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Introduction
Intelligent life let alone life itself located within the solar system and beyond is
one of the main missions of both NASA and ESA. While hard evidence for life
existing outside of Earth is still lacking, there are many prospects located within
the solar system where primitive life may exist. One of these missions to search
for the potential life was the Cassini-Huygens mission. This mission launched on
October 15, 1997 on a seven year journey to Saturn. Cassini continued to explore
the Saturn system for 13 years eventually meeting its end on September 15, 2017.

Figure 1: Titan’s surface features (from Hörst, 2017).

While on its mission, the Cassini probe carried the Huygens landing module
until its separation on December 25, 2004. The Huygens module landed on Titan
on January 14, 2014 and returned data to Earth for the 90 minute decent. As the
module descended through Titan’s atmosphere it successfully sent 350 pictures.
The atmosphere of Titan consists of roughly 97% nitrogen, 2.1% methane, and
other complex organic molecules. The presence of methane in the atmosphere
has brought up questions about its existence and how it is being supplied. The
current level of methane should have been destroyed about 20-30 million years
ago (Yung et al., 1984). There is also observations of surface liquids on Titan
in the form of lakes and seas primarily located in the North Pole (Stofan et al.,
2007). These surface observations also showed a geologically active and young
surface showing resurfacing atmospheric processes. The pictures taken by Cassini
show fluvial erosion features such as channels and rounded pebbles, dunes and
other aeolian features and possible cryovolcanic showing active surface features
as seen in Figure 1. On Titan the seasonal effects last on the timescale of Titan’s
year (∼ 29.5 Earth years) were also observed, including the formation of clouds,
and hydrocarbon precipitation (Hörst, 2017).

Both the probes returned a large amount of data concerning the composition
of the atmosphere, as well as gravity, and shape measurements giving an insight

2



into the interior structure of Titan. Based on the data obtained by the Cassini
probe, the interior of Titan is suggested to contain 4 spherical layers (cf. Figure
2): the silicate core, the layer of high-pressure phases of ice, the liquid ocean, and
the outer ice I crust (Iess et al., 2010; Durante et al., 2019).

Figure 2: Interior structure of Titan

There are multiple pieces of evidence showing the existence of a liquid ocean.
One piece of evidence is the Schumann resonance between ionosphere and lower
conductive layer beneath non-conductive crust (Béghin et al., 2012) which was
measured by the descending Huygens module. Another evidence is the precise
measurement of gravity field indicated a global layer within Titan behaves like
a fluid on orbital time scales (Iess et al., 2012). Finally, precise measurements
of obliquity (the angle between satellite’s rotational and orbital axis), are well
explained by interior structure models with internal ocean (Baland et al., 2014).

However, the long term stability of liquid ocean is not self-evident since the
moon gradually looses its internal heat which comes mainly from the radiogenic
decay in the silicate core. The internal heat is transferred through the different
layers of the moon by heat diffusion or by advection before it is eventually lost by
radiation into space. Being located just above the ocean, the ice crust governs the
heat extraction and thus the ocean crystallization rate. If heat transfer through
the crust is efficient, it is likely the ocean would freeze quickly. On the other
hand, if the heat transfer through the crust is delayed by some mechanism, the
ocean may still be liquid.

Some previous works, suggested some possibilities for the long term stability
of the ocean. One of the suggested possibilities is the presence of an anti-freezer
such as ammonia, that significantly lowers the crystallization temperature, thus
slowing the crystallization (Grasset and Sotin, 1996). Another possibility is ana-
lyzing the viscous dissipation on the orbital timescales. This produces significant
heating as in the case of Europa (Sotin et al., 2009) and Enceladus (Choblet et al.,
2017). The third but not final possibility looks at a layer of insulating material
on Titan’s surface (Tobie et al., 2006).

The goal of this thesis is to develop a model of heat transfer through the ice
crust to address the long term stability of the ocean. In particular the primary fo-
cus will be to look at the effect of ammonia in the ocean proposed by Grasset and
Sotin (1996). The structure of the thesis is as follows: first describe the concept
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of the model and then derive the governing equations. Also describe the used
numerical methods and the performed tests. In the second chapter, we present
the obtained results which are compared in Discussion with the constraints on
the likely parameter values that allow the longterm ocean stability. We also dis-
cuss the model assumptions and some implications of our results on the volatiles
transfer. We conclude this thesis in the fourth chapter.
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1. Model Formulation

1.1 Conceptual Model
The goal of this thesis will be to address the long term thermal stability of the
ocean, by looking at the ocean’s energy balance. The model will look at the
parameters concerning the qin, representing the incoming heat from the silicate
core. This value is due to the radioactive decay of the silicates in the core. The
next value to be analyzed is the qout which is the heat extracted by the crust.
Thus, comparing these two values, qout and qin, will determine if and when the
ocean will freeze.

The qin, will taken from previous models and assumptions based on the data
from Titan. qout this will be addressed by modeling the heat transfer through the
crust, explained in section 1.3.6.

In the long term evolution of the model qout will always be greater than qin,
thus the crust will crystallize. Therefore it becomes essential to solve the heat
transfer through a crystallizing crust. For this purpose the idea of a dimensionless
formulation with the following key ideas are used:

1. Heat flux coming from the interior, qin is chosen (either constant or time
dependent)

2. Heat transfer equations are solved in a non-dimensional box of a fixed thick-
ness with the melting temperature prescribed at the bottom boundary. The
melting temperature can evolve in time depending on the crust thickness
and the ocean concentration

3. Based on the temperature field obtained in the previous step, the extracted
heat flux qout is evaluated

4. From the difference of qin and qout, the increase in physical thickness of
the layer is computed from Stefan Law, Section 1.3.6. The corresponding
quantities such as melting temperature (i.e. the bottom boundary condi-
tion) and the driving force (Rayleigh number, cf. Section 1.2.3) are reeval-
uated. Therefore, the bottom boundary condition as well as the driving
force evolve in time through the simulation.

1.2 Equation Formulation

1.2.1 Derivation of Governing Equations
The balance laws are derived based on the principles of continuum mechanics
following Matyska (2005). The following equations will be presented in their
differential form except the internal energy balance equation which will be derived
further.

The first equation presented is the mass balance equation

∂ρ

∂t
+ div(ρv) = 0. (1.1)
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The second equation presented is the linear momentum balance.

∂ρv
∂t

+ ∇(ρv ⊗ v) = div (T) + F . (1.2)

The equation has the following terms. The first term presented is the Cauchy
stress,

T = −pI + Td. (1.3)
The first part is the pressure dependence and the second part is the deviatoric

part.

Td = η(∇v + (∇v)T ). (1.4)
With η representing the fluid viscosity.
Only considering gravity from the body forces, i.e. F = ρg, the linear mo-

mentum balance equation reads

∂ρv
∂t

+ ∇(ρv ⊗ v) = −∇p + div
[︂
η(v + (∇v)T )

]︂
+ ρg. (1.5)

From the angular momentum balance follows the symmetry of the Cauchy
stress tensor:

T = TT . (1.6)
Finally, the internal energy balance can be expressed as:

ρ

(︄
∂ε

∂t
+ v · ∇ε

)︄
= −div(q) + T : ∇v + Q. (1.7)

With ε as the internal energy, q the heat flux, and Q as energy sources. A
heat conducting fluid satisfying Fourier’s Law is assumed giving the heat flux as

q = −k∇T. (1.8)

Where k represents the thermal conductivity, and T as temperature. Using
the Gibbs relation in the following form (e.g. Martinec, 2011) 1

ρTDs

Dt
= ρ

Dε

Dt
+ pdiv(v). (1.9)

with s the entropy, it is possible to rewrite 1.7 using both 1.8 and 1.9 to get

ρT

(︄
∂s

∂t
+ v · ∇s

)︄
= div(k∇T) + Td : ∇v + Q. (1.10)

The state of a fluid is determined by three variables: temperature, pressure
and unit mass (density). These are not independent but are linked by the Equa-
tion of State (EoS), written as

f(p, T, ρ) = 0. (1.11)
1Where D()

Dt is the material time derivative defined as

D()
Dt

= ∂()
∂t

+ v · ∂()
∂x .
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but is usually seen in the following form

ρ = ρ̃(p, T). (1.12)
As a result only two variables: pressure and temperature, are independent.
Then, we can express the entropy derivative as (e.g. Matyska, 2005)

ρTDs

Dt
= ρT

(︄
∂s

∂T

)︄⃓⃓⃓⃓
⃓
p

DT
Dt

+ ρT
(︄

∂s

∂p

)︄⃓⃓⃓⃓
⃓
T

Dp

Dt
= ρcp

DT
Dt

− αTDp

Dt
. (1.13)

with α representing the thermal expansivity and cp the isobaric heat capacity.
Assuming the dominance of the time-independent hydrostatic pressure p0 given
by

∇p0 = ρg0. (1.14)
it is possible to write

Dp

Dt
≈ Dp0

Dt
= ∂p0

∂t
+ v · ∇p0 = ρg0 · v = −ρgvr. (1.15)

where it is assumed g = −gez, where ez is defined as the vertical direction
unit vector. Resulting in the thermal equation

ρcp
∂T
∂t

+ ρcpv · ∇T = div(k∇T) − ραTgvr + Td : ∇v + Q. (1.16)

The second term on the right hand side is interpreted as the adiabatic heating
and is non-zero only if the vertical component of thermal gradient differs from
the adiabatic gradient (cf. Matyska, 2005, for more details).

1.2.2 Boussinesq Approximation
The Boussinesq approximation works with a linearization of the conservation laws
near a reference hydrostatic state when v = 0. The main assumptions can be
summarized as:

1. Linearization of the Equation of State with respect to the temperature
variations from the reference state T0:

ρ = ρ0(1 − α(T − T0)). (1.17)

where ρ0 is constant (time and space - incompressible fluid)

2. Neglect of thermal expansion everywhere except in the gravity force

3. Splitting of pressure into the hydrostatic part and the dynamic pressure:
p = p0 + π and subtracting the hydrostatic pressure gradient in the linear
momentum balance

4. Neglecting the adiabatic heating, viscous dissipation and the internal energy
source Q
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Using these assumptions, it is possible to write the balance equations 1.1, 1.5,
and 1.16 as:

div(v) = 0. (1.18)

ρ0
Dv
Dt

= −∇π + div
[︂
η
(︂
∇v + (∇v)T

)︂]︂
+ ρ0α (T − T0) gez. (1.19)

ρ0cp
∂T
∂t

+ ρ0cpv · ∇T = div (k∇T) . (1.20)

1.2.3 Scaling (Non-dimensionalization)
To simplify the calculations, nondimensionalized variables are used. The following
are used:

r = Dr′, t = D2

κ
t′, v = κ

D
v′, π = η0κ

D2 π′

η = η0η
′, T = Ts + ∆TT′, k = k0k

′. (1.21)

Here, D represents the characteristic dimension of the system, κ = k0
ρ0cp

the
thermal diffusivity, η0 the reference viscosity, k0 the reference thermal conductiv-
ity, Ts the surface temperature, and ∆T = Tb − Ts the temperature contrast
across the layer (with Tb representing the temperature at the bottom). Using
the variables 1.21, equations 1.18, 1.19, 1.20 can be rewritten as

div′(v′) = 0. (1.22)

Pr−1 Dv′

Dt′ = −∇′π′ + div′
[︂
η′
(︂
∇′v′ + (∇′v′)T

)︂]︂
+ Ra

(︂
T′ − T′

0

)︂
ez. (1.23)

∂T′

∂t′ + v′ · ∇′T′ = div′
(︂
k′∇′T′

)︂
. (1.24)

Two dimensionless numbers appear as a result of the nondimensionalization
and are defined as:

Pr = η0

ρ0κ
. (1.25)

Ra = ρ0αg∆TD3

η0κ
. (1.26)

The Prandtl number, equation 1.25, defines the ratio of momentum diffusivity
to the thermal diffusivity. While the Rayleigh Number, equation 1.26, represents
the ratio of thermal buoyancy to heat and momentum diffusion.

Table 1.1 shows the typical values of parameters that appear in Pr and Ra
for the Earth’s mantle and Titan’s crust. The values of Pr and Ra are also given
and show the left hand side of 1.23 can be safely neglected.
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Table 1.1: Typical values of parameters
Variables Earth’s Mantle Titan’s Crust
η0 (Pa s) 1021 1013 - 1015

ρ0 (kg m−3) 3.5 · 103 920
k0 (W/m/K) 4 2.3
cp (J/kg/K) 1100 2100
κ (m2 s−1) 10−6 1.2 · 10−6

α (K−1) 3 · 10−5 1.6 · 10−4

g (m s−2) 10 1.35
D (m) 3 · 106 105

∆T (K) 3 · 103 170
Pr 1023 1016 - 1018

Ra 108 107 - 109

The Rayleigh number describes the behavior of fluid with mass anomalies due
to a temperature contrast. If the Rayleigh number is above its critical value, the
thermal buoyancy is strong enough to drive the fluid flow. Consequently, heat
can be transferred by the flowing fluid and we speak of thermal convection. On
the other hand, for small values of Ra (below the critical value), no fluid flow
is observed and heat is only diffused by conduction. The Rayleigh number thus
describes the driving force in the system of governing equations. In the model of
heat transfer through the thickening ice crust, Ra will be increasing in time due
to the increasing ice crust thickness D, cf. equation 1.26.

Thus, the final system of non-dimensional equations read:

div(v) = 0 . (1.27)

0 = −∇π + div
[︂
η
(︂
∇v + (∇v)T

)︂]︂
+ Ra (T − T0) ez . (1.28)

∂T
∂t

+ v · ∇T = div (k∇T) . (1.29)

Note: The primes are omitted for the sake of simplicity.

1.2.4 Specification of the Material Parameters
The two parameters specified in the non-dimensionalized equations (1.27, 1.28,
1.29), viscosity (η), and thermal conductivity (k) are significant in the variability
they add to the governing equations.

Depending on the local stress-temperature conditions, ice deforms by various
mechanism (diffusion creep, dislocation creep, grain boundary sliding, basal slip,
Goldsby and Kohlstedt (2001)). In general, the rate of deformation by these
mechanisms depends on three parameters, temperature, stress and ice grain size.
Since temperature plays a dominant role in determining the viscosity value, we
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only use volume diffusion, as it is the linear mechanism that depends only on
temperature. Thus, the viscosity can be written as:

η (T) = η0 exp
(︄

6 ∗ 104

8.314

(︄
1
T − 1

Tref

)︄)︄
. (1.30)

The value of 6 ·104 J mol−1 is the thermal activation energy of ice, 8.314 J K−1

mol−1 is the gas constant, and Tref is the reference temperature, chosen simply
as the melting temperature of pure ice at low pressures. The prefactor η0 is not
well constrained and can vary over several orders of magnitude

To understand the importance of viscosity, Figure 1.1 plots the horizontal
average of temperature (left) and the corresponding viscosity (right)

Figure 1.1: Depth dependence of horizontal temperature average (left) and the
corresponding viscosity (right)

It is important to notice the strong dependence of viscosity shown in the
equation 1.30 and the visualization in Figure 1.1. In terms of a physical repre-
sentation, a low viscosity value seen on the right panel of Figure 1.1 on the left
side (z < 0.6), results in more movement.

It is important to note the sharp vertical line on the right hand side of the
right panel of Figure 1.1 (z > 0.8). This line corresponds to a cut-off value.
For this model a cut-off of 1010 from the initial value was used. The use of the
cut-off viscosity value is motivated by both, physical and numerical reasons. For
the former, the high viscosity values that would be obtained without the use of
cut-off for the low surface temperatures, would lead to extremely large values
of stress which are well above the strength of the material. In order to avoid
the use of a more complicated rheology that would include plastic deformation,
the simple cut-off is used. As a result of the strong temperature dependence of
viscosity, the cold part at the top of the layer stays rigid and does not participate
in convection. This is defined as the stagnant lid.

Regarding the value of η0, it depends on the ice grain size which is not known
for the conditions within the ice moon’s interior. The values used in this thesis,
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1013 - 1015 Pa s, correspond to measurements performed on the Earth’s glaciers
(Hudleston, 2015).

The next material parameter is thermal conductivity (k(T)) defined as below:

k(T) = 488.12
T + 0.4685. (1.31)

with the values coming from Hobbs (1974).
To understand the importance of thermal conductivity, the plots of horizontal

temperature average and the corresponding conductivity are shown below in Fig-
ure 1.2. Note that the conductivity at the surface is more than two times larger
than the bottom conductivity.

Figure 1.2: Depth dependence of horizontal temperature average (left) and cor-
responding conductivity (right)

Figure 1.3 shows a typical image of temperature field of a convecting fluid in
the stagnant lid regime.
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Figure 1.3: Basic image of convection. Hot material (red) tends to flow upwards
forming the hot plumes (dark red). At the surface, the material is cold (blue)
and due to the strong temperature dependence of viscosity does not partipate in
the flow. This is what is called the stagnant lid. The two isocontours mark the
temperatures of 150 and 200 K. Note, only a part of the computational domain
is plotted here

1.3 Numerical Implementation

1.3.1 Boundary Conditions
To begin solving the governing equations it becomes necessary to look at the
formulation and the boundary conditions. In this model the following boundary
conditions are prescribed:

Figure 1.4: Initial domain Ω used with prescribed boundary conditions

As seen in the above Figure 1.4, free slip is prescribed on all boundaries for
the mechanical problem. Free slip is defined as v · n = 0, and (T · n)t = 0 (with
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(·)t denoting the tangential part of the vector). Free slip in the physical sense
is at the interface between a fluid and a stationary wall, the normal component
of velocity is zero (i.e. no material flow across the boundary is allowed). On
the other hand, the tangential component of the flow is unrestricted (tangential
component of boundary traction is zero). Also note pressure is fixed to zero at
the bottom left corner of the computational domain.

Regarding the temperature boundary conditions, the side boundaries are in-
sulating (i.e. no heat will flow through the boundaries): ∇T · n = 0, while the
top and bottom boundaries have a prescribed temperature value. As for the pre-
scribed values, since the model involves a non-dimensionalized system TS = 0,
representing the top temperature boundary and TB = 1 representing the bot-
tom temperature boundary are used. Giving some dimensional values the top
boundary value is 94 K, and the bottom value is 264 K.

1.3.2 Weak Formulation
To begin solving the PDE numerically, it is necessary to take in account the
classical solution may not always exist. As a result, it becomes necessary to
search for the weak solution. This is done by combining the PDE and a test
function and integrating over the domain of Ω. In the following equations, φπ,
φv, φT will denote the test functions, associated with the equations for pressure
(π), velocity (v), and temperature (T), respectively.

The first equation is the mass balance equation 1.27:∫︂
Ω

(divv) φπ dx = 0. (1.32)

The second equation is the linear momentum balance equation 1.28.

∫︂
Ω

−∇π · φv + div
(︂
η
[︂
(∇v) + (∇v)T

]︂)︂
· φv + Ra (T − T0) ez · φv dx = 0. (1.33)

employing product rule and applying Green’s theorem to the first two terms
of 1.33:

−
∫︂

Ω
∇π · φvdx =

∫︂
Ω

πdiv(φv)dx −
∫︂

∂Ω
πφv · n dS. (1.34)

∫︂
Ω

div
(︁
η
[︁
∇v + (∇v)T

]︁)︁
· φv dx = −

∫︂
Ω

η[∇v + (∇v)T ] : ∇φv dx

+
∫︂

Ω
div
[︁
η
(︁
∇v + (∇v)T

)︁
· φv

]︁
dx

= −
∫︂

Ω
η
[︁
∇v + (∇v)T

]︁
: ∇φv dx

+
∫︂

∂Ω
n · η

[︁
∇v + (∇v)T

]︁
· φv dS.

(1.35)

The boundary term in 1.34, is equal to zero because of the free-slip Dirichlet
condition (φv · n = 0). In equation 1.35, the boundary term vanishes because the
tangential part of traction

(︂
n · η

(︂
∇v + (∇v)T

)︂)︂
and the normal component of

test function φv. Therefore their dot product is zero.
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So taking in account the boundary terms vanish, results in the final equation
for the weak formulation of the linear momentum balance:

∫︂
Ω

π div(φv) dx−
∫︂

Ω
η
[︂
∇v + (∇v)T

]︂
: ∇φv dx+

∫︂
Ω

Ra (T − T0) ez ·φvdx = 0. (1.36)

Finally, multiplying the energy balance equation 1.29 by the test function and
integrating over the whole domain gives:∫︂

Ω

∂T
∂t

φT + v · ∇T φTdx =
∫︂

Ω
div(k(T) ∇T)φT dx. (1.37)

Employing product rule on the right hand side and Green’s theorem as seen
in 1.34 and 1.35:

∫︂
Ω

div(k(T)∇T)φTdx = −
∫︂

Ω
k(T)∇T · ∇φT dx +

∫︂
Ω

div(k(T)∇TφT) dx

= −
∫︂

Ω
k(T)∇T · ∇φT dx +

∫︂
∂Ω

k(T)φT∇T · n. dS

(1.38)

The boundary integral in equation 1.38 vanishes due to the Dirichlet boundary
condition at the bottom and top boundary (φT = 0). Also, due to the zero heat
flux at the side boundaries (∇T · n = 0). Thus resulting in the final weak
formulation: ∫︂

Ω

∂T
∂t

φT + v · ∇TφT dx = −
∫︂

Ω
k(T) ∇T · ∇φTdx. (1.39)

1.3.3 Space and Time Discretization
The system of governing equations is solved in two steps: first, the energy balance
(eq. 1.39) is solved to update the temperature using the velocities from the
previous time step. Then, the Stokes system (eqs. 1.32, 1.36) is solved using the
updated temperature. Thus the following function spaces are used:

P :=
{︃

π ∈ L2(Ω);
∫︂

Ω
πdx = 0

}︃
,

V :=
{︃

v ∈ H1(Ω);
∫︂

∂Ω
(Td · n)t dS = 0

}︃
,

T :=
{︄

T ∈ H1(Ω);
∫︂

∂Ω(Left and Right)

∇T · n dS = 0
}︄

.

To discretize the Stokes problem, the Taylor-Hood elements were initially used
(Taylor and Hood, 1973). This method uses (P2, P1) elements for the velocity
and pressures spaces, satisfying the Babuška-Brezzi 2condition. Below are the
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element spaces used

P =
{︃

φπ ∈ C
(︁
Ω
)︁

; φπ|K ∈ P1(K) ∀K ∈ Qh;
∫︂

Ω
φπ dx = 0

}︃
,

V =
{︃

φv ∈ C
(︁
Ω
)︁

; φv|K ∈ P2(K) ∀K ∈ Qh;
∫︂

∂Ω
φv · n dS = 0

}︃
.

To solve the energy balance, piecewise quadratic element space is used for the
temperature space, defined as:

T = {φT ∈ C
(︂
Ω
)︂

; φT|K ∈ P2(K) ∀K ∈ Qh;
∫︂

∂Ω(Top and Bottom)

φT dS = 0}.

Where Pq are polynomials of degree q. Linear Lagrange elements are used, i.e.
for the pressure space (P ), where the degrees of freedom correspond to evaluation
of the polynomial at the vertices. While in the velocity space (V) and temperature
space (T ), the evaluation is performed at the vertices and in the middle of the
triangle’s sides.

The theta scheme is used to solve the heat balance equation with θ = 1/2, thus
corresponding to the Crank-Nicolson method. The time-step (∆t) is controlled
by the Courant-Friedrichs-Lewy (CFL) criterion. This criterion is used so the
distance information travels in each time step is lower than the distance between
the mesh elements. Thus, information from one cell is only allowed to propagate
to its immediate neighbors.

Combining this with 1.32, 1.36, and 1.39 and the elements listed above gives
the final system of equations:

0 =
∫︂

Ω
div(v) φπ + π div(φv) − η(T)

[︂
∇v + (∇v)T

]︂
: ∇φv + Ra (T − T0) (ez · φv) dx,

0 =
∫︂

Ω

1
∆t

(Tn − Tn−1)φT + θ ((v · ∇Tn) φT + k(Tn−1) (∇Tn · ∇φT))

+ (1 − θ) ((v · ∇Tn−1) φT + k(Tn−1)∇Tn−1 · ∇φT) dx.

(1.40)

In the previous notation the subscripts n and n − 1 correspond to the current
and previous time step, respectively. It is important to note in equations 1.40,
by taking the conductivity value from the previous step (k(Tn−1)) in both the
implicit and explicit terms in the θ scheme results in the linearized form of the
energy balance.

Thus in the weak formulation, 1.40, by taking π, v, T ∈ ((P×V)×T ) in which
is initially solved for the energy balance, then solved for the Stokes system. To
help with the solving of numerical system and the weak formulation, the FEniCS
software was used ((Logg et al., 2012; Alnæs et al., 2015)).

2Also known as the inf-sup condition satisfying,

inf
qh ̸=0∈Mh0

sup
vh ̸=0∈Xh0

(qh, divhvh)
||qh|| |||vh|||h

≥ β
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1.3.4 Blankenbach Benchmark
To validate the implementation, the Blankenbach benchmark test is used (Blanken-
bach et al., 1989). The test involves the steady isoviscous convection in a square
box, which is heated from below and cooled from above. During the benchmark
test, two values were collected

Nusselt Number
Nu = −

∫︁ 1
0

∂T
∂z

(z = 1) dx∫︁ 1
0 T (z = 0) dx

. (1.41)

This first equation represents the heat-flux over the top boundary divided by
the temperature on the bottom boundary. The second value characterizes the
efficiency of heat transfer by:

root mean square velocity (vrms)

vrms =
[︃∫︂ 1

0

∫︂ 1

0

(︂
v2

x + v2
z

)︂1/2
dzdx

]︃
. (1.42)

This value represents the vrms of the entire domain Ω. The benchmark test
looks at three different benchmark cases, however only the following two bench-
mark cases were done:

1. Isoviscous convection, with three Rayleigh numbers (104, 105, 106)

2. Convection with temperature, dependent viscosity according to the follow-
ing equation (b = ln(1000))

η = η0 exp
[︄
− bT

∆T

]︄
. (1.43)

In the previous equation 1.43, the b constant represents the viscosity contrast
over the layer of three-orders of magnitude.

Below are the results vs the benchmark values used for the box domain as
described in Figure 1.4. The first figure looks at the Blankenbach benchmark
test 1a with a Ra = 104.

Figure 1.5: Blankenbach Benchmark test 1a (104), left: Nusselt number, right:
rms velocity
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What is evident in the benchmark values vs the tested values in Figures 1.5,
the evolution of the Nusselt number and the vrms is time dependent, but in the
end when the computational domain reaches a steady state it establishes at the
benchmark value. The next figure analyzes an increase in the Ra number to 105

and comparing it against the benchmark value.

Figure 1.6: Blankenbach Benchmark test 1b (105), left: Nusselt number, right:
rms velocity

Comparing the benchmark values in Figures 1.6, the evolution of the Nusselt
number and the vrms again are time-dependent. However, the simulation even-
tually reaches a steady state and establishes the benchmark values. Noting the
difference between the Figures 1.5 and 1.6, it is noticeable the increase in vrms and
the Nusselt number. This is due to the increase in the Ra as defined by equation
1.26, causing the flow to become faster and the heat transfer is more efficient.
The next simulation will look at increasing Ra by another order of magnitude
and comparing the simulation values against the well established benchmark.

Figure 1.7: Blankenbach Benchmark test 1c (106), left: Nusselt number, right:
rms velocity

Comparing the final simulation of the Blankenbach benchmark test 1c against
the simulation, it is evident the Nusselt number and the vrms are again time-
dependent, and when the simulation reaches the steady state, the values ap-
proach the established benchmark values. Noticing the difference between the
vrms and Nusselt number values in Figure 1.6 and 1.7, it is evident again the high
dependence of the vrms and the Nusselt number on the Ra.

The final comparison of the code running against the Blankenbach test looks
at the temperature dependence of viscosity defined by equation 1.43.
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Figure 1.8: Blankenbach Benchmark test 2a, left: Nusselt number, right: rms
velocity

In this final benchmark test, with the temperature dependent viscosity with
a contrast of 3 orders of magnitude over the layer. The simulation takes a longer
time to achieve the steady state solution, however the steady state values of the
Nusselt number as well as the rms velocity are again in good agreement with
the benchmark values. Performing the tests successfully defined by Blankenbach
et al. (1989), verifies the implementation of thermal convection with constant as
well as temperature dependent viscosity.

1.3.5 Mini-Elements
Long computational times resulted while using the Taylor-Hood method when
we ran some basic simulations of Titan. These long times are due to the large
number of degrees of freedom associated with the Taylor-Hood method. The mini
element method was considered to reduce the number of degrees of freedom as
described in Arnold et al. (1984).

The idea of the mini element is to stabilize the unstable pair (P1, P1) by
adding a bubble function to the velocity space. To do this it becomes necessary
to define new spaces to replace the Taylor-Hood velocity element:

V′ = {φv = φb + φu : φb ∈ B , φu ∈ U} .

Where B is the bubble element space and U is the linear velocity element
space, which are defined as:

B =
{︁

φb ∈ C
(︁
Ω
)︁

; φb|K ∈ P3(K) ∀K ∈ Th; φb|∂Th
= 0
}︁

,

U =
{︃

φu ∈ C
(︁
Ω
)︁

; φu|K ∈ P1(K) ∀K ∈ Th;
∫︂

∂Ω
φu · n dS = 0

}︃
.

The bubble element (B) evaluates the degrees of freedom at different points
than the Lagrange element. For this particular choice q = 3 (cubic bubble ele-
ment), the evaluation point is located in the barycenter of the triangular element.

Thus, using this new velocity space, we look for the solution of the previous
problem with the same formulation, π, v, T ∈ ((P × V′) × T ). The method of
solving the system is the same as before by solving for the energy balance and
then solving the Stokes system with the included bubble element.
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To verify if the results obtained with the new velocity space agrees with the
previous solution obtained with the Taylor-Hood elements, a few test simulations
were run. This is shown in the panels of Figure 1.9

Figure 1.9: Comparison of the solutions obtained with Taylor-Hood Elements
on mesh with 200x100 elements (red) and 150x100 elements (black) with the
solution obtained with the Mini Elements on mesh with 200x100 elements (blue),
left: heat flux, right: rms velocity

The left panel of Figure 1.9 shows the heat flux through the bottom boundary
as a function of time for Taylor-Hood elements (red) and Mini elements (blue).
The plots look at the results evaluated on a mesh of 200x100 elements with
a domain of length two and height one. While the lines are not exactly the
same, the overall amount of heat transferred is the same. The right panel shows
the time evolution of the rms velocity for the two different elements choice and
indicates the two solutions agree. Finally, a different mesh resolution was used
with 150x100 elements resulting in a slightly flattened elements (with a length to
height ratio of 1.3:1). The corresponding results are show in black and indicate
that this slight change in the element shape does not have an effect on the overall
result.

1.3.6 Crystallization / Crust Thickening
As mentioned in the Introduction, the crust crystallizes on long time scales. This
section describes the implementation of the crystallization process. The crystal-
lization rate Γ can be evaluated using the Stefan law:

Γ = ∆q

Lρ
. (1.44)

In the above equation ∆q is the difference in the heat fluxes at the ocean/ice
interface, L is the latent heat of freezing for H2O (3.33 · 105 J

kg
), and ρ is the

density of ice. The Stefan problem describes the evolution of the interface between
different phases (ice and water) over time. In this case, the solidification of water
into ice or the melting of ice into water.

The model also assumes there is no dissipation in the ocean. Therefore, the
heat coming from the silicate core is only transferred by the ocean and does not
change. The heat flux is defined as ∆q = qi − qs, where the qi, the heat extracted
from the ocean by the crust, while the qs is the value for the heat flux provided
by the interior silicate core. The figures in 1.10 give a visual representation of
the Stefan problem.
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Figure 1.10: left: heat flux variations, right: phase changes, Figure modified from
Kvorka et al. (2018)

To give an idea of crystallization in the model, if ∆q > 0 then, this would
imply the heat extracted by the ice crust is greater than the heat supplied from
the silicates resulting in crystallization. This is evident in the left panel of Figure
1.10, on the right hand side, and the corresponding to the right hand side of the
right panel of figure 1.10. On the other hand if ∆q < 0 then, the heat extracted
by the ice crust is smaller than the heat supplied by the silicate core resulting
in melting as seen on the left-hand side of the left panel of figure 1.10 and the
left-hand side of the right panel of 1.10.The final important case is when ∆q = 0.
In this case the heat extracted by the ice crust is exactly the same as the heat
supplied, so there is no change in the ice crust thickness. This is evident in right
panel of 1.10, in the middle of the picture where there is not change in the ice
crust thickness.

Since the interest is in the long term evolution of the whole ice crust and not
the local ice crust thickness variations, the heat extracted by the ice crust (qi) is
taken as an average over the bottom boundary:

qi =
⃓⃓⃓⃓
−1

l

∫︂
Γb

k(T)∇T · nds
⃓⃓⃓⃓
. (1.45)

In the above equation, l represents the width of the computational domain.
Also, Γb represents the bottom boundary, and k(T) is the heat conductivity
defined by Equation 1.31. Thus, Equation 1.45, analyzes the heat flux through the
boundary and takes the average over the entire boundary. In order to implement
the change in thickness of the ice crust, the change is computed in each time step
as ∆D = ∆q

Lρ
∆t, increasing D in every time step. Thus changing the Rayleigh

number 1.26 depending on the thickness and corresponding the change of the
driving force.

Now, the focus will shift to the effect of the mesh resolution and domain aspect
ratio (length to height) on simulations with a prescribed constant crystallization
rate. Figure 1.11, shows the results of simulations with different aspect ratios
and mesh resolutions.
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Figure 1.11: Comparison of results obtained with aspect ratio 2 and mesh reso-
lution 150x100 (black), aspect ratio 2 and coarser mesh with 75x50 (red), aspect
ratio 4:1 and mesh resolution of 150x50 (blue), and aspect ratio 8 and mesh res-
olution of 300x50 elements (green). Left: Bottom heat flux, Right: rms velocity

First, comparing the effects of former mesh resolution of 150x100 (black) and
coarser mesh with 75x50 elements (red). Both the basal heat flux (left) and
the rms velocity (right) show the same time for the onset of convection (∼ 25
Myr) and the same trend in the evolution indicating the vertical resolution of 50
elements should be enough for the simulations with increasing thickness. Note
even for the thickest crusts (< 200 km), this corresponds to an element size of
less than 4 km.

The next test involved looking at the effect of aspect ratios (2, 4, 8) while
keeping the same vertical resolution (50 elements) and the same shape of the
elements (1.3:1). Both the heat flux and the rms velocity again show the same
evolution in time suggesting the aspect ratio does not have a significant effect on
the results. Therefore it was decided to use the domain aspect ratio of 4 with the
mesh resolution of 150x50 in the rest of the thesis.

1.3.7 Effect of Pressure and Ammonia on Melting Tem-
perature

As explained in the model definition, the temperature of the bottom boundary is
the melting temperature which in general depends on both, the pressure (given
by the ice crust thickness, P = ρgD) and the composition of the ocean. Since
ammonia will stay in the liquid and will not be trapped in the crystallizing ice, the
ammonia concentration in the ocean will increase during crystallization. Due to
the large hydrosphere thickness, a layer of high-pressure (HP) ice polymorphs will
probably crystallize at the interface of the ocean and the silicate core. To obtain a
correct estimate of the ammonia concentration in the ocean, it becomes necessary
to have an estimate of the ocean volume. Since the model only provides the ice
crust thickness (D), the question of parameterizing the HP ice layer thickness in
terms of D. Figure 1.12 investigates this question.
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Figure 1.12: Pressure-Temperature Diagram of H2O. the thick black line indicates
the melting curve, while the thin black lines show the phase transitions between
the different ice phases. The dashed line marks the pressure at the interface
between the silicate core and the hydrosphere. The colored lines represent possible
temperature profiles in the ocean (cf. text for more details). The inlet figure
shows the radius of the HP ice / ocean interface.

Figure 1.12, shows the pressure-temperature diagram for Titan’s conditions.
The black line represents a pure H2O melting temperature. To the right of the
black line this represents the liquid phase of H2O or as in the case of the model, the
ocean. The left side of the thick line represents the different ice phases resulting
from different pressures. The thin black lines represent the transitions between
these ice phases. The dashed line near the bottom of the diagram represents the
boundary between Ice VI and the silicate core, which in Titan’s case is on average
2080 km from the center. As a result any of the colored lines to the right from
where the dashed line meets the solid black-line, no HP Ice will form.

The colored lines show four different temperature profiles for four different
thicknesses of ice crust D = 30 km (red), 80 km (yellow), 110 km (green), 150 km
(blue). The profiles follow the adiabatic gradient in the ocean and their intercept
with the melting curve indicates the radius of the HP ice / ocean interface. By
this process, the ocean-HP ice interface RHP I can be found for any thickness of
the outer ice crust D. The corresponding values are plotted in the inlet figure
and it became possible to derive the following scaling to describe the ocean-HP
ice interface radius:

RHP I [km] = 2080 D < 65 km,

RHP I [km] = 1885 + 3D D ≥ 65 km. (1.46)

Thus in equation 1.46, the radius of the HP ice / ocean interface (and therefore
the thickness of the HP Ice) depends strictly on the crust thickness. If the crust
has a thickness of less than 65 km, then there is no HP Ice. However, if the value
is above 65 km then HP ice layer starts to crystallize. Thus, the thickening of
the crust and the HP Ice leads to a decrease in the volume of the ocean which is
important when implementing the ammonia concentration in the ocean.
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Thus when the concentration of ammonia in the ocean increases, results in
higher values as the simulation continues. Thus to calculate the amount of am-
monia in the ocean, first the dependence of the HP ice layer to the ice crust
thickness D is used as in equation 1.46. Then the mass of the ocean is calculated
as:

Moc = 4πρoc

3
(︂
R3

Ice − R3
HP I

)︂
. (1.47)

Where, ρoc represents the density of water, RIce = RT itan − D, where RT itan

is the radius of Titan (2575 km), and RHP I is the computed radius of the HP
Ice / ocean interface by equation 1.46. The current concentration in the ocean is
given by:

X = X0Moc0

Moc

. (1.48)

With X0, the initial ammonia concetration, and Moc0 is the initial ocean
mass. Thus, with the inclusion of ammonia in the ocean results in a change in
the melting temperature of H2O, represented in the following equation (Leliwa-
Kopystyński et al., 2002):

T (P, X) = 273.1−7.95·10−8P −9.6·10−17P 2−53.8X−650X2−4·10−8PX. (1.49)

Thus, to implement change in the melting temperature, the Dirichlet bottom
boundary condition is modified every time step. It is important to notice the
dependence of both pressure and concentration in the ocean to the melting tem-
perature of the bottom ice crust layer. Using equation 1.49, for certain ammonia
concentration values is shown in Figure 1.13:

Figure 1.13: Melting temperature for pressures between 0 and 210 MPa (triple
point ice I - ice III - liquid) and different values of ammonia concentration

23



In Figure 1.13, it is important to note taking the values to the right of each of
the lines is ocean while to the left is Ice I. At the top of the diagram represents
roughly 210 MPa, which is the triple point between Ice I, liquid, Ice III. To note
some of the values associated with the diagram, looking at the 0% concentration
(black line), starts at the bottom of 0 MPa with a melting temperature of roughly
273.1 K. As we continue to increase in pressure to 210 MPa, the value decreases
to 252.2 K. This would be the value if there was a 0% ammonia concentration
in the ocean. With each added percentage of ammonia, it is evident the melting
temperature decreases significantly.

1.3.8 Expected Interior Heat Fluxes
The heat coming from the interior of Titan is mainly due to the radiogenic decay
in the core.

Figure 1.14: Models of time evolution of interior heat flux (Kalousová and Sotin).
CI and CV indicate different composition of the core while conduction and con-
vection indicate the different means of heat transfer in the core (cf. text for more
details)

Figure 1.14, shows the possible time evolution of heat flux from Titan’s inte-
rior. Since the exact composition of Titan’s core is not know, it is often assumed
similar to the composition of chondrites that represent the material from the early
solar system. For Figure 1.14, two types of chondrites were chosen: ivuna type
(CI) and chondrites vigarano type (CV). These represent the potentially differ-
ent compositions of the core of Titan. CI chondrites are a form of meteorites
possessing the strongest similarity to the distribution of the original solar nebula.
CV are more dense, and less porous than CI. It is important to note typically
CI have more radiogenic elements. In Figure 1.14, this explains why the CI heat
flux is larger than the CV heat flux. They are made of interstellar grains that
are older than the Earth.

Thus in Figure 1.14, the lines represent the heat flux from the silicate core
qs as explained in section 1.3.6. Thus, the typical radiogenic decay depicted if
the core is convecting is shown if the major core concentration contains CI (red),
or CV ( blue). However, if the core is conducting then the qs values represented
by the following CI (black), or CV (green). Conduction slowly increases initially
is due to the slow efficiency of heat transfer. Thus it takes more time to reach
the bottom of the ice crust. Figure 1.14, this is a model of expected heat fluxes.
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Thus the expected values in the early days of Titan are 20-40 mW/m2, while 5-10
mW/m2 are representative of present day Titan.
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2. Results
In the results sections, the first section, section 2.1, will look at a crust with a
fixed thickness and therefore constant in time bottom temperature. Thus, un-
derstanding the effects of thickness and the reference viscosity. The next section,
section 2.2, will analyze a thickening crust and later look at the effects of viscosity
and ammonia composition in the ocean.

2.1 Thermal Convection in Titan’s Crust with
Fixed Thickness

A reference simulation is important in determining how changing variables will
result in different outcomes. Thus, the reference simulation for this model will
have a fixed thickness, 100 km and an initial viscosity of η0 = 1014 Pa s. These
values are chosen to understand a reference convection regime to changing the
thickness (D) convection regime or initial viscosity (η0) convection regime. This
is evident in the two panels of Figure 2.1:

Figure 2.1: Comparison between convection patterns seen in the reference con-
figuration (left) and D = 50 km (right). Simulation has elements of (200x100).
The top line in both panels represents a contour of T = 200 K and the bottom
line represents a contour of T = 250 K

As a basic convection image as seen in both panels of Figure 2.1, the dark
red plumes represent the hot material at the bottom. The darker red material
represents the inside of a plume which is hotter than the surrounding material.
The material at the bottom is forced upward by convection eventually hitting
the cold blue material at the top. The cold material at the top is known as the
stagnant lid, in which warm material is not able to move past. This is due to
strong temperature dependence of viscosity as seen in Figure 1.1.

Looking at the two figures above, Figure 2.1, it is noticeable the difference
between the convection regimes at the end of the simulation. The 50 km thick
crust has a stable pattern in time, while the 100 km thick crust is more vigorous
and chaotic.

Using the reference configuration parameter of initial viscosity, η0 = 1014 Pa
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s, but changing the initial thickness of the ice crust, Figure 2.2 investigates this
idea.

Figure 2.2: Effect of the Crust Thickness (D), rms velocity (left) and bottom heat
flux (right) time evolution

In the left panel of Figure 2.2, it is important to note the log values on the
y-axis. It becomes evident in the left panel of Figure 2.2, due to the cubic
dependence of thickness in the Ra as seen in equation 1.26, thickness is one of
the driving forces to determining the efficiency and turbulence of the flow. As
seen in the right panel of Figure 2.1, in the 50 km case, there is a stable plume in
time. However, as thickness increases (100 km and 150 km) the plumes become
more chaotic in time and lose the uniformity. Also the flow efficiency in the 100
km and 150 km simulations are seen in left panel of Figure 2.2, where the rms
velocity (vrms) is higher compared to the 50 km case. The amount of extracted
heat is comparable for all three thicknesses (right).

The next figure will investigate three initial viscosity values (η0) with a con-
stant uniform thickness of 100 km:

Figure 2.3: Effect of the Initial Viscosity η0 = 10xx Pa s, rms velocity (left) and
bottom heat flux (right) time evolution

In the left panel of Figure 2.3, it is again important to note the log values on
the y-axis. In the left panel again of Figure 2.3, the values 13, 14, 15 represent
1013, 1014, and 1015 Pa s respectively. Due to the viscosity dependence in the Ra
as defined by equation 1.26, as the viscosity increases there is a decrease in the
vrms leading to a less efficient flow. This is evident in the 1015 Pa s simulation
where the vrms is significantly lower than the 1014 Pa s simulation and even 1013

Pa s simulation.
In the right panel of Figure 2.3, it is also noticeable the higher the viscosity

value such as the 1015 Pa s, less heat is extracted from the ocean compared to
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the 1013 Pa s and 1014 Pa s cases. This is also due to the lower Ra value.
In conclusion, the larger thickness (D), the more vigorous the convective flow.

On the other hand, the larger initial ice viscosity value (η0), the less vigorous the
convective flow becomes. Also, less heat is transferred by the ice crust.

2.2 Thermal Convection in a Thickening Crust
The previous section dealt with analyzing changing parameters in comparison
with a reference configuration. Now, the focus will be on a variable thickness
ice crust (D) with a constant initial viscosity (η0) parameter, and heat flux (qs)
supplied by a silicate core. Later in the section, will focus on the effect of presence
of ammonia on the ocean/ice crust interface.

2.2.1 Effect of Internal Heat Flux
In this section, an assumption is made there is no ammonia in Titan’s ocean
and will primarily investigate the effects of variable qs on the thickness of the ice
crust. The question of ammonia and HP ice will be addressed in sections 2.2.2,
and 2.2.3. In Figure 2.4, the simulation used a constant initial viscosity η0 = 1014

Pa s.

Figure 2.4: Effect of qs (in mW/m2) on Ice Crust thickness

In Figure 2.4, it is important to explain the significance of the qs values. The
flat yellow line at the top of Figure 2.4, represents the triple point for H2O. Thus,
when the ice crust reaches this value, the ocean will completely freeze. Near
the beginning of Figure 2.4 it is noticeable for all of the heat flux (qs) values,
there is an increase in the thickness. This is a result of ∆q > 0 as defined in
1.3.6, resulting in crystallization. However, note how the heat flux (qs) values
of 20, 40 mW/m2, have an increase then have a constant thickness, this will be
explained in a later paragraph. Also, in all the thin crusts the heat is transferred
by conduction explaining why the lines are on top of each other initially.
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Looking at the lower heat flux (qs) values, 5 - 15 mW/m2, in Figure 2.4, these
are the current expected values of the heat flux produced by Titan’s silicate core
(cf. Figure 1.14). Also, note the smooth curve then the sharp increase in the
thickness for the 5 - 15 mW/m2 values, this represents the shift from conduction
to convection. For each of the heat flux values, the crust beginsƒ to convect
around the same thickness, roughly 35 - 45 km thick ice crust. It is evident for
a qs values of 5 and 10 mW/m2, the ocean will completely freeze around 115
Myrs, and 185 Myrs respectively. However, for 15 mW/m2, the ocean will remain
liquid for longer periods as see in Figure 2.4, where after 250 Myrs the crust has
a thickness roughly of 110 km.

Now concerning the higher heat flux (qs) values, 20 and 40 mW/m2, in Figure
2.4, these are the expected values in the early days of Titan. There is no sharp
increase like experienced by the heat flux values of 5 - 15 mW/m2, as the 20 -
40 mW/m2 do not experience any convection. This is due to the heat flux (qs)
supplied by the silicate core is equal to the heat flux extracted by the ice (qi).
Since these are equal causing ∆q as defined by Section 1.3.6 to be equal to zero.
Thus, there is neither crystallization or melting resulting in a crust thickness of
approximately 30 km and 15 km for 20 mW/m2 and 40 mW/m2 respectively.

Ideally, the long term evolution of the ocean should be investigated by pre-
scribing a time dependent qs and running the whole 4.6 Gyr evolution. However,
such simulations would take too long to compute, especially since convection
starts at certain crust thickness (depending mainly on the value of viscosity η0)
which leads to significant decrease in the CFL calculated time step. Figure 2.5
shows the ice crust thickness as a function of time for this kind of simulation.
There are three values of initial viscosity: η0 = 1013, 1014, and 1015 Pa s.

Figure 2.5: Effect of time dependent heat flux qs on the ice crust thickness with
an initial viscosity η0 = 10xx Pa s

qs in the previous Figure 2.5 is defined as the following equation:

qs = qs0e−t/2000. (2.1)
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Where in Equation 2.1, t is in Myrs and qs0 = 40 mW/m2. The equation
2.1 approximates the blue line in Figure 1.14. In Figure 2.5, for the smallest
viscosity (1013 Pa s), convection starts around 200 Myrs, where the crust starts
to thicken significantly. Increasing the viscosity by a magnitude of 10, (1014 Pa
s), decreasing the Rayleigh number (Ra) as defined by equation 1.26, convection
starts later when the crust is thick enough (∼ 1700 Myrs) and the crust quickly
thickens. Finally for the largest tested viscosity (1015 Pa s), it takes a significant
amount of time (∼ 3500 Myrs) before the crust is thick enough to convect. It
would appear in this largest tested case the ice crust begins to convect around
70 km. Even with this largest viscosity value the crust thickness quickly reaches
the value of 170 km, corresponding to the ocean being frozen (cf. Figure 2.4). In
final, it is evident for smaller viscosities the ocean will freeze in earlier time while
in larger viscosities it will freeze later.

Since it is not possible to compute this long term evolution, crystallization
is assumed to be very slow during the first ∼3 Gyr when the heat flux is large
(> 15 mW/m2). Thus the following sections 2.2.2, and 2.2.3, will focus only on
the time evolution when heat flux is small (< 15 mW/m2).

2.2.2 Effect of Viscosity on Ocean Thickness
As seen in Figure 2.3, different initial viscosities will result in higher flow if the
viscosity is lower, or lower flow if the viscosity is higher. Figure 2.6, will analyze
three viscosity values (1013, 1014, 1015 Pa s) with a constant heat flux of qs = 5
mW/m2, and an initial ammonia concentration of 0%.

Figure 2.6: Viscosity (η0 = 10xx Pa s ), heat flux (qs = 5 mW/m2) on ocean
thickness

Figure 2.6, will be a standard time evolution figure used for the rest of the
thesis. To give an understanding of this figure, to the left of the black line, red line,
this represents the liquid ocean. Also between the teal lines this represents the
ocean. Above the black line, red line, and teal line, this represents the thickness
of the Ice I crust. Finally the bottom lines represents the radius of the HP Ice /
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ocean interface as defined by the equation 1.46. In the Figure 2.6, the bottom of
the Ice I crust has a melting temperature pressure dependence in accordance with
equation 1.49. Thus causing the Ice I crust to thicken as the pressure increases,
and in turn lowering the melting temperature. At the beginning of each of the
simulations, the initial ice crust dimension (D) is set to 5 km.

From Figure 2.6, it is evident the initial viscosity η0 is important in determin-
ing if the ocean will crystalize. As seen with lower viscosity values (1013, 1014 Pa
s), due to the higher efficiency of heat transfer as a result of the higher Ra, de-
fined by equation 1.26, more heat is extracted from the ocean/ice crust boundary.
Thus for a viscosity value equal to 1013 and 1014 Pa s, the ocean vanishes approx-
imately around 100 Myr, and approximately 230 Myr respectively. However, for
viscosity values equal to 1015 Pa s, the ocean will be stable on longer term. Thus,
justifying the lack of further investigation of the initial viscosity η0 = 1015 Pa
s in conjunction with initial ammonia concentrations. For the initial viscosity of
η0 = 1015 Pa s, results in an final ocean thickness of 231 km.

In Figure 2.6, it is clear this is in clear contradiction to Figure 2.5. The
reason for this is due to the constant ocean temperature (264 K) in Figure 2.5,
compared to a pressure dependent ocean according to Equation 1.49, where the
concentration (X) is zero. At the end of Figure 2.6 the ocean temperature is 260
K, low enough to prevent crystallization in the 1015 Pa s.

2.2.3 Effect of Composition
This section looks at the effects of two different viscosity values (1013, 1014 Pa s),
and two heat fluxes (5 mW/m2, and 10 mW/m2) with a variable initial concen-
tration of ammonia on the ocean thickness. Note the same time evolution figures
will be used as seen the previous section 2.2.2, denoting the top line Ice I crust,
the bottom line HP Ice, and left of both lines ocean.

The first figure, Figure 2.7, investigates the effect of different initial concen-
trations of ammonia on Ice I with a viscosity equal to 1013 Pa s and a heat flux
equal to 5 mW/m2.
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Figure 2.7: Initial parameters (η0 = 1013 Pa s, qs = 5 mW/m2) with variable
initial concentration effect on ocean thickness

It is evident in Figure 2.7, with 0% initial ammonia in the ocean, the ocean will
quickly freeze, around 100 Myrs. However, with the slightest increase of initial
ammonia in the ocean this will prevent the ocean from completely crystalize, thus
remaining liquid for long periods of time. Note in the above Figure 2.7, the sharp
increase in the Ice I thickness around 10 Myrs. This corresponds to when the
crust reaches the critical Ra where it switches from conduction to convection.

As mentioned earlier in section 1.3.7, the ammonia will remain in the ocean, so
while the initial concentration will be 1%, the ammonia concentration in the ocean
will increase, thus leading to a further decrease in the ice melting temperature as
seen in equation 1.49 and visualized in Figure 1.13.

Regarding the 5% initial ammonia concentration, due to the higher initial con-
centration, the melting temperature at the ocean/crust interface is lower. Thus,
slowing the crystalizing rate as seen in Figure 2.7, where the 5% concentration
has a longer period without HP Ice compared to the 0%, 0.1%, 0.5%, and 1%
cases. Also due to the lower crystallization rate and lower melting temperatures,
gives a thicker ocean as seen in Figure 2.7.

Giving some final values for the ocean thickness and ammonia concentrations
for the end of the simulation from Figure 2.7, for the initial concentration 0%, the
ocean thickness is 0 km and final ammonia concentration of 0%. These values are
the same for the next simulations except for Figure 2.10, which will be explained.
For the initial ammonia concentration of 0.1%, the final concentration is 14% with
an ocean thickness of 3 km. Also, for the simulation of initial concentration of
0.5%, the final concentration is 15% and an ocean thickness of 15 km. Regarding
the 1%, the final ammonia concentration is 16%, with a final thickness of 30 km.
Finally for the initial concentration of 5%, the final concentration is 18%, and
the thickness of 129 km.

In the next figure, Figure 2.8, will investigate the effect of increased heat flux
to 10 mW/m2.
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Figure 2.8: Initial parameters (η0 = 1013 Pa s, qs = 10 mW/m2) with variable
initial concentration effect on ocean thickness

In Figure 2.8, with the heat flux increased to 10 mW/m2, the 0% initial
ammonia concentration completely crystalizes as seen in 2.4. However when
comparing Figure 2.7, and Figure 2.8, it is evident the greater heat flux results
in a longer time for the ocean to completely crystalize. Also, 0.1%, 0.5%, 1%,
and 5% will have a larger ocean but lower ammonia concentrations. These are
evident in the final values for ocean thickness and ammonia concentrations seen
in the following paragraph.

For Figure 2.8, the 0.1% initial concentration gives an ocean thickness of 7 km,
and final ammonia concentration of 7%. Also for the 0.5% initial concentration
gives an ocean thickness of 32 km, and a final concentration of 7%. For the
1% initial concentration has 57 km thick ocean and 8% ammonia concentration.
Even for the 5% initial concentration has an ocean thickness of 195 km and
a final ammonia concentration of 12%. Thus confirming the conclusion larger
oceans result in lower ammonia concentrations.

The next figures, Figure 2.9 and Figure 2.10, will analyze the effects of a
higher initial viscosity η0 = 1014 Pa s. To start, Figure 2.9 will look at the time
evolution of the ocean with a supplied heat qs of 5 mW/m2:
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Figure 2.9: Initial parameters (η0 = 1014 Pa s, qs = 5 mW/m2) with variable
initial concentration effect on ocean thickness

In Figure 2.9, it is evident when comparing it to Figure 2.7, the 0% initial
ammonia concentration in both oceans freezes completely. However an interesting
note comes when comparing the time between the complete crystallization. The
simulation with η0 = 1014 Pa s, ocean completely crystalized around 230 Myrs
and for the η0 = 1013 Pa s simulation, the ocean crystalizing in about 100 Myrs.
This proving the effects of a higher viscosity resulting in longer times for the
ocean to completely crystalize as seen in Figure 2.6.

With the higher initial viscosity value, it is expected for all the initial ammonia
concentrations for the η0 = 1014 Pa s will result in larger oceans compared to the
η0 = 1013 Pa s as seen in Figure 2.6. This expectation is evident when comparing
the two figures, 2.7 vs 2.9. Where the final ocean thickness seen in Figure 2.7
for 0.1%, 0.5%, 1% and 5% is 3 km, 15 km, 30 km, and 129 km respectively,
compared to Figure 2.9 for 0.1%, 0.5% 1% and 5% is 5 km, 25 km, 57 km, and
195 km respectively.

When comparing the final ammonia concentration values, it is expected the
larger ocean in the η0 = 1014 Pa s simulation to the η0 = 1013 Pa s, the ammonia
concentration values will be lower. This is evident when looking at the values in
the η0 = 1013 Pa s where for the initial concentrations of 0.1%, 0.5%, 1% and 5%,
the final concentrations are 14%, 15%, 16% and 18% respectively. Compared to
the η0 = 1014 Pa s case when the 0.1%, 0.5%, 1%, and 5% initial concentrations
have final concentrations of 9%, 9%, 12% and 15% respectively. Thus confirming
again the idea of large ocean resulting in smaller final ammonia concentrations
comparably.

In the final figure, Figure 2.10, will investigate the effect of an increased heat
supplied from the silicate core to 10 mW/m2.
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Figure 2.10: Initial parameters (η0 = 1014 Pa s, qs = 10 mW/m2) with variable
initial concentration effect on ocean thickness

In Figure 2.10, it is evident all values of ammonia concentration result in a
thick ocean, even with the initial ammonia concentration of 0% simulation. This
shows the strong influence of heat flux coupled with a higher initial viscosity
value, giving a long term stable ocean.

Comparing this Figure 2.10 to Figure 2.9, it is expected for the final ocean
thickness to be larger. This is evident when looking at the thickness seen in Figure
2.10 for the initial concentrations of 0.1%, 0.5%, 1% and 5% results in a final ocean
thickness for 223 km, 232 km, 237 km and 315 km respectively. Comparing these
values to Figure 2.8, for the initial concentrations of 0.1%, 0.5%, 1%, and 5%, 7
km, 32 km and 57 km, and 195 km for η0 = 1013 Pa s with a supplied heat flux
of 10 mW/m2, it is evident the greater viscosity results in a thicker ocean.

The final ammonia concentrations, for the simulations represented above in
Figure 2.10 are 0.2%, 1%, 2% and 8% for initial concentrations of 0.1%, 0.5%,
1%, and 5% respectively. These values are reasonable due to the thicker ocean
as seen in the values represented in the previous paragraph.

Below in Table 2.1 are the results regarding final ocean thickness and ammonia
concentrations for the previous figures.
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η0 = 1013 Pa s
qs (mW/m2) 5 10
X0 = 0 % 0 km 0% 0 km 0%

X0 = 0.1 % 3 km 14% 7 km 7%
X0 = 0.5 % 15 km 15% 32 km 7%
X0 = 1 % 30 km 16% 57 km 8%
X0 = 5 % 129 km 18% 195 km 12%

η0 = 1014 Pa s
qs (mW/m2) 5 10
X0 = 0 % 0 km 0% 216 km 0%

X0 = 0.1 % 5 km 9% 223 km 0.2%
X0 = 0.5 % 25 km 9% 232 km 1%
X0 = 1 % 40 km 12% 237 km 2%
X0 = 5 % 156 km 15% 315 km 8%

Table 2.1: Comparison of final ocean thickness and ammonia concentrations

As seen in Table 2.1, for both supplied heat values with the initial concen-
trations of 0% ammonia, the ocean completely freezes except for η0 = 1014 Pa
s and qs = 10 mW/m2. A small increase in the ammonia as seen in the 0.1%
cases prevents the ocean from freezing. As also seen in Figure 2.4, an increase in
the supplied heat (qs) leads to a larger, stable ocean for longer periods of time.
Also noticeable in the Table 2.1, is the significant increase in the ammonia in
the ocean, due to the ammonia staying in the ocean as defined in Section 1.3.7.
Thus, the size of the ocean is proportional to the precent amount of ammonia in
the ocean.

In Table 2.1, as shown above in Figure 2.6, the qs equal to 5 mW/m2 for both
viscosities (η0 = 1013 Pa s, η0 = 1014 Pa s) the ocean completely freezes if no
ammonia is present. However, an interesting result coming from the model shows
with a supplied heat equal to 10 mW/m2 and initial viscosity equal to η0 = 1014

Pa s, the ocean is stable in the long term. This corresponds to Figure 2.6, with a
higher initial viscosity brings a thick stable ocean in the long term. Thus showing
the importance of viscosity and supplied heat if the initial ammonia percentage
in the ocean is equal to zero to prevent the ocean to freezing.
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3. Discussion
The results presented in Table 2.1 encompass a large range of ocean thicknesses

and ammonia concentrations. We will try to narrow down this range by using
the constraints coming from the published literature.

Concerning the ocean thickness, we can obtain a range of possible values
by using Equation 1.46 together with the estimates of ice I thickness and the
hydrosphere thickness. The total hydrosphere thickness can be obtained as a
difference between the radius of Titan (2575 km) and the radius of the silicate
core (2080 km), thus giving about 495 km. The minimum estimated ice crust
thickness is about 65 km (Béghin et al., 2012). Thus the maximum thickness
must be below 170 km as this corresponds to the triple point of ice I - ice III -
liquid (a completely crystallized ocean). For D = 65 km, there would be no HP
ice and thus the ocean thickness would be 495 km - 65 km = 430 km. For D =
150 km, there would be about 255 km of HP ice and the ocean thickness would
be 495 km - 150 km - 255 km = 90 km. We therefore can assume the ocean will
be between 90 and 430 km thick.

The ammonia concentration in Titan’s ocean is not known but cannot be too
high as the ammonia content significantly lowers the liquid density (Croft et al.,
1988). Thus, the expected ocean density values of Titan are between 1100 and
1300 kg/m3, derived from the Cassini data (Mitri et al., 2014). Moreover, a recent
study by Leitner and Lunine (2019) found the current ammonia concentrations
in the ocean cannot be larger than 5%.

Comparing these estimates with the values listed in Table 2.1, we can see
the simulations with relatively high heat flux of 10 mW/m2 (corresponding to CI
composition of the core, cf. Figure 1.14) and the larger estimate of ice viscosity of
1014 Pa s would give results compatible with our current understanding of Titan’s
interior. Similarly, an even larger viscosity of 1015 Pa s would lead to ocean
thickness of 231 km, which is compatible with the data for a smaller heat flux of
5 mW/m2 (cf. Figure 2.6). Alternatively, the layer of low conductivity material
on top of Titan’s crust (Tobie et al., 2006) could help to keep the ocean liquid on
long timescales even for smaller values of heat flux and viscosity. However, this
development is out of the scope of this present thesis.

The model developed in this thesis uses several simplifications such as New-
tonian viscosity and Cartesian geometry. While ice viscosity is in general highly
nonlinear (cf. Section 1.2.4), the main convective part likely deforms by linear
diffusion creep while the nonlinear creeps are dominant in the boundary layers
and the stagnant lid. Therefore, using equation 1.30 provides a reasonable first
order estimate. The use of Cartesian geometry results in slight underestimation
of the extracted basal heat flux with respect to the spherical solution. However,
this error is on the order of a few percent and can thus be neglected in the view
of larger uncertainty in other parameters (η0, qs).

In this thesis, we have shown a subsolidus convection plays a significant role in
the thermal evolution of Titan by efficiently transferring heat from the interior to
the surface. Apart from heat, volatiles such as argon that was detected in Titan’s
atmosphere (Niemann et al., 2010), can be transferred by flowing ice. With the
convective velocities on the order of 0.01-5 m/yr (cf. Figure 2.3), the travel times
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through a 100 km thick convecting ice layer would be between 20 kyr and 10
Myr, short when compared to the overall time of Titan’s evolution. While the
presence of the stagnant lid on top of the convecting ice layer seems to prevent
their release into the atmosphere, processes such as impacts or cryovolcanism
could temporarily break the stagnant lid and enable the gas to release into the
atmosphere. However, a quantitative model of such processes is out of the scope
of the present thesis.
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Conclusion
In this thesis, a model of the heat transfer through a crystallizing ice crust

of Titan was developed. In Section 1, the balance equations were modified into
a Stokes formulation and the energy balance by using a Boussinesq Approxima-
tion, and scaling analysis. Thus the two parameters, viscosity (η) and thermal
conductivity (k), found in the modified balance equations could add significant
variability, thus leading the importance of understanding these two. The model
was confirmed by the Blankenbach benchmark test in which we verified the im-
plementation of thermal convection with a constant and temperature dependent
viscosity. Finally, we implemented a thickening ice crust by the Stephan problem.

In Section 2, the model showed the importance of the thickness (D) and
viscosity (η) on the Rayleigh number (Ra) and thus on the flow efficiency and
convection regime of the ice crust. Then by implementing the interior heat flux,
it was shown for small values (5 - 10 mW/m2) and a pure H2O ocean, the ocean
will freeze within a few hundred Myrs. However, for larger values (> 20 mW/m2),
the ocean is potentially stable on longer timescales. However, the large heat flux
will decrease to ≲ 15 mW/m2 in ≲ 3 Gyrs, thus causing the ocean to freeze.
When looking at a pure ocean with three different viscosity values (1013, 1014,
1015 Pa s) with a pressure dependent melting temperature, shows the ocean will
freeze in 100 Myrs, and 250 Myrs for 1013, 1014 Pa s respectively. However for
larger viscosity values, the ocean is stable on longterm preventing the ocean from
crystalizing. Finally, implementing a pressure and initial ammonia concentration
dependent melting temperature, the importance of viscosity (η) and heat-flux (qs)
is shown. Thus considering the current knowledge of Titan, an ocean thickness
varying between 90 km and 430 km thick, would give a large value for viscosity
(≥ 1014 Pa s) are necessary to keep the ocean liquid, unless an other mechanism
is present to prevent its freezing.
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