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Abstract: One of the most interesting extraterrestrial bodies in the Solar System
is Europa, the icy satellite of Jupiter. This icy moon might have a sufficiently
hospitable environment which could be harbouring life in the subsurface ocean
deep under its icy crust. The thesis thoroughly examines the generation process
of one of the surface formations called chaotic terrains. These huge areas of ice
disruptions which uniquely characterize Europa’s surface might play a significant
role in the understanding of the inner structure of the moon. The latest research
assumes the chaotic terrains form above liquid water lenses perched relatively
shallow in the ice shell, however, no numerical simulations have been performed
to confirm this theory. The goal of the thesis is to create a model which would
validate the theory and explain the formation process of the chaotic terrains. The
thesis runs several simulations, and our results suggest these water lenses and the
process in the mantle might play a key role in the chaotic terrains formation.
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Abstrakt: Jedno z nejzajimavéjsich téles slunecni soustavy je Europa, ledovy
mesic Jupiteru. Tento ledovy mésic by mohl mit dostatecné priznivé prostiedi pro
existenci forem zivota ve svém podpovrchovém oceanu hluboko pod ledovou slup-
kou. Tato prace zkouméa proces vzniku povrchovych utvart, které jsou nazyvany
chaotické terény. Tyto obrovské oblasti s narusenou strukturou povrchu, které je-
dinecné charakterizuji povrch Europy, mtzou hrat podstatnou roli v porozumeéni
struktury a procesu uvnitr ledové slupky mésice. Aktualni teorie predpokladaji,
ze chaotické terény vznikaji nad vodnimi rezervoary umisténymi relativné blizko
u povrchu v ledové slupce, nicméné tato hypotéza nebyla zatim ovérena nu-
merickymi simulacemi. Cilem této prace je navrzeni matematického modelu a
spusténi simulaci pro ovéreni této hypotézy. Vysledky prace ukazuji, ze existence
vodnich rezervoarti pod povrchem aspolecné s procesy uvnitt slupky mohou mit
vliv na deformaci povrchu, a tak i vznik chaotickych terént.
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Introduction

It has been almost 30 years since the launch of unmanned spacecraft Galileo,
named after the discoverer of Jupiter’s largest satellites. Although it took 6 years
to enter Jupiter’s orbit, it soon turned out the gains from the mission were going
to be priceless. As the Galileo probe examined Jupiter and its system, many
of its satellites could have been studied exhaustively and more precisely from
the data collected during the flybys. Galileo and Cassini, the other spacecraft
sent to Saturn soon after Galileo, have discovered an exciting world of icy moons
including Europa and Enceladus.

The obtained data indicate that these icy moons harbour huge subsurface
oceans comprised of liquid water. Such finding then naturally raised a question
of what is the source of the energy enabling the existence of the water in the
liquid state under the ice shell. In case of Europa, the main sources of the energy
are the tidal forces of Jupiter which generate enough energy to melt the ice
and create vast water reservoirs that could potentially harbour some kind of life
forms. Observations and findings like these only further stress the importance
of understanding what are the icy moons comprised of and what processes are
running under the ice shell.

As there are several hypotheses how the inner structure of the icy moons
might look like, there is an urge to create a more rigorous mathematical model
which would describe the underlying processes. In this thesis, the aim is to focus
on the modelling of the processes occurring in the ice crust of Europa. One of the
observed formations on the surface is so-called chaotic terrains. The terrains are
characterized by ice disruption of Europa’s surface into isolated plates which are
connected to the rest of plates with a lumpy matrix material. These objects are
unique in the Solar System and are of utmost importance for the understanding of
Europa’s internal processes. The correct model of the chaotic terrains formation
might predict not only what is the inner structure of the icy satellite, but also how
thick the layer of ice is and could improve the precision of the assumptions about
the depth of the subsurface ocean and the overall material distribution beneath
the surface. The chaotic terrains cover around one-quarter of Europa’s surface
and this makes them together with double ridges, the other specific formation on
the surface, probably the most important objects, that might help to clarify the
overall understanding of the icy moon formation and estimate the geological age
of the surface.

The satellite images of plates in the chaotic terrains were thoroughly studied,
and it was found out that they used to change their positions and rotate in the
past. The scientists assumed several models considering melting of the ice shell via
varying mechanisms based on this observation. The thesis aims to investigate the
generation process of the chaotic terrains proposed by Schmidt et al. [2011] who
suggest the chaotic terrains are a result of a four-phase melt-freezing mechanism.

The model by Schmidt et al. [2011] assumes that the formation process begins
with a rising thermal plume from the subsurface ocean which approaches the
eutectic point of the impure brittle ice, and hence, the melting process may
start underneath the surface. The volumetric changes in the ice mantle cause ice
fractures and these then result in the floating blocks of ice. After the thermal



Figure 1: Europa’s surface concealing a deep ocean of liquid water
Image courtesy of NASA /JPL/Ted Stryk

plume diminishes below this region, the surface starts to refreeze, which causes
an increase of volume in the ice shell. In the end, this mechanism leads to the
topographical changes on the Europa’s surface, and the ice blocks are either
standing above or below the surrounding terrain.

The thesis aims to validate this hypothesis by modelling and simulating the
ice failure within the icy crust of the Europa’s surface. In order to perform
these simulations, a set numerical methods is used to model several phenomena
that are known from other geophysical applications. Some of these phenomena
were numerically modelled and tested by the geophysics community, therefore the
thesis runs several benchmarks which should help to calibrate the final model.

The structure of the thesis is as follows: The first chapter is devoted to the
motivation and literature review considering the space exploration and geophys-
ical research. The second chapter introduces the mathematical formulation of
the problem which this thesis aims to solve. In addition, it describes the math-
ematical framework and numerical methods used in the thesis to solve the final
problem. The third chapter focuses on the individual features of numerical bench-
marks and presents the results which are made in order to validate the model and
numerical techniques used in the final model application. The fourth chapter is
devoted to the final application simulation and presents the outcome of the thesis.
The thesis is concluded by a discussion of the results.



1. Literature review

1.1 Motivation

Voyager probe images showed the first detailed recognition of the isolated patches
that have been disrupted. The first name for the objects on the Europa’s surface
was “mottled terrain” which changed later and became dubbed “lenticulae” due to
their shape. The initial ideas about the formation process of the uneven terrains
supposed they were a result of a tectonic activity which was accompanied by the
rise of the dark brown material from below. [Lucchitta and Soderblom, 1982]

This idea was alternated by Malin and Pieri [1986] who thought the mottled
terrain is much older and has been subject to an exogenic change caused by
an impact. Nevertheless, scientists came up with many more hypotheses for the
Europa’s surface features formation process soon after the Galileo probe collected
high-quality images of the surface.

The terrains became quickly dubbed chaotic terrains due to their irregular
shape and unclear formation process. Collins and Nimmo [2009] summarize the
overview of formation hypotheses and present a synthesis of observations regard-
ing the characteristics of the chaotic terrains, thus are followed in this chapter.

One of the most studied chaotic terrains on Europa is Conamara Chaos. This
chaotic terrain has been well studied due to high-resolution images and became
an archetype chaotic terrain due to its easily recognizable plates of ice which
moved around, rotated, and tilted and had a key role in showing the evidence for
a liquid subsurface ocean. This vast region of isolated plates made out of ice in
an irregular surrounding lumpy matrix material is shown in detail in the Fig. 1.1
and a larger scale view on the ice blocks is depicted in the Fig. 1.2.

Figure 1.1: Detailed view of the ice blocks structure in Conamara Chaos
Image courtesy of NASA/JPL/University of Arizona



Figure 1.2: Europa’s well known chaotic terrain Conamara Chaos
Image courtesy of NASA /JPL/University of Arizona

Williams and Greeley [1998] in their analysis of shadows inferred that the
plates in the Conamara Chaos are on average standing approximately 40 to 150
meters above the surrounding surface. In contrast to this observation, the other
chaotic terrains such as e.g. Thera Macula turned out to have sunken topography
even up to 800 meters below the surrounding surface.

This led the researchers to propose several different formation processes based
on various mechanisms. Collins and Nimmo [2009] present five distinct theories,
and the thesis follows their description.

1.2 Chaotic terrains formation hypotheses

The first hypothesis follows the mechanisms known from Earth which assumes
that the chaotic terrains emerge as a result of melting through the icy shell.
However, this theory has a flaw - double ridges, the other surface formation,
would melt faster and thus flatten the surface due to the thermal conduction
through the ice and radiation of the energy into space. [Goodman et al., 2004]
Moreover, the energy that needs to be delivered to the surface in order to produce
and sustain melt of the icy shell would be too big. [Collins and Nimmo, 2009]
The second hypothesis suggests the chaotic terrains might be the result of di-
apirism - a geological process known from Earth, during which less dense material
rises through buoyant forces. This process seems to plausibly explain some of the
chaotic terrains with dome structure such as Murias Chaos and Thera Macula
as shown e.g. by [Mével and Mercier, 2007]. Nevertheless, while this mechanism



might explain some of the chaotic terrains, the problem is that it requires a similar
size of the diapirs as it depends on the thickness of the icy shell. This contradicts
the variety of sizes of individual chaotic terrains, and thus does not offer a general
process which would explain the formation of other chaotic terrains. [Collins and
Nimmo, 2009]

The third hypothesis follows the possibility of brine mobilization. This ap-
proach assumes the composition of materials contained in the ice shell might
significantly lower the ice viscosity if the shell is heated. This could allow the
percolation of liquids through the layer if the added materials decreased the melt-
ing point of the ice composition. [Collins and Nimmo, 2009]

The fourth hypothesis relies on the injection of sills (i.e. the tabular intrusions
in the geological material), directly from the ocean. This approach alone would be
hard for the sills to propagate through the cracks in the ice without any additional
energy. It was shown by Manga and Wang [2007] that the water could form sills
below the surface within the ice shell. This model has not been, however, studied
that rigorously as the other models as it is not as promising as the previous
models. [Collins and Nimmo, 2009

The last hypothesis points on the possibility of an exogenic impact which could
penetrate the surface. This option was studied by Cox et al. [2005], who suggested
the large scale chaotic terrains might be the result of an impact. However, this
theory is contradicted by other crater examples on Europa’s surface which did
not cause the formation of the chaotic terrain and are surrounded by secondary
craters and concentric fractures similarly to other bodies in the Solar System.
[Collins and Nimmo, 2009

Table 1.1 summarizes the hypotheses as presented in Collins and Nimmo [2009]
and covers the information about the chaotic terrains, the advantages, and the
disadvantages of particular hypotheses. The table is split to hard observational
constraints that need to be satisfied by the model necessarily, and soft constraints
that might be subject to misinterpretation or misclassification of the features.

Observational Constraint Melt Brine Sill
(H = hard constraint; S = soft constraint) Through Diapirism Mobilization Injection Impact

HI: Formation of matrix material
H2: Plates locally higher than matrix
H3: Plates tilt. rotate, and translate
H4: Nature of chaotic terrain margins
HS5: Matrix topographically high

H6: Dark hydrated saltsfacid

H7: Diameter range ~1-1000 km
H8: Concentrated near the equator

b NS S NN
LA H K HKK
L NS 2 N

S1: Associated pits and domes

52: Preexisting structures preserved

§3: Plate size >1 km

S4: Ridges preferentially preserved

§5: Matrix material forms viscous flows
S6: Associated domes ~1 km high

§7: Chaos regions grow by merging
S8: Matrix formation long-lived?

X¥E KUK K

A LR N AT LN
XK K¥XK KK

LA IS AN

LR UK

Symbols: " = This model naturally explains this observation. # = Special, but plausible, circumstances may be required to produce
this observation from this model. ¥ = This model does not plausibly explain this observation.

Table 1.1: Comparison of hypotheses for chaotic terrains formation
Source: Collins and Nimmo [2009]



The authors of the paper summarizing the hypotheses favourize the melting
through the icy shell and brine mobilization as these mechanisms are able to fulfill
the hard observational constraints. Nevertheless, some of the soft constraints are
not plausible or could be acceptable only in special cases. These flaws of the
presented five mechanisms eventually led Schmidt et al. [2011] to the four-phase
water lenses model.

Schmidt et al. [2011] mention that the melt-through of the ice shell is thermo-
dynamically improbable, and the buoyancy of material rising in diapirs is not big
enough to create the chaos heights. The motivation for their hypothesis comes
from the subglacial volcanoes on Earth and analysis of data from Europa. Their
idea is to model the formation of the chaotic terrains by supposing the existence
of subsurface water lens-shaped lake in the ice shell.

Their hypothesis focuses on explaining the Conamara Chaos and Thera Mac-
ula formation where the former is raised above the surface whereas the latter is
sunken below the surface. Thera Macula has a special role as the researchers claim
the area is actively resurfacing and thus the formation process has not ended yet.
A detailed view of Thera Macula is depicted in Fig. 1.3 with edited colours where
the purple end of the colour range depicts sunken topography and the red end of
the colour range depicts the raised topography. The schema depicting the whole
process for the proposed four-phase “lens-collapse model” is available in Fig. 1.4.

Figure 1.3: The sunken topography of Thera Macula chaotic terrain
Image courtesy of NASA/JPL, Source: Schmidt et al. [2011]
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Figure 1.4: The four-phase “lens-collapse model” schema
Source: Schmidt et al. [2011]

The process starts with a rising thermal plume from the subsurface ocean. As
the plume reaches the eutectic point of the impure ice (i.e. the material starts to
melt due to the presence of salts), the ice starts to melt and consequently creates
a subsurface lake. The overall volume in the region diminishes due to the melting
process which causes a tension on the surrounding material.

The increasing pressure in the material results in cracking of the ice layer
above the water lens. The cracks create floating blocks of ice that might move
and rotate. In this phase, these floating blocks are sunken below the surrounding
topography due to the volumetric changes in the region.

In the next phase, as the thermal plume starts to diminish, the subsurface
lake gradually cools down, which eventually leads to refreezing of the perched
water lens. As long as the subsurface area refreezes, the floating ice blocks are
raising upwards and pushed by the increasing volume in the region.

The last phase of the model assumes that the blocks are standing above the
surrounding surface and form the regions of ice blocks refreezed into fully frozen
surface. This process suggests that Conamara Chaos is already a result of the
forming process whereas chaos terrains such as Thera Macula are still actively
forming above a subsurface lake under the influence of a rising thermal plume.
[Schmidt et al., 2011]



2. Theoretical part

The aim of this chapter is to provide a theoretical framework for the mathematical
problem solved in this thesis. The chaotic terrains formation is a key process in
the understanding of the processes in the Europa’s icy shell, and thus the thesis
follows the four-phase lens collapse hypothesis suggested by Schmidt et al. [2011],
which was introduced in chapter 1. The numerical implementation of the model
faces several obstacles and therefore this chapter aims to provide the necessary
description of mathematical relationships and numerical tools used in the thesis.

2.1 Problem setup

2.1.1 Governing equations

The goal of the thesis is to present a mathematical model which is able to recon-
struct the processes in Europa’s ice shell leading to a chaotic terrain formation.
The chosen setup focuses on the formation of the sunken chaotic terrain which
means that the model assumes volumetric decrease caused by the melting in the
subsurface area. The mathematical model is given by the following governing
equations

pice - pwater

V. = e — Puater (2.1)
picepwater

—Vp+V -0+ picci =0, (2.2)
aeH . .

8§ +7-Ve =€, (2.3)

where ¥ is the velocity, pice = 920kg - m™ is the density of ice and puater =

1000kg-m~3 is the density of water, ~ is the melt production rate, p is the pressure,
o is the deviatoric part of the Cauchy stress tensor 7, g is the gravitational
acceleration, €, is the plastic strain, €, is the plastic strain rate, and throughout
the thesis all tensors A with the superscript (-)/! are second invariants of the

tensors defined as A/l = ,/%A -

The first equation (Eq. 2.1) in the solved system of partial differential equa-
tions is the continuity equation which models an incompressible fluid in the do-
main 2 with the feature of volumetric change due to the melting of the material
in the molten region corresponding to the water lens. The reasoning behind the
melt production term in the continuity equation follows from the model used in
Kalousova et al. [2016].

The second equation (Eq. 2.2) is the balance of momentum where the devia-
toric part of the Cauchy stress tensor is defined as

O = 20cff€ = 21y€y = 21p€p, (2.4)

where 7, is the viscous part of viscosity, 7, is the plastic part of viscosity, ness
is the effective viscosity, € is the strain rate defined as € = (V7 + (V0)T) and
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consists of viscous €, and plastic part €,:
€=¢€,+ €. (2.5)

The relationship for the effective viscosity follows from the Eqs. (2.4) and (2.5)

Nepf = (i + i>_1 : (2.6)

T Tp

The viscous part of the effective viscosity is dependent on the temperature field
T and therefore follows the exponential form from Showman and Han [2004]

1o(T) = noe™ : (2.7)

where Q = 5 - 10*J - mol ™" is the activation energy for the creep process, R =
8.314J - K~'-mol™" is the gas constant, and Ty = 270K is the reference temper-
ature which corresponds to the viscosity parameter 1y = 10*®*Pqa - s. The plastic
part of the effective viscosity is defined as

. UY(p> C, ¢)

Up—T,

(2.8)

which is dependent on the yield stress oy. oy is a function of pressure p, cohesion
C' and the angle of internal friction ¢ described in more detail in section 2.2.4.

The last equation of the system (Eq. 2.3) is the plastic strain advection
equation which yields the second invariant of plastic strain rate integrated along
the material trajectory, and follows Maierova [2012] and Di Pietro et al. [2006].

The final model does not involve the heat transfer equation for the sake of
simplicity and assumes the temperature field T constant in time, however, several
benchmarks done in the thesis substitute the plastic strain advection equation
(2.3) for the heat transfer equation in the following form

ar
o T VT = V2T, (2.9)

where T is the temperature and ¢ is the time.

2.1.2 Problem geometry

The governing equations are solved in the domain 2 which is [ = 60km wide and
h = 30km high and includes a partially molten region as shown in the Fig. 2.1
corresponding to the subsurface lake in the four-phase model by Schmidt et al.
[2011]. The partially molten region is not distinguished as a special subset of {2
because the transition between the partially molten region and the rest of the
domain €2 is smooth.

11
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Figure 2.1: A schema of the problem geometry for the thermal convection bench-
mark

The figure also depicts the boundary conditions that hold at the boundary of
the Q domain I' = 02 and thus finish the problem specification. There is a free
surface boundary condition on the top boundary I'y which is defined by o -7 = 0,
where 77 is the normal vector to the boundary oriented outwards from the domain
Q. On the remaining boundaries I" \ I'y, there is a free-slip condition fulfilling
no material inflow at the boundaries - 77 = 0 and no friction at the boundaries
(o - 1) = 0, where the subscript ¢ means the tangent component of resulting
traction o -7i. Last but not least, the model assumes no outflow and inflow at the
boundaries, i.e. there is Neumann boundary condition prescribed as Ve!! -7 = 0
on I

The spatial distribution of the melt production function v follows the Gaussian
functional form definition

Y(w, 2) = noe~ () = (552 (2.10)

where 7o = 1071? is the amplitude parameter, x and z are the spatial coordinates
(horizontal, vertical), zo = 30000km and zo = 23800km are the coordinates of the
partially molten region centre, Az = 5500km and Az = 3200km are parameters
influencing the size of the Gaussian peak in x and z direction, respectively. The
partially molten region is also modified by the prescribed temperature field 7'
where the temperature field reaches Tycgion = 230K whereas out of the region
the temperature grows linearly with the depth from 7}, = 100K at the top
boundary to Ti,q, = 270K at the bottom boundary. The temperature field, melt
production field, and the values of the parameters correspond to the setup in
Kalousova et al. [2016].

The melting rate v of the material and temperature 7" are both prescribed
constant in time and are depicted in the Fig. 2.2.

12
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Figure 2.2: The scalar fields of melt production v (above) and temperature T
(below)

2.2 Mathematical framework

The aim of this section is to provide necessary mathematical background for the
derivation of the governing equations (2.1),(2.2),(2.3) for the final problem and
also for the benchmarks utilizing the heat transfer equation (2.9) in the thermal
convection setup.

2.2.1 Fundamental balance laws of conservation

This subsection provides the balance laws in the form in which are used in geo-
physical applications. The balance laws are partial differential equations which
describe the thermodynamical and mechanical interactions in the continuum me-
chanics. Their solution provides the time evolution of the spatially defined quan-
tities of interest.

In order to derive them, two vector calculus results are needed. The thesis
follows Matyska [2005] and Martinec [2003] both in the formulation of these
results and the consequent balance laws derivation.

First, let us introduce modified Gauss divergence theorem. Consider a mate-
rial volume §2(¢) with a boundary I'(¢) = 0€2(¢) intersected by a moving singular

13



surface X(t) (splitting the domain (2, and thus generating the interface) across
which a vector valued function @ has a jump in values, then the Gauss theorem
is expressed in the formula

/ G-ids = v-adv + [ [d]- #ds, (2.11)
L(0)\2(t) Q(E\X(2) (t)
where @ is an arbitrary continuously differentiable vector valued function (the
relationship holds also for tensors) and [@] = @™ — @~ is a jump in the value
across the surface X(¢) obtained by subtracting the value on the negative side
from the value on the positive side.

Consequently, the Reynolds transport theorem for a scalar quantity f is writ-
ten as

D of . S o
Dt Joio fdV = /Q(t - (E +V- (fv)) AV + /Z(t) If (0 —w)] - ndS, (2.12)
where 2 is the material time derivative operator defined as £ := %—I— (v-V), v
is the particle velocity, 0 is the velocity of the interface which may be, in general,
different from the particle velocity. f and ¢ are required to be continuously
differentiable at €(¢) \ 3(¢). [Matyska, 2005]
The first balance law, the balance of mass, can be written as

D

dV =0, 2.13
Dt Q(t) P ( )

since there is no mass flow through the boundary. If we substitute the Reynolds
transport theorem (2.12) into Eq. (2.13), we obtain

Fros (o =¥ 0m)av s [ 17 —)-as =0, 21

%(t)

which holds for any arbitrary volume €(t) (defined by its boundary I'(¢)), hence
both integrands must be equal to zero locally

dp .
E—I—V (p0) =0 in Q(t) \ X(1), (2.15)
[o(0 = w)] -7 in Q(F) \ X(£). (2.16)

If we use the result of Eq. (2.15) again in the Reynolds transport theorem
Eq. (2.12), we obtain a useful formula

D o) )
Dt Q()pde Q(t)\z(t)< ot Vo ( fU>dV—|-/ [pf (G — )] - 7dS =
_ af
QA\E(1) ( at+'0” Vf)‘““r(f( )
/ [[pf v — -ndS =
_ D_f o
B ﬂ(t)\Z(t)p Dt av + /Z(t)[[pf (U — )] - ndS.

(2.17)
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The second balance law is the balance of linear momentum which represents
the balance between the change of momentum (left-hand side of the equation)
and acting forces (right-hand side of the equation) including the gravity, Coriolis,
and centrifugal forces, and the forces corresponding to the surface tractions. The
other body forces except the named ones are neglected. This balance law has the
following form

D
= [ ppav = [ pgav -2 [ psxdav
Dt /Q(t) Py Q(t) P9 Q(t) puxy

- pd X (W x Z)dV + T - 1dS,
Q(t) r(t)

(2.18)

where ¢ is the gravity acceleration, & is the angular frequency of the planet’s rota-
tion, Z is the position vector, and x denotes the vector product. The application
of Eq. (2.17) and Gauss theorem (2.11) on the Eq. (2.18) gets

—

Dv
/Q s (p—D T PG 20 X T pd X (I X T) T)

0(V — W) — 7] - 1dS = 0.
+ Z(t)[[,ov(v w)—T1] -7

(2.19)

The local principle used in case of balance of mass can be also applied to the Eq.
(2.19)

D—)
pD—;’:pg—zpwxﬁ—pwx (@ x @)+ V-7 in Q@) \ 2(t), (2.20)

[pi(7 — @) — 7] - 7t = 0 in B(2). (2.21)

The third balance law is the balance of angular momentum which can be
obtained by taking vector product of the position vector on all integrands in the
balance of linear momentum equation (2.18)

D
— T X *dV:/ T X *dV—Q/ T X (pid x 0)dV
Dt Q(t)x pe Q(t)x P Q(t)x (pid > 0)

= Jow T X (pid x (W x T))dV + /F(t) Zx (T-1)dS.

(2.22)

Using the identitiesVZ = I, where I is an identity matrix, and [Z] = 0, and
the Egs. (2.11), (2.17), (2.22) gives us

—

Dy
— o — 2 — — — — 2\ A dv
/Q(t)\Z‘,(t) T X ('O_Dt PG+ 2p0 X U+ pid X (W x &) =V T)

_ ]I>deV+/ Z x [pi(@ — @) — 7] - 1dS = 0,
Q)\X(t) X(t) [[,0 ( ) ]]

(2.23)

where x is the double product consisting of vector and scalar products here
defined as IxT := >k €ijk05Thi, Oj1 is the Kronecker d-symbol and ey, is the
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Levi-Civita permutation symbol. Due to the local principle in Egs. (2.20) and
(2.21), we obtain from the Eq. (2.23)

IxT=0 <= 7=17", (2.24)
where 7' stands for transposition. This means the implication of the balance of
angular momentum is that the tensor 7 is symmetric.

The last balance law we are interested in in order to derive the governing
equations is the balance of energy obtained by balancing the rate of work corre-
sponding to the surface and body forces with the other sources of energy

D

1
= TV = [ ToreadS+ [ pgdav
Dt Q(t)(pe pu- ) F(t)v Tonas Q(t) pg-v

2
_2 — — A —»dv - — — — A —»dv
o) p(J x U) - v o P x (0 X X)) -0
— q-ndS + Hav,
(1) Q(t)
(2.25)

where e is the internal energy per unit mass, ¢'is the heat flow, and H denotes the
heat sources per unit volume. The Coriolis forces cross out as the scalar product
is zero due to perpendicularity of v and & x ¢. The first integral on the right
hand side of the previous equation can be rewritten as

/ -1 fidS = G (V)£ Vi rdV + [ [7-7]-7dS,  (2.26)
() QH)\2(t) (1)

where : denotes the double scalar product. If we substitute the local form of
balance of linear momentum Eq. (2.20 into one of the integrals in Eq. 2.27), the
following is obtained

1 D
/ 7 (V- T)dV :/ S (T aV
2A(\2(0) 2(\2(0) (2.27)
— G- vdV / Jx (J x X)) -vdV.
/Q(t) pg - vdV + o P X (U X Z)) -0
If we substitute Egs. (2.26) and (2.27) back to (2.25), we obtain
(pe + it~ B)dV / LoD 5 mav - vdV
_ e —0U - U — —p—(vU - v . .
Dt Jaw) P 2'0 QH)\2(t) 2'0Dt Q(t) pg-v
+/ (@ % (& x 7)) - 5dV + V7 rdV
Q() QH)\2(t) (2.28)

iS4 [ pgeadV —2 [ p(@x @) 5dv
—I—/Z(t)[[v 7] - ndS + Q(t),og U Q(t)p(wxv) U

- Sx (@x@)-maV— [ g-ads+ [ HV.
o P X (& X T)) -0 F(t)q ndS + o

Now, if Reynolds transport theorem (2.12) is used on [ounse LpE (7 - v)av,
Gauss theorem (2.11) is applied to [ ¢+ 7idS, and (2.17) to L Jaq pedV, we

16



get locally holding

pg—: V4TV Hin Q) \ 2(0), (2.29)
[q] -7 = [7- 7] - 7 — [(pe + %,027- N — )] -7 S0, (2.30)

Next, the aim is to obtain the heat equation in the form (2.9) as used in
several benchmarks in this thesis. Thus we assume the rheological relationship
for a classical viscous heat-conducting fluid as follows

T=—-pl+ a(ﬁ),}ji_r)% o (V) =0, (2.31)

where p is the thermodynamic pressure. Further, we employ the relationship
known as Fourier law of heat conduction for the heat flow ¢

§=—kVT, (2.32)

where k is the thermal conductivity. Now, we utilize the Gibbs relation
T— =p— +pV -0, (2.33)

where s is the entropy per unit mass. By substituting the Eqs. (2.31),(2.32),(2.33)
in the local principle for balance of energy (2.29) and (2.30), we obtain

D
pTFj = V- (k-VT)+7:Vi+Hin Q) \ 2(), (2.34)

[kVT] -7 = —[5- 7] - il + [(pe + %pﬁ- 7)(@ — )] - 7 in 2(2). (2.35)

The thesis skips the transition from the balance of energy to the heat equation
as it requires introducing the whole thermodynamical framework and thus the
reader is encouraged to go for more detail into the literature. The derivation is
done e.g. in Matyska [2005] and leads to the heat equation in the following form
(assuming the dominance of the hydrostatic pressure)

oT
Pep gy = V- (kVT) — pc,0 - VT — pv,oTg+ o : VU + H in Q(t) \ £(t), (2.36)

where ¢, is the isobaric specific heat, o is the thermal expansion coefficient, v,
is the radial component of velocity and ¢ is now defined as the magnitude of
the gravity acceleration g = |g| including the acceleration corresponding to the
centrifugal forces. In order to get the balance equations in the form of governing
equations, several assumptions have to be made which is discussed in the next
subsection.

2.2.2 Boussinesq approximation

This subsection continues following Matyska [2005], who presents a derivation of
the governing equations for thermal convection in the form that is used in case
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of the governing equations (2.1) and (2.2), and the heat transfer equation (2.9)
which is a governing equation for some of the benchmarks in the thesis.

This subsection reformulates the fundamental laws of conservation and ap-
plies Boussinesq approximation that linearizes the laws of conservation near the
reference hydrostatic state v = 0. The reference pressure po, reference density po,
and reference gravity acceleration gy are linked via the local form of the balance
of momentum (2.20) assuming ¢ = 0 and utilizing the rheological relationship
(2.31)

Vpo = pogo — poid X (& X T). (2.37)

If we linearize the state equation, which is usually in the form

p=pp,T), (2.38)

and neglect density changes dependent on the dynamic pressure (i.e. deviations
from the reference hydrostatic state) m = p — po, we obtain

p=po(l—a(l—"1Tp)). (2.39)

This approximation hides the influence of hydrostatic pressure pg and the refer-
ence temperature 7 into a spatial dependence of py which is assumed constant
in time.

For the continuity equation (2.15), we neglect the thermal expansion (the
dependence of p on T'— T} in (2.39)) as a part of Boussinesq approximation and
obtain the continuity equation

V - (pot) = 0. (2.40)

Similarly, the balance of linear momentum (2.20) gets the following form after
we use the Egs. (2.37), (2.39) and the rheological relationship (2.31)

Dy

pD—t:—Vﬂ'—FV'U—I—pQO&(T—TQ)JJ)X(ﬁXf)

(2.41)
—2pi X T+ po(§ — g0) — poc(T —To)(G — go) — pocr(T" — To)go-

If we omit the quadratic term poa (T — 76)(g — go), the Coriolis force and the
thermal expansion on the left-hand side, we get
s L Dv
~Vr+ V-0 — poa(T —To)go + po(§ — g0) = v (2.42)

The heat equation is linearized by assuming the density independent on the
thermal expansion, thus obtaining

or
Py = V- (kVT) — pocyv - VT — pov.aT'go + o : VU + Q, (2.43)

where @) are heat sources (including internal heating and the heat caused by a
decay of radioactive isotopes). This completes the set of Eqgs. (2.40),(2.42), and
(2.43) that are called the compressible extended Boussinesq approximation of the
balance laws of conservation.
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Moreover, if we assume the incompressibility, Eq. (2.40) reduces to
V-7=0. (2.44)
Further, if we assume the fluid is Newtonian,
o = 2né =n(Vi+ (Vo)T), (2.45)

where 7 is a constant dynamic viscosity and € is the strain rate. Next, if we omit
the self-gravitation term po(g — go) in (2.42), which is generally about one order
lower than the buoyancy term poa (T — Tp)go, then (2.42) reduces to

Dv
Dt
Finally, we neglect the dissipation o : Vo and adiabatic heating term pov,aT'gq in
the heat equation, assume po, go, a, ¢, and k constant, and suppose (@ is spatially
constant. Then we obtain the following equation

oT Q

— T = T)+ — 2.4
oy +v-V V- (kV )+,Oocp’ (2.47)

po— = =V + V20 — poa(T — Tp)Go. (2.46)

where k = —0 is the thermal diffusivity. This completes the set of Eqs. (2.44),

(2.46), and (2 47) that are called the classical Boussinesq approximation of the
balance laws of conservation.

2.2.3 Nondimensionalisation

The Boussinesq approximation presented in the previous subsection is rescaled in
this subsection to nondimensional units. This transformation means, the system
of equations does not depend on the particular scale of the quantities, it is rather
characterized by dimensionless numbers which characterize the whole system, e.g.
Rayleigh, Prandtl, or Reynolds number.

It is useful to define transformation rules between the dimensional and nondi-
mensional form for the basic quantities. Mostly, the favourable choice is to choose
some of the SI base units. We follow Matyska [2005] and choose the following
transformation rules

2
f:f’D,t:t'D—,ﬁ:ﬁ'H,p pogo DY, 7r—77—7rT Tt—I—T'Q:m—T
K D D?

(2.48)
where all quantities with prime symbol are dimensionless, Z is the position vector,
D is the characteristic dimension of the system, 7y is the reference viscosity, go is
the magnitude of go, €, is a unit vector in the vertical direction, and AT = T; —T,
is the temperature contrast across the layer with 7; at the top and T, at the
bottom. Note, that the pressure p is scaled differently than the dynamic pressure
.

The nondimensionalisation of the classical Boussinesq approximation equa-
tions (2.44),(2.46), and (2.47) is done for continuity trivially as follows

Vi =0. (2.49)
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For the balance of linear momentum, it is a bit trickier

por” DU __ 1ot
D3 Dt D3

Vir' + %—SH'V'QU — poaAgT(T" — Tp)é. (2.50)

If the equation is multiplied by %, we obtain

By = VT H VP~ Ra(I' ~ Ty)é, (2.51)

where the dimensionless number Pr = ;Z)—OH is the Prandt]l number that describes

the ratio of momentum diffusivity to thermal diffusivity and Ra = ”00‘900%[)3 is

the Rayleigh number that describes the ratio of time scales for thermal transport
via diffusion to thermal transport via convection. For the heat equation, the
nondimensionalisation is straightforward

o1’

ot

It remains to demonstrate, the Prandtl number is very big and therefore the

inertia forces (the left-hand side of the balance of linear momentum equation

(2.51)) can be neglected. If we take the values of the setup from thermal con-

vection benchmark by Blankenbach et al. [1989] (specifically case 1a), the values

obtained are Pr = 2.5 x 10?5, Ra = 10* which makes the approximation clear.

The other benchmarks run in this thesis fulfill this condition as well. The external

sources of heat () are not assumed in any of the benchmarks in the thesis, thus
the final set of nondimensional equations is

+9-V'T =V*T + Q. (2.52)

V-7 =0, (2.53)

'V — V'n' + Ra(T' — Ty)é, = 0, (2.54)
or’

57+ - V'T =V"*T. (2.55)

This set of equations is used in the benchmarks in this thesis in section 3.1 and 3.3.
It might be modified for the benchmarks with the free surface which corresponds
to the section 3.2. The hydrostatic pressure, which is the reference pressure py,
cannot be subtracted due to the stability of the numerical solution. In this case,
we can use Vr = Vp — pogo instead, where the centrifugal term from (2.37) is
neglected. Moreover, different scaling is used for p than for 7, and hence we get
the equation (2.54) in the following form

Ra Ra .

0V — aATv’p’ + Ra(T' — T})€, — ——¢é, = 0. (2.56)

2.2.4 Viscoplastic rheology and strain weakening

The benchmark in section 3.4 and the final application to Europa in section 4.1
follow a non-linear viscoplastic rheology in order to describe a response of the
crustal material to stress. The thesis follows the description and setup done by
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Maierova [2012] in order to benchmark the viscoplastic deformation and strain
weakening to previously existing results.

The plasticity is an approximate way of modelling brittle failure that is present
at low temperature and high strain rates. This is the case for the chaotic terrains
in the formation process. Both the plastic and viscous deformation are irre-
versible, however, the plastic deformation occurs only if the overall stress reaches
a point called yield stress oy whereas the viscous deformation is always present
in the model in this thesis.

The rheological relationship follows

o = 2776ffé, (257)

where 7y is comprised of its viscous 7, and plastic part 7, as in Eq. (2.6 where
the latter might be defined from the relation that holds in the plastic regime

o
p = ﬁ (2.58)
where € = (Vi + (V)7) is the strain rate. The yield stress oy is, however, not
independent and can be chosen based on empirical research which is summarized
e.g. in Ranalli [1995]. The yield criterion used in this thesis follows the choice from
Maierové [2012] who chose Drucker-Prager criterion used in Earth’s applications
for the modelling of the rock behaviour, in the following form

oy = psin ¢ + C cos ¢, (2.59)

where p is the pressure, C' is the Cohesion, ¢ is the angle of internal friction. The
derivation of the Drucker-Prager criterion can be done from the Mohr-Coulomb
criterion which describes the given plane where the material yields from the per-
spective of normal stress o, and shear stress o; by the following relationship

o = optan¢g + C. (2.60)

The detailed derivation of Eq. (2.59) from the Mohr-Coulomb criterion (2.60)
can be found in Maierova [2012].

In case of dry rocks, the angle of internal friction ¢ is around 30°[Maierova,
2012], which is also the choice for the final application to Europa in this thesis.
The benchmark in chapter 3.4 is run for the angles 10°, 20°, and 30°.

There is a numerical issue regarding the singular value of oy in case of g, <
0 which is treated in the literature modelling the shear bands in geodynamic
numerical simulations (e.g. [Lemiale et al., 2008], [Kaus, 2010]) by adding the
cutoff term o,,;, which ensures the yield stress oy cannot fall below the value

oy = max(Oyn, psin ¢ + C cos ). (2.61)

This mode does not fully correspond to the experimentally observed relationship,
which exhibits steeper slope in the domain where ¢, < 0, and more flattened
slope otherwise [Ranalli, 1995]. Moreover, the stress at yield seems to behave
more complexly which is different depending on whether the friction starts from
static or dynamic state. [Maierova, 2012]

A solution to handle these inconsistencies at long time scales lies in adding an
important mechanism observed experimentally by Bos and Spiers [2002] called
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strain weakening. This phenomenon proved reasonable for the crustal deforma-
tion at long time scales and it is specified by a decrease of friction at regions
where the local accumulation of strain caused change in the material characteris-
tics. The approximation of the strain weakening process can be done by assuming
the cohesion (or angle of internal friction) decreasing linearly with the plastic part
of the strain and having cutoff values Cy and C, with Cy > Cy, as was done e.g.
in [Gerya, 2010]

C() if GZI,I S €0
C ={Ch+ (Coo — Cp) (j{ijg) if €0 < €l < e (2.62)
Cw if e}I,I > oo

The final setup (application to Europa in section 4.1) assumes that the effective
viscosity is comprised of both plastic and viscous part as was stated in Eq. (2.6).
This requires solving the advection equation (2.3) for plastic strain €, as the
strain weakening occurs due to the plastic part of the strain, which is why the
thesis specifies in Eq. (2.62) that the plastic part of the strain is used.

2.2.5 Weak formulation

The weak formulation of the governing equations is defined assuming the test
functions from the following functional spaces as in Taylor and Hood [1973],
ensuring the existence of derivatives and the possibility of setting up Taylor-Hood
finite elements triangulation

V= {7 € C(QY)|¥ is a piecewise quadratic function in Q}, (2.63)
P:={pe C(Q)]|p is a piecewise linear function in Q}, (2.64)
T :={t € C(Q)|t is a piecewise quadratic function in Q} (2.65)

where d is the number of spatial dimensions.

The test function testing for the pressure field is denoted £ € P, the test
function testing for the velocity is denoted 1/7 € V where these two spaces are
forming a mixed element space in the finite element numerical implementation.
The test function for the temperature in the heat equation is denoted ¢ € T'.

The weak formulation of the continuity equation is obtained simply by taking
the integral over the domain

/Q(V -0)€dV = 0. (2.66)

The balance of momentum equation is obtained similarly by using integration by
parts method

/Q (=Vp +V -0 + Ra(T — Ty)&.)bdV =0, (2.67)
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oo VYAV + [y 00 - TdS + Jo Ra(T — Ty)ébdV =0,
N’

=0

(2.68)
obtaining the final result

/Qp(v B)dV — /Qa VPV + /Q Ra(T — To)&.4dV = 0. (2.69)

The weak formulation for heat equation is obtained in the same way as the
balance of momentum equation utilizing the integration by parts method

or
/Q S+ T VTV = /Q ATV, (2.70)
oT
A ot 5 VTedV = [ 7. VTo— [ VT VedV. 2.71
| G+ VTedv /(99%@ [VT-veav, @)

resulting in the final form

ar
9 __[vr. : 9.79
/Qatgoﬂ VT odV /Qv VdV. (2.72)

2.3 Arbitrary Lagrangian Eulerian Method

2.3.1 DMotivation

This subsection aims to motivate the use of the Arbitrary Lagrangian Eulerian
(ALE) method. In mathematical models used in continuum mechanics, the prob-
lem is usually described either in referential or in actual configuration. The former
is called the Lagrangian specification or Lagrangian frame of reference and the
flow field is observed by following an individual parcel moving through space and
time. The latter is called the Eulerian specification or the Eulerian frame of ref-
erence and the flow field is observed in a fixed location where the material flows
as the time passes.

The Lagrangian frame of reference is often preferred in the mechanical ap-
plications where the initial state of the domain Qx is clearly defined. Hence, if
the deformations are not too distortive, the system is able to track each parcel
individually and the simulation is well specified. On the other hand, if the defor-
mations are not negligible, the mesh might be completely disrupted. That might
lead to connecting points related to the underlying mesh which are distant from
each other and would not only make the numerical simulation very unstable, but
the resulting quantities might also suffer from badly defined derivatives or other
model misspecification.

The Eulerian frame of reference comes as a useful tool in cases where the
Lagrangian referential frame cannot be easily used, e.g. in case of fluids where the
distortions are generally significant but the exact location of the specific particles
or the position of some structure interface is not important for the problem. The
domain in the Eulerian reference frame is denoted €2, and the relation between
the Lagrangian and Eulerian reference frame is given by the mapping Y defined
as

X Qx x I — Q x Ix(X, ) — (T,1), (2.73)
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where I = [to; teng| is the time interval of the process, X € Qx, x € Q,, and t € I.

The generalization of both referential frames is the ALE method which can
find its applications especially in the problems where there is an interaction be-
tween the internal fluid flow and some moving structure. These fluid-structure
interaction problems are frequently studied in engineering systems such as air-
craft, spacecraft and bridges design. The analytical mathematical approach is
often too complex for these problems and therefore the experiments or numerical
simulations are often preferred. [Sigrist, 2015]

The ALE method is a practical method how to deal with problems defined by
finite elements method where the domain of interest is either moving or coping
with strong distortions while allowing for a clear way how to treat free surfaces
and fluid-fluid or fluid-structure interfaces. [Donea et al., 1982] The deformation
of the domain is changing the way how to treat the quantities at the specific mesh
nodes. The aim of the method is to make the movement of the underlying mesh
possible and to not change the form of the equations used to solve the problem
significantly. The exact mechanism how to do that is explained in the following
subsection.

2.3.2 Kinematics

This subsection provides a mathematical framework to deal with the mesh move-
ment in the solved problem. The geometry of the problem is specified by the Fig.
2.3 where the Q2x denotes the Lagrangian reference frame, €2, denotes the Eule-
rian reference frame, and €2 denotes the Arbitrary Lagrangian Eulerian reference
frame, which basically corresponds to the referential frame of the undeformed
mesh.

Figure 2.3: Schema depicting the relationship between the ALE configuration,
the actual configuration and the reference configuration

The mappings between the respective referential frames are depicted in the
figure but only the \ mapping was defined in the Eq. (2.73). The mapping

24



between the Lagrangian reference frame and the ALE reference frame is denoted
by ¢ and is defined in the following way

G:Qx x I — Qe x I; (X, 1) — (6,1). (2.74)

Similarly, the mapping between the ALE reference frame and the Eulerian refer-
ence frame is defined as

G Qe x I = Qy x [;¢(E,1) = (&,1). (2.75)

The interpretation of these mappings is very intuitive if understood as in the
Fig. 2.3. The mapping ¢ assigns the point from the Lagrangian reference state
a point in the mesh (ALE reference frame) whereas the mapping gg assigns the
actual Eulerian configuration for the each point of the mesh. This mathematical
framework enables us to move the mesh in the computations and is used in all
computations throughout the thesis where the free surface boundary condition is
assumed.

The material velocity implicitly resulting from the mapping between the La-
grangian and Eulerian reference frame is given by the following relationship

_ X
A

(7, 1) (2.76)

The deformation gradient is defined in a standard continuum-mechanics way as
F = Vxy, (2.77)

where Vx denotes the derivative with respect to the spatial coordinates in the
Lagrangian reference frame. The material time derivative of an arbitrary scalar
value in the FEulerian reference frame can be defined as

a2 (2.78)
ot | ¢
which is rewritten as
- — =5 = Oa .
a(z,t) = a(X(X,t)= e +7- Va. (2.79)

The mapping between the ALE configuration and the Eulerian reference frame
¢ defines the displacement as

i = (€ 1) — 4(£.0), (2.80)
and velocity as
> 0P ou
= 2| = | . 2.81
T o e (281)

25



2.3.3 Free surface implementation

In order to model the mesh movement resulting from the free surface deformation,
the kinematic framework for ALE method from the previous section 2.3.2 will be
used. The mesh nodes E = (&, &,) corresponding to the top boundary are the
points in the actual configuration ¥ = (x, z) in each time ¢, hence

l‘(t) = §m> Z(t) = @(gbgmt) = @(xagzat) on ['p. (2.82)

We can define a function h(z,t) := 4(x, &, t)|zer, which returns a 2 component
of & corresponding to the top boundary for a given component x and time t.
This approach enables us to assume the mesh displacement in the horizontal
direction to be zero at boundaries I'gr U I', as the free surface is only at the top
boundary I'r. Therefore, the quantity h also changes only with the vertical move-
ment of the mesh. This gives us a kinematic relationship for the top boundary

2(t) = h(z,t) on I'p. (2.83)
Let us take a derivative of this equation to obtain
oh oh
%'Um E = Uz, O FT7 (284)

where v = (v,,v,) in the actual configuration. This gives us a framework to
estimate the mesh displacement at the top boundary 'z, however, it is necessary
to harmonically extend h so we have the definition of ¢ in the whole domain (2
so that

Slry = h. (2.85)

The solution to adaptively distribute the mesh points as a response to the free
surface deformation is to assume that the mesh node location ¢(&,t) is governed
by the Poisson equation in €2

V34 =0.in Q, (2.86)
with the boundary conditions
0P oh
a—:gvm + 5 — U= on Ip, (2.87)
96
a_i =0 on I, (2.88)
o =0onTIg, (2.89)

which means the boundary conditions for this problem are assumed in the form
of zero value at the bottom boundary and assumes mesh cannot move through
the side boundaries. The other possibility is to assume the horizontal component
fixed, which is reasonable if the vertical movements dominate and the horizontal
component is stable. In such a case we have

g—i —0in €, (2.90)
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which reduces the problem 2.86 to

0% ,

w =0in Q, (291)
assuming the horizontal movement of the mesh fixed. In both choices of boundary
conditions, the evolution of the mesh is numerically obtained in k4 1-th step from

the following equation given value of mesh deformation ¢ in k-th step @*

- @k a ~k+1
+ Vg
At Oz

The numerical implementation of the free surface in this thesis suffers also
from the negligence of the inertial term which may cause that the numerical
implementation is not sensitive to large scale changes in the magnitude of velocity.
This might cause numerical instability gradually increasing the amplitude of the
oscillations of the free surface. This phenomenon was addressed by Kaus et al.
[2010] who provide a solution to this problem. The key is to add a corrective
term adding a force to the balance of linear momentum equation in the following
form Apf (v n)At on I'r where f is the force assumed in our model as f =
AT(l —aATT)e,, and A is a sensitivity parameter, assumed A = 1.0.

~k+1
¥

—v, = 0. (2.92)

2.3.4 Nitche’s method for general boundary conditions

This subsection follows the paper by Juntunen and Stenberg [2009] who provide a
framework for treating general boundary conditions in the finite element method
extending the original Nitsche’s method. The paper shows how to generalize the
boundary condition specification for problems where Dirichlet boundary condition
might not be easily numerically handled. This is the case for the free surface
boundary used in several benchmarks in the thesis where we suppose the existence
of free surface. The paper shows that the Nitsche’s method can be generalized on
the whole class of problems by showing the derivation for the Poisson problem.
Let us suppose the function of interest is w given the righ hand side f as in
Juntunen and Stenberg [2009].

—Au= fin Q, (2.93)

u=ugonl (2.94)

where ug is a prescribed boundary value. The following approximation (called
Ritz approximation) replaces the Dirichlet boundary condition by the Neumann
condition 9 )
G_Z = g(uo —u)+gonl, (2.95)

where € > 0 is a small parameter, and n is a normal. Such an approximation
leads to the convergence of the new boundary condition 2.95 to the Dirichlet
problem 2.94 as the e approaches zero. The problem of this approach is that the
finite element discretization is getting ill-conditioned, and hence there is a need
to show the method can use the Neumann condition to substitute the Dirichlet

condition in case of free surface. [Juntunen and Stenberg, 2009]
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The authors of the article present the following equations as the Nitsche’s
method.
Bh(uh,v) = ]-"h(v)Vv € ‘/h (296)

where V), is defined in the paper as a space of piecewise polynomial function of
degree p. The forms are defined by

_ __he | Ou 9
Bh(“?”) _(VU>VU>Q+E§h €+”)/hE <an>U>E+<u> an>E (2 97>
b )y - e O O |
et yhg T kg an on'E
vhg ov
, U + U , U - Uoy 7~
Fulo) = (f,v)a E% +7hE 0 >E €+7hE<03n>E (2.98)
€ _evhg v '
+€+’)/hE<g7,U>E €+’)/hE<g7 an>E

where v is a bounded positive parameter and h := max{hg : K € T} where
Tr, is a triangulation of 2. By taking the limit ¢ — 0, the resulting equation for
the Poisson equation is the following

1 ov ou
= — — 2.
/Vu Voudx = E% / Up — U (thE 871) + andSVv eV, (2.99)

This equation can be used in the free surface application in the thesis if u = ¢ as
the term wy — u in Eq. (2.100) can be substituted now with the equation (2.92)
(we change the notation of the test function v to w in order to not confuse the
reader as the Eq. (2.92) works with the velocity components v, and v;)

/VAkH Vwdx =

Ak—l—l

Z/ Ak—l—l Ak—I—Atvm

EeGy

dSNw € V.

1 Ow Ophtt
vhg on

— Atv,) ( w— — o
(2.100)

This presents a way how to formulate the boundary conditions in a weak form
for the mesh displacement without the need to impose a Dirichlet condition (for
more details, see Juntunen and Stenberg [2009]).

2.4 Numerical methods

This chapter aims to explain the numerical methods used in the benchmarks and
the final application to Europa.

2.4.1 Crank-Nicolson scheme

A better stability of the numerical solution of heat equation in the thermal con-
vection benchmarks can be handled by assuming either semi-implicit or fully
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implicit numerical scheme in which we follow Crank and Nicolson [1947]. We
assume the general parameter 6 € [0, 1] changes whether the schema is semi im-
plicit (f = 0.5) or implicit (# = 1) or other choice. This means to discretize the
equation (2.9) as

Tk—i—l _ Tk

AT O(v- VTF —V2TH ) + (1 —0)(T- VT* — V2*T*) =0 (2.101)

where At is the time step in the discrete problem. This numerical scheme is used
in benchmarks in sections 3.1, 3.2, 3.3 where we assume semi-implicit scheme

6 = 0.5.

2.4.2 Taylor-Hood elements

The finite elements in the thesis are chosen in order to guarantee a unique nu-
merical solution of the problem which is a known property resulting from the fact
that the Taylor-Hood elements satisfy a discrete inf-sup condition [Arndt, 2013].
The thesis chooses the finite elements introduced by Taylor and Hood [1973] in
a form of crossed rectangular Lagrange elements of order P? for velocity ¥ and
P! for pressure p in the Stokes problem defined by equations 2.53 and 2.54, or
possibly altering the 2.54 for 2.56 in case of free surface. The spaces for the
Taylor-Hood elements are defined on a triangulation 75 of the entire 2 domain.
The spaces are defined as follows

Vi = {0 € C(QY); 0| € Po(K)' VK € Ty}, (2.102)
Py :={p e C(Q):plk € Pi(K) VK € T}, (2.103)
Ty = {t € C(Q): t|x € Po(K) VK € Tp,} (2.104)

where d is the number of spatial dimensions, and space of temperature functions
is assumed comprised of piecewise quadratic polynomials due to the improved
accuracy of the solution. The formulation of the discretized problem in a weak
form is as follows for the thermal convection setup

> /K(v-ﬁ)gdvzo, (2.105)

KeTy

3 /Kp(v-z/?)dV— Z /Ko—:w?dv

KETn e (2.106)
+ 3 / Ra(T — To)e.bdV = 0,
KeT, 'K
or
S [ 0 VTedV == Y [ VT Veav, (2.107)
KeTy, K Ot KeTy, K
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2.4.3 Picard iterations

The thesis uses Picard iterations for the handling of the non-linearity in the
Stokes equation solving for velocity field. The key idea is that the nonlinear term
can be discretized by using of the Picard iterations, which means transform the
non-linear problem to a series of linear problems possible to solve by linear solver
which converge to the same solution. [Logg et al., 2012] In case of this equation
the nonlinear term can be linearized by assuming the following scheme from Segal
and Vuik [1995]

A VAV SR VN VAT (2.108)

the alternative approach is to use the Newton scheme
AR VP SR VA VA A S R LR VA VA VT (2.109)

The usual choice in case of non-linearity e.g. in Stokes equation is to proceed with
a number of Picard iterations [Segal and Vuik, 1995]. This means to discretize
the Eq. 2.2 to the following iterations

VD + V- g (0F) (VR 4 (VR )T 4 G = 0, (2.110)

which linearize the nonlinearity as the 7.¢¢ is dependent on the velocity through
the dependence on €.

2.4.4 Discontinuous Galerkin Elements

In order to model the strain weakening effect in benchmark in 3.4 and final
application to Europa 4.1, it is necessary to solve the advection equation for the
plastic strain in the following form

aGH
a—f +7-Ve =€ (2.111)

where eg is the second invariant of the plastic strain defined as ./%eg sell.
The motivation for the use of discontinuous Galerkin elements comes from the
occurence of very high contrasts in the magnitude of the plastic strain variable in
the numerical model corresponding to this equation. The solution is to choose the
discontinuous Galerkin elements in a similar framework as presented in Di Pietro
et al. [2006] who tackled the problem of the evolution of the interface of two
materials. We proceed by multiplying the equation by the test function ¢, € Vj
where V), = {v, € L*(Q)|vs|x € Pr(K),VK € T),} and by integrating the whole
equation over a sum of elements K € T}, where T}, is a triangulation of the domain
Q.

O 5 Vel dy — 2112
3 T+ Z/Kqﬁhv-Vep x=0. (2.112)

t KeTy

> [ on

KeTy,

where e{,{h is the second invariant od the plastic strain computed on the space

of functions V}, restricted to the elements of triangulation.

30



After an application of Green’s formula to the second integral the following
integrals can be obtained which can be rewritten in terms of jumps and averages
of quantities as follows

/¢h bh g Z/ I 5 Vndz

KeTy, KeT
+ 3 [l + 5 Lo allon]] - (el }do (2.113)
ecEO
+ Z/ [[@n]] {eH *tdo =0
ecE9

where {f} = $(f*+ f7) is the definition of averaging, [f] = f™i*+ f~1") is
the definition of jump for the scalar quantity f and normal vector 77, the last thing
that remains is to define e/},* = €/}, if -7 > 0 and €)},* = €/}, if 77 < 0 (for
more details see Di Pietro et al. [2006]). This is the treatment of the discontinuous
I L in the shear band benchmark and the application to Europa.
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3. Benchmarks

In this chapter, the aim is to perform several tests in order to validate the numer-
ical methods used in the final application. The tests are based on numerically
tested setups previously evaluated by other researchers. This enables the author
to simulate the processes on Europa and to be in line with the numerical imple-
mentation of the models previously validated by the geophysics researchers with
application to other extraterrestrial bodies.

3.1 Thermal Convection Benchmark

This section is focused on the thermal convection benchmark made by Blanken-
bach et al. [1989] who compared several computational codes that solve a thermal
convection problem in a fixed domain setting. This benchmark has soon become
a natural first step in geophysical and geodynamical research communities due to
its relatively easy implementation and usefulness in many advanced geodynamical
applications. Blankenbach benchmark is a simple tool to correct the numerical
computations in early stages as it builds on a well defined setup which can be
replicated regardless of the choice of the software for partial differential equations
modelling.

3.1.1 Governing equations

The governing equations for the Blankenbach benchmark follow from the Boussi-
nesq approximation which was described in detail in the subsection 2.2.2. In order
to introduce the benchmark setup, the basic properties of the approximation will
be reminded.

This approximation linearizes the conservation laws near a reference hydro-
static state when v = 0. The linearization of the state equation is done with
respect to the temperature deviations resulting in the form of the density p =
po(l—a(T —1Ty)) where py and Tj are assumed constant in time. The approxima-
tion neglects the thermal expansion everywhere except for the term with gravity
force and neglects the selfgravity po(g — go) — 0. The benchmark assumes to
work with viscous fluid, where the viscosity 1 might be in general case function
of temperature or pressure. After the nondimensionalisation, which was discussed
in the subsection 2.2.3, the inertia forces were neglected, and thus the resulting
equations were obtained in the following nondimensional form (prime symbols
are omitted) following the general result of subsection 2.2.3.

The first equation in the system is the continuity equation

V=0, (3.1)

where ¢ is the velocity, This equation is followed by the balance of momentum
equation
—Vr+V -0+ Ra(T —Tp)e, =0, (3.2)

where 7 is the dynamic pressure (which without loss of generality fixed in the
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upper left corner of the domain as it is defined up to a constant), Ra is the
Rayleigh number, T is the temperature, Ty is the reference temperature, and €,
is the unit vector in the vertical direction. The last equation of this system is the
heat equation with no heat sources @)

T
aa_t + 7 VT = AT, (3.3)

where t is the time.

3.1.2 Problem geometry

The problem is defined on a rectangular 2D domain € with boundary I' = 9f).
The bottom boundary I'p is continuously heated by a source of energy on a
constant temperature 7T, whereas the top boundary I'r is continuously cooled
down to a constant temperature 7;. The difference of the temperature is denoted
as AT =T, — T;.

The side boundaries I';, U ' of the domain are assumed to be thermally in-
sulating VT - 7 = 0. The contact of the fluid with the boundary is defined by
a free slip boundary condition with no inflow and outflow through the boundary
o-1n =0, v-1n =0 which allows the liquid to freely flow without the tension at
the boundaries. The whole setup is depicted in the following schema in Fig. 3.1.2

rl‘ T‘l Tw
=012 A
VT.HMLUI‘R =0
v-n|p=0
(o-1)|r=0
FL Q PR h
VA
v
r [’y T‘I‘M T,

l

Figure 3.1: The schema of the problem geometry for the thermal convection
benchmark

In order to simulate steady state, it is necessary to begin with a non-balanced
initial temperature distribution which is in our case modelled by a small sinusoidal
deviation from the balanced linearly decreasing temperature field given by the
following equation

T(x,z) =1— 2+ 0.01cos(mz)sin(rz), (3.4)

where x and z are the spatial coordinates.
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3.1.3 Results

In the following Fig. 3.2, there is a time evolution of the temperature field showing
the initial temperature distribution (a), the state after five steps of simulation
reaching the nondimensional time ¢t = 0.0075 (b) and the steady state after many
steps reaching the nondimensional time ¢ = 0.5000 (c).

Similarly, the Fig. 3.3 is depicting the evolution of the velocity field evaluated
by its magnitude again showing the initial state (a), the state after five steps of
simulation (b) and the steady state (c).

aaaaaaaaaaa

(a) t=0.0000 (b) t=0.0075 (¢) t=0.5000

Figure 3.2: Evolution of the temperature field in the thermal convection bench-
mark

Velocity Velocity

(b) t=0.0075 (¢) t=0.5000

Figure 3.3: Evolution of the velocity field in the thermal convection benchmark

All of the presented results are perfectly in line with the benchmark values
which can be evaluated by comparing the time evolution of the several quantities
that characterize the field evolution. First of the benchmark values is the Nusselt
number defined as

L oT
L(x dx
0 2: ()], (3.5)

[iT(@)| _ de’

z=l

where h is the height of the domain and [ is the width of the domain. The Nusselt
number is the ratio of convective to conductive heat transfer at boundaries (here
z = 0 and z = h) and the higher the number is, the more active is the convection.

The Nusselt number evolution is depicted in the Fig. 3.4 a) where it can be
seen it converges to the same value both in our simulation and in the benchmark
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which confirms the implementation was successful. Second studied quantity is
the root mean square velocity defined as

L1l b 3
Urms = ; (H/O /0 (ﬁ—l—v?)dxdz) R (36)

where v, and v, are the components of velocity ¢, x is the thermal diffusivity.
This quantity averages the value of the velocity magnitude over the whole domain
) and is a measure of overall velocity occuring in the domain. The convergence
of this quantity to the benchmark target is depicted in the Fig. 3.4 b) and shows
that this result is also in line with the benchmark. Both results are also written
in the table 3.1.3 together with benchmark parameters (most of the benchmark
parameters are omitted because of the use of dimensionless numbers). Parameter
¢ stands for the parameter in the Crank-Nicolson scheme (for details see section
2.4.1). The results were computed on 80x80 mesh with crossed Taylor-Hood
elements (see section 2.4.2).

Quantities AT Ra n Ty 0 Nu URMS
Parameters 1000 10* 1 0 05

Computed values (mesh 80x80) 4.888 42.8649
Benchmark values (mesh 72x72) 4.884 42.8649

Table 3.1: The comparison of the computed results (blue) with the benchmark
values (purple) (in steady state)

Nusselt number 100 Rms velocity

74 = Nusselt number —— Rms velocity

= Benchmark nusselt number = Benchmark rms velocity
6 80 q
54 \/[\

60 1

. A
| v

204

Nu
Vim.

0.00 0.65 O.iO O.iS 0.‘20 0.‘25 0.30 0.00 0.05 0.10 0.15 0.20 0.25 0.30
Time Time

(a) Nusselt number (b) Root mean square velocity

Figure 3.4: Evolution of the velocity field in the thermal convection benchmark

3.2 Free surface benchmark

The process of generation of the chaotic terrains on Europa is linked to the to-
pographical changes of the surface as was introduced in the motivation chapter
1.1. Hence, the numerical simulation of the final application should contain the
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framework which enables a movement of the surface based on the domain defor-
mation. This framework can be introduced by assuming almost the same setup
as in the Blankenbach benchmark in section 3.1. The difference is in comput-
ing with the pressure p = 7 + po consisting of both dynamic and hydrodynamic
pressures instead of computing solely with «. This change is assumed because
of the numerical stability of the problem and it modifies the balance of linear
momentum equation by taking 2.56 instead of 2.54 as was discussed in the nondi-
mensionalisation section 2.2.3 as was shown in nondimensionalisation chapter.
Moreover, we cannot prescribe the free slip condition at the top boundary I'r.
The boundary condition of this setup can be written by assuming zero normal
component of the deviatoric stress tensor o instead.

3.2.1 Governing equations

The governing equations for this benchmark are analogical to the governing equa-
tions for the Blankenbach thermal convection and follow the Boussinesq approxi-
mation. The benchmark modifies the balance of linear momentum as was stated
above, hence the equations for this benchmark follow the nondimensional equa-
tions (2.53),(2.55), and (2.56) as was shown in section regarding nondimension-
alisation 2.2.3.

The first equation in the system is the continuity equation

V.7=0, (3.7)

where ¢ is the velocity, This equation is followed by the balance of momentum
equation

Ra . Ra _ =
_aATVp +V -0+ Ra(T —Ty)e, — ——=e€. =0, (3.8)

which differs to the previous benchmark by not fixing the dynamic pressure in

one point of the domain but rather assuming p is the pressure including both

the dynamic and the hydrodynamic pressure, Ra is the Rayleigh number, T is

the temperature, and Tp is the reference temperature. The last equation of this

system is the heat equation which remains the same as in fixed domain setting.
oT

— +0-VT' =AT 9
at+v \Y (3.9)

where t is the time. The rheological relationship is again assumed as in Eq. 2.45
following the Newtonian fluid definition.

3.2.2 Problem Geometry

The problem geometry in case of free surface is very similar to the geometry
presented for the original Blankenbach thermal convection benchmark. The only
change of the setup is in assuming of the free surface boundary condition o - 77 =
0 which ensures the top boundary moves freely according to the stress of the
material in the domain. The scheme of the problem geometry of the setup is
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depicted in the Fig. 3.5. The other boundary conditions remain the same as in
section 3.1 i.e. the side boundaries I';, U I'g of the domain are assumed to be
thermally insulating VT -7 = 0. The contact of the fluid with the boundary is
defined by a free slip boundary condition with no inflow and outflow through the
boundary o -7 = 0, v - 1 = 0 which allows the liquid to freely flow without the
tension at the boundaries.

'y Tlp, =T,
VT-ulp yp, =0 /\_/_\ A
venpp, =0
(c'n.)||l—\r1_—()
o-nfp, =0
I Q I'r | R

z
v

’ by Tl,=T,

A
v

Figure 3.5: The schema of the problem geometry for the free surface thermal
convection benchmark

In order to simulate steady state, it is necessary to begin with a non-balanced
initial temperature distribution similarly to the previous section 3.1 which is again
modelled by a small sinusoidal deviation from the balanced linearly decreasing
temperature field given by the following equation

T(x,2) =1— 2+ 0.01cos(mz) sin(nz) (3.10)

where the x and z are the spatial coordinates.

3.2.3 Results

The numerical implementation in this benchmark differs significantly from the
Blankenbach benchmark where the shape of the domain was fixed. The main
difference is in the addition of the evolution equation for the mesh displacement.
The points of mesh are initially discretized as crossed Lagrange finite elements of
a rectangular shape (for more information see section 2.4.1).

The displacement of the mesh elements was introduced in section 2.3 and
is a function denoted as ¢(&,t) corresponding to mapping from the Arbitrary
Lagrangian Eulerian reference frame to the actual configuration. This allows the
simulation to move with the mesh grid, and thus simulate the free surface. The
simulation uses stabilization mechanism from Kaus et al. [2010] and Nitsche’s
method following from Juntunen and Stenberg [2009]. These phenomena are
described in sections 2.3.3 and 2.3.4 in more detail.
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The way how to check the validity of the free surface implementation is to
compare the values of thermal convection benchmark in section 3.1 to the topog-
raphy generated by the free surface.

Dynamic topography is a tool used in geodynamics which evaluates the eleva-
tion caused by the flow of the material in the mantle. The dynamic topography
is obtained by focusing on the forces acting on the surface. The resulting topog-
raphy h can be calculated by comparing of normal stress with the hydrostatic
pressure

- T71 = pogoh, (3.11)

where p is the fluid density, ¢ is the magnitude of gravitational acceleration. In
two dimensions assuming Newtonian fluid rheology (i.e. Eq. (2.45)), the equation
reduces to

aAT
h=—"""A(0m —p), 3.12
(o) (312)
where o5, is a second diagonal element of deviatoric stress tensor o and the
fraction @& — _L_

Ra ™ gopo’
The free surface benchmark in this section measures the topography directly

whereas the fixed domain benchmark in section 3.1 needs to calculate the to-
pography via Eq. (3.12). This has been done for five points at the deformed
top boundary and the comparison of results is depicted in the Fig. 3.6. There
is a small error in the limit of displacement, which is, however, tolerable as the
dynamic topography calculation is only an approximative way which ignores the
change of the domain shape. That in turn changes the direction of the nor-
mal vector, and thus may slightly increase or lower the result. The change in
topography at various point at the top boundary is depicted in the Fig. 3.7.

Displacement

0.0040 A —— Arbitrary Lagrangian Eulerian method
,h - Dynamic topography

0.0035 A
0.0030 4

0.0025 A

0.0020 A

Ah

0.0015 4

0.0010 A

0.0005 A J

0.0000 A

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Time

Figure 3.6: The comparison of a topography generated by the deformation of the
free surface and the computed dynamic topography from the fixed domain case
(at point =(0.0,1.0)
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Figure 3.7: The analysis of a topography generated by the deformation of the
free surface in five distinct points at the top boundary

3.3 Viscoplastic Thermal Convection Benchmark

This section follows the benchmark by [Tosi et al., 2015] who studied the effect
of pseudoplastic rheology on the mobilization of the cold surface material in
the problem of the Earth’s mantle convection. The setup is very similar to the
previously mentioned thermal convection benchmark in chapter 3.1, however,
with the added plasticity term in the viscosity definition.

3.3.1 Governing equations

The governing equations corresponding to this test are the equations for Boussi-
nesq convection in a fluid where we take their nondimensional form derived in
section 2.2.3. The governing equations for this problem assume constant thermal
diffusivity and expansivity and are the same as in Blankenbach benchmark which
are reminded for the sake of clarity to the reader as follows

V-7 =0, (3.1)
~Vp+V -0+ Ra(T - Tp)e, =0, (3.2)
%—f +7-VT = AT, (3.3)

where the first equation is the continuity equation, the second equation is the
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balance of linear momentum and the last one is the heat equation (for more details
see the derivation in section 2.2.2). The rheological relationship is assumed in a
form of Newtonian fluid following the Eq. (2.45) The difference of this benchmark
lies in the prescribed effective viscosity which consists of its linear viscous part
and its plastic part following the definition in Tosi et al. [2015]

L 1 1\
(T, z,€) =2 (m(T, 3 + Up(é)> : (3.13)

The linear viscous part is given by the linearized Arrhenius law (known also as
Frank-Kamenetskii approximation, [Frank-Kamenetskii, 1969])

0o(T, 2) = exp(—yrT +7.(1 — 2)). (3.14)

where v = In(Anr) and v, = In(An,) are parameters which control the contrast
of the viscosity in temperature and pressure. The non-linear plastic part of the
viscosity follows the form in Trompert and Hansen [1998]
. % Oy
€)=n +
where n* is the cutoff constant handling the situations where high stresses occur
following Stein et al. [2014] and oy is the yield stress which is assumed constant
in this benchmark.

(3.15)

3.3.2 Problem geometry

The geometry of the problem is the same as in thermal convection benchmark
in section 3.1 and consists of a two-dimensional square box €2, where the top
boundary I'r and the bottom boundary I'g are continuously cooled and heated,
respectively. The side boundaries are considered insulating V71 -7 = 0. The
benchmark assumes free slip condition (o - 77); = 0 on boundary I' and there is
no inflow and outflow of the material - n = 0. The schema of the domain 2
together with the prescribed boundary conditions is depicted in the figure 3.3.2.

r[‘ T‘t Tw
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VTH| [ ulg =0
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l

Figure 3.8: The schema of the problem geometry for the viscoplastic thermal
convection benchmark
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3.3.3 Results

The thesis follows the first two cases of the benchmark tests with the parameters
for the individual cases in the following table 3.3.3. Both of the cases assume no
depth dependence of the viscosity. The case 2 simulates the plastic part of the
deformation by assuming non-zero yield stress oy. This enables the deformation
to switch to the plastic regime and increase the plastic part of effective viscosity
given by Eq. 3.15. This mobilizes the mantle in the top part of the domain to
form a mobile lid of an increased effective viscosity covering part of the region
near the top boundary. This as a result increase the velocities near the boundary
and the convection mechanism is exchanging the heat with the top boundary
whereas the case 1 results in the stagnant lid where the convection mechanism
runs deep under the layers of higher viscosity.

Case Ra Anr An, n* oy

1 102 10° 1 - -
2 102 10° 1 1073 1

Table 3.2: The choice of parameters in viscoplastic thermal convection benchmark

The results of the particular simulations are shown in the following table 3.3
where the blue values match the performed simulations in this thesis while the
purple values correspond to the benchmark values. The results show the values
computed in the thesis are almost in line with the benchmark values which is
also supported by the figures depicting scalar fields of the variables evaluated
in the tests. The reason why the values slightly differ might be because of our
simulation was stopped at time ¢t = 1.0 but the quantities might not be in steady
state yet or possibly because of different discretization of the problem. In our
case 40x40 mesh grid with crossed Taylor-Hood elements (see section 2.4.2) was
used. Overall, the results match the benchmark values very well.

surf surf

MOdelS <T> Nutop Nubot URM S ’UR]MS Unmaz Thmin Nmaz

Case 1 0.7751 3.5971 3.4127 249.552 1.912 2.622 - -
Case 2 0.6003 8.7532 8.6391 140.920 103.919 121.234 1.995-10—°  1.692
Case 1 0.7759 3.5889 3.4231 249.573 1.870 2.607 - -
Case 2 0.6032 8.7475 8.6440 140.522 104.585 121.696 1.961x107° 1.796

Table 3.3: The comparison of the computed results (blue) with the benchmark
values (purple)

The following figure 3.9 depicts the resulting two-dimensional scalar fields for
viscosity, temperature and RMS velocity in the steady state of the case 1.
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a) Viscosity b) Temperature ) RMS velocity

Figure 3.9: The scalar fields for the steady state of case 1

The figure 3.10 depicts the same quantities as the previous one, however, for
the steady state of case 2.

a) Viscosity b) Temperature ) RMS velocity

Figure 3.10: The scalar fields for the steady state of case 2

In contrast to case 1, where plasticity is not considered, the temperature de-
pendence of viscosity leads to the formation of highly viscous immobile (stagnant)
lid (reddish color at the surface of computational domain in Fig. 3.10 (a)). The
reduction of viscosity which has was included through the plastification of the
material at the surface leads to breaking of the stagnant lid and mobilization of
the top surface. This behavior is often used in models of thermal convection in
the Earth’s mantle where it mimics the plate tectonics behavior. [Tosi et al.,
2015]

The results are in line with the benchmark values which is compared in the
following Fig. 3.11 which compares the temperature, viscosity and root mean
square velocity fields computed in the thesis (right) and in the benchmark (left).
Similarly, the same quantities are compared also for the case 2 in Fig. 3.12.
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Figure 3.11: The comparison of simulated scalar quantities (right) with the bench-

mark values from Tosi et al. [2015] (left) in case 1
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Figure 3.12: The comparison of simulated scalar quantities (right) with the bench-
mark values from Tosi et al. [2015] (left) in case 2

Figures 3.13 and 3.14 show the depth profiles of horizontally-averaged quan-
tities (temperature T, viscosity 1, rms velocity vgys). Comparison of our results
(left column) with the results from Tosi et al., 2015 (right column) shows a good
agreement.
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3.4 Shear Bands Benchmark

The following section follows the dissertation thesis by Maierova [2012] who ran
a series of simulations regarding the strain weakening effect, which is a necessary
feature for the modelling of the plastic failure of the Europa’s surface in the
chaotic terrains formation. The strain weakening as a phenomenon is described
in more detail in 2.2.4 where is also the derivation of the corresponding functions
for C = C(el!) and oy = oy (p, C, p), where ¢ is the angle of internal friction.

As a benchmark for the strain weakening effect, the thesis follows the setup
from the dissertation thesis of Maierova [2012]. This approach slightly modified
and simplified the setup from Lemiale et al. [2008] and Kaus [2010] who stud-
ied the initiation of shear bands in geodynamical numerical models of brittle
deformation.

3.4.1 Governing equations

The governing equations for this problem consist of the Stokes problem coupled
with the evolution of plastic strain ,
The first equation in the solved system is the continuity equation

V.7=0, (3.16)

where ¥ is the velocity. The equation is followed by the balance of momentum
equation
—Vp+V.-o0+pj=0, (3.17)

where g is the gravity acceleration, p is the density of the ice and o is the
stress tensor defined for Newtonian fluids as in Eq. (2.45) i.e. o = 2n.ssé. The
last equation of this system is the plastic strain advection equation

e, I I
5 7 Ve =6 (3.18)

where €, is the plastic strain, and the superscript (-)?/ denotes second invariant
as defined in section 2.1. The effective viscosity 7ss is defined as

( ! + L >_1 (3.19)
Nepr=|—+—1| . .
1 T Tp

which was obtained from the relation that sum of €, + €, = € and the following
equation
O = 20epr€ = 21,€, = 21,€, (3.20)

In the viscous regime, a constant dimensionless viscosity 7, = 10 is prescribed
everywhere except for the small weak inclusion at the bottom boundary where
the viscosity is 1, = 1. This weak inclusion starts the failure of the material and
thus initiate the shear bands. In the plastic regime, the viscosity is given by

_oy(p,C, )

p = 26-17[(27) (3.21)
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where the functional forms of the cohesion C and oy follows the definitions from
section 2.2.4 enabling the strain weakening effect in the material. This gives us

1 2¢1(D) )‘1
JR (LI L GV 3.22
et t (nv oy (p,C, ¢) (3.22)

3.4.2 Problem geometry

The problem setup assumes rectangular geometry with the width four times larger
than height of the domain 2. There is a free surface o -77 = 0 at the top boundary
and free slip (o-77); = 0 on I'pUI' gUT'g. The no inflow/outflow condition ¢'-77 = 0
is prescribed at I'g and inflow of magnitude v, = x on I';, and inflow of magnitude
v, = —x on ['g.

The 0.04 x 0.02 region in the middle of bottom boundary is assumed to have
a weak inclusion in a viscosity assuming 7, = 1 in the region and 7, = 10°
elsewhere. The problem geometry is depicted in the schema 3.15 from Maierova
2012].

0 ~ openboundary ‘ background viscosity=10>
9‘ V.= +/- X ¢:10_300 / = -+ X :1"'
q:1l 0 g () = 400 - ®
N g Coo = 20 2
_‘? p= 2700,T| ©
-2

free slip \ 2
weak inclusion - background viscosity=1

Figure 3.15: The schema of the problem geometry for the strain weakening bench-

mark
Source: Maierovd [2012]

The numerical discretization of the simulations for which we compute the
results follow the choice done by Maierova [2012], and thus the resolution of
the simulation is 400x100 elements with the crossed rectangular Taylor-Hood
elements for Stokes problem, which is described in section 2.4.2; and discontinuous
Galerkin elements of degree 0 for €,, which is described in section 2.4.4.

3.4.3 Results

In the following figure 3.16, we plot the strain rate in a simulation of the initia-
tion of the shear bands by compression of the domain with a prescribed velocity
generating the inflow of material at the side boundaries I'r UT';. The respective
figures show the strain rate at time ¢ = 0.0005 which corresponds to the 0.5%
shortening of the domain. Three scenarios were computed for the problem where
the friction angle ¢ € {m/18,7/9,7/6}.
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Figure 3.16: Initiation of shear bands for compression by inflowing material for
different internal friction angles: ¢ =n/18 (top), ¢ =n/9 (middle), ¢ =7/6 (bot-
tom)

The figure depicts three scenarios of material inflow in the rectangular domain
which represents a planetary body mantle where an effect of strain weakening
allows for the cracking of the material in the domain. At the point of when the
domain has gone through 0.5% shortening, the main shear bands (which emerged
due to the weak inclusion in viscosity) exhibit a formation of the secondary shear
bands. With the increase of the angle of internal friction the production of the
secondary shear bands seems more active from the results obtained in Fig. 3.16.

The angle between the main stress axis and the shear bands should depend
on the angle of internal friction by having roughly between § (Roscoe angle) and
B(¢) = = — £ (Coulomb angle) tilt. [Lemiale et al., 2008]

The simulations ran by Kaus [2010] or Maierova [2012] show the higher res-
olution gets closer to the Coulomb angle and lower resolution got closer to the
Roscoe angle.

This, however, holds in our simulation only approximately as we obtained
values of the Coulomb angle 3(10°)=43.2°, 5(20°)=40.7°, 5(30°)=37.9 for the
respective angles. The theoretical values corresponding to these angles of internal
friction should, however, be 40°, 35° 30° respectively. The correction of this
might be by assuming stabilization of the pressure overshoot near the shear band
as was done in Maierova [2012] or increase of the numerical resolution.
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4. Results and discussion

This chapter presents the results of the final problem defined in section 2.1 and
discusses the results of all benchmarks and the final application to Europa. The
setup applied to Europa is rather experimental i.e. the model is considered as
outlook which might be made more accurate in the possible future extensions.

4.1 Application to Europa

In order to simulate the mechanism on Europa, three preliminary setups of simu-
lations were run with simplified parameters and one with the fully specified final
application (Case 4).

The numerical methods used to model this problem were discussed in 2.4
including the choice of Taylor-Hood elements for the Stokes problem, Picard
iterations to handle the non-linearity, ALE method to treat the free surface, and
discontinuous Galerkin elements in order to model the advection equation for
plastic strain rate (2.3).

The model was not specified and thus several different setups were launched
as a test in order to find out what parameters that correspond to the real Eu-
ropa parameters might be reasonable to assume in the model. The summary of
parameters for the individual simulations can be found in 4.1.

The case 1 is the most simple setup, which had a goal to test only the melting
process in the domain which is a mechanism which was previously used e.g. in
Kalousova et al. [2016], however, there is no plasticity, and thus there is no
observable cracking in the model and the volume is diminishing purely viscously.

The case 2 is a similar setup but there is a plastic regime in which is the yield
stress supposed constant along the whole domain 2. This model seems as more
hopeful scenario than case 1, however, there is missing the phenomenon of strain
weakening introduced in 2.2.4.

In order to fix this, we run case 3 and 4 where in the former there is yield
stress dependent on the pressure and cohesion, where the cohesion is assumed
constant, and in the case 4, the setup is complete with strain weakening property
given by Eq. (2.62) which is included in the model.
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Case Ny [Pa-s| mn, [Pa-s] oy [Pd] C [Pa]

1 10'8 - - -

2 10%4 np(oy,€)  10° -

3 10% np(oy,€)  oy(p,C,¢) 10°

4 nU(T) nP(UY7 G) UY(pv Cv ¢) C(GII)I)
Other parameters Value Units

h 30000 m

l 60000 m

To 30000 m

20 60000 m

Ax 30000 m

Az 60000 m

Yo 1= kg-m=3-s71
Omin 0.1 Pa

Co 105 Pa

Cy 10% Pa

@ 0.0 s!

€oo 0.1 st

g 1.32 m-s2

¢ 30¥ °

Pice 920 kg -m™?
Pwater 1000 kg : m_3
To 270 K

Tonin 100 K

Tonaz 270 K

Tyegion 230 K

Mo 1016 Pa-s

Q 5-10* J - mol™
R 8.314 J-K=t-mol™!

Table 4.1: The choice of parameters in final application on Europa simulations

A simulation was run for each case and the Figs. 4.1, 4.2, and 4.3 depict the
evolution of strain rate € based on the volumetric decrease in the domain which

is governed by parameter ~.

The more focus on the evolution of the case 4 is put in the Fig. 4.4, where all
four subfigures relate to the main application.

51



—-16.0

-17.0

Mhmmulmmm
.
>
o

Figure 4.1: The simulation of Europa - Strain rate log,, €// in time ¢ = 0.13Myr
(Case 1 - top, left), (Case 2 - bottom, left), (Case 3 - top, right), (Case 4 - bottom,
right)
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Figure 4.2: The simulation of Europa - Strain rate log,, €// in time t = 1.60Myr
(Case 1 - top, left), (Case 2 - bottom, left), (Case 3 - top, right), (Case 4 - bottom,
right)
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Figure 4.3: The simulation of Europa - Strain rate log,, €// in time ¢ = 4.70Myr

(Case 1 - top, left), (Case 2 - bottom, left), (Case 3 - top, right), (Case 4 - bottom,
right)

Figure 4.4: The simulation of Europa - Strain rate log,, €/! for Case 4. (t =

0.13Myr - top, left), (t = 1.70Myr - bottom, left), (¢t = 2.87Myr - top, right),
(t =4.70Myr - bottom, right)
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The figures show, that the case 1, where there is no plastic regime, does
not show any interesting phenomenon except for the melt of the material in the
molten region, which causes decrease in the overall volume of the domain.

The case 2 enables the surface to deform with the strain rate dominantly
decreasing the topography at the middle of the domain above the water lens.
This is a desirable property, as it mimic the lens collapse hypothesis suggested
by Schmidt et al. [2011], however, the setup operates dominantly in the viscous
regime.

In order to simulate the plastic regime, the yield stress oy is supposed not
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spatially constant in the case 3, nevertheless with the constant cohesion C'. This
setup seems in the inital steps of the simulation similarly to case 2, however,
the change in the setup generated a striped region in the Fig. 4.3, which might
signalize the shear bands occurence.

The case 4, in contrast, assumes even the presence of the strain weakening
phenomenon. The parameters are chosen so that they match other research
papers (following the parameters from Kalousova et al. [2016] and viscosity func-
tional form from Showman and Han [2004]). The setup does not generate so
clearly noticeable shear bands as the setup in case 3, however, there is a notice-
able deformation of the surface near the surface e.g. at Fig. 4.3. An interesting
phenomenon is occuring in the regions close to I'g and I'y, near the free surface,
where there are emerging shear bands probably due to the strain weakening in
the area beneath the surface. A detailed image is depicted in 4.4.

4.2 Discussion

The thesis discussed the results for each benchmark and the final application in-
dividually, this discussion summarizes the overall progress throughout the thesis.

The goal of the thesis was to run a series of simulations which should have
validated the use of the numerical tools that are necessary in order to model a
complex phenomenon such as the chaotic terrains formation. The thesis started
with simulation of the thermal convection benchmark which was supposed to set
up the course for exploration of more complex tools.

The thermal convection started with the modelling of the decoupled system
which combines the Stokes problem with the heat equation and the boussinesq
approximation and nondimensionalisation, which enabled us to neglect the non-
linearities and rather build a model on which more complex properties could be
modelled.

The implementation of the benchmark by Blankenbach et al. [1989] considered
Taylor-Hood elements for the Stokes problem and piecewise quadratic polynomial
elements for the heat equation. Moreover, the Crank-Nicolson scheme was used
in order to obtain more stable solution for the heat equation.

Next step was to introduce the notion of free surface, which was implemented
by constructing of the Arbitrary Lagrangian Eulerian method for the displace-
ment of the mesh nodes. This method requires to handle some of the numerical
problems which is the stability problem discussed in 2.3.3. Moreover, the move-
ment of the mesh required to set up the boundary conditions so that they are
covered in the weak formulation of the problem which was discussed in the section
2.3.4. When the implementation of the free surface was done, the thesis ran a
benchmark to the previously studied thermal convection in a fixed domain. The
benchmark compared the values of dynamic topography generated by the forces
on the surface I'r. This was compared to the generated topography using the
mesh displacement and the results were in a good agreement.

The next complexity to the model was added with the introduction of vis-
coplasticity assuming the material flowing in the domain might switch to the
plastic regime where the deformation would proceed differently. This was imple-
mented and checked in comparison to benchmark by Tosi et al. [2015]. In the
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end, the effect that was sought is the strain weakening, which enabled the model
to cause brittle failure of the crustal material in the domain.

The introduction of the strain weakening was linked to benchmarking of the
model in this thesis against the model made by Maierova [2012]. This led to
the introduction of discontinuous Galerkin elements in the implementation and a
specification of the deformation in the plastic regime followed that.

Last but not least, the setup mimicking the parameters of Jupiter’s moon
Furopa was created. This setup showed that the tools used in this thesis were
able to model the behaviour which could theoretically explain the formation of
the chaotic terrains by the four phase lens collapse model introduced by Schmidt
et al. [2011].

The models used in the thesis, however, faced a lot of assumptions, specially
the boussinesq approximation imposed a lot of conditions on the behaviour of
the studied system. The thesis also omitted the transfer of heat in the final
application which might play a significant role in the evolution of deformations
near the surface. On one hand, this approximation enabled us to build and
implement a model which would be much harder to create due to nonlinearities
if the approximation was not done. On the other hand, as the model gets more
and more complicated, the model might suffer either from misspecification due
to too many assumptions, or it might lose the connection to the real application.

95



Conclusion

The Galileo and Cassini missions to the moons of Jupiter and Saturn led to a
discovery of fascinating details about some of these icy worlds. One of these
worlds is Europa, the Jupiter’s moon, which might harbour life in its subsurface
oceans. The possibility of presence of life forms led scientists focus more on the
understanding of the geodynamical properties of this planetary body.

This thesis focused on the study of the formation process of the so called
chaotic terrains. These formations which alternate the Europa’s surface might be
a result of a complicated geophysical process in the Europa’s icy shell. The thesis
followed a model assuming the existence of an underwater lake containing water or
ice close to the melting state. This model is expected by the research community
to answer the fundamental questions about the chaotic terrains formation and
the processes running in the Europa’s shell.

Several simulations were run in the thesis in order to validate the mentioned
mathematical model. These benchmarks were summarized in the discussion chap-
ter and were followed by a construction of an experimental model which suggested,
that the mechanisms implemented in the model might be sufficient to model the
chaotic terrain formation. Nevertheless, the tools used were limited and the re-
sulting model is rather an outlook of what can be studied more rigorously than
a rigorously validated model.

The outlook of this thesis might be to extend the models used in this thesis
by experimenting and adding more setups to the final application, or possibly by
generalizing of the . setup by adding of the heat equation or extending the model
to three spatial dimensions.
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