grid and thus it is free of discon-
tinuities at the join of two parts of the grid. Similar to Secs. 5.11.1 and 5.11.2,
the grid construction is based on the stereographic projection technique. The key
difference is that the reprojection step is missing. The grid is constructed in the
tangent plane and then it is simply reprojected on the sphere with the central
point at the North Pole.

The ellipses with foci at (−rF , 0) and (rF , 0) in Cartesian coordinates are
given by the equation

x2

r2
F coshψc

+ y2

r2
F sinhψc

= 1, (5.167)

where ψc is a parameter which distinguishes the individual ellipses. Similarly, the
hyperbolae with the same foci are given by the equation

x2

r2
F sin2 λc

− y2

r2
F cos2 λc

= 1, (5.168)

where λc is a parameter which distinguishes the individual hyperbolae. It can be
shown that these two sets of curves compose a grid that is equidistant in both λc
and ψc. Combining Eq. (5.167) for the ellipses and Eq. (5.168) for the hyperbolae
we obtain the Cartesian coordinates of points on their intersection,

x = rF sin λc coshψc, (5.169)
y = rF cosλc sinhψc. (5.170)
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Additionally, the grid can be constructed to be equiangular in latitude on the
Prime Meridian. This condition is expressed by

rF sinhψc = tan
(
ϑc
2

)
, (5.171)

where we equated the length of minor axis of ellipse with the parameter ψc and
the distance of the point with the colatitude ϑc from the central point on the
tangent plane. If we insert Eq. (5.171) into Eqs. (5.169) and (5.170), we obtain
the final Cartesian coordinates of grid points on the tangent plane,

x = sinλc

√
r2
F + tan2 ϑc

2 , (5.172)

y = cosλc tan ϑc2 . (5.173)

To sum it up, the confocal grid with foci at colatitude ϑF and longitudes λF
and λF + π is constructed in three steps:

1. Compute the distance of foci from the central point on the tangent plane,
rF = tan ϑF

2 .

2. Compute Cartesian coordinates on the tangent plane of all grid points in
the SC grid using Eqs. 5.172 and 5.173.

3. Reproject the grid points from the tangent plane back on the sphere and
rotate the grid in the zonal direction to have foci at the desired positions

λs = atan2(y, x) + λF , (5.174)

ϕs = π

2 − 2 arctan r. (5.175)

The tripolar confocal grid of Murray (1996) is depicted in Fig. 5.9 (e). The
two poles in the North hemisphere are located at (25◦ ± 90◦) W and 60◦ N.

5.11.4 Construction of a C-grid type grid
There are four types of grid points on the Arakawa C-grid. We call them C, S,
U and V points, see the left panel of Fig. 5.10. The grid is fully determined by
the C-point positions since S-, U- and V-point positions are computed from the
C-point positions The positions of two neighbouring C points on a cell side are
averaged to determine the positions of U and V points. S-point positions are
then determined by averaging the U-point positions. The averaging of two points
means that the new point is equally distant from both original points and all three
points are located on the same great circle. Points with geographic coordinates
(−90◦, 80◦) and (90◦, 80◦) are thus averaged to a point with coordinates (0◦, 90◦)
not (0◦, 80◦). The complete tripolar reprojected C-grid of Murray [1996] is shown
in the right panel of Fig. 5.10.
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Figure 5.10: Left panel: Notation used for points on Arakawa C-grid. Right
panel: The tripolar reprojected grid of Murray [1996] with Arakawa C-grid cells.
The grid-point colors are the same as on the left panel.

5.11.5 Tripolar grids in the LSOMG model
The implementation of a dipolar orthogonal curvilinear grid (such as the dipolar
grid of Roberts et al. [2006] in Sec. 5.11.1) into the SC ocean model requires two
modifications:

1. The (re)formulation of the governing equations into the full form using the
metric coefficients.

2. The input vector data needs to be rotated into the local directions of base
vectors.

The first issue was discussed in Secs. 5.1 and 5.6.1, the second issue will be dis-
cussed in Sec. 5.14.4. No other special treatment of the North-Pole cap is needed
since the nearest grid-point circles (grid points with the same grid coordinate j)
around the relocated North Pole contain only dry grid points which corresponds
to a SC grid with an artificial continent around the true North-Pole. The imple-
mentation of a tripolar grid is more complicated since there is no completely dry
grid-point circle in the North-Pole cap. We explain the technique that is used in
the LSOMG model to enclose the North-Pole cap on the example of the tripolar
reprojected C-grid of Murray [1996].

We require the dipolar part of the tripolar grid to contain a reprojected C-
point meridian which crosses the true North Pole. This meridian is called a
symmetry meridian. The dipolar part is not constructed from the relocated grid-
point circles but grid points located on two reprojected meridians equally distant
from the symmetry meridian can be viewed as one grid-point circle since the num-
ber of grid points is the same. The numbering of C-point circles (=“meridional”
grid coordinate j) and the numbering of C points within each circle (=“zonal”
grid coordinate i) in the LSOMG code is shown in the left and right panels of
Fig. 5.11, respectively.

As already mentioned, the dipolar grid needs to be enclosed in order to allow
the two parts of the grid separated by the symmetry meridian to communicate
with each other. Fig. 5.12 depicts the seam for a grid with only eight grid points
in each grid-point circle. The grid is enclosed by adding two auxiliary grid-point
circles. Consider a grid that originally contained I × J grid points. The values
in the first auxiliary grid-point circle are:
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Figure 5.11: Zonal (right panel) and meridional (left panel) grid indeces (num-
bering of grid points) used in the LSOMG code in the dipolar part of the tripolar
grid viewed from the true North Pole.

• Scalars sC , sS, sU and sV at C, S, U and V points, respectively:

sC(i, J + 1) = sC(I − i, J − 1), (5.176)
sS(i, J + 1) = sS(I − i+ 1, J), (5.177)
sU(i, J + 1) = sU(I − i, J), (5.178)
sV (i, J + 1) = sV (I − i+ 1, J − 1). (5.179)

• Components of vectors vC , vS, vU and vV at C, S, U and V points, respec-
tively:

vCi (i, J + 1) = −vCi (I − i, J − 1), (5.180)
vSi (i, J + 1) = −vSi (I − i+ 1, J), (5.181)
vUi (i, J + 1) = −vUi (I − i, J), (5.182)
vVi (i, J + 1) = −vVi (I − i+ 1, J − 1). (5.183)

Note that the components of vectors change the sign when they cross the sym-
metry meridian while scalars do not. The reason is that the base vectors change
their directions when we cross the symmetry meridian. Consequently, the general
formulas for the components of tensors of the n-th order contain factor (−1)n.
Scalars and vectors are tensors of the zeroth and first order, respectively, and
thus we multiply them (their components) by (−1)0 and (−1)1, respectively.

The formulas for the second auxiliary grid-point circle are not given explicitly.
They are constructed analogously to those for the first auxiliary grid-point circle
using grid points with meridional grid index J − 1 (instead of J).

Besides that, there exist quantities that are not located at one particular type
of grid points. These quantities are auxiliary coefficients which are introduced in
the LSOMG model in order to speed up the computation. Consider, for example,
the horizontal tension given by Eq. (5.69). The tension discretized on the Arakawa
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Figure 5.12: Sketch of the tripolar grid at the North-Pole seam. Numbers denote
the zonal grid index used in the LSOMG code. The full line denotes the symmetry
meridian.

C-grid has the form,
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⎤⎦ , (5.184)

where ξ1 and ξ2 are chosen such that ∆ξ1 = ∆ξ2 = 1. Eq. (5.184) can be rewritten,

(DT )i,j = K1ui+ 1
2 ,j

−K2ui− 1
2 ,j

−
(
K3vi,j+ 1

2
−K4vi,j− 1

2

)
, (5.185)

where Ki are coefficients,
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, (5.186)

which are spatially varying but constant in time. In the LSOMG model, they are
calculated only once during the initialization phase of the computation, stored in
memory and then used in each time step. It is faster to compute tension using
Eq. (5.185) since it requires less multiplications (divisions) than Eq. (5.184). The
K1 and K2 coefficients contain metric coefficients from S and U points, the K3
and K4 coefficients contain metric coefficients from S and V points. The problem
is that the grid indeces for the halo exchange are different for S, U and V points;
compare Eqs. (5.177), (5.178) and (5.179). However, notice that K1 and K2
contain values from the same S point and neighbouring U points. We send K1 and
K2 halos as if both coefficients were located at S points and then exchange their
meridional halos. The same procedure is applied to the K3 and K4 coefficients.
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5.12 Sea ice
The sea ice model used by the LSOMG model captures merely a simple thermo-
dynamics, there is no sea-ice dynamics. If water in a surface cell is cooled below
the freezing temperature Tfr, the water temperature is restored to the freezing
temperature and a certain amount of sea ice is formed. On the other hand, if
water in a surface model cell warms up above the freezing temperature in the
presence of sea ice, the water temperature is restored to the freezing temperature
and the excessive heat is used to melt certain amount of sea ice.

Consider a water with temperature Tw and mass mw and sea-ice with tem-
perature Tfr and mass mi. If we put them together, the final equilibrium state
depends on the sign of Em,

Em = mwcw(Tw − Tfr) −milf , (5.187)

where cw is the specific heat capacity of water and lf is the latent heat of freezing
or melting. The first term in Eq. (5.187) represents the heat that the water mass
would release if it was cooled down to the freezing temperature and the second
term represents (in absolute value) the heat needed to completely melt the ice.

If Em > 0, the ice melts completely and the water with mass mw + mi and
temperature T ,

T = Tfr + Em
(mw +mi)cw

, (5.188)

will remain.
If Em < 0, the water cools down to temperature Tfr and the ice with mass

mm,
mm = mwcw(Tw − Tfr)

lf
, (5.189)

will melt and the ice with mass mnew
i ,

mnew
i = mi −mm = −Em

lf
, (5.190)

will remain. Note that if the initial water temperature is below the freezing point,
Tw < Tfr, Eq. (5.190) that determines the equilibrium ice mass remains valid.
The ice grows rather than melts, mnew

i > mi, since both terms in Eq. (5.187) are
negative not just the second one.

5.13 Parallelization and other programming is-
sues

The original LSG model is built on the FORTRAN 77 programming standard. It
follows the FORTRAN 77 fixed format, global variables are accessed via common
blocks and static arrays (their shape and size is specified during the compilation
process) are used. We regard these features as obsolete and the LSOMG model is
build on the Fortran 90 programming standard. The FORTRAN 77 fixed format,
common blocks and static arrays are replaced by the Fortran 90 free format,
modules and allocatable arrays, respectively. A programmer benefits from the
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Fortran 90 free format that does not restrict the length of one line of the code
(which is the case of Fortran 77 fixed format) and allows to write comments next
to the Fortran code. A model user benefits from the use of allocatable arrays
in higher resolution runs. The allocatable arrays are created on the heap that
has no size limits contrary to the static arrays which are stored on the fixed-size
stack.

Besides that, neither go to nor equivalence statement are used anymore.
The go to statement is avoided since it produces a confusing spaghetti code.
The equivalence statement is often used in the LSG model to “reshape” mul-
tidimensional arrays. For example, a 3-D array is made equivalent with a 1-D
array. The reason is probably the possibility to collapse nested do loops into one
loop in order to decrease the computation time. However, we tested this concept
in the Intel Fortran compiler and the computation time stayed unchanged.

The LSG model is not parallelized. The LSOMG model is parallelized using
the MPI standard. The majority of the LSOMG code is also parallelized using
the OpenMP standard. We also tested the GPU parallelization using the Ope-
nACC directives during the model development. The speed up with respect to
the OpenMP parallelization depended on the particular task as well as the grid
resolution. The OpenACC performed better in higher-resolution runs. The best
scaling achieved in 1◦ E-grid version was approximately 2.8. We anticipate a
further speed up in the eddy-permitting and eddy-resolving resolutions. The full
GPU conversion of the code might be beneficial. However, it is beyond the scope
of this PhD project given the number of other challenges. On top of that, the
MPI is a well documented and established concept while the OpenACC is still
under development.

The MPI parallelization is implemented using the regular domain decompo-
sition and the master-slave model. Fig. 5.13 shows the domain decomposition
for eight cores (threads) in the configuration 4 × 2 cores in the zonal and merid-
ional directions, respectively. The yellow rectangle denotes the whole domain -
the grid with I × J grid points. The dashed lines divide the whole domain to
the smaller domains that belong to the individual cores. The gray-brown frame
around the core domains are the so-called halo regions. The governing equations
are discretized using the finite difference method in the LSOMG model. The
discrete form of a differential operator written at the certain grid point includes
not only that grid point but also the neighbouring grid points. Consequently,
grid points that belong to the neighbouring core domains are needed to compute
differential operators at the edges of a core domain. These grid points compose
the halo region. The LSOMG halo regions are updated by calling one dedicated
subroutine which invokes the MPI communication between the MPI threads.

The default width of the halo region is two grid points in the LSOMG model,
which is sufficient for the second order centered differences. However, if a tripolar
grid is used, the width of the eastern halo region has to be extended by one grid
point. The two-point halo regions are sufficient for S (and V) points, see Fig. 5.14.
The problem is caused by U (and C) points since their grid indeces are shifted by
one for halo sends, compare Eqs. (5.177) and (5.178). Fig. 5.15 depicts a situation
in which each core domain contains four grid points in the “zonal” direction. If
we cross the symmetry meridian, the halo grid point i = 6 is paired with the halo
grid point i = −2. Unfortunately, the standard two-point halo region does not
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Figure 5.13: Regular decomposition of the domain (yellow) and the halo region
(brown and gray) for the thread number 1.

-1 0 1 2 3 4 5 6

6 5 4 3 2 1 0 -1

Figure 5.14: Two (parts of) S-point grids (solid lines and yellow points) with their
halo regions (dashed lines and gray points) which belong to two cores and are
separated by the symmetry meridian.

contain halo grid point i = −2 and so we have to enlarge the eastern halo region
by one grid point. In the LSOMG model, zonal halos (gray region in Fig. 5.13) are
updated first and the meridional halos (brown region in Fig. 5.13) are updated
second. The meridional halo regions are not extended with respect to the SC
version. We only send grid points −2 ≤ i ≤ 5 instead of −1 ≤ i ≤ 6.

The master-slave model means that the input data are read by master core
(thread number 0) and then they are distributed to the other cores in the form of
MPI messages. It is clear that the reading in the master-slave model could become
a bottleneck if large data are read by a single core. We apply the master-slave
model at the beginning of a computation to initialize the model. It simplifies the
initializations and it does not slow down the computation since it is done only

-2 -1 0 1 2 3 4 5 6

6 5 4 3 2 1 0 -1 -2

Figure 5.15: Two (parts of) U-point grids (solid lines and yellow points) with
their halo regions (dashed lines and gray points) which belong to two cores and
are separated by the symmetry meridian.
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once. We update the boundary conditions (surface forcing) using the master-slave
model only if the forcing is “sufficiently sparse” in time such as monthly values.
Otherwise, the reading is also parallelized, each core is supplied with a separate
data file.

We tested the performance of the MPI implementation in the LSOMG model
on the Salomon supercomputer. The results are shown in Fig. 5.16. Panels (a) and
(b) depict the performance of the 1◦ and 0.5◦ wind-driven LSOMG model, respec-
tively. Panel (c) depicts the performance of the 0.25◦ tidally-driven LSOMG-BT
model. Fig. 5.16 shows that, within the tested range, the performance of LSOMG
and LSOMG-BT models may decrease but it does not saturate with the increas-
ing number of cores. The ideal scaling is linear. The scaling in the 1◦ baroclinic
version is linear up to 72 cores but then there is certain decrease in performance
for higher number of cores. The 0.5◦ baroclinic version should be eight times (four
times more grid points and halved time step) slower than the 1◦ baroclinic version.
It is true up to 72 cores: 6.3, 11.9 and 16.4 years/hour in the 1◦ version and 0.6,
1.6 and 2.1 years/hour in the 0.5◦ version using 24, 48 and 72 cores, respectively.
However, the scaling in the 0.5◦ baroclinic version is approximately linear up to
the 144 cores. The 1◦ version with 144 cores computes 26.6 years/hour. The ex-
pected performance of 0.5◦ version with 144 cores is 3.3 years/hour but the actual
performance is better, 4.2 years/hour. The scaling in the 0.25◦ barotropic version
is superb. In fact, the performance curve is convex up to 192 cores which means
that the scaling is better than the ideal one. It is either the consequence of mea-
surement error or some unknown technical issue of the Salomon supercomputer.

(a) 1◦, LSOMG (b) 0.5◦, LSOMG

(c) 0.25◦, LSOMG-BT

Figure 5.16: Performance of the LSOMG and LSOMG-BT models with respect to
the number of cores: (a) 1◦ wind-driven LSOMG, (b) 0.5◦ wind-driven LSOMG,
(c) 0.25◦ tidally-driven LSOMG-BT.

We consider the performance of the MPI version of the LSOMG model to be
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satisfactory. Nevertheless, it should be noted that it is not free of deficiencies.
The regular domain decomposition is not optimal in the presence of continents.
If the number of cores is large, the core domains are small and it may happen
that all grid points assigned to certain cores are dry. These cores do not do any
useful work. The performance of a particular domain decomposition is governed
by the (largest) core-domain size and the complexity of MPI communication.
It is desirable to reduce the size of core domains (less computations per each
core) and/or reduce the MPI communications as much as possible to increase the
performance of the MPI code.

The algorithm of Smith et al. [2010] reduces the size of core domains by
using core subdomains. On the other hand, the number of MPI communications
is increased at the same time. Smith et al. [2010] found the algorithm useful
in the high-resolution runs. We have not implemented the algorithm of Smith
et al. [2010] into the LSOMG model since the eddy-resolving configurations are
probably unnecessary for the geophysical applications, which are the main focus
of the LSOMG model.

Another possibility is to combine the MPI and OpenMP approaches in order
to decrease the MPI communications. A low number of threads is used for the
MPI parallelization with the regular domain decomposition. The OpenMP paral-
lelization is then used in each core domain. The core domains are large, the ratio
between the number of grid points in the core domain and halo region is large,
which means that the MPI communications do not present a bottleneck. Addi-
tionally, a decreased total size of halo regions reduces memory requirements and
the OpenMP shared memory architecture provides faster access to the memory
than the MPI distributed memory architecture. The MPI + OpenMP concept is
appealing and we tested it during the development of the LSOMG model. Un-
fortunately, we failed to achieve the expected speed up. In fact, the pure MPI
version outperformed the MPI + OpenMP version of the LSOMG model.

5.14 Input data
An OGCM needs two types of input data. First, distributions of physical quanti-
ties in the entire volume of global ocean to prescribe the initial conditions. Second,
distributions of physical quantities at the ocean surface to prescribe boundary
conditions.

The initial conditions are given by temperature and salinity fields, velocities
and sea surface heights. However, there is no need to provide measured dis-
tributions of velocities and SSHs. It is common to start the simulation from
homogeneous initial conditions, v = 0, η = 0 and run it under the proper forcing
for a “sufficiently long” time. The procedure is called a spin-up. At the end of
spin-up phase, the model should reach a quasi equilibrium in which the resulting
velocities and SSHs are consistent with the model dynamics and there are no
transients.

The boundary conditions are given by the fluxes of momentum, heat and fresh
water. The momentum flux (wind stress) is generated by the wind blowing over
the ocean surface. There are two options how to represent heat fluxes in the
LSOMG model. The first option is to represent the heat fluxes by a strong New-
tonian relaxation of temperature in the upper model layer to the climatological
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ocean surface temperature. A typical time scale used in our simulation with this
option is 30 days. The second option is to calculate the heat fluxes from the
input data using the bulk formulas according to Sec. 5.14.6, and apply only a
weak relaxation of about 90 days to the climatological surface temperature. In
the actual version of LSOMG, the water fluxes are not prescribed. The surface
salinity is simply relaxed towards the climatological values.

Additionally, the ocean bathymetry, which determines the shape of compu-
tation domain, needs to be specified. The bathymetry is fixed in LSOMG sim-
ulations. The changes of coastal lines and uplift or drop of the ocean floor are
neglected since time scales of these processes are much longer than time scales of
tidally and wind driven currents which we are interested in.

5.14.1 Ocean bathymetry
The ocean bathymetry is derived from GEBCO [IOC, IHO and BODC, 2003] or
ETOPO1 [Amante, 2009] data. The both data sets are provided on 1-minute SC
grids covering the whole globe. The depth at the certain LSOMG grid point is
computed as an average of data values from all data points within the LSOMG
grid cell.

The main difficulty is to determine whether a given data point lies inside
the model grid cell. It is the same task as the determination whether a point
lies inside or outside of a polygon (point-in-polygon problem). The polygon is
a quadrangle in our case. In the SC, the problem is simple since the grid cells
are spherical isosceles trapezoids which are regularly aligned (no rotation) with
respect to each other. In the GC, the situation can be much more complicated
and a sophisticated algorithm needs to be used. There are several options.

The ray casting algorithm is based on a shooting rays from the point. In
planar geometry, the ray crosses the polygon sides an odd number of times if
it is inside the polygon. Despite a simple principle, we consider this algorithm
difficult to implement because our polygon is located on a sphere not in a plane
which may complicate the shooting of rays.

We have chosen a different algorithm. It is a variant of a winding number
algorithm. For the given quadrangle ABCD and the data point Z, we compute
sizes of angles ∢AZB, ∢BZC, ∢CZD and ∢DZA using the cosine formula for
a spherical triangle, see Fig. 5.17. For example, the size of angle ∢AZB is give
by

|∢AZB| = arccos
(

cos |AB| − cos |BZ| cos |AZ|
sin |BZ| sin |AZ|

)
, (5.191)

cos |BZ| = rB · rZ , cos |AZ| = rZ · rA, cos |AB| = rA · rB, (5.192)

where |BZ|, |AZ| and |AB| are lengths of spherical-triangle sides and rA, rB and
rZ are radius (position) vectors on a unit sphere. The sizes of angles ∢BZC,
∢CZD and ∢DZA are computed analogously. The data point lies inside the
quadrangle if

|∢AZB| + |∢BZC| + |∢CZD| + |∢DZA| = 2π, (5.193)

otherwise it is outside.
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Figure 5.17: Data point Z (blue triangle) and the LSOMG grid cell (full lines).
The grid cell is determined by grid-cell vertices A, B, C, D (brown squares) and
it is centered to its grid point (yellow circle).

5.14.2 Initial temperature and salinity
The initial temperature and salinity distributions are taken from the World Ocean
Atlas (WOA) 2013 [Locarnini et al., 2013, Zweng et al., 2013]. WOA data are
provided on a SC grid with the horizontal resolution of 0.5◦. The vertical reso-
lution depends on a climatology. The annual and seasonal fields are discretized
in 102 depth levels with the deepest layer in 5500 m. The monthly fields are
discretized in 57 depth levels with the deepest layer in 1500 m. The first level is
the ocean surface, the second layer is in 5 m for all three cases. We use annual
fields as initial conditions.

We apply a different regridding scheme than in Sec. 5.14.1. The main reason
is that WOA data are provided on a much coarser grid than bathymetry data.
We may also argue that field quantities such as temperature and salinity require
a different treatment than bathymetry. We apply the following procedure:

• We linearly interpolate WOA data in the vertical direction to the LSOMG
depth levels. The interpolation use WOA values in the neighbouring upper
and lower WOA depth levels, see Fig. 5.18. In the shallow coastal regions,
it may happen that the upper WOA point is wet but the lower WOA point
is dry (we do not consider the situation with a dry upper and a wet lower
point). It would not be meaningful to interpolate land values. We simply
use the value from the wet point, see Fig. 5.18.
There are three special cases. If the LSOMG level is deeper than the last
WOA level (5500 m), we use data from that last level (=nearest level).
Similarly, if the LSOMG level is shallower than the second WOA level
(5 m), we use data from that level. Finally, if there exists a WOA level
which has exactly the same depth as the LSOMG level, no interpolation is
needed and data from this level are used.

• The vertically interpolated data are then interpolated horizontally. The
value at the model grid point is calculated from the neighbouring data points
using either the bilinear or the IDW interpolation (see Appendix D.1). If
all neighbouring data points are wet, we prefer the bilinear interpolation
over the IDW interpolation since the interpolated field is smoother. If one
or more data points are dry, their weights are set to zero and we apply the
IDW interpolation.
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Figure 5.18: Vertical interpolation of data in the vertical cross section of data
grid. Wet data points (blue dots), dry data points (gray dots), ocean bottom
(thick line) and the LSOMG layer (dashed line). Arrows show how data points
are used for the vertical interpolation.

We consider three special cases. If the grid point is located at the side of
the data cell, the grid-point value is calculated from the two data points
on that particular cell side using the linear interpolation. If the grid point
coincide with a particular data point, the value at this data point is taken.
Finally, it may happen that the model and WOA bathymetries are not fully
compatible and a wet grid point is surrounded by four dry data points. In
that case, we search for the nearest data point and use its value.

The performance of the outlined procedure is demonstrated on initial tem-
peratures in the depth of 221 m. The neighbouring WOA levels are level 25 in
the depth of 200 m, and level 26 in the depth of 225 m. Fig. 5.19 (left) shows
WOA temperature in level 26 and Fig. 5.19 (right) shows the final temperature
interpolated to the LSOMG grid.

Figure 5.19: Left panel: Original WOA temperature distribution [◦] in 225 m.
Right panel: Temperature distribution [◦] interpolated to the 1◦ spherical coor-
dinate LSOMG grid in 221 m.

5.14.3 Climatological surface temperature and salinity
The surface temperature and salinity distributions are also taken from the WOA
2013. We use monthly fields from the database which are applied in a seasonal
cycle. New data are read from the input file at the beginning of the 16th day of
each month and horizontally interpolated to the LSOMG grid using the algorithm
described in Sec. 5.14.2. The values between two months are not constant, we
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rather linearly interpolate data in time and continuously update the boundary
values between two months.

5.14.4 Wind velocity
In early stages of this PhD project, we used the wind velocity data from the
NCEP/NCAR Reanalysis 1 [Kalnay et al., 1996]. However, we have switched to
ERA-Interim data [Dee et al., 2011] soon since the resolution of ERA data is much
better: ERA-Interim data are provided on a 0.75◦ SC grid, while NCEP/NCAR
data are provided on a 2.5◦ SC grid. Consequently, NCER/NCAR data capture
main features but finer structures are missing as we can see in Fig. 5.20.

Figure 5.20: Zonal wind velocity [m/s] from the NCEP/NCAR Reanalysis 1 (left
panel) and ERA-Interim (right panel) in January.

We also tested CORE-II data [Large and Yeager, 2009] as an alternative to
ERA-Interim data, see Sec. 7. CORE-II data are provided on a T62 atmospheric
grid with 192 × 94 grid points.

If the model uses the generalized horizontal coordinates (GC) instead of the
SC, the components of wind velocity need to be recomputed (rotated) due to
different directions of the GC and SC axes. Let eλ, eϕ and e1, e2 be the base
vectors of the SC and GC, respectively. The wind velocity can be expressed in
both GC and SC,

uw = ũw1eλ + ũw2eϕ = uw1e1 + uw2e2, (5.194)

where ũw1, ũw2 and uw1, uw2 are the components of wind velocity in the SC and
GC, respectively. The GC components are computed from the SC components,(

uw1
uw2

)
=
(

cosαsg sinαsg
− sinαsg cosαsg

)(
ũw1
ũw2

)
, (5.195)

where the rotation angle αsg is the angle between e1 and eλ, see the left panel of
Fig. 5.21. We compute its value numerically using Eq. (5.191).

The rotation angle computed for the tripolar reprojected grid of Murray [1996]
is depicted in the right panel of Fig. 5.21. The angle is equal to zero at the
reprojected equator and it changes sign when we cross the reprojected equator
due to the symmetry. The departure between the GC and SC base vectors is
increasing when we approach the symmetry meridian.
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Figure 5.21: Rotation angle from the GC to the SC. Left panel: Sketch depicting
the rotation angle αsg from the SC (base vectors eλ, eϕ) to the GC (base vectors
e1, e2). Right panel: Rotation angle computed for the tripolar reprojected grid
of Murray [1996].

5.14.5 Conversion of in-situ temperature
As discussed in Sec. 1.4.1, the great advantage of EOS of McDougall et al.
[2003] is that it is formulated in potential temperature. However, the WOA 2013
database provides only the in-situ temperatures. We thus need to convert the
input WOA 2013 in-situ temperatures to potential temperatures.

The potential temperature is determined by solving the Eq. (1.113) following
the procedure of McDougall et al. [2003]. The initial guess θ0 is given by

θ0(S, T, p, pr) = T + (p− pr)P (S, T, p+ pr), (5.196)

where P (S, T, p+ pr) is a polynomial,

P (S, T, p+pr) = ad1 +ad2S+ad3(p+pr)+ad4T +ad5ST +ad6T 2 +ad7T (p+pr). (5.197)

The values of coefficients and one check value are given in Appendix A of Mc-
Dougall et al. [2003]. Next, the Newton-Raphson technique is applied to improve
θ0. The first iteration yields

θ1 = θ0 −
[
σe(S, θ0, pr) − σe(S, T, p)

13.9 J kg−1 K−2

]
, (5.198)

where 13.9 J kg−1 K−2 is the initial guess for
(
∂σe

∂T

)
S,p

and we reference the po-
tential temperature to the sea surface, pr = 0. McDougall et al. [2003] tested the
formula in the range of (0 PSU, 40 PSU)×(−3 ◦C, 40 ◦C)×(0 db, 104 db) with the
reference pressure in the range (0 db, 104 db) and obtained the RMS and maxi-
mum errors 3 × 10−3 ◦C and 1.5 × 10−2 ◦C, respectively. As a consequence, they
suggested to proceed one iteration further since the errors of the first iteration
are still too large. The final estimate of the potential temperature θ2 is

θ2 = θ0 −

⎡⎢⎣σe(S, θ0, pr) − σe(S, T, p)(
∂σe

∂T

)
S,p

(S, θ0+θ1
2 , pr)

⎤⎥⎦ , (5.199)
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which requires no additional evaluations of entropy in the numerator. In total, one
evaluation of

(
∂σe

∂T

)
S,p

and two evaluations of σe are required. Feistel and Hagen
[1995] and Feistel [2003] provide the equation to evaluate the Gibbs function,

G(S, T, p) = (G100+G110Tf )·S2
f lnSf+

7∑
j=0

5∑
k=0

(
G0jk +

7∑
i=2

GijkS
i
f

)
T jf p

k
f , (5.200)

where Gijk are coefficients and Sf , Tf and pf are scaled variables given by S =
40S2

f , T = 40◦C · Tf and p = 100MPa · pf , respectively. Using the definition
equation 1.114, the specific entropy is computed from Eq. (5.200) as

σe = −
(
∂Gf

∂T

)
S,p

= −
(
∂Tf
∂T

)
S,p

(
∂Gf

∂Tf

)
S,p

= − 1
40

⎡⎣G110S
2
f lnSf +

7∑
j=1

j
5∑

k=0

(
G0jk +

7∑
i=2

GijkS
i
f

)
T j−1
f pkf

⎤⎦ . (5.201)

Similarly, the first derivative of specific entropy with respect to temperature is
equal to(

∂σe
∂T

)
S,p

= − 1
402

⎡⎣ 7∑
j=2

j(j − 1)
5∑

k=0

(
G0jk +

7∑
i=2

GijkS
i
f

)
T j−2
f pkf

⎤⎦ . (5.202)

The values of coefficients Gijk are given in Appendices of Feistel and Hagen [1995]
and Feistel [2003].

Note that the whole procedure is repeated iteratively because Eq. (1.113)
contains pressure which is not known at the beginning as it depends on density
and thus on potential temperature and salinity distributions. We therefore insert
hydrostatic pressure in the first iteration and refine the results in the following
iterations.

5.14.6 Heat fluxes
The total heat flux Q is a sum of shortwave QSW , longwave QLW , latent QLA and
sensible QSN heat fluxes,

Q = QSW +QLW +QLA +QSN . (5.203)

Shortwave heat flux

The shortwave (SW) heat flux QSW , or solar radiation, includes wavelengths 0.3-
3 µm [Large and Yeager, 2009]. The SW heat flux which penetrates through the
ocean surface is computed from the incoming SW heat flux Qdown

SW by subtracting
the portion Qrefl

SW of the incoming radiation that is reflected at the ocean surface
back to the atmosphere,

QSW = Qdown
SW −Qrefl

SW . (5.204)

The amount of reflected radiation depends on the SW albedo αSW of the ocean
surface,

Qrefl
SW = Qdown

SW αSW . (5.205)
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If we insert Eq. (5.205) into the Eq. (5.204), we obtain

QSW = Qdown
SW (1 − αSW ). (5.206)

The SW albedo in the LSOMG model is either set equal to a constant value
αSW = 0.1 [Brunnabend, 2010] or its value varies with the Earth latitude,

αSW = 0.069 − 0.011 cos(2ϕ) (5.207)

according to Large and Yeager [2009]. If sea ice is present, the albedo has to be
increased. We use a constant value αSW = 0.75 [Brunnabend, 2010].

Longwave heat flux

The longwave (LW) heat flux QLW , also thermal or terrestrial radiation, includes
wavelengths 3-50 µm [Large and Yeager, 2009]. Similarly to the SW heat flux,
the LW heat flux QLW is computed from the incoming LW heat flux Qdown

LW by
subtracting the radiation Qrefl

LW that is reflected from the ocean surface and the
radiation Qemit

LW that is emitted from the ocean,

QLW = Qdown
LW −Qrefl

SW −Qemit
LW . (5.208)

The reflected LW radiation is computed analogously to the reflected SW radiation
(see Eq. (5.205)),

Qrefl
LW = Qdown

LW αLW . (5.209)
However, the reflected LW radiation is rather small. Brunnabend [2010] uses
αLW = 0.03. Large and Yeager [2004] neglects the reflected LW radiation com-
pletely, αLW = 0. The outcoming radiation is computed from the Stefan-Boltzmann
law which describes the black-body radiation,

Qemit
LW = ϵLWσ (θs + 273.16)4 , (5.210)

where θs is the sea surface temperature 1, ϵLW is the emissivity of the sea surface
relative to the black body radiation and σ is the Stefan-Boltzmann constant,
σ ≈ 5.67 × 10−8 Wm−2K−4. In the radiative equilibrium,

ϵLW = 1 − αLW . (5.211)

If we insert Eqs. (5.209)-(5.211) into Eq. (5.208), we obtain the final expression
for the LW radiation,

QLW = ϵLW
[
Qdown
LW − σ (θs + 273.16)4

]
. (5.212)

Latent and sensible heat fluxes

The both latent and sensible heat fluxes are turbulent heat fluxes and they are
computed via bulk formulas,

QLA = ρaLeCEuw(qa − qs), (5.213)
QSN = ρacpaCHuw(θa − θs), (5.214)

1in-situ or potential temperature, they are equal at the ocean surface
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where ρa is the air density, Le is the latent heat of vaporization, qs is the saturated
specific humidity at sea surface temperature, qa is the surface air specific humidity,
cpa is the specific heat of air, θa is the air temperature and CE, CH are bulk
transfer coefficients.

We currently use the ERA-Interim data that contain incoming SW and LW
radiation heat flux, air temperature at 2 m height, dew point temperature at 2 m
height, mean atmospheric pressure at sea level and wind velocity at 10 m height.
The LSOMG model uses cpa = 1004 Jkg−1K−1 for the specific heat of air. The
latent heat of evaporation Le [J/kg], saturated specific humidity qs [kg/kg] at
sea surface temperature, surface air specific humidity qa [kg/kg] and air density
ρa [kg/m3] need to be computed from the data formulas. Four different sets of
data formulas were implemented into the LSOMG model.

• Formulas of Kara et al. [2002] (KRH):

qs = 0.62197es
pa − 0.378es

, (5.215)

qa = 0.62197ea
pa − 0.378ea

, (5.216)

ρa = 100pa
Rg(θa + 273.16)(1 + 0.61qa)

, (5.217)

Le = (2.501 − 0.00237θs)106, (5.218)

where es [hPa] is the saturated water vapor pressure, ea [hPa] is the wa-
ter vapor pressure at the sea surface, pa [hPa] is the atmospheric pressure
and Rg is the gas constant for dry air, Rg = 287.1 Jkg−1K−1. The air
temperature θa is in [◦C]. The vapor pressures es and ea are equal to

es = 5.99902615 exp
⎡⎣
(
18.729 − θs

227.3

)
θs

θs + 257.87

⎤⎦ , (5.219)

ea = 6.1121 exp
⎡⎣
(
18.729 − θd

227.3

)
θd

θd + 257.87

⎤⎦ , (5.220)

where θd [◦C] is the dew point temperature

• Modified formulas of Kara et al. [2002] (LY): The surface air specific humid-
ity, air density and latent heat of evaporation are computed from Eqs. (5.216),
(5.217) and (5.218), respectively. Eq. (5.215) for the saturated specific hu-
midity at sea surface temperature is replaced by

qs = 0.98640380
ρa

e− 5107.4
θs+273.16 , (5.221)

where factor 0.98 is applied only over open water according to Large and
Yeager [2004].

• Formulas of Kondo [1975] (KON): The formulas for the saturated specific
humidity at sea surface temperature, surface air specific humidity and water
vapor pressure at the sea surface are Eqs. (5.215), (5.216) and (5.220),
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respectively, as in Kara et al. [2002]. Eqs. (5.217) and (5.218) for the air
density and latent heat of vaporization are replaced by

ρa = 1.205, (5.222)
Le = 4.186 × 103 (594.9 − 0.5θs) (5.223)

and Eq. (5.219) for the saturated water vapor pressure is replaced by

es = 0.98 × 6.1078 × 10
7.5θs

237.3+θs . (5.224)

• Formulas used in Brunnabend [2010] (BRU): The saturated specific humid-
ity qs at sea surface temperature is computed from Eq. (5.215),

qa = 3.80042e
Aθd

θd+B
s

pa
, (5.225)

ρa = 1.3, (5.226)

Le =

⎧⎨⎩2.560 × 106 open water,
2.834 × 106 sea-ice,

(5.227)

where the coefficients A and B in Eq. (5.225) are equal to

A = 17.3, B = 237.3◦ C open water, (5.228)
A = 21.9, B = 265.5◦ C sea ice . (5.229)

The particular form of bulk transfer coefficients is not unique. We imple-
mented the bulk transfer coefficients of Kara et al. [2002], Kondo [1975] and
Large and Yeager [2004] into the LSOMG model. Besides the bulk transfer co-
efficients CE and CH , all three methods provide formulas to compute the drag
coefficient CD. The drag coefficient CD is used in the bulk formula (4.24) for the
wind stress, which is a turbulent flux (of momentum) similar to the turbulent
fluxes of latent and sensible heat.

We summarize all three methods in the following text in order to provide direct
and complete instructions of how to implement them. The reason is that we have
found some inconsistencies in the original papers. For example, step number seven
in Large and Yeager [2004] is incorrect. In particular, the equations for CH and
CE are incorrect. The correct equations are provided in Large [2006]. A reader
of the original text may also overlook that the coefficients in Eqs. (5.258)-(5.260)
are at the measurement height and stability while the coefficient in Eq. (5.266)
is at 10 m for the neutral stability.

Coefficients used in Brunnabend [2010] (BRU)
Brunnabend [2010] uses the simplest form of bulk transfer coefficients, they are
set equal to constant values,

CD =

⎧⎨⎩1 × 10−3 open water,
1.32 × 10−3 sea-ice,

(5.230)

CE = CH = 1.75 × 10−3. (5.231)
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Coefficients of Kara et al. [2002] (KRH)
Kara et al. [2002] suggests to compute the bulk transfer coefficients by evaluating
the polynomials,

CD = [C0D + C1D(θs − θa)] /1000, (5.232)
CE = [C0H + C1H(θs − θa)] /1000, (5.233)
CH = 0.95CE, (5.234)

where

C0D = 0.692 + 0.0710uw − 0.000700u2
w, (5.235)

C1D = 0.083 − 0.0054uw + 0.000093u2
w, (5.236)

C0H = 0.8195 + 0.0506uw − 0.0009u2
w, (5.237)

C1H = −0.0154 + 0.5698
uw

− 0.6743
u2
w

. (5.238)

The wind speed uw in [m/s] is limited to

2.5 ≤ uw ≤ 32.5. (5.239)

Coefficients of Kondo [1975] (KON)
Kondo [1975] computes the bulk transfer coefficients at height zθq where air tem-
perature and humidity are measured. The coefficients are computed in three
steps:

1. The bulk transfer coefficients at 10 m for the neutral atmospheric stability
are computed,

CDN = 10−3
[
ad + 10−2bdu

pd
w

]
, (5.240)

CEN = 10−3
[
ae + 10−2beu

pe
w + ce

(
10−2uw − 8

)2
]
, (5.241)

CHN = 10−3
[
ah + 10−2bhu

ph
w + ch

(
10−2uw − 8

)2
]
. (5.242)

The values of coefficients ad, ae, ah, bd, be, bh, ce, ch, pd, pe, ph are given in
Kondo [1975]. The wind speed uw in [m/s] is limited to

0.3 ≤ uw ≤ 50. (5.243)

2. The transfer coefficients are shifted to the measurement height zθq,

CDNh = κ2[
κ√
CDN

+ ln
(
zθq

z10

)]2 , (5.244)

CHNh = κ
√
CDNh

κ
√
CDN

CHN
+ ln

(
zθq

z10

) , (5.245)

CENh = κ
√
CDNh

κ
√
CDN

CEN
+ ln

(
zθq

z10

) , (5.246)

where z10 = 10 m.
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3. Finally, the stability sa of the atmospheric boundary layer,

sa = θs − θa[
1 − ln

(
zθq

z10

)]2
u2
w

(5.247)

is taken into consideration,

sa < −3.3 ⇒

⎧⎪⎪⎨⎪⎪⎩
CD = 0,
CE = 0,
CH = 0,

(5.248)

−3.3 ≤ sa < 0 ⇒

⎧⎪⎪⎨⎪⎪⎩
CD = CDNh [0.1 + 0.03sa + 0.9e4.8sa ] ,
CE = CENh [0.1 + 0.03sa + 0.9e4.8sa ] ,
CH = CHNh [0.1 + 0.03sa + 0.9e4.8sa ] ,

(5.249)

0 ≤ sa ⇒

⎧⎪⎪⎪⎨⎪⎪⎪⎩
CD = CDNh

[
1.0 + 0.47√

sa
]
,

CE = CENh
[
1.0 + 0.47√

sa
]
,

CH = CHNh
[
1.0 + 0.47√

sa
]
.

(5.250)

Coefficients of Large and Yeager [2004] and Large [2006] (LY)
Large and Yeager [2004] do not restrict the measurement heights. Let wind speed,
potential air temperature and surface air specific humidity be measured at heights
zu, zθ and zq, respectively. However, all transfer coefficients are determined at
height zu where the wind speed is measured.

The coefficients are computed in an iterative process. To initialize the process,
the wind speed uwN at 10 m for the neutral stability is set equal to the wind speed
measured at height zu and limited according to Eq. (5.243),

uwN = uw(zu). (5.251)

The coefficients CDN , CEN , CHN at 10 m for the neutral stability are computed,

CDN = 0.0027
uwN

+ 0.000142 + 0.0000764uwN , (5.252)

CEN = 0.0346
√
CDN , (5.253)

CHN = 0.0327
√
CDN (5.254)

and their values are used to initialize the transfer coefficients CD, CE and CH ,

CD = CDN , CE = CEN , CH = CHN . (5.255)

Finally, the potential air temperature and specific humidity at height zu are
initialized with the measured values,

θa(zu) = θa(zθ), qa(zu) = qa(zq). (5.256)

The following seven steps are then repeated. According to Large and Yeager
[2004], the maximum of five iterations is needed and usually only two iterations
are sufficient since the ocean is close to the neutral stability.
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1. Compute the virtual potential temperature θv,

θv = θa(zu) [1 + 0.608qa(zu)] . (5.257)

2. Compute the turbulent scales u∗, θ∗ and q∗,

u∗ =
√
CDuw(zu), (5.258)

θ∗ = CH√
CD

[θa(zθ) − θs] , (5.259)

q∗ = CE√
CD

[qa(zq) − qs] . (5.260)

3. Compute the stability parameters ζu, ζθ and ζq,

ζu = ζ(zu), ζθ = ζ(zθ), ζq = ζ(zq), (5.261)

where the stability parameter ζ(z) is given by

ζ(z) = κgz

u2
∗

(
θ∗

θv
+ q∗

qa(zq) + 0.608−1

)
(5.262)

and κ = 0.4 is the von Karman constant. The stability parameters in the
LSOMG model are limited,

−2 ≤ ζ(z) ≤ 1. (5.263)

4. Compute integrals of the dimensionless flux profiles Ψm(ζu), Ψh(ζu), Ψh(ζθ)
and Ψh(ζq). The integral Ψm(ζ) corresponds to momentum and Ψh(ζ) to
heat and moisture,

ζ ≥ 0 ⇒ Ψm(ζ) = −5ζ,
Ψh(ζ) = −5ζ, (5.264)

ζ < 0 ⇒
Ψm(ζ) = 2 ln

(
1+ζ

2

)
+ ln

(
1+ζ2

2

)
− 2 tan−1(ζ) + π

2 ,

Ψh(ζ) = 2 ln
(

1+ζ2

2

)
.

(5.265)

5. Convert the measured wind speed to the wind speed at 10 m and neutral
stability and shift the measured air temperature and specific humidity to
the height where the wind speed is measured,

uwN = uw(zu)
1 +

√
CDN

κ

[
ln
(
zu

z10

)
− Ψm(ζu)

] , (5.266)

θa(zu) = θa(zθ) − θ∗

κ

[
ln
(
zθ
zu

)
+ Ψh(ζu) − Ψh(ζθ)

]
, (5.267)

qa(zu) = qa(zq) − q∗

κ

[
ln
(
zq
zu

)
+ Ψh(ζu) − Ψh(ζq)

]
, (5.268)

where z10 = 10 m.
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6. Update the neutral stability coefficients at 10 m using Eqs. (5.252), (5.253)
and

CHN =

⎧⎨⎩0.0180
√
CDN if ζθ > 0,

0.0327
√
CDN if ζθ ≤ 0.

(5.269)

7. Compute the coefficients at the measurement height and stability,

CD = CDN{
1 +

√
CDN

κ

[
ln
(
zu

z10

)
− Ψm(ζu)

]}2 , (5.270)

CH = CHN{
1 + CHN

κ
√
CDN

[
ln
(
zu

z10

)
− Ψh(ζu)

]}2 , (5.271)

CE = CEN{
1 + CEN

κ
√
CDN

[
ln
(
zu

z10

)
− Ψh(ζu)

]}2 . (5.272)

In the presence of sea ice, the algorithms of Kondo [1975] and Large and
Yeager [2004] are modified. The bulk transfer coefficients at 10 m for the
neutral atmospheric stability are set equal to constant values. Large and
Yeager [2004] use

CDN = CHN = CEN = 1.63 × 10−3, (5.273)

Mellor and Kantha [1989] use

CDN = 3.0 × 10−3, (5.274)
CHN = CEN = 1.5 × 10−3. (5.275)

We prefer the second option based on the suggestion in the MRI model
manual [Tsujino et al., 2010].

Heat fluxes computed from the ERA-Interim data

We used ERA-Interim data to test and compare the methods described above.
We decided to use daily data for this purpose. Unfortunately, daily data are not
directly available, we thus constructed them from the available data. The SW
and LW heat fluxes were computed by summing together the two twelve-hour
long additive data products. The other variables were computed by averaging
data sampled in six-hour long intervals, i.e., four data samples were averaged to
get one daily value.

The heat fluxes presented in the following text are the climatological heat
fluxes. We computed them from the one year long time series of daily heat fluxes
which we averaged in time.

The climatological SW heat fluxes are depicted in Fig. 5.22. In the left panel,
we used the constant SW albedo αSW = 0.1 while in the right panel, we computed
the albedo from the Eq. (5.207). The overall pattern of the SW heat flux is the
same in both panels, however, the SW heat flux is stronger in the right panel.
The values of the SW albedo computed using Eq. (5.207) smoothly varies between
0.058 at the Equator and 0.080 at the poles. All values are thus smaller than
constant αSW = 0.1 with the largest difference at the Equator and the smallest
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Figure 5.22: Climatological shortwave heat flux QSW [W/m2] computed from
ERA-Interim daily data. Left: αSW = 0.1. Right: αSW computed using
Eq. (5.207).

difference at the poles. The smaller amount of the reflected SW radiation results
in the stronger SW heat flux that penetrates through the ocean surface. The
maximum differences between the two SW heat fluxes are around 12 W/m2.

The climatological LW heat fluxes are depicted in Fig. 5.23. Similar to
Fig. 5.22, the left and right panels differ in the LW albedo used. The albedo
is larger in the left panel, αLW = 0.03, than in the right panel, αLW = 0. The
smaller albedo means larger emissivity. The LW heat flux is directly proportional
to the emissivity and thus the flux is stronger in the right panel. The maximum
differences between the two LW heat fluxes are around 5 W/m2.

Figure 5.23: Climatological longwave heat flux QLW [W/m2] computed from
ERA-Interim daily data. Left panel: αLW = 0.03. Right panel: αLW = 0.

The climatological LA and SN heat fluxes are shown in Figs. 5.24 and 5.25,
respectively. Panels (a), (b), (c) and (d) depicts results from LY, KRH, KON
and BRU bulk formulas, respectively. The individual bulk formulas are used to
compute both the bulk transfer coefficients and the values of qs, qa, ρa and Le.
The smallest amplitudes of LA and SN heat fluxes are computed using the KRH
bulk formulas. The peak amplitudes of the LA fluxes of LY, KON and BRU
are larger by approximately 35 W/m2, 50 W/m2 and 100 W/m2, respectively.
Similarly, the peak amplitudes of the SN fluxes of LY, KON and BRU are larger
by approximately 3 W/m2, 5 W/m2 and 10 W/m2, respectively. Note that the
climatological LA fluxes are larger by approximately one order in magnitude than
the climatological SN fluxes. In fact, the variations in the LA heat fluxes caused
by the choice of particular bulk formula are larger than the SN fluxes itselves.
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(a) LY (b) KRH

(c) KON (d) BRU

Figure 5.24: Climatological latent heat flux QLA [W/m2] computed from ERA-
Interim daily data using the LY, KRH, KON and BRU bulk formulas (both
coefficients and data).

The climatological net heat fluxes are depicted in Fig. 5.26. The LW albedo
is set to αLW = 0 in all presented bulk formulas. The SW albedo is set to
αSW = 0.1 in the BRU solution and it is computed from Eq. (5.207) in the LY,
KRH and KON solutions. The BRU net heat flux stands out from our set of
computed heat fluxes, it is overly cold. The reason is that the positive SW heat
flux has smaller amplitudes while the negative SN and especially the LA heat
fluxes have larger amplitudes in the BRU solution than in the LY, KRH and
KON solutions. As a consequence, the peak values, e.g., in the warm tongue west
of South America does not reach 125 W/m2 in the BRU net flux while the values
larger than 125 W/m2 compose a significant part of the warm tongue in the KON,
LY and KRH solutions. In the KRH net heat flux, which is the warmest of the
presented fluxes, even the values over 150 W/m2 can be found. The LY, KRH
and KON net heat fluxes are closer to each other, but differences between them
are also visible. Consider the net heat flux in large ocean basins such as the
Pacific Ocean. The BRU net heat flux is mostly negative in the Pacific Ocean.
The KON net heat flux is significantly warmer, though the regions with negative
heat flux are also extensive. The LY net heat flux is mostly positive and the KRH
net heat flux is dominated by positive values.

We have already pointed out the large variations in the LA heat fluxes among
the bulk formulas. In order to understand them more deeply, we investigate
the sensitivity of the LA heat flux in the LY method on qs, qa, ρa and Le. We
have chosen the LY method because of two reasons. First, the LY bulk transfer
coefficients are rather complex. Second, we supplement them with LY data as
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(a) LY (b) KRH

(c) KON (d) BRU

Figure 5.25: Climatological sensible heat flux QSN [W/m2] computed from ERA-
Interim daily data using the LY, KRH, KON and BRU bulk formulas (both
coefficients and data).

default but in the original paper Large and Yeager [2004] suggest to use

ρa = 1.22 kg/m3, (5.276)
Le = 2.5 × 106 J/kg, (5.277)

instead of more sophisticated Eqs. (5.217) and (5.218) used in the LY method.
The differences in QLA computed using KON, KRH and BRU data with respect
to the reference flux computed using LY data are depicted in panels (b), (c) and
(d) of Fig. 5.27, respectively. The reference flux in panel (a) is the same as in
Fig. 5.24 (a). The largest differences are caused by the use of BRU data. Regions
where the changes in the LA heat flux reach 35 W/m2 are well pronounced. KON
data has much smaller impact on the LA heat flux, the differences do not exceed
15 W/m2. Nevertheless, regions where differences are larger than 10 W/m2 are
rather extensive. The use of KRH data has the smallest influence on the LA
heat flux. That was anticipated since LY and KRH data are computed using
the same equations except for the equation for saturated specific humidity at sea
surface temperature. In the most regions, the changes in the LA flux are around
5-10 W/m2.

To sum it up, different data formulas produce different LA heat fluxes but
this is not the major source of large variations in LA heat fluxes among the
considered methods. Equally important or even more influential are the bulk
transfer coefficients. The LA heat fluxes computed using BRU data formulas are
markedly different to the heat fluxes computed using other data formulas. The
BRU method thus differ from other methods in both bulk transfer coefficients
and data formulas.
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(a) LY (b) KRH

(c) KON (d) BRU

Figure 5.26: Climatological net heat flux Q [W/m2] computed from ERA-Interim
daily data using the LY, KRH, KON and BRU bulk formulas (both coefficients
and data).

(a) (QLA)LY data (c) (QLA)KON data − (QLA)LY data

(e) (QLA)KRH data − (QLA)LY data (g) (QLA)BRU data − (QLA)LY data

Figure 5.27: Latent heat flux [W/m2] (a) computed using the LY bulk transfer
coefficients and LY data. Panels (b),(c) and (d) depict the differences [W/m2]
between the latent heat fluxes computed using the LY bulk transfer coefficients
and KON (b), KRH (c) and BRU (d) data with respect to the reference flux (a).
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Part III

Numerical simulations of ocean
and ocean-induced magnetic field
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6. Numerical tests of the
LSOMG model
We start with the barotropic numerical tests of the LSOMG-BT model in Sec. 6.1,
6.3 and 6.2. Sec. 6.1 is devoted to the simple numerical tests suitable for testing
the tidal component of global ocean models. In Sec. 6.2, we use the modified ver-
sions of the tests from Sec. 6.1 to verify the implementation of the Yin-Yang grid
and the reduced spherical coordinate grid in the LSOMG-BT model. In Sec. 6.3,
the wind-driven circulation in a simple setup computed using the LSOMG-BT
model is tested against the analytical solution. The rest of the chapter focuses on
the baroclinic features of the LSOMG model. In Sec. 6.4, we verify the implemen-
tation of vertical friction in the momentum equation by inspecting the Ekman
layer. In Sec. 6.5, we compare the performance of tracer advection schemes used
in the LSOMG model.

6.1 Tsunami and tidal numerical tests
The following study is published as a paper Šachl et al. [2020]. It is a result of
cooperation with my colleague David Einšpigel, the author of the DEBOT model.

6.1.1 Introduction
The performance of hydrodynamic tidal models is limited by several factors:

• Internal wave drag: We explained IWD in Sec. 4.4. We remind you the
study of Green and Nycander [2013] that tested several IWD schemes. In
Sec. 5.10 we discussed that even the present-day high-resolution baroclinic
models resolve only the low baroclinic modes and thus they should also
include a parameterized IWD [Arbic et al., 2010].

• Self attraction and loading: We explained SAL in Sec. 4.4. Recall that its
calculation is numerically demanding and thus it is common to use the scalar
approximation of Accad and Pekeris [1978] which simply lowers the value
of surface pressure gradients in the governing equations, see Eq. (4.43).

• Bottom drag coefficient: It is common to use a constant value between
2.5 × 10−3 and 3 × 10−3 for the bottom drag coefficient. However, the
studies of Wang et al. [2014] and Kagan and Timofeev [2015] suggest that
a spatially varying bottom drag coefficient is a better choice, at least for
regional tidal studies.

• Bathymetry: The ocean depth affects the speed of external gravity waves.
The topographic roughness which enters the IWD parameterization is com-
puted from bathymetry data. Consequently, the resolution and quality of
bathymetry data are important factors for tidal studies. Nevertheless, Ar-
bic et al. [2004] argued that the smaller spatial scales are missing in the
present-day bathymetry data and tuned their IWD scheme by adding a
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multiplicative factor. Einšpigel and Martinec [2016] tested GEBCO [IOC,
IHO and BODC, 2003] and ETOPO1 [Amante, 2009] data and they recom-
mended to use GEBCO over ETOPO1.

• Numerical issues:

– Splitting of tidal and non-tidal velocities: The IWD schemes are acting
on the tidal velocities. However, standard OGCMs do not distinguish
between tidal and non-tidal motions. Arbic et al. [2010] used a running
25-h average to separate them, although this separation may not be
perfect. Sakamoto et al. [2013] used a linear tidal model that was run-
ning independently and which provided tidal velocities to the OGCM,
see Sec. 5.10. The separation of tidal and non-tidal motions is then ex-
act, but the scheme is probably not suitable for shallow coastal regions
where nonlinearities become important.

– Splitting of the barotropic and baroclinic systems: OGCMs commonly
split the fast barotropic and slow baroclinic dynamical modes and
evolve them with different time steps, see Sec. 5.2. The separation
is realized by vertical averaging which is approximate, but sufficiently
accurate. In order to suppress numerical instabilities, Griffies [2004]
suggested to use time averaging in the barotropic system. A scheme
is tested in the wind-driven runs but, according to our experience, it
is damping tidal motions since their period is smaller, see Sec. 5.10.

The study of Stammer et al. [2014] confirms that the accuracy of purely (no-
data constrained) hydrodynamic barotropic models is significantly lower than the
accuracy of assimilative models that are constrained by data. This means that
if a pure hydrodynamic barotropic model is tested against real data, a bug in
the numerical model may not be found. It would be therefore useful to test
the numerical model in a simplified numerical test. We expect that the growing
interest in the effects of tidal forcing on the global-ocean circulation will continue
in the future, which makes such numerical test even more valuable. While there
are papers that inspect the performance of ocean models, it seems that there is
no easily accessible numerical test appropriate for an OGCM with a tidal forcing.

Therefore, we present a set of numerical tests suitable for a global OGCM
forced by tides. We build upon the work of Williamson et al. [1992], but we
adapt it to oceanic conditions. We consider shallow water equations in our nu-
merical tests, since the tidal force should be included into the barotropic part of
the OGCM [Schiller and Fiedler, 2007]. Indeed, tidal force can be safely treated
as a barotropic forcing since its vertical variations are negligible within the ocean.
We also use the proposed numerical tests to inspect the performance of several
time stepping schemes and computational grids which are used in the state-of-art
OGCMs. Although the proposed numerical tests are simple compared to the re-
alistic simulations, their analytic solutions are not available. We thus check the
conservation of time invariants to ensure that the solution is physically mean-
ingful. We also compare the time evolution of certain physical quantities and
the differences in sea surface heights at particular time instants with respect to
a reference solution.
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6.1.2 Numerical setup
In total, six different configurations of the LSOMG-BT model are subject to the
three numerical tests. We test FB on the grid B, FB, FBgen and CNmod on
the grid C, and FB and IMP on the grid E, see Table 6.1. Note that these
configurations are used in the following OGCMs: C–FB in MOM6 and HIM,
C–FBgen in ROMS, C–CN in MITgcm, B–FB in MOM5, and E–IMP in LSG.

Configuration Grid Time-stepping scheme Ocean model
C–FB C Forward-backward (FB) MOM6, HIM
C–FBgen C Generalized forward-backward (FBgen) ROMS
C–CN C Modified Crank-Nicolson (CNmod) MITgcm
B–FB B Forward-backward (FB) MOM5
E–FB E Forward-backward (FB) -
E–IMP E Euler implicit (IMP) LSG

Table 6.1: Model configurations considered in the numerical tests and ocean
models which use these configurations.

The governing equations, time stepping schemes, tidal forcing and other nu-
merical features used in the LSOMG-BT model are discussed in Sec. 4. The
horizontal friction and bottom stress are set equal to zero in the numerical tests,
since we inspect the energy conservation and dissipative terms would violate it.
Besides that, neither SAL nor IWD parameterizations are used in the tests. Both
terms are needed for a realistic modelling of barotropic tides as discussed in Sec. 4
but they are pointless in the simplified tests. Note that the contribution of ad-
vection terms should not be significant in our numerical tests according to the
results of tests carried out by the full nonlinear DEBOT model.

Tsunami test (TSU)

The initial conditions in the TSU are given by zero velocities over the globe and
a Gaussian-shape depression of the SSH,

η(λ, ϕ, t = 0) = Ad exp
[
−(λd − λ)2 − (ϕd − ϕ)2

2σ2
d

]
. (6.1)

The central point of the depression has longitude λd = 60◦ and latitude ϕd = 0◦ in
geographic coordinates. The maximum amplitude of the depression in the central
point is Ad = −100 m and the standard deviation is equal to σd = 5◦. Hence, the
radius of a circle where the amplitude of the initial surface depression is equal to
at least the half of maximum value is σ1/2 = σd

√
2 ln 2 ≈ 6.9◦.

The deepest ocean bottom is Hmax =3 790 m. In addition, there is a Gaussian-
shape mountain which arises from the ocean bottom,

H(λ, ϕ) = Hmax − Am exp
[
−(λm − λ)2 − (ϕm − ϕ)2

2σ2
m

]
. (6.2)

The central point of the Gaussian mountain is at λm = −60◦, ϕm = 0◦, maximum
height of the mountain measured from the ocean bottom is Am = 6 000 m and
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Figure 6.1: Bathymetry [m] and check-point positions (white crosses) in the TSU
(left panel) and TIDa (right panel) numerical tests. In the left panel, we show
only a part of the whole domain.

the mountain’s standard deviation is σm = σd = 5◦. The bathymetry is depicted
in the left panel of Fig. 6.1.

We prescribe two continents at the poles for ϕ ≥ ϕmax and ϕ ≤ −ϕmax,
where ϕmax is 84.75◦, i.e., latitudes of bounding wet SSH points on the Arakawa
grid C are 84.5◦ and -84.5◦. On the Arakawa grid E, we choose the bounding wet
SSH points to have latitudes 84.75◦ and -84.75◦. We prefer the quasi global to the
fully global setup since many OGCMs solve the problem of meridians converging
at the North Pole by relocating coordinate poles to continents, and these OGCMs
would be unable to run the fully global simulation.

There is no external forcing, the only “forcing” in this test being the nonzero
initial conditions.

Tidal tests (TIDa, TIDb)

The initial conditions in TIDa and TIDb are homogeneous, i.e., velocities and
SSH are zero at time t = 0 s. The meridional boundaries are the same as in the
TSU test. The initial positions of the Moon and Sun are given by their positions
on January 1, 2015, 00:00:00 UTC, i.e., the initial right ascension, declination and
geocentric distance from the Earth are equal to αMoon = 0.854807 rad, δMoon =
0.263626 rad and lMoon = 2.564×10−3 AU for the Moon and αSun = 4.906612 rad,
δSun = −0.402134 rad and lSun = 0.983311 AU for the Sun, respectively. We
apply space and time dependent tidal forcing to the initially resting ocean in the
successive time steps. In order to verify this implementation, the time evolution
of the tidal force at five points along the prime meridian is provided in Fig. 6.2.

The tidal tests differ in their bathymetry and land-mask:

• TIDa: The ocean bottom undulates with four Gaussian-shape ridges,

H(λ, ϕ) = Hmax − Ar
4∑

k=1
exp

[
−(λkr − λ)2

2σ2
r

]
, (6.3)

where λkr = [45 + 90(k − 1)]◦, the maximum height of the ridge is Ar =
1 290 m, and its standard deviation is σr = 10◦. The maximum depth of
the ocean bottom is Hmax = 3 790 m. The bathymetry is depicted in the
right panel of Fig. 6.1.
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Figure 6.2: Time evolution of zonal (left panel) and meridional (right panel)
components of tidal force at five points along the prime meridian with latitudes
−79.5◦ (black), −60◦ (red), −40.5◦ (green), −19.5◦ (yellow) and 0◦ (blue).

• TIDb: The ocean bottom is flat with a uniform depth of 3 790 m and we
prescribe a realistic land mask.

Ocean-model settings

The spatial resolution of Arakawa grids B and C is chosen to be 0.5◦ for all
numerical tests. The choice was motivated by accuracy and computational de-
mands. The 0.5◦ resolution is sufficient for testing, the results do not change
much when finer resolutions (1/3◦, 1/4◦) are used (not shown). At the same
time, 0.5◦ resolution is not extremely computationally demanding. The E-grid
resolution is chosen to be ∆λE = 3

2∆λC = 0.75◦. The total number of SSH points
on Arakawa grids B/C and E are therefore NC = (360/∆λC)(180/∆λC) and
NE = (360/∆λE)[180/(∆λE/2)] = (8/9)NC , respectively, since ∆ϕC = ∆λC ,
∆ϕE = ∆λE/2. Both values are similar, which makes a comparison of results
computed using different grids meaningful. Besides that, each grid has one SSH
point at (0◦, 0◦) and thus every 3rd B/C-grid SSH point in both zonal and merid-
ional directions is common with an E-grid SSH point.

The time step is chosen to be slightly below the Courant-number criterion
in order to keep simulations stable for explicit schemes. We use the time step
∆t = 15 s in all tests.

The values of the Earth’s radius, gravity acceleration and angular velocity of
the Earth’s rotation are given in Table 6.2.

Parameter Value
Earth’s radius 6.371 × 106 m
gravitational acceleration 9.80665 m/s2

angular velocity of the Earth’s rotation 7.292115 × 10−5 rad/s

Table 6.2: The Earth’s parameters used in the numerical tests.

6.1.3 Assessment methods
We discuss and compare the different model outputs using the following diagnos-
tics and methods.
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Invariants

Consider the following integral quantities:

V0 =
∫
A

ηdA, (6.4)

Ek = 1
2

∫
A

hu2dA, Ep = 1
2

∫
A

gη2dA, E = 1
2

∫
A

(
hu2 + gη2

)
dA (6.5)

Qn =
∫
A

hqndA, n ∈ N, (6.6)

where A is the surface of ocean, dA its element, n is a natural number, q is the
potential vorticity,

q = f + ζ

h
. (6.7)

and ζ is the relative vorticity given by Eq. (5.17). The meanings of V0, Ek, Ep and
E are the total volume of ocean water above the reference level η = 0, kinetic,
potential and total energy, respectively. Together with Qn, they are computed at
each time step as diagnostics. The definition of Q1 can be further simplified in
all numerical tests because there is a symmetry in the meridional direction of the
prescribed bathymetry and boundaries. Indeed, the Coriolis parameter is an odd
function of latitude and an integral of an odd function over a symmetric interval
is equal to zero. We thus redefine Q1 as

Q1 =
∫
A

ζdA. (6.8)

Moreover, we emphasize that the quantities V0, E and Qn are time-invariant,
provided no external force is acting [McWilliams, 2006]. This is the case with
the TSU numerical test. Additionally, Q1(t) = 0 for t > 0 since Q1(0) = 0 due
to u(0) = v(0) = 0 in TSU. Note that the time invariance of E and Qn only
holds for a model with the full momentum equation containing the advection and
nonlinear terms depending on both SSH and velocities.

If the external force F is applied, E and Qn are not time-invariant since F
produces source terms violating the balances. As a consequence, we introduce
the new time invariants Eg and Qg

n,

Eg := E −
t∫

0

∫
A

hF · udAdt = E − Es, (6.9)

Qg
n := Qn −

t∫
0

∫
A

nqn−1(∇ × F)rdAdt = Qn −Qs
n, (6.10)

which are generalized forms of E and Qn (see Appendices C.1 and C.2 for the
derivation). The terms arising due to the external force in Eqs. (6.9) and (6.10)
will be denoted by Es and Qs

n, respectively, to shorten the notations. In the
tidal numerical tests TIDa and TIDb, V0(t) = Eg(t) = Qg

1(t) = 0 for t > 0 since
V0(0) = E(0) = Q1(0) = 0, due to zero initial velocities and SSH. The discrete
forms of the invariants are given in Appendix C.3.
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Time curves

The main purpose of this method is to effectively check the model’s behaviour over
time. We choose nine check points on a sphere and compute the time evolution
of the SSH at these points.

In the TSU test, we place check points in the vicinity of the island and along
the direction from the initial position of the Gaussian depression towards the is-
land. The coordinates (λ, ϕ) of the check points are (−51◦, 0◦), (−30◦, 0◦), (0◦, 0◦),
(30◦, 0◦), (−60◦, 30◦), (−60◦, 10◦), (−60◦,−10◦), (−60◦,−30◦) and (−81◦, 0◦) (see
the white crosses in the left panel of Fig. 6.1).

In the TIDa test, the check points are located in the bottom of the valley
along the prime meridian with latitudes −79.5◦, −60◦, −40.5◦, −19.5◦, 0◦, 19.5◦,
40.5◦, 60◦ and 79.5◦ (see the white crosses in the right panel of Fig. 6.1). The
angular distance of approximately 20◦ between two neighbouring check points is
sufficiently small with respect to a large scale pattern of the resulting SSH (see
Fig. 6.8 (a)).

Note that check-point positions are deliberately selected to be common on all
the computational grids used. No interpolation is thus needed as it was mentioned
in Sec. 6.1.2. However, for other models with, e.g., triangular, hexahedral or
cubed sphere grids, interpolation will still be needed.

The method of time curves is not used in the TIDb test (see Sec. 6.1.6 for
further details).

Spatial patterns

The method of spatial patterns is complementary to the method of time curves.
We choose a particular time instant and examine the global spatial distribution of
the SSH. The SSH computed using the model configuration C–FB, see Table 6.1,
is taken as a reference. The reference SSH is thus discretized on the Arakawa
grid C. The SSH computed on the Arakawa grids B or C and the reference SSH
are easy to compare value by value. This is not possible if the SSH is computed
on the Arakawa grid E. We thus interpolate the C-grid values to the Arakawa
grid E using a bilinear interpolation. Its accuracy was tested by comparing the
original and interpolated initial SSH and also by a comparison with the inverse-
distance-weighting interpolation (see Appendix E for further discussion).

Spherical harmonic expansion coefficients

A real function f which is square-integrable in space on a unit sphere can be
written as a series of surface spherical harmonics Y m

l (λ, ϕ) of degree l and order
m [Varshalovich et al., 1988],

f(λ, ϕ, t) =
∞∑
l=0

l∑
m=−l

fml (t)Y m
l (λ, ϕ), (6.11)

where the complex time-dependent expansion coefficients fml are given by the
surface integral,

fml (t) =
π∫

−π

⎛⎜⎝ π/2∫
−π/2

f(λ, ϕ, t)Pm
l (sinϕ)e−imλ cosϕdϕ

⎞⎟⎠ dλ. (6.12)
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where Pm
l is the associated Legendre function. The SSH is a real bounded function

on a sphere, hence it is square integrable and Eq. (6.12) can be used to compute
the expansion coefficients of the SSH. Additionally, the coefficients with m < 0
are fully determined by coefficients with m ≥ 0, η−m

l = (−1)m(ηml )∗ since SSH is
a real function.

The comparison of expansion coefficients is an advantageous assessment method
if the space-time distribution of SSH is predominantly represented by a few ex-
pansion coefficients. This is the case of TIDa. On the contrary, the method is
not suitable for TSU because most of the coefficients are of similar magnitudes.

6.1.4 Results of tsunami numerical test TSU
As already indicated in Sec. 4.5, the additional smoothing term is added into
the SSH equation in the B–FB and E–FB model configurations in the TSU test.
The equatorial diffusivity is equal to 2 × 106 m2s−1/2 and 4.5 × 106 m2s−1/2 in
the B–FB and E–FB model configurations, respectively. These values have been
chosen by trial and error to obtain a SSH that is acceptably smooth. In fact, the
solution is not completely free of the grid-scale noise, as small patchy areas still
exist, especially in the vicinity of the island (not shown). It is possible to enlarge
the diffusivity and make the solution smoother, but larger smoothing has certain
negative effects on the solution, as we will see later on.

Invariants

All solutions conserve total volume very well, and there are no significant oscil-
lations or trends in any of the solutions. If the y-scale is chosen to be 1% of
the initial value, the individual volume curves are straight lines in time and they
overlay each other (not shown). It is a desired behaviour which is enforced by
the flux form of Eqs. 4.2 or 4.4 for the SSH used by all model configurations.
Note that the biharmonic smoothing operators 4.51 and 4.52 do not violate the
total-volume balance since they are also written in the flux form. In principle,
we might expect some discrepancies in the CNmod scheme because a system of
linear equations is solved for the SSH. But if some discrepancies are present in
the solution, they are negligibly small.

Fig. 6.3 (left panel) depicts the time evolution of Q1 for all model configura-
tions, except for the C–CNmod. The time evolution of Q1 is a highly oscillating
function in time, but in fact it is only white noise on the level of the rounding
errors. Indeed, invariant Q1 defined by Eq. (6.8) does not contain the contribu-
tion from the Coriolis parameter due to the symmetry presented in the discussion
above. However, if we focused on a particular area on one hemisphere, e.g., the
North Atlantic, the Coriolis parameter would give a constant offset in time. This
means that we are missing the reference value.

We have decided to take the surface integral of the absolute value of the
Coriolis parameter over the whole ocean surface as a reference value. Its value,
a2 ∫ π

−π

(∫ ϕmax

−ϕmax
|f | cosϕdϕ

)
dλ = πa2Ω[1 − cos(2ϕmax)] ≈ 1.85 × 1010m2/s, exceeds

the amplitudes of oscillations in Fig. 6.3 (left panel) by several orders of magni-
tude. The Q1 in the C–CN is also highly oscillating over time, but the amplitudes
of the oscillations are approximately two orders of magnitude larger than in the
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other schemes, and so we do not plot it in Fig. 6.3 (left panel). Nonetheless, even
these discrepancies are small with respect to our reference value.

Figure 6.3: Invariants in the TSU numerical test. Left panel: Time evolution
of Q1 using model configurations C–FB (blue), C–FBgen (yellow), B–FB (red),
E–FB (green) and E–IMP (black). Middle panel: Time evolution of total energy
E using the same model configurations plus C–CN (purple). Right panel: Total
energy (blue), kinetic energy (orange) and potential energy (forest green) in C–
FB.

Fig. 6.3 (middle panel) depicts the time evolution of the total energy. The en-
ergy decays rapidly in the C–IMP solution (black). The total energy after 15 days
of the numerical test is equal to 1.42×1016 J m3 kg−1, which means that more than
70% of the energy were dissipated, which is unacceptable. Mesinger and Arakawa
[1976] showed that the Euler backward scheme slightly damps long-period waves,
but it highly damps short-period oscillations associated with small spatial scales.
Our tsunami propagation is a rather fast process, thus the energy leakage can
be associated with this damping. Note that the dedicated tsunami codes use ei-
ther explicit (NAMI DANCE, GeoClaw, Tsunami-HySEA, TSUNAMI3D, etc.) or
semi-implicit (SCHISM, NEOWAVE, pCOULWAVE, etc.) time-stepping schemes
[Lynett et al., 2017].

The total energy in the B–FB and E–FB model configurations does not de-
cay as rapidly as in the E–IMP model configuration, but energy leakage is also
present. However, it has a different origin since the FB scheme itself does not
cause the energy leakage, it is caused by the biharmonic smoothing term. The
total energy is equal to approximately 4.65 × 1016 J m3 kg−1 in the B–FB, and
4.36 × 1016 J m3 kg−1 in E–FB solutions after 15 days of the numerical test. The
energy leakage is thus approximately 2.1% and 8.2% in the B–FB and E–FB so-
lutions, respectively, which might be considerable with regards to the particular
application. The length of computation may also be decisive, since the energy
diffusion will most likely continue.

The total energy in the C–FB, C–FBgen and C–CNmod solutions is equal
to approximately 4.732 × 1016 J m3 kg−1, 4.732 × 1016 J m3 kg−1 and 4.784 ×
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1016 J m3 kg−1, respectively. The energy conservation is violated by approxi-
mately 0.43%, 0.44% and 0.66%. Contrary to other schemes, there is an excessive
generation rather than leakage of energy in the C–CNmod solution. In our opin-
ion, all C-grid values are safely acceptable. Besides that, the energy conservation
is mainly violated at the beginning of the numerical test, when a huge 100 m
depression starts to oscillate. We tested that the energy conservation would im-
prove if we decreased the initial amplitude of the SSH depression. Finally, the
individual constituents of total energy, the kinetic energy Ek, and potential en-
ergy Ep, in the C–FB solution are shown in Fig. 6.3 (right panel). They oscillate
in time in such a way that one energy is almost mirrored in the other one.

Spatial patterns

Fig. 6.4 depicts SSHs computed with the C–FB model configuration after 12,
24, 36 and 48 hours. We deliberately restrict ourselves to the first two days of
computations since the SSH evolution can be illustrated better. The initial SSH
anomaly is forced by the surface pressure gradient at the beginning of the the
numerical test. The amplitude of the Gaussian depression decreases in order
to reach the equilibrium. However, there is no damping mechanism and thus
the SSH overshoots the equilibrium point instead and it changes the sign from
negative to positive. The process is similar to the harmonic oscillator. At the
same time, the depression is expanding and it propagates in the form of a gravity
wave (see panel (a)). Note that the expansion is direction-dependent and the SSH
is not symmetric in the zonal direction (with respect to the λ = 60◦ meridian).
This is due to the presence of the Coriolis force. If we performed the same
numerical test on a non-rotating Earth, the wave propagation would be the same
in all directions and the SSH pattern would be perfectly symmetric. The waves
propagate further and at approximately time t = 12.5 h some of them reach
the meridional boundaries of the computational domain and they are reflected
there. Approximately at t = 18 h, the direct wave hits the island and it is
also partly reflected (see panel (b)). The dark blue SSH feature at λ = −150◦

is the direct wave which propagated in the eastern direction from the initial
position. The direct waves from both directions collide and interfere with the
reflected waves. The second expansion, similar to the one in panel (a), starts
afterwards (see panel (c)). The SSH feature has a more complex shape now
due to all the processes that have occurred since the beginning of the numerical
test. Finally, the waves are propagating back to the eastern hemisphere to collide
approximately at (60◦, 0◦) where the center of the SSH depression was initially
located (see panel (d)).

Fig. 6.5 depicts SSH differences between C–FB and other solutions. All model
configurations considered in the numerical tests are able to capture the main
characteristics and features of the tsunami propagation as it has been described.
The C–FB and C–FBgen solutions are almost identical, the differences being
barely visible. The differences in the C–CN solution are somewhat larger. We
noticed a small shift and distortion of the C–CN time curves at particular check
points. The B–FB, E–FB and E–IMP solutions are, however, more different
than any of the solutions discussed so far. Some differences in the E–FB and
E–IMP solutions are caused by the different shape of the island and meridional
boundaries on the Arakawa grid E, although this is not the only reason since
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(a) 12 hours (b) 24 hours

(c) 36 hours (d) 48 hours

Figure 6.4: SSHs [m] computed in the TSU numerical test using the C–FB model
configuration after 12, 24, 36 and 48 hours of experiment.

the same pattern is also visible in the B–FB solution and island and meridional
boundaries are the same on both Arakawa grids B and C. We argue that the
B–FB, E–FB and E–IMP solutions differ from the C–FB and C–FBgen solutions
because the Arakawa grids B and E use no-slip boundary conditions (see Eq. (4.7))
whereas the Arakawa grid C uses free-slip boundary conditions (Eq. (4.6)). It
also explains the discrepancies in the vicinity of meridional boundaries.

(a) C–FBgen (c) C–CN (d) B–FB

(e) E–FB (f) E–IMP

Figure 6.5: Differences [m] between the SSH computed using the C–FB model
configuration and the other model configurations after 48 hours of experiment.

We point out that the initial configuration and bathymetry are symmetric in
the meridional direction with respect to the equator. Consequently, the computed
SSH must conserve this symmetry. We recommend that this feature be examined
further.
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Time curves

The amplitudes of time curves are zero after the onset of the SSH displacement
for certain times and then they change rapidly. The rapid changes occur at
different times with amplitudes decaying from (30◦, 0◦) to (0◦, 0◦) and (−30◦, 0◦)
(not shown), i.e., from east to west. This behaviour corresponds to the direct
wave coming from the initial position at (60◦, 0◦). Fig. 6.6 shows results from
the two equatorial check-points at (30◦, 0◦) and (−51◦, 0◦) and the check point
at (30◦, −60◦). The second check point is close to the island, where we expect
larger differences between the computed curves. We also depict only the C–FB,
B–FB, E–FB and E–IMP solutions, since the other curves would either overlap
the reference curve or would be close to it. Fig. 6.6 confirms certain findings from
the previous sections. The shape of E–FB (green) and E–IMP (black) curves are
very similar, and the amplitudes of E–IMP curves are smaller due to the energy
leakage discussed in Sec. 6.1.4. Depending on the check point and time, the B–FB
solution is closer to the E–FB and E–IMP solutions or to the C–FB solution.

(30◦, 0◦) (−51◦, 0◦) (30◦, − 60◦)

Figure 6.6: Time evolution of SSH at the chosen check points, see (λ, ϕ) above
each panel, in the TSU numerical test computed using model configurations C–FB
(dashed blue), B–FB (red), E–FB (green) and E–IMP (black).

6.1.5 Results of tidal numerical test TIDa
We compare only the C–FB, B–FB, E–FB and E–IMP solutions in this section
because the C–FBgen and C–CNmod solutions are virtually identical to the C–
FB solution. The biharmonic smoothing is not applied in the B–FB and E–FB
model configurations in TIDa since there is no disturbing noise in the computed
SSH.

Invariants

The time evolution of the total volume is shown in Fig. 6.7 (left panel). If we
consider that the ocean surface A in TIDa is equal to A = 4πa2 sinϕmax ≈
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5 × 1014 m2, the change of total volume of the order of 10−1 m3 corresponds to
the global SSH change of the order of 10−15 m, which is negligible.

Figure 6.7: Time evolution of total volume (left panel), Qg
1 (middle panel) and Eg

(right panel) in the TIDa numerical test computed using model configurations C–
FB (blue), B–FB (red), E–FB (green) and E–IMP (black). In the right panel, E
(orange) and −Es (forest green) computed using the C–FB model configuration
are also depicted.

Fig. 6.7 (middle panel) depicts the time evolution of Qg
1. All the curves look

qualitatively similar to the Q1 curves from the TSU, in that they are highly
oscillating over time. The amplitudes of the Qg

1 oscillations are about one order
of magnitude smaller than the amplitudes of the Q1 oscillations in the TSU
numerical test. The reference value is the same as in the TSU test and thus there
is no problem with the conservation of Qg

1. Note that the contribution of the
external force to the overall balance is small (not shown).

Fig. 6.7 (right panel) depicts the time evolution of Eg for the considered model
configurations and time evolution of E and −Es in the C–FB solution. The model
configurations C–FB, B–FB and E–FB conserve Eg very well, the results overlap
each other and the curves are basically straight lines. Recall, however, that we
do not apply the biharmonic smoothing in the B–FB and E–FB configurations
in the TIDa test contrary to the TSU test. There is a decrease of Eg in the
E–IMP solution. Its origin is the same as the energy leakage in the TSU test,
where inherent damping is draining energy from certain waves. The leakage of
Eg after 15 days of the numerical test is approximately 1.2 × 1014 J m3 kg−1,
which corresponds to around 18% of the maximum value of E. We regard such
an energy leakage as considerable for the dynamics of the system, even though it
is less severe than in the TSU test.

Note that Eg = 0 means that all the work done by the tidal force has been
converted to the total energy. If we did not stop the numerical test after 15 days,
the total energy would further grow since the tidal force is pumping energy into
the system and there is no dissipation.
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Spatial patterns

We examine spatial patterns at 1-day intervals after a 10-day spin up which is a
period after which the flow is “reasonably developed”. The SSH pattern is usually
dominated by 12 tidal bulges that are arranged in a checker-board pattern (see
Fig. 6.8 (a) which shows results after 13 days of the numerical test). Nevertheless,
other configurations may also occur. For example, after 14 days of the numerical
test, the amplitudes of four low-latitude tidal bulges decrease substantially and
the SSH pattern is dominated by eight mid-latitude tidal bulges (not shown).
Note that if the bathymetry were flat, the SSH pattern would be dominated
by only four large-scale bulges predominantly located in the latitudinal interval
⟨−40◦, 40◦⟩ (not shown).

(a) SSH, C–FB

(b) SSH differences, B–FB (c) SSH differences, E–FB (d) SSH differences, E–IMP

Figure 6.8: Panel (a) shows SSH [m] computed in the TIDa numerical test using
the C–FB model configuration at day 13. The other panels show differences [m]
between the SSH at panel (a) and the SSH computed using model configurations
B–FB (b), E–FB (c) and E–IMP (d).

Qualitatively, all solutions are the same with tidal SSH bulges located roughly
at the same positions. However, SSH patterns in the B–FB, E–FB and E–IMP
solutions are slightly shifted and distorted with respect to the reference C–FB
solution (not shown). The differences between the C–FB solution and the B–FB,
E–FB and E–IMP solutions are depicted in panels (b), (c) and (d) of Fig. 6.8,
respectively. The B–FB and E–FB solutions are very similar, their SSH-difference
patterns are virtually identical, with slightly different amplitudes. The E–IMP
solution differ from the B–FB and E–FB solutions, however, all three solutions
display similar discrepancies near the meridional boundaries. The magnitude of
the discrepancies depend on the model configuration and position in space and
time, but they may reach 10% of maximum SSH amplitudes. The spatial dis-
cretization of the governing equations and boundary conditions applied thus have
a non-negligible effect on both tsunami propagation and tidally-driven circulation.
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Time curves

Time curves at points (0◦, 0◦), (0◦,−20◦), (0◦,−60◦) and (0◦,−80◦) are depicted
in Fig. 6.9. We do not show time curves at other check points since they display
similar information. Most importantly, time curves give us confidence that our
findings in the previous section are not limited to chosen time instants. Indeed,
all time curves are the same at (0◦, 0◦), with the exception of the E–IMP curve,
which mostly underestimates SSH amplitudes. Time curves at (0◦,−20◦) and
(0◦,−60◦) already show certain differences. The B–FB and E–FB curves are
much the same, but they overshoot the C–FB amplitudes. The shape of the E–
IMP curve is similar to the B–FB and E–FB curves, but the E–IMP amplitudes
are lower. This sometimes makes the E–IMP curve be closer to the C–FB curve
than to the B–FB and E–FB curves. It may also clarify the specific pattern
of the SSH differences mentioned previously. The southernmost check point at
(0◦,−80◦) reveals the most striking differences between the computed time curves.
There are phase shifts, amplitude overshoots and also distortions of the curves
due to the vicinity of boundary.

(0◦,0◦) (0◦,−20◦) (0◦,−60◦) (0◦,−80◦)

Figure 6.9: Time evolution of SSH at the chosen check points, see (λ, ϕ) above
each panel, in the TIDa numerical test computed using model configurations
C–FB (blue), B–FB (red), E–FB (green) and E–IMP (black)

Spherical harmonic expansion coefficients

We compute spherical harmonic expansion coefficients from degree 0 up to degree
10. We examine only the real parts of the coefficients with m ≥ 0. There are
66 coefficients, although, only a few are dominant. We measure the maximum
amplitudes of the real parts of coefficients over 15 days of the numerical test.
The coefficients with the largest maximum amplitudes are η2

4 and η2
2. The coef-

ficients with maximum amplitudes of at least 10% of this value are summarized
in Table 6.3. Note that there are only even-degree coefficients due to the second-
degree tidal potential forcing. The ocean’s dynamics is responsible for the energy
transport from the second-degree forcing to other than degree-two response coef-
ficients. If the bathymetry was flat, there would be only coefficients with orders
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0, 1 and 2, which accounts for long-period, diurnal and semi-diurnal tides. This is
not true in the presence of undulated bathymetry. For example, the η6

6 coefficient
is one of the major coefficients.

l 2 2 2 4 4 4 6 6
m 0 1 2 0 1 2 2 6

max(|ηml |)[10−1m/s] 2.2 1.5 3.8 0.9 0.9 6.5 1.7 0.8
100 max(|ηm

l |)
max(|η2

4 |) [%] 34 23 58 14 14 100 26 12

Table 6.3: Degrees l and orders m of spherical harmonic expansion coefficients
ηml with maximum amplitudes max(|ηml |) ≥ 0.1max(|η2

4|) in the TIDa numerical
test.

Fig. 6.10 depicts the time evolution of the two largest coefficients, η2
2, η2

4, and
coefficients η1

2 and η1
4. The E–IMP coefficients are smaller than the reference

C–FB coefficients. The B–FB and E–FB coefficients are almost identical to the
C–FB coefficients with the exception of the η1

2 and η1
4 coefficients, which show

certain discrepancies. The integral property of spherical harmonic coefficients
guarantee that global scale characteristics of the solutions are preserved. The
results may, however, differ locally as we have seen in Secs. 6.1.5 and 6.1.5.

l = 2, m = 1 l = 2, m = 2 l = 4, m = 1 l = 4, m = 2

Figure 6.10: Time evolution of SSH spherical harmonic expansion coefficients η1
2,

η2
2, η1

4 and η2
4 in the TIDa numerical test computed using model configurations

C–FB (blue), B–FB (red), E–FB (green) and E–IMP (black)

6.1.6 Results of tidal numerical test TIDb
The performance of model configuration E–IMP was not satisfactory in the TSU
and TIDa tests. We thus do not include E–IMP in the last experiment.

Spatial patterns

In contrast to previous sections, we start with a comparison of the resulting
spatial patterns. Fig. 6.11 shows the spatial patterns of individual solutions after
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(a) C–FB (b) C–CN (c) C–FBgen

(d) B–FB (e) E–FB

Figure 6.11: SSH [m] after 15 days of computations in the TIDb numerical test
computed using different model configurations.

15 days of the numerical test. The C–FB and C–CN solutions are in excellent
agreement, while the C–FBgen solution is slightly different. Detailed inspection
reveals some differences with respect to the reference C–FB solution, which are
most pronounced in the Hudson Bay. However, generally speaking, all examined
C-grid solutions are in good agreement. This is, however, hardly true if we
compare any of C-grid solutions to the B–FB or E–FB solutions. There are many
places where the SSH has opposite signs and the solutions differ significantly even
after two days of computations (not shown), which is shortly after the model’s
start. In order to reduce the effect of the boundary conditions, we added realistic
bathymetry and repeated the computations. The agreement between the C–FB,
B–FB and E–FB solutions improved, with the match acceptable after five days of
computations (not shown). Nevertheless, the solutions differ significantly again
after 15 days of integration. We checked that the discrepancies are not caused by
the short spin-up period. The differences persist if we perform the comparison
after 30 days of the numerical test.

Our explanation is that boundary effects influence the solution considerably
more than in previous numerical tests due to the realistic ocean-land mask, where
the extent of the coastlines and complexity of their shape has significantly in-
creased. The previous numerical tests have shown that solutions on Arakawa
grids C and B/E differ in the vicinity of solid boundaries as a consequence of
different boundary conditions. Additionally, the shape of the land areas and
ocean-land boundaries differ on Arakawa grid E as a consequence of the different
shapes of the E-grid and B/C-grid elementary grid cells.

This might have an important impact, since barotropic tidal models are usu-
ally discretized on the Arakawa grid C with free-slip boundary conditions, while
OGCMs have frequently used Arakawa grid B in the past, especially the Bryan-
Cox-Semtner type models. The successors in this lineage, such as the POP, MOM
(up to version 5), COCO, INMIO or CLIO (ocean component of the LOVE-
CLIM Earth system model) models are still using the B-grid spatial discretiza-
tion. Nonetheless, friction terms that we neglected in our numerical tests may
also come into play. The momentum equation should include Reynold’s stresses
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(a) (b) (c) (d)

Figure 6.12: Time evolution of total volume (a), Qg
1 (b), Eg (c) and total mechan-

ical energy (d) in the TIDb numerical test computed using model configurations
C–FB (blue), C–FBgen (orange), B–FB (red) and E–FB (green).

via the divergence of a stress tensor and the bottom friction. Models that aim to
accurately resolve tides need to include also the IWD term. The three missing
friction terms will most likely restrict the flow especially in shallow areas, i.e., in
the vicinity of boundaries, and the spread in the solutions will be reduced. Nev-
ertheless, it is beyond the scope of this paper to compare the performance of fully
tuned tidal models discretized on different Arakawa grids in realistic settings.

Invariants

We will show neither time-curves nor time evolution of the spherical harmonic
expansion coefficients from the TIDb test due to massive differences between the
model configurations on different grids. However, we have checked the invariants
to verify that the solutions are self-consistent. Note that the C–CN solution is
not shown since it is very similar to the C–FB solution as we have already seen.

The total volume is conserved well in all solutions (see Fig. 6.12 (a)). The
oscillatory behaviour of the solutions is the same as in the TIDa test. The maxi-
mum amplitudes of discrepancies are approximately one order larger than in the
TIDa results, which is still negligible as discussed previously.

The time evolution of Qg
1 is different from that in the TIDa. It is not a highly

oscillating but rather a smooth function (see Fig. 6.12 (b)). Its time evolution is
also markedly different in the B-grid, C-grid and E-grid solutions. In any case,
the maximum computed amplitudes of Qg

1 do not exceed 106 m2 s−1, which is at
least four orders of magnitude smaller than the reference value used previously.
We thus consider Qg

1 to be a well-conserved quantity in all solutions.
The evolution of Eg is shown in Fig. 6.12 (c). The energy conservation is

satisfied in the C-grid solutions C–FB and C–FBgen. A detailed inspection re-
veals that there are small ripples in the C–FB solution, nonetheless, we consider
them as being negligible due to their magnitude. Both the B–FB and E–FB so-
lutions suffer from an energy leakage as a consequence of the applied biharmonic
smoothing. Time evolutions of Eg are not the same, but quite similar in both
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solutions. The energy leakages after 15 days of the numerical test are also very
similar, 1.48 × 1014 J m3 kg−1 and 1.45 × 1014 J m3 kg−1 for B–FB and E–FB,
respectively, which corresponds to approximately 4.6% and 4.1% of the respective
energy values of 3.24 × 1015 J m3 kg−1 and 3.54 × 1015 J m3 kg−1. The energy
leakage is thus non-negligible, although not critical, similar to the TSU numerical
test. Fig. 6.12 (d) depicts the evolution of total energy. The C-grid solutions are
very much the same, where the energies in the C–FB and C–FBgen solutions
differ by less than 1% after 15 days of computations. However, there is a clear
separation between C-grid and B/E-grid solutions. It is distinct after 10 days,
but it is noticeable as early as after four days of computations.

6.1.7 Concluding remarks
The total volume of ocean water and potential-vorticity invariant are well con-
served in all tested schemes and numerical tests. The energy conservation is
violated in several model configurations. The implicit time-stepping scheme used
in one model configuration suffers from the energy leakage. The leakage reaches
70% and 18% of energy in the TSU and TIDa numerical tests, respectively. We
recommend not to use the implicit time-stepping scheme for tidally driven mod-
els, although the energy conservation is violated much less in the tidal numerical
test than in the tsunami numerical test. The B-grid and E-grid model configu-
rations do not conserve energy either if biharmonic smoothing of SSH is applied.
The energy leakage reaches 2.1% and 8.2% in TSU and 4.6% and 4.1% in TIDb in
B-grid and E-grid model configurations, respectively. It is probably an acceptable
energy leakage for a global tidal model since its realistic configuration contains
internal wave drag and bottom drag terms which are tuned to obtain realistic
results. All C-grid schemes conserve energy successfully. Regarding the spheri-
cal harmonic expansion coefficients, the largest coefficients in the TIDa solutions
have degree l and order m equal to l = 2, m = 2 and l = 4, m = 2. The other
significant coefficients have even degrees, which is a plausible result for a tidally
driven numerical test.

There are differences between C-grid and B/E-grid solutions in all numerical
tests. Comparisons of spatial patterns and time curves show that discrepancies
are more pronounced in the vicinity of domain boundaries as a consequence of
different boundary conditions (free-slip and no-slip) and shapes of rigid bound-
aries on different Arakawa grids. The most distinct discrepancies are present in
the TIDb numerical test in which boundary effects have a much stronger impact
on the solution due to the significantly larger extent of land areas. Both free-slip
and no-slip boundary conditions are approximations of the real-world boundary
conditions, which are a combination of these two options. The choice of boundary
conditions could be important, but it is beyond the scope of this paper to test
which one is closer to reality.
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6.2 Numerical tests of Yin-Yang and reduced
spherical coordinate grids

We test the YY and RSC grids in modified versions of the tests that we introduced
in Sec. 6.1.2. We call these tests TSU0, TID0 and mTIDa. All three tests are
fully global, there are no artificial continents at poles as in TSU, TIDa and TIDb.
The absence of artificial continents is the only difference between mTIDa and
TIDa. TSU0 and TID0 are simplified versions of TSU and TIDa (mTIDa). The
bathymetry if flat at the depth of 3790 m in both TSU0 and TID0. Additionally,
the initial amplitude of the Gaussian depression is reduced from -100 m to -1 m
and the Earth’s rotation is set equal to zero, Ω = 0, in TSU0.

In the YY simulations, we use 0,5◦ resolution in TSU0 and 1◦ resolution in
TID0 and mTIDa. The grid in all RSC simulations has 512 grid points along the
Equator which corresponds to approximately 0.7◦ resolution.

Results of the TSU0 test

It was noted in Sec. 6.1.4 that the propagation of the initial depression is not
symmetric in all directions in the TSU test due to the presence of the Coriolis
force. The Coriolis term is absent in the TSU0 test and thus the propagation
should be perfectly symmetric. Indeed, the SSH is symmetric in both YY and
RSC simulations, see panels (a) and (b) of Fig. 6.13. The gravity waves propagate
over the globe meet at the antipodal point and return back to the initial point,
see panels (c) and (d) of Fig. 6.13, and the entire process repeats. The SSH is
symmetric even after 105 hours of experiment, see panels (e) and (f) of Fig. 6.13.

Note that we apply a linear interpolation in the zonal direction in the post
processing phase of the RSC simulation. We interpolate values to the grid points
that are missing in the RSC grid but are present in the SC grid to make the
visual inspection more convenient.

Fig. 6.14 shows the same propagation viewed from the North Pole. It demon-
strates that the gravity-waves smoothly pass the North Pole in both YY and RSC
simulations. Both simulations are in a very good agreement.

Results of the TID0 test

Fig. 6.15 depicts SSHs computed in the YY and RSC simulations in the TID0
test after 20 days. The agreement is very good, again. We use the time step
∆t = 30 s in the YY simulation. In comparison, the time step used in the RSC
simulation is four times larger, ∆t = 120, and the simulation is still numerically
stable.

Results of the mTIDa test

The mTIDa test is significantly more demanding than TSU0 and TID0 tests. We
start with the YY grid. We examine several configurations in the YY simula-
tions, see Table 6.4. Configuration I represents the most straightforward imple-
mentation of the YY grid. It uses the non-optimized YY grid and the bilinear
interpolation to couple the Yin and Yang parts. It is a sufficient configuration for
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(a) 9 h, YY grid (b) 9 h, RSC grid

(c) 64 h, YY grid (d) 64 h, RSC grid

(e) 105 h, YY grid (f) 105 h, RSC grid

Figure 6.13: SSHs [m] computed in the TSU0 test using the Yin-Yang grid (left
column) and the reduced spherical coordinate grid (right column) after 9, 64 and
105 hours.

both TSU0 and TID0 tests but it fails completely in mTIDa. The SSH after 20
days computed using configuration I is depicted in Fig. 6.16 (a). The tidal SSH
is completely overlaid by noise in panel (a).

It is not presented but we checked that the bilinear interpolation is imple-
mented correctly: We prescribed an initial SSH and velocities in the form of sine
and cosine functions. The initial distribution was set at all inner grid points and
the values were interpolated to the halo regions. We inspected Yin and Yang
grids with their respective halo regions separately. The visual inspection did not
reveal any problems, there was a smooth transition from the inner domain to the
halo region in all fields.

We replace the bilinear interpolation with the IDW interpolation in config-
uration II. Both interpolations use four points and thus we expected them to
perform similarly. In fact, the bilinear interpolation was superior to the IDW
interpolation in the comparison presented in Appendix E. The opposite is true in
the YY simulations. The SSH computed using the configuration II is depicted in
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9 h 12 h 15 h 18 h 21 h

Figure 6.14: SSHs [m] on the Northern hemisphere computed in the TSU0 test
using the Yin-Yang grid (upper row) and the reduced spherical coordinate grid
(lower row) after 9, 12, 15, 18 and 21 hours viewed from the North Pole.

YY RSPH

Figure 6.15: SSHs [m] computed using the Yin-Yang grid (left panel) and the
reduced spherical coordinate grid (right panel) in the TID0 test after 20 days.

Fig. 6.16 (b). The noise is still extremely strong but the tidal SSH can already
be recognized.

Similar to the simulations in Sec. 6.1.5, we do not apply friction in the pre-
sented YY simulations with the exception of configuration III. In configuration
III, we return to the non-optimized YY grid with the bilinear interpolation but
we apply friction. We expected a friction force with our default value of eddy
viscosity, AH = 2 × 104 m2/s, to be sufficient to get rid of the grid-scale noise.
Fig. 6.16 (c) shows the resulting SSH. It is significantly better than the SSH in
Fig. 6.16 (a) but it is hardly noise-free.

According to Kageyama and Sato [2004], the overlapping areas in the non-
optimized YY grid “might be slight (6%) waste of computational time, but the
double solution causes no problem in actual calculations. The difference between
the two solutions is within the discretization error that is omnipresent all over
the sphere any way.” Our experience is much different. We retain the bilinear
interpolation but replace the non-optimized grid by the optimized grid in config-
uration IV. The SSH computed using the configuration IV is shown in Fig. 6.16
(d). The SSH is not completely free of the grid-scale noise, see the region around
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Configuration Yin-Yang grid Interpolation AH [m2 s−1] Smoothing
I non-optimized bilinear 0 no
II non-optimized IDW 0 no
III non-optimized bilinear 2 × 104 no
IV optimized bilinear 0 no
V non-optimized bilinear 0 DFP, s = 0.01

Table 6.4: Yin-Yang configurations used in the mTIDa test.

(a) Configuration I (b) Configuration II

(c) Configuration III (d) Configuration IV

Figure 6.16: SSHs [m] computed using different Yin-Yang configurations in the
mTIDa test after 20 days. The configuration used is written above each panel.

the 180th meridian, but the grid-scale noise is significantly reduced in comparison
to the SSH from configuration I shown in Fig. 6.16 (a).

Baba et al. [2010] also experienced a grid-scale noise in their simulations.
They did not provide details about it in the paper but they applied Shapiro filter
to solve the problem. We use another technique in configuration V, it is the DFP
smoother given by Eqs. (5.127) and (5.128). We set the parameter s in the DFP
smoother to s = 0.01. The resulting SSH in Fig. 6.17 (c) is completely noise-free.

Let us move our focus to the RSC grid. The SSH computed using the RSC
grid in mTIDa after six days is depicted in Fig. 6.17 (b). Similar to the TSU0 and
TID0 tests, there is again a very good agreement between the SSHs computed
in the YY and RSC simulations after six days, compare panels (a) and (b) of
Fig. 6.17. Unfortunately, the grid-scale noise that was present in the YY simula-
tions is generated also in the RSC simulations. The SSH in the RSC simulation
is seriously affected by the grid-scale noise generated in the polar regions after
20 days, see Fig. 6.17 (d). Nevertheless, the SSH in mid-latitudes corresponds
very well to the SSH calculated in the YY simulation. We tried to apply the

152



(a) YY, configuration V, day 6 (b) RSPH , day 6

(c) YY, configuration V, day 20 (d) RSPH , day 20

Figure 6.17: SSHs [m] computed using the Yin-Yang and reduced spherical coor-
dinate grids in the mTIDa test after 6 and 20 days.

DFP smoother. Its implementation was more complicated due to missing grid
points in the RSC grid and its performance was worse than in the YY grid. The
DFP smoother managed to decrease the amplitudes of the grid-scale noise but
the noise was still present (not shown).

Starius [2014] suggested to use the so-called Pole Tangent Derivative (PTD)
method on the three northernmost and three southernmost parallels. The PTD
method approximates the zonal derivative using the derivative along the great
circle that is tangent to the parallel at the particular point. The derivative along
the great circle is approximated by the twelve-point centered non-equidistant
finite difference formula. The values at the twelve points are determined by in-
terpolation in either zonal or meridional direction. Additionally, an interpolation
in the zonal direction using trigonometric polynomials is applied prior to the
PTD method in order to have 32 points in each of the 3+3 polar parallels. We
have not implemented the PTD method into the LSOMG model. The number of
interpolations needed seems to be rather excessive.

To sum it up. The RSC simulations helped to validate the YY simula-
tions. Unfortunately, unresolved issues remain in the RSC simulations. The PTD
method might resolve them. Nevertheless, the high-order interpolation schemes
used on the RSC grid could hardly be used in the presence of realistic land mask.
The RSC grid could be used only in aqua-planet simulations not in paleo simu-
lations or in a realistic present-day seamless coupled model. The YY grid could
be used for these purposes if the grid-scale noise is kept under control.
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6.3 Munk problem
In the so-called Munk problem, the motion of a homogeneous fluid in a rectan-
gular basin is to be found. The problem is described by barotropic geostrophic
equations with the harmonic friction,

fe3 × U + gh∇hη = AH∆hU + τw
ρ0
, (6.13)

∇h · U = 0. (6.14)

The nonlinearities are neglected and the ocean bottom is supposed to be flat.
Note that if the linear drag was considered instead of the harmonic friction,

the equations would constitute the so-called Stommel problem instead of the
Munk problem. Finally, if the friction (or drag) was neglected completely, we
would obtain the original Sverdrup problem.

Under these assumptions, the barotropic stream function ψb (the concept
of the barotropic stream function is explained in Appendix F) can be found
analytically. The stream function is composed from three terms,

ψb = e3 · (∇ × τw)
βρ0

(ψI + ψE + ψW ), (6.15)

where ψI is the interior solution inside the ocean basin away from boundaries, ψE
is the solution that arise due to the presence of eastern boundary and, similarly,
ψW is the western-boundary layer solution. The form of the individual terms can
be found in Vallis [2006],

ψI = dB − dW , (6.16)

ψE = dMe
dW −dB

dM , (6.17)

ψW = −dBe
− d

2dM

[
cos

(√
3dW

2dM

)
+ 1√

3
sin

(√
3dW

2dM

)]
, (6.18)

where dB stands for the width of the whole basin, dW is the distance from the
western boundary and dM = (AH/β)1/3.

In our numerical test, we use the settings of Frisius et al. [2009], in which the
basin covers almost half of the Earth and the wind is purely zonal:

• Idealized basin: λ ∈ ⟨−90◦, 90◦⟩, ϕ ∈ ⟨−85◦, 85◦⟩.

• Depth of flat bottom: H = 5000 m.

• Wind stress: τw = −0.1 cos(3ϕ)eλ Nm−2.

Moreover, the reference density is set equal to the LSOMG default value ρ0 =
1020 kg/m3 and the horizontal viscosity is chosen to be AH = 2 × 105 m2/s.

The barotropic stream function computed according to Eqs. (6.15), (6.16),
(6.17) and (6.18) and the stream function computed in the LSOMG-BT model
are depicted in Fig. 6.18. The both solutions agree well in the basin’s interior
and close to the eastern boundary. A clear discrepancy is present close to the
poles. However, as noted by Frisius et al. [2009], the discrepancy can be expected
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Figure 6.18: Barotropic stream functions [Sv] in the Munk problem. Upper panel:
Theoretically predicted barotropic stream function. Lower panel: Barotropic
stream function computed in the LSOMG-BT model.

because the analytic solution is derived under the condition dM ≪ dB which is
not valid close to the poles.

Besides that, both solutions show a well developed western boundary currents,
the isolines are intensified in the neighbourhood of western boundary. This feature
is missing in the Sverdrup solution but it is present in the Stommel and Munk
solutions. However, the Stommel and Munk solutions differ at first sight in one
aspect. The isolines form bodies that are convex in the Stommel solution but
concave in the Munk solution. The Munk solution contains a particular “dent”
east of the western-boundary region, see fig. 14.5 in Vallis [2006]. This feature is
clearly present in the analytic solution as well as in the numerical solution.

There is some discrepancy in the western-boundary region between the two
solution. We argue that it might be caused by the fact that the analytic solution
satisfies the no-slip boundary condition whereas the numerical solution satisfies
the free-slip boundary condition on the Arakawa C-grid.
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6.4 Numerical test of the Ekman layer
The purpose of this numerical test is to check the implementation of vertical
shears of horizontal velocities in the momentum equation. The so-called Ekman
problem is described by the simplified governing equations,

fv + AV
∂2u

∂z2 = 0, (6.19)

−fu+ AV
∂2v

∂z2 = 0, (6.20)

where the vertical viscosity AV is taken to be constant. We prescribe a steady
wind that is blowing from the South to the North in the northern hemisphere.
The surface boundary condition 5.2 has the form,

AV
∂u

∂z
= 0, (6.21)

AV
∂v

∂z
= τw
ρ0
. (6.22)

The problem is solved analytically in Stewart [2008],

u = v0e
aez sin

(
π

4 − aez
)
, (6.23)

v = v0e
aez cos

(
π

4 − aez
)
, (6.24)

where
ae =

√
f

2AV
. (6.25)

The Eqs. (6.23), (6.24) describe the well-known Ekman spiral. The velocity com-
ponents at the surface, for z = 0, are equal to

u = v0 sin
(
π

4

)
, (6.26)

v = v0 cos
(
π

4

)
. (6.27)

The velocity vector at the surface is thus pointing in the north-east direction,
the angle between the wind vector and velocity vector is 45◦. Deeper below the
surface, the velocity vector starts to rotate and its amplitude is decreasing. The
depth in which the velocity vector is rotated by 180◦ and it is pointing in the
south-west direction, is the base of the Ekman layer. The thickness of the Ekman
layer is thus equal to

De = π

ae
= π

√
2AV
f

. (6.28)

Our target is to validate the functionality of the LSOMG model using these
theoretical predictions. We set up the model as follows:

• Depth of ocean bottom: H = 200 m.

• Computational domain: 15◦ ≤ ϕ ≤ 60◦, no boundaries in the zonal direc-
tion.

156



5 m 25 m

45 m 55 m

Figure 6.19: The velocities in the Ekman layer computed in the LSOMG model.

• Vertical resolution: 20 layers, each layer is 10 m thick.

• Vertical viscosity: AV = 0.05 m2/s.

The governing equations in the LSOMG model do not, however, fully correspond
to Eqs. 6.19 and 6.20. The momentum equation in the model contains the time
derivative, the model is not designed to compute the steady state directly. Con-
sequently, we run the model for 15 days to reach the (quasi) steady state. The
results are depicted in Fig. 6.19.

The computed velocity field is in accordance with the analytic solution (6.23)
and (6.24). In the surface layer (5 m deep), all velocity vectors are pointing in
the north-east direction. The velocity vectors rotate in the clockwise direction
with the increasing depth. The rotation of velocity vectors and their size do
not depend on the longitude, only on the latitude. The vectors rotate faster in
high latitudes than in low latitudes. The Ekman layer in high latitudes is thus
shallower than in low latitudes. The analytic formula (6.28) does predict this
behaviour. The Coriolis parameter f is proportional to the sine of latitude, 1/f
is thus smaller in high latitudes than in low latitudes and so also the Ekman layer
is shallower in high latitudes than in low latitudes.

The computed velocity vectors at ϕ = 45◦ are rotated by approximately 90◦

in 55 m depth. The Ekman layer should be twice as deep, which gives us 110 m.
The predicted thickness of the Ekman layer is, according to Eq. (6.28), De ≈ 98 m
at ϕ = 45◦ which corresponds to our estimate.

6.5 Numerical test of tracer advection
The purpose of this numerical test is to check the performance of advection
schemes that advect active tracers (temperature and salinity) in the LSOMG
model. We test both the horizontal and vertical advection.

157



6.5.1 Horizontal advection
The idea of the numerical test is simple. We disable the physically motivated
diffusive processes in the model. We prescribe a particular initial tracer field. We
then advect this tracer field with a constant zonal velocity. The tracer field should
be transported without any distortions or amplitude drops caused by inherent
deficiencies of the scheme such as the artificial diffusivity. The development of
artificial extrema is undesirable either. After one period, the actual tracer field
should be identical to the initial tracer field.

We test three advection schemes, the original QUICK scheme, the newly im-
plemented Lax-Wendroff scheme of Smith et al. [2010] (LW–Smith) and the Lax-
Wendroff scheme with the Superbee flux limiter (LW–Superbee) in the following
numerical setup:

• Initial tracer field: Gaussian bell and box in the zonal direction, see the
pink curve in Fig. 6.20. The field is constant in the meridional direction

• Resolution: 1◦

• Horizontal velocity: u = 1.1 cosϕ m/s, v = 0 m/s

• Vertical velocity: w = 0 m/s

• Time step: 1800 s

• Length of simulation: 420 days which corresponds to one period

Fig. 6.20 shows initial and advected tracer fields along the equator. The Gaus-
sian bell is advected without any significant deficiencies by all tested advection
schemes. A detailed inspection reveals that the LW–Superbee scheme tends to
make a box out of the Gaussian bell and the LW–Smith scheme somewhat dis-
torts the Gaussian bell and decreases its amplitude. The best performance shows
the original QUICK scheme which is probably due to the quadratic interpolation
used.

However, the situations is much different if we focus on the advection of a
simple box. The QUICK scheme fails in this test since it produces artificial
extrema with significant amplitudes, see the wiggles on the edges of the box. In
fact, this behaviour was expected. Gaussian bell represents smooth variations in
the tracer field while the box represents a sudden change. The QUICK scheme
does not contain flux limiters and the scheme is thus unable to model the box
correctly. The other two schemes are using flux limiters which make their results
much better. Neither the LW–Smith solution nor the LW–Superbee solution
shows the artificial extrema that are present in the QUICK solution. We consider
the performance of both schemes to be satisfactory for our purposes. The LW–
Superbee scheme seems to advect the box better than the LW–Smith scheme.
However, it is probably natural for the LW–Smith scheme to capture the box
since it has a tendency to create boxes out of smooth distributions as we have
seen in the advection of the Gaussian bell. We thus hesitate to call the LW–
Superbee scheme an overall winner and we consider the LW–Superbee and LW–
Smith schemes equally useful.
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Figure 6.20: Initial tracer field (pink) and tracer fields advected by the QUICK
scheme (black), the Lax-Wendroff scheme of Smith et al. [2010] (red) and the
Lax-Wendroff scheme with the Superbee flux limiter (green).

6.5.2 Vertical advection
The vertical-advection numerical test is very similar to the horizontal-advection
test. We again advect the initial tracer field with the constant velocity field. The
main difference is that the grid is equidistant in the horizontal-advection test
while it is non-equidistant in the vertical-advection test.

We test the QUICK scheme, the LW–Smith scheme, the Lax-Wendroff scheme
with the van Leer flux limiter (LW–vanLeer) and the Lax-Wendroff scheme with
the Koren flux limiter (LW–Koren) in the following model setup:

• Initial tracer field: Gaussian bell, see the left panel of Fig. 6.21

• Resolution: 22 layers

• Horizontal velocity: u = 0

• Vertical velocity: w = 2 × 10−3 m/s

• Time step: 1800 s

• Length of simulation: 10 days

The right panel of Fig. 6.21 shows the tracer field after the advection. The
overall picture is similar to the horizontal-advection numerical test. The QUICK
scheme does not contain flux limiters and so it creates artificial extrema. We
do not recommended to use the QUICK scheme. The other schemes use flux
limiters and consequently no artificial extrema are present in their solutions. The
performances of LW–Smith, LW–vanLeer and LW–Koren schemes are similar. We
prefer the LW–Smith scheme which seems to preserve the initial Gaussian bell
somewhat better. Nevertheless, it is more a personal preference than objectively
justified decision.
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Figure 6.21: Left panel: Vertical profile of the initial tracer field from the surface
down to 5500 m. Right panel: Vertical profiles of tracer fields advected by the
QUICK scheme (black), the Lax-Wendroff scheme with the van Leer flux limiter
(blue), the Lax-Wendroff scheme with the Koren flux limiter (yellow) and the
Lax-Wendroff scheme of Smith et al. [2010] (green).
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7. Realistic runs of the LSOMG
model

7.1 Tidal barotropic circulation
In order to validate the tidally driven circulation from the LSOMG-BT model,
we compared our results with a commonly used and respected tidal model. There
are quite a few tidal models available. We start with the assimilative models that
are constrained by data. Stammer et al. [2014] divided the assimilative models
into two groups: empirically adjusted hydrodynamic models and hydrodynamic
models constrained by assimilation. GOT4.8, OSU12, DTU10 and EOT11a are
representatives of the first group, while HAMTIDE, FES2014 and TPXO8 belong
to the second group. The methodologies used include empirical harmonic analysis
of satellite altimetry, response method or spectral ensemble optimal interpolation.
We refer the interested user to Stammer et al. [2014] for a discussion about the
numerical methods and a comparison of individual models.

There also exist purely hydrodynamic models that are not constrained by
data such as HIM, STORMTIDE or HYCOM. The models employ the IWD
and SAL parameterizations similar to the LSOMG-BT model. Except for these
two parameterizations, the modelling approaches differ. HIM is an isopycnal
OGCM but it is commonly used in a 2-D barotropic version in tidal studies. In
comparison, STORMTIDE and HYCOM models are 3-D baroclinic models. A
further aspect is the computational domain. The STORMTIDE and HYCOM are
global models while HIM is only quasi-global since it has the North-Pole cap from
82◦ N is entirely covered by land. Finally, it is the resolution. HIM has the lowest
resolution, 1/8◦, while HYCOM has the highest resolution, 1/12.5◦. The HYCOM
resolution is thus higher by a factor of approximately 1.5. The key differences
are summarized in Table 7.1. The modelling efforts with purely hydrodynamic
models are very appealing. Unfortunately, the accuracy of purely hydrodynamic
models is still significantly lower than the accuracy of constrained models. The
discrepancies can be one order of magnitude larger in the unconstrained models
than in the models constrained by data [Stammer et al., 2014].

In light of these facts, any assimilative model would probably be a good refer-
ence for us. We decided to take TPXO8-1 as the reference model. Nevertheless,
before we proceed to the validation of LSOMG-BT model results, we present a
quick check-up of TPXO8-1 model skills. We downloaded not only the TPXO8-1
model but also the DTU10, FES2012 and EOT11ag tidal models and used them
to compute the SSH on 1.1 2015 at 00:00:00. The results are depicted in Fig. 7.1.

Model BT/BC Vertical coordinate Domain Resolution
HIM BT none 86◦ S-82◦ N 1/8◦

STORMTIDE BC z global 1/10◦

HYCOM BC hybrid (ρ+ z) global 1/12.5◦

Table 7.1: Comparison of main characteristics of three hydrodynamic tidal mod-
els; BT=barotropic, BC=baroclinic.
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(a) (b)

(c) (d)

Figure 7.1: Tidal SSH [m] on 1.1 2015 at 00:00:00 according to TPXO8-1 (a),
DTU10 (b), FES2012 (c) and EOT11ag (d) tidal models.

Note that we used Matlab version of EOT11ag model. It is a light-weight version
of the EOT11ag model in which the tidal SSH is represented by spherical har-
monics. The Gibbs phenomenon is thus clearly visible in the EOT11ag SSH in
Fig. 7.1 (d). However, it is sufficient for a qualitative visual comparison with other
solutions. A brief comparison does not show much differences between TPXO8-1
and DTU10 solutions in panels (a) and (b) of Fig. 7.1, respectively . A more
thorough inspection reveals that tidal bulges are slightly shifted with respect to
each other. The EOT11ag solution in Fig. 7.1 (d) is qualitatively in excellent
agreement with the DTU10 solution and so it is also in a good agreement with
the TPXO8-1 solution. The most different solution is the FES2012 solution in
Fig. 7.1 (c). The phases of tides around Antarctica are shifted. For example, the
SSH is negative in FES2012 in the Weddell sea while the other three tidal models
predict positive SSH in this region. The tides in low and mid latitudes are in
much better agreement. Nevertheless, the discrepancies are present in Atlantic,
Pacific as well as Indian Oceans.

Our validation experiment is similar to the one performed by Buijsman et al.
[2015b]. We run the LSOMG-BT model for 19 days. The first 16 days serve as a
spin up. According to our experience, it is a sufficiently long period to spin up a
barotropic tidal model. The last three days are used to compare the SSHs from
the LSOMG-BT and TPXO8-1 models. In our comparison, we consider only grid
points where ocean is deeper than 1000 m. Additionally, the tides in high latitudes
are not considered. The presence of sea ice makes the prediction of high-latitude
tides complicated. Consequently, we restrict ourselves to −66◦ < ϕ < 66◦. Our
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Figure 7.2: RSS [m] from the barotropic LSOMG-BT model in the validation
experiment. Several model configuration are tested. The model is run with the
bottom-drag (BD), internal wave drag (IWD), self-attraction and loading (SAL),
nonlinear free surface (EF). Internal wave drag is applied if H > 1000 m (without
JSd100) or if H > 100 m (with JSd100).

metric is the so-called root-sum-square (RSS),

RSS =

√
⟨∫
S

(ηLSOMG − ηTPXO)2 dS

⟩
S

, (7.1)

where the bracket denotes the time averaging. We choose the sampling frequency
of tidal SSH to be 30 minutes and we average all samples stored during the last
three days of our experiment.

The LSOMG-BT model is run in the 0.25◦ resolution with the time step
∆t = 7.5 s. The coefficient of bottom friction is set to Cb = 2.5 × 10−3 and the
horizontal viscosity is equal to AH = 1.25 × 103 m2/s

The results of our experiment are depicted in Fig. 7.2. If only bottom drag is
included and no tidal parameterizations are used, the RSS is rather large, RSS =
32.62 cm. The inclusion of IWD or SAL improves the accuracy significantly which
is in agreement with the conclusions of other authors. The RSS reduces down
to 28.0 cm and 23.93 cm if we include IWD or SAL, respectively. Thus, the
parameterization of SAL affects the SSH more than the parameterization of IWD
in our experiment. Jayne and St. Laurent [2001] applied the IWD only in waters
deeper than 1000 m. We also used this setting but we also tried to relax this
condition to waters deeper than 100 m. Our results suggest that the condition
H > 100 m for the application of IWD is better than the condition H > 1000 m,
the RSS has improved from 17.55 cm to 13.32 cm. This finding is in agreement
with Arbic et al. [2004] but it is in disagreement with Buijsman et al. [2015b] who
strongly supported the condition H > 1000 m. Finally, the nonlinear free surface
outperforms linear free surface, although the improvement of RSS is only modest,
from 13.32 cm to 12.17 cm. However, it is expected that the improvement would
be larger if we focused on shallow regions.
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Figure 7.3: Sensitivity of RSS in the tidal validation experiment on the values of
IWD and SAL.

We further study sensitivity of the RSS to the strength of IWD and SAL.
We test three IWD setups: The default setup with L = 10 km, the setup with
IWD increased 1.5× which corresponds to L ≈ 6.67 km and the setup with IWD
increased 2× which corresponds to L = 5 km. And four values of βs coefficient in
the SAL parameterization: 0.09 (default value), 0.10, 0.11 and 0.12. In total, we
computed RSS for 12 setups. The results are depicted in Fig. 7.3. The computed
RSS indicates that increased IWD strength and larger βs are favourable. On the
other hand, βs = 0.12 is obviously too large value since the RSS increases for all
three IWD setups if βs is increased from βs = 0.11 to βs = 0.12. Similarly, 2×
increased IWD is too strong since the RSS computed with 1.5× increased IWD
is smaller for all tested values of βs, except for the default βs = 0.09 where it is
slightly larger. The best RSS = 10.67 cm is achieved with 1.5× increased IWD
and βs = 0.11. Similar but slightly larger RSS = 10.85 cm is achieved with 1.5×
increased IWD and βs = 0.10 and RSS = 10.90 cm is achieved with the default
IWD and βs = 0.11.

Einšpigel and Martinec [2016] conducted a similar but more detailed sensi-
tivity study. They compared the results of simulations with tide gauge data in
four regions: deep ocean, European shelf, other shallow-water regions and along
continental coastlines. They also tested broader ranges of coefficients in the IWD
and SAL parameterizations. They used two successive 1-D minimizations of RSS
in order to find the best configuration. They found optimal IWD strength for
βs = 0.10 and then they optimized βs using the optimal IWD strength from the
first step. In fact, Fig. 7.3 shows that this approach may fail to reach the best
setup with the minimum RSS. If we start with βs = 0.09 fixed, the best RSS
is achieved with 2× increased IWD. The second minimization leads to βs = 0.11
with RSS = 10.95 cm which is not the best RSS that can be achieved. Despite
that, Einšpigel and Martinec [2016] suggested to use 1.4× increased IWD and
βs = 0.10 which is in agreement with our results.

The RSS is a single number. On one hand it makes the comparison extremely
simple and effective, on the other hand it can also be misleading. We thus proceed
similarly as in Sec. 6.1 and inspect spatial patterns and time curves.
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We start with the spatial patterns. Fig. 7.4 (a) depicts the SSH computed
using the default IWD and SAL setup on 20.1. 2015 at 00:00:00. The other
panels show SSH differences for our tested setups except for the βs = 0.12 setups.
The best setup is depicted in panel (f), the other two recommendable setups are
shown in panels (c) and (e) of Fig. 7.4. The SSH differences caused by IWD and
SAL are of similar magnitude but their spatial pattern is different. The maximum
amplitudes of SSH differences are around 20 cm which is significant if we consider
that the maximum SSH amplitudes are around 1 m.

(a) η, IWD 1.0x, βs = 0.09 (b) ∆η, IWD 1.0x, βs = 0.10 (c) ∆η, IWD 1.0x, βs = 0.11

(d) ∆η, IWD 1.5x, βs = 0.09 (e) ∆η, IWD 1.5x, βs = 0.10 (f) ∆η, IWD 1.5x, βs = 0.11

(g) ∆η, IWD 2.0x, βs = 0.09 (h) ∆η, IWD 2.0x, βs = 0.10 (i) ∆η, IWD 2.0x, βs = 0.11

Figure 7.4: Panel (a) shows the tidal SSH [m] on 20.1. 2015 computed using the
default SAL (βs = 0.09 in Eq. (4.43)) and IWD (L=10 km in Eq. (4.45)). The
other panels show differences [m] between the SSH computed using other model
configurations and the SSH at panel (a).

The SSH time curves are shown in Fig. 7.6. In particular, we depict time
curves which correspond to the default (black curve), “increased IWD” (red),
“increased SAL” (green) and “best RSS” setups (blue) (the corresponding panels
in Fig. 7.4 are (a) , (c), (g) and (f), respectively). We consider 11 check points
which are located in Atlantic, Pacific and Indian Oceans, see Fig. 7.5. The effect
of both IWD and SAL is relatively small at points 2, 3, and 9. On the other
hand, the differences between the results from the default and modified setups
are significant at points 4 and 8 although the SSH amplitudes at these points
are smaller. The IWD has a form of linear drag, which could lead to the opinion
that IWD is simply damping the SSH amplitude without any phase shifts. It
may happen, see time curves at points 1, 7 and 10, but in the general behaviour
is more complicated. IWD damps the signal but it also introduces phase shifts
at points 4, 5 and 11. In fact, it may locally increase rather than decrease the
SSH amplitude, see points 6 and 8. These local effects are probably caused by
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the dependence of IWD on the ocean depth and coefficient Ciwd that are both
spatially varying quantities. It is also interesting that the effects of IWD and
SAL may partly counteract each other, see points 1, 3, 4 and 10.

Figure 7.5: Points where SSH time curves depicted in Fig. 7.6 are computed

To sum it up, the inclusion of IWD and SAL terms into the LSOMG-BT
model improved the agreement with the TPXO8-1 solution significantly; the RSS
has decreased to approximately one third of its starting value. Nevertheless,
neither RSS = 12.17 cm (default IWD and SAL setup) nor RSS = 10.67 cm
(best RSS; IWD increased 1.5×, βs = 0.11) are perfect results. However, it is a
standard performance of a barotropic tidal ocean model, see Arbic et al. [2004]
and Einšpigel and Martinec [2016]. The results could be improved if we allowed
L in the IWD parameterization to be spatially varying and found its optimal
values as it was done by Buijsman et al. [2015a]. The quality of simulation can
also be further improved using data assimilation [Einšpigel and Martinec, 2016].
We have not inspected these possibilities.
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(a) Point 1, (-150.125◦, 50.125◦) (b) Point 2, (-150.125◦, 25.125◦)

(c) Point 3, (-150.125◦, 0.125◦) (d) Point 4, (-150.125◦, -25.125◦)

(e) Point 5, (-150.125◦, -50.125◦) (f) Point 6, ( -35.125◦, 50.125◦)

(g) Point 7, ( -35.125◦, 25.125◦) (h) Point 8, ( -15.125◦, -25.125◦)

(i) Point 9, ( -15.125◦, -50.125◦) (j) Point 10, ( 75.125◦, -15.125◦)

(k) Point 11, ( 75.125◦, -40.125◦)

Figure 7.6: Tidal SSH from 18.1. 2015 to 19.1. 2015 computed using IWD 1.0x,
βs = 0.09 (black), IWD 2.0x, βs = 0.09 (red), IWD 1.0x, βs = 0.11 (green), IWD
1.5x, βs = 0.11 (blue) at points depicted in Fig. 7.5

167



7.2 Steady wind-driven barotropic circulation
We have shown in Sec. 7.1 that a hydrodynamic barotropic tidal model such as
LSOMG-BT needs additional parameterizations (SAL and IWD) and its accuracy
is limited. On the other hand, it is a light-weight tool in comparison to the full
baroclinic model and its accuracy could be sufficient for certain (geophysical)
applications such as the modelling of tidally-driven OIMF. If we consider these
facts, a barotropic model is not flawless but it is certainly a useful tool for the
modelling of tidal circulation. What about the wind-driven circulation? Could a
barotropic model perform equally well also with this type of circulation?

Certain limits are obvious. The circulation in the barotropic model is 2-
D. The model determines neither the vertical structure of the flow nor vertical
velocities. If these flow features are important for the particular application such
as the modelling of ocean-generated toroidal magnetic field, the barotropic model
is useless. Similarly, the barotropic model does not solve the evolution equations
for temperature and salinity which means that it can not be used to calculate the
heat transport in the ocean. Unfortunately, we will demonstrate that there are
also other drawbacks.

We follow Frisius et al. [2009] and perform barotropic simulations forced by
the annual-mean wind stress. Frisius et al. [2009] used the SOM model forced
by wind stresses of Hellerman and Rosenstein [1983], see Fig. 7.7 (a). We do not
have this data and therefore we use ERA-Interim data [Dee et al., 2011]. The
annual means of zonal and meridional wind velocities are not available in the
ERA-Interim archives. We compute the annual means by averaging the monthly
means from the year 2013, see Fig. 7.7 (b). We perform two experiments in
accordance with Frisius et al. [2009]. The experiments differ in the bathymetry
used. The bathymetry is realistic in the first experiment and there is a flat bottom
in depth of 5000 m in the second experiment. We run the simulations for 90 days
in accordance with Frisius et al. [2009]. We checked out that it is a sufficiently
long spin up. In fact, the spin-up could be shorter in the experiment with the
realistic bathymetry.

The results are depicted in Fig. 7.8. Panels (a,c,e) correspond to the experi-
ment with the realistic bathymetry, panels (b,d,f) correspond to the experiment
with the flat bathymetry. The LSOMG-BT results are depicted in panels (a-d),
the SOM results are depicted in panels (e,f). We test two viscosity values. The
smaller value AH = 2 × 104 m/s2 is used in panels (a,b) while one-order larger
value AH = 2×105 m/s2 is used in panels (c,d). The GECCO reanalysis is shown
in panel (g).

An important finding, which does not depend on the viscosity used and it is
in agreement with the SOM results, is that the barotropic modelling of the ACC
current is inaccurate. If the bathymetry is realistic, the ACC current virtually
disappears. In contrast, if the bathymetry is flat, the ACC current is about five
times stronger than it actually is. It is known that the baroclinic processes are
important for the ACC current [Olbers and Lettmann, 2007, Cunningham et al.,
2003]. The barotropic model does not contain baroclinic pressure gradients and
thus an important part of the ACC dynamics is missing in the barotropic model.

The absence of strong ACC current in the experiment with realistic bathymetry
affects currents in the Southern hemisphere. The stream functions of these cur-
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(a) Hellerman and Rosenstein [1983]

(b) ERA-Interim (c) CORE-II

Figure 7.7: Annual-mean wind stress from Hellerman and Rosenstein [1983] (a),
ERA-Interim (b) and CORE-II (c) databases.

rents computed in the LSOMG-BT and SOM models do not match the GECCO
stream functions. The situation is different in the Northern hemisphere where
the computed stream functions are in much better agreement with the GECCO
stream functions. The stream functions are similar in both experiments, but they
are notably smoother in the flat-bottom experiment. In fact, it seems that they
are overly smooth if we compare them with GECCO.

In terms of viscosity, the LSOMG-BT stream functions are smoother and the
flow is weaker if higher viscosity is used. The LSOMG-BT high-viscosity results
are in better agreement with the SOM results despite the fact that viscosity
AH = 2 × 105 m/s2 is rather large for a 1◦ model. However, the GECCO results
indicate that the low-viscosity setup is more correct.

The LSOMG-BT and SOM stream functions have similar shapes but the flow
is stronger in the SOM model. As already mentioned, the forcing is not identical
in both models. In order to assess the influence of a different forcing data set,
we repeat all LSOMG-BT simulations with the CORE-II forcing, see Fig. 7.7 (c).
The flow is noticeably more vigorous in the CORE-II simulations. We assess that
the transports are larger in the CORE-II simulations by 10-15 Sv than in the
ERA-Interim simulations.
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(a) LSOMG-BT, H real, AH = 2 × 104 m/s2 (b) LSOMG-BT, H const, AH = 2×104 m/s2

(c) LSOMG-BT, H real, AH = 2 × 105 m/s2 (d) LSOMG-BT, H const, AH = 2×105 m/s2

(e) SOM, H real (f) SOM, H const

(g) GECCO reanalysis

Figure 7.8: Barotropic stream function [Sv] from the wind-driven barotropic sim-
ulations from the LSOMG-BT (a-d) and SOM (e,f) models and the GECCO
reanalysis (g). Stream lines are depicted in 5 Sv intervals, negative stream lines
in panels (e-g) are dashed. Bathymetry used in simulations is either realistic
(a,c,e) or constant (b,d,f), H = 5000 m. The viscosity used in the LSOMG-BT
simulations is either AH = 2 × 104 m/s2 (a,b) or AH = 2 × 105 m/s2 (c,d). The
viscosity used in the SOM model is unknown.
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(a) LSOMG-BT, H real, AH = 2 × 104 m/s2 (b) LSOMG-BT, H const, AH = 2×104 m/s2

(c) LSOMG-BT, H real, AH = 2 × 105 m/s2 (d) LSOMG-BT, H const, AH = 2×105 m/s2

Figure 7.9: The same as panels (a-d) in Fig. 7.8 but the simulations are forced
by the CORE-II instead of ERA-Interim wind stresses.

7.3 Wind driven baroclinic circulation
In Sec. 7.2, we demonstrated that the barotropic model can reasonably model the
wind-driven driven gyres on the northern hemisphere but it completely fails to
model the ACC current which significantly affects the circulation on the southern
hemisphere. Consequently, we switch to the baroclinic LSOMG model in this
section. We shall inspect the model SSH, barotropic transports, barotropic stream
function and average temperature and salinity.

In all the presented simulations, we use the horizontal Smagorinsky viscosity
[Smagorinsky, 1963, 1993] with kH = 4 and UR = 4 in the minimum viscosity
based on the grid Reynolds number. The vertical viscosity is constant AV =
1 × 10−3 m2/s. The nonlinear bottom friction with Cb = 2.5 × 10−3 is used. The
depth-dependent horizontal (epineutral) and vertical (dianeutral) diffusivities are
set according to Eq. (5.64) and (5.57). We use the Lax-Wendroff scheme with
flux limiters according to Smith et al. [2010] for the advection of tracers. The
energy conserving scheme ENE [Madec, 2012] is used for the discretization of
the Coriolis term together with the divergence damping of the second-order with
Ad = 1.3×104. The convective adjustment scheme of Rahmstorf [1993] is applied.
The predictor-corrector time stepping scheme is used in the barotropic system.
We refer to previous sections for further details about the implemented numerical
schemes. The horizontal model resolution is 1◦ and we use either 11 or 22 layers
in the vertical (see Fig. 5.4). The model time step is 30 minutes for the baroclinic
system and 30 s for the barotropic system. The simulations are 21 years long.
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The first 20 years serve as a spin-up. The annual means are computed from the
last year of the simulation.

We start with the simulations from the 11-layer LSOMG model forced by cli-
matological ERA-Interim wind stresses and surface fluxes prescribed in the form
of strong 30-day relaxation towards the surface temperature and salinity. Despite
the simplified surface forcing and somewhat coarse resolution in the vertical, the
model can produce reasonable results.

Fig. 7.10 (a) shows the SSH computed in the LSOMG model. For comparison,
the SSHs from the ECCO and POP models are depicted in Fig. 7.10 (b) and
(c), respectively, and the SSH estimate of Maximenko et al. [2009] derived from
satellite and marine data is depicted in Fig. 7.10 (c). Note that the ECCO product
combines the 1◦ MITgcm model with the data to obtain the best SSH estimate.
The POP model used much higher horizontal resolution of 1◦ but it was a purely
hydrodynamic simulation as in our case.

(a) LSOMG (b) ECCO

(c) POP (d) measurements

Figure 7.10: SSHs [m] computed using the LSOMG (a), ECCO (b), and POP (c)
models and the SSH determined from satellite and marine data (d). Panel (b) is
taken from Wunsch [2011], panels (c,d) are taken from McClean et al. [2011].

Overall, the SSH from the LSOMG model matches the other solutions very
well. The SSH has its typical pattern with large-scale lobes in the ocean basins
especially in the Pacific Ocean. The SSH is positive in the Pacific and Indian
Oceans and negative in the ACC region and in the Atlantic sub-polar gyre. The
SSH in the Atlantic Ocean is both positive and negative and the SSH amplitudes
are slightly smaller than in the Atlantic and Pacific Oceans. In details, the SSH
from the LSOMG model displays certain deficiencies. If we compare it with the
ECCO product, the iso lines are too much inclined in the zonal direction in the
North Atlantic and the SSH is underdeveloped in the South Atlantic. Certain
distortion is present also in the North and South Pacific where the SSH lobes
should be more prolongated. Nevertheless, the SSH from the POP model also
displays deviations from the ECCO estimate and data-derived SSH of Maximenko
et al. [2009]. We thus consider the LSOMG result as satisfactory.
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We further inspect the vertically integrated currents. Fig. 7.11 (a) shows the
LSOMG velocity vertically integrated from the surface down to approximately
1000 m. The same quantity computed in the OMCT model is shown in Fig. 7.11
(b). The LSOMG model is in a good agreement with the OMCT model. Both
simulations show the ACC current, the equatorial currents and the boundary
currents in the ocean basins. The OMCT currents seems to be weaker than the
LSOMG currents. This is notable on the ACC current and the western-boundary
current in the South Atlantic which is pronounced in the LSOMG simulation it
is hardly visible in the OMCT simulation. We argue that the weaker flow in the
OMCT simulation could be caused by its resolution. The OMCT used 13 layers
in the vertical which is similar to the LSOMG simulation but the horizontal
resolution was only 1.875◦.

(a) LSOMG (b) OMCT

Figure 7.11: Vertically integrated velocity [103 m2/s] computed using the LSOMG
(a) and OMCT [Irrgang et al., 2016a] (b) models.

The comparison with the OMCT could lead us to conclusion that the flow in
the 11-layer LSOMG simulation with simplified forcing is overly strong. This not
true. We will show that it is weaker than it should be.

Fig. 7.12 shows barotropic stream functions from the MASNUM [Lei, 2014]
and CNRM-CM5.1 [Voldoire et al., 2013] models. The MASNUM model was
used in the ocean-only 0.5◦ configuration with 21 layers in the vertical. The
CNRM-CM5.1 is a coupled atmosphere-ocean model with the nominal horizontal
resolution of 1◦ which is refined in the tropics to 1/3◦ and 42 vertical levels.
The CNRM-CM5.1 is significantly smoother than the MASNUM stream function
which could be a consequence of a coarser resolution or some kind of smoothing
applied in the postprocessing. The MASNUM stream function looks more realistic
but the key features of the global ocean circulation are better depicted in the
CNRM-CM5.1 stream function.

Fig. 7.13 (a) depicts the barotropic stream function from the 11-layer LSOMG
simulation with the simplified forcing. The LSOMG stream function is compara-
ble with the MASNUM and CNRM-CM5.1 stream functions in terms of shape,
however, it is globally weaker. It is well pronounced in the ACC region, where
the MASNUM simulation is notably stronger. The ACC strength in this LSOMG
configuration and the CNRM-CM5.1 model are comparable but the ACC current
is underestimated in the CNRM-CM5.1 model [Voldoire et al., 2013].

In order to improve the simulation quality, we increase the vertical resolution
from 11 to 22 layers, see Fig. 7.13 (b). The ACC strength has increased by
approximately 10 Sv. The stream function has also increased in the North Pacific
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(a) MASNUM (b) CNRM-CM5.1

Figure 7.12: Barotropic stream functions [Sv] from the MASNUM [Lei, 2014] (a)
and CNRM-CM5.1 [Voldoire et al., 2013] (b) models.

(a) 11 layers, ERA simple forcing (b) 22 layers, ERA simple forcing

(c) 11 layers, ERA full forcing (d) 22 layers, ERA full forcing

Figure 7.13: Barotropic stream functions [Sv] from the LSOMG simulations
forced by ERA-Interim data.

but also decreased in the North Atlantic and in the Indian Ocean. Overall, the
stream function in the 22-layer simulation is not significantly better than in the
11-layer simulation.

In the next step, we improve the model forcing. We replace the simplified
forcing by the full forcing. The major improvement is that the full forcing con-
tains the proper heat fluxes computed using the bulk formulas (see Sec. 5.14.6).
Additionally, the full forcing varies more rapidly in time since it is represented
by daily values rather than monthly values in the simplified forcing. Fig. 7.13 (c)
depicts the barotropic stream function from the 11-layer simulation with the full
forcing. The improved forcing has a favourable impact on the stream function, all
gyres are stronger. The major change is the strengthening of the ACC current.
The stream-function maximum has increased from 126 Sv with the simplified
forcing to 182 Sv with the full forcing. If we further increase the vertical resolu-
tion to 22 layers, the stream-function maximum is virtually the same with 184 Sv
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but the ACC current has further strengthened in most regions, see Fig. 7.13 (d).
The stream function has also increased in the Pacific Ocean. This is favourable in
terms of comparison with the MASNUM, CNRM-CM5.1 and GECCO stream (see
Fig. 7.8 (g)) functions but also with the altimeter estimate of 42 Sv of Imawaki
et al. [2001]. The steam function in the Atlantic Ocean is well shaped but it
remains to be slightly underdeveloped. For example, the strength of the Florida
current should be around 30 Sv according to Schott et al. [1988].

We also test the sensitivity of presented stream functions on the particular
forcing data set. We replace the ERA-Interim forcing with the CORE-II forcing
and repeat the simulations. The corresponding stream functions are depicted in
Fig. 7.14 (a-d). The CORE-II stream functions in the simulations with the sim-
plified forcing in Fig. 7.14 (a,b) are stronger than the corresponding ERA-Interim
stream functions in Fig. 7.13 (a,b). The differences over 10 Sv are present in the
North Pacific and Indian Oceans. The stream-function maximum has increased
from 126 Sv to 155 Sv in the 11-layer simulations and from 134 Sv to 160 Sv in
the 22-layer simulations. This corresponds to the wind-driven barotropic simu-
lations presented in Sec. 7.2. However, in contrast to the ERA-Interim simula-
tions, the CORE-II simulations with the full forcing in Fig. 7.14 (c,d) are not
that much different to the CORE-II simulations with the simplified forcing. The
major differences are the strengthening of the ACC current. The CORE-II sim-
ulations with the full forcing match the corresponding ERA-Interim simulations
well. The ERA-Interim stream functions are in slightly better agreement with
the MASNUM, CNRM-CM5.1 and GECCO stream functions but the differences
are relatively small.

(e) 11 layers, CORE-II simple forcing (f) 22 layers, CORE-II simple forcing

(g) 11 layers, CORE-II full forcing (h) 22 layers, CORE-II full forcing

Figure 7.14: Barotropic stream functions [Sv] from the LSOMG simulations
forced by CORE-II data.

Finally, we inspect the globally averaged temperature and salinity in the pre-
sented simulations. Fig. 7.15 (a,c) show the globally averaged temperature in
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the ERA-Interim and CORE-II simulations, respectively. Fig. 7.15 (b,d) show
the globally averaged salinity in the ERA-Interim and CORE-II simulations, re-
spectively. In all panels, the red curves correspond to the simulations with the
simplified forcing and the blue curves correspond to the simulations with the full
forcing. The solid curves correspond to the 11-layer simulations and the dashed
curves correspond to the 22-layer simulations. Overall, there are certain trends
in the globally averaged fields. It is probably a model deficiency rather than a
real phenomenon. The global temperature is better conserved in the 22-layer
simulations than in the 11-layer simulations. Similarly, the simulations with the
full forcing conserve temperature better than the simulations with the simplified
forcing. The temperature increased by 0.42◦ and 0.52◦ in the 11-layer simulations
with the simplified ERA-Interim and CORE-II forcings, respectively. That is a
relatively large change. On the other hand, the temperature increased by 0.14◦

and 0.16◦ in the 22-layer simulations with the full ERA-Interim and CORE-II
forcings, respectively. A comparable drifts were present in the simulations from
the comparison study of Griffies et al. [2009]. The salinity trends are smaller than
the temperature trends which is in accordance with the simulations in Griffies
et al. [2009]. The figures are slightly misleading since there is a sharp decrease
in salinity at the beginning of each simulation. The decrease is larger in the
simulations with the simplified forcing. Consequently, the difference between the
final and initial salinity is actually smaller in simulations with simplified forcing.
It is almost zero in the ERA-Interim simulation and 0.003 PSU in the CORE-II
simulation. There is a decrease in salinity of about 0.025 PSU in both 22-layer
simulations with the full forcing. All values are acceptable.

(a) temperature, ERA forcing (b) salinity, ERA forcing

(c) temperature, CORE-II forcing (d) salinity, CORE-II forcing

Figure 7.15: Mean temperature and salinity. Results from the 11-layer (solid
curves) and 22-layer (dashed curves) simulations with the simplified (red curves)
or full (blue curves) forcing.
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7.4 Combined wind and tidally driven baroclinic
circulation

In this section, we present the results from the concurrent simulations of wind-
driven and tidal circulations. We start with the spatial patterns of SSHs and
barotropic transports from 1◦ and 0.25◦ baroclinic simulations and then we con-
tinue with the modeling of tidal dissipation in the 0.25◦ baroclinic model.

Our simulations are composed of two steps. In the first step, we run the
LSOMG model with the ERA-Interim climatological forcing for 20 years. The
first step serves as a spin up for the baroclinic model. In the second step, we apply
the tidal forcing and run the model for the next 20 days. Tides are included via
the linear tidal model with the full lunisolar tidal forcing and both IWD and
SAL parameterizations (in the default setup L = 10 km, βs = 0.09) that improve
the quality of tidal simulations, see Secs. 4.4 and 5.10. The simulation is much
shorter in the second step than in the first step since the tidal circulation needs
a much shorter spin up than the wind-driven circulation; 10 days are sufficient.

Panels (a,c) of Fig. 7.16 depict the wind-driven SSH at the beginning of com-
bined simulations in 1◦ and 0.25◦ configurations, respectively. Both SSH ampli-
tudes and SSH pattern are very similar in both solutions. Panels (b) and (d) of
Fig. 7.16 depict the SSHs after 20 days in 1◦ and 0.25◦ combined simulations,
respectively. The SSH pattern is still very similar in both solutions but the dif-
ferences are more apparent since the 1◦ is too coarse for the modelling of tides.

(a) 1◦, day 0 (b) 1◦, day 20

(c) 0.25◦, day 0 (d) 0.25◦, day 20

Figure 7.16: SSHs [m] in the combined 1◦ (a,b) and 0.25◦ (c,d) LSOMG simula-
tions. Panels (a,c) depict the pure wind-driven SSH at the beginning of combined
simulation. Panels (b,d) depict the combined SSH after 20 days of simulations.

The differences between the pure wind-driven and the combined simulations
are even more apparent in the barotropic transports, see the zonal barotropic
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transports in Fig. 7.17. Panels (a,b) and (c,d) correspond to the 1◦ and 0.25◦

simulations, respectively. The wind-driven transports at the beginning of the
combined simulation are depicted in panels (a,c), the combined transports after
20 days of simulation are shown in panels (b,d). The transports are much stronger
and their pattern is significantly altered in the presence of tides. At the same
time, the eddy-permitting 0.25◦ simulation is clearly distinguishable from the
eddy-parameterized 1◦ simulation due to the increased mesoscale activity.

(a) 1◦, day 0 (b) 1◦, day 20

(c) 0.25◦, day 0 (d) 0.25◦, day 20

Figure 7.17: Zonal barotropic transports [103 m2/s] in the combined 1◦ (a,b) and
0.25◦ (c,d) LSOMG simulations. Panels (a,c) depict the pure wind-driven SSH at
the beginning of simulation. Panels (b,d) depict the combined SSH after 20 days
of simulations.

The IWD parameterization is needed for a barotropic tidal model since the
process is missing there, see Secs. 4.4 and 7.1. In contrast, tidal forcing in the
baroclinic model generates the internal waves and their breaking on topography
drains energy from barotropic tides. We attempted to model the modification
of tidal SSH due to the tidal dissipation. We used the LSOMG model with the
0.25◦ horizontal resolution and 11 vertical layers. As it was noted in Sec. 5.10, the
present-day global high-resolution OGCMs resolve only the low baroclinic modes
in spite of using the resolution around 0.1◦. We expected to roughly cover the
first baroclinic mode in our simulations which means that we can hardly model
the entire effect. The purpose of our simulations is to prove the concept of energy
loss of barotropic tides in the baroclinic model via tidal dissipation rather than
the accurate modelling of internal tides.

Fig. 7.18 shows SSH time curves at the check points 1-5 from Fig. 7.5 in
the Pacific Ocean. The red curve is the tidal SSH from the barotropic LSOMG
model, the dashed red curve is the TPXO prediction, the blue curve is the total
SSH from the baroclinic LSOMG model and the black curve is the total baro-
clinic SSH minus the tidal barotropic SSH (blue curve minus red curve). If there
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was no interaction between the tidal and non-tidal flows, the black curve would
correspond to the non-tidal SSH. The black curve would be an almost straight
line since the non-tidal (wind-driven) SSH changes slowly. This is not the case
since there are wiggles on the black curve. The amplitudes of wiggles are small at
points 1, 2 and 4 but they are larger at point 5 and they are significant at point 2.
The wiggles and barotropic tides are in roughly opposite phases which means that
tidal amplitudes are reduced in the baroclinic simulation. We think that this is
a correct behaviour which corresponds to the concept of tidal dissipation.

(a) Point 1, (-150.125◦, 50.125◦) (b) Point 2, (-150.125◦, 25.125◦)

(c) Point 3, (-150.125◦, 0.125◦) (d) Point 4, (-150.125◦, -25.125◦)

(e) Point 5, (-150.125◦, -50.125◦)

Figure 7.18: Tidal SSH [m] computed with the barotropic LSOMG model (red)
and the TPXO7.2 model (dashed red) together with the SSH [m] computed with
the baroclinic LSOMG model forced by wind and tides (blue) at points 1-5 de-
picted in Fig. 7.5. The “non-tidal” signal (black) is the baroclinic signal minus
barotropic tides.
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8. Modelling of OIMF: Physical
approximations and numerical
issues
The following study is a result of cooperation with our colleagues from GFZ,
DIAS, Freie Universität Berlin and CIRES. We are concerned with modelling the
OIMF due to the wind- and buoyancy-driven ocean circulation. Originally, the
paper summarized our results of a benchmark study which compared the perfor-
mance of different magnetic induction solvers. However, the submitted paper was
rejected. One of major reviewers’ objections was insufficient diversity of partic-
ipating solvers. We thus modified our study and focused more on the methods
used rather than the comparison of solvers. In particular, we inspected how var-
ious commonly used approximations affect the accuracy of modelled OIMF. The
modified study was published as a paper [Šachl et al., 2019]. The tidally-driven
OIMF is considered separately in a companion paper of Veĺımský et al. [2018].

In [Šachl et al., 2019], we present the results from the UTSM solver that was
operated by the GFZ group. The performance of our UTSM solver is equal. It was
simply not meaningful to present the results from both solvers since the paper’s
focus has changed and it was not a benchmark study any longer. Similarly, we
used the ocean circulation calculated by the OMCT model that was operated by
the GFZ group. We could have used the LSOMG model instead. The decision
was made to prefer OMCT since the model has already been used for the OIMF
studies and so it is known in the community.

8.1 Introduction
Interest in OIMF has been raised by the pioneering works of Cox et al. [1970],
Sanford [1971], Sanford [1982] and Larsen and Sanford [1985]. The first at-
tempts to numerically model the OIMF were by Stephenson and Bryan [1992] and
Flosadóttir et al. [1997], who used ocean currents from the Geophysical Fluid Dy-
namics Laboratory (GFDL) ocean model, and Tyler et al. [1997], who used The
Ocean and isoPYCnal coordinates [OPYC, Oberhuber, 1993b,c] ocean currents.
Vivier et al. [2004] attempted quantifying the magnitude of the OIMF forced by
electric currents from the Océan PArallélisé [OPA, Madec et al., 1998], Hamburg
Ocean Primitive Equation [HOPE, Marsland et al., 2003] and Estimating the Cir-
culation and Climate of the Ocean [ECCO, Marshall et al., 1997] models at the
CHAMP satellite altitude of 400 km. Manoj et al. [2006] studied the magnetic
field induced by ocean electric currents from the ECCO and Ocean Circulation
and Climate Advanced Modelling project [OCCAM, Webb et al., 1998] models
both at the sea level and the Swarm lower satellite-pair altitude of 430 km. All
studies found a small (≈ 1 nT) signal at satellite height with the Antarctic Cir-
cumpolar Current (ACC) producing the largest signal because of its substantial
water transport (it is the largest ocean current on Earth) and proximity to the
geomagnetic pole.

The most consistent approach for calculating the OIMF is based on full 3-D
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electromagnetic (EM) modelling where electric conductivity and ocean electric
currents vary with lateral coordinates as well as with depth. However, the above
mentioned papers follow an alternative approach which relies on vertically inte-
grating the ocean electric conductivity and electric currents. The effect of both
quantities’ vertical stratification is thus lost. The ocean model is forced by fluxes
of momentum due to wind stress, heat, and fresh water [Large and Yeager, 2004,
2009]. All of these fluxes enter the ocean via its surface. The transport and dif-
fusive processes are then responsible for the distribution of surface fluxes into the
whole ocean volume. Consequently, ocean circulation is not 2-D, it has a complex
vertical structure. This is in contrast to tidal circulation which is predominantly
barotropic due to low variations of the tidal force in the vertical direction within
the ocean. Veĺımský et al. [2019] demonstrated the importance of the toroidal
magnetic field generated by vertically stratified flows, as well as the galvanic
coupling between the ocean and mantle.

A commonly used modelling simplification is the neglect of both EM self-
induction in the ocean and mutual induction with the underlying mantle. This
effect can be safely neglected when the horizontal spatial scale is much smaller
than the penetration depth. In the case of seasonal variations, the penetration
depth is in the range of thousands of kilometers, and hence, OIMF variations
on comparable scales will be affected. Additionally, global ocean circulation is a
nonlinear dynamic system with turbulent features such as eddies and jets. Self-
induction in the oceans will be important for the mesoscale induced OIMF (i.e.,
spatial scales below 10 km, and time scales from days to weeks), provided both the
ocean model and magnetic field model have sufficient spatio-temporal resolution
to resolve these features.

Practical motivation for our study comes from the ongoing geomagnetic field
measuring satellite mission, Swarm. Swarm has provided new knowledge about
Earth and its electromagnetic environment [Olsen et al., 2016], however, one of the
declared objectives of the mission – detecting magnetic signatures due to ocean
circulation [Friis-Christensen et al., 2006] – has not yet been achieved. Such an ac-
complishment is a challenging task. Firstly, the OIMF is rather small, up to 2 nT
at the satellite height, and it is overlaid by larger contributions (≈ 50, 000 nT)
from the main magnetic field and the magnetic fields of ionosphere and magne-
tosphere origin. Secondly, unlike the tidal magnetic signature, there is no single
dominant frequency for ocean circulation and the process is instead relatively
slow with a typical time scale of weeks. The ocean-induced magnetic field may
thus be erroneously attributed to the lithospheric field which is stationary in time
and has comparable magnitudes. Nonetheless, if the ocean-induced contribution
is one day reliably isolated from satellite magnetic data, such satellite measure-
ments could constrain ocean dynamics by coupling models of ocean circulation
and ocean-induced magnetic fields [Irrgang et al., 2017]. Accurate and efficient
forward (and inverse) modelling is necessary for this breakthrough.

This study aims to fill the gap in literature by inspecting the impact of gal-
vanic coupling using unimodal and bimodal solutions, vertical stratification of
ocean flow and electrical conductivity, self-induction and horizontal resolution
on the numerically predicted OIMF. The unimodal solution considers only the
poloidal magnetic field mode and there is no galvanic coupling between the ocean
and the underlying mantle. The bimodal solution contains both the toroidal
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and poloidal magnetic field modes. The toroidal magnetic mode is generated by
poloidal electric currents which galvanically couple the ocean with the mantle.

8.2 Modelling of OIMF
The OIMF B(r, t) obeys the quasi-static Maxwell equations supplemented by
Ohm’s law,

∇ · B = 0, (8.1)
∇ × B = µ0

(
j + jimp) , (8.2)

∇ × E = −∂B
∂t
, (8.3)

j = σE, (8.4)

where E(r, t) is the electric field, j(r, t) is the electric current density, jimp(r, t)
is the imposed electric current density, σ(r) is the electric conductivity, µ0 is the
permeability of vacuum, r is the radius vector and t is time.

Alternatively, we can combine Eqs. (8.2)-(8.4) into the second-order EM in-
duction equation for the OIMF,

∇ ×
( 1
σ

∇ × B
)

+ µ0
∂B
∂t

= µ0∇ × Eimp, (8.5)

where Eimp(r, t) is the imposed electric field that is linked to the imposed electric
current density through Ohm’s law.

Note that Eqs. (8.1), (8.2) and (8.5) implicitly assume that the main geo-
magnetic field BM(r, t) is a potential field and its temporal variations are much
slower than the temporal variations of the OIMF.

We compute the imposed electric field or electric currents from the ocean
velocity u(r, t) and the main geomagnetic field, following:

Eimp = jimp/σ = u × BM , (8.6)

where we assume that the main geomagnetic field is much stronger than the
OIMF.

In this paper, we use three EM induction solvers: the ElmgTD, X3DG and
UTSM. All of them were thoroughly tested; ElmgTD and X3DG took part in the
benchmark study of Kelbert et al. [2014], and were used to model OIMF in the
past [Manoj et al., 2006, Irrgang et al., 2016a, Veĺımský et al., 2019]. The main
characteristics of individual solvers are summarized in Table 8.1. Each solver
uses a different modelling technique – including different spatial discretizations
and different ways to propagate dependent variables in time. Additionally, each
solver was developed independently; the authors’ teams do not overlap. Thus, we
believe that our conclusions are not biased by choices specific to one particular
solver. In the following text we briefly describe the ElmgTD, X3DG and UTSM
solvers.
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ElmgTD X3DG UTSM
Physics full full UTSA

Ocean layer 3-D 3-D 2-D thin sheet
Sub-ocean layer cond/insul cond/insul insul

Domain time freq time
Lateral discretization SH PWC FD+SH
Radial discretization FE PWC -

Table 8.1: Quick comparison of the EM induction solvers used in the study. UTSA
= unimodal thin-sheet approximation of Tyler et al. [1997] and Vivier et al. [2004]
with insulating mantle and core, SH = spherical harmonics, FE = finite elements,
PWC = piece-wise constant representation, FD = finite differences.

8.2.1 ElmgTD solver
ElmgTD [Veĺımský and Martinec, 2005, Veĺımský, 2013] solves the EM induction
equation (8.5) using a time-domain, spherical harmonic-finite element approach.

The recent version of ElmgTD employs the Crank-Nicolson time integration
scheme, enforces the divergence-free condition on the magnetic field by means of
Lagrange-multiplier constraint [Martinec, 1999], and allows for the presence of in-
ternal forcing as specified by the right-hand side of equation (8.5). The magnetic
field is parameterized by vector spherical harmonic functions in the angular direc-
tions. This approach inherently separates the poloidal and toroidal magnetic field
modes, and thus can include or suppress energy exchange between the two modes
through lateral conductivity variations, as needed. The disadvantage of spherical
harmonic functions is that they are susceptible to the Gibbs phenomenon if the
expanded function contains discontinuities. The high contrast of electrical con-
ductivity between oceans and continents may thus cause ringing in the computed
OIMF. The spatial extension of ringing can be reduced by increasing the spatial
resolution. The solver can also solve the stationary problem by simply setting the
reciprocal time step to zero. 3-D functions are used for the electrical conductivity
and the internal forcing. The 2-D approach can be simulated by specifying a layer
of small but finite thickness. However, full 3-D spatial operators are preserved
even in this case.

Both ocean velocities and electrical conductivity values are located at the
same grid points. For fast and accurate transformations between the spatial and
spherical-harmonic domains, we utilize Gauss-Legendre quadrature nodes in co-
latitude; however, this can introduce small differences due to grid interpolation.
The numerical resolution of the method is controlled by the choice of spherical
harmonic truncation degree jmax and the number of layers. The implicit formula-
tion in time leads to a large, block-tridiagonal matrix that needs to be solved at
each time step. For lateral resolution up to jmax ≈ 80 a direct solver based on the
factorization of individual blocks is employed. For larger resolutions, the memory
requirements do not allow storage of the full matrix, and an iterative matrix-free
solver must be used in each time step employing a sparse preconditioner based
on an a-priori 1-D conductivity model.
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8.2.2 X3DG solver
X3DG [Kuvshinov, 2008] solves the Maxwell equations (8.1)-(8.3) in the frequency
domain using the integral equation (IE) approach. Within this approach, the
electric/magnetic fields are expressed as a sum of electric/magnetic fields within
a background media that has 1-D conductivity and the volume integral of the
conductivity anomaly with respect to the background media multiplied by the
Green’s tensor and the electric field. This system of integral equations is solved
iteratively. The construction and calculation of Green’s tensors are discussed in
detail in Kuvshinov and Semenov [2012]. Note that the actual implementation of
the IE approach in X3DG is based on the so-called contracting integral equation
[CIE, Pankratov et al., 1995, Singer, 1995]. The advantage of using the CIE
is that the condition number of the CIE system matrix depends only on the
square root of maximum lateral conductivity contrast in the model [Pankratov
and Kuvshinov, 2016], and thus does not require preconditioning the matrix.

The X3DG solver computes frequency-domain electric and magnetic fields in
spherical Earth models that have 3-D electrical conductivity distribution. Alter-
natively, infinitesimal sheets with prescribed 2-D conductance can also be used,
leading to reduced dimensionality of the corresponding Green tensors. The model
allows for excitation in the form of spatially distributed extraneous electric cur-
rents either above or within the Earth. The fields can be computed at any point
of physical space. The excitation electric current’s frequency can be small but
must be non-zero. The stationary regime is mimicked with a sufficiently small
frequency; in this study, we use 10−6 years−1. The solver can account for complex-
valued (i.e., for modeling displacement currents and polarization effects), and
tensor-valued (i.e., for modeling the effect of anisotropy) electrical conductivities.
The X3DG solution contains both the poloidal and the toroidal modes but their
separation is not as straightforward as in ElmgTD.

All electromagnetic fields and 3-D electric conductivity distributions are pa-
rameterized within X3DG by piece-wise constant functions in both the angular
and radial directions. The grid is assumed to be longitudinally equidistant. Ocean
velocities and electrical conductivity values are located at the same grid points.
X3DG’s computational load (i.e., memory and time of execution) depends linearly
on the longitudinal dimension, and quadratically on the latitudinal dimension and
on the number of 3-D layers in the model.

8.2.3 UTSM solver
The UTSM solver is based on the unimodal thin-sheet approximation of Tyler
et al. [1997] and Vivier et al. [2004]. In this approximation, the 3-D EM induction
equation is simplified. The self-induction term is neglected and the equations are
vertically integrated. The 3-D problem is thus reduced into a 2-D problem for a
thin sheet. Moreover the thin sheet is assumed to be surrounded by an insulator
on the top and bottom, i.e., both outer space and also the Earth’s mantle and
core are treated as insulators.

Technically, the 3-D EM induction equation is replaced by the simplified 2-D
equation for the stream function Ψ(ϑ, λ, t) at colatitude ϑ, longitude λ and time
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t,
1
a2 ∇Ω ·

( 1
Σ∇ΩΨ

)
= −

[
∇ ×

(
Jimp

Σ

)]
· er, (8.7)

where a is the Earth’s radius, ∇Ω is the angular part of the nabla operator, er
is the unit radius vector, Σ(ϑ, λ) is the vertically integrated conductivity and
Jimp(ϑ, λ, t) is the vertically integrated imposed electric current density,

Σ(ϑ, λ) =
η(ϑ,λ)∫
−D

σ(r)dr, (8.8)

Jimp(ϑ, λ) =
η(ϑ,λ)∫
−D

jimp(r, t)dr, (8.9)

in which η(ϑ, λ) is the sea surface height and D is the thickness of the ocean
layer. Notice that the radial diffusion term is missing in the stream-function
equation. The term on the left-hand side of Eq. (8.7) resembles the first term
on the left-hand side of Eq. (8.5). However, the term in Eq. (8.5) contains 3-D
spatial operators while the operators in Eq. (8.7) are only 2-D.

Equation (8.7) is discretized by the finite-difference method on a C-grid [Arakawa
and Lamb, 1977] and its solution is expanded into spherical harmonics. The
spherical-harmonic coefficients of Ψ are converted to the internal-field coefficients
of the magnetic field using a simple scaling relation.

8.3 Modelling framework
We consider four test cases labeled A-D. We describe our electrical conductivity
and ocean circulation models first, discuss how forcing is applied to our EM
induction solvers, and finally present the considered test cases.

8.3.1 Conductivity model
We consider the 3-D conductivity, σ, from the sea surface down to the bottom of
the ocean layer. Conductivity is determined using the bathymetry H(ϑ, λ),

σ(r, ϑ, λ) =
{
σocean for r ≥ a−H(ϑ, λ),
σcrust for a−D ≤ r < a−H(ϑ, λ), (8.10)

where σocean and σcrust are the nominal conductivities of sea water and crust. In
this study, we use the values,

σocean = 3.2 S/m, a = 6371 km, (8.11)
σcrust = 10−3 S/m, h = 6 km. (8.12)

The bathymetry is reused from the ocean circulation model OMCT, as intro-
duced below. This simplified conductivity model is easy to implement in all used
approaches, and preserves the dominant effect of laterally varying bathymetry.
Note that Veĺımský et al. [2019] used a salinity and temperature-dependent con-
ductivity with the ElmgTD solver, and the implementation of the recent WOA
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Figure 8.1: 1-D electrical conductivity profile from the Earth’s surface down to
the core-mantle boundary (2880 km depth) based on the study by Grayver et al.
[2017].

conductivity from collocated measurements [Tyler et al., 2017] is underway for
future studies. In Case A, we consider both the mantle and the core to be perfect
insulators. In the other cases, the mantle conductivity is given by a 1-D profile
from Grayver et al. [2017], and the core is considered to be highly conductive
(104 S/m). The mantle conductivity profile is shown in Fig. 8.1.

8.3.2 Ocean circulation model
We simulate the general ocean circulation using the Ocean Model for Circulation
and Tides [OMCT, Thomas et al., 2001]. This model depicts the major ocean
currents [Dobslaw et al., 2013], and has already been used for several studies on
EM induction in the ocean [Irrgang et al., 2016a,b, Saynisch et al., 2016]. The
corresponding ocean velocities u build the source for ocean circulation’s electric
currents and the motional induction.

The OMCT is a baroclinic general ocean circulation model that incorporates
non-linear balance equations for momentum, conservation equations for heat and
salinity, and the continuity equation. The hydrostatic and the Boussinesq ap-
proximations are applied. Artificial mass changes due to the Boussinesq approx-
imation are corrected as proposed by Greatbatch [1994].

We use the configuration in which OMCT is set up on a C-grid [Arakawa and
Lamb, 1977] with a horizontal resolution of 1◦, 20 layers in the vertical, and a
time step of 20 minutes [Dobslaw et al., 2013]. Ocean tides are not considered.
OMCT’s bathymetry is based on ETOPO1 [Amante, 2009] with local adjustments
to keep the natural bathymetric current barriers. We force the ocean model
with 3-hourly reanalysis products from the European Centre for Medium-Range
Weather Forecasts [ECMWF, Dee et al., 2011], which encompass wind stress,
precipitation, evaporation, and surface pressure. As an example, we show the
OMCT barotropic transports on 2007/01/01 in Fig. 8.2.
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Figure 8.2: Zonal (left) and meridional (right) components of barotropic trans-
ports [103 m2/s] on 2007/01/01 from the OMCT model. Zonal and meridional
components are positive eastwards and northwards, respectively.

8.3.3 Forcing
We compute the forcing using the OMCT velocities u and the 12th generation of
the International Geomagnetic Reference Field [IGRF–12, Thébault et al., 2015]
BM . OMCT velocities are bilinearly interpolated from the staggered Arakawa C-
grid to the grids required respectively by ElmgTD and X3DG. Since the velocity
field is primarily large scale, this interpolation is not critical for our study. The
UTSM solver is build on the same grid as OMCT and thus no interpolation is
needed.

The OMCT velocities are provided in 20 layers using partial bottom cells.
This method allows the thickness of bottom grid cells to differ from the respective
global layer thickness which leads to better representation of bathymetry. For EM
induction modelling, we reduce the vertical resolution by merging the OMCT
layers into a single layer in Cases A-B, and into five layers in Cases C-D. We use
a thickness-weighted averaging scheme that preserves the total transports.

For stationary Cases A-C, we prescribe the forcing using the OMCT velocities
on 2007/01/01. For Case D, we use a time series of forcing spanning the years
2004-2007, with a temporal discretization step of one day. The first three years
are a spin-up period to suppress the transient effect of initial conditions on the
time-domain ElmgTD. Based on our experience, the spin-up is sufficiently long
if initial conditions are taken in the form of the static solution.

8.3.4 Test cases
Our study’s four test cases are summarized in Table 8.2. Complexity increases
from Case A to Case D. In the simplest Case A, the underlying mantle is treated
as a perfect insulator and the ocean has no vertical structure. In ElmgTD and
X3DG, we use a single oceanic layer of finite thickness. The UTSM solver uses
the equivalent thin-sheet setup. The test case is stationary and calculates a single
snapshot corresponding to 2007/01/01. The solution is also unimodal, containing
only the poloidal magnetic field.

In Case B, we include the 1-D mantle conductivity model and consider a
bimodal solution, the toroidal magnetic field is included. Thus, the ocean and
mantle are galvanically coupled through vertical electric currents. The UTSM
is not used anymore, as the physical model is beyond its approximation. The
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A B C D
Mantle + core insulator 1-D 1-D 1-D

Galvanic coupling no yes yes yes
Ocean layers 1 1 5 5
Self-induction no no no yes

EM solvers used ElmgTD, ElmgTD, ElmgTD, ElmgTD
X3DG, X3DG X3DG
UTSM

Table 8.2: Test cases considered in the study.

inclusion of galvanic coupling is very cheap for both the ElmgTD and X3DG
solvers. The additional cost results in extension of runtime by a few percents.

In Case C, we add the vertical stratification of imposed currents and ocean
conductivity, using five layers with lower boundaries at depths of 87.5 m, 187.5 m,
500 m, 1700 m and 6000 m. Runtimes of both the X3DG and ElmgTD solvers
scale up from approximately one hour for Cases A and B to about one day for
Case C.

Finally, Case D implements self-induction and we calculate the full time series
throughout the year 2007. X3DG could theoretically solve this case by using a
Fourier-transformed excitation in the frequency domain, but this is beyond the
scope of our study since the OIMF’s spectrum is wide ranged and the X3DG
computation would be expensive. Given the cross validation of ElmgTD and
X3DG on the static cases, we find it sufficient to use only ElmgTD to evaluate
the effect of self-induction.

Our EM solvers are based on different numerical techniques and thus the
resolution used is not exactly the same. We use 1◦ resolution in X3DG and UTSM.
In ElmgTD, we set up the maximum spherical-harmonic degree to jmax = 480
in Cases A-C in order to minimize the effect of ringing. In Case D, the solution
evolves in time which forced us to decrease the resolution to jmax = 80 in order
to enable the use of the ElmgTD direct solver.

8.3.5 Comparison methods
We assess the performance of individual solutions by three methods. The first one
is comparing the X, Y and Z components of the OIMF at the Earth’s surface and
at the depth of 6 km. The purpose is to visually inspect the key spatial features
of the OIMF.

The second method is to compare the power spectrum of OIMF, computed
according to eq. (21) in Maus [2008]. We calculate the power spectra at the
Earth’s surface and at a typical satellite altitude of 400 km.

Finally, for Case D we inspect the time evolution of power Pj on the first four
spherical-harmonic degrees.
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ElmgTD, X ElmgTD, Y ElmgTD, Z

X3DG, X X3DG, Y X3DG, Z

UTSM, X UTSM, Y UTSM, Z

Figure 8.3: Comparison of ElmgTD, X3DG, and UTSM solvers. The X, Y and
Z components of the ocean-induced magnetic fields [nT] in Case A at the Earth’s
surface on 2007/01/01 computed using the ElmgTD, X3DG, and UTSM solvers.

8.4 Results

8.4.1 Case A
We depict the computed OIMFs at the Earth’s surface in Fig. 8.3. Regardless of
the solver used, the largest amplitudes of the OIMF are located in the region of
the Antarctic Circumpolar Current (ACC), which agrees with other studies [e.g.
Manoj et al., 2006]. The Z component is somewhat stronger than the X and Y
components, although it does not dominate the other two. The minimum values of
theX, Y , and Z components in the ElmgTD solution are −2.14 nT, −4.13 nT and
−5.87 nT, respectively. The maximum values of the X, Y , and Z components in
the ElmgTD solution are 2.68 nT, 2.28 nT and 4.56 nT, respectively. Considering
the structure of the OIMF, the Y component is the most complex. Its minima
and maxima frequently alternate, especially in the ACC region of the Indian
Ocean between Africa and Australia. The Z component is less complicated; it is
predominantly positive in the Indian Ocean and predominantly negative in the
South Pacific.

There is a good agreement between the ElmgTD and X3DG solutions. The
large-scale patterns agree well, however, some discrepancies exist in the smaller
scale structures. In accordance, the power spectra depicted in Fig. 8.4 match for
the lower degrees but disagree for the higher degrees. The level of discrepancy also
depends on the lateral resolution since ElmgTD and X3DG solvers have different
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Figure 8.4: Power spectra of ocean-induced magnetic fields at the Earth’s surface
and at satellite height (400 km altitude) computed using the ElmgTD, X3DG,
and UTSM solvers in Case A.

sensitivity to the resolution. If we decrease the lateral resolution from 1◦ to 2◦

in X3DG and from jmax = 480 to jmax = 80 in ElmgTD, the ElmgTD power
spectrum slightly changes but the X3DG power spectrum drops significantly –
only the lowest degrees are minimally unaffected (see Fig. 8.5). We attribute the
discrepancies and the varying sensitivity to the different numerical methods used.
The CIE method used in the X3DG solver allows for a more local representation of
the magnetic field than does the spherical harmonics used in the ElmgTD solver.
However, the spherical harmonics’ behavior is not necessarily a disadvantage as
long as the main modelling task is to compute the global solution with its large-
scale features. Spherical harmonics are well suited for global studies but if fine-
scale features are of paramount importance, the X3DG solver would be the better
choice.

The UTSM solution agrees qualitatively with the ElmgTD and X3DG solu-
tions. Nonetheless, a more detailed inspection reveals differences in the spatial
patterns of its OIMF: its amplitudes are larger and the UTSM spectrum (shown
in Fig. 8.4) is above the ElmgTD and X3DG spectra for all the considered de-
grees. These differences are likely due to the unimodal thin-sheet approximation’s
assumption that each of the OIMF’s X and Y components have equal magnitude,
but opposite sign, just above and below the thin ocean layer. This assumption is
correct for an infinitely thin sheet surrounded by an insulator, but it is incorrect
for a thin spherical shell. One can show that the spherical harmonic coefficients
of the horizontal magnetic field in the insulators just above and under the thin
spherical shell are related by a −j/(j + 1) ratio. Hence, substantial errors are
introduced for the large scale magnetic fields, while the small-scale features are
well represented by the UTSM. Currently, this problem can be addressed by an
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Figure 8.5: Effect of lateral resolution. Power spectra of ocean-induced magnetic
fields at the Earth’s surface in Case A computed with the ElmgTD solver using
jmax = 80 and jmax = 480 and X3DG solver using 1◦ and 2◦ lateral resolutions.

improved method, such as that given in eq. (2.42) of Tyler et al. [2017].
In order to complete our analysis of Case A, we depict the power spectra and

spatial patterns of the OIMF at the satellite level in Figs. 8.4 and 8.6, respectively.
The OIMF in the atmosphere decreases with r according to r−(j+2) and the power
for degree j decreases as r−(2j+4). Thus, short wavelengths are damped more
rapidly than long wavelengths. Consequently, the spectrum of OIMF at satellite
altitude decays faster and its spatial patterns are much smoother than spatial
patterns computed at the Earth’s surface (compare Figs. 8.3 and 8.6).

In the remaining test cases, we only discuss the OIMF computed by the
ElmgTD solver. Nonetheless, we still compare the ElmgTD and X3DG spec-
tra to ensure that both solvers respond similarly.

X Y Z

Figure 8.6: The X, Y , and Z components of the ocean-induced magnetic field
[nT] in Case A computed using the ElmgTD solver at satellite height (400 km
altitude).
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Figure 8.7: Power spectra of the ocean-induced magnetic fields computed using
the ElmgTD solver (solid line) and the X3DG solver (dashed line) in Cases A-C
at the Earth’s surface.

8.4.2 Case B
Figure 8.8 depicts the differences between Case B’s and Case A’s OIMFs computed
at the Earth’s surface using the ElmgTD solver. There are significant changes
in the OIMF due to the added effect of galvanic coupling. Although the toroidal
mode’s amplitude is equal to zero at the Earth’s surface, it is nonzero inside
the Earth [Veĺımský et al., 2019] and there is coupling between the toroidal and
poloidal field components. The toroidal mode is converted to the poloidal mode
by the lateral electrical conductivity variations. Consequently, the toroidal mode
affects the poloidal mode at the Earth’s surface even though the toroidal mode
itself has zero amplitude there.

Based on Figure 8.8, the OIMF in Case B is stronger in some regions than the
OIMF in Case A, but the opposite is the case in other regions. The power spectra
(compared in Fig. 8.7) are more instructive. Indeed, Case B’s OIMF has less
power for degrees higher than five, but it has more power for degrees one to five.
Degree one is especially stronger; its power has increased from 1.8 ×10−2 (nT)2

to 1.1 ×10−1 (nT)2. The shift of the power spectra is consistent in both ElmgTD
and X3DG solutions (compare the full and dashed red lines with the full and
dashed blue lines in Fig. 8.7). A similar power spectra shift was theoretically
predicted by Tyler [2017] and reported by Veĺımský et al. [2018] for the magnetic
field driven by ocean tides. These studies predicted the critical cross-over degree
would be six rather than five.

Figure 8.9 shows the differences between OIMFs from the same cases as in
Fig. 8.8 but at the bottom of the surface layer (i.e., 6 km deep) rather than at
the Earth’s surface. The sensitivity of individual OIMF components to galvanic
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XB − XA YB − YA ZB − ZA

XC − XB YC − YB ZC − ZB

Figure 8.8: Effect of galvanic coupling (Case B) and vertical stratification (Case
C) on the OIMF at the Earth’s surface. The top row shows the differences [nT]
between Cases B and A in the X, Y , and Z components of the ocean-induced
magnetic fields computed using the ElmgTD solver. The bottom row shows the
differences between the OIMFs in Cases C and B.

coupling differs – the Z component is the least sensitive, whereas the Y component
is the most sensitive. Indeed, the Y component’s amplitudes have significantly
increased due to the toroidal mode; the Y component plot’s color scale maximum
value is now 10x larger. Besides changing the magnitude of the Y component,
the spatial pattern has also changed. At this depth, Case B’s Y component is
positive for the entire ACC region – Case A’s spatially alternating positive and
negative amplitude regions are no longer visible.

8.4.3 Case C
The vertical stratification of flow and conductivity has much less impact on the
OIMF than the inclusion of galvanic coupling. Case B’s and Case C’s power spec-
tra are virtually identical for both ElmgTD and X3DG solutions (see Fig. 8.7).
In fact, the effect of vertical stratification is negligible for most of the globe,
however, there are certain regions where vertical stratification matters – for ex-
ample, coastal areas around New Zealand, north of the Bahama islands, and
south of Japan, see Figs 8.8 and 8.9. These areas have differences in the surface
Z component up to 1.1 nT. Thus, for comparing modelled OIMF to measurement
from coastal stations, using the full 3-D approach should provide a more accurate
comparison.

8.4.4 Case D
Figure 8.10 shows the effect of self-induction on the spectral power of low degrees
(1-4). The red curve represents the time evolution of spectral power computed
without the self-induction term (which corresponds to Case C’s configuration),
while the blue curve represents the time evolution of spectral power with the
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XB − XA YB − YA ZB − ZA

XC − XB YC − YB ZC − ZB

Figure 8.9: Effect of galvanic coupling (Case B) and vertical stratification (Case
C) on the OIMF at 6 km depth. The top row shows the differences [nT] between
Cases B and A in the X, Y , and Z components of the ocean-induced magnetic
fields computed using the ElmgTD solver. The bottom row shows the differences
between OIMFs in Cases C and B.

self-induction term included. The red curve is obviously oscillating more rapidly
than the blue curve. The difference between the two spectra is largest for the
lowest degree j = 1; the difference is much weaker for j = 4 and it further dimin-
ishes for higher degrees (not shown). Otherwise the mean evolution trajectories
of both solutions are similar, suggesting that the self-induction term damps the
solution’s fast temporal oscillations, smoothing the time evolution. Addition-
ally, the solution computed without the self-induction term follows the forcing
instantly, while the solution that contains the self-induction term is delayed in
time. Cross-correlating the spherical harmonic coefficients from the two solutions,
we determined that the time delay is not the same for all coefficients. Coefficients
(j = 1,m = −1), (2,−2), (2, 2), (3,−3), (3, 0), (3, 1) and (5,−3) show the largest
delay of 5 hours. The general tendency is that the delay decreases with the in-
creasing spherical harmonic coefficient degree, e.g., the largest delay among the
j = 10 coefficients is 2 hours.

The error caused by the neglection of the self-induction term is evidently
time-dependent. We compare the OIMFs computed with and without the self-
induction term for time t=1 day and t=128 days. The latter time instant cor-
responds to the largest difference in spectral power on degree one, i.e., ∆P1 =
|(P1)D − (P1)C | = 4.5 × 10−3 (nT)2. Figure 8.11 shows the OIMF differences
between the Case D and Case C solutions both using jmax = 80. Their spatial
pattern is predominantly large-scale which corresponds to the above mentioned
fact that the spectral powers most differ for the lowest degrees. The amplitudes
of the differences do not exceed 10 % of the signal strengths and there are no
specific regions in which the differences are more pronounced.
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j=1 j=2

j=3 j=4

Figure 8.10: Effect of self-induction on the OIMF power spectrum. Time evo-
lution of the ocean-induced magnetic field’s power spectra computed using the
ElmgTD solver with (blue) and without (red) self-induction throughout the year
2007.

XD − XC , 2007/01/01 YD − YC , 2007/01/01 ZD − ZC , 2007/01/01

XD − XC , 2007/05/08 YD − YC , 2007/05/08 ZD − ZC , 2007/05/08

Figure 8.11: Effect of self-induction on the OIMF at the Earth’s surface. Dif-
ferences [nT] between the ocean-induced magnetic fields at the Earth’s surface
computed using the ElmgTD solver with (Case D) and without (Case C) self-
induction on 2007/01/01 and 2007/05/08.
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Conclusion
This thesis combines two different scientific fields: the oceanography and mag-
netohydrodynamics. The first one was a real challenge for us. The numerical
modelling of ocean circulation is a well established in many seaside countries
around the world. There exist whole oceanographic centers around the world: Al-
fred Wegener Institute (AWI) in Bremerhaven in Germany, GEOMAR Helmholtz
Centre for Ocean Research Kiel in Germany, European Centre for Medium Range
Weather Forecasts (ECMWF) in Reading in UK, National Oceanography Centre
Southampton (NOCS) in UK, Laboratoire d’Océanographie et du Climate (LO-
CEAN) in Paris in France, Laboratoire de Physique des Océans (LPO) in Brest in
France and Royal Netherlands Institute of Sea Research (NIOZ) in Netherlands
are several examples of European centres. There is no such center in the Czech
Republic and there is no senior scientist working in oceanography either. Of
course, not every oceanographer works in physical oceanography; many oceanog-
raphers perform measurements or they work in different branches of oceanogra-
phy such as marine biogeochemistry or marine ecology. Additionally, according
to our experience, the majority of ocean modellers simply use OGCMs as tools to
study certain physical processes in the ocean rather than actively develop these
models. Nevertheless, OGCMs remain to be results of colaborative work of re-
search teams rather than individuals (which is more common in geophysics), see
the coauthors listed in the manuals of NEMO [Madec, 2012], POP [Smith et al.,
2010] or MITgcm [Adcroft et al., 2014] models. It is complicated if not impossible
to compete these scientific teams and their OGCMs. Despite that, we have devel-
oped our OGCM rather than used an already existing one. We call it LSOMG.
The LSOMG model is not revolutionary, it is a z-coordinate baroclinic model
based on Boussinesq and hydrostatic approximations, but it is a decent work
horse for the modelling of OIMF, which is the second part of this PhD. More-
over, the possibility to build the model from scratch was a valuable experience.
It was a chance for us to study the numerical cores of state-of-art OGCMs and
also to implement the numerical schemes on our own rather than take the model
as a black box. The truth is that we have learned a lot during the development
of LSOMG.

Part I of the thesis serves as an introduction for a reader who is new to the
topic. Parts II and III refer to the project itself. Part II describes the LSOMG
model. It is not a manual since we neither explain parameters in the control
module and CPP switches in the shell scripts nor give examples how to run the
model. It is meant to be a detailed description of the LSOMG numerical core. We
build the model according to our requirements specified in Sec. 3.1. The base for
the LSOMG model was the LSG model but they have almost nothing in common
at present, see Table 3.1.

The LSOMG model is 3-D baroclinic model but it can also be used as a simpli-
fied 2-D barotropic model LSOMG-BT, see Chapter 4. The shallow water equa-
tion are discretized using the finite difference method. The LSOMG-BT model
supports the forward-backward (or its modification predictor-corrector scheme),
generalized forward-backward, modified Crank-Nicolson and Euler implicit time
stepping schemes and Arakawa grids B, C and E. However, not every combination
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of a time stepping scheme and a computational grid is available, see Table 6.1.
The tidal parameterizations for the realistic tidal simulations are provided only
for the forward-backward and generalized forward-backward schemes on the C-
grid. The LSOMG-BT model can be used for tidal simulations since it is equiped
with the tidal forcing and the parameterizations of SAL and IWD according to
Eqs. (4.34), (4.43) and (4.44), respectively. LSOMG-BT can also be forced by
surface wind stress (4.24) although baroclinic LSOMG is better suited for the
wind-driven simulations.

The baroclinic part of the LSOMG model is addressed in Chapter 5 . As
already mentioned, LSOMG is a z-coordinate model. The primitive equations
in hydrostatic and Boussinesq approximations are expressed in orthogonal cuvi-
linear coordinates using metric coefficients according to Sec. 5.1. The LSOMG
model uses the split-explicit time stepping scheme which is depicted in Fig. 5.2.
The barotropic part of the model uses exactly the same time step as the LSOMG-
BT model while the time step of the baroclinic part is much (typically 60 times)
longer. The extension of baroclinic time step decreases the computational de-
mands of the model and the small barotropic time step provides fine resolution
in time for tidal simulations. The state equation (5.43) of McDougall et al. [2003]
with the values of coefficients from Jackett et al. [2006] is implemented. It is accu-
rate, it benefits from the representation in potential temperature (no conversions
from potential to in-situ temperature) and it is not overly complicated (25 co-
efficients). The friction force for the incompressible fluid, transversely isotropic
with respect to the vertical coordinate is used. It is expressed in curvilinear co-
ordinates according to Murray and Reason [2001] in LSOMG and Einšpigel and
Martinec [2015] in LSOMG-BT, see Sec. 5.6 and the discussion in Appendix B.
The horizontal friction is discretized explicitly in time. The recommended tem-
poral discretization for the vertical friction is implicit to ensure numerical sta-
bility but the explicit discretization is also available. The horizontal viscosity is
the Smagorinsky viscosity [Smagorinsky, 1963, 1993, Griffies and Hallberg, 2000]
under CFL, grid-Reynolds and Munk-layer criteria with a prescribed minimum
viscosity, see Sec. 5.6.2. The advantage of the Smagorinsky viscosity is that it
is flow dependent. It keeps low if the flow is weak and it increases if the flow
becomes vigorous. The vertical viscosity is either constant or it is set according
to the Richardson-number based parameterization of Pacanowski and Philander
[1981] given by Eq. (5.59). The LSOMG model offers three advection schemes
with flux limiters that are explained in Sec. 5.7. We prefer the Lax-Wendroff
scheme of Smith et al. [2010] but the Lax-Wendroff scheme with Superbee and
Koren/van Leer/MC flux limiters and the third order direct space time scheme
are also available. All schemes use multidimensional splitting method of Adcroft
et al. [2014] which enables to use 1-D flux limiters in the 3-D model. The primitive
equations are discretized on the Arakawa grid C. We discussed in Sec. 2.1 that
C-grid has certain favourable properties such as good representation of gravity
waves or placement of variables for advection schemes. On the other hand, the
Coriolis is a C-grid weak spot and it needs special treatment which is explained
in Sec. 5.8. LSOMG offers four spatial-discretization schemes that conserve en-
ergy, vorticity or both. The Adams-Bashforth extrapolation of the third-order
is used in the temporal discretization. The grid-scale noise is suppressed using
the divergence-damping method. Tidal parameterizations are the same as in the
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LSOMG-BT model. There is, however, a problem with the separation of tidal and
non-tidal flows since tidal parameterizations are acting on tidal not total flow. We
follow Sakamoto et al. [2013] and use two (rather than one) barotropic systems:
the wind-driven and tidally-driven systems. The scheme is illustrated in Fig. 5.8.
We discussed the problem of standard spherical-coordinate grid in the North Pole
region in Sec. 2.2. Sec. 5.11 provides technical details about dipolar and tripo-
lar grids which solve the Pole problem and their implementation in LSOMG.
Sec. 5.12 explains a simple model of melting and freezing which is used to model
sea ice. The LSOMG model is parallelized using the MPI standard. A standard
regular domain decomposition is used. We discuss more sophisticated algorithms
in Sec. 5.13 but their benefit is uncertain. Finally, we discuss input data for our
simulations in Sec. 5.14. The bathymetry is taken from GEBCO or ETOPO1
data, temperature and salinity data are taken from the World Ocean Atlas 2013
and climatological data such as wind speed are mainly from the ERA-Interim
database. We discuss how data are processed to get them on the LSOMG com-
putational grid. We implemented and tested four different methods to compute
net heat flux. The coldest to the warmest fluxes are the fluxes of Brunnabend
[2010], Kondo [1975], Large and Yeager [2009] and Kara et al. [2002]. We do not
recommend the method of Brunnabend [2010] since it produces too cold clima-
tological net heat flux. The methods differ in the bulk transfer coefficients but
we demonstrated on latent heat fluxes that smaller but non-negligible amount of
differences is caused by different data formulas.

Part III presents our modelling results. In Chapter 6, we performed several
numerical tests to check the model performance. We designed one tsunami and
two tidal numerical tests for ocean tidal models. We calculated six solutions using
different time stepping schemes and/or computational grids and compared them.
We recommend not to use the Euler implicit time stepping scheme for tidal simu-
lations. The choice of computational grid matters. B/E-grid configurations suffer
from small (several percents) energy leakage due to the biharmonic smoothing
of SSH. C-grid configurations do not have these problems. Different boundary
conditions on grids B/E and C can have strong impact on the solution especially
in the realistic configurations with extensive coastlines. See Sec. 6.1.7 for more
details.

We calculated the flow in the Munk problem. It is an idealized wind-driven
simulation in which the flow is not stratified, the wind-stress is purely zonal with
a smooth meridional cosine profile and the basin is large with a simple rectangular
shape. We compare the numerical solution with the analytic solution of Munk.
Both solutions are in good agreement in mid latitudes where the analytic solution
is valid. The western boundary currents are well developed.

We tested the implementation of the vertical friction force, in particular its
implementation using the implicit time stepping scheme. We modeled the Ek-
man spiral in the Ekman layer using simplified model equations. The numerical
solution is uniform in the zonal direction, the angle between the direction of wind
and surface current is 45◦ and the Ekman layer is shallower in higher latitudes
which is all in agreement with the analytic solution.

The last numerical test evaluates the performance of advection schemes. The
initial tracer distribution is advected with a given constant velocity. Both hori-
zontal and vertical advections are tested. The computational grid is equidistant
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in the horizontal advection but non-equidistant in the vertical advection. As ex-
pected, the Quick advection scheme nicely advects the smooth Gaussian bell but
it produces artificial oscillations in the vicinity of jump in the box function due to
the absence of flux limiters. All other schemes are free of artificial oscillations. In
contrast to the Quick advection scheme, the Lax-Wendroff scheme with the Su-
perbee flux limiter accurately advects the box function but it somewhat distorts
the Gaussian function, it is making a box out of it. The Lax-Wendroff scheme of
Smith et al. [2010] has average performance. The advected box function is not
as sharp as it should be and the Gaussian function is smooth but also slightly
distorted.

The results from realistic simulations are presented in Chapter 7. We show
results from tidal barotropic simulations in Sec. 7.1, wind-driven barotropic sim-
ulations Sec. 7.2, wind-driven baroclinic simulations in Sec. 7.3 and combined
wind- and tidally-driven simulations Sec. 7.4.

Fig. 7.2 demonstrates the importance of IWD and SAL parameterizations
for tidal simulations. The RSS computed by the comparison with the TPXO8-
1 solution according to Eq. (7.1) decreased from 32.62 cm to 13.32 cm (linear
free surface) and 12.17 cm (nonlinear free surface) if IWD and SAL were used.
We have chosen the default IWD and SAL setups according to the values used
by other authors but both can be tuned to decrease RSS. Fig. 7.3 shows the
sensitivity of RSS on the strength of IWD and SAL. The best setup with IWD
increased by factor 1.5 and βs = 0.11 has RSS= 10.67 cm which corresponds to
the improvement of RSS by 12%. Figs. 7.4 and 7.6 complement the sensitivity
study by showing how spatial SSH patterns and SSH time curves at particular
points respond to increased IWD and SAL.

LSOMG-BT can be forced not only by tides but also by atmospheric winds.
Figs. 7.8 and 7.9 depict barotropic stream functions from eight LSOMG-BT
simulations forced by the steady wind-driven stress. The simulations differ in
the bathymetry (realistic or flat) and horizontal viscosity (2 × 104 m/s2 or 2 ×
105 m/s2). Simulations are forced by ERA-Interim data in Fig. 7.8 and by CORE-
II data in Fig. 7.9. The simulations with the realistic bathymetry suffer from a
serious problem, the ACC current is virtually missing and the other currents in
the Southern hemisphere are also affected. On the other hand, if bathymetry
is flat, the barotropic stream function in the Southern hemisphere improves but
the ACC current is overly strong. The same issues were reported by [Frisius
et al., 2009] using the barotropic SOM model. The LSOMG-BT simulations with
higher viscosity are in better agreement with the SOM simulations but the simu-
lations with lower viscosity are in better agreement with the GECCO reanalysis.
LSOMG-BT stream functions are stronger if we use the CORE-II instead of ERA-
Interim forcing. The stronger stream function matches both SOM simulations and
GECCO reanalysis better.

The barotropic stream functions from the baroclinic LSOMG simulations
forced by ERA-Interim data are shown in Fig. 7.13. The model configurations
used in the simulations differ in the vertical resolution and the forcing. The ver-
tical resolution is either 11 or 22 layers. The forcing is either simplified or full.
The simplified forcing contains the climatological data and the heat fluxes are
represented by the strong relaxation towards the prescribed surface teperature
distribution. The full forcing contains daily data and the heat fluxes are com-
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puted from the bulk formulas discussed in Sec. 5.14.6. If the simplified forcing is
used, the stream function is globally weaker than it should be. If the full forcing
is used, the stream function becomes globally stronger. This is especially pro-
nounced in the ACC regions where the stream-function maximum has increased
from 126 Sv to 182 Sv. The increase in the vertical resolution has a favourable
effect on the circulation in the Pacific Ocean and it also further strengthens the
ACC current. We also run the simulations under the CORE-II forcing. First, we
came to the same conclusion as in Sec. 7.2, the CORE-II simulations with the
simplified forcing are notably stronger than the corresponding ERA-Interim simu-
lations. Second, both data sets produce comparable circulations if the full forcing
is applied. We prefer the ERA-Interim stream function over the CORE-II stream
function. It matches the stream functions from other models and the GECCO
reanalysis slightly better. We further demonstrated that the LSOMG model with
the full forcing conserves both temperature and salinity within the range which
is comparable with other OGCMs. We also presented the SSH and velocities
vertically integrated over the upper 1000 m in Figs. 7.10 and 7.11, respectively.
The comparison with other models and data products was favourable.

Finally, Figs. 7.16 and 7.17 depict SSHs and zonal barotropic transports from
the combined wind- and tidally-driven baroclinic simulations, respectively. The
results from 1◦ eddy-parameterized and 0.25◦ eddy-permitting simulations are
shown. Both figures demonstrate that LSOMG is capable of simulations with
the combined forcing. For example, the barotropic transports from the combined
simulations contain the wind-driven ACC current mixed together with the large-
scale tidal signal. Both 0.25◦ and 1◦ simulations are generally in agreement,
although there is a significantly larger mesoscale activity in the 0.25◦ simulation
which was expected. Fig. 7.18 shows that tidal dissipation is working in the
0.25◦ combined LSOMG simulations as it decreases amplitudes of tidal SSH, see
the wiggles on the black curve. However, the effect is relatively small which is
probably caused by the 0.25◦ resolution which is insufficient for the modelling of
internal tides.

In the last Sec. 8, we demonstrated the importance of galvanic coupling for the
modelling of wind-driven OIMF. Its omission affects power spectrum in Fig. 8.7
(compare Cases A and B), OIMF at the surface in Fig. 8.8 and OIMF at 6 km
depth in Fig. 8.9 where especially Y component is affected. The self-induction is
less important but it also matters. Fig. 8.10 shows that it affects lower spherical
harmonic degrees (up to 40% of the spectral power on degree one) by damping
sudden changes in the OIMF which results in a smoother evolution in time.
Locally, the OIMF differences around 0.1 nT in the X and Y components and
0.15 nT in the Z component may appear. One layer in the vertical is sufficient
for global studies of OIMF at the surface or at satellite height but the local
studies should consider a higher vertical resolution. We do not recommend to use
unimodal thin sheet approximation of Tyler et al. [1997] and Vivier et al. [2004]
since it neglects both galvanic coupling and self-induction. We recommend to use
the horizontal resolution of at least 1◦.

The attached paper Veĺımský et al. [2019] further focuses on the toroidal
magnetic field. We used a more realistic ocean electrical conductivity which was
computed from the temperature and salinity and thus it was spatially variable
rather than constant. We also used a higher vertical resolution; 11 instead of
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5 layers. We found the maximum of 15 nT in the Y component of the OIMF
in approximately 1800 m depth. At the surface, the toroidal field is zero but it
affects the poloidal field through coupling. The observable poloidal field is smaller
and its spatial and temporal variability is reduced if there is no couling between
the toroidal and poloidal fields.

To sum it up, we have developed a new baroclinic model called LSOMG
and studied the OIMF. We answered some questions but there still remain open
issues. It is tempting to complete our efforts to detect the wind-driven OIMF
in the Swarm data. We might have all necessary components: An OGCM, a
magnetic solver and a magnetospheric model. It can however be a tidious work
with a possibility that additional pitfalls may apper. A further development of
the LSOMG model would also be interesting, we would benefit from knowledge
gained during this PhD and the fact that the code is familiar to us. For example,
we could further improve barotropic tides by local tuning of IWD and SAL. We
inspected several global setups in Sec. 7.1 but it we could also use different IWD
and SAL values in different regions. If we found regional sensitivity, we could
even constuct an inverse problem that would locally tune IWD and SAL. A study
related to the internal tides in the baroclinic LSOMG could also be perspecitve
altough it would require large computational resources on a supercomputer.
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D. Einšpigel and Z. Martinec. Time-domain modeling of global ocean tides gen-
erated by the full lunisolar potential. Ocean Dynam., 67:165–189, 2016. doi:
10.1007/s10236-016-1016-1.

V. W. Ekman. Die zusammendruckbarkeit des meerwassers nebst einigen werten
fur wasser und quecksilber. Publications de Circonst., 43:1–47, 1908.

T. Ezer and G. L Mellor. Diagnostic and prognostic calculations of the North
Atlantic circulation and sea level using a sigma coordinate ocean model. J.
Geophys. Res.–Oceans, 99:14159–14171, 1994. doi: 10.1029/94JC00859.

D. E. Farrow and D. P. Stevens. A new tracer advection scheme for Bryan and
Cox type ocean general circulation models. J. Phys. Oceanogr., 25:1731–1741,
1995. doi: 10.1175/1520-0485(1995)025⟨1731:ANTASF⟩2.0.CO;2.

I. Federico, N. Pinardi, G. Coppini, P. Oddo, R. Lecci, and M. Mossa. Coastal
ocean forecasting with an unstructured grid model in the southern adriatic and
northern ionian seas. Nat. Hazard. Earth Sys., 2017.

R. Feistel. Equilibrium thermodynamics of seawater revisited. Prog. Oceanogr.,
31:101–179, 1993. doi: 10.1016/0079-6611(93)90024-8.

R. Feistel. A new extended Gibbs thermodynamic potential of seawater. Prog.
Oceanogr., 58:43–114, 2003. doi: 10.1016/S0079-6611(03)00088-0.

R. Feistel and E. Hagen. On the GIBBS thermodynamic potential of seawater.
Prog. Oceanogr., 36:249–327, 1995. doi: 10.1016/0079-6611(96)00001-8.

C. C. Finlay, N. Olsen, S. Kotsiaros, N. Gillet, and L. Tøffner-Clausen. Recent
geomagnetic secular variation from Swarm and ground observatories as esti-
mated in the CHAOS-6 geomagnetic field model. Earth Planets Space, 68(1):
112, 2016.

206



G. J. Fix. Finite element models for ocean circulation problems. SIAM J. Appl.
Math., 29(3):371–387, 1975.
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J. Veĺımský and Z. Martinec. Time-domain, spherical harmonic-finite element
approach to transient three-dimensional geomagnetic induction in a spherical
heterogeneous Earth. Geophys. J. Int., 160:81–101, 2005.
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tidal magnetic signatures: Effects of physical approximations and numerical
resolution. Earth Planets Space, 70(1):70–192, 2018.
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A. Numerics used in IMP and
CNmod schemes
The overbars in the symbols for barotropic velocities are dropped out in this
section in order to simplify the notation. The spherical instead of generalized
coordinates are considered. The numbering of grid points is the same as in
Fig. 2.1.

A.1 IMP scheme
The discrete form of Eq. (4.10) on the Arakawa grid E is
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where ∆x and ∆y denote the zonal and meridional grid spacings in the geographic
coordinates, respectively.
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A.2 CNmod scheme
The discrete form of Eq. (4.13) on the Arakawa grid C is
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and Kc = βcγcg(∆t)2.
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B. Form of the friction force

B.1 Friction force for a baroclinic ocean model
with partial bottom cells

The friction force in general horizontal coordinates was derived and discussed
by Murray and Reason [2001]. However, Murray and Reason [2001] did not
allow partial bottom cells since they assumed that the third metric coefficient is
independent of horizontal coordinates,

∂h3

∂ξ1
= ∂h3

∂ξ2
= 0. (B.1)

The LSOMG is using partial bottom cells, it is thus necessary to generalize the
formulas for the case without conditions B.1. We calculate the divergence of
Cauchy stress tensor σ,
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and apply condition 5.15 by which we assume that the horizontal metric coeffi-
cients are independent of ξ3, and we consider that σ33 is negligible, see Murray
and Reason [2001] for the discussion. Consequently,
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and Eq. (B.2) simplifies,
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According to Murray and Reason [2001], we rearrange the terms in the square
bracket,
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Terms that contain σ11 + σ22 can be neglected because they are proportional to
σ33 due to the zero trace of σ, see Eq. 1.47. We insert Eq. (20) from Murray and
Reason [2001],

σ11 − σ22

2 = AHDT , (B.6)

σ12 = AHDS, (B.7)
σ31 = σ13 = 2AV e13, (B.8)
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into Eq. (B.5),
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Finally, we obtain Eq. 5.67 if we use the expression for e13,

e13 = 1
2h3

∂u

∂ξ3
+ 1

2h1

∂w

∂ξ1
, (B.10)

where the second term can be neglected according to Murray and Reason [2001].
We apply a similar procedure to the meridional component to obtain Eq. 5.68.

B.2 Friction force for a barotropic ocean model
Einšpigel and Martinec [2015] derived a physically consistent friction force for a
barotropic ocean model. They considered a 3-D physically consistent stress tensor
derived by Wajsowicz [1993] and calculated the friction force from the stress tensor
using Eq. (1.46). The barotropic friction force was then calculated by vertically
integrating the friction force under the assumption that the horizontal flow is
only weakly dependent on the depth. Mathematically expressed,

u = ū +O(ϵ), u2 = ū2 +O(ϵ), v2 = v̄2 +O(ϵ), uv = ūv̄ +O(ϵ), (B.11)

where ϵ is a small quantity. The resulting barotropic friction force is

F(u) · e1 = AH
ah

{
1

cosϕ
∂

∂λ
[h (ê11 − ê22)] + 2 ∂

∂ϕ
(hê12) − 4hê12 tanϕ

}
(B.12)

F(u) · e2 = AH
ah

{
2

cosϕ
∂

∂λ
(hê12) − ∂

∂ϕ
[h (ê11 − ê22)] + 2h (ê11 − ê22) tanϕ

}
(B.13)

where ê11, ê22 and ê12 are components of barotropic strain-rate tensor,

ê = 1
2
[
∇hū + (∇hū)T

]
. (B.14)

We mentioned in Sec. 5.6.1 that the friction force given by Eqs. (B.12) and (B.13)
can be viewed as a special case of Eqs. (5.67) and (5.68). Indeed, take the hori-
zontal friction from Eqs. (5.67) and (5.68), replace the third metric coefficient by
the water-column height, use spherical-coordinate metric coefficients h1 = a cosϕ,
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h2 = a and calculate the horizontal tension D̂T and shearing strain D̂S using the
barotropic velocities,

F(u) · e1 = 1
a2h cosϕ

[
1
a

∂

∂λ

(
a2hAHD̂T

)
+ 1
a cosϕ

∂

∂ϕ

(
a2 cos2 ϕhAHD̂S

)]
,

(B.15)

F(u) · e2 = 1
a2h cosϕ

[
1
a

∂

∂λ

(
a2hAHD̂S

)
− 1
a cosϕ

∂

∂ϕ

(
a2 cos2 ϕhAHD̂T

)]
.

(B.16)

If we further assume that AH is constant and rewrite the second term on the
right-hand side of Eqs. (B.15) and (B.16),

F(u) · e1 = AH
ah

[
1

cosϕ
∂

∂λ

(
hD̂T

)
+ ∂

∂ϕ

(
hD̂S

)
− 2hD̂S tanϕ

]
, (B.17)

F(u) · e2 = AH
ah

[
1

cosϕ
∂

∂λ

(
hD̂S

)
− ∂

∂ϕ

(
hD̂T

)
+ 2hD̂T tanϕ

]
. (B.18)

Eqs. (B.17) and (B.18) turn to Eqs. (B.12) and (B.13) if we consider Eqs. (1.56)
and (1.57)
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C. Invariants in the shallow
water equations
The overbars in the symbols for barotropic velocities are dropped out in this
chapter in order to simplify the notation.

C.1 Energy in the shallow water equations
The purpose of Appendices C.1 and C.2 is to generalize the derivation of McWilliams
[2006] and make it more clear. We consider SWE in the advective form, see
Eqs. (4.1) and (4.2). We next follow McWilliams [2006], Eq. (4.16), and write
down the following integral identity,

0 =
∫
A

{
hu ·

(
∂u
∂t

+ u · ∇u + fk × u + g∇η − F
)

+
(
gη + 1

2u2
) [

∂h

∂t
+ ∇ · (hu)

]}
dA, (C.1)

where A stands for the whole ocean surface and dA is its infinitesimal element.
The identity is valid because of Eqs. (4.1) and (4.2). The individual terms can
be rewritten as

hu · (fk × u) = 0 (C.2)

hu ·
(
∂u
∂t

+ u · ∇u
)

= 1
2h
∂u2

∂t
+ 1

2hu · ∇u2 (C.3)
(
gη + 1

2u2
) [

∂h

∂t
+ ∇ · (hu)

]
= gη

∂h

∂t
+ gη∇ · (hu) + 1

2u2∂h

∂t
+ 1

2u2∇ · (hu)

= ∂

∂t

(1
2gη

2
)

+ ∇ · (gηhu) − ghu · ∇η

+ 1
2u2∂h

∂t
+ 1

2u2∇ · (hu), (C.4)

We insert Eqs. (C.2), (C.3) and (C.4) into (C.1) and combine certain terms to
obtain

0 =
∫
A

{[
1
2h
∂u2

∂t
+ 1

2hu · ∇u2
]

+ ghu · ∇η − hF · u

+
[
∂

∂t

(1
2gη

2
)

+ ∇ · (gηhu) − ghu · ∇η

+ 1
2u2∂h

∂t
+ 1

2u2∇ · (hu)
]}
dA =,

=
∫
A

[
∂

∂t

(1
2hu2 + 1

2gη
2
)]
dA−

∫
A

hF · udA

+
∫
A

[1
2∇ ·

(
hu2u

)
+ ∇ · (gηhu)

]
dA, (C.5)
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where the last term is equal to zero if we apply the Gauss theorem and the
boundary conditions (4.6) or (4.7). Hence, we obtain the evolution equation

dE

dt
−
∫
A

hF · udA = 0 (C.6)

for the total mechanical energy (defined by Eq. (6.5)). In the special case of no
external force being applied, the total mechanical energy is time invariant. If
external force is applied, the quantity Eg defined by Eq. (6.9) is a time invariant.

C.2 Potential vorticity in the shallow water equa-
tions

Similarly as in Appendix C.1, we build the derivation on the integral identity,

0 =
∫
A

⎛⎝nhqn−1
[
∂q

∂t
+ u · ∇q − ∇ × F

h

]
+ qn

[
∂h

∂t
+ ∇ · (hu)

]⎞⎠dA, (C.7)

which is valid due to Eqs. (4.2) and (4.24) in McWilliams [2006]. We apply the
identity

nhqn−1u · ∇q = ∇ · (huqn) − qn∇ · (hu), (C.8)
the Gauss theorem and boundary conditions (4.6) or (4.7) to obtain

0 = d

dt

∫
A

hqndA−
∫
A

nqn−1(∇ × F)dA. (C.9)

In the special case of no external force being applied, the quantity Qn, defined
by Eq. (6.6), is time-invariant. If external force is applied, quantity Qg

n, defined
by Eq. (6.10) is time invariant.

C.3 Discrete forms of invariants
We use the C-grid differencing and 2-point spatial averaging operators in the
discrete forms of equations as introduced by Eqs. (2.8) and (2.9), respectively.
The equivalent operators on Arakawa grids B/E are constructed analogously. On
Arakawa grids B/E, we also introduce a 4-point averaging operator,

A
i,j =

Ai+ 1
2 ,j+

1
2

+ Ai− 1
2 ,j+

1
2

+ Ai+ 1
2 ,j−

1
2

+ Ai− 1
2 ,j−

1
2

4 (C.10)

on Arakawa grid B and analogously on Arakawa grid E.
The potential energy is naturally discretized as

Ep = g

2
∑
i,j

η2
i,j∆xj∆y, (C.11)

and no averaging is needed. On the contrary, the averaging has to be applied
to compute the kinetic energy since Arakawa grids B, C and E are staggered.
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We prefer the averaging of the squared velocity components over the averaging
of SSH,

Ek = 1
2
∑
i,j

h2
i,j

(
u2i + v2j

)
∆xj∆y on Arakawa grid C, (C.12)

Ek = 1
2
∑
i,j

h2
i,j

(
u2 + v2i,j

)
∆xj∆y on Arakawa grids B and E. (C.13)

The reason is that both potential and kinetic energy are discretized at SSH points.
Nevertheless, the latter choice gives nearly identical results since

∑
i

AiB
i =

∑
i

A
i+ 1

2Bi+ 1
2
. (C.14)

The relative vorticity and invariant Qg
n require the computation of a rotation

operator. In the spherical coordinates, this is given by

∇ × F = 1
R cosϕ

[
F ϕ
,λ + (F λ cosϕ),ϕ

]
. (C.15)

Its discrete form depends on the type of the Arakawa grid,

(∇ × F)i+ 1
2 ,j+

1
2

= 1
∆xj+ 1

2

⎡⎢⎢⎣δiF ϕ

i,j+ 1
2

+
δj+ 1

2

(
∆xjF λ

i+ 1
2 ,j

)
∆y

⎤⎥⎥⎦ on Arakawa grid C,

(C.16)

(∇ × F)i,j = 1
∆xj

⎡⎢⎢⎣δiF ϕ

i+ 1
2 ,j

+
δj

(
∆xj+1F

λ
i− 1

2 ,j+1

)
∆y

⎤⎥⎥⎦ on Arakawa grid E,

(C.17)

(∇ × F)i,j = 1
∆xj

⎡⎢⎢⎣δiF ϕ
j +

δj

(
∆xF λ

i
)

∆y

⎤⎥⎥⎦ on Arakawa grid B. (C.18)

Note that there is no averaging on Arakawa grids C/E, but it is present on
Arakawa grid B.

The source term in Eq. C.6 representing the work done by tidal forcing needs
special attention. Its spatial discretization is simple, the difficult part is the
discretization in time since the dot product between vectors of tidal force and
velocity is integrated in time over the duration of experiment. If the velocity is
discretized incorrectly in time, the induced phase shifts generate errors that add
up during the computation via the integration process. Consider a simplified case
in which the water-column height h is approximated by the depth H of the ocean
bottom and repeat the first step of the derivation given in Appendix C.1,

0 =
∫
A

[
Hû ·

(u − un

∆t − Fn + . . .
)

+ . . .
]
dA, (C.19)
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where dots stand for other terms that are not important for this discussion.
The task is to determine the velocity û to obtain the discrete form of the time
derivative of kinetic energy. If we choose

û = u + un

2 , (C.20)

and plug it into Eq. C.19, we obtain

0 =
∫
A

(
Hu2/2 −H(un)2/2

∆t

)
dA−

∫
A

[(
HFn · u + un

2 + . . .
)

+ . . .
]
dA, (C.21)

which finally leads to the discrete form of Eq. C.6.
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D. Implementation details of
Yin-Yang and reduced spherical
coordinate grids

D.1 Bilinear and inverse-distance-weighting in-
terpolations on the Yin-Yang grid

We interpolate both SSH and velocities. Consider, for example, the SSH in-
terpolation. We use either the bilinear or the inverse-distance-weighting (IDW)
interpolation. Both interpolation techniques calculate the interpolated SSH η̂ at
(λ, ϕ) from the four nearest grid points,

η̂(λ, ϕ) =
⎛⎝ 2∑
ij=1

wi,jηij

⎞⎠ /
⎛⎝ 2∑
i,j=1

wij

⎞⎠ , (D.1)

where ηij are SSHs at the nearest grid points with the geographic coordinates
(λi, ϕj) and wij are weights.

In the bilinear interpolation, the weights are given by

w11 = Z2M2, w21 = Z1M2,

w12 = Z2M1, w22 = Z1M1, (D.2)

where

Z1 = min(|λ1 − λ|, 360 − |λ1 − λ|), (D.3)
Z2 = min(|λ2 − λ|, 360 − |λ2 − λ|), (D.4)
M1 = |ϕ1 − ϕ|, (D.5)
M2 = |ϕ2 − ϕ|. (D.6)

In the IDW interpolation, the weights are given by

wij = d−1
ij , (D.7)

where dij is the spherical distance between the points (λ, ϕ) and (λij, ϕij),

dij = arccos [sinϕ sinϕij + cosϕ cosϕij cos(λ− λij)] . (D.8)

Note that the bilinear and IDW interpolations are equivalent in one dimension.

D.2 Coriolis term on the Yin-Yang grid
It can be proved that the Coriolis force on the Yin-Yang grid has the same form
as on the standard spherical-coordinate grid. It is sufficient to prove it for the
Yang part. The components of the Coriolis force on the Yang part are equal to

Fa
c = RFi

c = RC

(
ui

vi

)
= RCR−1

(
ua

va

)
, (D.9)
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where Fc is the vector containing components of the Coriolis force, C is the
Coriolis-force matrix,

C =
(

0 −f
f 0

)
, (D.10)

f is the Coriolis parameter and R is the rotation matrix from Yin to Yang coor-
dinate system given by Eq. (4.58). If the Yang coordinate system is rotated by
the angle α with respect to the Yin coordinate system then

R(α) =
(

cosα − sinα
sinα cosα

)
, (D.11)

where α is positive if the Yang coordinate system is rotated counter-clockwise
with respect to the Yin coordinate system.

It holds that R−1 = R(−α) = RT since R is the rotation matrix. It is thus
sufficient to prove that either R or RT commute with C,

RC = CR, (D.12)
CRT = RTC. (D.13)

The both equalities are valid which can be proved by simply evaluating the left-
hand and right-hand sides.

An alternative and more elegant proof of Eqs. (D.12) and (D.13) uses the fact
that matrix C is also a rotation matrix,

C = f

(
0 −1
1 0

)
= fR(90◦) (D.14)

and thus

RC = R(α)fR(90◦) = fR(α + 90◦) = fR(90◦)R(α) = CR, (D.15)

where we used the fact that rotations around one common axis can be applied in
an arbitrary order.

Using commutators (D.12) and (D.13), we can rewrite Eq. (D.9) to the well-
known form,

Fa
c = RCRT

(
ua

va

)
= CRRT

(
ua

va

)
= C

(
ua

va

)
. (D.16)

D.3 Interpolations on the reduced spherical co-
ordinate grid

Consider a 1-D space where we have a grid with the regular grid spacing d and a
smooth function f . Taylor expansion can used to express the function values at
the grid points xj−1 and xj+1 using the function value and its derivative at the
grid point xj.

f(xj) + f ′(xj)d+O(d2) = f(xj+1) (D.17)
f(xj) − f ′(xj)d+O(d2) = f(xj−1) (D.18)
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Eqs. (D.17) and (D.18) can be used to derive an approximate formula for f(xj)
and f ′(xj) using f(xj−1) and f(xj+1),(

f(xj)
f ′(xj)

)
= A−1

(
f(xj+1)
f(xj−1)

)
, (D.19)

where
A =

(
1 d
1 −d

)
. (D.20)

The solution of Eq. (D.19) are the well-known two-point formulas for the centered
interpolation and derivative,

f(xj) = f(xj−1) + f(xj+1)
2 , (D.21)

f ′(xj) = f(xj+1) − f(xj−1)
2d . (D.22)

We use the same procedure to derive the eight-point interpolation formulas,

fj+ 1
2

= 1225
2048 (fj + fj+1) − 245

2048 (fj−1 + fj+2) + 49
2048 (fj−2 + fj+3)

− 5
2048 (fj−3 + fj+4) , (D.23)

fj+ 1
4

= 225225
262144fj + 75075

262144fj+1 − 27027
262144fj−1 − 19305

262144fj+2

+ 5005
262144fj−2 + 4095

262144fj+3 − 495
262144fj−3 − 429

262144fj+4, (D.24)

and ten-point interpolation formulas,

fj = 5
6 (fj+1 + fj−1) − 10

21 (fj+2 + fj−2) + 5
28 (fj+3 + fj−3)

− 5
126 (fj+4 + fj−4) + 1

252 (fj+5 + fj−5) , (D.25)

fj+ 1
2

= 39690
65536 (fj + fj+1) − 8820

65536 (fj−1 + fj+2) + 2268
65536 (fj−2 + fj+3)

− 405
65536 (fj−3 + fj+4) + 35

65536 (fj−4 + fj+5) (D.26)

where we used fj = f(xj), fj+ 1
2

= f
(
xj+xj+1

2

)
and fj+ 1

4
= f

(
xj+3xj+1

4

)
to shorten

the formulas.
Note that the systems of eight and ten linear equations have to be solved to

derive the eight- and ten-point interpolation formulas. We used the Mathematica
software since the problem is already too complex to solve it in hand.
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E. Interpolation error of the
bilinear interpolation
The error of bilinear interpolation used in the method of spatial patterns in
Sec. 6.1 could be, in principle, of the same order or even larger than the inspected
differences between the model configurations. One may argue that either a higher-
order method or even a completely different interpolation technique should be
used. We provide two tests that clearly show that this is not the case:

1. We apply the bilinear interpolation to the initial SSH of the TSU test and
compare the interpolated C-grid SSH with the untouched E-grid SSH. The
differences are depicted in the left panel of Fig. E.1. The differences are not
zero (except for the grid points which are common for both grids) but they
do not exceed 0.24 m which corresponds to 0.24% of the maximum SSH.

Figure E.1: Differences [m] between the interpolated (to the grid E) C-grid SSH
and E-grid SSH at t = 0 s in the TSU test. The bilinear (left panel) and inverse-
distance-weighting interpolations (right panel) are used.

2. We change the interpolation scheme. The bilinear interpolation is replaced
by the IDW (see Appendix D.1) interpolation. The differences between
E-grid solutions and C-grid solutions interpolated using bilinear and IDW
interpolations are very similar. It means that the choice of interpolation
technique does not affect our results and conclusions significantly.
We also repeat the first test with the IDW interpolation. The differences
are larger, they reaching up to 0.92 m, see the right panel of Fig. E.1. The
IDW interpolation could be used, as the discrepancy is still below 1%, but
the bilinear interpolation performed better.
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F. Barotropic stream function
Consider for simplicity a divergence-free flow in the Cartesian coordinates,

∂u

∂x
+ ∂v

∂y
= 0. (F.1)

As the flow is divergence-free, we can introduce a scalar function ψ with the
following properties

u = ∂ψ

∂y
, v = −∂ψ

∂x
. (F.2)

If we compute the velocity using Eq. (F.2), the incompressibility condition is
fulfilled automatically. Additionally, the velocity vector is perpendicular to the
gradient of ψ since

u · ∇ψ = 0, (F.3)

which can be easily proved using Eq. (F.2). The gradient of ψ is a vector that
is perpendicular to the isolines of ψ. The velocity vector is thus parallel to the
isolines of ψ.

To sum it up, if we plot the isolines of ψ we immediately see the flow patterns
and if isolines are close to each other in one direction the velocities are increased
in the other direction.

In the generalized coordinates, the function ψ for the divergence-free flow can
be introduced as follows. We first introduce a 3D vector function ψ,

u = ∇ ×ψ, (F.4)

where u is considered to be a 3D vector with the third component equal to zero.
The divergence-free condition is fulfilled due to the vector differential identity
∇ · (∇ × A), where A is an arbitrary vector function. Note that the vector
function ψ that suits Eq. (F.4) is not unique. The vector function ψ′,

ψ′ = ψ + ∇Φ, (F.5)

where Φ is an arbitrary scalar function, generates the same velocity field. We
choose ψ = ψe3 to ensure that the third component of u is equal to zero,

u = ∇ × (ψe3). (F.6)

In the Cartesian coordinates, Eq. (F.6) is identical to Eq. (F.2).
In the realistic Boussinesq ocean model, the barotropic transports are approx-

imately divergence free,
∇h · U ≈ 0. (F.7)

Indeed, consider Eq. (1.12) where we neglected the surface water flux and the
SSH time derivative since the SSH varies slowly in time.

We introduce the so-called barotropic stream function ψb according to Eq. (F.6),

U = ∇ × (ψbe3). (F.8)
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The value of stream function ψb at the particular point (ξ1 = x2, ξ2 = y2, ξ3 = a)
on the Earth’s surface for the given velocity distribution is then equal to

ψb(x2, y2, a) = ψb(x1, y1, a) +
x2∫
x1

Uh2dξ2 −
y2∫
y1

V h1dξ1, (F.9)

where point (x1, y1, a) is usually in the corner of the computational domain and
ψ(x1, y1, a) is set equal to zero.

Note that Eq. (F.9) is written vaguely. We integrate over the rectangular
path in ξ1 −ξ2 plane from point (x1, y1) to point (x2, y2). However, we may either
integrate over ξ1 with ξ2 = y1 fixed and then integrate over ξ2 with ξ1 = x2 fixed,
or integrate over ξ2 with ξ1 = x1 fixed and then integrate over ξ1 with ξ2 = y2
fixed. If U was a divergence-free field, both integrations would give the same
result since the integral of a divergence-free field over the closed trajectory is equal
to zero. However, the barotropic transport is only approximately divergence-free.
The choice of integration path thus matters but the results should only differ
in details. It is also a useful numerical test that both integration paths give
approximately the same result.
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G. UTSM magnetic induction
solver
Our UTSM solver was originally coded by my colleague David Einšpigel. The
theoretical aspects of the UTSM solver are briefly described in Sec. 8.2.3. We
made two important modifications in the code:

• The computational domain was enlarged. In the original version, the com-
putational domain covered only the ocean and the stream function Ψ was
equal to zero on continents. This is not correct. The sources are nonzero
only in the oceans (nonzero velocities), however, the induced magnetic field
diffuses into continents and thus it is nonzero there. Consequently, the
computational domain must cover the whole sphere.

• The discretization of the left-hand side of Eq. (8.7) was changed. We dis-
cretize the stream-function equation on the Arakawa C-grid and solve it
numerically using the finite difference method. The discretized stream-
function equation transforms into a system of linear equations for the grid-
point values of the stream function. The discretization directly affects the
matrix of the system. The matrix structure is the same in both discretiza-
tions but values of nonzero elements are different. The old discretization
suffered from numerical instabilities if conductivity values 10−2 S/m or lower
were prescribed on land. The new discretization allows us to compute the
induced magnetic field even for the land conductivity 10−3 S/m. The details
about the old and new discretizations are given in the following text.

G.1 Discretization of the stream-function equa-
tion in the UTSM solver

We express the stream-function equation (8.7) in the spherical coordinates,

1
a2 cos2 ϕ

∂

∂λ

(
R
∂Ψ
∂λ

)
+ 1
a2 cosϕ

∂

∂ϕ

(
R cosϕ∂Ψ

∂ϕ

)
=

− 1
a2 cosϕ

⎡⎣∂(aRJ imp
2 )

∂λ
+ ∂(a cosϕRJ imp

1 )
∂ϕ

⎤⎦ (G.1)

where R = 1/Σ is the resistivity. In both discretizations, the stream function and
resistivity are discretized at S points (see Fig. 5.10).

G.1.1 Original discretization
The original discretization is based on LΨ written in the form,

LΨ = 1
a2 cos2 ϕ

(
∂R

∂λ

∂Ψ
∂λ

+R
∂2Ψ
∂λ2

)
+ 1
a2 cosϕ

(
∂ (R cosϕ)

∂ϕ

∂Ψ
∂ϕ

+R cosϕ∂
2Ψ
∂ϕ2

)
.

(G.2)
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The discrete form of LΨ is then

LΨ = (Ri+1,j −Ri−1,j) (Ψi+1,j − Ψi−1,j) + 4Ri,j (Ψi+1,j − 2Ψi,j + Ψi−1,j)
4a2 cos2 ϕj(∆λ)2

+ (Ri,j+1 cosϕj+1 −Ri,j−1 cosϕj−1) (Ψi,j+1 − Ψi,j−1)
4a2 cosϕj(∆ϕ)2

+ 4Ri,j cosϕj (Ψi,j+1 − 2Ψi,j + Ψi,j−1)
4a2 cosϕj(∆ϕ)2

= (−Y1 + Y2)Ψi,j−1 + (−X1 +X2)Ψi−1,j − 2(X2 + Y2)Ψi,j

+ (X1 +X2)Ψi+1,j + (Y1 + Y2)Ψi,j+1, (G.3)

where

X1 = Ri+1,j −Ri−1,j

4(∆Xj)2 , X2 = Ri,j

(∆Xj)2 ,

Y1 = Ri,j+1∆Xj+1 −Ri,j−1∆Xj−1

4∆Xj(∆y)2 , Y2 = Ri,j

(∆y)2 , (G.4)

where ∆x and ∆y denote the zonal and meridional grid spacings in the geographic
coordinates, respectively.

G.1.2 New discretization
The new discretization is based on LΨ as it is written in Eq. (G.1). The discrete
form of LΨ is then

LΨ = Ri+1/2,j (Ψi+1,j − Ψi,j) −Ri−1/2,j (Ψi,j − Ψi−1,j)
a2 cos2 ϕj(∆λ)2

+ Ri,j+1/2 cosϕj+1/2 (Ψi,j+1 − Ψi,j) −Ri,j−1/2 cosϕj−1/2 (Ψi,j − Ψi,j−1)
a2 cosϕj(∆ϕ)2

= Y2Ψi,j−1 +X2Ψi−1,j − (X1 +X2 + Y1 + Y2)Ψi,j +X1Ψi+1,j + Y1Ψi,j+1,
(G.5)

where

X1 = Ri+1/2,j

(∆xj)2 , X2 = Ri−1/2,j

(∆xj)2 ,

Y1 = Ri,j+1/2∆xj+1/2

∆xj(∆y)2 , Y2 = Ri,j−1/2∆xj−1/2

∆xj(∆y)2 . (G.6)

G.2 Simple numerical test with analytic solu-
tion

We designed a simple numerical test to check out that the UTSM solver has been
coded correctly. Consider a global ocean in which the flow is given by

U = U0 cos(2ϕ) cosλ, (G.7)
V = U0 sinϕ sin λ, (G.8)
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the main magnetic field in the form of a dipole with the radial component BMr,

BMr = BM0r sinϕ (G.9)

and constant conductivity σ everywhere in the crustal layer, σ = σocean = σcrust.
The vertically integrated imposed electric current density is equal to

Jimp = σU × BM = (σV BMr) eλ − (σUBMr) eϕ
= σBM0rU0

[(
sin2 ϕ sin λ

)
eλ − (cos(2ϕ) sinϕ cosλ) eϕ

]
. (G.10)

If we insert Jimp into Eq. (G.1), we obtain the equation for the stream function
in the form

1
cosϕ

∂2Ψ
∂λ2 + ∂

∂ϕ

(
cosϕ∂Ψ

∂ϕ

)
= aσBM0rU0 sinϕ cos2 ϕ sin λ. (G.11)

It can be proved that the solution of Eq. (G.11) is

Ψ = −Ψ0 sin(2ϕ) sinλ (G.12)

with the amplitude
Ψ0 = aσBM0rU0

12 . (G.13)

The radial component of the OIMF is computed from the stream function ac-
cording to Eq. (2) in Irrgang et al. [2016a],

Br(λ, ϕ, r) = −
∞∑
l=0

l∑
m=−l

µ0

2rΨlm

(
a

r

)l+1
(l + 1)Ylm(λ, ϕ), (G.14)

where Ylm(λ, ϕ) is the spherical harmonic function of degree l and order m. The
stream function (G.12) corresponds to the Y 1

2 (up to the normalization coefficient)
and thus we have

Br(λ, ϕ, r) = 3µ0

2r

(
a

r

)3
Ψ. (G.15)

And the radial component of the OIMF at the Earth’s surface is

Br(λ, ϕ, a) = −3µ0

2a Ψ = B0r sin(2ϕ) sinλ (G.16)

with the amplitude
B0r = µ0σBM0rU0

8 . (G.17)

If we choose

a = 6.371 · 106 m, (G.18)
σ = 3.2 S/m, (G.19)

BM0r = 3 · 104 nT, (G.20)
U0 = 4 · 103 m2/s, (G.21)

the amplitudes of the stream function and the OIMF are equal to

Ψ0 ≈ 2.04 · 105 A, (G.22)
B0r ≈ 60.32 nT. (G.23)
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Figure G.1: Stream function [A] (left panel) and radial component of the induced
magnetic field at the surface [nT] (right panel) computed using the UTSM solver
in the simple numerical test.

Fig. G.1 shows the stream function and the radial component of the OIMF cal-
culated using the UTSM solver. Both fields are modelled correctly in terms of
shape and amplitude.

The performance of the UTSM solver in a realistic setup is studied in Chap-
ter 8.
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ê barotropic strain tensor
ek k-th base vector
ek k-th base vector of the neutral frame
ex, ey, ez base vectors of the Cartesian coordinate system
eλ, eϕ base vectors of SC in the zonal and meridional directions
E electric field
Eimp imposed electric field
ϵ ratio of dianeutral to epineutral diffusivities
η sea surface height (SSH)
ηb SSH before it is passed to the baroclinic system
f Coriolis parameter
fml spherical-harmonic coefficient of degree l and order m
F 1-D tracer flux
FC tracer flux which cross the ocean surface (from the ocean side)
Fs additional term that suppresses noise on Arakawa grids B and E
F z vertical turbulent tracer flux
F turbulent tracer flux
F forcing on the right-hand side of SWE
Fc vector containing components of the Coriolis force
Fd small slope diffusive flux
Fa
e advective GM flux

Fs
e skew GM flux

Fh horizontal turbulent tracer flux
Ftid tidal force
F(u) friction force
F(u)
H horizontal friction force

F(u)
V vertical friction force

Fz
z0 vertical flux of horizontal momentum at the surface

g gravitational acceleration
G gravitational constant
G Gibbs function
G baroclinic forcing
γ slope ratio
γC inverse restoring time for tracers
γT diminishing factor
γ vector stream function
γgm GM vector stream function

Table G.4: Symbols used in the thesis and their meaning. Part 2 (e-g).

251



Symbol Meaning
h water-column height
he enthalpy
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Einšpigel, and N. R. Schnepf. Modelling of electromagnetic signatures of
global ocean circulation: physical approximations and numerical issues. Earth
Planets Space, 71(1):58, 2019.
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The magnetic field induced in the Earth’s ocean by the large-scale global circulation consists of the 
toroidal and poloidal modes. Lateral variations of the ocean electrical conductivity allow for the energy 
exchange between both regimes. In this paper, we predict that the eastward component of the toroidal 
magnetic field in the area of the Antarctic Circumpolar Current can reach amplitudes of 15 nT at the 
depth of about 1800 m. Moreover, even though the toroidal field is invisible on the ocean surface, it 
can significantly influence the observable poloidal field, both in terms of its amplitude, and seasonal 
variations.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

It is well known that the movement of the oceans through 
the Earth’s main magnetic field generates the secondary, motion-
ally induced magnetic field (Sanford, 1971). On a global scale, the 
ocean flows and their corresponding induced magnetic signatures 
can be divided in two distinct classes (Kuvshinov, 2008). The tidal 
flows are driven by the gravitational attraction of the Sun and 
the Moon. The individual tidal constituents are manifested at dis-
crete frequencies related to the movements of the celestial bodies, 
although compound tides spurred by non-linear ocean dynamics 
are also present (Einšpigel and Martinec, 2017). Due to the vol-
ume character of the external gravitational force, the tidal flows 
have little vertical stratification, and therefore are often modelled 
in the barotropic approximation. A number of studies have been 
dedicated to the tidally induced magnetic fields, including their ob-
servation on ground observatories (Maus and Kuvshinov, 2004), by 
low-orbit satellite missions CHAMP (Tyler et al., 2003) and Swarm 
(Sabaka et al., 2016), and in sea surface measurements (Lilley et al., 
2004). Recently, Grayver et al. (2016, 2017) have used the M2 tidal 
signals to constrain the electrical conductivity at the lithosphere–
asthenosphere boundary. The toroidal magnetic field generated by 
tidal signals has been modelled by Dostal et al. (2012) in the case 
of spherically symmetric Earth.

The global ocean circulation, on the other hand, has very dif-
ferent spatio-temporal characteristics. Driven by wind stresses and 
heat fluxes on the ocean surface, the horizontal components of 
the flows possess a significant vertical gradient and the vertical 

* Corresponding author.
E-mail address: velimsky@karel.troja.mff.cuni.cz (J. Velímský).

flows are non-negligible. Their time variations are manifested on 
seasonal and longer time scales, and the numerical modelling is 
often based on the three-dimensional (3-D) baroclinic approach 
(Stewart, 2008). Such flows are capable of generating both the 
poloidal and toroidal magnetic fields. In addition, the lateral con-
ductivity variations can lead to the energy exchange between the 
magnetic modes. The toroidal field vanishes above the ocean sur-
face, where its presence can be detected only indirectly according 
to how it affects the observable poloidal field. However, it is ex-
pected to reach local values of up to 100 nT in the ocean, cf. the 
equation E.1 in Tyler et al. (2017) for analytical derivation, or the 
measurements of the magnetic field vertical gradient by Lilley et al. 
(2001). The observable ocean-induced poloidal magnetic field on 
the ocean surface can reach amplitudes of several nT, with largest 
values present in the area of the wind-driven Antarctic Circumpo-
lar Current (ACC) (Kuvshinov, 2008; Irrgang et al., 2016).

The observations of the magnetic field induced by the global 
ocean circulation have the potential to be used as a constraint 
when examining the spatio-temporal dynamics of the oceans 
(Tyler et al., 1997b; Vivier et al., 2004). A number of studies 
have, therefore, been concerned with the forward modelling of 
the ocean-induced magnetic field (e.g., Sanford, 1971; Chave and 
Luther, 1990; Larsen, 1992; Tyler et al., 1997; Manoj et al., 2006). 
However, none of the studies used a complete 3-D description 
of both the electrical conductivity distribution and the velocity 
flows. Typically, one-dimensional integration from the seabottom 
to the ocean surface is applied, yielding a simplified, quasi two-
dimensional problem, and smearing the effect of vertical stratifi-
cation of the horizontal flows. As we will demonstrate here, this 
can have important consequences for the modelling of the toroidal 
component of the magnetic field in the ocean (Lilley et al., 1993, 
2001).

https://doi.org/10.1016/j.epsl.2018.12.026
0012-821X/© 2019 Elsevier B.V. All rights reserved.
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Direct observations of the ocean-induced magnetic field are 
now also available from sea-bottom geomagnetic stations, e.g. in 
the northwestern Pacific (Toh et al., 2006; Toh and Hamano, 2015). 
While the static part of ocean circulation signatures is difficult to 
distinguish from the crustal field, the seasonal variations should be 
in principle detectable at suitable locations. For satellite data, the 
challenge is considerably higher due to the lower amplitudes of the 
surface field, and the geometric filtering of small-scale field struc-
tures. However, accurate modelling predictions could provide data 
corrections to improve the satellite-based crustal field models (Ku-
vshinov, 2008). To our knowledge, a thorough study of the toroidal 
magnetic field induced by large-scale three-dimensional flows in 
laterally and radially electrically heterogeneous oceans has not yet 
been performed.

In this paper, we concentrate on the calculation of the global 
toroidal magnetic field in the ocean interior, and the phenomenon 
of mutual interaction of the poloidal and toroidal modes through 
lateral conductivity variations. The paper is set up as follows. The 
electromagnetic induction (EMI) equation for arbitrary 3-D dis-
tribution of electrical conductivity and ocean flows is discussed 
in Section 2. Following the introduction of our large-scale ocean 
model and the EMI solver in Section 3, we demonstrate in Sec-
tion 4 the influence of the toroidal magnetic field on the observ-
able poloidal component by the direct comparison of numerical 
simulations where these effects are respectively included and ex-
cluded.

2. Poloidal–toroidal separation of the induced magnetic field

The magnetic field B(r; t) induced by the flow of conductive 
ocean water in the presence of the Earth’s main magnetic field 
B0(r; t) is described by the EMI equation,

μ0
∂ B(r; t)

∂t
+ curl

·
1

σ(r; t)
curlB(r; t)

¸

= μ0 curl [v(r; t) × B0(r; t)] . (1)

Here r = (r, ϑ, ϕ) is the position vector expressed in spherical co-
ordinates of radius, colatitude, and longitude, t is time, μ0 is the 
magnetic permeability of vacuum, σ(r; t) is the electrical conduc-
tivity, and v(r; t) stands for the flow velocity. The EMI equation 
is derived from the quasi-stationary Maxwell equations under the 
assumption that the main magnetic field is much larger than the 
induced field, yet it varies on a much longer time scale, and can 
be described by a scalar magnetic potential U0(r; t),

|B0| À |B| , (2)¯̄
¯̄∂ B0

∂t

¯̄
¯̄ ¿

¯̄
¯̄∂ B

∂t

¯̄
¯̄ , (3)

B0(r; t) = −gradU0(r; t). (4)

The equation (1) holds in the oceans as well as in the underlying 
lithosphere and mantle, where the flow of the conductive material 
occurs on geological scales, and for our purposes v = 0. In the in-
sulating atmosphere surrounding the Earth, the induced magnetic 
field is also described by a scalar magnetic potential U (r; t), with 
the continuity of all three field components imposed across the 
Earth’s surface r = a,

B(a,ϑ,ϕ) = −gradU (r,ϑ,ϕ)|r=a . (5)

The scalar magnetic potential U satisfies the Laplace equation,

1U (r; t) = 0 for r ≥ a, (6)

and, in the absence of external sources, it must vanish for r → ∞. 
We do not consider here the induction caused by external sources, 

i.e., the time variations of magnetospheric and ionospheric cur-
rents. Their induced fields also satisfy condition (2), and there-
fore represent an independent solution of the homogeneous form 
of equation (1), which combines linearly with the ocean-induced 
field.

The EMI equation (1) satisfies implicitly the divergence-free 
constraint on the induced magnetic field, when provided with a 
divergence-free initial condition. Therefore, the magnetic field vec-
tor can be decomposed into its poloidal and toroidal parts,

B(r; t) = BP(r; t) + BT(r; t), (7)

er · BT = 0, (8)

divBT = 0, (9)

er · curlBP = 0, (10)

divBP = 0, (11)

where er denotes the radial unit vector. The boundary condition 
(5) then implies that the toroidal field is zero at the surface, while 
the poloidal field contains only the contribution of the internal 
electric currents,

BT(a; t) = 0, (12)

B(ext)
P (a; t) = 0, (13)

where the external–internal field separation is achieved by ex-
panding the scalar potential U into spherical harmonic series 
(Velímský and Martinec, 2005).

Since the curl operator converts the poloidal field into toroidal, 
and vice versa (Varshalovich et al., 1989), we can split the EMI 
equation into its toroidal and poloidal parts,

μ0
∂ BT

∂t
+

·
curl

µ
1

σ
curlBT

¶¸
T

= μ0 [curl (v × B0)]T −
·

curl

µ
1

σ
curlBP

¶¸
T
, (14)

μ0
∂ BP

∂t
+

·
curl

µ
1

σ
curlBP

¶¸
P

= μ0 [curl (v × B0))]P −
·

curl

µ
1

σ
curlBT

¶¸
P
. (15)

The equation (14) contains the diffusion terms for toroidal field 
on the left-hand side. In the absence of sources, its solution is zero 
everywhere due to the boundary condition (12). The first term on 
the right-hand side involves the poloidal part of the Lorentz force 
v × B0 acting on a unit charge, or the toroidal part of its rota-
tion. The second term describes the conversion from the poloidal 
induced field through the lateral variations of electrical conductiv-
ity. It is identically equal to zero if σ is only a function of radius r. 
Note that even in the presence of sources, the boundary condition 
(12) still holds, and the toroidal field is not directly observable at 
the Earth’s surface. However, it can be measured inside the ocean, 
or at the seabottom.

A similar analysis applies to the equation (15) describing the 
diffusion of the poloidal field. Without any internal sources on 
the right-hand side, and without the external sources in the 
boundary condition (13), the poloidal field is zero. The right-hand 
side contains two terms responsible for poloidal field generation: 
the toroidal component of the Lorentz force converted into the 
poloidal component of its rotation, and the contribution from the 
induced toroidal field conveyed by means of laterally heteroge-
neous conductivity.
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Fig. 1. Snapshots of ocean flow velocities on December 31, 2014. The individual rows correspond to different depths, while the radial, meridional and zonal components are 
shown in the columns from left to right. (For interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)

How large is the poloidal and toroidal source stemming from 
the Lorentz force? Under the assumption of incompressible ocean 
flow, we can write

curl (v × B0) = B0 · gradv − v · gradB0. (16)

Let us further assume as a first-order approximation that the main 
field is represented by an axial dipole with magnetic momentum 
4πγ /μ0,

B0 = γ

µ
2 cos ϑ

r3
er + sinϑ

r3
eϑ

¶
, (17)

and the velocity field is dominated by the zonal toroidal compo-
nent,

v = vϕeϕ,
∂vϕ

∂ϕ
= 0, (18)

where eϑ and eϕ are respectively the meridional and zonal unit 
vectors. Then the rotation of the Lorentz force,

curl (v × B0) = γ

r3

µ
2 cosϑ

∂vϕ

∂r
+ sinϑ

r

∂vϕ

∂ϑ
− 3 cos ϑ

r
vϕ

¶
eϕ

(19)

is also a zonal toroidal field. In the polar areas, it is dominated 
by the first term which depends on the radial derivative of the 
zonal flow. The meridional derivative of the zonal flow is impor-
tant in the equatorial area, however, it is downscaled by 1/r ≈ 1/a
factor, as is the last term depending on vϕ . Obviously, the spatial 
structure of the Lorentz forcing will become much richer by incor-
porating also the meridional and vertical flows, and using a more 
detailed description of the main magnetic field. Nevertheless, in 
the presence of vertical stratification of zonal flows, there will al-
ways be a substantial forcing contributing to the generation of the 
toroidal induced magnetic field. This is basically the ω-effect, well 
known in the classical dynamo theory (Roberts, 1992).

How does the toroidal field influence the generation of the 
observable poloidal field? We can carry out a similar first-order 
analysis by assuming that

BT = Bϕeϕ,
∂ Bϕ

∂ϕ
= 0. (20)

The radial component of the second term on the right-hand side 
of equation (15) then becomes,
·

curl

µ
1

σ
curlBT

¶¸
r
= 1

r3 sinϑ

∂

∂ϕ

µ
1

σ

¶
∂

¡
rBϕ

¢
∂r

. (21)

Similar formula can be derived for the meridional part, depending 
on the meridional gradient of the zonal magnetic field. We see 
that the conversion of the toroidal to poloidal field is intensified in 
the polar areas through the 1/ sin ϑ factor, and it is pronounced in 
the areas where the vertical stratification of zonal magnetic field 
couples with a significant zonal gradient of electrical conductivity.

3. Modelling setup

We use the recently developed 3-D z-coordinate baroclinic 
ocean model LSOMG to calculate the ocean flows forced by the 
wind stresses and heat fluxes derived from ERA-Interim data (Dee 
et al., 2011). A more detailed description of the model is provided 
in the Supplementary material. We run the model with 1◦ hori-
zontal resolution and for 11 vertical layers. The model reaches a 
quasi equilibrium after the spin-up period of 20 yr. In this paper, 
we use the predictions of the ocean flows for year 2014.

Fig. 1 shows the cross-sections of the velocity field at three dif-
ferent depths as predicted by our model on December 31, 2014. 
The horizontal velocities in the LSOMG model are several orders of 
magnitude larger than the vertical velocities. The maximum hor-
izontal velocities measured in the real ocean are up to 1–2 m/s, 
with common values of one or two orders of magnitude smaller. 
The measured vertical velocities reach 10−3 m/s in the restricted 
regions of deep water formation and 10−4 m/s in the regions 
of Equatorial upwelling, the common values are smaller though 
(Liang et al., 2017). The magnitudes of measured ocean velocities 
and velocities computed by the LSOMG model are thus in a good 
agreement. Since the ocean forcing is applied to the ocean surface, 
the surface (horizontal) velocities are the largest and the veloci-
ties in deep waters are significantly smaller. The upper and lower 



50 J. Velímský et al. / Earth and Planetary Science Letters 509 (2019) 47–54

Fig. 2. Electrical conductivity model used in our study. The 1-D profile of the mantle conductivity (Püthe et al., 2015) is shown on the left. The right-hand panel shows three 
cross-sections of the ocean and continental conductivities at the depths of 0, 1840 and 3530 m.

parts of the ocean are linked together via the advection, diffusion 
and friction processes. The surface velocities are dominated by the 
Equatorial and boundary currents, and the Antarctic Circumpolar 
Current (ACC).

In order to calculate the magnetic field induced by the ocean 
flow model LSOMG, we employ the time-domain, spherical har-
monic-finite element approach to the EM induction equation with 
3-D distribution of electrical conductivity (Velímský and Martinec, 
2005) that has been recently modified to include the internal 
sources described in equation (1). The use of the vector spher-
ical harmonic base (Varshalovich et al., 1989) to represent the 
magnetic field vector B implicitly comprises the separation of the 
poloidal and toroidal components. Our model uses the same 11 
ocean layers as the LSOMG model, the lateral resolution is trun-
cated at spherical harmonic degree 60. The 3-D electrical con-
ductivity of the oceans is assembled from the temperatures and 
salinities provided by the World Ocean Atlas 2013 (Locarnini et 
al., 2013; Zweng et al., 2013), using an empirical formula (Apel, 
1987). The seasonal variations of the ocean electrical conductivity 
are neglected. We have not yet implemented the recent improved 
conductivity map by Tyler et al. (2017), however, we believe that 
the differences in the large-scale induced fields would be negligi-
ble. For continental conductivity, we have followed the approach 
by Everett et al. (2003), combining the thicknesses of continen-
tal and oceanic sediments, and igneous rocks, with a-priori fixed 
conductivity values. Three cross-sections of oceanic and continen-
tal conductivity at different depths are shown in the right-hand 
panels of Fig. 2. In the Earth’s mantle, we have used a global 1-D 
conductivity model derived from satellite measurements (Püthe et 
al., 2015), which is shown in the left-hand panel of Fig. 2. Our 
modelling domain also includes the Earth’s core with conductivity 
of 105 S/m. The time evolution of magnetic field is started from a 
stationary solution of equation (1) using a three-year spin-up in-
terval.

4. Results

This paper aims to answer two questions concerning the global 
toroidal magnetic field induced in the Earth’s oceans. First, what 
is its amplitude and spatial distribution, and second, how it is 
pronounced in the directly observable poloidal field at the Earth’s 
surface.

The answer to the first question is presented in Fig. 3, which 
shows a snapshot of magnetic field components from December 
31, 2014 at the Earth’s surface, at the depth of 1840 m, where 
the amplitude of toroidal field is at its peak, and at the depth 
of 3530 m, corresponding to the average ocean depth. The hori-
zontal components of the toroidal and poloidal fields are plotted 
separately. At the Earth’s surface, the toroidal field vanishes, as 
required by the boundary condition (12). However, in the deep 
ocean, the amplitude of the toroidal field, especially its zonal com-
ponent, as shown in the rightmost column, is almost one order of 
magnitude larger, than that of the poloidal field. The most pro-
nounced feature, as anticipated by the zonal flow structure in 
Fig. 1 and the equation (19) is the eastward ACC signature. Sig-
nificant zonal toroidal fields, comparable in amplitude with the 
poloidal component, are also present throughout the Pacific, At-
lantic and Indian oceans with eastward direction prevailing just 
north of the equator, and westward direction prominent south of 
the equator and again in the mid-latitude region of the northern 
hemisphere. The toroidal meridional component (second column 
from the right) points mostly to the north in the Atlantic and 
Pacific oceans. In the Southern Ocean, its spatial variations are in-
fluenced by the small-scale variations of the zonal field through 
the divergence-free condition. The radial magnetic field shown in 
the left column is almost invariable with depth. It is dominated 
by the ACC signature, with largest signals present in the Southern 
Ocean, Southern Pacific, and Southern Indian Oceans. Its spatial 
structure and amplitude agree well with the predictions of OC-
CAM and ECCO circulation models obtained by Manoj et al. (2006)
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Fig. 3. Snapshots of the induced magnetic field on December 31, 2014 for the full solution. Each row corresponds to a different depth. The poloidal and toroidal parts of the field are shown separately, the individual columns from 
left to right display respectively the radial, poloidal meridional, poloidal zonal, toroidal meridional, and toroidal zonal components.
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Fig. 4. Snapshots of the induced magnetic field on December 31, 2014 for the decoupled solution. Ordering of the layers by rows and components by columns follows Fig. 3. Note that the colour scales in both figures are the same.
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Fig. 5. The power spectra of the induced magnetic field at the surface. In the left-hand panel, the annual geometric means for the full and decoupled runs are shown 
respectively by crosses and triangles. The geometric standard deviation intervals are marked by the red and blue bands. In the right-hand panel, the time evolution of degree 
3 power for both models in 2014 is shown.

(as shown in Fig. 36 in Kuvshinov, 2008). On the other hand, the 
poloidal horizontal field, shown in the second and third columns 
of Fig. 3 reverses its sign between the surface and the 1840 m 
depth. This is a direct consequence of the concentration of hori-
zontal fluxes and corresponding horizontal electric currents in the 
shallower parts of the ocean.

In order to answer the second question, we have performed an 
alternate calculation, that we refer to as decoupled, to distinguish 
it from the full solution discussed above. In the equations (14) and 
(15), the terms on the right-hand sides responsible for the en-
ergy exchange between the toroidal and poloidal modes through 
lateral conductivity variations are removed. Therefore, the toroidal 
and poloidal fields are independent solutions of their correspond-
ing governing equations, powered solely through the poloidal and 
toroidal components of the Lorentz force, respectively. The re-
sults of the decoupled model are shown in Fig. 4. The compar-
ison with Fig. 3 gives us a direct insight into the effect of the 
poloidal–toroidal field conversion. In the decoupled model, both 
the toroidal and poloidal fields are significantly reduced in ampli-
tude. The large-scale spatial features of the fields are preserved, 
including the overturn of the horizontal poloidal field direction in 
the deep ocean. However, many small-scale patterns are lost in 
both the poloidal and toroidal fields.

Another comparison of the full and decoupled models is pro-
vided by means of power spectra in Fig. 5. Here we show the 
average energy of the observable poloidal magnetic field at the 
Earth’s surface as a function of spherical harmonic degree. The 
annual geometric means from 2014 are shown together with the 
geometric standard deviations corresponding to the temporal vari-
ations within year 2014. The full solution has approximately three 
times larger total energy of the observable field at the Earth’s sur-
face than the decoupled solution. While the relative time variations 
of the power spectra look similar on the log scale, in absolute 
terms the time variations of the full model are more pronounced, 
as shown in the right-hand panel of Fig. 5 for degree 3.

5. Conclusions

We have calculated one year of magnetic signatures of global 
Earth’s ocean by solving the 3-D EMI equation with realistic con-
ductivity distribution of the Earth’s oceans, lithosphere, and un-
derlying mantle, and using vertically stratified 3-D ocean flows 
predicted by a state-of-the-art baroclinic ocean model LSOMG. In 
particular, we have demonstrated that the global toroidal field in-
duced by differential zonal velocities reaches the values of up to 
15 nT at the depth of 1800 m and in the vicinity of the ACC. This 
is almost one order of magnitude larger than the poloidal field. 
The direct observability of toroidal magnetic field at sea-bottom 
observatories remains an open question. We predict the seasonal 

variations of toroidal field in the order of units of nT, a value pos-
sibly detectable by the modern sea-bottom equipment. However, 
to our knowledge, no such observatory has been yet deployed in 
the area of ACC, where maximum amplitudes can be expected.

We have also quantified the effect of the energy exchange be-
tween the toroidal and poloidal fields through lateral conductivity 
variations. The toroidal field, while invisible on the Earth’s sur-
face, has a substantial effect on the observable poloidal component. 
When the toroidal field is omitted, the power of the poloidal field 
is about three times smaller with reduced spatial and temporal 
variability.

In general, in the case of global ocean circulation the 3-D mod-
els incorporating the full physics of the EMI equation should be 
used for the accurate prediction of the motionally induced mag-
netic field within the oceans.
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