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Chapter 1

Introduction

Automatic processing of seismic data is nowadays a crucial point in seismology.
The number of stations operated in global, regional and local seismic networks or
deployed in various temporal field experiments has been growing and the stations
are mostly running with continuous digital recording. In the last thirty years, ob-
servational seismology has undergone a radical progress from autonomous stations
equipped with frequency narrow-band seismographs to the networked digital broad-
band stations with constant Internet access. The seismic processing developed from
fairly limited manual procedures (visual event detection and manual readings of
travel times and selected amplitudes of detected events) allowed by the analog seis-
mograms on a photographic paper, into near-real time automatic or semi-automatic
data processing enabled by the digital seismic data streamed on-line. In the era
of the analog recordings only seismograms of prominent events could be analyzed
in more details, quantitative processing of seismograms was practically impossible;
accordingly there were only sporadic demands on more advanced databases. Digital
seismic observations, which started to be increasingly used at the turn of 80’s and
90’s of the twentieth century, meant a significant milestone in seismology. The main
progress was the possibility of quantitative analyses of event waveforms or complete
seismograms using advanced processing methods. This together with a progress in
data acquisition systems and data transmission technologies led to a development
and growth of seismic networks, particularly of local ones consisting of larger num-
ber of stations operated with higher sampling rate, usually of 125 or 250 Hz. Espe-
cially, continuously recording dense seismic networks produce a huge amount of data.
The WEBNET and REYKJANET networks operated in West Bohemia earthquake-
swarm region and in South-West Iceland (Chapter , producing currently about
2GB/day and 1.3 GB/day, are a typical example of that. Data from seismic net-
works should be quickly accessible and processed as quickly as possible, particularly
in case of prominent seismic events or increased earthquake activity. However, it
cannot be achieved without up-to-date data transfer, advanced databases, and high
level of automated /semi-automated data processing.

First of all, there has been a need to reduce the amount of recorded data so that
only target seismic events (e.g., local earthquakes) would be processed. In the initial
stage of digital seismic observations the seismic stations were operated in a trigger



mode. That means event detection was carried out in real time. Only triggered events
were recorded and remaining information was irretrievably lost (due to absence of
the sufficient capacity memory storage at that time). The triggering algorithms all
relied on some version of STA/LTA (Short-Time-Average over Long-Time-Average).
However, the STA/LTA triggering algorithms required precise tuning of the param-
eters to obtain optimal detection performance for a given task and local conditions.
In order to achieve good sensitivity of the triggered recording there has been large
number of false records due to disturbances, that had to be excluded from further
processing (usually manually); on the other hand some weaker events immediately
following stronger ones were undetected due to the raised LTA.

Availability of the high capacity memory storage and computational performance
of the relatively cheap computers enabled to meet the growing demands of seismol-
ogists for continuous seismograms. Consequently, the recording turned to continual
regime which made significant progress in observational seismology allowing to record
and preserve whole seismograms including very weak events, long-period waves and
seismic noise. However, the changeover to continual recordings resulted in an urgent
need for automatic pre-processing of continual records. First of all, a reliable auto-
matic event detection was necessary. Besides, a suitable database for efficient data
management was required.

Although automatic processing of records enables near-real time computation of
all basic parameters of an earthquake the manual processing is still considered as a
true reference. The automatic algorithms often fail in case of multiple and overlap-
ping events, or any case of complicated waveforms. In case of earthquake swarms,
the prevailing type of seismic activity in our target areas of West Bohemia/Vogtland
and South-West Iceland, the overlapping events are very common. Therefore the
automatically processed data are continuously under supervision of an expert. The
supervision is usually achieved by some interactive software with GUI (Graphical
User Interface).

My doctoral thesis concerns automated processing of data from local seismic net-
works WEBNET and REYKJANET which have been operated in earthquake-swarm
areas of West Bohemia and South-West Iceland by the Institute of Geophysics (IG)
and Institute of Rock Structure and Mechanics (IRSM) of CAS. I have mainly fo-
cused on the development of a reliable detection method of local earthquakes using
machine learning based on artificial neural networks (ANN). I trained the ANN for
the West Bohemia/Vogtland swarm-like events and put the ANN detector into prac-
tice for processing of continual recordings from the WEBNET and REYKJANET
networks. Furthermore, I have developed the Seismon_WB program package for
seismic data processing of the WEBNET and REYKJANET networks. The software
enables manual work together with automatic routines and their interconnection and
combination supplemented by a communication with the database as an integral part
of the program. Seismon_WB is used as a primary tool for visual interactive pro-
cessing of continual seismograms and displaying the results. Its concept arose from
the necessity to replace an obsolete program Seisbase (Fischer and Hampl [1997])
formerly used for processing the WEBNET data, which enabled to work with trig-
gered recordings only. Both these topics solved in my doctoral thesis are not only of



crucial importance for automatic or semi-automatic data processing from networks
in question but they are also applicable to other local seismic networks.



Chapter 2

Motivation

Although earthquakes and also earthquake swarms were intensively studied over
many decades the possibilities of recording, processing and interpreting the data
are increasing rapidly with the well-known increase of computational power obey-
ing the Moor’s law. This together with growing data storage capacity has lead to
great progress in observation seismology in recent years, which is more and more fo-
cused on detailed investigations of the earthquake-source processes and the Earth’s
crust/lithosphere structure using broadband recordings from dense seismic networks.
Original continuous recordings are stored on special data archive servers preserving
all data including ambient seismic noise and unnecessary disturbing or noise signals
to be available for re-processing and re-interpretation, when needed. The demand for
thorough processing of huge amount of data from local seismic networks WEBNET
and REYKJANET results from our ambition to explain the primary causes leading
to earthquake swarms in areas with completely different tectonic setting as West
Bohemia/Vogtland and the Reykjanes Peninsula in South-West Iceland.

The West Bohemia/Vogtland seismogenic region is situated in the western part of
the Bohemian Massif, geographically in the border area between Czechia and Saxony
(Vogtland is a southern part of Saxony). It is a unique European intra-continental
area affected by Quaternary volcanism that exhibits simultaneous activity of vari-
ous geodynamic processes. Seismic activity is manifested by repeated occurrence of
earthquake swarms, but the mainshock-aftershock sequences may rarely occur. Per-
sistent swarm-like seismicity clusters in a number of small epicentral zones that are
scattered in the area of about 40x60km (see grey dots in Fig[3.2)). Larger swarms
(~ Mp, > 2.5) cluster predominantly in the focal zone Novy Kostel which dominates
the recent seismicity of the whole region. The swarms usually consist of several thou-
sands of weak earthquakes and their duration is from several days to few months.
Notable earthquake swarms in the last four decades occurred in 1985/86 (with the
strongest event of magnitude Mp,4,=4.6), 1997 (Mpna:=2.9), 2000 (Mpm4:=3.3),
2008 (Mpmaz=3.8), 2011 (Mpma:=3.7), 2017 (Mp0.=3.2) and 2018 (Mp0.=3.8);
an exceptional Mp,,..=4.4 non-swarm activity occurred in 2014. The depths of foci
in the whole area range from 5 to 20 km (e.g. Horalek and Fischer| [2010]) but depths
between 7 and 12 km are typical of earthquake swarms and mainshock-aftershock se-
quences (Cermékova and Horalek| [2015], |Jakoubkové et al.| [2018]). The region is



well known by its fluid activity that is probably closely connected with the local
swarm-like seismicity (e.g. Horalek and Fischer| [2008], Fischer et al. [2017]). For
summarizing information about the area in question refer to [Fischer et al. [2014].

Reykjanes Peninsula is the onshore continuation of the mid-Atlantic Ridge that
separates two major lithospheric plates, the Eurasian Plate to the east and the
North American Plate to the west. The plate boundary on the Reykjanes Peninsula
is formed by pronounced en-echelon stepping rift segments and extends from the
southwest to the east and forms a pronounced oblique rift along the whole peninsula
in length of about 65 km (Seemundsson and Einarsson| [2014]). The plate motion rate
on the Reykjanes Peninsula is about 20 mm/yr in E-W direction and about 5 mm/yr
perpendicular to it (Geirsson et al. [2010]). The plate boundary is flanked by a defor-
mation zone of about 30 km width where strain is built up by the plate movements
(Einarsson, [2008]). The Reykjanes Peninsula is a highly complex geophysical struc-
ture with the interaction between volcanic and tectonic activity (Szemundsson and
Einarsson, [2014]), most of the Reykjanes Peninsula surface is covered by lava. The
Reykjanes Peninsula is one of the most seismically active parts of Iceland, especially
at the micro-earthquake level. Swarm-like sequences and solitary events scattered
along the plate boundary, both with magnitudes mostly of My < 3, represent a ma-
jor part of seismicity on the peninsula. Large swarms took place there in 2000 with
the strongest event of magnitude My 0. = 5.9, in 2003 with My 0. = 5.3 and in
2013 with My e = 5.0 (Jakobsdottir et al.| [2002], |Jakobsdéttir| [2008], [Einarsson
[2014]). Since the installation of REYKJANET network, few micro-swarms (M < 3)
and four medium swarms with magnitudes My = 3.9 (in May 2015), My, = 4.1 (in
July 2017), My = 3.7 (in December 2019) and My = 4.3 (in January 2020) oc-
curred on the Reykjanes Peninsula; the last mentioned related to a striking uplift of
Mt. Thorbjorn possibly associated with magma accumulation beneath the volcano.
Prevailing depths of the foci on the Reykjanes Peninsula are between 2 and 5km
which is much shallower compared to the focal depths in West Bohemia/Vogtland.

Both West Bohemia and Reykjanes Peninsula earthquake swarms usually con-
tain from thousands to tens of thousands events (M > 0) which are necessary to be
processed to get insight into triggering mechanisms and driving forces of earthquake
swarms. Manual processing of continual seismograms from the WEBNET (24 sta-
tions) and REYKJANET (15 stations) networks is extremely time-consuming, and
therefore it is possible to process manually only stronger events. Consequently many
weaker events being recorded with a sufficient signal-to-noise ratio remain untouched.
The automatic processing is the only way to achieve as low completeness magnitude
as possible which is essential for deeper insight into nature of earthquake swarms.
Nevertheless, the manual processing is considered as the true reference which is in
case of complicated events incomparably better. This doctoral thesis presents the
methods and tools I developed for automatic or semi-automatic data processing from
the WEBNET and REYKJANET and other local seismic networks.



Chapter 3

Local seismic networks WEBNET
and REYKJANET

Continuous data produced by local seismic network WEBNET and later on also
REYKJANET were the main motivation for whole this thesis. WEBNET local seis-
mic network deployed in West Bohemia earthquake-swarm region (latitude ~ 49.8°N
to 50.7° N, longitude ~12°E to 13°E) has a history of 30 years of monitoring micro-
seismicity, while REYKJANET operated on the Reykjanes Peninsula (SW Iceland,
latitude ~ 63.8°N to 64.1°N, longitude ~ 21.5°W to 22.3° W) dates back to 2013
only. Both networks are nowadays similar in many aspects. They have the same
instrumental equipment, sampling frequency or spatial extent and there are plans to
achieve full data streaming of all their stations through the Internet. The WEBNET
network has generally lower noise than REYKJANET due to installation in deep
vaults and compact bedrock (compare the waveforms in Fig. . The stations
of REYKJANET are sited on the basement mainly formed by lava fields which is
typical for the Reykjanes Peninsula. A rough estimate of the background noise level
is 90nm/s for REYKJANET and 20nm/s for WEBNET, and despite the shallower
depth of South-West Icelandic hypocenters there is typically higher signal-to-noise
ratio (SNR) for WEBNET recordings.
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Figure 3.1: Waveform examples for (a) WEBNET and (b) REYKJANET events
with local magnitude My = 0.5 (epicenter denotes red asterisks in the insets) were
located in the center of the seismic networks at depths characteristic of West Bo-
hemia/Vogtland and the Reykjanes Peninsula. Only vertical components of the
ground-motion velocity filtered by bandpass of 1-40 Hz at 10 stations with the best
SNR are depicted. All traces are scaled according to the maximum of absolute value
of displayed waveform. It is apparent that the noise is generally lower at the WEB-
NET stations and that the seismograms from the REYKJANET stations are more
complex with longer codas which makes their interpretation more demanding.



3.1 WEBNET

Seismicity in the West Bohemia/Vogtland region has been monitored by the WEB-
NET network since 1991 (Institute of Geophysics [1991], Horalek et al.| [2000a], Fis-
cher et al.| [2010a]) starting with four stations - NKC, KOC, KRC and LAC, com-
plemented with SKC in 1994. These core stations enabled to locate local events in
the region concerned. The WEBNET network was gradually extended, consisting of
seven stations in 1997 (Horalek et al. [2000b]), nine in 2000 (Horalek et al.| [2000a]),
twenty-two in 2008 (12 on-line and 10 off-line, Fischer et al.|[2010b]) up to present
configuration of 24 stations (Institute of Geophysics| [1991]) covering an area of about
900 km? (Fig. . The network layout ensures proper areal and azimuthal coverage
of the focal area, particularly with respect to the main focal zone Novy Kostel.

The stations were equipped with several types of instruments which were up-
graded in a few steps. At the early stage the stations were equipped with SM-3 or
LE-3Dlite short-period sensors and PCM 5800 or Mars-88 data-acquisition systems
(by Lennartz) with one-way (PCM 5800) and two-way (Mars-88) UHF telemetry
transmitting data to a data center on the TV tower Zelend Hora near Cheb. All
the stations were operated in triggered mode using fine-tuned STA /LTA algorithm.
Initially, the data were recorded on magneto-optical disks that had to be period-
ically replaced. The data center on the Zelend Hora TV tower was connected to
the Internet in 1999 and since then the data were temporarily buffered on hard disk
and transmitted overnight via Internet (due to slow data transmission rate) to the
processing laboratory in the IG in Prague. The WEBNET history up to beginning
of 2000 is presented in Horalek et al. [2000a], the WEBNET stations operated in
the time of the 1997 and 2000 swarms including their instrumentations are given in
Horalek et al.| [2000b] and Horalek and Sileny] [2013].

The WEBNET network was importantly upgraded in 2002. The stations (ex-
cept two outermost ones KOC and LAC) were equipped with the Janus-Trident
data acquisition systems (by Nanometrics) and connected to the TV tower Zelend
Hora using the Wave-LAN technology, hence the stations have had continuous In-
ternet access. Besides, the central station NKC was supplemented by a broadband
seismometer Guralp CMG-40T. All the stations have been connected to electrical
grid; due to their priority and technical background they are called permanent or
on-line stations. During 2003 and 2004 the WEBNET network has been extended
with supplementary stations to provide the best possible areal and azimuthal cov-
erage of the West Bohemia seismogenic region. The stations were equipped with
the Lennartz LE-3Dlite sensors and GAIA digitizers (by VISTEC) working in au-
tonomous triggered regime without a data transmission. They were powered by
periodically exchanged batteries and are usually called autonomous or off-line sta-
tions. The WEBNET network and its state including basic parameters of the on-line
and off-line stations in the time of the 2008 swarm are given in more details in Fischer
et al. [2010b]). Continuous recording of data in WEBNET began in 2008 on the on-
line stations equipped with the Nanometrics acquisition systems (Janus-Trident at
that time) which enabled parallel continual and triggered recording. The continuous
data were archived for later use, while the triggered waveform recordings were used in

10



sensor lower corner upper corner sensor type

frequency [Hz] frequency [Hz]

SM-3 0.5 - passive electro-mechanical
LE-3Dlite 1 - active electro-mechanical
CMG-40T 0.03 50 electronic feedback - force-balanced

CMG-3ESPC 0.03 100 electronic feedback - force-balanced

Table 3.1: Seismic sensors used in WEBNET and REYKJANET networks

the routine manual processing until 2014. The supplementary off-line stations were
turned into continuously recording during 2013 by upgrade of GAIA digitizers. In
2015 were the WEBNET on-line stations fully upgraded with up-to-date broadband
sensors Guralp CMG-3ESPC, which replaced obsolete SM-3 passive seismometers.
The Centaur digitizers by Nanometrics offering SeedLink data streaming, and cali-
bration and diagnostics of the sensors were installed at the same time. The off-line
stations underwent a similar upgrade in 2019. Additionally, these stations have been
connected to the Internet with mobile 4G communication and powered from bat-
teries recharged by solar panels. At present, WEBNET consists of 24 broadband
stations covering the area of about 40x25 km.

In the period 1992 to 2015 are seismograms from the on-line stations proportional
to the ground velocity in a frequency band of 0.5-80 Hz except several stations with
the LE-3Dlite sensors (particularly in the early stage of the WEBNET operation,
see Horalek et al.| [2000alb], |[Fischer et al.| [2010a]) having frequency band of 1-80 Hz.
The same frequency response is valid for the off-line stations in the period 1994 to
2019 (equipped with the LE-3Dlite sensors/ Gaia recorders), see Tab[3.1] and [3.2]
At present, all 24 WEBNET stations are broadband (on-line stations since 2015 and
off-line stations since 2019) producing ground-velocity seismograms in the 0.03 to
80 Hz frequency band. The upper corner frequency is limited by the anti-aliasing
filter of the digitizer and varies from 80 to 100 Hz (6 dB bandwidth) for the sampling
frequency of 250 Hz depending on the digitizer. All the stations have been operated
with sampling rate of 250 Hz since the beginning of the WEBNET observations. The
current amount of data produced by WEBNET is around 2 GB/day.
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Figure 3.2: WEBNET network before upgrade in 2019. Red triangles denote on-line

stations and blue triangles denote off-line stations. The light grey dots represent
epicenters of earthquakes in the period 1995-2015

Legend

A Ooffline stations
A online stations

* events 1995-2015

| digitizer | manufacturer | upper cut-off [He] |

GAIA VISTEC 80
Trident Nanometrics 100
Taurus Nanometrics 100

Centaur Nanometrics 90
Mars 88 Lennartz 80
PCM-5800 Lennartz 80

Table 3.2: Digitizers and their anti-aliasing upper cut-off frequencies for 6 dB band-

width.
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3.2 REYKJANET

The REYKJANET stations were deployed on the Reykjanes peninsula in 2013
(Horalek [2013]) by the Institute of Geophysics and the Institute of Rock Struc-
ture and Mechanisms of the Czech Academy of Sciences with know-how, technical
and material support of the University of Uppsala, Icelandic Meteorological Office
(IMO) and Iceland GeoSurvey (ISOR). The network consists of 15 stations covering
an area of 40x25km similarly to WEBNET (Fig3.3). All the stations have been
operated in off-line regime in continuous mode. Sensors are placed in special vaults
on a concrete pillars connected to the bedrock. Originally, nine broadband stations
were operated with Guralp CMG-40T seismometers and six short-period stations
with Lennartz LE-3Dlite, which were replaced by Guralp CMG-40T in 2016; so,
since 2016 all the REYKJANET stations have been broadband. The stations were
equipped with low-power GAIA recorders having storage capacity about ten months
(SD memory cards were used). State-of-health (SOH) of the stations was reported
once in 48 hours via SMS. During 2019, the Guralp CMG-40T sensor with various
sensitivities and upper corner frequency only 50 Hz were completely exchanged for
Guralp CMG-3ESPC and the obsolete GAIA digitizers were replaced by Nanomet-
rics Centaur recorders. At present, the WEBNET and REYKJANET stations have
identical instrumentation. Until 2019, the frequency response was proportional to
the ground velocity at frequencies of 0.03 to 50 Hz for the former broadband stations
(Guralp CMG-40T/GAIA) and 1 to 80 Hz for short-period stations (Lennartz LE-
3D/GAIA). The current broadband stations (Guralp CMG-3ESPC/Centaur) record
undistorted ground velocity in the range from 0.03 to 90 Hz, see Tabs and [3.2]
The sampling rate of 250 Hz has been used since the beginning of the REYKJANET
network. The stations have been operating in the off-line regime, so far. The data
are regularly downloaded once in four months or upon request in case of some ex-
traordinary seismic activity. Such incident happened at the beginning of 2020 when
the seismic activity together with an uplift measured form GPS stations triggered
an alert of possible magma intrusion under Mt. Thorbjérn volcano. Anyway, the
accessibility of REYKJANET stations is strongly dependent on the harsh weather
conditions and despite the urgent need some stations remained unaccessible for few
more weeks. However, during 2020 the stations will be experimentally connected to
4G-LTE mobile network to stream the measured data in real time. Probably not all
sites will be covered by mobile signal because some of the stations are installed in
deserted places of lava fields far from the main road and farm houses. The amount
of data produced by REYKJANET is around 1.3 GB/day. The stations are powered
by batteries which are recharged from solar panels combined with wind turbines.
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Figure 3.3: Green triangles are the locations of REYKJANET network stations.
Yellow triangles are stations operated by IMO. One can see that REYKJANET
network is denser in the area of Reykjanes peninsula. The light grey dots mark the
epicenters of earthquakes according to IMO catalog (local magnitude My > 0.5) in
the period 2013-2019.
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Chapter 4

The data processing chain

Output data of the WEBNET and REYKJANET stations are in miniSEED format,
which is an international standard format for the seismological data exchange (for
more information on the Standard for the Exchange of Earthquake Data - SEED
- and miniSEED format see |Ahern et al| [2009] and Ringler and Evans [2015]).
The Centaur digitizers at the on-line stations serve as individual SeedLink servers
(all the WEBNET stations, and selected REYKJANET stations in the near fea-
ture). SeedLink is a TCP/IP based protocol for robust transmission of packets in
miniSEED format. The SeedLink client requests data from a SeedLink server and
the server starts streaming data packets to the client. Besides SeedLink, the data
at the individual stations are backed up on a high-capacity removable SD memory
cards and CF internal storage in the digitizers.

Once the data of the on-line stations are recorded and transfered to a data center
they are multiple times copied and checked using several different servers to prevent
data loss.

A simple scheme of the data flow for WEBNET and REYKJANET data is in
Figltd] The raw seismogram files and - if available - also SOH (State-of-Health)
files in miniSEED format from the on-line stations are primarily collected at the
data collection server. The data collection server is a SeedLink client which requests
the data streams from the individual SeedLink servers at the stations (by slarchive
program by IRIS consortium) and it is also a SeedLink server that provides all the
data to other SeedLink clients (ringserver program provided by IRIS is used). In
fact, there are two such servers collecting the data in parallel, first one is in the data
center at the IG and the second one is at TV tower Zelend Hora.

Next, the data archive server collects the on-line data streams and stores all
continual recordings in miniSEED files each containing one-day seismogram (since
2012 when the continuous miniSEED recording started).

The data from the off-line stations which are collected irregularly are saved on
this server as well (former autonomous WEBNET stations and all REYKJANET
stations up to now).

The different naming conventions, directory structures or record lengths are con-
verted on the archive server to homogeneously archived 24-hours long record files.
Older data in GSE2.0 format are also stored here. The data archive is thoroughly
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Figure 4.1: Data processing scheme and the data flow from the first SeedLink client
to the presentation of the results on the web site. The main processing work is
performed on the data processing server and/or individual workstations.

backed up to an external data storage.

Data processing server provides local copies of the waveforms, usually one hour
long because smaller files are easier to handle since they demand much less mem-
ory to be processed. The individual users work with these files from their personal
computers and also all automatic processing routines take place on the data pro-
cessing server. This server also performs data quality check and basic automatic
pre-processing. The results of analyses either manual or automatic are stored in a
database on the data processing server which is then again backed up on the data
archive server every day.

4.1 Station condition and data quality check

The automatic processing of seismic events is accompanied by continuous data avail-
ability and data quality check. In case of any irregularity, the technical support must
be notified about that. The automatic procedure therefore checks for the presence of
recording files from all the on-line stations (only WEBNET stations up to now) and
also the SOH (State-of-Health) files are collected and tracked. We observe mainly
power-supply voltage, GPS status and mass position of sensors (in Volts). These are
the main indicators of the station conditions. For example, irregular discharging of
the backup battery indicates a power-supply failure, when the number of satellites is
zero, the GPS antenna might be broken. I developed a simple GUI (Graphical User
Interface) program SOH Monitor which graphically represents the values obtained
from SOH files in real time via SeedLink. The main window with a quick overview of
station condition is in Figld.2] As the SOH files are preserved for one year, the user
can plot the history of each SOH channel by clicking the cell and selecting desired
dates. As an example, the history of input voltage is shown in Fig[f.3] Information
about usage of data storage is not provided via SeedLink so we check the removable
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Figure 4.2: SOH Monitor main window. If the values are out of defined limits, the
color is changed from green to orange or red (depending on how severe such deviation
is). If the SOH data file is not refreshed, the color fades out. If there is no SOH file
for current day, the field becomes yellow with 'no data’ note.

SD card in everyday routine based on direct communication with the Centaur units
at each station (using SSH - a remote administration protocol that allows to control
a remote computer over the Internet). As a result a list of stations with percentage of
disk usage is sent via email. For the diagnostic purposes we also monitor the traffic
on the data-transfer links by the MRTG (Multi Router Traffic Grapher, free software
available at https://oss.oetiker.ch/mrtg/). We can distinguish between fluctu-
ations of data speed, which is usually a problem at the side of the Internet provider,
and completely dead data link.
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Figure 4.3: History of power-supply voltage (in millivolts) on WEBNET station
MAC powered by solar panels. The charging during the days and discharging during
the nights is clearly visible as well as differences between sunny and cloudy days.

4.2 Preliminary automatic analyses

The records from the WEBNET stations are automatically processed every 15 min-
utes at the data center (Fig. to check the occurrence of a potentially felt local
earthquake (above My = 2) for a quick response to the event for municipal author-
ities and media, if required. Every hour the record files are re-processed and the
resulting events together with their basic parameters (hypocentral time, hypocenter
locations and local-magnitude estimations) are saved to the database on the data
processing server for further processing and on the web server for publication on
the website. The preliminary automatic processing/re-processing is performed by
code PePin developed especially for the WEBNET network by [Fischer| [2003] ( see
also Section . The reason for the double processing (each 15 minutes and each
hour) is only practical. The shorter time segment the quicker response to the event
but also increased probability that an event occurs at the boundary of two consec-
utive segments, so with respect to swarm-like character of the local seismicity the
time-window of 15 minutes with one-minute overlap is used. It ensures detection
of the event, however incompletely recorded event in one of the time windows may
result in another detection of a fictitious event with wrong origin time and hypocen-
ter location. It is then hard to automatically decide whether this is a false double
event detection or a correct detection of two differently located events. Thus an
event evaluation in the fifteen-minute window is used just as an informative alert of
possibly socially important event. The location results as well as magnitude estima-
tions obtained from one-hour window are therefore more reliable in exchange for a
later response. They are saved to the database and presented automatically on the
website.

Additionally, once a day the waveform files are searched for all possible events
using SLRNN event detection algorithm (see Chapter [5). These event detections
accompanied by automatic amplitude evaluation are used by the interpreters for
manual seismic event processing.
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4.3 Manual analyses

The manual seismogram processing of WEBNET and REYKJANET data is exclu-
sively done with Seismon WB software (more in Chap. [6). The individual re-
searchers and interpreters with their own accounts and Seismon_ WB installation on
their personal computers work with record files and databases on the data processing
server. The results are then stored in a shared database on the data processing server
so they remain accessible for other users. Most of the intermediate or final results
are labeled with the author who produced it, or with the name of the automatic
method which was used, so it can be revised and inspected later.

The everyday routine of the interpreter is the detailed analysis of automatically
detected events. For fine phase-onset picking the user can apply various tools like
particle-motion plot, envelope or total vector amplitude. The polarity of the first
motion and amplitude of the direct P-wave (possible data for source-mechanism esti-
mation) and maximum amplitude of the S-phase (data for the magnitude estimation)
are determined automatically, but the interpreter can change them, usually in case
of overlapping events or extraordinary strong event. When the phase reading is fin-
ished, the interpreter calls location (NLLoc|Lomax et al. [2000,2009]). The resulting
location is displayed together with a graphical representation of the residuals of the
phase readings, so the interpreter can test the stability by excluding some stations
or unreliable phase onset picks and repeat the action. If the result is reasonable,
the location is saved to the database together with its parameters. The local magni-
tude is computed by NLLoc using the formula of Cermakova and Horalek| [2015] for
WEBNET and Jakoubkova, [2018] for REYKJANET. In case of significant event also
source mechanism (moment tensor) is computed using amplitudes of direct P-waves
and - if considered stable - saved to the database.

Each day the interpreter edits a text file on the data-processing server with
the date up to which the WEBNET data are completely manually processed (for
events with local magnitude My > 0). An automatic script then creates a text file
with catalog of manually processed events exported from the Seismon database and
publishes the new /updated file on the website. The text files are generated for each
month of current year, while the catalogs of past years are saved in one file each.
During earthquake swarms the magnitude threshold is temporarily raised, so first all
events above My =1 or My, = 0.5 are processed in order to be quickly available and
the weaker ones are examined later.

The catalogs for REYKJANET data are not published on the web, because the
manual processing of REYKJANET data is not performed for all the observed period
completely. Only selected episodes of increased seismicity on Reykjanes Peninsula
are inspected.
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Date of completeness:2820-02-13 00:00:08
Completeness magnitude:8

Origin time; longitude; latitude; depth; magnitude M1
2020-02-03 00:31:12; 12.4469; 50.2526; 7.8; 1.2
2020-02-04 11:17:038; 12.6497; 50.0411; 7 4
2020-02-05 04:49:45; 12.3437; 50.1363; 1
2020-02-05 B87:18:30; 12.3456; 50.1363; 1
2028-02-05 07:18:42; 12.3451; 50.1367; 1
2020-02-05 07:21:02; 12.3456; 50.1377; 1
2020-82-08 17:56:43; 12.444; 50.2526; 7.9;
2020-02-08 17:56:43; 12.4459; 50.2533; 7.8;
2020-02-12 23:54:37; 12.4523; 50.2551; 9.8;
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Figure 4.5: Example of public WEBNET catalog for February 2020 complete for
local magnitude M¢c = 0 until February 13th.
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Chapter 5

Automatic event detection

5.1 Event detection methods and machine learn-
ing in seismology

Seismic events, the useful part of seismic records for the most of seismological re-
search, occur in just a small fraction of total recorded time even in episodic periods of
increased seismic activity, for example, earthquake swarms. The target seismic events
recorded on seismic stations may differ in few orders of amplitude and they may
have fairly different shape and frequency content. Therefore, the classical STA /LTA
(Short-Term Average over Long-Term Average) or other power-based detector de-
tects also various disturbances and with the aim to detect even weak earthquakes
it results in a high number of false detections. Well-performing detection algorithm
minimizes false detections while preserving all important information, that is, all tar-
get seismic events. In our case we want to detect only local events with completeness
magnitude as low as possible. Such reduction of data enables effective processing of
events either manually or automatically.

Automatic processing of seismic events could be performed in different ways.
The first approach accords with the steps of manual processing. Initially, an event
must be detected, then the P- and S-phases are picked and the location of the event
is computed using those picks (as in Sleeman and van Eck [1999]). In the second
approach, a search is made for all possible P- and S-wave phases to combine them to
satisfy the events, which are subsequently located (Le Bras et al. [1994], Dietz| [2002],
Fischer| [2003]). During the third approach a search is made through all possible
hypocenters and if a concurrence of theoretical data with observed data is detected
the event is declared at tested hypocenter without phase onset picking (Withers
et al.|[1999], Kao and Shan [2004]). We apply the first processing scheme which
begins with detecting an event. There are several methods of detection, which can be
sorted into the time domain methods, the frequency domain methods, particle motion
processing, and pattern matching (Withers et al. [1998]) or using a combination of
these approaches.

All groups of detection can be achieved through the Artificial Neural Networks
(ANN hereinafter) - machine learning algorithms inspired by the functionality of the
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human brain.

ANN concept has been used in seismological applications mainly for classifica-
tion or discrimination purposes (Dowla et al.| [1990], Romeo| [1994], |Tiira [1996],
Esposito et al.| [2006], Kuyuk et al.| [2011], [Mousavi et al. [2016]), phase picking (Dai
and MacBeth| [1997], Wang and Teng| [1997], |Gentili and Michelini| [2006], |Gravirov
et al.| [2010], Ross et al.|[2018]) or earthquake prediction (Panskkat and Adeli [2007],
Morales-Esteban et al. [2013], Reyes et al. [2013]). Several neural network concepts
have been used for seismic event detection.

ANNs were applied to detection in the time domain (Wang and Teng [1995,
1997, |Gentili and Michelini| [2006]), the frequency domain (Wang and Teng [1995],
Tiira [1999)), as well as pattern matching (Madureira and Ruano|[2009], Tiiral [1999]).
Mostly all of these methods are based on feed-forward multi-layer-perceptron (MLP)
networks with one hidden layer, where the ANN is fed by moving window vectors.
The output of MLP neural networks depends only on the vector currently present
on the input, thus there is no memory and the time-series history can be prolonged
only by longer time-window, i.e., more inputs at the cost of much higher computa-
tion load in training. Wang and Teng| [1995] compared the detection performance
of two ANN detectors with MLP architecture. The input of the first detector was
fed by consecutive samples of STA/LTA of the whole full frequency band signal,
while the input of the second one was samples of moving window spectra. The au-
thors concluded that a spectral content must be considered for successful detection.
Similarly, Madureira and Ruano [2009] designed an MLP network whose inputs are
frequency samples in consecutive time windows. The work of [Tiira [1999] uses MLP
fed by STA/LTA of different lengths in seven frequency bands to detect teleseismic
events. He also experimented with recurrent networks - [Elman [1990] and |Jordan
[1986] networks - which enable to preserve the previous state and introduces a mem-
ory into the system, but both performed worse than MLP. Recurrent neural network
was also applied by |Wiszniowski et al. [2014] for detection of small local events by
a Real Time Recurrent Network (Williams and Zipser| [1989]). The detection capa-
bility of the neural network fed by STA/LTA ratios in narrow frequency bands and
recurrent neurons with one step delay were compared to classical STA/LTA detec-
tor with filtration and proved to be better especially when signal to noise ratio was
small. Nevertheless, the result showed the rapid forgetfulness of a recurrent network
with single delay units, which limited the discrimination in the time domain. This
concept was improved by a set of delay units with variable delays used in SLRNN
neural network described here and in Doubravova et al.| [2016] and Doubravova and
Horalek [2019]. Recently even very deep neural networks have been successfully ap-
plied, namely [Mousavi et al.| [2018] combined convolutional and recurrent units in a
deep network with 256 000 trainable parameters.

PePin (Fischer [2003]) which is used routinely to process the WEBNET data in
near-real time applies polarization analysis to find candidate onsets of P- and S-wave
phases which are then associated together to define events. A set of parameters
must be tuned in order to achieve good reliability of the resulting events. The
algorithm naturally fails to correctly associate phases in case of complex waveforms
(e.g. multiple events) which results in omitting some of the events which can be
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sometimes of not negligible magnitude. On the other hand, if an event is found
and located by PePin, the location usually differs from the manual location by few
hundreds of meters and the detection threshold for the WEBNET data is as low as
My =—1.

5.2 SLRNN concept

5.2.1 Network architecture

The advantage of ANN detection methods is the ease of adjusting parameters of
detection by training in the ANN. Consequently, a detailed description of what are
common features for events, or on the other hand, what are the most significant
differences between events and disturbances, are not required. The Single Layer
Recurrent Neural Network (SLRNN) consists of a set of m artificial neurons. The
i-th artificial neuron (Fig. at moment ¢ has an output value

where w;; are weight coefficients of the neuron inputs, v;(t) are input values,
Vi(t) is an output value, and g(.) an activation function. The activation function
defines a neuron activation behavior depending on the neuron’s weighted input. The
activation function of the biological neuron is described as a Heaviside step function
- the neuron is activated or not. In artificial neural networks using a gradient-based
optimization a continuously differentiable approximation is used. In this case a
widely used hyperbolic tangent is used (the neuron outputs are limited from -1 to
1).

The SLRNN is based on the Real Time Recurrent Network (RTRN, [Williams and
Zipser| |[1989]) and the Nonlinear Autoregressive Neural Network (NARX, Narendra
and Parthasarathy| [1991]). The structure of the Single Layer Recurrent Neural
Network is shown in Fig. [5.2

Each SLRNN neuron has the following inputs:

Vi W

Vs & h[- 144
(=g |+

Vv w

Figure 5.1: Single i-th neuron with n inputs (from v; to v,,), weight coefficients (from
w1 to w;y,), adder with output h; = Y w;jv;, activation function g(.) with output
Vi=g(hi).
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Figure 5.2: Schema of SLRNN: p inputs of the network zy,...,z,; k outputs, which
are output of neurons Vi,..., Vi; and m — k hidden neurons Viq,...,V,,. Output
of each neuron is connected to d inputs delayed by the corresponding (D.) number
of cycles, c =1,...,d. Dy,..., D, are delay units.

Vk(t—D.) j=1,..n;K=1..m;c=1,..d recurrent inputs

v(t) = x;(t) j=ng,..,n—1i=1,...,p inputs of the SLRNN
1 j=n constant value 1, bias
(5.2)

where m is the number of neurons, n is the number of inputs of each neuron
(n =p+mn,+ 1), pis the number of inputs of the SLRNN, n, = m - d is the
number of recurrent inputs, and d is the number of delay units D.. As opposed to
the RTRN, which has one step delay between output and input, the delay in the
SLRNN is variable similar to the NARX. One output of neuron can be connected
to many inputs of neurons with different delays. Consequently, there can be more
recurrent inputs than neurons. An output of K-th neuron is delayed by D; to D,
steps and fed back as a part of the first n, inputs of the neurons. The use of delays
of more time steps allows remembering time relations longer compared to the RTRN
(Wiszniowski et al|[2014]). Thus, the inputs from 1 to n, are the recurrent ones,
the inputs from n, + 1 to n — 1 are those of the whole network, and the n-th input
(also called bias) is connected to a constant value of 1. As opposed to the NARX,
only a part of neural outputs (k) are outputs of the SLRNN. Other hidden neurons
allow building self-adapted time relations not controlled by expected outputs.

5.2.2 Inputs of the network

The input data of the neural network must be preprocessed before it is used as
SLRNN inputs (Fig. . Original data is three component seismic records (N,
north-south; E, east-west; Z, vertical). First, the signals are filtered by a filter
bank. It consists of nine half-octave IIR filters with the narrow frequency bands
of 0.6-1Hz, 1-1.6 Hz, 1.6-2.5Hz, 2.5-4Hz, 4-6.3 Hz, 6.3-10 Hz, 10-16 Hz, 16-25 Hz,
25-40 Hz, see Fig. [5.3] After filtration we compute a total horizontal component
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Figure 5.3: Filter bank frequency response. Each half-octave filter filters out a
narrow frequency band from the input signal.
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Figure 5.4: Processing scheme of the SLRNN input data. Three-component raw
seismograms are processed into 18 SLRNN inputs.

V' N? 4+ E?. Then, we calculate the STA/LTA ratios. The length of the short term
average (STA) window is two times longer than the shortest period (defined by the
higher corner frequency of each filter) and the long term average (LTA) window is
ten times longer than the longest period (defined by the lower corner frequency of
each filter). The original sampling rate is then decimated to 5Hz, thus the SLRNN
works in 0.2 s time steps. The time step 0.2s of our SLRNN is a compromise between
the acceptable computational load and a good separation of individual waves.

5.2.3 Configuration of the SLRNN for WEBNET

Our SLRNN, designed for detection of small natural earthquakes in WEBNET con-
sists of 8 neurons and 18 inputs (test for sufficient number of neurons is provided in
Section [5.4.2)). The feedback connections of the output of each neuron are delayed
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by 1, 2, 4, and 8 time steps. Thus the neurons have 32 feedback inputs, 18 inputs of
the network, and 1 bias input. The 18 inputs come from a filter bank of STA/LTA
ratios. The filter bank is an array of narrow band-pass filters that separate the in-
put signal into multiple components, each one carrying an isolated frequency band
of the original signal (Fig. . The outputs of the first three neurons, which are
also outputs of the SLRNN, correspond to: V; —detection of event, V5, —detection
of P wave onset (P onset hereafter), and Vi —detection of S wave onset (S onset
hereafter). This is achieved by adjusting the weights w;; during the training process
(in our case for 32 + 18 + 1= 51 inputs and 8 neurons it is 408 weights). After
successful training, the V; output is used for event detection, while the rest of the
outputs (outputs of the hidden neurons and phase detections) are used only as feed-
back. The detection outputs V5 and V3 cannot be used as pickers because of a long
time step of the SLRNN being 0.2s.

5.3 The training process

5.3.1 Training

A suitable training of an ANN is of key importance for proper performance of the
ANN;, so that training of our SLRNN network is one of the most exacting tasks and
forms a significant part of my thesis.

We applied a supervised learning algorithm, which means that neuron weights
w;; (408 weights in our case) are adjusted in order to get the best possible fit of
the real and required outputs of the SLRNN. It is achieved by minimizing the cost
function of real and required outputs. Consequently, the required outputs of the
network and the cost function E must be defined. The output of a well-trained
network ought to fall below a certain threshold during the occurrences of seismic
noise and disturbance, whereas it must significantly exceed the threshold during the
seismic local event. In our case, the threshold was zero. However, the detection is
not required to exceed the threshold at the beginning of the event. It can occur any
time during the event. It is not even recommended to exceed the threshold at the
beginning until, for example, secondary waves come. Otherwise, some disturbances
similar in shape to the P waves might generate detection. Therefore, the required
output is negative at the beginning of an event, whereas after the S onset the positive
output is strongly enforced. The error between required and real output is weighted
in order to ignore or emphasize the error. The cost function E for one waveform in
the training set is defined as a sum of output errors in the form:

E =330 (1) [Gt) —oi(t)], (5-3)

t i=1

where (; is the expected output of i-th neuron, 7; is the learning-error weighting
coefficient (learning coefficient hereafter) and o; is the real output of the SLRNN
(1 = 1,2,3, corresponding to outputs Vi, Vo and V3). Time ¢ is discrete in time
steps of the SLRNN which is 0.2s in our case. Both ¢ and 1 depend on the P and
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S phases of the seismic event. The learning coefficient defines how sensitive is the
learning process of SLRNN to certain periods of the event waveform (Figs. and
5.6). To improve generalization of the detection, we implemented the weight decay
regularization method (Hinton|[1989]) into SLRNN learning. Hinton showed that it
is possible to improve generalization by adding a term that amounts to the sum of
squares of the network weights to the cost function. Then the cost function is

m n

E= vZZm G(t) — o) + (1 — ) DD w},. (5.4)

t i=1 i=1j=1
where the regularization parameter v controls the extent to which the second

penalty term influences the cost function. The minimization is based on a gradient
of (5.4 according to the formula

2 Yy 00 a0 P 20 69

t i=1

Two methods most often used to compute the gradient of cost function of recur-
rent neural networks are the Real Time Learning algorithm (Williams and Zipser
[1989]) used by |Wiszniowski et al| [2014] and Back Propagation Through Time
(BPTT) algorithm (Werbos [1990]). Regarding the SLRNN, we chose BPTT be-
cause it is faster and it is implemented in Matlab Neural Network Toolbox that we
use. The definition of the expected outputs (;(t), (o(t), (3(t) (Figs. and [5.6p)
and learning coefficients 1, (t), n2(t), n3(t) (Figs. and [5.6¢) can be found in detail
in Doubravova et al.| [2016].

5.3.2 Training data

The SLRNN network was trained by applying the Levenberg—Marquardt BPTT al-
gorithm to the WEBNET data. The training data was divided randomly into an
actual training set (80% of data) and the validation set (20% of data). Each step of
the training procedure reduces the cost function of the training set and in addition
computes the cost function of the validation set, which is not used for training. As
long as the cost function of the training set and cost function of the validation set
decrease, training continues. When the cost function of the validation set starts to
increase, the training stops. This prevents over-training the network when it would
perfectly detect the training events but would not recognize other events well. Be-
cause of the strong nonlinearity of the cost function, the training was performed
numerous times with different random initial neuron weights w;;. The regularization
parameter v was set to 0.6. For training the SLRNN we used data from the earth-
quake swarms of 2008 and 2010. The 2008 data include thousands of local swarm
events with manually picked P- and S-wave onsets which are consistent throughout
the whole period. We chose randomly about one hundred events for each station with
various magnitudes, locations or focal mechanisms. Additionally, a similar number
of examples of disturbances and non-local events were needed. For this purpose we
chose the 2010 data because it exhibited low local seismicity without earthquake
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Figure 5.5: Example of SLRNN learning on the ZHC station from the 8 Oct 2008
event with P- and S-wave onset picks, and a later event with S pick only. a) the
seismic signal with marked phases, red - Z component, blue - N component, green - E
component, b) expected outputs of the SLRNN, red - event detection, blue - P wave
detection, green - S wave detection, ¢) learning coefficient, red - event detection, blue
- P wave detection, green - S wave detection.
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Figure 5.6: Example of SLRNN learning on the ZHC station from the 8 Oct 2008
event with P- and S-wave onset picks, preceded by small event with P pick only.
(For further legend see Fig. |5.5)

swarms, so finding a variety of well recognized disturbances was easy. We used man-
ually classified quarry blasts, regional or teleseismic events, disturbances by wind or
storms and other unspecified disturbances. Major problems in our training process
are lacking picks which may be due to higher noise masking onsets or to unclear
P onsets on stations lying near nodal planes of a particular event, rarely due to
a failure during the manual processing. When the P- and S-wave picks are miss-
ing, the SLRNN network is forced to learn that the signal is a disturbance, causing
the training to act in just the opposite way. Additionally, during the evaluation of
network performance on the test set many right detections not verified by manual
picks (mostly very weak events preceding and following the properly picked event)
are wrongly treated as false detections. To eliminate this problem it was necessary
to re-process manually the set of the training events to complete the P- and S-wave
onset picks even if their right position was not clear (considering that the step of our
SLRNN is 50 samples, i.e., 0.2s). Accordingly, we must have re-processed both the
training and test sets several times. An example of an unpicked event is shown Fig.
5.7 At least three events were unpicked. They were detected by the SLRNN, which
shows that the network can work trained by partly wrong data.
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Figure 5.7: An example of one properly picked event and events not picked (before
and after the picked event). Seismogram (the ground velocity in m/s) from station
ZHC: (a) Z component with marked phases, (b) N component, (¢) E component, (d)
detection signals: red — event detection, blue — P wave detection, green — S wave
detection.
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5.4 Tests and evaluation of training

5.4.1 Statistical measures of the SLRNN performance

Although training the SLRNN minimizes the cost function E, the quality of detection
depends on number of events detected and number of false detections, which are not
wholly related to E. To assess the SLRNN performance we evaluate mainly three
characteristics — specificity, sensitivity and receiver operating characteristic (Zweig
and Campbell [1993]). All of them are obtained based on the values of:

e true positive (TP) — number of correctly detected events,
o false negative (FN) — number of undetected events,

o true negative (TN) — number of correct rejections,

« false positive (FP) — number of false detections.

The training set consists of seismograms with local seismic events and seismograms
with any other signal regarded as a disturbance. In the case of the picked seismic
events the number of true positives is incremented if the detection output of SLRNN
is above zero (Vi > 0 ) a few seconds after the P-wave onset (Figl5.7)), but if V; < 0
the number of false negatives is incremented. The event detections outside picked
events are ignored because there may be some unpicked events (mostly very weak
ones as in Fig. which are detected by the SLRNN. Regarding non-local earth-
quakes or disturbances the number of false positives is incremented if there is at
least one point where detection output (V;) was above zero. Otherwise, the number
of true negative is incremented. The sensitivity, also designated as the true positive
rate (TPR) or recall, is calculated according to the formula

B TP
TP+ FN
where (T'P+F N) is the sum of all detected and undetected events. The specificity

(also designated as the true negative rate (TNR)) is calculated according to the
formula

TPR (5.6)

TN
TN+ FP’

It is the ratio of true negatives to the total number of all disturbances (T'N +F'P).
Ideally, the sensitivity TPR = 1, i.e., all local earthquakes are detected, similarly
the specificity TNR = 1, i.e., all disturbances are rejected. Low TNR means that
the SLRNN tends to produce an excess of false detections. Increasing the number of
detections for small events is always associated with expanding the number of false
detections. Therefore, slightly lower sensitivity could be acceptable together with a
high specificity value.

A precision or positive predictive value (PPV) is defined as a ratio of truly iden-
tified events to all detections

TNR (5.7)
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TP
PPV = ———. .
v TP+ FP (58)

The relation of the sensitivity and specificity is described by the receiver operating
characteristic (ROC) that is usually depicted by the ROC diagram (Swets [1996]).
When the sensitivity and specificity depends on the parameters of the detection
algorithm used or on the parameters of training the neural network, the ROC-curves
represent a relation between the sensitivity and the specificity for various values of
parameters.

In an attempt to automatically compare manual catalog to detections provided by
the SLRNN we faced a problem with many weak events being missing in the manual
catalog correctly detected by the SLRNN. After all, the only reliable method to
evaluate the correctness of each detection is to inspect it manually (Table in
Section . However, precise manual processing revealed also few weak events
undetected by the SLRNN (usually with —1 < M, < —0.5). Our goal is to get
complete catalog down to My = 0 for WEBNET and M, = 0.3 for REYKJANET.
The smaller events will never be complete due to lower signal-to-noise ratio and are
often unsuitable for further processing either. In practice, we need to reduce the
amount of data for further processing as much as possible, in other words to remove
redundant data from the continuous recordings. On the other hand, if the selected
time segment with a seismic event is few samples longer or shorter then it does not
make a difference. In case of overlapping events during the seismic swarm, we joined
detections together and therefore simply counting a number of detections does not
correspond to the number of detected events. In case of a very sensitive network
with low threshold or little coinciding stations, many swarm events blur into long
time segment; thus the useful information is preserved but the reduction of data is
less effective.

5.4.2 Number of neurons

Estimating the number of neurons is always a difficult task. Generally, it is a pa-
rameter empirically set by the designer. On the one hand, it must be the lowest
possible to have reasonable time for training and good generalization, but on the
other hand, it must be high enough to satisfy the complexity of the problem. We
tested 4,8,12,16 neurons which is in our case 140, 408, 804 and 1328 weights. The
ROC characteristic in Fig. shows that the detection is significantly inferior to
four neurons. Increasing the number of neurons to 12 or 16 improved the detection
only slightly while the training got significantly more time-consuming. As a result,
the SLRNN with 8 neurons is suitable for detection of local swarm-like events in the
WEBNET recordings.

5.4.3 Testing the training parameters

The most important point for training is the weighting coefficient 7, just after the
S-wave onset having the highest value in all weighting functions course (red curve
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Figure 5.8: ROC diagram for different number of neurons—results of a few trails
of training when all stations were trained together. Note that horizontal axis corre-
sponds to 1 — T'N R (specificity).

in Fig. and . We call the value the Learning Importance Weight of Events
(LIWE) more details on the definition can be found in |Doubravova et al. [2016].

We evaluated the impact of the LIW E value on the learning process. We tested
the training of the SLRNN with LIW E values of 1000, 500, 200, 100, 50, 20, and 10.
The same set of the LIW E values are also used in additional tests. The sensitivity
of the SLRNN trained with LIWFE = 1000 was high, but there were too many
false detections and the specificity was low. Therefore smaller values of LIWE were
tested, i.e., 500, 200, 100, 50, 20, and 10. The cost function is strongly nonlinear,
having a number of local minima which results in some of them stopping the SLRNN
learning, a tendency increases with the value of LIWE. Fig. [5.9 shows the sum of
cost function values over the training set for 2000 trials of the training detection for
station POC for the set of LIWE values. The POC station was chosen because it was
one of stations showing the best detection results. When LIW E was small (10-100),
only 30-40% of training periods failed completely. In the case of big LIW E (1000)
more than 60-70% of periods of training failed.

The LIW E' value significantly affects the nonlinearity of training. The BPTT
algorithm must be iterated more times or nonlinear optimization methods should
be applied instead. To assess detector performance we examined the sensitivities
and specificities. For LIW E values we computed the sensitivities and specificities
for 10 training results with the smallest cost function. The influence of the LIW E
value on sensitivity and specificity is presented in Fig. [5.10l For greater LIW Es the
specificity decreases, which means that the number of wrong detections is growing.
On the other hand, for smaller LIW E's the sensitivity decreases, so more events are
not detected. This implies that the best LIW E value is between of 50 and 200.
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Figure 5.9: Sum of E-values over the training set for 2000 trials of training detection
for one station POC for the individual LIW E values. Each of 2000 training periods
for each LIW E finished at some of the local minimum of the cost function. For each
trial the value of the cost function has been computed and results for each LIWFE
were sorted from best to worst (from lowest E to highest ). The curves show how
many trials failed. The number of successful training periods is higher for lower

LIW ES.
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Figure 5.10: The ROC diagram for the POC station the set of LIWFEs (given

in upper-right corner) for station POC. To reduce number of points in the ROC
diagrams, only two of the ten sensitivities (TPRs) and specificities (TNRs) are pre-
sented. Both TPR and TNR are required to be the highest possible (equal 1), thus
our figures show the result with maxima of TPR-TNR (smaller symbols), and max-
ima of TNR for the best TPR (bigger symbols).

5.4.4 Individual versus joint training

The detection ability of our SLRNN was tested in two ways. First, the network was
trained and used individually for each station. The results for all the WEBNET
stations, which were trained individually with LIW E = 100 are shown in the ROC
diagram (Fig. . Second, the network was trained for all stations together.
The result is shown in Fig. [5.11] where sensitivity is computed individually for
each station. There are large differences between stations. The ROCs show that
some stations like POC and LBC have 100% sensitivity and high specificity >90%,
whereas some other stations like KAC, ZHC, NKCN have 99.5% sensitivity and
smaller specificity. Results of training all stations together are similar; stations POC,
LBC, and NKCN are the best, whereas stations KAC, and ZHC are significantly
worse. The difference between joint and individual training at NKCN is probably
caused by the lack of many picks at this station. The reason is that the former
station NKC, which was located at the same site as NKCN (parallel operation), was
routinely used for event location until recently. That is why a number of smaller
events have not been picked on NKCN, but NKC was operated in the triggered mode,
so the data from this station is not used for training the SLRNN.

The test showed that some stations always detect events as being worse than the
others, so we compared it to signal-to-noise ratios (SNR) on individual WEBNET
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(a) Each station trained individually.
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(b) All stations trained together

Figure 5.11: ROC diagrams for individual and joint training - maxima of TPR-TNR
(bigger symbols), and maxima of TNR for the best TPR (smaller symbols). Indi-
vidual training stations KAC and ZHC reveal the worst results. The joint training
improved results in some cases, e.g., NKCN and ZHC.
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stations. We processed five local events with local magnitude of M ~ 1 so as to
have reasonable signal power and spectral content. Although events with lower mag-
nitudes may be contaminated by noise, they have higher-frequency content than that
of larger events. Events with higher magnitudes have lower prevailing frequencies.
We computed fast Fourier transform (FFT) spectra of noise just before the event
and the spectra of the event. The signal and noise spectra of five events were aver-
aged and the resulting SNRs were smoothened by moving average (window length
5Hz). To eliminate the signal decay due to different hypocentral distances, the SNR
for the individual stations is corrected by factor R corresponding to the hypocentral
distance in km.

S(f)
SNR =20-log N(f)R (5.9)
The resultant SNRs are depicted in Fig. [5.12] It is obvious from this fact that the
SNR pattern of the three components is consistent. We thus assume it is mostly a
question of the site effects. Stations ZHC and KAC having the lowest SNR between
1.0 and 80Hz also indicate the worst ROC. A lower SNR on these stations may
be due to a shallower installation of sensors when contrasted with other stations;
additionally, the ZHC station is situated close to a TV tower and also a larger town
Cheb, so the higher noise cannot be avoided. I would like to emphasize that the
signal-to-noise ratio at frequencies between 5 and 40 Hz are of crucial importance
for a detection performance of our SLRNN, particularly for detection of weak local
events.

5.4.5 False detections

We tested the performance of our trained SLRNN using data from earthquake swarm
2011 for the POC station. We chose station POC since it was used to test LIW E
values during the training process. The results showed a large number of “false”
detections (a few hundred depending on the SLRNN realization). After an experi-
enced interpreter inspected the 2011 waveforms and catalogs, we found that there
were a number of unpicked smaller events. So we checked carefully only 5 hrs of the
swarm-activity recording. In this way six originally picked events with magnitudes
between M; = 0.6 and M; = 0.9 were supplemented with 154 new events having
magnitudes My = —0.3 to My, = 0.6 . The next test at the same time period showed
a huge improvement; many false detections switched to true ones but still some re-
mained (from tens to a hundred). After the interpreter’s inspection we found that
some of these events are visible in the seismogram but definitely impossible to be
picked. Besides, many other of detected events might be buried under noise. I wish
to note that neural networks with very low false positives often have a tendency to
increase the false negative. Generally, the ANN networks with the lowest number of
false detections generally do not detect some of the events.
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Figure 5.12: SNR for all stations used for events with local magnitude M, =~ 1
corrected by the distance factor R. The thicker vertical line at 0.0125s (80 Hz)
corresponds to the corner frequency of the anti-aliasing filter in recording units,
and the thinner one at 0.05s (20 Hz) corresponds to a rough estimate of the corner
frequency for My, = 1 events according to |Michalek and Fischer| [2013].
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5.4.6 Undetected events

Referring to false negatives (FNs), i.e., undetected events, we recognized some com-
mon features. Looking at the false detections of each SLRNN realization we found
that the FNs are usually the same. Typical examples of events undetected by the
SLRNN network are shown in Figs. [.1315.16] Fig. depicts undetected quite
large events (M = 2.3 and 2.2) hidden in the coda of much stronger preceding event
(M, = 3.8). Even if seismograms of all the stations are available, only a very expe-
rienced interpreter would find these events and pick P- and S-wave onsets reliably.
An example of an undetected very weak event (M = —0.3) on the KAC station is
given in Fig. [5.14] The SNR on the KAC site is significantly lower than on other
stations, so the P- and S-wave onsets are completely masked by noise. An example
of an undetected event (M = 0.2) due to very small ground-motion velocity ampli-
tudes on station POC, located at relatively large epicentral distance (D = 13km),
is demonstrated in Fig. [5.15] An example of detected and undetected weak events
in the seismograms contaminated by strong disturbances at station KAC is shown
in Fig. [5.16] As it results from Figs. [5.13}{5.16] the event-detection failures can be
reduced substantially by using station coincidence. This means the similarity of all
the stations is seen even if the trace is very noisy on some stations. The detection
should be based on the coincidence of more stations in a time window of appropriate
length. Then the event-like disturbance on only one station should be eliminated.
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Figure 5.13: Example of undetected events with magnitudes My = 2.3 and M = 2.2
masked by a coda of the previous M = 3.8 earthquake (strongest event of the 2008
swarm, October 12, 07:44:56 UTC) on the LBC station. Even though the events
are of relatively higher magnitudes, having the ground-motion-velocity amplitudes
much higher than ambient noise, it is very difficult to recognize them in the coda.
Vertical lines indicate the picks of the P- and S-wave onsets.
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Figure 5.14: Example of a failed detection of M, = —0.3 event on station KAC
(bottom panel) and a successful detection of it on stations VAC, SKC and POC.
Since the scale is the same for all traces it is evident that the waveform amplitudes
on the KAC station are similar to those on other stations but noise on KAC is higher.
Note a successful detection on stations SKC and POC (second and third panels from
top), where the P waves of the event are practically invisible. Vertical lines indicate
the picks of the P- and S-wave onsets, the arrows correspond to the P-onset polarity.
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Figure 5.15: A failed detection of the M, = 0.2 event on station POC (D = 13km)
due to a very weak P- and S-wave amplitudes. Two more stations, LBC (D =
6km) and SKC (D = 6km), with a successful detection of the event are added for
comparison. Only vertical components are shown, all traces have the same scaling.
It is obvious that the waveform amplitudes on POC are much weaker than at other
stations, while the noise level is comparable. Weak amplitudes on POC are due

two factors: the radiation pattern of the focus of the event and the larger epicentral
distance.
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Figure 5.16: Example of detection performance in the disturbed seismogram at sta-
tion KAC and in a seismogram with medium noise from station SKC. The seismo-
grams include a sequence of four weak events (from left to right with magnitudes My,
of 0.3, 0.3, 0.3 and 0.6). All the events were detected on SKC while the detection
of the third event on KAC failed due to strong disturbances. The scale is the same
for all traces. Note that it is not possible to find the P waves of the second and
third event in the POC seismogram, even if the processing would be performed by a
skilled interpreter.

5.5 Multiple station detection

In order to reduce the number of false detections as well as the number of undetected
events due to higher signal-to-noise ratio we search for detection on other stations
in the network to confirm or discard the event detection. I designed a simple algo-
rithm that rejects all detections which are not accompanied by enough detections on
other stations of the seismic network. Fig. depicts three component ground-
velocity record of the KLV station of the REYKJANET network (for application of
our trained SLRNN network to SW-Iceland events refer to Section and cor-
responding SLRNN detection output. The detection is set whenever the detection
output exceeds a certain threshold. The yellow stripes denote seismic events and one
can see there are detections also in between the event stripes. The proposed algo-
rithm first scans all detections (detection output above zero) on all stations of the
seismic network and checks if there is a detection on a sufficient number of stations
in the selected time window (we set it to 5s with respect the size of the WEBNET
and REYKJANET networks). In the next step we combine the detections together
to make time intervals for events (see example in Fig. . As a result we define
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time segments containing useful information. Thus, multiple overlapping events,
especially during a swarm, lead to one time interval containing more events.

The number of stations, which are needed to declare an event, is closely related
to the number of false detections. Additionally, too many stations required might
cause loss of weaker events. Fig. [5.19 shows an example of a coincidence of four and
six stations and their comparison with the events detections performed manually (by
the experienced interpreter). If we compare the detection results of the four- and six-
station coincidence with a precise manual ones, it can be seen that the six-station
coincidence detects all the manually identified events correctly while four-station
coincidence detects also false events or events which are not interpretable (three
cyan stripes which do not coincide with the yellow ones). Moreover, four station
coincidence detecting more events which merge into a wave train produce longer
time window for detections of the events (broader stripes in Fig. . Two clearly
separated event detections in six-station coincidence may merge into one longer event
detection in case of four-station coincidence. For both networks—WEBNET and
REYKJANET—the coincidence of six stations seems to be the best option (see

Tables and in Section [5.6.1)).
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Figure 5.17: Example of the single-station detection. Seismogram from the REYK-
JANET station KLV (2017 June 5, 11:20 to 11:27 UTC) filtered by BP of 1-40
Hz and detection output of the neural network (always in range between -1 and
1). From the top: vertical, north, east component of the ground-velocity record,
detection output of our trained SLRNN neural network. Yellow stripes denote local
seismic events from the Reykjanes Peninsula (after coincidence), the strongest event
marked by red dashed line is an event included in catalog of the regional seismic
network SIL (M = 0.9). The detection threshold (indicated by the purple dotted
line) is exceeded even in between the events which could be due to both very weak
events masked by noise and disturbances.
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Figure 5.18: Example of the coincidence detection. Detection outputs of our SLRNN
for all 15 stations of REYKJANET, detection on at least six stations required. The
same time segment as in Fig. |5.17
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Figure 5.19: Example of the detection coincidence for four (cyan) and six (yellow)
WEBNET stations. In case of concurrent event detection by four and six station
coincidence the cyan stripes are overlaid by the yellow ones. Red trace above is the
vertical component of seismogram from NKC station from 2018 August 24 3:00-3:12
UTC. All events in yellow were also detected manually, magnitudes My, (from -0.5 to
1.5) are given above the yellow stripes. The first detected event in the seismogram is a
multiple event consisting of several weak overlapping events, therefore the magnitude
is not assigned (x sign is printed instead). Note the end of the record where two
yellow events merge into one longer cyan event.
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5.6 Application

5.6.1 WEBNET seismograms

The WEBNET data are first processed by the PePin software (Fischer|[2003]) provid-
ing automatic locations in near-real time which are sufficient for preliminary interpre-
tations. The events located by PePin are then re-interpreted by manual processing
(adding or refining picks, location by NLLoc with more precise velocity model, and
in case of more significant activities some more advanced analyses). In order to get
good location residuals, the PePin software is set up to use only eight nearest stations
around the Novy Kostel focal zone (the central part of the network) which contains
more than 90 percent of the total seismic moment released in the whole seismoactive
area since 1991 [Jakoubkova et al. [2018]). This unfortunately may result in omitting
events outside the main focal zone. During November—December 2018 we compared
in detail all event detections by the SLRNN (running in a pilot operation) with pre-
cise manual readings and with the PePin results. In this period the local seismicity
was extremely low with maximum magnitude My,,.. = 1.3. We took into account
only events with magnitude above M; = —0.5, which resulted in 183 events. The
results of our analysis are summarized in Table [5.1] and and displayed in Fig.
[5.20] There are 106 events of M, > —0.5 successfully detected by both SLRNN and
PePin (red circles in Fig. [5.20)), 73 events were successfully detected by the SLRNN
only (they are missing in the PePin catalog, yellow circles in Fig. [5.20), and four
events missing in the SLRNN list were successfully located by PePin (green circles
in Fig. .

It is worth mentioning that significant part of the undetected events by the PePin
algorithm are located outside the main focal zone of Novy Kostel. Tables 5.1 and
provide more detailed statistics including the comparison of the detection results of
the SLRNN with coincidence of six and four stations. The six-station coincidence,
which we found to be an optimum for the West Bohemia/Vogtland earthquake-
swarm region, results in omitting four events which were located both manually and
by PePin; all four undetected events have magnitude Mp,,,q.. =~ —0.5. If we use four-
station coincidence then all manually located events are successfully detected by the
SLRNN but the number of event detections increase significantly. An example of
one of the undetected events is given in Fig. [5.2I] It is apparent that such small
events may not be above noise level on sufficient number of stations.

5.6.2 REYKJANET seismograms

A potential ANN trained on the South-West Iceland data from REYKJANET poses
quite a big problem because of the absence of complete catalogs/bulletins from the
REYKJANET network which would be necessary to train the ANN. It is because
of the REYKJANET recordings that have not been fully processed in detail like
the WEBNET ones. To create relevant bulletins from the REYKJANET stations
by manual processing of continuous recording would be extremely time-consuming,
requiring an experienced specialist. Consequently, we mostly use the catalogs of a
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Figure 5.20: Detection results for local events during November and December 2018
in the map of West Bohemia/Vogtland. Blue triangles, on-line WEBNET stations;
cyan triangles, off-line WEBNET stations; pink triangles, stations used for near-
real time data processing by the PePin algorithm; grey dots, epicenters of events in
time period 1995-2015; red circles, events located manually and by PePin and also
detected by SLRNN; yellow circles, events located manually and detected by SLRNN
(not located by PePin); green circles, events located manually and by PePin (not
detected by SLRNN). Diameter of circles is scaled according to local magnitude.

| Data set | Number of events |
Manual events 317
SLRNN detections - 6 stations coincidence 392
SLRNN detections - 4 stations coincidence 840
PePin events 238

Table 5.1: Number of all events in the period November—December 2018 detected
manually, by SLRNN and PePin algorithm. The manually detected events contain
many very weak events (M; < —0.5, compare with Table [5.2)), majority of them is
unsuitable for interpretation; similarly SLRNN detections contain very weak events
or false detections. PePin events are declared after a successful location and thus
they are assumed to be all real interpretable events.
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Figure 5.21: WEBNET seismograms of the local event (2008 November 14) unde-
tected by SLRNN with the six-station coincidence. Manually estimated magnitude
M = —0.5. Only vertical components of the ground-motion velocity (BP 1-40 Hz
applied) are displayed. Stations are sorted by epicentral distance (top trace corre-
sponds to the nearest station).

Manual events Subset Subset Subset
in SLRNN-6 | in SLRNN-4 | in PePin
My > —0.5 183 179 183 110
My >0 43 43 43 27

Table 5.2: Number of events compared to manual events for magnitude from M >
—0.5 and My, > 0, November—December 2018
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\ | ANN | SIL | Antelope | PePin | Manual (M, > 0) |

(i) 30-31 Oct 2014 112 | 37 30 9 N/A

31 Mar 2015 216 | 30 37 29 N/A

28-30 Apr 2015 125 | 23 9 23 N/A

29-30 May 2015 937 | 167 34 25 N/A

(ii) 26 July 2017 11:00-12:00 | 124 | 56 N/A N/A 281
(iii) 6-12 June 2017 184 | 34 N/A N/A 64

Table 5.3: Number of events for all analyzed Reykjanes activities.

regional Icelandic network SIL provided by Icelandic Meteorological Office (IMO) for
the REYKJANET-data analysis. But there are more detectable local events in the
REYKJANET seismograms than those given in the SIL catalogs because REYK-
JANET is an evidently denser network (15 stations) than a regional network SIL
including seven stations in the area concerned (Fig. [5.22). Therefore, an application
of the SLRNN network trained for the West Bohemia/Vogtland data (WEBNET)
to data from South-West Iceland (REYKJANET) has been a challenging task. I
used one of the best-performing SLRNNs as tested for WEBNET and applied it
to the REYKJANET data. Since the deployment of the REYKJANET network
in 2013, the seismicity on the Reykjanes Peninsula has typically been on a micro-
earthquake level (magnitudes M < 3) except two earthquake swarms in October
2013 (which occurred on the tip of the peninsula out of the REYKJANET network
immediately after putting the stations into operation) with M., = 4.8 and in July
2017 with Mp e = 3.9, and few weaker swarm-like episodes with magnitudes up to
Mimaz = 3.5. We analyzed in detail the detection results for

(i) four weak swarm-like activities from the period 2014-2015,

(ii) an intensive M4, = 3.9 swarm of July 2017 and

(iii) scattered background seismicity on the Reykjanes Peninsula in June 2017

(for basic data and locations of the analyzed activities refer to Tableand Figs.
and 23).

The SIL catalog is the primary reference for evaluation of the SLRNN-detection
results for both (i) and (ii). Besides, we used a catalog of the event detections pro-
duced by PePin algorithm (Section and Antelope software package (by Boulder
Real Time Technologies, Ltd.) that were applied to the REYKJANET data (i), and
a detailed bulletin of the 2017 swarm containing manual onset picks from all the
REYKJANET stations.

(i) First, we compared the total number of detected events by the SIL processing
at IMO, PePin algorithm, Antelope software and SLRNN (also denoted as ANN)
in the individual weak activities. The Antelope automatic location procedure uses
weighted STA/LTA phase detections (mainly P-wave phases are correctly picked).
The PePin algorithm uses polarization analysis for event detection. In the first step
the S-wave arrivals (which are often clearly polarized) are identified then they are
associated with matching P-wave arrivals in the given time window, finally the event
is localized. However, in case of a false event location (e.g. due to the incorrect
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Figure 5.22: Distribution of analyzed seismic activities/events on the Reykjanes
Peninsula. circles, epicenters of analyzed earthquake activities. Blue circles - 2014
October 30-31 (Mppmae = 2.8), red circles - 2015 March 31 (Mp,4. = 2.2), yellow cir-
cles - 2015 April 28-30 (M pmar = 1.6), green circles - 2015 May 29-30 (M0 = 3.5),
cyan circles - 2017 July 26-28 (M4, = 3.9). Black triangles denote REYKJANET
stations, grey triangles mark IMO stations.
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Figure 5.23: Examination of the SLRNN detections of background seismicity on the
Reykjanes Peninsula in the period 2017 June 6-12. All 34 events listed in the SIL
catalog (green circles) are successfully detected by the SLRNN. Another 37 events
(red circles) detected by the SLRNN are located using manual picks of the P- and
S-wave onsets. 112 more event detections indicated by the SLRNN are the events
unfit for location due to lack of reliable P- and S-wave arrival times or false alarms

in some cases.
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Figure 5.24: Number of detected events in analyzed micro-swarms on the Reykjanes
Peninsula.

association of the P- and S-wave arrivals) the event is omitted in the uncatalogued
(for more information about the PePin detector see [2003]). The comparison
of the SIL, Antelope, PePin and ANN catalogs is depicted in Fig. [5.24

It is apparent the number of events detected by SIL, PePin and Antelope is com-
parable for all the activities, while the number of detected events by the SLRNN is
about five times higher. We manually checked one of the activities with a reasonable
number of events—the mini-swarm of the 2015 March 31. In total, 30 events have
been listed in the SIL catalog (Mpma: = 2.2), 37 were located by Antelope and 28
by PePin. Inspecting the events manually, we found out none of the ‘catalogs’ (SIL,
Antelope and PePin) to have been a complete subset of another one; each catalog
contained some unique events which were missing in the other two catalogs (see Fig.
5.25). The SLRNN detector provided 217 events including all the detected events
given in the SIL, PePin and Antelope catalogs. Fig. [5.25| represents the comparison
of detected/undetected events from each catalog (SIL, PePin and Antelope) with
those in the other two catalogs and with the SLRNN detections. By combining the
SIL, PePin and Antelope catalogs we obtained 51 real events with minimum magni-
tudes M, ~ 0. Our SLRNN detected all of them and in addition to that about three
times more weak events. But many of the small detected events are unsuitable for
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further processing because locating of such events would be unreliable due to unclear
P- and S-wave onsets.

Nevertheless, Figure [5.28 demonstrates that even the small events are true local
seismic events, even they are on most of the stations buried in the noise. We believe
that further automatic processing leading to an event location would reject some of
these event detections due to insufficient number of good quality phase readings; or
some amplitude/power threshold may be used. Fig. [5.25|also point to the imperfect
performance of the PePin algorithm because it missed two strongest and several other
weaker events in the March 2015 activity (Fig. [5.25] top diagram in the figure). The
PePin algorithm, which defines an event by associating the P- and S-wave phases,
might have failed due to more complex waveforms resulting in the false association
of the P- and S-wave phases (Section [p.1)). Let me note that PePin has been tuned
and routinely used for a near-real time processing of data from WEBNET.

(ii) A prominent earthquake swarm in July—August 2017 Mp,,.. = 3.9 was fairly
rapid. Most of the seismic moment released during 2 days from July 26 to 28 (Jak-
oubkova et al.| [2018]), more than 1500 M > 0 events have been listed in the SIL
catalog for these days (Fig. . We concentrated on 1hr of the swarm activity
on July 26, from 11:00 to 12:00 UTC, that included the second strongest earthquake
of the swarm (M = 3.7). This segment contains both calm and turbulent phase of
the swarm (Fig. . We performed detailed manual processing of the continuous
seismograms with the assistance of an experienced expert who found 441 events in
total out of which 281 were reliably located with magnitude above My > 0. Then
we compared the manually obtained events with detections provided by the SLRNN
and with the list of events in SIL catalog. There were 56 events in SIL catalog and
124 event detections indicated by SLRNN (due to the turbulent nature of the swarm
the detections often included more events). The results are shown in Figs and
All of the manually picked events were correctly detected by the SLRNN and
only one false SLRNN detection was found.

(iii) In order to prove the SLRNN ability to detect various local events on the
whole Reykjanes Peninsula we selected a time segment containing scattered back-
ground non-swarm seismicity only (Fig. |5.23]). We selected one week, 2017 June 6-12,
where the seismic events included in the SIL catalog were scattered in the whole area
covered by the REYKJANET network. The SLRNN detected 183 events, 34 events
of which had been listed in the SIL catalog and no event present in SIL catalog was
missed. By manual processing of the waveforms we were able to confirm reliably 37
new events which we located and for which we estimated My ranging from -0.5 to
1.3 (30 above My = 0). Remaining 112 events were mostly unfit for location due
to insufficient number of clear P- and S-wave onset picks or they were real events
hidden in ambient noise, and probably some of them were also false alarms.

5.6.3 Results and comments

The advantage of our neural network is the ability to recognize new types of local
events (different shapes of waveforms due to different structure of a local upper crust)
based on training examples (i.e., generalization capability) and very fast computa-
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Figure 5.25: Detailed examination of the SLRNN detection results and the SIL, An-
telope and PePin catalogs for mini-swarm of 2015 on the Reykjanes Peninsula. The
diagrams represent the individual catalogs except SLRNN; from top to bottom: SIL,
Antelope and PePin. Each column in the individual diagrams denotes a particular
event in the respective catalog (thus the number of columns in each diagram equals
to the number of events in the catalog). The events in the SIL and PePin diagrams
are ordered according to magnitudes M}, given in the SIL and PePin catalogs from
the strongest (on the left) to the weakest one (on the right); the events in the An-
telope diagram are sorted according to the origin time. The rows in the diagrams
denote events which are included (green cells)/missing (red cells) in the remaining
three catalogs (indicated on the right). The SLRNN diagram is not presented be-
cause a total of 217 events are detected by our SLRNN including all the events given
in the SIL, Antelope and PePin catalogs. Note that the each catalog (SIL, Antelope
and PePin) contains some events detected only by ANN and missed in the other two
catalogs
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Figure 5.26: Comparison of the SLRNN detection results with the SIL. and manual
REYKJANET catalog for 1hr period of a larger 2017 swarm on the Reykjanes
Peninsula. High rate seismicity in the time window of 2017 July 26, 11:00 to 12:00
UTC, is examined. The diagram represents a comparison of the SLRNN results and
SIL catalog with the REYKJANET catalog (281 Mj, >0 events) created manually
by an experienced interpreter. For more information on the diagram structure refer
to the caption of Fig. The events are sorted according to the origin time.
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Figure 5.27: Magnitude-time distribution of the 2017 Reykjanes seismic swarm, only
events with magnitude M; > 0 are considered. Upper plot: the whole activity
according to the SIL catalog; lower plot: 1hr segment around the second strongest
shock of My = 3.7 (2017 July 26, 11:00 to 12:00 UTC). Red points: events of the
manually created REYKJANET catalog which were missing in the SIL catalog.
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Figure 5.28: REYKJANET seismograms of one of the weakest events (M = —0.6,
roughly estimated) of 2015 March 31 detected by the SLRNN with six-station coinci-
dence. Seismograms for 10 stations are sorted by the epicentral distance and the map
of stations with a rough epicentral location denoted by red asterisk is in lower-left
corner. It is evident that the event is recognizable on the five nearest stations only,
on the remaining stations its ‘useful’ signal is buried in noise. The event (its detec-
tion) is characterized by the maximum amplitude over all components of all stations
in the whole detection time window (marked by dashed red line). Three component
ground-motion velocity seismograms are filtered by BP of 1-40 Hz. The number
above each trace gives the maximum amplitude of the ground-motion velocity in the
displayed period.
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tion of the trained network. The weaker point is the necessity to have very good
manually prepared training data set. We showed that well-trained neural network
can overcome this shortcoming and that a neural network trained on manually pro-
cessed seismograms from WEBNET could be successfully applied to different local
seismic network. Following the approach of the interpreters, more stations in the
network must be considered. This is an algorithm we call coincidence and setting
up the parameters for coincidence we can lower the detection threshold at the cost
of potentially more false alarms; or lower the number of false alarms at the cost of
omitting weaker events. The result of such a process is a list of time periods con-
taining a useful signal, irrespective to the complexity of seismograms. This way all
the multiple and overlapping events remain in consideration for further processing.
The proposed neural network architecture (i.e., SLRNN with eight neurons) proved
to be capable to detect local seismic events. Compared to automatic location algo-
rithms based on searching for phase onsets the completeness achieved by detection is
much higher. The reason is that the location algorithms must find sufficient number
of correctly recognized onsets of seismic phases which is sometimes a challenging
task even for trained experts. Additionally, the most effective detectors of S waves
(as used among others in PePin) are based on polarization analysis, which tends
to fail for weak events due to the high frequency content of the waveforms. If the
number of phases found is not enough or they are incorrectly assigned, the event is
usually irretrievably discarded. In case of event detection we only aim to recognize
earthquake-like signals. This offers a considerable advantage for manual processing
in terms there is no important event missing and the amount of data is substantially
reduced. The data reduction is also improving efficiency of the automatic location
algorithms.

A coincidence of six stations for both networks - WEBNET and REYKJANET -
seems to be optimal. Such configuration ensures detection of all important events and
low completeness magnitude still preserving the number of false detections reasonable
even for manual processing (Table . For further processing of detected events
we recommend to use some amplitude- or power-based criteria to sort the events.
We used simply the largest amplitude in the event waveform which is obviously
not an ideal criterion. On the other hand even such an easy operation gives some
guidelines. A weak event can have large amplitudes (for example in case of disturbing
signal on some stations), but the strong local event will never be of small amplitude.
This way we can exclude unimportant or negligible events from further processing
by setting a suitable amplitude threshold. Application to the REYKJANET data
showed very good generalization ability of our trained neural network. Thanks to the
generalization property of well-trained SLRNN we can use the same neural network
for different region (Reykjanes Peninsula in SW Iceland), or in case of West Bohemia
for detection of events from different epicentral zones outside the main focal zone. We
expect our trained SLRNN to perform similarly when being applied to any seismic
activity with the frequency content similar to that used for training. The only
difference in sensitivity is given by the background noise level, so we can expect lower
completeness magnitude for the WEBNET data showing generally higher signal-to-
noise ratio compared to the REYKJANET data. On the other hand, the proposed
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Data set TP | FP | FN | TPR PPV
(recall) | (precision)

REYKJANET (i): 2015 Mar 31, My, >0 | 51 | 165 | 0 1 0.236
REYKJANET (ii), My, > 0 281 0 | 0 1 1

REYKJANET (iii), My >0 184 1 120 | O 1 0.605

WEBNET 6 sta, My > —0.5 179 | 213 | 4 0.978 0.457

WEBNET 4 sta, M, > —0.5 183 1657 | O 1 0.206

WEBNET 6 sta, My > 0 43 1349 | 0O 1 0.11

WEBNET 4 sta, My > 0 43 | 797 | O 1 0.051

Table 5.4: Precision and recall calculated for analyzed activities (only for those
with manually processed events). The number of false positives (FP) is calculated
with respect to a given magnitude threshold (M, > 0 or My > —0.5) of reference
manual events. For a lower magnitude threshold the number of FP decreases and
the numbers of both TP and FN increase (compare line 4 and 6). REYKJANET
(i) activity is a piece of an intense swarm period, that is why there are no FPs
and more detected events are often joined in one detection (as can be seen in Table
b.3). Denotation of data sets (i), (ii) and (iii) corresponds with that in Table [5.3
Abbreviation ‘6 sta’ or ‘4 sta’ denotes 6 or 4 station coincidence.

architecture could be possibly suitable for detection of regional or teleseismic events
after new training and change of the input filter bank of the SLRNN.

The proposed SLRNN detector is nowadays routinely used for both networks
WEBNET and REYKJANET. The WEBNET data are analyzed each day. After
an event is found it is automatically imported to the database and a maximum
amplitude of the waveform is saved. This amplitude helps to roughly estimate how
strong the event is. During the manual processing the events with larger amplitude
are analyzed first. Since the beginning of 2019 when the detector is used we have
not observed a missed event of a significant magnitude.

In case of REYKJANET the detector has been used experimentally on portions
of recordings containing some increased seismic activity (based on catalogs of IMO).
In case of seismic swarms of Reykjanes Peninsula we observe a large number or events
in short time period. This often results in multiple events in one detection period.
Such a detection might not be easy for primary processing (picking of right P- and
S-wave onsets of individual events), but the detection task is accomplished.
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Chapter 6

Seismon_ WB

Seismon_ WB (Doubravova and Horalek|[2013]) is a software which enables the inter-
preters to work with seismic data comfortably using graphical user interface (GUI).
The experts in seismic-data processing and analyses do not need programming skills
or heavy training to work with this user-friendly intuitive software. On the other
hand anyone can develop new functions directly using MATLAB.

Seismon_ WB is a modification of software Seismon created by Stefan Mertl in
MATLAB (Mertl and Hausmann| [2009]), in 2011 the original Seismon started to be
rewritten in Python under a new name pSysmon (http://www.mertl-research.at/
projects/psysmon/). The original program Seismon was designed as an universal
tool for seismic experiments. For that purpose it consists of various tools and modules
that can be adapted and developed by the users as it was provided under the GNU
GPL license (the most widely used open source software license guarantee end users
the freedom to run, study, share, and modify the software). The main advantage
of that software is the close connection with the MySQL database. The database
enables to store the results, network configuration, information about instruments
used on particular stations at specific time and a list of available waveform files and
the description of their contents. Well organized database is very important property
of a software used for routine processing. Although Seismon offers various tools to
comfortably access, list and view the database tables, these tables can be accessed
separately and directly without Seismon quite comfortably by MySQL Workbench
or phpMyAdmin or similar database manipulation tool. Unfortunately, Seismon did
not meet all the requirements for routine processing of continual recordings from the
WEBNET stations. It was therefore necessary to change many tools, often the whole
behavior of the software and develop number of new modules to satisfy specific needs
for the WEBNET data processing. This way I developed a new branch of Seismon
differing significantly from the former one, which we started to call Seismon WB
(Seismon for the WeBnet data processing).

Seismon_ WB was used experimentally from 2011 until it replaced an obsolete
program Seisbase (Fischer and Hampl |[1997], see Section in 2013 and became
the main processing tool for WEBNET data. Before introducing the Seismon_WB
in daily routines for the WEBNET data we took care to ensure a compatibility with
Seisbase and thus to preserve the consistency of the results over the years. The
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behavior of Seismon WB has been adapted to work similar to Seisbase in order to
be comfortable for the interpreters used to the older program. Seisbase targeted to
WEBNET data from the beginning was equipped with many useful functions that
make the manual work easier and more effective. Unfortunately, Seisbase was unable
to handle miniSEED file format, continuous records in general and it gradually be-
came complicated to run this DOS-based software on new computers. I consulted the
most common steps in routine work with the experienced interpreters and modified
the program to be as helpful as possible for the users. That resulted in fairly comfort-
able software which on contrary lost some of its original universality. Seismon WB
has been used in continuous regime from September 2014.

The Fig. shows the data flow around Seismon_WB. The program itself serves
as an interface for the user that enables to access and process various data sets and
to call external programs. The primary storage is MySQL database mainly accessed
by Seismon_ WB but it could be also fed by external programs. Most of the external
programs used for data interpretation (location, moment tensor inversion etc.) are
called by Seismon_ WB and their results are saved to the database by Seismon_WB
itself. The Archive DB block represents the export from Paradox database (formerly
used by Seisbase) which can be converted to MySQL Seismon structure using specific
Seismon_ WB package of functions. This is one of the features that enabled the
compatibility between Seismon_WDB and Seisbase.
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External External
programs programs
user
MySQL DB Seismon WB |__
Archive DB

Figure 6.1: Seismon interaction scheme. The user interacts with Seismon_WB soft-
ware to access the database and external programs. The archive data exported from
Paradox database can be converted to MySQL database tables with Seismon_WB
structure using specific packages of Seismon_ WB itself.
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6.1 Seisbase software and Paradox database

Seisbase program developed by T. Fischer and F. Hampl (Fischer and Hampl [1997])
during the 90’s was written in Pascal and served to process triggered data from
WEBNET network (in ESSTF, MARS-88 or GSE data format) until 2014. Seis-
base enabled interactive work with seismograms and stored the results in Borland
Paradox database. In consequence of the limitations originated in the computational
power and memory capacity of personal computers that time the maximum length
of seismic trace was 16000 samples (i.e., 64 seconds of record with sampling fre-
quency of 250 Hz). During the years it became more and more complicated to run
this DOS-based software on new operating systems. The urgent need of the Seisbase
replacement came with the necessity of continuous WEBNET recordings, processing
of which was not possible with Seisbase. We needed to preserve all functions Seisbase
offered and make all results created in Seisbase (e.g., the P- and S-phase onset picks,
amplitude readings, event locations, etc.) accessible for future use in new software.
The older database tables were imported into Seismon database (via Seismon_WB
tool developed by J. Michélek) so the work on that data could consistently continue
with the new Seismon WB software.

6.2 MySQL Seismon database

For each Seismon project there is a separate set of database tables (this is the same
for Seismon and Seismon WB, there are some small differences in database table
structures as Seismon_ WB uses a few more columns). Some database tables serve as
inputs for the Seismon_ WB program because they store information of the seismic
stations, their coordinates and instruments used, and available waveform files. Other
database tables store outputs like information of event locations, magnitudes, phase
picks or source parameters. Although one can export the database tables directly
using some MySQL handling software, there are functions in Seismon WB to export
the information stored in the database in more suitable formats, e.g. the catalogs or
bulletins that combine more database tables in one easily readable format.

6.3 External programs

External programs can interact with Seismon WB directly or indirectly through the
database. For example automatic everyday routines use database to store the results
and make them accessible for the users of Seismon WB. These are mainly (i) PePin
automatic location, (ii) SLRNN event detection and (iii) import of new seismogram
files.

The external programs used by Seismon_ WB directly are usually those run by the
Seismon_ WB user upon request. That covers typically NLLoc (event location and
magnitude computation Lomax et al.| [2000, [2009]), AMT (amplitude-based moment
tensor inversion Vavrycuk| [2011]), TauP Toolkit (global travel time computation) or
GoogleEarth (displaying Seismon_WB objects in satellite map).
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6.4 Main program

To work with Seismon (either the original version or Seismon WB) one needs to
define at least one project which is a basic object of the program related to certain
dataset, users and their specific settings. Each project is linked to its own set of
database tables with information of the network configuration, location of waveform
data files and various interpretation results. The projects can be made locally or on
the server to be shared among users. That means that for the main routine processing
of current seismic activity all the users share the same project saved on the server,
but for some special studies anyone can define his own project (usually, but not
necessarily, on local database). Each Seismon user has his own account linked to
the database account. While working with the Seismon project, the settings remain
saved for each user separately, so it enables to continue the interrupted work. In
order to keep the size of database tables shorter we define separate project for each
year of WEBNET and REYKJANET data.

Seismon is designed as a modular software in order to be highly flexible and
effective. The task that needs to be performed is achieved by a sequence of modules,
which are functional units performing particular operation (Fig. . An ordered
set of modules is called a collection; typically each user defines few such collections
for his/her own needs. For example the module Select Seismon event outputs a list
of event IDs in the database matching selected criteria. That module followed by
Ezxport bulletin module form a collection that outputs a text file with catalog or
bulletin of events. If the same module is followed by View events in Google Earth or
Display origins, the collection serves to visualize the epicenters. The basic objects
and philosophy of original Seismon were mostly preserved, although I developed
many new modules (see Fig. and modified the most of the existing ones.

Seismon is equipped with modules for viewing, modifying and exporting the
database, working with events, data files and waveforms. Some modules are stand-
alone, others need to be preceded or succeeded by another module, some modules
are editable and by setting the parameters we define the input arguments of the
module function (for example the criteria of above mentioned Select Seismon event
like date, magnitude or depth of an event). The parameters are set by using a dialog
windows.

The list of currently available modules sorted by the module categories is in
Figl6.3] The most of the modules must have been completely newly developed or
substantially modified for Seismon WB. Brief description of the modules is given in
Appendix [A.1] Special attention is paid to the Trace display module, which is the
main module for interactive manual primary processing of the waveforms.

The main problems we needed to solve were among others overlapping signals or
gaps in the continual seismogram files, missing channels, or different domains of the
seismogram files (i.e., acceleration and velocity) which must be converted to the same
domain for joint processing. To ease the routine interactive seismogram evaluation I
added some automated or semi-automated functions together with keyboard short-
cuts. For example, for each phase onset the amplitude reading is automatically found
(it can be manually corrected although it is usually not necessary). P-wave ampli-
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o SeisMon ::: wbn2019cont

File Edit Project Modules Database Help

Collection :::: Export waveforms Module Functions

select seismon event - Event handling
export events waveforms

estimate maximum amplitude€ -
export bulletin !
export events waveforms
import bulletin

manage events

select seismon event

wiew events in Google Earthé

execute [«

Figure 6.2: Main Seismon window. Panel on the left displays the active collection
that exports parts of the seismograms as ASCII files of ground motion velocity.
The subset of events to be exported is defined in dialog window of Select Seismon
event module. The segments to be exported (which stations and channels, how
long before/after P-wave onset or origin time to export) are set in Export events
waveforms dialog window. Panel on the right side shows the list of available modules
in a selected class of modules (in this case the Fvent handling functions).
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e check the gaps * e Apply geometry @
e load from DB @ e Edit Stations Database @
e load timespan from DB * e Edit stations and Units Database *
e show data coverage * e Edit Units Database @

Display e view geometry in Google Earth @
e display origins * Moment tensor

e manage time segments * e Moment tensor AMT *

i g *
e trace display @ e Import moment tensors

INLLoc
e Create 1D model for NLLoc *

[Event handling

e estimate maximum amplitude *

¢ bulletin * e Export NLLoc phase file @
e export bulletin

« export events waveforms * e Localize events by NLLoc *

e Plot NLLoc Hypocenters *
e manage events @

e Run NLLoc *

Seisbase Tools

e select seismon events @

e view event in Google Earth @ e Import station with coordinates to DB &

[File import e Import sensor configuration to DB &

e ASCII import @
e Read Seisbase EXP tables &

e Autodrm bulletin import @ .
e Insert Seisbase Evnets to DB &

e Convert ESSTF to GSE &
e Scan for GSE files &

e GSE Import @

IAutopick
e GSE time shifts * e Automatic NLLoc picking *
e Miniseed import @ e Automatic TauP picking *
e SAC import @ e Automatic amplitude picking *

e Standard segy import @

Figure 6.3: Seismon_WB modules. Modules denoted by asterisk (*) are newly
developed by myself, modules with at symbol (@) are original Seismon modules (even
though they have been substantially modified) and modules denoted by ampersand
(&) have been developed by J. Michélek.
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Figure 6.4: Screenshot of Trace display module. The Trace display module is the
main tool for interactive manual processing of the waveforms. This example shows
the use of Event sets for REYKJANET network on 31st March 2015. Each colorful
patch at the top of the figure indicates a seismic event. Red color - PePin events,
yellow - manual detections, light blue - SIL catalog and violet - events detected by
SLRNN. The strongest event at the beginning is of local magnitude My = 1.2. The
dialog window demonstrates the use of processing nodes. Right panel shows available
processing nodes, left panel shows actual processing stack of processing nodes, in this
case: first conversion from counts to meters per second, and second bandpass filter
1-40 Hz. Note that vertical channel of a few selected stations is displayed.
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tude is found as the first local extreme after the onset in the ground-displacement
waveforms, also the first motion direction is automatically assigned. The maximum
S-wave amplitude, which is used for calculation of local magnitude M, is the global
extreme of total vector of ground-velocity in a default 80 ms window after the onset,
but the window length can be user-defined.

We also put strong emphasis on a precision of manual processing by adding a
functionality of shifting picks, cursors or time window limits by one sample using
keyboard, which is mainly useful when very precise P- and S-wave onset picks are
needed (e.g., for the best possible location of a prominent event).

Seismon_ WB enables to store and operate several “event sets” and “pick sets”.
Event set is a group of Seismon events - time defined segments of records. Each
event is assigned to a class (typically local, regional or teleseismic event but also
any type of recorded signal which is remarkable, e.g. records of quarry blasts).
The same time segment of seismogram (usually a waveform) can be labeled as an
event related to different event sets. Typically each method of event detection has
its own event set. The pick set is a group of Seismon picks. The Seismon pick
can be generally any time mark selected on the seismogram with assigned phase
name and amplitude. Typically we use picks for P-wave onset, S-wave onset, P-wave
amplitude and S-wave amplitude (each of the four types of pick is an object with
name, time and amplitude but the amplitudes of onset picks are irrelevant and time
of amplitude picks serve only to display which amplitude is considered). The picks
of the same phase name for an event must be unique within a pick set. Similarly
to event sets, different pick sets enable to distinguish the method which produced
individual picks and therefore there can co-exist different picks for one event with
the same phase name in different pick sets. That means the work can be done in
several automatic and manual regimes simultaneously. For example, in practice the
events generated automatically by the SLRNN algorithm are immediately copied to
'manual event set” designated for manual interpretation and also to ’automatic event
set’. The automatic events in the 'manual event set’ are then verified, corrected or
approved by users while the same events in "automatic event set’ remain unchanged
for potential later check of automatic detection results. This feature enables to check
the automatic routines on the run and diagnose the cases when it fails.

In fact the automatic processing as a part of Seismon_ WB itself or as an external
program can be used at any stage of the processing and the visual inspection of
automatic procedures can be comfortably supervised using Seismon_ WB.

The program is written in MATLAB which offers advantages of well documented
toolboxes and functions easy to use, on the other hand the commercial software
limits the spreading of the code freely on any PC of user’s choice. Therefore, I used
Matlab Compiler toolbox and created standalone version of Seismon_WB, that can
be run without MATLAB license, just using the MCR (Matlab Compiler Runtime)
which is distributed freely. Additionally, the user of deployed application cannot
change the code which prevents some unintended editing.

Seismon_ WB can be generally used on Windows, Linux and MAC platforms,
however only Windows and Linux versions have been tested. The main workaround
in compatibility meant to implement platform related file paths and operating system
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commands to run the external programs. The executable version of Seismon WB
must be compiled using the target platform (i.e., Window or Linux and 32-bit or
64-bit version).

The development of the Seismon  WB software is still continuing even though
the evolution is much slower now. Besides adapting to new requirements of the
users for new or improved functionality, the compatibility with up-to-date version of
MATLAB is consistently maintained.
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Chapter 7

Conclusion

Dense local seismic networks WEBNET and REYKJANET contribute to detailed
studies of the seismic swarms dynamics, earthquake source and local structure of the
Earth’s crust. The detailed and systematic processing of large amount of data is an
essential prerequisite for that. As the seismic stations advanced from triggered to
continual recording, the manual processing became problematic because the qualified
human work requirement increased dramatically. Without the automatic and semi-
automatic processing of the seismic networks WEBNET and REYKJANET it would
be impracticable to process the measured data in a full extent. My thesis consists of
two parts: (i) Seismon_WB - a software for interactive data processing that enables
also to control automatic and semi-automatic processing; and (ii) SLRNN detector
of seismic events which is the fundamental step in automatic seismic data processing.
The design, training, detailed testing and implementation of the SLRNN form a core
part of this doctoral thesis and is described in detail in two attached papers.

(i) First, I needed to concern the comfortable way to manually process the seismic
data. Especially the WEBNET data needed to be consistently processed following
the works performed in Seisbase. I contributed extensively to a development of
new software used by the WEBNET working group by modifying, extending and
debugging an existing Seismon project. As a result Seismon WB is an exclusive
processing tool for all the routines applied to WEBNET (and REYKJANET) data
since 2013. Not only classical manual processing is achieved by Seismon WDB but
also an evaluation and check of automatic procedures applied. Nevertheless, the
tuning and development of the software still continues. Although the software de-
velopment is strictly practical result with very low direct scientific impact, it is an
essential prerequisite for high quality processing of seismic data provided by the
WEBNET group.

(ii) Next, the detection algorithm has been developed and tested. We designed a
new artificial neural network concept and successfully applied it not only to WEB-
NET data used for training the neural network but also to data from REYKJANET
network. The trained SLRNN is nowadays routinely used to detect events in record-
ings of local seismic networks WEBNET and REYKJANET.

The main results and lessons learned from the SLRNN may be summed up as
follows:
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e The SLRNN architecture is suitable for seismic event detection and eight neu-
rons proved to be sufficient. The higher number of neurons does not improve
the performance significantly as the training demands rise considerably. The
detection performance is enhanced by coincidence in the network.

e The training data must be prepared with special care, missing P- and S-wave
onset picks (especially if both are missing) complicate the proper training giving
bad examples during the training. Even rough picks of noisy events helped the
training significantly.

e The training using gradient-based methods requires many trials to repeat to
find the optimum result. To evaluate the real detector performance, the sen-
sitivity, specificity, precision and recall quantities must be used. To check
the detection results properly a manual work is needed, because many of the
SLRNN detections are low-magnitude events which are often missing in avail-
able catalogs.

» It is impossible to achieve good results with low completeness magnitude using
one station detection. For fine result a coincidence in the network of seismic
stations must be used. Six stations coincidence is a reasonable choice for both
WEBNET and REYKJANET local seismic networks.

o Well-trained network can be successfully used for different region and a partly
different waveforms. This is the generalization property of a neural network
and the successful applicability of the detector trained on WEBNET data to
REYKJANET data is an exemplary utilization of that.

In the near future there is a potential to use our neural network to pre-process data
of the NEFOBS (Near Fault Observatory) deployed in the West Bohemia/Vogtland
region consisting of four broad-band seismometers placed in shallow boreholes (&
400m deep) drilled within ICDP project Drilling the Eger Rift (more on https:
//www.icdp-online.org/projects/world/europe/eger/ or Dahm et al. [2013])
supplemented with 3-D seismic arrays. The expected significantly larger amount of
high-frequency micro-events (with local magnitudes as low as M} ~ —2) might be
successfully detected by our SLRNN.

The event detection is a starting point in the data processing chain for both
automatic and manual processing. It’s quality affects the whole processing results. I
believe, I proved that the presented method provides high quality detections suitable
for effective post-processing and thus high-quality investigation of the seismicity of
the West Bohemia/Vogtland as well as South-West Iceland and potentially any other
seismically active region.
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left to right with magnitudes M of 0.3, 0.3, 0.3 and 0.6). All the

events were detected on SKC while the detection of the third event on

KAC failed due to strong disturbances. The scale is the same for all

traces. Note that it is not possible to find the P waves ot the second

and third event in the POC seismogram, even if the processing would

be performed by a skilled interpreter.| . . . . . . . ... ... L.
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B.17

Example of the single-station detection. Seismogram from the REY K-

JANET station KLV (2017 June 5, 11:20 to 11:27 UTC) filtered by BP

of 1-40 Hz and detection output of the neural network (always in range

between -1 and 1). From the top: vertical, north, east component of

the ground-velocity record, detection output of our trained SLRNN

neural network. Yellow stripes denote local seismic events tfrom the

Reykjanes Peninsula (after coincidence), the strongest event marked

by red dashed line is an event included in catalog of the regional seis-

mic network SIL (M; = 0.9). The detection threshold (indicated by

the purple dotted line) is exceeded even in between the events which

could be due to both very weak events masked by noise and disturbances.| 45

[>.18

Example of the coincidence detection. Detection outputs of our SLRNN

for all 15 stations of REYKJANET, detection on at least six stations

required. The same time segment as in Fig. [5.17) . . . . . . . . . ..
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5.19

Example of the detection coincidence for four (cyan) and six (yellow)

WEBNET stations. In case of concurrent event detection by four and

six station coincidence the cyan stripes are overlaid by the yellow ones.

Red trace above is the vertical component of seismogram from NKC

station from 2018 August 24 3:00-3:12 U'T'C. All events in yellow were

also detected manually, magnitudes M (from -0.5 to 1.5) are given

above the yellow stripes. The first detected event in the seismogram is

a multiple event consisting of several weak overlapping events, there-

fore the magnitude is not assigned (x sign is printed instead). Note

the end of the record where two yellow events merge into one longer

cyan event.| . . . ... L Lo
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[5.20

Detection results for local events during November and December 2018

in the map of West Bohemia/Vogtland. Blue triangles, on-line WEB-

NET stations; cyan triangles, off-line WEBNE'T stations; pink trian-

gles, stations used for near-real time data processing by the PePin

algorithm; grey dots, epicenters of events in time period 1995-2015;

red circles, events located manually and by PePin and also detected

by SLRNN; vellow circles, events located manually and detected by

SLRNN (not located by PePin); green circles, events located manually

and by PePin (not detected by SLRNN). Diameter of circles is scaled

according to local magnitude.| . . . . . . .. ..o
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521

WEBNET seismograms of the local event (2008 November 14) un-

detected by SLRNN with the six-station coincidence. Manually es-

timated magnitude M; = —0.5. Only vertical components of the

ground-motion velocity (BP 1-40 Hz applied) are displayed. Stations

are sorted by epicentral distance (top trace corresponds to the nearest

station)| . . ..

.22

Distribution of analyzed seismic activities/events on the Reykjanes

Peninsula. circles, epicenters ot analyzed earthquake activities. Blue

circles - 2014 October 30-31 (M q. = 2.8), red circles - 2015 March

31 (Mimas = 2.2), yellow circles - 2015 April 28 30 (Mzmas — 1.6),

green circles - 2015 May 29-30 (M4 = 3.5), cyan circles - 2017 July

2628 (Mpmae = 3.9). Black triangles denote REYKJANET stations,

grey triangles mark IMO stations.| . . . . . ... ... ... ... ...
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5.23

Examination of the SLRNN detections of background seismicity on

the Reykjanes Peninsula in the period 2017 June 6-12. All 34 events

listed in the SIL catalog (green circles) are successfully detected by

the SLRNN. Another 37 events (red circles) detected by the SLRNN

are located using manual picks of the P- and S-wave onsets. 112

more event detections indicated by the SLRNN are the events unfit

tor location due to lack of reliable P- and S-wave arrival times or false

alarms in some cases. . . . . . ...
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.24

Number of detected events in analyzed micro-swarms on the Reyk-

janes Peninsula.| . . . . . . ..o 0000

54

5.25

Detailed examination of the SLRNN detection results and the SIL,

Antelope and PePin catalogs for mini-swarm of 2015 on the Reyk-

janes Peninsula. The diagrams represent the individual catalogs ex-

cept SLRNN: from top to bottom: SIL, Antelope and PePin. Each

column in the individual diagrams denotes a particular event in the

respective catalog (thus the number of columns in each diagram equals

to the number of events in the catalog). The events in the SIL and

PePin diagrams are ordered according to magnitudes M, given in the

SIL and PePin catalogs from the strongest (on the left) to the weak-

est one (on the right); the events in the Antelope diagram are sorted

according to the origin time. The rows in the diagrams denote events

which are included (green cells)/missing (red cells) in the remaining

three catalogs (indicated on the right). The SLRNN diagram is not

presented because a total of 217 events are detected by our SLRNN

including all the events given in the SIL, Antelope and PePin catalogs.

Note that the each catalog (SIL, Antelope and PePin) contains some

events detected only by ANN and missed in the other two catalogs|. .
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.26

Comparison of the SLRNN detection results with the SIL and man-

ual REYKJANET catalog for 1 hr period of a larger 2017 swarm on

the Reykjanes Peninsula. High rate seismicity in the time window of

2017 July 26, 11:00 to 12:00 UTC, is examined. T'he diagram repre-

sents a comparison of the SLRNN results and SIL catalog with the

REYKJANET catalog (281 M; >0 events) created manually by an

experienced interpreter. For more information on the diagram struc-

ture refer to the caption ot Fig. [5.20] The events are sorted according

to the origin time.|. . . . . . . . . ...

o7

B.27

Magnitude-time distribution of the 2017 Reykjanes seismic swarm,

only events with magnitude M; > 0 are considered. Upper plot: the

whole activity according to the SIL catalog; lower plot: 1hr segment

around the second strongest shock of M, = 3.7 (2017 July 26, 11:00

to 12:00 UTC). Red points: events of the manually created REYK-

JANE'T catalog which were missing in the SIL catalog.| . . . . . . ..

.23

REYKJANET seismograms of one of the weakest events (M = —0.6,

roughly estimated) of 2015 March 31 detected by the SLRNN with

six-station coincidence. Seismograms for 10 stations are sorted by the

epicentral distance and the map of stations with a rough epicentral

location denoted by red asterisk is in lower-lett corner. It is evident

that the event is recognizable on the five nearest stations only, on the

remaining stations its ‘useful’” signal is buried in noise. The event (its

detection) is characterized by the maximum amplitude over all com-

ponents of all stations in the whole detection time window (marked

by dashed red line). Three component ground-motion velocity seis-

mograms are filtered by BP of 1-40 Hz. The number above each trace

gives the maximum amplitude of the ground-motion velocity in the

displayed period.| . . . . . . ...

[6.1

Seismon interaction scheme. The user interacts with Seismon WB

software to access the database and external programs. The archive

data exported from Paradox database can be converted to MySQL

database tables with Seismon WD structure using specific packages

of Seismon WBitself.| . . . . . . . ... oo

6.2

Main Seismon window. Panel on the left displays the active collection

that exports parts of the seismograms as ASCII files of ground motion

velocity. The subset of events to be exported is defined in dialog win-

dow of Select Seismon event module. T'he segments to be exported

(which stations and channels, how long before/after P-wave onset or

origin time to export) are set in Export events waveforms dialog win-

dow. Panel on the right side shows the list of available modules in a

selected class of modules (in this case the Fvent handling functions). |
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[6.3 Seismon_WB modules. Modules denoted by asterisk (*) are newly

developed by myself, modules with at symbol (@) are original Seismon

modules (even though they have been substantially modified) and

modules denoted by ampersand (&) have been developed by J. Michalek.| 67

[6.4  Screenshot of Trace display module. The Trace display module is the

main tool for interactive manual processing of the waveforms. This

example shows the use of Event sets for REYKJANET network on 31st

March 2015. kach colorful patch at the top of the figure indicates a

seismic event. Red color - PePin events, yellow - manual detections,

light blue - SIL catalog and violet - events detected by SLRNN. The

strongest event at the beginning is of local magnitude M; = 1.2. The

dialog window demonstrates the use of processing nodes. Right panel

shows available processing nodes, left panel shows actual processing

stack of processing nodes, in this case: first conversion from counts

to meters per second, and second bandpass filter 1-40 Hz. Note that

vertical channel of a few selected stations is displayed.|. . . . . . . .. 68

[A.1 Load from DB dialog window for setting the selection. The available |

| recordings are depicted by black vertical lines, currently selected data |
[ are represented by green color.|. . . . . . . .. ... L. 92
[A.2 Show data coverage examplel . . . . . . . . ... ... L. 93
[A.3 Trace aisplay main window with an event display together with its |

[ location and focal mechanisml . . . . . . . . . . . ... ... ..... 94
[A.4 Select Seismon event dialog window| . . . . . . . ... ... ... ... 95
[A.5 Event manager window| . . . . . . . . . ... ... ... 96
[A.6  FEdit stations and units database module dialog window| . . . . . . . . 97

86



List of Tables

BT Sosm [ WEBNET and REYKIANET networks

B2

Digitizers and their anti-aliasing upper cut-oft frequencies for 6dB
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53

Number of all events in the period November—December 2018 detected

manually, by SLRNN and PePin algorithm. The manually detected

events contain many very weak events (M; < —0.5, compare with

Table [5.2)), majority of them is unsuitable for interpretation; simi-

larly SLRNN detections contain very weak events or talse detections.

PePin events are declared atter a successtul location and thus they are

assumed to be all real interpretable events.| . . . . . . . ... ... ..
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Precision and recall calculated for analyzed activities (only for those

with manually processed events). The number of false positives (FP)

is calculated with respect to a given magnitude threshold (M > 0

or M; > —0.5) of reference manual events. For a lower magnitude

threshold the number of F'P decreases and the numbers of both TP

and FN increase (compare line 4 and 6). REYKJANET (ii) activity is

a piece of an intense swarm period, that is why there are no FPs and

more detected events are often joined in one detection (as can be seen

in Table [5.3). Denotation of data sets (i), (ii) and (iii) corresponds
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Appendix A

Attachments

A.1 Seismon_ WB modules

A.1.1 DB Tools

Set of functions to import or interpret database tables related to record files. These
modules serve for data selection or data consistency check.

Load from DB A module that selects list of appropriate files from the database
for selected timespan, stations and channels. The available and selected data are
visualized (Fig[A.d]). The module’s output serves as an input for other modules like
Trace display.

Load timespan from DB Similar to Load from DB module, but only time be-
ginning and time end is defined. The module then loads the list of all the available
waveforms. It is faster than Load from DB module because no visual interpretation
of available data is present.

Check the gaps This module is standalone without inputs from previous modules
and outputs to succeeding modules. Editable parameters are start and end time of
the analyzed data. The module then scans the database table of seismogram files
and comparing the beginning and end times of records for individual stations lists
the gaps larger than a specified value into a text file.

Show data coverage Similar to Check the gaps but the module represents the
available data in a graphical form (Fig.. It serves to overview longer data seg-
ment and does not consider all channels, only vertical ones are used. First, it was
designed to check all channels of the stations, but for a quicker result it was simplified
to check the presence of the vertical component only.
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x dbt_loadDbDialog
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Figure A.1: Load from DB dialog window for setting the selection. The available
recordings are depicted by black vertical lines, currently selected data are represented
by green color.
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rDatabase search result

NKC-Z:

KOC-

HUC-Z:

HORC-Z

| | | | | | | | | |
1. 1.00:000 4.1.02:024 7.1.04:048 10.1.07:012  13.1.09:036 __ 16.1.12000  19.1 14024 22.1.16:048_ 25.1.13:012 28.1. 21:036 1.2.00

Figure A.2: Show data coverage example

A.1.2 Display

Functions used for visualizing the recorded data and epicenters. The most important
is Trace display module which is the main tool for manual inspection of seismic
records.

Display origins This module displays the map view of epicenters. It must be
preceded by event selection and the type of location must be specified, because each
event can have more locations by different methods. When the map is displayed
the user can select a group of events by click-and-drag and the selection or inverse
selection is then saved to a text file. The text file with the list of event IDs can be
then used as an input to Select Seismon event module.

Manage time segments Module preceded by selection of waveforms (like Load
from DB) that prepares shorter segments of equal length with defined overlap to go
quickly through continuous data (usually when there is no event detection or catalog
available). Each segment then defines inputs for Trace display, that is then called
by context menu.

Trace display The main module for interactive manual work is called Trace dis-
play. This module enables to visualize waveforms and under a control of an inter-
preter to define events, pick phase arrivals, locate and estimate source parameters.
For this purpose is Trace display equipped with tools and processing nodes. Tools
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Figure A.3: Trace display main window with an event display together with its
location and focal mechanism

are determined to analyze the signal (frequency spectrum, spectrogram, polarization
analysis, particle motion plot, envelope, location, moment tensor inversion, etc.)
while processing nodes modify the signal waveforms (filtration, domain conversion,
rotation, etc.). The processing stack enables to control the settings and the order of
the processing nodes applied. The module must be preceded by some data selection
module. The Trace display module can be also called indirectly by other modules
(like Manage events or Manage time segments), when the module is not in the col-
lection but it can be called in interactive way - for example if the user displays a
list of events and their characteristics and wants to inspect the waveforms, the Trace
display module is called upon request.

A.1.3 Event handling

Set of functions designed for work with seismic events. Modules for event handling
are very often used because event is a basic object used in Seismon.

Select Seismon event This module enables to select events from the database
in a user friendly way. The events can be filtered by event set, event class, time,
location, magnitude or ID. The resulting table can be then sorted and a subset of
rows can be selected. The module’s output serves as an input for many other modules
working with events.
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ev_eventSelectorDlg

event set
P | | oo i Search Results
id | date [eventlength# stations| class |magnitude| longitude | latitude | depth | notes |max amplitude] sum res
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Figure A.4: Select Seismon event dialog window

Estimate maximum amplitude This module preceded by event selection as-
signs the maximum amplitude of ground motion of the waveforms within the event
duration and inserts such information to the database record of the event. This helps
to sort the events prior to location and magnitude is computed.

Export bulletin This module needs an event selection input from previous mod-
ule. The editable parameters regard to the output format of the bulletin. The various
text formats help the subsequent users to easily use the bulletin or catalog.

Export event waveforms The module exports waveforms of individual events to
separate ASCII or GSE2.0 files. The time limits of the waveforms can be defined
either relatively to the P-wave onset or to the origin time of the event. This module
needs an event selection input from previous module or from external file.

Import bulletin This module is standalone one. It is designed to read the text file
of a bulletin and import it to the project’s database tables. The editable parameters
define the input format of the bulletin and to which set to assign the obtained
information (i.e., what kind of events, picks and locations is present).

Manage events The module enables to inspect the events. The selected events
(provided by preceding module) are listed in an interactive window. The user can
view and edit the parameters of the events, sort or delete the events, inspect in detail
the locations assigned to the events and also run the Trace display for selected event
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o ev_eventManagerNew
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Figure A.5: Event manager window

(FigJA.5)). In an everyday manual routine, the events are interpreted in this way -
sorted by preliminary magnitude, maximum amplitude or time they are one by one
viewed and edited in Trace display called from event manager.

View events in GoogleEarth Preceded by Select Seismon event this module
prepares a .kml file ( a file format used to display geographic data in an Earth
browser such as Google Earth) and runs external program Google Earth with the
kml file as an input argument. The epicenters are then plotted on the Google Earth
map.

A.1.4 File import

Set of modules to import new recordings to the database for different file-types and
other supporting functions for file handling. After a file import, Apply Geometry
module must be called to connect the data-files with instruments.

ASCII/GSE/Miniseed/SAC/Segy import Standalone modules to import wave-
form files to Seismon. All these file types are accepted by Seismon and these modules
add the records about the files to the database table. During that process the header
information (station, channel, time) is written to the database.

Convert ESSTF to GSE This module converts the ESSTF files to GSE2.0. The
ESSTF format is original Lennartz acquisition system data format.

GSE time shifts This module shifts the time in GSE files. This was needed
for some older data converted to GSE without taking into account the differences
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(> geom_editStationsAndUnitsDatabase

File

Stations:
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Figure A.6: Edit stations and units database module dialog window

between waveform data transmission delay and the DCF77 timestamps.

A.1.5 Geometry

The term Geometry in Seismon means the location and instrumentation information
of the seismic stations. These modules enable to view, edit or create geometry entries.

Edit stations database A standalone module for editing, exporting and import-
ing station database table. Station is defined by the station code and geographical
coordinates. The instrumentation in Seismon is held by units and sensors objects.
This module enables to define or edit stations by filling the fields in a form and
import/export the stations in Seismon text format SSF. If a new Seismon project is
defined with the same instrumentation, the export and import of SSF files becomes
very helpful.

Edit units database A standalone module for editing, exporting and importing
database tables of units and sensors. Units and sensors are linked to the station
and represent the instrumentation. This module enables to define or edit units
and sensors by filling the fields in a form and import/export the sensors and units
in Seismon text format SUF. If a new Seismon project is defined with the same
instrumentation, the export and import of SUF files becomes very helpful.

Edit stations and units database A module that enables to edit stations, units
and sensors at once. It prevents inconsistency errors that may occur editing stations
and units separately (Fig. [A.6)).
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View geometry in Google Earth This module prepares a .kml file and runs
external program Google Earth with the .kml file as an input argument. The stations
are then plotted on the Google Earth map.

Apply Geometry This standalone module connects instrumentation and wave-

form file tables. It is called after a waveform files import (i.e., ASCII/GSE/Miniseed/SAC/Segy
import module). During the waveform files import the traceheader database table is

filled with file names, paths, station name, channel name and time period. Calling

the module Apply geometry will fill traceheader table with valid station ID, unit ID

and sensor ID. Loading waveform files by Seismon is then controlled by the IDs of
stations/units/sensors.

A.1.6 Moment tensor

Functions for moment tensor computation or import the results. Routinely the
moment tensors are computed in interactive regime right after a location in Trace
Display module.

Moment tensor AMT This module preceded by Select Seismon event uses P-
wave amplitude picks to compute amplitude moment tensors with an external pro-
gram AMT by Vaclav Vavrycuk (method described in [Vavrycuk| [2011]).

Import moment tensors Import of computed moment tensors in a text format
provided by Vaclav Vavrycuk’s programs.

A.1.7 NLLoc

Set of functions based on NLLoc (Lomax et al.|[2000} [2009]). For a routine location
in interactive mode the NLLoc can be run also from the Trace Display module.

Create 1D model for NLLoc Interactive standalone module for running NLLoc
Grid2Time and Time2Grid programs to prepare new travel time grids for a new 1-D
layered model (used rarely).

Export NLLoc phase file Exports an .obs phase file that can be used with NLLoc
(not usually used while the NLLoc is routinely used after picking in Trace display
module). As an input Select Seismon event is required. The editable parameter is
the pickset (type of wave-onset readings, e.g. automatic vs. manual ) which should
be used.

Localize events by NLLoc This module preceded by Select Seismon event mod-
ule runs a batch NLLoc location for those events. The results can be saved in a
text file or in the Seismon database. The editable module parameters are local
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paths to NLLoc, location model, pickset, stations used for location, stations used for
magnitude and phases used (only P and/or S can be selected).

Plot NLLoc hypocenters A standalone module that plots the hypocenters pro-
vided by NLLoc. An editable parameter is the .hyp file path.

Run NLLoc The module preceded by Ezport NLLoc phase file module or a stan-
dalone one with defined path to .obs file is nowadays used seldom. It calls NLLoc
on a remote server and outputs the .hyp file (the output file with location provided
by NLLoc). It was designed for Windows users before the successful compilation of
NLLoc under Windows was achieved. The module uses WinSCP program to up-
load/download the input/output files for NLLoc. The editable parameters are the
local and remote paths and the connection details. The remote location can be used
also when NLLoc is called from the Trace display module.

A.1.8 Seisbase Tools

A set of tools for importing Seisbase results to Seismon database implemented by J.
Michalek.

Import station with coordinated to DB This module reads the station con-
figuration exported from Seisbase and creates database records to Seismon database
table.

Import Sensor configuration to DB This module reads the sensor configuration
exported from Seisbase and creates database records to Seismon database tables.

Read Seisbase EXP tables This module reads the events, picks and locations
exported from Seisbase tables. This module must be succeeded by Insert Seisbase
events to DB.

Insert Seisbase events to DB This module uses output of Read Seisbase EXP
tables and creates database records to Seismon database tables.

Scan for GSE files Scans the directory structure used by Seisbase to make a list
of all GSE files. The module should be succeeded by Import GSE files.

A.1.9 Autopick

Simple automatic picking routines. It serves to forward computation of arrival times
based on known origin time of the events or adding amplitude picks to existing time
picks.
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Automatic NLLoc picking The module preceded by Select Seismon event runs
a batch of NLLoc locations, then save the result to the database or to the output
text file.

Automatic TauP picking For selected events the automatic time picks will be
computed using TauP and saved to the database.

Automatic amplitude picking For selected events the automatic amplitude
picks according to the WEBNET interpretation routines will be assigned (i.e., first
local extreme after P-wave onset in displacement and maximum in a 80 ms long time
window after S-wave onset in velocity, both with 1 Hz high-pass filter applied ). The
event selection module must be preceding.
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ABSTRACT

In this paper, we present a new method of local event detection of swarm-like earthquakes based on
neural networks. The proposed algorithm uses unique neural network architecture. It combines features
used in other neural network concepts such as the Real Time Recurrent Network and Nonlinear Auto-
regressive Neural Network to achieve good performance of detection. We use the recurrence combined
with various delays applied to recurrent inputs so the network remembers history of many samples. This
method has been tested on data from a local seismic network in West Bohemia with promising results.
We found that phases not picked in training data diminish the detection capability of the neural network
and proper preparation of training data is therefore fundamental. To train the network we define a
parameter called the learning importance weight of events and show that it affects the number of ac-
ceptable solutions achieved by many trials of the Back Propagation Through Time algorithm. We also
compare the individual training of stations with training all of them simultaneously, and we conclude

that results of joint training are better for some stations than training only one station.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Automatic seismic event detection is crucial in seismic data
processing. Generally, seismic stations record huge volumes of
continuous data which can be evaluated either automatically, or
manually, or both. Effective manual processing inevitably requires
excellent automatic event detection. We apply the method pre-
sented here to the earthquake swarm region in West Bohemia.
During the swarms we have to process a large number of events
which occur during short periods of time (i.e., hundreds of events
per day). It is excessively time consuming to process events
manually, and yet swarms are still processed this way. In past
years short term averaging/long term averaging (STA/LTA) trig-
gered recordings with coincidence on stations through the net-
work were used. The number of the triggers was much higher than
the number of local events (it also contained regional or tele-
seismic events and quarry blasts, storms or coincidental dis-
turbances). On the other hand, during the swarms some weaker
events were missing. That necessitated the use of a reliable au-
tomatic detector of local seismic events. In this paper we present

* Corresponding author at: Institute of Geophysics, Czech Academy of Sciences,
V. V. i, BoCni II 1401, 14131, Prague, Czech Republic.
E-mail addresses: doubravka@ig.cas.cz (J. Doubravova),
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0098-3004/© 2016 Elsevier Ltd. All rights reserved.

the use of the Artificial Neural Network (ANN) to distinguish be-
tween disturbances (any signal except for local events) and local
events.

After good detection the event could be then processed further
manually or automatically. Firstly, the P-and S-phases are picked,
the event is localized and the focal mechanism is computed. But
with very weak events this task might even be impossible. Then
detecting the event can indicate useful local seismic events which
may be beneficial to complete the event statistics, i.e., lower the
magnitude of completeness in a range which is unrealizable
manually.

2. Brief overview of the detection approaches

Automatic processing of seismic events could be performed in
different ways. The first approach accords with the steps of man-
ual processing. Initially, an event must be detected, then the P- and
S-phases are picked and the location of the event is computed
using those picks (as in Sleeman and van Eck, 1999). In the second
approach, a search is made for all possible phases to combine them
to satisfy the events, which are subsequently located (Le Bras et al.,
1994; Dietz, 2002; Fischer, 2003). During the third approach a
search is made through all possible hypocenters ensure con-
currence with real data, and an event is declared without picking
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(Withers et al., 1999; Kao and Shan, 2004). We apply the first
processing scheme which begins with detecting an event.

There are several methods of detection, which can be sorted
into the time domain methods, the frequency domain methods,
particle motion processing, and pattern matching (Withers et al.,
1998). All groups of detection can be achieved through the Arti-
ficial Neural Networks. The advantage of ANN detection methods
is the ease of adjusting parameters of detection by training in the
ANN. Consequently, a detailed description of what are common
features for events, or on the other hand, what are the most sig-
nificant differences between events and disturbances, are not re-
quired. Therefore, ANNs were widely used for seismic event de-
tection or phase picking. ANNs were applied to detection in the
time domain (Wang and Teng, 1995, 1997; Gentili and Michelini,
2006), the frequency domain (Wang and Teng, 1995; Tiira, 1999),
as well as pattern matching (Madureira and Ruano, 2009; Tiira,
1999). Mostly all of these methods are based on feed-forward
multi-layer-perceptron (MLP) networks with one hidden layer,
where the ANN is fed by moving window vectors. Wang and Teng
(1995) compared the detection performance of two ANN detectors
with MLP architecture. The first was fed by consecutive samples of
STA/LTA of the whole full frequency band signal, while the input of
the second one was samples of moving window spectra. The au-
thors concluded that a spectral content must be considered for
successful detection. The work of Tiira (1999) uses MLP fed by STA/
LTA of different lengths in seven frequency bands to detect tele-
seismic events. He also experimented with recurrent networks
having one state neuron—Elman (1990) and Jordan (1986) net-
works but both performed worse than MLP. Madureira and Ruano
(2009) designed an MLP network whose inputs are frequency
samples in consecutive time windows.Another solution to in-
corporate the history of the signal is to use a network with re-
current neurons (Tiira, 1999; Wiszniowski et al., 2014). Detection
of small local events by a Real Time Recurrent Network (Williams
and Zipser, 1989) was undertaken by Wiszniowski et al. (2014).
The network with 17 inputs of STA/LTA in narrow frequency bands
and 12 recurrent neurons with one step delay compared to STA/
LTA with filtration and proved to be better especially when signal
to noise ratio was small. Nevertheless, the result shows the rapid
forgetfulness of a recurrent network with single delay units, which

limits discrimination in the time domain.

The method introduced is applied to data from the West Bo-
hemia earthquake-swarm region, which is now automatically
processed by two algorithms. The first (Fischer, 2003) is based on
looking for all possible phases first, searching for such groups of
picks that will comprise a local event. All events with small
number of picks or with large residual of locations are then re-
moved. The other method uses automatic locations from Antelope
software. Antelope locations are usually more scattered and many
smaller events are omitted.

3. Data

A local seismic network WEBNET (operated by the Institute of
Geophysics, 1991 and Institute of Rock Structure and Mechanics of
the Czech Academy of Sciences (CAS)) has been monitoring the
seismicity in the West Bohemia earthquake-swarm region since
the 1980s. At present there are a total of 22 seismic stations. They
operate in two different data-transfer regimes. The first one is an
on-line data transmission mode used at 13 stations, and the sec-
ond one is an off-line data collection mode used on the 9 re-
maining stations. Available immediately are data from on-line
stations (Fig. 1), while off-line stations data are collected while
visiting the sites. Until upgraded in 2015, the stations were
equipped with short period seismometers, mostly SM3, LE-3D and
one broadband CMG-40 T seismometer. Since we want to apply
our method to a quick estimation of current activity, we use on-
line stations only.

All data used are continuous three component ground-velocity
records sampled at 250 Hz. Until 2013 some of the stations were
operated in triggered mode only and we do not use them (KOC,
LAC, TRC, NKC). During more than 30 years of observation several
earthquake swarms were recorded well (Horalek et al., 2000;
Cermakova and Horalek, 2015). The most recent installed station
(in 2006) is ZHC (see Fig. 1), therefore we focus on activity since
2006. We chose the swarms in 2008 and 2010 without swarm-like
seismicity as training data and the swarm of 2011 to test the
results.

In addition, we use manual P- and S-wave picks that serve to
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Fig. 1. On-line stations of WEBNET (triangles) and epicenters (black dots) of the swarm-like events in West Bohemia and adjacent territory of Germany. The red rectangle
marks the main epicentral area where more than 90 percent of events have occurred in the last 30 years. The years of getting the individual stations into operation are
indicated by colors. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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define an event during the training process. A number of events
have not been picked manually in the 2008-swarm recordings. The
implication is that during the training process all unpicked events
are treated as disturbances and during the evaluation of results are
wrongly considered as false detections.

4. Method

4.1. Single Layer Recurrent Neural Network and its configuration for
the WEBNET detector

The Single Layer Recurrent Neural Network (SLRNN) consists of
a set of m artificial neurons. The i-th artificial neuron (Fig. 2) at
moment t has an output value

n
Vi=g[ZWUVj]

j=1 ¢))

where wy; are weight coefficients of the neuron inputs, vj(t) are
input values, V{(t) is an output value, and g(.) an activation
function. The activation function defines a neuron activation be-
havior depending on the neuron's weighted input. In our case a
widely used hyperbolic tangent is used (the neuron outputs are
limited from —1 to 1). The SLRNN was based on the Real Time
Recurrent Network (RTRN, Williams and Zipser, 1989) and the
Nonlinear Autoregressive Neural Network (NARX, Narendra and
Parthasarathy, 1991). The structure of the SLRNN is shown in Fig. 3.

It is a Single Layer Recurrent Artificial Neural Network similar
to the RTRN. Each SLRNN neuron has the following inputs:

Vkt-D¢) j=1,...,n;K=1,...,m;c=1,..,d recurrent inputs
vj(t) = § xi(t) j=nr..,n=-11i=1,..,p inputs of the SLRNN
1 j=n constant value 1, bias 2)

where m is the number of neurons, n is the number of inputs of
the neurons (n=p+ n, + 1), p is the number of inputs of the
SLRNN, n, = m-d is the number of recurrent inputs, and d is the
number of delay units. As opposed to the RTRN, which has one
step delay between output and input, the delay in the SLRNN is
variable similar to the NARX. One output of neuron can be con-
nected to many inputs of neurons with different delays. Conse-
quently, there can be more recurrent inputs than neurons. An
output of K-th neuron is delayed by D, to D, steps and fed back as
a part of the first n, inputs of the neurons. The use of delays of
more time steps allows remembering time relations longer com-
pared to the RTRN (Wiszniowski et al., 2014). Thus, the inputs from
1 to n, are the recurrent ones, the inputs from n, + 1to n — 1 are
those of the whole network, and the n-th input (also called bias) is
connected to a constant value of 1. As opposed to the NARX, only a
part of neural outputs (k) are outputs of the SLRNN. Other hidden
neurons allow building self-adapted time relations not controlled
by expected outputs.

Our SLRNN, designed for detection of small natural earthquakes
in WEBNET, consists of 8 neurons and 18 inputs. The feedback
connections of the output of each neuron are delayed by 1, 2, 4,
and 8 time steps. Thus the neurons have 32 feedback inputs, 18

o

Fig. 2. Single i-th neuron with n inputs (from v, to v,), weight coefficients (from

(h) —L

wip to wip), adder with output h; = Y wjyvj, activation function g(.) with output

=gh).

bias 1—_,]

SLRNN
Inputs of \| m neurons Outputs
the SLRNN with of the SLRNN
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Fig. 3. Schema of SLRNN: p inputs of the network x, ..., Xp; k outputs, which are
output of neurons Vj, ..., Vi; and m — k hidden neurons V.1, ..., Vin. Output of each
neuron is connected to d inputs delayed by the corresponding (D.) number of cy-
cles, c=1, ..., d. Dy, ..., Dg are delay units.

inputs of the network, and 1 bias input. The 18 inputs come from a
filter bank of STA/LTA ratios. The filter bank is an array of narrow
band-pass filters that separate the input signal into multiple
components, each one carrying an isolated frequency band of the
original signal (Fig. 4).

The outputs of the first three neurons, which are also outputs of
the SLRNN, correspond to: V;—detection of event, V,—detection
of P wave onset (P onset hereafter), and V;—detection of S wave
onset (S onset hereafter). This is achieved by adjusting the weights
wj; during the training process (in our case for 32 + 18 + 1=51
inputs and 8 neurons it is 408 weights). After successful training,
the V; output is used for event detection, while the rest of the
outputs (outputs of the hidden neurons and phase detections) are
used only as feedback. The detection outputs V5 and V3 cannot be
used as pickers because of a long time step of the SLRNN (0.2 s).

4.2. Input data

Here we describe processing the data before it is used as SLRNN
inputs (Fig. 5). Original data is three component seismic records
(N, north-south; E, east-west; Z, vertical). First, we filter the signals
by a filter bank. It consists of nine half-octave IIR filters which filter
out the narrow frequency bands (0.6-1 Hz, 1-1.6 Hz, 1.6-2.5 Hz,
2.5-4 Hz, 4-6.3 Hz, 6.3-10 Hz, 10-16 Hz, 16-25 Hz, 25-40 Hz) see
Fig. 4. After filtration we compute a total horizontal component
VN2 + E2. Then, we calculate the STA/LTA ratios. The length of the
short term average (STA) window is two times longer than the
shortest period (defined by the higher corner frequency of each
filter) and the long term average (LTA) window is ten times longer
than the longest period (defined by the lower corner frequency of
each filter). The original sample rate is then decimated to 5 Hz,
because the SLRNN works in 0.2 s time steps. The time step of the
neural network is a compromise between the acceptable
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Fig. 4. Filter bank frequency response. Each half-octave filter filters out a narrow
frequency band from the input signal.
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Fig. 5. Processing scheme of the SLRNN input data. Three-component raw seismograms are processed into 18 SLRNN inputs.

computational load and a good separation of individual waves.

4.3. Training algorithm

We applied a supervised learning algorithm, which implies that
neuron weights w;; are changed in order to get the best possible fit
of the real and required outputs of the SLRNN. It is achieved by
minimizing the cost function of real and required outputs. Con-
sequently, the required outputs of the network and the cost
function E must be defined. The output of a well-trained network
ought to fall below a certain threshold during the occurrences of
seismic noise and disturbance, whereas it must significantly ex-
ceed the threshold during the seismic local event. In our case, the
threshold was zero. However, the detection is not required to ex-
ceed the threshold at the beginning of the event. It can occur any
time during the event. It is not even recommended to exceed the
threshold at the beginning until, for example, secondary waves
come. Otherwise, some disturbances similar in shape to the P
waves might generate detection. Therefore, the required output is
negative at the beginning of an event, whereas after the S onset
the positive output is strongly enforced. The error between re-
quired and real output is weighted in order to ignore or emphasize
the error. The cost function E for one waveform in the training set
is defined as a sum of output errors in the form:

3
E= Y Y nolam -anT,

t =1 3)

where {; is the expected output of i-th neuron, #; is the learning-

error weighting coefficient (learning coefficient hereafter) and o; is
the real output of the SLRNN (i = 1, 2, 3, corresponding to outputs
V1,V2 and V3). Both £ and # depend on the P and S phases of the
seismic event. The learning coefficient defines how sensitive is the
learning process of SLRNN to certain periods of the event wave-
form (Figs. 6 and 7).

To improve generalization of the detection, we implemented
the weight decay regularization method (Hinton, 1989) into
SLRNN learning. Hinton showed that it is possible to improve
generalization by adding a term that amounts to the sum of
squares of the network weights to the cost function. Then the cost
function is

E=y) Zn,(o[a,(t) —oiOF+ 1 -p)

t i=1

||M§

g 4

where the regularization parameter y controls the extent to which
the second penalty term influences the cost function. The mini-
mization is based on a gradient of (4) according to the formula

_oF 20;(t)
2y m (O — 0i(O)] == + 2(1 — )Wy,
0qu zt: zz; MWpq i 5)

Two methods most often used to compute the gradient of cost
function of recurrent neural networks are the Real Time Learning
algorithm (Williams and Zipser, 1989) used by Wiszniowski et al.
(2014) and Back Propagation Through Time (BPTT) algorithm
(Werbos, 1990). Regarding the SLRNN, we chose BPTT because it is
faster and it is implemented in Matlab Neural Network Toolbox
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Fig. 6. Example of SLRNN learning on the ZHC station from the 8 Oct 2008 event with P- and S-wave onset picks, and a later event with S pick only. (a) The seismic signal
with marked phases, red—Z component, blue—N component, green—E component, (b) expected outputs of the SLRNN, red—event detection, blue—P wave detection, green
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figure caption, the reader is referred to the web version of this paper.)
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Fig. 7. Example of SLRNN learning on the ZHC station from 8 Oct 2008 event with P- and S-wave onset picks, preceded by small event with P pick only. (For further details
legend see Fig. 6). (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)

that we use.

We define the values of the expected outputs (Figs. 6 and 7b)
as:
aty=1:te(lp+14s,Ts+55), (6a)
4(t) = - 1: otherwise, (6b)
LH)=1:te(Tp, Ts+ 15), (60)
&H(t) = — 1: otherwise, (6d)
L =1:te (T, Ts + 25), (6e)
&3(t) = — 1: otherwise, (6f)

where {; is the expected output corresponding to event detection,
£, is the expected output corresponding to P wave, {5 is the ex-
pected output corresponding to S wave, and Tp and Ts are picked
onset times of the P and S phases. Since many disturbances may
have similar shape to P phase, we want the decision of detection to
be made later, not based on P-phase onset shape. Therefore we
define an expected event detection signal to be high later after P
onset (6a). The values of learning coefficients (Figs. 6 and 7c) vary
according to formulas:

m®)=0:te (T, To+105) (7a)
m®)=1:te(lh+10s,Tr+15s) (7b)
mt)y=0:te(Tp+1s, Ts+065) (70
m® =LIWE : te (Ts+ 065, Ts + 0.85) (7d)

mt)=0:te(Ts+08s, T+ 125) (7e)
nt)=0:te (T To+105s) (7f)
) =1:te(lh+10s,Tp) (72
n®)=0:te(Tp, Tr+025s) (7h)
ny(t) =LIWE;g : te (TIp + 025, Tp + 0.6 5) (70
m®=1:te(lp+06s, T+ 0.8s) v
n®)=0:te(Ts+08s Ts+565) (7k)
n()=0:te (T, Th+10s) D
mt)=1:te(hh+10s, T+ 025) (7m)
n3(t) = LIWE : t € (Ts + 025, Ts + 0.4 5s) (7n)
n3(t) = 0.1-LIWEyo : t € (Ts + 045, Ts + 0.6 5) (70)
mt)=0:te(T+06s, Ts+82s) (7p)

where Ty is the beginning of each record in the training set. The
values of learning coefficients are set to zero at the beginning of
the record (7a), (7f), (71). It is a technical requirement. The output
values of neurons are initially set to zero and neurons need a few
time steps to reach their typical operating values. In our case it is
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Fig. 8. An example of one properly picked event and events not picked (before and after). Seismogram (the ground velocity in m/s) from station ZHC: (a) Z component with
marked phases, (b) N component, (c) E component, (d) detection signals: red—event detection, blue—P wave detection, green—S wave detection. (For interpretation of the
references to color in this figure caption, the reader is referred to the web version of this paper.)

50 time steps corresponding to 10s; as seen in Fig. 8d (area
marked by signs x), this period is sufficient. Low values of learning
coefficients block the training process until neurons reach their
usual values. The first 10 s are not used for training the SLRNN.

At the beginning of event recording the detection output V; is
forced at a low level in order to use more information for earth-
quake identification than the P-wave onset. Therefore, the ex-
pected output is then low (6a) and learning coefficient »; = 1 by
one second (7b). This is sufficient time to diminish the P-wave and
is the minimum delay between P and S waves in WEBNET. Then
the output V; could have any value (7, = 0) (7c). Finally, after onset
of S wave the signal must be detected and the value of 7, is very
high (7d).

With respect to noise and disturbances, it is clear what shape of
the output signal of detection is required; it should be —1 all the
time. In case of events we cannot determine the shape and ad-
ditionally it is not important. There is just one requirement, that
signal has to exceed the threshold of detection. We decided, that
the high detection signal was required during the training only in
one point, but with a large weight. Therefore, just after the S-wave
onset the value of 7 is very high (7d). Earlier and later, the output
detection V; can take on any value, both high and low, but none of
the values are forced during training the SLRNN (7c) and (7e).
Output is ignored especially at the tail of waveforms (7e). The
learning coefficient must be greater in this point than in points of
noises to have equivalent values of E for noises and events. It takes
the value of the Learning Importance Weight of Events (LIWE),
which was defined in this paper. A few values of LIWE in the range
of (10,1000) were tested.

In the case of seismic waves P and S the # values are high one
step after the onset, but not as high as with detection. The value
LIWE;o = LIWE[10 (7i), (7n). The output of P is important until
onset of the S wave (7j), because the information about the ap-
pearance of a P-wave in the past is helpful for S wave identifica-
tion. The S output is important until detection (70). Then outputs
are irrelevant (7k) and (7n).

Many seismograms of small events do not have visible P or S
waves. In these cases, expected outputs and learning coefficients
are calculated in a different way.

When only the P wave is picked, the output {; is +1 for a
seismic signal from 1.2 s after the onset of the P phase to eight
seconds after the P wave otherwise it is — 1. The expected detec-
tion signal is not high just after the P onset because the decision of

detection should be produced later. The £, output is +1 from the
beginning of the phase P to the three seconds after that, —1
otherwise (Fig. 7b). The output {3 is irrelevant, so the expected
value is taken as —1 and »; = 0 (9n). Forcing the detection is de-
layed 2.8 s to the expected time of S wave (9c, (9d), (Fig. 7c).

a=1:te{lp+14s,Tp+85s) (8a)
4(t) = - 1: otherwise (8b)
HM)=1:te(Ip, T+ 3.45) (80)
&L (t) = — 1: otherwise 8d)
G= -1 (8e)

The values of the learning error weighting coefficient vary when
the S wave is missing according to formulas:

m®)=0:te (T, Th+105) (9a)
m®)=1:te(lh+10s,Tr+15s) (9b)
m®)y=0:te(r+1s,Tp+285s) 9¢)
m®)=LIWE : t € (Tp+ 285, T + 345s) (9d)
m&)=0:te(Tp+34s Tr+125s) (9e)
mt)=0:te (T, T+ 10s) (9f)
mt)=1:te(Th+10s, ) 9g)
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m®)=0:te (T, Tr+025s) (9h)
ny(t) = LIWEg: te (Tp + 025, Tp + 0655) (9i)
m®=1:te(Tp+0.6s,Tp+245) ch
m®)=0:te(Tp+24s,Tp+84s) (9k)
ns)=0:te (T T+ 10s) 9l
mt)=1:te(hh+10s,Tp) (9m)
nyt)=0:te (Ip, T+ 125s) (9n)

When only the S wave is picked, the {, is irrelevant (11h). De-
tection output {; is high from a second before the S onset to a few

seconds after that (Fig. 6b).
aty=1:te({ls—1s,Ts+55) (10a)

&4(t) = — 1: otherwise (10b)

The values of the learning error weighting coefficient vary in
consonance with formulas (Fig. 6¢):

m®)=0:te(Th, To+105) (11a)
m®=1:te(lh+10s,Ts—25) (11b)
mt)=0:te(ls—2s,T+065) (110)
m@®) =LWE : te(Ts+0.6s, T+ 085s) Aa1dy
m®)=0:te(Ts+08s, T+ 115s) (11e)
m)=0:te (T, T+ 10s) (11f)
Mt =1:te(lh+10s,Ts - 4s) (11g)
nt)=0:te(Ts—4s,Tg—04s) (11h)
nt)=1:te(Ts—04s,Ts+ 0.8 5) 1
nyt)=0:te(Ts+ 085, Ts+ 65) (11j)

n3(t)=0:te (T, Th+10s) (11k)
mt)=1:te(lh+10s,Ty) (111
nyt)=0:te (T, Ts+0.25s) (11m)
n3(t) = LIWE : t € (Ts + 025, Ts + 0.6 5) (11n)
n3(t) = 0.1-LIWEo: t € (Ts + 0.6 5, Ts + 0.8 5) (110)
n3t)=0:te(Ts+08s,Ts+8,65) 11p)

It should be noted that the cost function is not described well in
the absence of the phases. However, these cases concern the
weakest events, detection of which is the hardest. It is impossible
to remove them from training since the larger events are usually
accompanied by nearby small events.

4.4. Training data

The SLRNN network was trained by using the Levenberg-Mar-
quardt BPTT algorithm. The training data was divided randomly
into an actual training set (80% of data) and the validation set (20%
of data). Each step of the training procedure reduces the cost
function of the training set and in addition computes the cost
function of the validation set, which is not used for training. As
long as the cost function of the training set and cost function of the
validation set decrease, training continues. If the cost function of
the validation set starts to increase, the training stops. This pre-
vents overtraining the network when it would perfectly detect the
training events but would not recognize other events well. Be-
cause of the strong nonlinearity of the cost function, the training
was performed numerous times with different random initial
neuron weights wy;. The regularization parameter ¥ is set to 0.6. For
training the SLRNN we used data from the earthquake swarms of
2008 and 2010. The 2008 data include thousands of local swarm
events with manually picked P- and S-wave onsets which are
consistent throughout the whole period. We chose randomly
about one hundred events for each station with different magni-
tudes, locations or focal mechanisms. Additionally, a similar
number of examples of disturbances and non-local events were
needed. For this purpose we chose the 2010 data because it ex-
hibited low local seismicity without earthquake swarms in 2010,
so finding a variety of well recognized disturbances was easy. We
used manually classified quarry blasts, regional or teleseismic
events, disturbances by wind or storms and other unspecified
disturbances.

Major problems in our training process are lacking picks which
may be due to higher noise masking onsets or to unclear P onsets
on stations placed near nodal planes of a particular event, rarely
due to a failure during the manual processing. When the P and S
picks are missing, the SLRNN network is forced to learn that the
signal is a disturbance, causing the training to act in just the op-
posite way. Additionally, during the evaluation of network per-
formance on the test set many right detections not verified by
manual picks are wrongly treated as false detections. To eliminate
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Fig. 9. ROC diagram for different number of neurons—results of a few trails of
training when all stations were trained together.

this problem it was necessary to complete the P and S picks even if
their right position was not clear (considering that the step of our
SLRNN is 50 samples, i.e., 0.2 s). Accordingly, we must have picked
both the training and test sets several times. An example of an
unpicked event is shown Fig. 8. At least three events were un-
picked. They were detected by the SLRNN, which shows that the
network can work trained by partly wrong data.

5. Tests
5.1. Sensitivity, specificity and receiver operating characteristic

Although training the SLRNN minimizes the cost function E, the
quality of detection depends on number of events detected and
number of false detections, which are not wholly related to E. To
assess the SLRNN performance we evaluate three characteristics—
specificity, sensitivity and receiver operating characteristic (Zweig
and Campbell (1993)). All of them are obtained based on the va-
lues of:

® true positive (TP)—number of correctly detected events,
e false negative (FN)—number of undetected events,

® true negative (TN)—number of correct rejections,

e false positive (FP)—number of false detections.

The training set consists of recordings with local seismic events
and recordings with any other signal regarded as a disturbance. In
the case of the picked seismic events the number of true positives
is incremented if the detection output is above zero (V; > 0) a few
seconds after the P onset (Fig. 8), but if V; < 0 the number of false
negatives is incremented. The event detections outside picked
events are ignored because there may be some unpicked events
(mostly very weak ones as in Fig. 8) which are detected by the
SLRNN. Regarding non-local earthquakes or disturbances the
number of false positives is incremented if there is at least one
point where detection output was above zero. Otherwise, the
number of true negative is incremented.

The sensitivity, also designated as the true positive rate (TPR), is
calculated according to the formula

P

TPR = ——,
TP + FN 12)

where (TP + FN) is the sum of all detected and undetected events.
The specificity (also designated as the true negative rate (TNR)) is

calculated according to the formula

TN

TNR= -
N + FP 13)

It is the ratio of true negatives to the total number of all dis-
turbances (TN + FP). The sensitivity, which is required to be 1, i.e.,
all local earthquakes are detected. Low TNR means that algorithm
tends to produce an excess of false detections. Increasing the
number of detections for small events is always associated with
expanding the number of false detections. Therefore, slightly
lower sensitivity could be acceptable together with a high speci-
ficity value. The relation of the sensitivity and specificity is de-
scribed by the receiver operating characteristic (ROC) that is
usually depicted by the ROC diagram (Swets, 1996). When the
sensitivity and specificity depends on the parameters of the de-
tection algorithm or on the parameters of training the neural
network, the ROC-curves represent a relation between the sensi-
tivity and the specificity for various values of parameters.

5.2. Number of neurons

Estimating the number of neurons is always a difficult task.
Generally, it is a parameter empirically set by the designer. On the
one hand, it must be the lowest possible to have reasonable time
for training and good generalization, but on the other hand, it
must be high enough to satisfy the complexity of the problem. We
tested 4,8,12,16 neurons which is in our case 140, 408, 804 and
1328 weights. A lesser number of recurrent neurons simplify the
ANN to ANN detectors in the frequency domain (Wang and Teng,
1995). The ROC characteristic in Fig. 9 shows that the detection is
significantly inferior to four neurons. Increasing the number of
neurons to 12 or 16 improved the detection only slightly while the
training got significantly more time-consuming.

5.3. Comparison of training results for different training parameters
and stations

Firstly we evaluated the impact of the LIWE value (7d), (7i),
(11n) on the learning process. We tested the training of the SLRNN
with LIWE values of 1000, 500, 200, 100, 50, 20, and 10. The same
set of the LIWE values are also used in additional tests. The sen-
sitivity of the SLRNN trained with LIWE=1000 was high, but there
were too many false detections and the specificity was low.
Therefore smaller values of LIWE were tested, i.e., 500, 200, 100,
50, 20, and 10.

The cost function is strongly nonlinear, having a number of
local minima which results in some of them stopping the SLRNN
learning, a tendency increases with the value of LIWE. Fig. 10
shows the sum of cost function values over the training set for
2000 trials of the training detection for station POC for the set of
LIWE values. The POC station was chosen because it was one of
stations showing the best detection results.

Fig. 11 shows similar results for 500 trials for each LIWE value
on all the WEBNET stations; the number of trials was reduced due
to demands on training time. When LIWE was small (10-100), only
30-40% of training periods failed completely. In the case of big
LIWE (1000) more than 60-70% of periods of training failed.
Figs. 10 and 11 show there is not the same best value of E among
the training trials. That suggests there is not one best solution, so
the former training might still not be the optimal solution. The
LIWE value significantly affects the nonlinearity of training. The
BPTT algorithm must be iterated more times or nonlinear opti-
mization methods should be applied instead.

To assess detector performance we examined the sensitivities
and specificities. For LIWE values we computed the sensitivities
and specificities for 10 training results with the smallest cost
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Fig. 11. Sum of E-values over the training set for 500 trials of the training detection
for all the stations for various LIWES, from best to worst.

function.

The influence of the LIWE value on sensitivity and specificity is
presented in Fig. 12a and b. For greater LIWEs the specificity de-
creases, which means that the number of wrong detections is
growing. On the other hand, for smaller LIWEs the sensitivity

ROC diagram for station POC
T T
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decreases, so more events are not detected. This implies that the
best LIWE value is between of 50 and 200.

The detection ability of our SLRNN was tested in two ways.
First, the network was trained and used individually for each
station. The results for all the WEBNET stations, which were
trained individually with LIWE=100 are shown in the ROC dia-
gram (Fig. 13a).

Second, the network was trained for all stations together. The
result is shown in Fig. 13, where sensitivity is computed in-
dividually for each station. There are large differences between
stations. The ROCs show that some stations like POC and LBC have
100% sensitivity and high specificity >90%, whereas some other
stations like KAC, ZHC, NKCN have 99.5% sensitivity and smaller
specificity. Results of training all stations together are similar;
stations POC, LBC, and NKCN are the best, whereas stations KAC,
and ZHC are significantly worse. The difference between joint and
individual training at NKCN is probably caused by the lack of many
picks at this station. The reason is that the former station NKC
which was located at the same site as NKCN (parallel operation)
was routinely used for event location until recently. That is why a
number of smaller events have not been picked on NKCN, but NKC
was operated in the triggered mode, so the data from this station
is not used for training the SLRNN.

5.4. Comparison with signal-to-noise ratio on the stations

Testing revealed the obvious: some stations always detect
events as being worse than the others, so we compared it to sig-
nal-to-noise ratios (SNR) on individual WEBNET stations. We
processed five local events with local magnitude of M; ~ 1 so as to
have reasonable signal power and spectral content. Events with
lower magnitudes may be contaminated by noise, while events
with higher magnitudes have lower frequencies. We computed
fast Fourier transform (FFT) spectra of noise just before the event
and the spectra of the event. The signal and noise spectra of five
events were averaged and the resulting SNRs were smoothened by
moving average (window length 5 Hz). To eliminate the signal
decay due to different hypocentral distances, the SNR for the in-
dividual stations is corrected by factor R corresponding to the
hypocentral distance in km.

SNR = 20.log( S—(f)R)
N{)
The resultant SNRs are depicted in Fig. 14. It is obvious from this
fact that the SNR pattern of the three components is consistent
which implies that the SNR is consistent on all channels. We thus
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Fig.12. The ROC diagram for the set of LIWEs for station POC and all stations together. To reduce number of points in the ROC diagrams, only two of the 10 sensitivities (TPRs)
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Fig. 14. SNR for all stations used for events with local magnitude M, ~ 1 corrected by the distance factor R. The thicker vertical line at 0.0125 s (80 Hz) corresponds to the
corner frequency of the anti-aliasing filter in recording units, and the thinner one at 0.05 s (20 Hz) corresponds to a rough estimate of the corner frequency for M; ~ 1 events

according to Michdlek and Fischer (2013).

assume it is mostly a question of the site effects. Stations ZHC and
KAC having the lowest SNR between 1.0 and 80 Hz also indicate
the worst ROC. A lower SNR on these stations may be due to a
shallower installation of sensors when contrasted with other sta-
tions; additionally, the ZHC station is situated close to a TV tower
and also a larger town, so the higher noise cannot be avoided. Two
gray lines are plotted there We wish to emphasize that the signal-
to-noise ratio at frequencies between 5 and 40 Hz are of crucial
importance for a detection performance of our SLRNN, particularly
for detection of weak local events.

6. Preliminary results

6.1. False detections

We tested the performance of our trained SLRNN using data
from earthquake swarm 2011 for the POC station. We chose station
POC since it was used to test LIWE values during the training
process. The results showed a large number of false detections (a
few hundred depending on the SLRNN training result). After an
experienced interpreter inspected the 2011 waveforms and cata-
logues, we found that there were a number of unpicked smaller
events. So we checked carefully only 5h of the swarm-activity
recording. In this way six previously picked events with magni-
tudes between M; = 0.6 and M; = 0.9 were supplemented with 154
new events having magnitudes M; = — 0.3 to M; = 0.6. The next
test at the same time period showed a huge improvement; many

false detections switched to true ones but still some remained
(from tens to a hundred). The networks with the lowest number of
false detections generally do not detect some of the events. After
the interpreter's inspection we found that some of the events are
visible in the seismogram but definitely impossible to be picked.
Besides, many other of detected events might be buried under
noise. We wish to note that neural networks with very low false
positives often have a tendency to increase the false negative.

6.2. Undetected events

Referring to false negatives (FNs), i.e., undetected events we
recognized some common features. Looking at the false detections
of each SLRNN realization we found that the FNs are usually the
same. Typical examples of events undetected by the SLRNN net-
work are shown in Figs. 15-18. Fig. 15 depicts undetected events
hidden in the coda of the preceding event. Even if all the stations
are available, only a very experienced interpreter would find those
events and pick P and S onsets reliably. An example of an un-
detected event on the KAC station is given in Fig. 16. The SNR on
the KAC site is significantly lower than on other stations. An ex-
ample of an undetected event due to very small ground-motion-
velocity amplitudes on station POC, located at the largest epicen-
tral distance (DI=13 km), is demonstrated in Fig. 17. An example
of detected and undetected weak events in the seismograms
contaminated by strong disturbances at station KAC is shown in
Fig. 18.

As evident in Figs.

16-18, the event-detection failures,
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Fig. 15. Undetected events with magnitudes M; = 2.3 and M| = 2.2 masked by a
coda of the previous M; = 3.8 earthquake on the LBC station. Even though the
events are of relatively higher magnitudes, having the ground-motion-velocity
amplitudes much higher than ambient noise, it is very difficult to recognize them in
the coda. Vertical lines indicate the picks of the P- and S-wave onsets.
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Fig. 18. Example of detection performance in the disturbed seismogram form at
station KAC and in a seismogram with medium noise from station SKC. The seis-
mograms include a sequence of four weak events. All the events were detected on
SKC while the detection of the third event on KAC failed due to strong disturbances.
The scale is the same for all traces. Note that it is not possible to find the P waves of
the second and third event in the POC seismogram, even if the processing would be
performed by a skilled interpreter.

Table 1

Number of detected events. At the automatic location and SLRNN network the
numbers are: total number of detected events (TP+FP) and in brackets: events
corresponding to manual detection (TP) and events not detected manually (FP).
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Fig. 16. Example of a failed detection of M; = — 0.3 event on station KAC (bottom
panel) and a successful detection of it on stations VAC, SKC and POC. Since the scale
is the same for all traces it is evident that the waveform amplitudes on the KAC
station are similar to those on other stations but noise on KAC is higher, so the P-
and S-wave onsets are completely masked by noise. Note a successful detection on
stations SKC and POC (second and third panels from top), where the P waves of the
event is practically invisible. Vertical lines indicate the picks of the P- and S-wave
onsets, the arrows correspond to the P-onset polarity.

3 s

el Zhe g A Anp AN A A WN»/WW‘MM/VWMW‘"

s

v 2/ ’,l//mm/w wphedyn A Sty /Vv‘ AL ANt i
rod 2 At pravossirenprypll vy ol

Fig. 17. A failed detection of the M = 0.2 event on station POC due to a very weak
P- and S-wave amplitudes. Two more stations, LBC and SKC, with a successful
detection of the event are added for comparison. Only vertical components are
shown, all traces have the same scaling. It is obvious that the waveform amplitudes
on POC are much weaker than at other stations, while the noise level is compar-
able. Weak amplitudes on POC are due two factors: the radiation pattern of the
focus of the event and the larger epicentral distance of about 14 km.

demonstrated in these figures can be reduced substantially by
using station coincidence. This means the similarity of all the
stations is seen even if the trace is very noisy on some stations.
The detection should be based on the coincidence of more stations
in a time window of appropriate length. Then the event-like dis-
turbance on only one station should be eliminated.

L roaren Manual Automatic loca-  Automatic loca- SLRNN SLRNN (FN)
: i events tion (TP4-FP) tion (FN) (TP+FP)
v
- " " Sausiod 160 202 (145+57) 15 235 7
smaren (153+82)

6.3. Comparison with automatic location

Here we present a comparison with automatic locations (Fi-
scher, 2003) used for WEBNET data. We examined the automatic
locations in the closely observed 5 h segment. In Table 1 we
compare the number of manually detected events with the auto-
matically detected events by location (Fischer, 2003) and the result
of one of the best performing neural networks. Both automatic
algorithms provide more events than manual processing which
indicates that there are more events than could be seen in the full
frequency range seismogram used by the interpreter. Both meth-
ods resulted in some FNs. The number of FNs is higher at the
automatic location, while automatic event detection (SLRNN) has
more false positives. Automatic location combines detections on
more stations and automatically excludes some false positives
having an excessively high residual of location while our result is
one station detection and therefore some false positives might be
due to disturbances.

7. Conclusions and future plans

The proposed algorithm based on SLRNN proved to be an ap-
propriate tool for local event detection. Although the training
process is time consuming and in our case required numerous
trials to find an optimal or satisfactory solution, the implementa-
tion and routine use is quick and simple. We found that the LIWE
value, which is important in creating the learning error weighting
coefficients, causes the cost function to significantly affect the
number of successful trials during the training process so we
suggest values between 50 and 200 to obtain the best results.
Training data must also be prepared with special care. Complete-
ness of the P- and S-onset picks down to the lowest magnitudes
possible for the whole training set of local events is of key im-
portance for a proper SLRNN performance. Missing P- and S-onset
picks result in an increase of both the number of FNs, and the
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number of false event detections (of false positives). If the training
P- and S-onset picks are not equally present on all stations, it is
helpful to use joint training. If the picks are complete for the
station and all events, individual training performs better.

Unfortunately, we were unable to reliably verify the method on
the tested data from swarm 2011. The major problem is a large
number of false detections, that should be verified. But we suggest
that the sensitivity of the neural network is higher than manual
detection so most of false detections are weak events below the
noise level. However, the results should be evaluated correctly.
That means inspecting manually and carefully spectrograms with
station coincidence or use some automatic detector designed to
work under the noise level.

To lower the number of undetected events the SLRNN auto-
matic detection should be under the supervision of an experienced
interpreter. Each false negative should result in renewed training
of the SLRNN detector. A simple coincidence should also result in a
lower number of FNs as well as undetected events.

When we verify reliably the detector performance, we prefer to
use the SLRNN for other WEBNET stations which were deployed
later in continual regime. We also intend to use 2013 and 2014
swarm-like activities in West Bohemia. In addition, we want to
test our SLRNN detector using data from a local seismic network
REYKJANET which is operated on the Reykjanes Peninsula in
southwest Iceland. REYKJANET is similar in size and coverage to
WEBNET but the local events from Reykjanes exhibit slightly more
complicated waveforms.
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SUMMARY

We present results of applying a local event detector based on artificial neural networks (ANNs)
to two seismically active regions. The concept of ANNs enables us to recognize earthquake-
like signals in seismograms because well-trained neural networks are characterized by the
ability to generalize to unseen examples. This means that once the ANN is trained, in our
case by few tens to hundreds of examples of local event seismograms, the algorithm can
then recognize similar features in unknown records. The detailed description of the single-
station detection, design and training of the ANN has been described in our previous paper.
Here we show the practical application of our ANN to the same seismoactive region we used
for its training, West Bohemia/Vogtland (border area Czechia-Saxony, local seismic network
WEBNET), and to different seismogenic area, Reykjanes Peninsula (South-West Iceland,
local seismic network REYKJANET). The training process requires carefully prepared data
set which is preferably achieved by manual processing. Such data were available for the
West Bohemia/Vogtland earthquake-swarm region, so we used them to train the ANN and
test its performance. Due to the absence of completely manually processed activity for the
Reykjanes Peninsula, we use the trained ANN for swarm-like activity in such a different
tectonic setting. The application of a coincidence of the single-station detections helps to
reduce significantly the number of undetected events as well as the number of false alarms.
Setting up the minimum number of stations which are required to confirm an event detection
enables us to choose the balance between minimum magnitude threshold and a number of
false alarms. The ANN detection results for the Reykjanes Peninsula are compared to manual
readings on the stations of the REYKJANET network, manual processing from Icelandic
regional network SIL (the SIL catalogues by the Icelandic Meteorological Office) and two
tested automatic location algorithms. The neural network shows persuasively better detection
results in terms of completeness than the SIL catalogues and automatic location algorithms.
Subsequently, we show that our ANN is capable of detecting events from various focal zones in
West Bohemia/Vogtland although mainly the focal zone of Novy Kostel was used for training.
The performance of our detector is comparable to an expert manual processing and we can
state that no important event is missed this way even in case of complicated multiple events
during the earthquake swarms.

Key words: Neural networks, fuzzy logic; Time-series analysis; Earthquake source observa-
tion.

events recorded on seismic stations may differ in few orders of am-

I INTRODUCTION plitude and they may have fairly different shape and frequency con-
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Continuously recording dense seismic networks produce a huge
amount of data which the majority of them are redundant when pro-
cessing seismic events. Seismic events, the useful part of seismic
records for the most of seismological research, occur in just a small
fraction of total recorded time even in episodic periods of increased
seismic activity, for example, earthquake swarms. The target seismic

tent. Therefore, the classical STA/LTA (Short-Term Average over
Long-Term Average) or other power-based detector detects also var-
ious disturbances and with the aim to detect even weak earthquakes
it results in a high number of false detections. Well-performing de-
tection algorithm minimizes false detections while preserving all
important information, that is, all target seismic events. In our case
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we want to detect only local events with completeness magnitude as
low as possible. Such reduction of data enables effective processing
of events either manually or automatically. Event detection can be
done in the time domain, frequency domain, by using polarization
analysis or pattern matching (Withers ez al. 1998) or using a combi-
nation of these approaches. Artificial neural networks (ANNSs) can
be used in any of the listed methods. ANNs are machine learning
algorithms inspired by the functionality of the human brain. The ba-
sic unit called artificial neuron simulates the behaviour of a natural
neural cell as described by biologists, that is, the weighted sum of
inputs generates logical output. An interconnection of neurons into
network enables to solve complicated problems and the goal of the
learning process is to find optimum weights for each neural input to
get the desired result. ANN concept has been used in seismologi-
cal applications mainly for classification or discrimination purposes
(Dowla et al. 1990; Romeo 1994; Tiira 1996; Esposito et al. 2006;
Kuyuk ez al. 2011; Mousavi et al. 2016), phase picking (Dai & Mac-
Beth 1997; Wang & Teng 1997; Gentili & Michelini 2006; Gravirov
et al. 2010; Ross et al. 2018) or earthquake prediction (Panskkat &
Adeli2007; Morales-Esteban et al. 2013; Reyes et al. 2013). Several
neural network concepts have been used for seismic event detection.
Most of the works utilized shallow networks based on multilayer
perceptron with one hidden layer (e.g. Wang & Teng 1995, 1997,
Tiira 1999; Gentili & Michelini 2006; Madureira & Ruano 2009),
but recently even very deep neural networks have been successfully
applied, namely Mousavi ef al. (2018) combined 2-D convolutional
neural networks and bi-directional LSTM cells in a deep network
with 256 000 trainable parameters. Our neural network described in
Doubravova et al. (2016) takes into account the frequency character
of the waveform by using narrow-band filter bank, as well as the
time domain using STA/LTA in each frequency band. A sufficiently
long time window used for distinguishing target seismic events from
disturbing signals is very important for successful event detection.
We achieved sufficient time history consideration by using a re-
current neural network. Our novel architecture named Single Layer
Recurrent Neural Network (SLRNN) consists of only one layer of
neurons whose outputs are fed back as inputs in the next time steps,
but the recurrent inputs are delayed by various samples (the number
of trainable parameters was 408). That enabled to feed information
of the history of the time-series together with an actual value at the
input of the network simultaneously.

It can happen that some weaker events are not detectable in the
recording of a single station—due to different locations of events, lo-
cal noise or disturbances, the radiation pattern of earthquake source
or even technical issues (see examples in Doubravova ef al. 2016).
Therefore our SLRNN uses multiple station detections, that is, the
event detections on more stations of the network (as the human
interpreters do) which increases the detection ability significantly.
Most of the event detectors employed in seismological-observation
practice need a special setting of parameters matching observation
conditions in a particular area (e.g. local noise, frequency content
of the target events and noise) to work properly. We developed
our event detection method based on SLRNN as a part of the auto-
matic processing of data from local seismic networks WEBNET and
REYKJANET that are operated in two completely different tectonic
areas: West-Bohemia/Vogtland earthquake-swarm region (Czechia,
Central Europe) and Reykjanes Peninsula (South-West Iceland),
which are characterized by swarm-like seismicity (see Section 2).
The recordings of swarm activities usually contain sequences of
many events tightly spaced in time or even overlapping and inter-
fering. But such cases pose a problem for automatic algorithms and
even experienced interpreters (specialists in manual processing).

Local swarm-like earthquake detection by SLRNN 673

Our aim is to select pieces of signal with events without an attempt
to separate correctly the individual events. Our SLRNN detector
has been trained on data from network WEBNET. In this paper we
present detection results of this detector when applied to continuous
recordings from both WEBNET and REYKJANET networks.

2 TARGET AREAS AND LOCAL
SEISMIC NETWORKS

2.1 West Bohemia/Vogtland

West Bohemia/Vogtland (latitude ~49.8°N to 50.7°N, longitude
~12°E to 13°E) is situated in the western part of the Bohemian Mas-
sif, geographically in the border area between Czechia and Saxony.
It is a unique European intracontinental area that exhibits simulta-
neous activity of various geodynamic processes. Seismic activity
is characterized by frequent occurrence of earthquake swarms, the
main-shock—aftershock sequences also occur there but very rarely.
Persistent swarm-like seismicity clusters in a number of small epi-
central zones that are scattered in the area of about 40 km x 60 km.
However, larger swarms (~M > 2.5) cluster predominantly in the
focal zone Novy Kostel (NK), which dominates the recent seismicity
of the whole region; a few tens of thousands of events were recorded
there within the last 27 yr. The swarms usually consist of several
thousands of weak earthquakes and their duration is from several
days to two months. Notable earthquake swarms in the last 35 yr oc-
curred in 1985/86 (with the strongest event of magnitude My, =
4.6), 1997 (MLmax = 2.9), 2000 (Mpmax = 3.3), 2008 (Mmax = 3.8),
2011 (Mymax = 3.7), 2017 (Mpmax = 3.2) and 2018 (M m.x = 3.8);
an exceptional M ,x=4.4 non-swarm activity occurred in 2014.
The depths of foci in the whole area range from 5 to 20 km (e.g.
Horalek & Fischer 2010) but depths between 7 and 12 km are typ-
ical of earthquake swarms and main-shock—aftershock sequences
(Cermékové & Horalek 2015; Jakoubkova et al. 2018). The region
is well known by its fluid activity that is probably closely connected
with the local swarm-like seismicity (e.g. Horalek & Fischer 2008;
Fischer et al. 2017). For summarizing information about the area
in question we refer to Fischer et al. (2014). Seismicity in the West
Bohemia/Vogtland region has been monitored by the WEBNET net-
work since 1991 (Institute of Geophysics 1991; Horalek et al. 2000;
Fischer ef al. 2010). At present, WEBNET consists of 24 stations
covering the area of about 40 km x 25km. 15 stations are broad-
band (equipped with Giiralp CMG3-ESP sensors and Centaur digi-
tizers by Nanometrics) with the frequency response proportional to
the ground velocity from 0.03 to 100 Hz. Nine stations are short-
period (LE3-D sensors and Gaia digitizers) with a flat frequency
response 1.0 to 80 Hz. All the stations are operating in continuous
mode with sampling frequency of 250 Hz. All 15 broad-band sta-
tions are streaming data in real time, while the short-period stations
are storing data to memory cards. The amount of data is around
1.3GB d~! considering online stations only. Waveforms from the
whole network including both online and offline stations result in
approx. 2GB d!.

2.2 Reykjanes Peninsula

The Reykjanes Peninsula, SW Iceland (latitude ~ 63.8°N to 64.1°N,
longitude ~ 21.5°W to 22.3°W), is the onshore continuation of the
Reykjanes Ridge which is a part of the mid-Atlantic Ridge. The
Reykjanes Ridge separates the two major lithospheric plates, the
Eurasian Plate to the east and the North American Plate to the west.
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On the Reykjanes Peninsula the plate boundary extends from the
southwest to the east and forms a pronounced oblique rift along
the whole peninsula in length of about 65km (Semundsson &
Einarsson 2014). The plate motion rate on the Reykjanes Penin-
sula is about 20 mm yr~! in E-W direction and about 5 mm yr~!
perpendicular to it (Geirsson et al. 2010). The plate boundary is
flanked by a deformation zone of about 30 km width where strain is
built up by the plate movements (Einarsson 2008). The Reykjanes
Peninsula is one of the most seismically active parts of Iceland,
especially at the microearthquake level. Swarm-like sequences and
solitary events scattered along the plate boundary, both with mag-
nitudes mostly of M| < 3, represent a major part of seismicity on
the peninsula. Large swarms took place there in 2000 (with the
strongest event of magnitude My, = 5.9), in 2003 with M.y
= 5.3 and in 2013 with Mypn.x = 5.0 (Jakobsdottir er al. 2002;
Jakobsdottir 2008; Einarsson 2014). Recently, two medium swarms
with magnitudes M,, = 3.8 (in 2016) and M,, = 4.1 (in 2017) oc-
curred. Prevailing depths of the foci on the Reykjanes Peninsula
are between 2 and 5 km which is much shallower compared to the
focal depths in West Bohemia/Vogtland. The Reykjanes Peninsula
is a highly complex geophysical structure with the interaction be-
tween volcanic and tectonic activity (Semundsson & Einarsson
2014), most of the Reykjanes Peninsula surface is covered by lava.
The crustal fluid activity on the peninsula is clearly manifested by
several geothermal fields and geothermal systems (Axelsson ef al.
2015). REYKJANET network (Horalek 2013) was established on
the Reykjanes Peninsula in 2013 by the Institute of Geophysics
and the Institute of Rock Structure and Mechanisms of the Czech
Academy of Sciences with know-how, technical and material sup-
port of the University of Uppsala, Icelandic Meteorological Office
(IMO) and Iceland GeoSurvey (ISOR). REYKJANET is aimed at
monitoring interplate swarm-like seismicity in South-West Iceland.
It consists of 15 broad-band stations which cover the area roughly
40km x 20 km along the plate boundary. The stations are equipped
with the Giiralp CMG 40-T sensors, which are placed in special
vaults, and low-power Gaia digitizers. The frequency response is
proportional to the ground velocity from 0.03 to 50 or 100 Hz.
All the stations operate in the continuous mode with the sampling
rate of 250 Hz. The stations are supplied from batteries which are
recharged from solar panels combined with wind turbines which
may increase a little bit ambient noise. All the stations store the
data to high capacity memory cards. Data are downloaded once in
three or four months and processed afterward. The daily amount
of data is some 1.3 GB, similarly to online stream of WEBNET. In
addition to the REYKJANET network, seven stations of Icelandic
regional network SIL (currently, a total of 68 stations spread all
over Iceland), operated by IMO, have been monitored seismicity on
the Reykjanes Peninsula since 1990 (BoOvarsson et al. 1999). The
frequency response of the SIL stations is proportional to the ground
velocity from 0.2 to 40 Hz. The stations operate in the continuous
mode with the sampling rate of 100 Hz. The SIL recordings are
processed in IMO in near-real time by a service working 24 hrs a
day.

3 DATA

The training procedure of our SLRNN detector has been described
including the data used in our previous paper by Doubravova et al.
(2016). Let us remind that two WEBNET data sets, (i) events of
the 2008 earthquake swarm and (ii) disturbing signals of the year
2010 without swarm-like seismicity, were used to train the SLRNN;

manual P- and S-wave picks were used to define an event during
the training process. The training set contained both isolated and
overlapping multiple events. The 2011 swarm was used for testing
of the detection results. This way trained SLRNN detector has been
applied to continuous data from 15 online stations of WEBNET
employed in a near-real time data processing, and to continuous
data from all 15 stations of REYKJANET processed in a batch after
data collection. The REYKJANET network operates 2500 km away
from WEBNET in entirely different seismogenic area than West Bo-
hemia/Vogtland. Nevertheless, the extent of both networks is similar
(~ 40 km x 20km) as well as sampling frequency (250 Hz) and
a magnitude range of events, which implies that frequency content
of target events is also alike. The WEBNET network has generally
lower noise than REYKJANET due to installation in deep vaults and
compact bedrock (compare the waveforms in Fig. 1). A rough esti-
mate of the background noise level is 90 nm s~! for REYKJANET
and 20nm s~!' for WEBNET, and despite the shallower depth of
SW Icelandic hypocentres there is typically higher signal-to-noise
ratio for WEBNET recordings. The REYKJANET network is ex-
pected to record stronger earthquakes up to magnitude M 5.0+
The detection results for the WEBNET continuous data have been
evaluated by using the WEBNET catalogues and bulletins created
by precise manual data processing. In the case of the REYKJANET
data, the SLRNN detector has been applied to all 15 stations. The
primary source of information about local seismicity is the SIL
catalogues provided by IMO (Dr Gunnar B. Gudmundsson, IMO,
personal communication, 2017) which contain seismic events from
the whole region of South-West Iceland. We evaluate the perfor-
mance of the detector by comparing the results with (i) manual
processing by a skilled expert and (ii) with automatic algorithms,
mainly PePin (Fischer 2003) which is used routinely to process the
WEBNET data in near-real time. PePin uses polarization analysis
to find candidate onsets of P- and S-wave phases which are then
associated together to define events. A set of parameters must be
tuned in order to achieve good reliability of the resulting events.
The algorithm naturally fails to correctly associate phases in case
of complex waveforms (e.g. multiple events) which results in omit-
ting some of the events which can be sometimes of not negligible
magnitude. On the other hand, if an event is found and located by
PePin, the location usually differs from the manual location by few
hundreds of metres and the detection threshold for the WEBNET
data is as low as M = —1.

4 SINGLE STATION
DETECTION—METHOD

4.1 Single Layer Recurrent Neural Network (SLRNN)

For detection of seismic events on each station in the seismic net-
work we use the detection method described in detail in Doubravova
et al. (2016). The description of the method in teh following text
is brief and in some aspects simplified. The detector is based on
ANN that consists of a set of neurons (Fig. 2). Each neuron sums
weighted inputs and applies activation function (a sigmoid function
simulating the step function in natural neuron cell is often used).
Input v, = 1 of the neuron is constant and serves as a threshold
adjustment of the neuron:

Vi=g Zwijvj . (1)
j=1

61,02 Jequisydes /z uo zo'seoBi@euiuy Ad 6GEZEGS/2.29/1/61.ZA0BASe-0 e/ I[B/WOoo"dnoolWepese)/:SdRY Woly PapPEOjUMOQ



Local swarm-like earthquake detection by SLRNN 675

r . ; ; 4.982-07 mis
@[ - - ' *
NK( 2 A il
L 7
g " 6.92e-07 mis
oC
Lo ZM—WM%WMW%WNMWMM 5 E ‘ ‘ ey

= { Aﬁc x ‘TC 7.1e-07 m/s

e Ye) '5 }fé Ve
std 2 ik \ “_ ;:‘KC AO Re=O ) A e

\
{ oA sore0m
| ] 5.8e-07 m/s
[ ZVM‘]I\‘MMW«'MWWWWW b s it
= -5.58e-07 m/s|
«rd 2 JWWM“MMWW et

-3.982-07 m/s|

LN

-6.892-07 m/s|

kod 7 WNMWWM e p———

-4.822-07 mjs|

[

g skl
sKq t f b “f u bl L

= 2.72e07 mjs

. ZWWWWWWWWWM

18:10:41 18:10:43 18:10:45 18:10:47 18:10:49 18:10:51
(b) - 1.57e-05m/s
i WWWWMNWWWWWW
- -4.59%-06 m/s|
1SS TN A

-1.25e-05 m/s|

Mol

o 2.24e-06 m/s

Iceland } 7 -5.35e-07 m/s|

02e-06 m/s

el ZWMVV\N\/NWMWWNWWM

2.03e-06 m/s

KL ZM‘W%WMMWMNW\WWWWMW

-1.24e-06 m/s|

i zwwwmewwWMwﬂMWwwmem

r -3.59e-07 m/s|
L i i i i |

11:07:32 11:07:34 11:07:36 11:07:38 11:07:40

Figure 1. Waveform examples for (a) WEBNET (event of 2018 December 1) and (b) REYKJANET (event of 2017 July 26). Distribution of the WEBNET
and REYKJANET stations is depicted in the insets (upper-right in panels a and b). Both events with local magnitude M;, = 0.5 (red asterisks in the insets)
were located in the centre of the seismic networks at depths characteristic of West Bohemia/Vogtland (¢ = 9.2 km for WEBNET) and the Reykjanes Peninsula
(d = 2.5km for REYKJANET). Only vertical components of the ground-motion velocity filtered by bandpass (BP) of 1-40 Hz at 10 stations with the best
signal-to-noise ratio are depicted. All traces are scaled according to the maximum of absolute value of displayed waveform. The maximum amplitude of each
trace is on the right above the traces. It is apparent that the noise is generally lower at the WEBNET stations than at the REYKJANET ones and that the
seismograms from the REYKJANET stations are more complex with longer codas which makes their interpretation more demanding.
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Figure 2. Single neuron scheme for ith neuron with inputs v; — v,,, weights
Wil — Wiy, activation function g(.) and output V;.

The SLRNN consists of one neuron layer (parallel neurons) and
the outputs of all neurons are fed back as inputs in the next time steps
(see the scheme in Fig. 3). The outputs are applied to inputs with var-
ious delays which enables the network to get information throughout
the history. After performing tests published in Doubravova et al.

(2016) we conclude that eight neurons’ configuration with delays
1, 2, 4 and 8 samples is sufficient for event detection. Only three
outputs of neurons are used as outputs of the whole network, the
rest denoted as hidden neurons is used only for the feedback. We
use output (¥7) as an event detection signal, output 7, as P-wave
detection and output V3 as S-wave detection. The P- and S-wave
detection outputs are auxiliary and they are used only during the
training process.

The inputs of the neurons are STA/LTA ratios of seismic traces
in different frequency bands. We decompose each of the three com-
ponents of velocity record (Z, vertical; N, north; E, east) in narrow-
band signals by a filter bank of nine half-octave filters from 0.6
to 40 Hz (frequency response of the filters is in Fig. 4), then we
combine horizontal components together with computing size of
horizontal resultant. The processing scheme is shown in Fig. 5. In

bias 1,
SLRNN
Inputs of N| m neurons \ Outputs
the SLRNN ) with V...V, of the SLRNN
Xppe X, n inputs V,,...,V,
\ \| each Hidden
_) Dd_) neurons
E \/7k+11"'1vm
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Figure 3. Single Layer Recurrent Neural Network with p inputs x1...x,, k outputs V...

(V1...Vm) are fed back as the inputs with d delays D1 — D,;.

Vi and m — k hidden neurons with outputs Viyp...V;,. All outputs

o
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o
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Figure 4. Frequency response of half octave filters used for preprocessing of inputs for SLRNN.
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Figure 6. Learning example for two consecutive events. First one is stronger with manual reading of both, P- and S-phase, the latter one has S-wave reading
only; (a) seismic traces from top vertical, north, east component of the ZHC station from 2008 October 8, (b) expected outputs, (c) learning coefficient function

in logarithmic scale.

the next step we compute STA/LTA ratios and downsample the re-
sulting signal. The original sample rate is then decimated to 5 Hz
which is a compromise between the acceptable computational load
and a good separation of individual waves.

4.2 Training and tests

The training process aims to find optimum neuron weights to get
the desired functionality. We use supervised learning which means
that we define outputs for a set of training examples and adjust the
weights to get the best possible fit between desired and actual output
weighted by a learning error weighting function n;. As mentioned
before, we use only three neuron outputs; that is, we define three
expected outputs: ¢(7) - event detection; ¢,(¢) - P-wave detection;
¢5(f) - S-wave detection. The cost function with the application of
the weight decay regularization (after Hinton 1989) is defined as

3 m n
E=Y Ym0 -odF +1=py)) > wl, )
1

roi= i=1 j=1

where y is the regularization parameter, ¢, is the ith expected output,
o; is the ith actual output and w;; are weights for all » inputs of each
of m neurons (in our case that means 18 direct inputs, 32 feedback
inputs, 1 constant threshold input for each of the 8 neurons; in total
we are searching for 408 weights). We apply the Back Propagation
Through Time algorithm (Werbos 1990) which is a gradient-based
cost function minimization method. That means we need to perform
a number of minimization attempts to find the best set of weights
(for each training setting we performed 2000 of training trials). The
training data were randomly divided into an actual training set (80
per cent of data) and the validation set (20 per cent of data, not
used for training). Each step of the training process reduces the
cost function of the training set and in addition computes the cost
function of the validation set. As long as the cost function of the
training set and the cost function of the validation set decrease, the
training continues. When the cost function of the validation set starts
to increase, the training is stopped. This prevents the overtraining
of the network - the case when the network perfectly detects the
training events but fails to recognize other events well (for more
information refer to Doubravova ef al. 2016).
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Figure 7. Example of the single-station detection. Seismogram from KLV station (2017 June 5, 11:20 to 11:27 UTC) filtered by BP of 1-40 Hz and detection
output (always in range between — 1 and 1). From the top: vertical, north, east component of velocity record, detection output of neural network. Yellow stripes
denote seismic events (after coincidence), the strongest event marked by red dashed line is an event in SIL catalogue (Mp= 0.9). The detection threshold

(indicated by the purple dotted line) is exceeded even in between the events.

For detection of local seismic events we need to emphasize the
importance of event detection output right after S-wave onset. This
is achieved by a much higher value of 5, near the S-wave ar-
rival (Fig. 6¢). After testing (for details and test performed see
Doubravova et al. 2016) we chose the most important point called
LIWE to be 100.

During the training of the individual stations we achieved a good
number of true positive rate (TPR) and true negative rate (TNR)
compared to manual readings (for the best trained SLRNN TPR =
99.8 per cent and TNR = 78 per cent; that means 22 per cent false
alarms). We inspected the results manually and found some false
alarms to be small events omitted by manual processing. Some of
the stations failed to detect events due to higher noise on the site,
due to radiation pattern of a particular event, or in case of masking
the waveform by the coda of the previous event. The proposed
solution to this imperfection was to make use of the whole network
of stations together. The coincidence of event-like waveforms on
several stations in the network is crucial for successful and reliable
event detection.

5 MULTIPLE STATION
DETECTION—COINCIDENCE

In order to reduce the number of false detections as well as the
number of undetected events due to higher signal-to-noise ratio we
search for detection on other stations in the network to confirm or
discard the event detection. Fig. 7 depicts three component velocity
record and corresponding detection output. The detection is set
whenever the detection output exceeds a certain threshold. The
yellow stripes denote seismic events and one can see there are
detections also in between the event stripes.

The proposed algorithm first scans all detections (detection out-
put above zero) on all stations of the network and checks if there is
a detection on a sufficient number of stations in the selected time
window (we set it to 5 s with respect the size of the networks). In the
next step we combine the detections together to make time intervals
for events (see example in Fig. 8). As a result we define time seg-
ments containing useful information. Multiple overlapping events,
especially during a swarm, lead to one time interval containing more
events.
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Figure 8. Example of the coincidence detection. Detection outputs of all 15 stations of REYKJANET, detection on at least six stations required. The same

time segment as in Fig. 7.

The number of stations, which are needed to declare an event, is
closely related to the number of false detections. Additionally, too
many stations required might cause loss of weaker events. Fig. 9
shows an example of a coincidence of four and six stations and their
comparison with the events detections performed manually (by the
experienced interpreter). If we compare the detection results of the
four- and six-station coincidence with the manual ones, it can be
seen that the six-station coincidence detects all the manually iden-
tified events correctly while four-station coincidence detects also
false events or events which are not interpretable (three cyan stripes
which do not coincide with the yellow ones). Moreover, four sta-
tion coincidence detecting more events which are merged if they
overlap, produce longer time windows for events (broader stripes in
Fig. 9). Two clearly separated event detections in six-station coinci-
dence may become one longer event detection in case of four-station
coincidence (note the end of the record where two yellow events
become one longer cyan event). For both networks—WEBNET and
REYKJANET—the coincidence of six stations seems to be the best
option (see Tables 2 and 3 in Section 6.3).

6 APPLICATION TO DATA FROM
LOCAL SEISMIC NETWORKS

6.1 Evaluation of results

The objective measures of a detector would be TPR (also called
sensitivity or recall) and PPV (positive predictive value, also called
precision). To estimate these quantities one need to calculate the
number of correctly detected events (TP, true positives), undetected
events (FN, false negatives) and false alarms (FP, false positives):

TP
TPR= —— 3)
TP + FN
TP
PPV=— . )
TP + FP

In an attempt to automatically compare manual catalogue to
detections provided by the SLRNN we faced a problem with
many weak events being missing in the manual catalogue correctly
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Figure 9. Example of the detection coincidence for four (cyan) and six (yellow) WEBNET stations. Red trace above is the vertical component of seismogram
from NKC station from 2018 August 24 3:00-3:12 UTC. All events in yellow were also detected manually, magnitudes M, (from —0.5 to 1.5) are given above
the yellow stripes. The first detected event in the seismogram is a multiple event consisting of several weak overlapping events, therefore the magnitude is not

assigned (x sign is printed instead).

detected by the SLRNN. After all, the only reliable method to eval-
uate the correctness of each detection is to inspect it manually
(Table 4). However, precise manual processing revealed also few
weak events undetected by the SLRNN (usually with —1 < My <
—0.5). Our goal is to get complete catalogue down to M = 0 for
WEBNET and M; = 0.3 for REYKJANET. The smaller events will
never be complete due to lower signal-to-noise ratio and are often
unsuitable for further processing either.

In practice, we need to reduce the amount of data for further pro-
cessing as much as possible, in other words to remove redundant data
from the continuous recordings. On the other hand, if the selected
time segment with a seismic event is few samples longer or shorter
then it does not make a difference. In case of overlapping events
during the seismic swarm, we joined detections together and there-
fore simply counting a number of detections does not correspond to
the number of detected events. In case of a very sensitive network
with low threshold or little coinciding stations, many swarm events
blur into long time segment. The useful information is preserved
but the reduction of data is less effective.

6.2 Application to REYKJANET

A potential ANN trained on the South-West Iceland data from
REYKJANET poses quite a big problem because of the absence
of complete catalogues/bulletins from the REYKJANET network
which would be necessary to train the ANN. It is because of the
REYKJANET recordings that have not been fully processed in de-
tail like the WEBNET ones. To create relevant bulletins from the
REYKIJANET stations by manual processing of continuous record-
ing would be extremely time-consuming, requiring an experienced
specialist. Consequently, we mostly use the SIL catalogues pro-
vided by IMO for the REYKJANET-data analysis. But there are
more detectable local events in the REYKJANET seismograms
than those given in the SIL catalogues because REYKJANET is
an evidently denser network (15 stations) than a regional network
SIL including seven stations in the area concerned (Fig. 10). There-
fore, an application of the neural network trained for the West Bo-
hemia/Vogtland data (WEBNET) to data from South-West Iceland
(REYKJANET) has been a challenging task. We took one of the
best-performing SLRNNS as tested for WEBNET and applied it to
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Figure 10. Map of Reykjanes Peninsula. Black triangles, REYKJANET stations; grey triangles, IMO stations; circles, epicentres of analysed earthquake
activities. Blue circles, 2014 October 30-31 (M max = 2.8); red circles, 2015 March 31 (Mpmax = 2.2); yellow circles, 2015 April 28-30 (Mymax = 1.6); green
circles, 2015 May 29-30 (Mpmax = 3.5); cyan circles: 2017 July 26-28 (M max = 3.9).

Table 1. Number of events for all analysed Reykjanes activities.

Manual
(above My, >
ANN  SIL  Antelope PePin 0)

(1) 30-31 Oct 112 37 30 9 N/A
2014

31 Mar 2015 216 30 37 29 N/A
28-30 Apr 2015 125 23 9 23 N/A
29-30 May 2015 937 167 34 25 N/A
(ii) 26 June 2017 124 56 N/A N/A 281
11:00-12:00

(iii) 6-12 June 184 34 N/A N/A 64
2017

the REYKJANET data. Since the deployment of the REYKJANET
network in 2013, the seismicity on the Reykjanes Peninsula has
typically been on a microearthquake level (magnitudes M; < 3)
except two earthquake swarms in October 2013 (immediately after
putting the REYKJANET stations into operation) with My ,x =
4.8 and in July 2017 with My = 3.9 (Mwmax = 4.1), and few
weaker swarm-like episodes with magnitudes up to My .x = 3.5.
The swarms in October 2013 occurred on the tip of the peninsula
out of the REYKJANET network. We analysed in detail the detec-
tion results for (i) four weak activities from the period 20142015,
(ii) an intensive M. = 3.9 swarm of July 2017 and (iii) scat-
tered background seismicity on the Reykjanes Peninsula in June
2017 (for basic data and locations of the analysed activities refer
to Table 1 and Figs 10 and A3). The SIL catalogue is the primary
reference for evaluation of the SLRNN-detection results for both
(1) and (ii). Besides, we used a catalogue of the event detections
produced by PePin automatic algorithm (Section 3) and Antelope
software package (by Boulder Real Time Technologies, Ltd.) that

were applied to the REYKJANET data of the activities given in (i),
and a detailed bulletin of the 2017 swarm containing manual onset
picks from all the REYKJANET stations.

(i) First, we compared the total number of detected events by the
SIL processing, PePin algorithm, Antelope software and SLRNN
(also denoted as ANN) in the individual weak activities. The An-
telope automatic location procedure uses weighted STA/LTA phase
detections (mainly P-wave phases are correctly picked). The PePin
algorithm uses polarization analysis for event detection. In the first
step the S-wave arrivals (which are often clearly polarized) are iden-
tified then they are associated with matching P-wave arrivals in the
given time window, finally the event is localized. However, in case
of a false event location (e.g. due to the incorrect association of the
P- and S-wave arrivals) the event is omitted in the catalogue (for
more information about the PePin detector see Fischer 2003). The
comparison of the SIL, Antelope, PePin and ANN catalogues is
depicted in Fig. 11. It is apparent the number of events detected by
SIL, PePin and Antelope is comparable for all the activities, while
the number of detected events by the SLRNN is about five times
higher. We manually checked one of the activities with a reasonable
number of events—the mini-swarm of the 2015 March 31. In total,
30 events have been listed in the SIL catalogue (Mym. = 2.2), 37
were located by Antelope and 28 by PePin.

Inspecting the events manually, we found out none of the ‘cat-
alogues’ (SIL, Antelope and PePin) to have been a complete sub-
set of another one; each catalogue contained some unique events
which were missing in the other two catalogues (see Fig. Al). The
SLRNN detector provided 217 events including all the detected
events given in the SIL, PePin and Antelope catalogues. Fig. Al
represents the comparison of detected/undetected events from each
catalogue (SIL, PePin and Antelope) with those in the other two
catalogues and with the SLRNN detections. By combining the SIL,
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Figure 11. Number of events in analysed microswarms on the Reykjanes Peninsula.
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Figure 12. REYKJANET seismograms of one of the weakest events (Mp, = —0.6, roughly estimated) of 2015 March 31 detected by the SLRNN with six-station
coincidence. 10 nearest stations (sorted by the epicentral distance) are shown. It is evident that the event is recognizable on the five nearest stations only, on the
remaining stations its ‘useful” signal is buried in noise. The event (its detection) is characterized by the maximum amplitude over all components of all stations
in the whole detection time window (marked by dashed red line). Three component ground-motion velocity seismograms are filtered by BP of 1-40 Hz. The

number above each trace gives the maximum amplitude of the ground-motion velocity in the displayed period.
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Figure 13. Magnitude-time distribution of the 2017 Reykjanes seismic swarm, only events with magnitude M > 0 are considered. Upper plot: the whole
activity according to the SIL catalogue; lower plot: 1 hr segment around the second strongest shock of M, = 3.7 (2017 June 26, 11:00 to 12:00 UTC). Red
points: events of the manually created REYKJANET catalogue which were missing in the SIL catalogue.

PePin and Antelope catalogues we obtained 51 real events with min-
imum magnitudes M; ~ 0. Our SLRNN detected all of them and
in addition to that about three times more weak events. But many
of the small detected events are unsuitable for further processing
because locating of such events would be unreliable due to unclear
P- and S-wave onsets. Nevertheless, Fig. 12 demonstrates that even
the small events are true local seismic events, even they are on most
of the stations buried in the noise. We believe that further auto-
matic processing leading to a location would reject some of these
event detections due to insufficient number of good quality phase
readings.

Fig. Al also point to the imperfect performance of the PePin
algorithm because it missed two strongest and several other weaker
events in the March 2015 activity (Fig. Al, top diagram in the
figure). The PePin algorithm, which defines an event by associating
the P- and S-wave phases, might have failed due to more complex
waveforms resulting in the false association of the P- and S-wave
phases (Section 3). Let us note that PePin has been routinely used
in a near-real time processing of data from WEBNET.

(i1) A prominent earthquake swarm in July—August 2017 My max
= 3.9 was fairly rapid. Most of the seismic moment released during
2 d from July 26 to 28 (Jakoubkova 2018), more than 1500 M
> 0 events have been listed in the SIL catalogue for these days
(Fig. A2). We concentrated on 1 hr of the swarm activity on July
26, from 11:00 to 12:00 UTC, that included the second strongest
earthquake of the swarm (M m,x = 3.7). This segment contains both
calm and turbulent phase of the swarm (Fig. A2). We performed
detailed manual processing of the continuous seismograms with the
assistance of an experienced expert who found 441 events in total
out of which 281 were reliably located with magnitude above M| >
0. Then we compared the manually obtained events with detections
provided by the SLRNN and with the list of events in SIL catalogue.

There were 56 events in SIL catalogue and 124 event detections
indicated by SLRNN (due to the turbulent nature of the swarm the
detections often included more events). The results are shown in
Figs 13 and A2. All of the manually picked events were correctly
detected by the SLRNN and only one false SLRNN detection was
found.

(iii) In order to prove the SLRNN ability to detect various local
events on the whole Reykjanes Peninsula we selected a time seg-
ment containing scattered background non-swarm seismicity only
(Fig. A3). We selected one week, 2017 June 612, where the seis-
mic events included in the SIL catalogue were scattered in the whole
area covered by the REYKJANET network. The SLRNN detected
183 events, 34 events of which had been listed in the SIL catalogue
and no event present in SIL catalogue was missed. By manual pro-
cessing of the waveforms we were able to confirm reliably 37 new
events which we located and for which we estimated M| ranging
from —0.5 to 1.3 (30 above M= 0). Remaining 112 events were
mostly unfit for location due to insufficient number of clear P- and
S-wave onset picks or they were false alarms (or real events hidden
in ambient noise).

6.3 Application to WEBNET

The WEBNET data are routinely processed by the PePin software
(Fischer 2003) which provides good automatic locations in near-
real time. The events located by PePin are then re-interpreted by
manual processing (adding or refining picks, location by NLLoc
with more precise velocity model, and in case of more significant
activities some more advanced analyses). In order to get good loca-
tion residuals, the PePin software is set up to use only eight nearest
stations around the NK focal zone (the central part of the network)
which contains more than 90 per cent of the total seismic moment
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Figure 14. Detection results for local events during November and December 2018 in the map of West Bohemia/Vogtland. Blue triangles, online WEBNET
stations; cyan triangles, offline WEBNET stations; pink triangles, stations used for near-real time data processing by the PePin algorithm; grey dots, epicentres
of events in time period 1995-2015; red circles, events located manually and by PePin and also detected by SLRNN; yellow circles, events located manually
and detected by SLRNN (not located by PePin); green circles, events located manually and by PePin (not detected by SLRNN). Diameter of circles is scaled

according to local magnitude.

released in the whole seismoactive area since 1991 (Jakoubkova
et al. 2018). This unfortunately may result in omitting events out-
side the main focal zone. During November—December 2018 we
compared in detail all events detected by the SLRNN (running in
a pilot operation) with manual readings and with the PePin results.
In this period the local seismicity was extremely low with maxi-
mum magnitude M., = 1.3. We took into account only events
with magnitude above M| = —0.5, which resulted in 183 ones. The
results of our analysis are summarized in Table 2 and Table 3 and
displayed in Fig. 14. There are 106 events of M > —0.5 success-
fully detected by both SLRNN and PePin (red circles in Fig. 14),
73 events were successfully detected by the SLRNN only (they are
missing in the Pepin catalogue, yellow circles in Fig. 14), and four
events missing in in the SLRNN list were successfully located by
PePin (green circles in Fig. 14). It is worth mentioning that sig-
nificant part of the undetected events by the PePin algorithm are
located outside the main focal zone of Novy Kostel. Tables 2 and
3 provide more detailed statistics including the comparison of the
detection results of the SLRNN with coincidence of six and four
stations. The six-station coincidence, which we found to be an op-
timum for the West Bohemia/Vogtland earthquake-swarm region,
results in omitting four events which were located both manually
and by PePin; all four undetected events have magnitude M| a &
—0.5. If we use four-station coincidence then all manually located
events are successfully detected by the SLRNN but the number of

Table 2. Number of events November—December 2018

Data set Number of events
Manual events 317
SLRNN detections—6 stations 392
coincidence

SLRNN detections—4 stations 840
coincidence

PePin events 238

Table 3. Number of events compared to manual events for magnitude from
My > —0.5 and My > 0, November—December 2018

Manual Subset in Subset in Subset in

events SLRNN-6 SLRNN-4 PePin
My > —0.5 183 179 183 110
My >0 43 43 43 27

event detections increase significantly. An example of one of the
undetected events is given in Fig. A4. It is apparent that such small
events may not be above noise level on sufficient number of stations.

7 DISCUSSION AND CONCLUSIONS

Processing of seismic records is a demanding task even for experts
and interpreting continuous data from dense seismic networks is
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Table 4. Precision and recall calculated for analysed activities (only for those with manually processed events). The number of false positives (FP) is calculated
with respect to a given magnitude threshold (M > 0 or M, > —0.5) of reference manual events. For a lower magnitude threshold the number of FP decreases
and the numbers of both TP and FN increase (compare line 4 and 6). REYKJANET (ii) activity is a piece of an intense swarm period, that is why there are no
FPs and more detected events are often joined in one detection (as can be seen in Table 1). Denotation of data sets (i), (ii) and (iii) corresponds with that in

Table 1. Abbreviation ‘6 sta’ or ‘4 sta’ denotes 6 or 4 station coincidence.

PPV
Data set TP FP FN TPR (recall) (precision)
REYKJANET (i): 2015 Mar 31, M, > 0 51 165 0 1 0.236
REYKJANET (ii), My, > 0 281 0 0 1 1
REYKJANET (iii), My, > 0 184 120 0 1 0.605
WEBNET 6 sta, M, > —0.5 179 213 4 0.978 0.457
WEBNET 4 sta, M, > —0.5 183 657 0 1 0.206
WEBNET 6 sta, M, > 0 43 349 0 1 0.11
WEBNET 4 sta, M, > 0 43 797 0 1 0.051

exhaustive and time-consuming. Therefore, it is desirable to hand
over this job to machines. Automatic algorithms have served to re-
place manpower since many decades ago from triggered recording
to automatic moment tensor solutions in near-real time. Studying
earthquakes with low signal-to-noise ratio or overlapping events is
still beyond the limits of automatic procedures although not negli-
gible for many studies. We propose a seismic event detector based
on ANNS to reduce the amount of data for further processing. The
detector must be sensitive enough to recognize all the weak events
with a manageable number of false alarms. The advantage of our
neural network is the ability to recognize new events based on train-
ing examples (generalization capability) and very fast computation
of the trained network. The weak point is the necessity to have very
good manually prepared training data set. We showed that well-
trained neural network can overcome this shortcoming and that a
neural network trained on manually processed seismograms from
WEBNET could be successfully applied to different local seismic
network.

Following the approach of the interpreters, more stations in the
network must be considered. This is an algorithm we call coinci-
dence and setting up the parameters for coincidence we can lower
the detection threshold at the cost of potentially more false alarms;
or lower the number of false alarms at the cost of omitting weaker
events. The result of such a process is a list of time periods contain-
ing a useful signal, irrespective to the complexity of seismograms.
This way all the multiple and overlapping events remain in consid-
eration for further processing.

The proposed neural network architecture—SLRNN with eight
neurons—proved to be capable to detect local seismic events. Com-
pared to automatic location algorithms based on searching for phase
onsets the completeness achieved by detection is much higher. The
reason is that the location algorithms must find sufficient number of
correctly recognized onsets of seismic phases which is sometimes
a challenging task even for trained experts. Additionally, the most
effective detectors of .S waves (as used among others in PePin) are
based on polarization analysis, which tends to fail for weak events
due to the high frequency content of the waveforms. If the number
of phases found is not enough or they are incorrectly assigned, the
event is usually irretrievably discarded. In case of detection we only
try to recognize earthquake-like signals. This offers advantage for
manual processing in terms there is no important event missing and
the amount of data is reasonably reduced. For automatic location
algorithms the reduction of data could be also beneficial and might
increase their efficiency.

A coincidence of six stations for both networks—WEBNET and
REYKJANET—seems to be optimal. Such configuration ensures
detection of all important events and low completeness magnitude
still preserving the number of false detections reasonable even for
manual processing (Table 4). For further processing of detected
events we recommend to use some amplitude- or power-based cri-
teria to sort the events. We used simply the largest amplitude in
the event period which is obviously not the best criteria. On the
other hand even such an easy operation gives some guidelines. A
weak event can have large amplitudes (for example if there is some
disturbing signal present on some stations), but the strong local
event will never be of small amplitude. This way we can exclude
unimportant or negligible events from further processing by setting
a suitable amplitude threshold.

Application to the REYKJANET data showed very good gener-
alization ability of the neural network. Thanks to the generalization
property of well-trained neural network we can use the same neural
network for different region, or in case of West Bohemia for de-
tection of events from different epicentral zones outside the main
focal zone. We expect our trained neural network to perform simi-
larly when being applied to any seismic activity with the frequency
content similar to that used for training. The only difference in sensi-
tivity is given by the background noise level, so we can expect lower
completeness magnitude for the WEBNET data showing generally
higher signal-to-noise ratio compared to the REYKJANET data. On
the other hand, the proposed architecture could be possibly suitable
for detection of regional or teleseismic events after new training and
change of the input filtering.

In the near future there is a potential to use our neural network
to pre-process data in project ICDP ‘Drilling the Eger Rift’ [more
on https://wuw.icdp-online.org/projects/world/europ
e/eger/ or Dahm ef al. (2013)]. An integral part of this project
is the monitoring of seismic activity in West Bohemia using
shallow boreholes equipped with broad-band seismometers sup-
plemented with 3-D seismic arrays. The expected significantly
larger amount of high-frequency microevents (with local magni-
tudes as low as M| ~ —2) might be successfully detected by our
SLRNN.
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APPENDIX: ADDITIONAL FIGURES

Some more figures demonstrating (i) additional comparisons of
events detected for selected activities that were recorded by
REYKJANET (Figs Al and A2), (ii) the distribution of the back-
ground seismicity on the Reykjanes peninsula (Fig. A3) and (iii) an
example of one of four events undetected by the six-station coinci-
dence for WEBNET (Fig. A4).
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Figure Al. Detailed examination of the SLRNN detection results and the SIL, Antelope and PePin catalogues for mini-swarm of 2015 on the Reykjanes
Peninsula. The diagrams represent the individual catalogues except SLRNN; from top to bottom: SIL, Antelope and PePin. Each column in the individual
diagrams denotes a particular event in the respective catalogue (thus the number of columns in each diagram equals to the number of events in the catalogue).
The events in the SIL and PePin diagrams are ordered according to magnitudes M, given in the SIL and PePin catalogues from the strongest (on the left) to
the weakest one (on the right); the events in the Antelope diagram are sorted according to the origin time. The rows in the diagrams denote events which are
included (green cells)/missing (red cells) in the remaining three catalogues (indicated on the right). The SLRNN diagram is not presented because a total of
217 events are detected by our SLRNN including all the events given in the SIL, Antelope and PePin catalogues. Note that the each catalogue (SIL, Antelope
and PePin) contains some events detected only by ANN and missed in the other two catalogues.
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Figure A2. Comparison of the SLRNN detection results with the SIL and manual REYKJANET catalogue for 1 hr period of a larger 2017 swarm on the
Reykjanes Peninsula. High rate seismicity in the time window of 2017 June 26, 11:00 to 12:00 UT, is examined. The diagram represents a comparison of the
SLRNN results and SIL catalogue with the REYKJANET catalogue (281 My, > 0 events) created manually by an experienced interpreter. For more information
on the diagram structure refer to the caption of Fig. Al. The events are sorted according to the origin time.
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Figure A3. Examination of the SLRNN detections of background seismicity on the Reykjanes Peninsula in the period 2017 June 6-12. All 34 events listed in
the SIL catalogue (green circles) are successfully detected by the SLRNN. Another 37 events (red circles) detected by the SLRNN are located using manual
picks of the P- and S-wave onsets. 112 more event detections indicated by the SLRNN are the events unfit for location due to lack of reliable P- and S-wave
arrival times or false alarms in some cases.
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Figure A4. WEBNET seismograms of the local event (2008 November 14) undetected by SLRNN with the six-station coincidence. Manually estimated
magnitude M = —0.5. Only vertical components of the ground-motion velocity (BP 1-40 Hz applied) are displayed. Stations are sorted by epicentral distance
(top trace corresponds to the nearest station).
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