
Summary of doctoral thesis

Libor Šachl
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DrSc.

Study programme: Physics
Study branch: Geophysics

Prague 2020





Autoreferát dizertačńı práce
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Introduction
The ocean modelling community commonly use several renown ocean general
circulation models (OGCMs) such as NEMO, MOM and FESOM. These models
have been developed by research groups for many years, which resulted in complex
mathematical and numerical algorithms. There are geophysically relevant prob-
lems, such as the glacial isostatic adjustment, in which the global ocean plays
an important role. Ocean circulation does not need to be modeled extremely
complex, but other phenomena such as time changing geometry of ocean domain
needs to be considered. Geophysical applications motivated us to develop a new
OGCM called LSOMG. The LSOMG model is not meant to substitute the ex-
isting OGCMs but to provide a modelling framework for geophysical rather than
purely oceanographic applications. LSOMG is a 3-D baroclinic ocean model fully
parallelized using the MPI standard. It is forced by atmospheric fluxes (wind
stresses, heat fluxes, etc.) but also by tides. The model can be run in a simplified
2-D barotropic version if 3-D effects can be neglected. LSOMG was tested in a
series of simplified barotropic numerical tests: the tsunami and tidal numerical
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tests and the Munk problem. In the full baroclinic version, we tested the genera-
tion of the Ekman layer and the advection of tracers. Finally, we present realistic
wind and tidally driven ocean circulations computed by the LSOMG model.

The second part of the thesis is devoted to the study of ocean-induced mag-
netic field (OIMF). The ultimate goal is to extract information about the ocean
circulation from the observed OIMF, e.g., by Swarm satellites, and assimilate
it into an OGCM. However, it is a challenging task since the OIMF has small
amplitudes of about 2 nT maximum at Swarm altitudes. It is overlaid by the
main, ionospheric and magnetospheric magnetic fields that are several orders of
magnitude larger. We thus focus on the precision of forward modelling and study
the impact of physical and numerical approximations. Namely, we inspected the
impact of galvanic coupling, vertical stratification of ocean flow and electrical con-
ductivity, self-induction and horizontal resolution on the numerically predicted
OIMF. Another possibility is to use localized magnetic measurements at the sea
bottom instead of satellite data. Consequently, we studied the toroidal magnetic
field inside the ocean using fully 3-D versions of both LSOMG and the magnetic-
induction solver ElmgTD. The toroidal magnetic field is zero at the surface but
it is significant inside the ocean. According to our computations, its magnitude
can reach 15 nT, i.e., it is about one order of magnitude larger than the OIMF
at satellite altitudes.

1 Ocean model LSOMG

1.1 Motivations and requirements
Our motivation for the development of the LSOMG model was the intention to
have an OGCM that is

• a global primitive-equation ocean model

• fully 3-D not only barotropic and thus it is capable of generating the 3-D
distribution of 3-D velocities (important, for example, for the modelling of
toroidal magnetic field in the ocean)

• open for modifications

• understood on a code level by our group

• usable for geophysical purposes, such as modelling the ocean induced mag-
netic field

We have chosen the LSG ocean model which was developed at the Max–Planck–
Institut für Meteorologie in Germany. The main reason for our choice was the
model designation for large-scale long-term simulations, for example, climate
studies. Such model is certainly not suitable for regional studies of eddy activity
but its complexity could be sufficient for the geophysical applications. On top of
that, a simplified numerical core implies faster computations and a light-weight
tool for the user/programmer.

The model fulfils our first and second requirements. The third requirement
is also fulfilled. We obtained the LSG code from Dr. Butzin and we were free to
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modify it. The fourth requirement is fulfilled only partly. The model is described
in Maier-Reimer and Mikolajewicz [1992]. The text is meant to be the LSG
manual but it is incomplete. The code is not commented frequently either, which
makes its understanding difficult. The fifth requirement is invalid. It turned
out during the development that the LSG model is obsolete. We have gradually
rewritten the whole code with the exception of several parts, such as the advection
scheme QUICK or the sea-ice model. The major modifications are summarized
in Sec. 1.2 and in Table 1. As a consequence, we call the resulting model LSOMG
since the original acronym LSG is now inaccurate and misleading. The LSOMG
is the shortcut for the “Libor Sachl Ocean Model for Geophysics”.

Note that the LSOMG model is fully 3-D but it can also be run in a barotropic
version. We call this version LSOMG-BT. It can be used to test the barotropic
part of the LSOMG model, see Sec. 1.5, or to model the tidal circulation, see
Sec. 1.6.

1.2 Summary of differences between the LSG and LSOMG
models

Both the LSG and LSOMG models discretize the governing equations using the
finite difference method. The LSG model uses the Arakawa E-grid while the
LSOMG model is build on the Arakawa C-grid. The main motivation to switch
from the E-grid to C-grid was to avoid the coexistence of two solutions that
evolve independently of each other on the E-grid . A more natural treatment of
boundary conditions and simpler indexing of grid points are additional advan-
tages. Barotropic LSOMG-BT supports also Arakawa grids B and E for certain
time stepping schemes as an alternative to the default C-grid.

The governing equations in the LSG model are expressed in the spherical
coordinates. It is a valid option but it is not free of deficiencies, as discussed
in Sec. 2.2 of the thesis. In the LSOMG model, we rather implemented the
governing equations in their general form using the metric coefficients of the
particular coordinate system. Consequently, the LSOMG model is able to handle
arbitrary orthogonal horizontal coordinates. The suitable coordinate grids are
listed in Sec. 2.2 of the thesis. There are three generalized grids available in the
LSOMG model: the dipolar grid of Roberts et al. [2006], the tripolar confocal
grid of Murray [1996] and the tripolar reprojected grid of Murray [1996] which
we prefer. Note that apart from the general forms of operators in the model, the
programs that regrid data on the computational grids also need special attention.
We calculate the model bathymetry by averaging data values within model grid
cells which requires an algorithm to determine the position of data point with
respect to the particular grid cell. Besides that, vector data such as 10-m wind
speed need to be rotated into the direction of coordinate axes of the chosen
coordinate system.

The ad-hoc choice of vertical layers in the LSG model has been replaced
by a semi-automatically generated distribution of vertical layers in the LSOMG
model. The distribution is determined from a prescribed smooth distribution
of level depths and thicknesses. The scheme is not fully automatic because it
contains one tunable parameter.

The original LSG model propagates the barotropic part of the momentum
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equation in time using the implicit time stepping scheme. The implicit scheme
allows to step the model forward in time with a significantly larger time step than
the explicit scheme. On the other hand, the implicit scheme requires to solve a
system of linear equations in each time step. Our primary goal was to model the
wind- and buoyancy-driven ocean circulation but we also intended to force the
model by tides. The accurate tidal modelling requires the time step to be “small
enough” to resolve the tidal periods. The period of principal lunar semidiurnal M2
tide is approximately 12.4 hours, which means that a tidally-driven model needs
to resolve much finer time scales than a purely wind-driven model. The implicit
time-stepping scheme with a short time step could become time consuming due
to the need to repeatedly solve the system of linear equations. The explicit
time-stepping scheme is thus better suited for the tidal modelling. Several time-
stepping schemes for the barotropic system are available in the LSOMG model,
see Sec. 1.3.

The vertically dependent baroclinic forcing in the original LSG model includes
pressure gradient and horizontal friction force while the vertical friction force
and nonlinear terms are neglected. Both terms are now available. The nonlinear
terms are expressed either in the vector invariant form or in the flux form. The
implementation follows Madec [2012]. The vertical friction arises from the vertical
shears of horizontal velocities. The term is discretized implicitly in time to ensure
stability even for large vertical eddy viscosity.

The horizontal friction force has already been present in the LSG model, how-
ever, its implementation has been improved. The LSG models uses the horizontal
friction in the form of a Laplacian. The LSOMG model retains this option but a
more appropriate form given by Murray and Reason [2001] is also available. Sim-
ilarly, horizontal viscosities are constant in LSG but LSOMG enables viscosities
which adapt according to the actual velocity field [Smagorinsky, 1963, 1993].

The form of diffusion operator has also been improved. There are two op-
tions available for the tracer diffusion operator at present. It is either the orig-
inal Laplacian operator or the epineutral (isopycnal) operator. The Laplacian
is a somewhat ad-hoc form, on the contrary, the epineutral operator is based
on oceanographic measurements and observations and it is thus physically justi-
fied. The implementation of epineutral operator is based on the triad algorithm
of Griffies et al. [1998] with modifications introduced by Madec [2012] and it is
combined with the parameterization of tracer stirring by mesoscale eddies.

The surface heat fluxes are represented by a simple relaxation towards the
prescribed distribution of sea surface temperature in the LSG model. This op-
tion is retained in the LSOMG model but it is supplemented with more realistic
bulk formulas for shortwave, longwave, sensible and latent heat fluxes. The bulk
formulas of Kara et al. [2002], Kondo [1975] and Large and Yeager [2004] are
available.

The tidal forcing is expressed in the form of a gradient of the second-degree
tidal potential. The implementation is adopted from the DEBOT model. The
LSOMG also includes parameterizations of two important physical phenomena:

• The internal wave drag caused by the breaking of internal tidal waves. The
parameterization of Jayne and St. Laurent [2001] has been implemented.

• The change of gravity field due to the effect of self attraction and loading
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(SAL). The scalar approximation of SAL has been implemented into the
LSOMG model.

New tracer advection schemes have been implemented to the LSOMG model.
The original QUICK scheme from the LSG model has been supplemented (re-
placed) with three schemes with flux limiters: The Lax-Wendroff scheme, third-
order direct space time scheme [Adcroft et al., 2014] and the scheme of Smith
et al. [2010]. The splitting method of Adcroft et al. [2014] has been implemented
to handle the multidimensional tracer advection.

The original EOS-80 state equation [UNESCO, 1981] has been replaced by
the state equation of [Jackett et al., 2006]. The initial potential temperature
distribution is obtained from the in-situ temperature distribution following the
method of McDougall et al. [2003].

The convective adjustment scheme used in the LSG model checks the stability
of a water column from top to bottom and if instability is found, the scheme
mixes the content of two neighbouring grid cells. The procedure is finished when
it reaches the bottom cell, it is not repeated. It is a simple and computationally
favourable scheme but it does not guarantee to stabilize an unstable water column.
The LSOMG model thus employs a scheme of Rahmstorf [1993] which truly
guarantees to stabilize an arbitrary unstable water column.

The LSG ocean model is coded in the old fashioned way in FORTRAN 77 with
common blocks and static arrays. The LSOMG model is coded in Fortran 90 with
modules and allocatable arrays.

The LSG ocean model is not parallelized at all and it does not utilize any
numerical library (e.g., a system of linear equations is solved using a hand-made
Gaussian elimination without pivotation). The LSOMG model is parallelized
using the MPI standard and it benefits from the sophisticated Intel MKL library
if certain parts of the model are active.

The Coriolis term is discretized implicitly in the LSG ocean model. It increases
the model stability at no additional computational costs. On the contrary, the
discretization of the Coriolis term in both space and time is a delicate issue on the
Arakawa C-grid. The Coriolis term in the LSOMG model is discretized using the
Adams-Bashforth method in time and there are several spatial schemes available.
However, none of the discretizations is completely free of the grid-scale noise. In
order to remedy this problem, we implemented the divergence damping and the
dual-step five-point-involved spatial smoothing method of Han [2014] into the
LSOMG model.

For the reader’s convenience, we summarize the key differences between the
LSG and LSOMG models in Table 1.

1.3 Barotropic LSOMG-BT model

The LSOMG-BT model is the barotropic version of the LSOMG model. The
governing equations of the barotropic ocean model are the so-called shallow water
equations (SWE), see Einšpigel and Martinec [2015] for their detailed derivation.
SWE can be expressed in two equivalent forms, the flux form and advective form
[Williamson et al., 1992]. The advective form expressed in the barotropic velocity
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LSG LSOMG
Horizontal grid Arakawa E grid Arakawa C grid

Horizontal coord. spherical generalized
Vertical grid manually generated semi-auto generated

Time stepping no splitting, collocated splitting, staggered
Barotropic part implicit explicit (PC, FBgen)
Horiz. friction “rotated” Laplacian Laplacian, “full” form
Vert. friction no yes (explicit, implicit)

Nonlinear terms no yes (2 formulations)
Isopycnal mixing no yes

GM stirring no yes
State equation UNESCO [1981] Jackett et al. [2006]
Tidal forcing no yes (from DEBOT)
Heat fluxes relaxation relaxation, bulk formulas

Tidal parameterizations no yes
Advection scheme QUICK QUICK, LW, DST3

Coriolis term implicit Adams-Bashforth
Convective adj. one sweep [Rahmstorf, 1993]
Programming FORTRAN 77 Fortran 90
Parallelization no MPI, (OpenMP)

Table 1: Summary of major differences between LSG and LSOMG models. See
the main text for more details. PC = predictor-corrector, FBgen = generalized
forward-backward, LW = Lax-Wendroff, DST3 = third-order direct space time

ū is

ū,t + ū · ∇hū + fe3 × ū + g∇hη = F, (1)
η,t + ∇h · (hū) = 0, (2)

the flux form expressed in the vertically integrated transport U = hū is

U,t + ∇h ·
(U ⊗ U

h

)
+ fe3 × U + gh∇hη = hF, (3)

η,t + ∇h · U = 0, (4)

where f = 2Ω sin φ is the Coriolis parameter, where Ω is the angular velocity of
the Earth’s rotation and φ is the latitude, e3 is the unit vector parallel to the
local vertical direction, g is the gravitational acceleration, η is the sea surface
height (SSH), h is the water-column height, F is the forcing, a,t denotes partial
derivatives of a with respect to time and ∇h is the two-dimensional (2-D) hor-
izontal gradient operator. In the LSOMG-BT model, F contains the horizontal
friction F(u)

H , bottom friction τb, wind stress τw and tidal forcing Ftid,

F = F(u)
H − τb

h
+ τw

ρ0h
+ Ftid, (5)

where ρ0 is the constant reference density.
The LSOMG-BT model neglects nonlinear advection in the momentum equa-

tion which is represented by the second term on the left-hand side of Eqs. (1)
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and (3). As already mentioned in Sec. 1.1, the expected usage of LSOMG-BT is
either testing of the barotropic part of the full LSOMG model or modelling of
barotropic tidal circulation. Considering the first case, the nonlinear advection
terms are computed in the baroclinic part of the model and then inserted into
the barotropic part as the vertically integrated baroclinic contribution. Consid-
ering the second case, the linear SWE are commonly used in the barotropic tidal
models. The nonlinearities become important in shallow coastal regions but on
the deep ocean they can be neglected.

The governing equations are discretized using the finite difference method in
the LSOMG-BT model. Spatial derivatives are approximated using the centered
differences on Arakawa grids [Arakawa and Lamb, 1977]. We consider either free-
slip or no-slip boundary conditions. The LSOMG-BT model supports Arakawa
grids B, C and E. We apply free-slip boundary conditions on the Arakawa grid C
and no-slip boundary conditions on Arakawa grids B and E. Free-slip boundary
conditions (or its modification) are probably more appropriate, however, Griffies
and Hallberg [2000] refer that a natural formulation of free-slip on the B-grid does
not exist. The grid configuration affects the design of the numerical schemes and
their performance as we will discuss later.

The LSOMG-BT model provides four time-stepping schemes: The Euler im-
plicit scheme (IMP), the modified Crank-Nicolson (CNmod) scheme [Campin
et al., 2004], the forward-backward (FB) scheme [Gadd, 1974, Mesinger, 1977]
(or its modification the predictor-corrector (PC) scheme) and the generalized
forward-backward (FBgen) scheme [Shchepetkin and McWilliams, 2005, 2008].
However, the total number of spatio-temporal configurations available in the
model is not 3 × 4 since some schemes are applicable at particular spatial grids
only. The available model configurations are FB on the grid B, FB (or PC),
FBgen and CNmod on the grid C and FB (or PC) and IMP on the grid E.

The model is forced by the wind blowing over the ocean surface and tides.
The wind stress is calculated from the wind velocity at 10 m height. We use
the bulk formula of [Trenberth et al., 1990, Timmermann et al., 2009]. The tidal
force is expressed in terms of the second-degree tidal potential V2. We consider
the gravitational attraction of two celestial bodies, the Moon and the Sun. Their
positions are found at each time step by the package of subroutines NOVAS F3.1
provided by the U.S. Naval Observatory [Kaplan et al., 2011].

The SWE in the barotropic tidal model needs to be supplemented with the
self-attraction and loading term τsal and the internal wave drag term τiwd. The
self attraction and loading (SAL) describes the change of gravity field due to the
deformation of the Earth’s surface when the load is applied, due to the displace-
ment of the Earth’s masses when the load is applied and due to the self-gravitation
of the load itself [Hendershott, 1972]. The LSOMG-BT model uses the so-called
scalar approximation of SAL [Accad and Pekeris, 1978] in which τsal is propor-
tional to the SSH gradient,

τsal = βsg∇η. (6)

The coefficient βs may in principle be spatially dependent but it is a constant in
the LSOMG-BT model.

In the process of tidal dissipation, a part of the tidal energy is transferred
from the barotropic to baroclinic tides. The baroclinic tides then propagate in the
ocean interior in the form of internal waves and they are losing their energy when
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breaking on rough topography. The τiwd term has the form of a linear friction
and so it is called the “internal wave drag” (IWD) or the “internal tide drag”.
The LSOMG-BT model implements the IWD scheme of Jayne and St. Laurent
[2001]

For further details about the LSOMG-BT model, we refer to Sec. 4 of the
thesis.

1.4 Baroclinic LSOMG model
The LSOMG model solves the primitive equations under the Boussinesq and
hydrostatic approximations,

u,t + ∇ · (v ⊗ u) + Me3 × v = −fe3 × v − ∇hp

ρ0
+ F(u), (7)

p,z = −ρg, (8)
∇ · v = 0, (9)

C,t + ∇ · (vC) = −∇ · F + SC , (10)
η,t = −∇h · U + qw, (11)

where v = u + we3 is the complete velocity vector, u is the horizontal velocity
vector, w is the vertical velocity, M is the advective metric frequency, p is the
pressure, ρ is the density of water, C is the tracer (temperature or salinity), F(u) is
the friction force, F is the turbulent tracer flux, SC is the volume source of tracer
C, qw is the surface water flux, a,z denotes partial derivative of a with respect to
the vertical coordinate z and ∇ is the three-dimensional (3-D) gradient operator.

We use the following boundary conditions at the surface,

w = η,t − qw, (12)

qwu + AV u,z = qwuw + τw

ρ0
, (13)

p = 0, (14)
qwC − F · N = qwCw − Vpiston

(
C1 − Cdata

)
+ Qturb,0

C , (15)

at the bottom,

w = 0, (16)
AV u,z = τb, (17)
F · N = 0, (18)

and at lateral boundaries,

u · N = F(u) · N = F · N = 0, (19)

where qw is the surface water flux, AV is the non-negative vertical viscosity, Vpiston

is the piston velocity, C1 is the tracer concentration in the ocean surface layer,
Cdata is data prescribed tracer concentration, Qturb,0

C is the turbulent flux from
data or another model and N is the normal to the particular boundary.

The ocean bathymetry is derived either from GEBCO [IOC, IHO and BODC,
2003] or ETOPO1 [Amante, 2009] data. The initial and surface temperature and
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salinity distributions are taken from the World Ocean Atlas 2013 [Locarnini et al.,
2013, Zweng et al., 2013]. We use ERA-Interim [Dee et al., 2011] atmospheric
data by default but we also tested CORE-II data [Large and Yeager, 2009].

It is beyond the scope of this summary to discuss the LSOMG model features
in detail. We refer the interested reader to Sec. 5 of the thesis.

1.5 Tsunami and tidal numerical tests
The following study is published as a paper Šachl et al. [2020]. It is a result of
cooperation with my colleague David Einšpigel, the author of the DEBOT model.

1.5.1 Introduction

The performance of hydrodynamic tidal models is limited by several factors such
as the IWD, SAL, bottom drag coefficient, bathymetry precision and other nu-
merical issues (e.g. splitting of tidal and non-tidal velocities and splitting of the
barotropic and baroclinic systems). The study of Stammer et al. [2014] con-
firms that the accuracy of purely (no-data constrained) hydrodynamic barotropic
models is significantly lower than the accuracy of assimilative models that are
constrained by data. This means that if a pure hydrodynamic barotropic model
is tested against real data, a bug in the numerical model may not be found. A
simplified numerical test would be useful but it was not available.

Therefore, we propose a set of numerical tests suitable for a global OGCM
forced by tides. We use these tests to inspect the performance of several time step-
ping schemes and computational grids which are used in the state-of-art OGCMs.
Although the proposed numerical tests are simple compared to the realistic simu-
lations, their analytic solutions are not available. We thus check the conservation
of time invariants to ensure that the solution is physically meaningful. We also
compare the time evolution of certain physical quantities and the differences in
sea surface heights at particular time instants with respect to a reference solution.

1.5.2 Numerical setup

In total, six different configurations of the LSOMG-BT model are subject to the
tsunami TSU test and the tidal tests TIDa and TIDb. We test FB on the grid B,
FB, FBgen and CNmod on the grid C, and FB and IMP on the grid E, see
Table 2. Note that these configurations are used in the following OGCMs: C–FB
in MOM6 and HIM, C–FBgen in ROMS, C–CN in MITgcm, B–FB in MOM5,
and E–IMP in LSG.

The horizontal friction and bottom stress are set equal to zero in the numerical
tests, since we inspect the energy conservation and dissipative terms would violate
it. Besides that, neither SAL nor IWD parameterizations are used in the tests.
Both terms are needed for a realistic modelling of barotropic tides as discussed in
Sec. 1.3 but they are pointless in the simplified tests. Note that the contribution
of advection terms should not be significant in our numerical tests according to
the results of tests carried out by the full nonlinear DEBOT model.

The initial conditions in the TSU test are given by zero velocities over the
globe and a Gaussian-shape depression of the SSH with the maximum amplitude
of 100 m. The ocean bottom is mostly flat but there is a Gaussian-shape mountain
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Configuration Grid Time-stepping scheme Ocean model
C–FB C Forward-backward (FB) MOM6, HIM
C–FBgen C Generalized forward-backward (FBgen) ROMS
C–CN C Modified Crank-Nicolson (CNmod) MITgcm
B–FB B Forward-backward (FB) MOM5
E–FB E Forward-backward (FB) -
E–IMP E Euler implicit (IMP) LSG

Table 2: Model configurations considered in the numerical tests and ocean models
which use these configurations.

which arises from the ocean bottom. We prescribe two continents at the poles.
We prefer the quasi global to the fully global setup since many OGCMs solve
the problem of meridians converging at the North Pole by relocating coordinate
poles to continents, and these OGCMs would be unable to run the fully global
simulation. There is no external forcing, the only “forcing” in this test being the
nonzero initial conditions.

The initial conditions in TIDa and TIDb are homogeneous, i.e., velocities and
SSH are zero at time t = 0 s. The meridional boundaries are the same as in the
TSU test. The initial positions of the Moon and Sun are given by their positions
on January 1, 2015, 00:00:00 UTC. We apply space and time dependent tidal
forcing to the initially resting ocean in the successive time steps. The tidal tests
differ in their bathymetry and land-mask. In TIDa, the ocean bottom undulates
with four Gaussian-shape ridges. In TIDb, the ocean bottom is flat and we
prescribe a realistic land mask.

The spatial resolution of Arakawa grids B and C is chosen to be 0.5◦ for all
numerical tests. The 0.5◦ resolution is sufficient for testing, the results do not
change much when finer resolutions (1/3◦, 1/4◦) are used (not shown). The E-grid
resolution is chosen to be ∆λE = 3

2∆λC = 0.75◦.
The time step is chosen to be slightly below the Courant-number criterion

in order to keep simulations stable for explicit schemes. We use the time step
∆t = 15 s in all tests.

1.5.3 Results

The total volume of ocean water and potential-vorticity invariant are well con-
served in all tested schemes and numerical tests. The energy conservation is
violated in several model configurations. The implicit time-stepping scheme used
in one model configuration suffers from the energy leakage. The leakage reaches
70% and 18% of energy in the TSU and TIDa numerical tests, respectively. We
recommend not to use the implicit time-stepping scheme for tidally driven mod-
els, although the energy conservation is violated much less in the tidal numerical
test than in the tsunami numerical test. The B-grid and E-grid model configu-
rations do not conserve energy either if biharmonic smoothing of SSH is applied.
The energy leakage reaches 2.1% and 8.2% in TSU and 4.6% and 4.1% in TIDb in
B-grid and E-grid model configurations, respectively. It is probably an acceptable
energy leakage for a global tidal model since its realistic configuration contains
internal wave drag and bottom drag terms which are tuned to obtain realistic
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results. All C-grid schemes conserve energy successfully. Regarding the spheri-
cal harmonic expansion coefficients, the largest coefficients in the TIDa solutions
have degree l and order m equal to l = 2, m = 2 and l = 4, m = 2. The other
significant coefficients have even degrees, which is a plausible result for a tidally
driven numerical test.

There are differences between C-grid and B/E-grid solutions in all numerical
tests, see, e.g., Figs. 1 and 2. Comparisons of spatial patterns and time curves
show that discrepancies are more pronounced in the vicinity of domain bound-
aries as a consequence of different boundary conditions (free-slip and no-slip) and
shapes of rigid boundaries on different Arakawa grids. The most distinct dis-

(a) SSH, C–FB (b) SSH diff, B–FB (c) SSH diff, E–FB (d) SSH diff, E–IMP

Figure 1: Panel (a) shows SSH [m] computed in the TIDa numerical test using
the C–FB model configuration at day 13. The other panels show differences [m]
between the SSH at panel (a) and the SSH computed using model configurations
B–FB (b), E–FB (c) and E–IMP (d).

(0◦,0◦) (0◦,−20◦) (0◦,−60◦) (0◦,−80◦)

Figure 2: Time evolution of SSH at the chosen check points, see (λ, φ) above each
panel, in the TIDa numerical test computed using model configurations C–FB
(blue), B–FB (red), E–FB (green) and E–IMP (black)

crepancies are present in the TIDb numerical test in which boundary effects have
a much stronger impact on the solution due to the significantly larger extent of
land areas. Both free-slip and no-slip boundary conditions are approximations
of the real-world boundary conditions, which are a combination of these two op-
tions. The choice of boundary conditions could be important, but it is beyond
the scope of this study to test which one is closer to reality.
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Figure 3: RSS [m] from the barotropic LSOMG-BT model in the validation
experiment. Several model configuration are tested. The model is run with the
bottom-drag (BD), internal wave drag (IWD), self-attraction and loading (SAL),
nonlinear free surface (EF). Internal wave drag is applied if H > 1000 m (without
JSd100) or if H > 100 m (with JSd100).

1.6 Tidal barotropic circulation
We validate the tidally driven circulation from the LSOMG-BT model by compar-
ison with the commonly used and respected tidal model TPXO8-1. Our validation
experiment is similar to the one performed by Buijsman et al. [2015]. We run the
LSOMG-BT model for 19 days. The first 16 days serve as a spin up. According
to our experience, it is a sufficiently long period to spin up a barotropic tidal
model. The last three days are used to compare the SSHs from the LSOMG-BT
and TPXO8-1 models. In our comparison, we consider only grid points where
ocean is deeper than 1000 m. Additionally, the tides in high latitudes are not
considered. The presence of sea ice makes the prediction of high-latitude tides
complicated. Consequently, we restrict ourselves to −66◦ < φ < 66◦. Our metric
is the so-called root-sum-square (RSS),

RSS =

√
⟨∫

A
(ηLSOMG − ηT P XO)2 dA

⟩
A

, (20)

where A denotes the Earth’s surface and the bracket denotes the time averaging.
We choose the sampling frequency of tidal SSH to be 30 minutes and we average
all samples stored during the last three days of our experiment.

The LSOMG-BT model is run in the 0.25◦ resolution with the time step
∆t = 7.5 s. The coefficient of bottom friction is set to Cb = 2.5 × 10−3 and the
horizontal viscosity is equal to AH = 1.25 × 103 m2/s

The results of our experiment are depicted in Fig. 3. If only bottom drag is
included and no tidal parameterizations are used, the RSS is rather large, RSS =
32.62 cm. The inclusion of IWD or SAL improves the accuracy significantly which
is in agreement with the conclusions of other authors. The RSS reduces down
to 28.0 cm and 23.93 cm if we include IWD or SAL, respectively. Thus, the
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Figure 4: Sensitivity of RSS in the tidal validation experiment on the values of
IWD and SAL.

parameterization of SAL affects the SSH more than the parameterization of IWD
in our experiment. Jayne and St. Laurent [2001] applied the IWD only in waters
deeper than 1000 m. We also used this setting but we also tried to relax this
condition to waters deeper than 100 m. Our results suggest that the condition
H > 100 m for the application of IWD is better than the condition H > 1000 m,
the RSS has improved from 17.55 cm to 13.32 cm. This finding is in agreement
with Arbic et al. [2004] but it is in disagreement with Buijsman et al. [2015] who
strongly supported the condition H > 1000 m. Finally, the nonlinear free surface
outperforms linear free surface, although the improvement of RSS is only modest,
from 13.32 cm to 12.17 cm. However, it is expected that the improvement would
be larger if we focused on shallow regions.

We further study sensitivity of the RSS to the strength of IWD and SAL. We
test three IWD setups: The default setup, the setup with IWD increased 1.5×
and the setup with IWD increased 2×. And four values of βs coefficient in the
SAL parameterization: 0.09 (default value), 0.10, 0.11 and 0.12. In total, we
computed RSS for 12 setups. The results are depicted in Fig. 4. The computed
RSS indicates that increased IWD strength and larger βs are favourable. On the
other hand, βs = 0.12 is obviously too large value since the RSS increases for all
three IWD setups if βs is increased from βs = 0.11 to βs = 0.12. Similarly, 2×
increased IWD is too strong since the RSS computed with 1.5× increased IWD
is smaller for all tested values of βs, except for the default βs = 0.09 where it is
slightly larger. The best RSS = 10.67 cm is achieved with 1.5× increased IWD
and βs = 0.11. Similar but slightly larger RSS = 10.85 cm is achieved with 1.5×
increased IWD and βs = 0.10 and RSS = 10.90 cm is achieved with the default
IWD and βs = 0.11.

1.7 Steady wind-driven barotropic circulation
We follow Frisius et al. [2009] and perform barotropic simulations forced by the
annual-mean wind stress. Frisius et al. [2009] used the SOM model forced by
wind stresses of Hellerman and Rosenstein [1983]. We do not have this data and
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therefore we use ERA-Interim data [Dee et al., 2011]. The annual means of zonal
and meridional wind velocities are not available in the ERA-Interim archives.
We compute the annual means by averaging the monthly means from the year
2013. We perform two experiments in accordance with Frisius et al. [2009]. The
experiments differ in the bathymetry used. The bathymetry is realistic in the
first experiment and there is a flat bottom in depth of 5000 m in the second
experiment. We run the simulations for 90 days in accordance with Frisius et al.
[2009]. We checked out that it is a sufficiently long spin up. In fact, the spin-up
could be shorter in the experiment with the realistic bathymetry.

The results are depicted in Fig. 5. Panels (a,c) correspond to the experiment
with the realistic bathymetry, panels (b,d) correspond to the experiment with
the flat bathymetry. We test two viscosity values. The smaller value AH =
2×104 m/s2 is used in panels (a,b) while one-order larger value AH = 2×105 m/s2

is used in panels (c,d). The SOM results are depicted in Fig. 6 (a,b) and the
GECCO reanalysis is shown in Fig. 6 (c).

(a) LSOMG-BT, H real, AH = 2 × 104 m/s2 (b) LSOMG-BT, H const, AH = 2×104 m/s2

(c) LSOMG-BT, H real, AH = 2 × 105 m/s2 (d) LSOMG-BT, H const, AH = 2×105 m/s2

Figure 5: Barotropic stream function [Sv] from the LSOMG-BT wind-driven
barotropic simulations. Bathymetry used in simulations is either realistic (a,c)
or constant (b,d), H = 5000 m. The viscosity used is either AH = 2 × 104 m/s2

(a,b) or AH = 2 × 105 m/s2 (c,d).

An important finding, which does not depend on the viscosity used and it is
in agreement with the SOM results, is that the barotropic modelling of the ACC
current is inaccurate. If the bathymetry is realistic, the ACC current virtually
disappears. In contrast, if the bathymetry is flat, the ACC current is about five
times stronger than it actually is. It is known that the baroclinic processes are
important for the ACC current [Olbers and Lettmann, 2007, Cunningham et al.,
2003]. The barotropic model does not contain baroclinic pressure gradients and
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(a) SOM, H real (b) SOM, H const

(c) GECCO reanalysis

Figure 6: Barotropic stream function [Sv] from the SOM wind-driven barotropic
simulations (a,b) and the GECCO reanalysis (c). Stream lines are depicted in
5 Sv intervals, negative stream lines are dashed. Bathymetry used in simulations
is either realistic (a) or constant (b), H = 5000 m.

thus an important part of the ACC dynamics is missing in the barotropic model.

The absence of strong ACC current in the experiment with realistic bathymetry
affects currents in the Southern hemisphere. The stream functions of these cur-
rents computed in the LSOMG-BT and SOM models do not match the GECCO
stream functions. The situation is different in the Northern hemisphere where
the computed stream functions are in much better agreement with the GECCO
stream functions. The stream functions are similar in both experiments, but they
are notably smoother in the flat-bottom experiment. In fact, it seems that they
are overly smooth if we compare them with GECCO.

In terms of viscosity, the LSOMG-BT stream functions are smoother and the
flow is weaker if higher viscosity is used. The LSOMG-BT high-viscosity results
are in better agreement with the SOM results despite the fact that viscosity
AH = 2 × 105 m/s2 is rather large for a 1◦ model. However, the GECCO results
indicate that the low-viscosity setup is more correct.

The LSOMG-BT and SOM stream functions have similar shapes but the flow
is stronger in the SOM model. As already mentioned, the forcing is not identical
in both models. In order to assess the influence of a different forcing data set,
we repeat all LSOMG-BT simulations with the CORE-II forcing. The resulting
stream functions are shown in Fig. 7. The flow is noticeably more vigorous in the
CORE-II simulations. We assess that the transports are larger in the CORE-II
simulations by 10-15 Sv than in the ERA-Interim simulations.

15



(a) LSOMG-BT, H real, AH = 2 × 104 m/s2 (b) LSOMG-BT, H const, AH = 2×104 m/s2

(c) LSOMG-BT, H real, AH = 2 × 105 m/s2 (d) LSOMG-BT, H const, AH = 2×105 m/s2

Figure 7: The same as Fig. 5 but the simulations are forced by the CORE-II
instead of ERA-Interim wind stresses.

1.8 Wind driven baroclinic circulation

In Sec. 1.7, we demonstrated that the barotropic model can reasonably model the
wind-driven driven gyres on the northern hemisphere but it completely fails to
model the ACC current which significantly affects the circulation on the southern
hemisphere. Consequently, we switch to the baroclinic LSOMG model in this
section. We shall inspect the model SSH, barotropic transports, barotropic stream
function and globally averaged temperature and salinity.

In all the presented simulations, we use the horizontal Smagorinsky viscosity
[Smagorinsky, 1963, 1993] with the minimum viscosity based on the grid Reynolds
number. The vertical viscosity is constant AV = 1 × 10−3 m2/s. The nonlinear
bottom friction with Cb = 2.5×10−3 is used. We use depth-dependent horizontal
(epineutral) and vertical (dianeutral) diffusivities of Bryan and Lewis [1979] type.
We use the Lax-Wendroff scheme with flux limiters according to Smith et al. [2010]
for the advection of tracers. The energy conserving scheme ENE [Madec, 2012]
is used for the discretization of the Coriolis term together with the divergence
damping of the second-order. The convective adjustment scheme of Rahmstorf
[1993] is applied. The predictor-corrector time stepping scheme is used in the
barotropic system. The horizontal model resolution is 1◦ and we use either 11
or 22 layers in the vertical. The model time step is 30 minutes for the baroclinic
system and 30 s for the barotropic system. The simulations are 21 years long.
The first 20 years serve as a spin-up. The annual means are computed from the
last year of the simulation.

We start with the simulations from the 11-layer LSOMG model forced by cli-
matological ERA-Interim wind stresses and surface fluxes prescribed in the form

16



of strong 30-day relaxation towards the surface temperature and salinity. Despite
the simplified surface forcing and somewhat coarse resolution in the vertical, the
model can produce reasonable results.

Fig. 8 (a) shows the SSH computed in the LSOMG model. For comparison,
the SSHs from the ECCO and POP models are depicted in Fig. 8 (b) and (c), re-
spectively, and the SSH estimate of Maximenko et al. [2009] derived from satellite
and marine data is depicted in Fig. 8 (d). Note that the ECCO product com-
bines the 1◦ MITgcm model with the data to obtain the best SSH estimate. The
POP model used much higher horizontal resolution of 0.1◦ but it was a purely
hydrodynamic simulation as in our case.

(a) LSOMG (b) ECCO

(c) POP (d) measurements

Figure 8: SSHs [m] computed using the LSOMG (a), ECCO (b), and POP (c)
models and the SSH determined from satellite and marine data (d). Panel (b) is
taken from Wunsch [2011], panels (c,d) are taken from McClean et al. [2011].

Overall, the SSH from the LSOMG model matches the other solutions very
well. The SSH has its typical pattern with large-scale lobes in the ocean basins
especially in the Pacific Ocean. In details, the SSH from the LSOMG model
displays certain deficiencies, e.g., the SSH is underdeveloped in the South Atlantic
and certain distortion is present also in the North and South Pacific. Nevertheless,
the SSH from the POP model also displays deviations from the ECCO estimate
and data-derived SSH of Maximenko et al. [2009]. We thus consider the LSOMG
result as satisfactory.

We further inspect the vertically integrated currents. Fig. 9 shows the veloc-
ity vertically integrated from the surface down to approximately 1000 m in the
LSOMG and OMCT models. Both simulations are in a good agreement, we can
see the ACC current, the equatorial currents and the boundary currents in the
ocean basins. The OMCT currents seems to be weaker than the LSOMG cur-
rents. This is notable on the ACC current and the western-boundary current in
the South Atlantic which is pronounced in the LSOMG simulation but it is hardly
visible in the OMCT simulation. We argue that the weaker flow in the OMCT
simulation could be caused by its resolution. The OMCT used 13 layers in the
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vertical which is similar to the LSOMG simulation but the horizontal resolution
was only 1.875◦.

(a) LSOMG (b) OMCT

Figure 9: Vertically integrated velocity [103 m2/s] computed using the LSOMG
(a) and OMCT [Irrgang et al., 2016a] (b) models.

The comparison with the OMCT could lead us to conclusion that the flow in
the 11-layer LSOMG simulation with simplified forcing is overly strong. This not
true. We will show that it is weaker than it should be.

Fig. 10 shows barotropic stream functions from the MASNUM [Lei, 2014]
and CNRM-CM5.1 [Voldoire et al., 2013] models. The MASNUM model was
used in the ocean-only 0.5◦ configuration with 21 layers in the vertical. The
CNRM-CM5.1 is a coupled atmosphere-ocean model with the nominal horizontal
resolution of 1◦ which is refined in the tropics to 1/3◦ and 42 vertical levels.

(a) MASNUM (b) CNRM-CM5.1

Figure 10: Barotropic stream functions [Sv] from the MASNUM [Lei, 2014] (a)
and CNRM-CM5.1 [Voldoire et al., 2013] (b) models.

Fig. 11 (a) depicts the barotropic stream function from the 11-layer LSOMG
simulation with the simplified forcing. The LSOMG stream function is compara-
ble with the MASNUM and CNRM-CM5.1 stream functions in terms of shape,
however, it is globally weaker. It is well pronounced in the ACC region, where
the MASNUM simulation is notably stronger. The ACC strength in this LSOMG
configuration and the CNRM-CM5.1 model are comparable but the ACC current
is underestimated in the CNRM-CM5.1 model [Voldoire et al., 2013].

In order to improve the simulation quality, we increase the vertical resolution
from 11 to 22 layers, see Fig. 11 (b). The ACC strength has increased by ap-
proximately 10 Sv. The stream function has also increased in the North Pacific
but also decreased in the North Atlantic and in the Indian Ocean. Overall, the
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(a) 11 layers, ERA simple forcing (b) 22 layers, ERA simple forcing

(c) 11 layers, ERA full forcing (d) 22 layers, ERA full forcing

Figure 11: Barotropic stream functions [Sv] from the LSOMG simulations forced
by ERA-Interim data.

stream function in the 22-layer simulation is not significantly better than in the
11-layer simulation.

In the next step, we improve the model forcing. We replace the simplified
forcing by the full forcing. The major improvement is that the full forcing contains
the proper heat fluxes computed using the bulk formulas of Large and Yeager
[2004, 2009]. Additionally, the full forcing varies more rapidly in time since it is
represented by daily values rather than monthly values in the simplified forcing.
Fig. 11 (c) depicts the barotropic stream function from the 11-layer simulation
with the full forcing. The improved forcing has a favourable impact on the stream
function, all gyres are stronger. The major change is the strengthening of the
ACC current. The stream-function maximum has increased from 126 Sv with
the simplified forcing to 182 Sv with the full forcing. If we further increase
the vertical resolution to 22 layers, the stream-function maximum is virtually
the same with 184 Sv but the ACC current has further strengthened in most
regions, see Fig. 11 (d). The stream function has also increased in the Pacific
Ocean. This is favourable in terms of comparison with the MASNUM, CNRM-
CM5.1 and GECCO (see Fig. 6 (c)) stream functions but also with the altimeter
estimate of 42 Sv of Imawaki et al. [2001]. The steam function in the Atlantic
Ocean is well shaped but it remains to be slightly underdeveloped. For example,
the strength of the Florida current should be around 30 Sv according to Schott
et al. [1988].

We also test the sensitivity of presented stream functions on the particular
forcing data set. We replace the ERA-Interim forcing with the CORE-II forcing
and repeat the simulations. The corresponding stream functions are depicted in
Fig. 7.14 in the thesis. The CORE-II stream functions in the simulations with
the simplified forcing are stronger than the corresponding ERA-Interim stream
functions. The differences over 10 Sv are present in the North Pacific and Indian
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Oceans. The stream-function maximum has increased from 126 Sv to 155 Sv in
the 11-layer simulations and from 134 Sv to 160 Sv in the 22-layer simulations.
This corresponds to the wind-driven barotropic simulations presented in Sec. 1.7.
However, in contrast to the ERA-Interim simulations, the CORE-II simulations
with the full forcing are not that much different to the CORE-II simulations with
the simplified forcing. The major differences are the strengthening of the ACC
current. The CORE-II simulations with the full forcing match the corresponding
ERA-Interim simulations well. The ERA-Interim stream functions are in slightly
better agreement with the MASNUM, CNRM-CM5.1 and GECCO stream func-
tions but the differences are relatively small.

Finally, we inspect the globally averaged temperature and salinity in the pre-
sented simulations. Fig. 12 (a,c) show the globally averaged temperature in the
ERA-Interim and CORE-II simulations, respectively. Fig. 12 (b,d) show the glob-
ally averaged salinity in the ERA-Interim and CORE-II simulations, respectively.
In all panels, the red curves correspond to the simulations with the simplified

(a) temperature, ERA forcing (b) salinity, ERA forcing

(c) temperature, CORE-II forcing (d) salinity, CORE-II forcing

Figure 12: Globally averaged temperature and salinity. Results from the 11-layer
(solid curves) and 22-layer (dashed curves) simulations with the simplified (red
curves) or full (blue curves) forcing.

forcing and the blue curves correspond to the simulations with the full forcing.
The solid curves correspond to the 11-layer simulations and the dashed curves
correspond to the 22-layer simulations. Overall, there are certain trends in the
globally averaged fields. It is probably a model deficiency rather than a real phe-
nomenon. The global temperature is better conserved in the 22-layer simulations
than in the 11-layer simulations. Similarly, the simulations with the full forc-
ing conserve temperature better than the simulations with the simplified forcing.
The temperature increased by 0.42◦ and 0.52◦ in the 11-layer simulations with
the simplified ERA-Interim and CORE-II forcings, respectively. That is a rela-
tively large change. On the other hand, the temperature increased by 0.14◦ and

20



0.16◦ in the 22-layer simulations with the full ERA-Interim and CORE-II forc-
ings, respectively. A comparable drifts were present in the simulations from the
comparison study of Griffies et al. [2009]. The salinity trends are smaller than
the temperature trends which is in accordance with the simulations in Griffies
et al. [2009]. The figures are slightly misleading since there is a sharp decrease
in salinity at the beginning of each simulation. The decrease is larger in the
simulations with the simplified forcing. Consequently, the difference between the
final and initial salinity is actually smaller in simulations with simplified forcing.
It is almost zero in the ERA-Interim simulation and 0.003 PSU in the CORE-II
simulation. There is a decrease in salinity of about 0.025 PSU in both 22-layer
simulations with the full forcing. All values are acceptable.

2 Modelling of ocean-induced magnetic field

2.1 Introduction
The seawater is a conductive fluid which is flowing in the presence of the Earth’s
magnetic field (primary field). Consequently, a secondary magnetic field driven
by the ocean currents is induced via the process of electromagnetic induction
(EM).

The first attempts to numerically model the OIMF were by Stephenson and
Bryan [1992], Flosadóttir et al. [1997] and Tyler et al. [1997] which were later
followed by Vivier et al. [2004], Manoj et al. [2006] and others. All studies found
a small (≈ 1 nT) signal at satellite height with the Antarctic Circumpolar Current
(ACC) producing the largest signal because of its substantial water transport (it
is the largest ocean current on Earth) and proximity to the geomagnetic pole.

Practical motivation for our research comes from the ongoing geomagnetic
field measuring satellite mission, Swarm. One of the declared objectives of the
mission – detecting magnetic signatures due to ocean circulation [Friis-Christensen
et al., 2006] – has not yet been achieved. It is a challenging task. Firstly, the
OIMF is overlaid by larger contributions (≈ 50, 000 nT) from the main magnetic
field and the magnetic fields of ionosphere and magnetosphere origin. Secondly,
the OIMF may be erroneously attributed to the lithospheric field which is station-
ary in time and has comparable magnitudes. Nonetheless, if the ocean-induced
contribution is one day reliably isolated from satellite magnetic data, it could
constrain ocean dynamics [Irrgang et al., 2017]. Accurate and efficient modelling
is necessary for this breakthrough.

2.2 Governing equations
The OIMF B(r, t) obeys the quasi-static Maxwell equations supplemented by
Ohm’s law,

∇ · B = 0, (21)
∇ × B = µ0

(
j + jimp)

, (22)

∇ × E = −∂B
∂t

, (23)

j = σE, (24)
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where E(r, t) is the electric field, j(r, t) is the electric current density, jimp(r, t)
is the imposed electric current density, σ(r) is the electric conductivity, µ0 is the
permeability of vacuum, r is the radius vector and t is time.

Alternatively, we can combine Eqs. (22)-(24) into the second-order EM induc-
tion equation for the OIMF,

∇ ×
( 1

σ
∇ × B

)
+ µ0

∂B
∂t

= µ0∇ × Eimp, (25)

where Eimp(r, t) is the imposed electric field that is linked to the imposed electric
current density through Ohm’s law.

Note that Eqs. (21), (22) and (25) implicitly assume that the main geomag-
netic field BM(r, t) is a potential field and its temporal variations are much slower
than the temporal variations of the OIMF.

The imposed electric field or electric currents are computed from the ocean
velocity u(r, t) and the main geomagnetic field, following:

Eimp = jimp/σ = u × BM , (26)

where we assume that the main geomagnetic field is much stronger than the
OIMF.

2.3 Physical approximations and numerical issues
The following study is a result of cooperation with our colleagues from GFZ,
DIAS, Freie Universität Berlin and CIRES. We are concerned with modelling the
OIMF due to the wind- and buoyancy-driven ocean circulation and inspect how
various commonly used approximations affect the accuracy of modelled OIMF.
The study was published as a paper [Šachl et al., 2019]. The tidally-driven OIMF
is considered separately in a companion paper of Veĺımský et al. [2018].

[Šachl et al., 2019] originally summarized a benchmark study with different
EM induction solvers involved but the paper was rejected. We thus modified our
study. We present the results from the UTSM solver that was operated by the
GFZ group in the paper. The performance of our UTSM solver that is described
in Sec. 8.2.3 and Appendix G of the thesis is equal. It was simply not meaningful
to present the results from both solvers since it was not a benchmark study any
longer. Similarly, we used the ocean circulation calculated by the OMCT model
that was operated by the GFZ group. We preferred OMCT to LSOMG since the
model has already been used in the OIMF studies (e.g. Irrgang et al. [2016a,b],
Saynisch et al. [2016]) and so it is known in the community.

2.3.1 Numerical setup

We use three EM induction solvers: the ElmgTD, X3DG and UTSM. All of them
were thoroughly tested; ElmgTD and X3DG took part in the benchmark study
of Kelbert et al. [2014], and were used to model OIMF in the past [Manoj et al.,
2006, Irrgang et al., 2016a, Veĺımský et al., 2019]. The main characteristics of
individual solvers are summarized in Table 4.

We consider four test cases labeled A-D which are summarized in Table 3.
Complexity increases from Case A to Case D. In the simplest Case A, the un-
derlying mantle is treated as a perfect insulator and the ocean has no vertical
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A B C D
Mantle + core insulator 1-D 1-D 1-D

Galvanic coupling no yes yes yes
Ocean layers 1 1 5 5
Self-induction no no no yes

EM solvers used ElmgTD, ElmgTD, ElmgTD, ElmgTD
X3DG, X3DG X3DG
UTSM

Table 3: Test cases considered in the study.

structure. In ElmgTD and X3DG, we use a single oceanic layer of finite thick-
ness. The UTSM solver uses the equivalent thin-sheet setup. The test case is
stationary and calculates a single snapshot corresponding to 2007/01/01. The
solution is also unimodal, containing only the poloidal magnetic field.

In Case B, we include the 1-D mantle conductivity model of Grayver et al.
[2017], and the core is considered to be highly conductive (104 S/m). We also
consider a bimodal solution, the toroidal magnetic field is included. Thus, the
ocean and mantle are galvanically coupled through vertical electric currents. The
UTSM is not used anymore, as the physical model is beyond its approximation.
The inclusion of galvanic coupling is very cheap for both the ElmgTD and X3DG
solvers. The additional cost results in extension of runtime by a few percents.

In Case C, we add the vertical stratification of imposed currents and ocean
conductivity, using five layers with lower boundaries at depths of 87.5 m, 187.5 m,
500 m, 1700 m and 6000 m. Runtimes of both the X3DG and ElmgTD solvers
scale up from approximately one hour for Cases A and B to about one day for
Case C.

Finally, Case D implements self-induction and we calculate the full time series
throughout the year 2007. X3DG could theoretically solve this case by using a
Fourier-transformed excitation in the frequency domain, but this is beyond the
scope of our study since the OIMF’s spectrum is wide ranged and the X3DG
computation would be expensive. Given the cross validation of ElmgTD and
X3DG on the static cases, we find it sufficient to use only ElmgTD to evaluate
the effect of self-induction.

In all test cases, we consider the 3-D conductivity, σ, in the surface 6 km
thick layer. We use σocean = 3.2 S/m and σcrust = 10−3 S/m for the nominal
conductivities of sea water and crust, respectively.

We simulate the general ocean circulation using the Ocean Model for Circula-
tion and Tides [OMCT, Thomas et al., 2001]. The corresponding ocean velocities
u build the source for ocean circulation’s electric currents and the motional in-
duction. We use the configuration in which OMCT is set up on a C-grid [Arakawa
and Lamb, 1977] with a horizontal resolution of 1◦, 20 layers in the vertical, and
a time step of 20 minutes [Dobslaw et al., 2013]. We force the ocean model
with 3-hourly reanalysis products from the European Centre for Medium-Range
Weather Forecasts [ECMWF, Dee et al., 2011]. Ocean tides are not considered.

Each of tested EM solvers uses a different modelling technique – including dif-
ferent spatial discretizations and different ways to propagate dependent variables
in time. Consequently, the resolution used is not exactly the same. We use 1◦
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ElmgTD X3DG UTSM
Physics full full UTSA

Ocean layer 3-D 3-D 2-D thin sheet
Sub-ocean layer cond/insul cond/insul insul

Domain time freq time
Lateral discretization SH PWC FD+SH
Radial discretization FE PWC -

Table 4: Quick comparison of the EM induction solvers used in the study. UTSA
= unimodal thin-sheet approximation of Tyler et al. [1997] and Vivier et al. [2004]
with insulating mantle and core, SH = spherical harmonics, FE = finite elements,
PWC = piece-wise constant representation, FD = finite differences.

resolution in X3DG and UTSM. In ElmgTD, we set up the maximum spherical-
harmonic degree to jmax = 480 in Cases A-C in order to minimize the effect of
ringing. In Case D, the solution evolves in time which forced us to decrease the
resolution to jmax = 80 in order to enable the use of the ElmgTD direct solver.

2.3.2 Results

The galvanic coupling is important for the modelling of wind-driven OIMF. Its
omission affects the power spectrum, OIMF at the surface and OIMF at 6 km
depth where especially Y component is affected, see Figs. 13 (compare Cases A
and B), 14 (top row) and 15 (top row).

Figure 13: Power spectra of the OIMFs computed using the ElmgTD solver (solid
line) and the X3DG solver (dashed line) in Cases A-C at the Earth’s surface.

The self-induction is less important but it also matters. Fig. 16 shows that
it affects lower spherical harmonic degrees (up to 40% of the spectral power on
degree one) by damping sudden changes in the OIMF which results in a smoother
evolution in time.
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XB − XA YB − YA ZB − ZA

XC − XB YC − YB ZC − ZB

Figure 14: Effect of galvanic coupling (Case B) and vertical stratification (Case
C) on the OIMF at the Earth’s surface. Top row: Differences [nT] between
Cases B and A in the X, Y , and Z components of the OIMFs from the ElmgTD
solver. Bottom row: Differences between the OIMFs in Cases C and B.

One layer in the vertical is sufficient for global studies of OIMF, see Figs. 14
(bottom row) and 15 (bottom row). The local studies should consider a higher
vertical resolution since it may locally cause the OIMF differences around 0.1 nT
in the X and Y components and 0.15 nT in the Z component. We do not rec-
ommend to use unimodal thin sheet approximation of Tyler et al. [1997] and
Vivier et al. [2004] since it neglects both galvanic coupling and self-induction.
We recommend to use the horizontal resolution of at least 1◦.

Conclusions
This thesis combines two different scientific fields: the oceanography and Earth
magnetism. The first one was a real challenge for us. The numerical modelling
of ocean circulation is well established in many seaside countries around the
world. There is neither an oceanographic center nor a senior scientist working in
oceanography in the Czech Republic. Additionally, OGCMs are results of colab-
orative work of research teams rather than individuals (which is more common
in geophysics). Despite that, we have developed our OGCM rather than used an
already existing one. We call it LSOMG. The LSOMG model is not revolution-
ary, but it is a decent work horse for the modelling of OIMF, which is the second
part of this PhD. Moreover, developing the model from scratch required to study
the numerical cores of state-of-art OGCMs and also to implement the numerical
schemes on our own rather than take the model as a black box. It was a valuable
experience.

The LSOMG model is 3-D baroclinic model but it can also be used in its
simplified 2-D barotropic version called LSOMG-BT. LSOMG-BT is based on the
shallow water equation which are discretized using the finite difference method.
The model supports several time stepping schemes and Arakawa grids B, C and
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XB − XA YB − YA ZB − ZA

XC − XB YC − YB ZC − ZB

Figure 15: The same as Fig. 14 but at 6 km depth.

j=1 j=2

Figure 16: Effect of self-induction on the OIMF power spectrum. Time evolution
of the OIMF’s power spectra on the lowest degrees computed using the ElmgTD
solver with (blue) and without (red) self-induction throughout the year 2007.

E, see Table 2. LSOMG-BT can be used for tidal simulations since it is equiped
with the tidal forcing and the parameterizations of SAL and IWD. LSOMG-BT
can also be forced by surface wind stress although baroclinic LSOMG is better
suited for the wind-driven simulations. We refer to Sec. 4 of the thesis for further
details.

The LSOMG model is described in Sec. 5 of the thesis. Here is a brief sum-
mary: LSOMG is a C-grid z-coordinate model. The primitive equations in hydro-
static and Boussinesq approximations (see Sec. 1.4) are expressed in orthogonal
cuvilinear coordinates using metric coefficients. LSOMG uses the split-explicit
time stepping scheme to decrease computational demands and provide fine reso-
lution in time for tidal simulations. The state equation of McDougall et al. [2003]
with the values of coefficients from Jackett et al. [2006] is implemented. The
friction force for the incompressible fluid, transversely isotropic with respect to
the vertical coordinate is used [Murray and Reason, 2001, Einšpigel and Mar-
tinec, 2015]. The horizontal friction is discretized explicitly, while the vertical
friction is discretized implicitly in time to ensure numerical stability. The hor-
izontal viscosity is the Smagorinsky viscosity [Smagorinsky, 1963, 1993, Griffies
and Hallberg, 2000] under CFL, grid-Reynolds and Munk-layer criteria with a
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prescribed minimum viscosity. The vertical viscosity is either constant or it is
set according to the Richardson-number based parameterization of Pacanowski
and Philander [1981]. Three advection schemes with flux limiters are available.
All schemes use multidimensional splitting method of Adcroft et al. [2014]. The
Coriolis term is treated using spatial-discretization schemes that conserve energy,
vorticity or both and using the Adams-Bashforth extrapolation of the third-order
in time. The grid-scale noise is suppressed using the divergence-damping method.
The dipolar/tripolar grids are implemented to solve the Pole problem. LSOMG is
parallelized using the MPI standard. The model is driven by atmospheric forcing
and/or tides. Tidal parameterizations are the same as in the LSOMG-BT model.
Two barotropic systems are used to separate tidal and non-tidal flows [Sakamoto
et al., 2013].

We calculated the flow in the Munk problem, modeled the Ekman spiral in the
Ekman layer and tested the advection schemes to check the model performance,
see Secs 6.3, 6.4 and 6.5 of the thesis, respectively. In Sec 1.5 of this summary,
we presented our numerical tests for ocean tidal models. We recommend not to
use the Euler implicit time stepping scheme for tidal simulations. The choice of
computational grid matters. B/E-grid configurations suffer from small (several
percents) energy leakage due to the biharmonic smoothing of SSH. C-grid con-
figurations do not have these problems. Different boundary conditions on grids
B/E and C can have strong impact on the solution especially in the realistic
configurations with extensive coastlines.

The LSOMG model results from realistic tidal barotropic simulations, wind-
driven barotropic simulations and wind-driven baroclinic simulations were pre-
sented in Secs. 1.6, 1.7 and 1.8, respectively.

Fig. 3 demonstrates the importance of IWD and SAL parameterizations for
tidal simulations. The RSS computed according to Eq. (20) decreased to approx-
imately one third if IWD and SAL were used (default setup). Fig. 4 shows the
sensitivity of RSS on the strength of IWD and SAL. The best setup with IWD
increased by factor 1.5 and βs = 0.11 has RSS= 10.67 cm which improved the
default-setup RSS by 12%.

Figs. 5 and 7 depict LSOMG-BT barotropic stream functions from barotropic
simulations forced by the steady wind-driven stress. The simulations with the
realistic bathymetry suffer from the virtually missing ACC current; the other
currents in the Southern hemisphere are also affected. If bathymetry is flat, the
barotropic stream function in the Southern hemisphere improves but the ACC
current is overly strong. LSOMG-BT stream functions are stronger if we use the
CORE-II instead of ERA-Interim forcing, which matches both SOM simulations
and GECCO reanalysis better.

The baroclinic model does not suffer from the ACC problem of the barotropic
model. The barotropic stream functions from the baroclinic LSOMG simulations
forced by ERA-Interim data are shown in Fig. 11. The stream function is globally
stronger (especially in the ACC region) if the full (daily forcing with heat fluxes)
rather than simplified (climatological wind stresses, strong surface temperature
relaxation) forcing is used. The stronger stream function is in better agreement
with other models and data. The increase in the vertical resolution improves the
circulation in the Pacific Ocean and it also further strengthens the ACC current.
The simulations forced by CORE-II data have better stream function if simple
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forcing is used. Both data sets produce comparable circulations if the full forcing
is applied. The LSOMG model with the full forcing conserves both temperature
and salinity within the range which is comparable with other OGCMs. Figs. 8
and 9 show the SSH and velocities vertically integrated over the upper 1000 m ,
respectively. The comparison with other models and data products is favourable.

We focused on the modelling of wind-driven OIMF in Sec. 2. In particular,
the galvanic coupling is important, see Figs. 13, 14 (top row) and 15 (top row)
(epecially Y component). The self-induction effectively damps sudden changes
in lower spherical harmonic degrees, see Fig. 16. One layer in the vertical is
sufficient for global studies of OIMF, see Figs. 14 (bottom row) and 15 (bottom
row), but the local studies should consider a higher vertical resolution. We do
not recommend to use unimodal thin sheet approximation of Tyler et al. [1997]
and Vivier et al. [2004] since it neglects both galvanic coupling and self-induction.
We recommend to use the horizontal resolution of at least 1◦.

The paper Veĺımský et al. [2019] further focuses on the toroidal magnetic field.
We used a more realistic spatially variable ocean electrical conductivity and higher
vertical resolution. We found the maximum of 15 nT in the Y component of the
OIMF in approximately 1800 m depth. At the surface, the toroidal field is zero
but it affects the poloidal field through coupling. The observable poloidal field is
smaller and its spatial and temporal variability is reduced if there is no couling
between the toroidal and poloidal fields.

To sum it up, we have developed a new baroclinic model called LSOMG and
studied the OIMF. We answered some questions but there still remain open is-
sues. It is tempting to complete our efforts to detect the wind-driven OIMF in the
Swarm data. We should have all necessary components: An OGCM, a magnetic
solver and a magnetospheric model. It can however be a tidious work with a pos-
sibility that additional pitfalls may apper. A further development of the LSOMG
model would also be interesting. We could further improve barotropic tides by lo-
cally tuning IWD and SAL. Or study the internal tides in the baroclinic LSOMG
altough it would require large computational resources on a supercomputer.
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standard test set for numerical approximations to the shallow water equations
in spherical geometry. J. Comput. Phys., 102(1):211–224, 1992. doi: 10.1016/
S0021-9991(05)80016-6.

C. Wunsch. The decadal mean ocean circulation and Sverdrup balance. J. Marine
Res., 69:417–434, 2011.

M. M. Zweng, J. R. Reagan, J. I. Antonov, R. A. Locarnini, A. V. Mishonov,
T. P. Boyer, H. E. Garcia, O. K. Baranova, D. R. Johnson, D. Seidov, and
M. M. Biddle. World ocean atlas 2013, volume 2: Salinity. In S. Levitus,
editor, NOAA Atlas NESDIS 74, page 39. 2013.

34



List of author’s publications
Related to the thesis topic
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