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Introduction

The term ”seismic tomography” covers a wide range of geophysical inverse prob-
lems that use data derived from seismic records to infer the subsurface structure
of the Earth. The result of seismic tomographic problem is represented by seis-
mic velocity model, occasionally other elastic parameters or density. Basically,
the solution of the inverse problem is given by two different approaches – deter-
ministic in which the solution is represented by one model best fitting the data
while meeting some apriori condition (also called regularization); or stochastic
when the solution is defined as posterior probability density function on model
parameters (Tarantola (2005)). The posterior probability density function is in-
ferred as apriori information combined with conditional probability from data
measurement in the so-called Bayesian framework. The problem is usually solved
using Monte Carlo algorithm generating model samples following the posterior
probability distribution. Despite the fact that probabilistic approach is consid-
ered more general than the single model solution (usually corresponding to the
maximal probability), deterministic approach has been favored for many years
mainly due to computational reasons.

The first seismic models of the Earth were derived as early as at the begin-
ning of the 20th century, spherical symmetry of the Earth was assumed leading
to radial models with main discontinuities at core-mantle boundary and later at
inner core boundary (Gutenberg and Richter (1939); Jeffreys and Bullen (1940)).
The first works on seismic tomography in traditional sense (i.e., employing first
arrival times of seismic waves combined with ray theoretical calculation) origi-
nated much later, in the 1970s: on regional scale Aki and Lee (1976); Aki et al.
(1977) developed the so-called ACH method, and on global scale Dziewonski et al.
(1977) imaged velocity structure in the Earth’s mantle for low spherical degree.
In broader sense, the seismic tomography includes also inversion of Earth’s free
oscillations spectra combined with normal mode theory, inversion of surface wave
dispersion curves to infer vertical velocity model or different inversions to infer
seismic attenuation. As a result of signigicant improvement in both instrumental
development and data processing techniqes as well as the increasing computa-
tional power, the seismic tomographic methods have undergone a great progress.
Present-day applications aim to employ the most of the recorded data in the so-
called full-waveform inversion (Fichtner et al. (2013); Tape et al. (2010); Virieux
and Operto (2009); Bozdağ et al. (2011)), which requires calculation of the full
elastodynamic equation.

Although usually the input data are body wave traveltimes, the most promi-
nent signal on seismograms comes from the surface waves. The studies utilizing
the surface wave data originate in the 1950s when the matrix method of calcu-
lating surface wave dispersion curves in layered media was developed (Thomson
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(1950); Haskell (1953)). To obtain the dispersion data independent on the source,
the dispersion curves are measured at two stations aligned on a profile with the
epicenter and their differences are then used to obtain a mean vertical model
between the stations (the so-called two-station method). Nowadays, the surface
wave inversion is performed taking one of the following paths: the surface wave-
form is inverted directly into the 3D S-wave velocity model using gradient (or
Fréchet) kernels (e.g., calculated assuming Born approximation, Snieder (1988);
Zhao et al. (2000); Zhou et al. (2006)), or by the so-called two-step approach: in
the first step the dispersion measurements are localized for each period and a set
of phase velocity maps is constructed; in the second step the dispersion curves
extracted from the maps in each point are inverted into a vertical model, finally
to be assembled into a 3D model (Nataf et al. (1986); Montagner (1986)).

Most of the seismic tomographic apllications utilize data from close or distant
earthquakes. The resulting data coverage thus depends not only on the station
distribution of the studied domain but also on the distribution of sources. This
may represent a great disadvantage in regional studies of seismically not active
regions. For regional tomography, either data coming from the teleseismic events
are used which are longer period data and crustal corrections are required. An-
other possibility to improve the data coverage is to use controlled sources. An
important breakthrough was discovery that the information about the structure
may be extracted from ambient seismic noise. In particular by crosscorrelating
random/diffuse wavefields at two points, Green’s function is obtained (Shapiro
and Campillo (2004); Campillo and Paul (2003)). Thus long-term ambient noise
measurements at different seismic stations are used and the data coverage and
resolution of the tomographic inversion depends only on the station distribution.
Moreover, the strongest signal in the ambient noise Green’s functions is observed
for surface waves at periods below 20s – thus the data is usually complimentary
to the earthquake data. Besides data coverage another advantages of the noise
data are, for example, the possibility to employ same methods as for tomographic
inversions of the earthquake data or removing the effects of sources. The tomo-
graphic inversions employing ambient noise surface wave data (Ritzwoller et al.
(2011); Saygin and Kennett (2012); Lin et al. (2013b)) and also the ones with suc-
cessful extraction of body wave data (Nakata et al. (2015)) have been performed
and the resulting models agree well with geological interpretation. Furthermore,
the temporal changes in the ambient noise data have also been utilized in the
so-called 4D tomography, e.g. under a volcano (Brenguier et al. (2007)).

In this thesis, we employ ambient noise dispersion curves in a two-step surface
wave inversion. In the first step, the adopted inter-station dispersion curves are
inverted for each period into a set of phase-velocity dispersion maps using 2D ad-
joint method (Gauthier et al. (1986); Tromp et al. (2005); Fichtner et al. (2006)).
The adjoint method is a gradient method with calculation of the finite-frequency
Fréchet kernels. To employ the adjoint method, the standard membrane wave
approximation is assumed for the surface wave propagation at each frequency
(Tanimoto (1990); Peter et al. (2007)). In the second step, the phase-velocity
dispersion maps are inverted into a 3D S-wave velocity model in a Bayesian
framework. In this part, Monte Carlo algorithm is combined with the dispersion
curve calculation in layered media using matrix method (Novotný (1999)).
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In both steps, nonlinear methods are employed which may lead to nonunique
solutions. Therefore, regularization is employed. It should be noted that, besides
explicit regularization (e.g., by smoothing of the resulting model), the implicit
regularization (e.g., choice of the model parametrization) is also involved. The
regularization setting has an important influence on the resulting model and one
must take great care in its choice. For this task, the synthetic tests are usually
of great service. Therefore, we discuss them in larger extent.

We solve the ambient noise tomography in the region of the Bohemian Mas-
sif, Variscan orogen with complex structure and history (see overview in Matte
(2001); Franke (2000)). It is comprised of several main tectonic domains (in par-
ticular Saxothuringian, Teplá-Barrandian, Moldanubian, Brunia and Sudetes)
whose origin was traced to Neoproterozoic. The individual domains were part of
subduction processes leading to continental collision but were subject to different
development and thus show different properties. For instance, the Moldanubian
domain consists of medium to high metamorphic rocks whereas the adjacent
Teplá-Barrandian domain shows rather low metamorphism. Numerous granitoid
intrusions have been emplaced during the orogeny, for example, magmatic arc of
the Saxothuringian subduction beneath the Teplá-Barrandian domain (Central
Bohemian Plutonic Complex) or in the Moldanubian domain as a result of in-
creased heat flow (Central Moldanubian Plutonic Complex). After the Variscan
orogeny, the elevated orogen was subject to erosion. Most of the eroded mate-
rial was transferred to the north to form the Polish Basin leaving the Bohemian
Massif rather exposed. During the Alpine orogeny, several of the domain bound-
aries were reactivated which led to formation of younger sedimentary basins (e.g.,
Central Bohemian Cretaceous Basin). Boundary between the Saxothuringian and
the Teplá-Barrandian domain is active even nowadays in the so-called Eger Rift
which exhibits regular earthquake swarms and CO2 emanations (Fischer et al.
(2014)). Although many of the orogenic processes are known from geologic stud-
ies, the subsurface seismic properties of the Bohemian Massif from ambient noise
data may give additional insight into its development and structure.

The dissertation is organized as follows. Chapter 1 introduces the adjoint
method, its derivation for seismic tomographic problem, its basic properties and
finally its performance in the synthetic checkerboard tests. Since the checker-
board tests do not serve as a sufficient represantative for the real-data inversion,
the synthetic tests employing a simple smooth model and complex heterogeneous
model are performed in Chapter 2 (also published as Valentová et al. (2015)).
With the help of these tests, the regularization parameters are chosen to be em-
ployed in the inversion of inter-station dispersion curves into phase velocity maps.
In Chapter 3, the Bayesian inversion of the dispersion maps into 3D S-wave ve-
locity model is introduced and demonstrated using 1D synthetic tests. Chapter
4 (published as Valentová et al. (2017)) displays the results of both steps – phase
velocity maps as well as the 3D S-wave velocity model of the Bohemian Massif.
The geologic interpretation with the help of several 2D cross-sections correspond-
ing to the reflection and refraction profiles is also presented. In Chapter 5, we
additionally discuss the results of the inversion by comparing the synthetic data
calculated in the resulting models with the input data as well as the resulting 1D
S-wave velocity models with those by other authors.
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Chapter 1

Adjoint tomography

For many years, the seismic tomographic studies have been based on the ray the-
ory: the traveltime of seismic wave between the source and the receiver depends
only on the velocity distribution along the ray. Although the ray theory repre-
sents the high-frequency appoximation of the elastodynamic wave equation, it has
turned out to be sufficient enough to explain the fundamental information in the
measured seismograms. The method has played an important part in uncovering
the Earth’s interior: for example, detecting the most important interfaces (core-
mantle boundary, inner-core boundary, the Mohorovičić discontinuity), obtaining
the radial Earth models and even 3D models of the mantle mapping the subduct-
ing plates in the lower mantle (van der Hilst et al. (1997); Romanowicz (2003)).
These findigs represent important constraints for geodynamic application (e.g.,
numerical modelling of mantle convection), which gives insight into the processes
occuring hundreds of kilometers beneath the Earth’s surface.

Despite the numerous advantages of the ray methods, it was apparent that
when employing the lower frequency data (i.e. longer-wavelength waves), the
concept of infinitely thin rays decribing the propagation of seismic waves may
become inadequate. Therefore, a more general approach that accounts for the
volumetric dependency of wave propagation on seismic properties of media (sim-
ilar to Fresnel zone in optics) is essential. This is represented by finite-frequency
or sensitivity kernels reflecting the effect of each point on the wave propagation
(Marquering et al. (1999); Dahlen et al. (2000); Tromp et al. (2005)). The so-
called finite-frequency tomography employing the sensitivity kernels is then able
to invert not only the first arrivals but the whole waveforms. Furthermore, the
data coverage as well as the resolution is improved. The finite-frequency tomog-
raphy was thus successful to image, for example, a mantle plume beneath Hawaii
(Montelli et al. (2004)).

The sensitivity kernel is related to a wavefield perturbation with respect to
the perturbation of a model parameter. However, to calculate directly the per-
turbation with respect to every model parameter may represent a computational
challenge. One of the possible approaches to obtain the sensitivity kernel is the
so-called adjoint method. The adjoint method computes the sensitivity kernel by
performing only 2 calculations: one forward calculation of the wavefield propaga-
tion from source to receiver and one adjoint calculation (in our application this
refers to the backward propagation of the wavefield from receiver to the sources).
By combining these two wavefields, the sensitivity kernel of the model parameter

9



may be obtained. The sensitivity kernels are then used in the iterative improve-
ment of the model parameters, i.e. in the gradient method of the tomographic
inversion.

The utilization of adjoint method in seismic tomography is rather unintuitive
and its derivation is thus difficult to grasp. Therefore, this chapter is devised to
introduce the method step-by-step. In Section 1.1, basic derivation of classical
traveltime ray tomography is reminded. In Section 1.2, a very simple example
of finite-frequency traveltime tomography, that is adjoint method for membrane
wave problem, is presented. This approach is later used in Chapter 2 for real-data
tomographic inversion of surface waves. To provide the reader with a more formal
and general introduction of the adjoint approach, in Section 1.3 it is derived for
arbitrary linear differential operator and misfit. In addition, the adjoint method
is specified for problem of 3D elastic wave propagation. The basic properties
of sensitivity kernels for various misfits and frequency ranges are shown in Sec-
tion 1.4. In Section 1.6, the implementation of the adjoint method in gradient
tomographic inversion is described and employed in synthetic checkerboard tests.

1.1 Traveltime ray tomography

Let us remind the basic theory of the classical traveltime ray tomography, which
is later generalized for finite frequencies. The main objective of the classical
traveltime tomography is to minimize the traveltime misfit:

χ =
1

2

∑
i

δT 2
i , (1.1)

where (further we omit the subscript i) δT is the traveltime residual defined as the
difference between measured traveltime Tobs and theoretical traveltime calculated
for some reference model in the sense of the first arrival of high-frequency seismic
waves,

δT = Tobs − Tref. (1.2)

In the classical ray theory, one assumes that the traveltime depends on the velocity
distribution c(x) only along the infinitely thin ray, leading to

δT =

∫
ray

1

c(x)
ds−

∫
rayref

1

cref(x)
ds. (1.3)

Next, one assumes that the traveltime residual is sufficiently small, caused only
by small perturbations of the velocity δc with respect to the reference model, i.e.
c(x) = cref(x) + δc(x). Hence, the real ray is approximated by the reference one,
resulting in

δT =

∫
rayref

(
1

cref(x) + δc(x)
− 1

cref(x)

)
ds, (1.4)

or

δT =

∫
rayref

−δc(x)

c2
ref(x)

(
1 + δc(x)

cref(x)

)ds, (1.5)
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which is linearized in the denominator

δT =

∫
rayref

(
− δc(x)

c2
ref(x)

+ o(δc2(x))

)
ds. (1.6)

Finally, the terms o(δc2(x)) are omitted to obtain the linear relation between
traveltime residual δT and velocity perturbation δc(x) along the ray

δT =

∫
rayref

− δc(x)

c2
ref(x)

ds. (1.7)

Intuitively, this relationship would be generalized by assuming dependence
of the traveltime residual on the velocity perturbations in the whole 3D domain
introducing a weighting function K(x)

δT =

∫
V

K(x)δc(x)dV. (1.8)

The function K(x) is usually called (sensitivity) kernel.
It is clear, that for the classical ray tomography, the kernel takes form

K(x) = − 1

c2
ref(x)

δ(x− xrayref
), (1.9)

where δ(x− xrayref
) represents Dirac delta function along the reference ray.

1.2 Adjoint method for simple example

We now derive the adjoint method for kernel calculation for a simple example of
membrane wave (scalar wave in elastic isotropic inhomogeneous media). Here, we
follow the derivation by Fichtner et al. (2006). Alternative derivation employing
the Lagrange multipliers method was done by Liu and Tromp (2006), see also
Section 1.3.

Firstly, assume the cross-correlation traveltime misfit

χ =
1

2

∑
i

∆T 2
i , (1.10)

where (subscript i is further omitted without loss of generality) ∆T is the trav-
eltime obtained from cross-correlation of the observed (uobs(t)) and synthetic
waveform (u(t)), i.e.

∆T = arg max
t

∫
u(τ)uobs(t+ τ)dτ. (1.11)

Furthermore, the wavefield u satisfies the equation for membrane wave,

ü(x, t)−∇ ·
(
c2(x)∇u(x, t)

)
= f(x, t) (1.12)

for all x ∈ Ω and all t, where c(x) is the velocity of the elastic wave.
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The initial and boundary conditions are assumed, for simplicity as

u(x, t0) = 0, (1.13)

u̇(x, t0) = 0, (1.14)

and u(x, t) = 0, for x ∈ ∂Ω (1.15)

Eq. (1.12) can be expressed alternatively as∫
Ω

∫
t

[ü(x, t)−∇ ·
(
c2(x)∇u(x, t)

)
− f(x, t)]φ(x, t)dV dt = 0 (1.16)

for arbitrary φ(x, t).
Condition (1.16) may be added to the misfit calculation for one crosscorrela-

tion traveltime ∆T :

χ =
1

2
∆T 2 +

∫
Ω

∫
t

[ü(x, t)−∇ ·
(
c2(x)∇u(x, t)

)
− f(x, t)]φ(x, t)dV dt, (1.17)

or also

χ =

∫
Ω

[
1

2
∆T 2δ(x− xrec)+

+

∫
t

[ü(x, t)−∇ ·
(
c2(x)∇u(x, t)

)
− f(x, t)]φ(x, t)dt

]
dV, (1.18)

where δ(x− xrec) is delta function in the reciever.
The variational derivate of the misfit with respect to the model parameter

c(x) is

δcχ =

∫
Ω

{
∆Tδc(∆T )δ(x− xrec)+

+

∫
t

[δcü(x, t)−∇·(2c(x)δc∇u(x, t))−∇·
(
c2(x)∇δcu(x, t)

)
]φ(x, t)dt

}
dV.

(1.19)

In the first term of (1.19), the cross-correlation traveltime perturbation may
be expressed as (derived later in Section 1.4.1)

δc(∆T ) = −
∫
t
u̇obs(x, t+ ∆T )δcu(x, t)dt∫
t
u̇(x, τ)u̇obs(x, τ + ∆T )dτ

. (1.20)

The denominator in (1.20) represents wavefield normalization, we will denote it
N .

Putting (1.20) into (1.19), the misfit derivative is

δcχ =

∫
Ω

∫
t

[
−∆T

1

N
u̇obs(x, t+ ∆T )δcu(x, t)δ(x− xrec)+

+[δcü(x, t)−∇·(2c(x)δc(x)∇u(x, t))−∇·
(
c2(x)∇δcu(x, t)

)
]φ(x, t)

]
dtdV.

(1.21)
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Now, we would like to join all terms containing the variation of wavefield
δcu(x, t). However, except for the first term of (1.21), δcu is subject to temporal
or spatial differentiation and some calculus is necessary.

In the second term of (1.21), per-partes integration in time is applied twice∫
t

δcü(x, t)φ(x, t)dt =
[
δcu̇(x, t)φ(x, t)

]t1
t0
−
[
δcu(x, t)φ̇(x, t)

]t1
t0

+

∫
t

δcu(x, t)φ̈(x, t)dt.

(1.22)

For t = t0, the initial conditions (1.13)–(1.14) for δcu may be applied. To remove
the terms for final t1, terminal conditions for φ are defined:

φ(x, t1) = 0, (1.23)

φ̇(x, t1) = 0, (1.24)

yielding∫
t

δcü(x, t)φ(x, t)dt =

∫
t

δcu(x, t)φ̈(x, t)dt (1.25)

For the last term of (1.21), firstly rule for divergence of product is assumed:

∇ ·
(
c2(x)∇δcu(x, t)

)
φ(x, t) = ∇ ·

(
c2(x)φ(x, t)∇δcu(x, t)

)
−

− c2(x)∇φ(x, t) · ∇δcu(x, t), (1.26)

and similarly again

∇ ·
(
c2(x)∇δcu(x, t)

)
φ(x, t) = ∇ ·

(
c2(x)φ(x, t)∇δcu(x, t)

)
−

−∇ ·
(
c2(x)∇φ(x, t)δcu(x, t)

)
+∇ ·

(
c2(x)∇φ(x, t)

)
δcu(x, t) (1.27)

When integrating (1.27) over Ω, Gaussian theorem is applied for the first two
terms ∫

Ω

∇ ·
(
c2(x)∇δcu(x, t)

)
φ(x, t)dV =

∫
∂Ω

n ·
(
c2(x)φ(x, t)∇δcu(x, t)

)
dS−

−
∫
∂Ω

n ·
(
c2(x)∇φ(x, t)δcu(x, t)

)
dS+

∫
Ω

∇·
(
c2(x)∇φ(x, t)

)
δcu(x, t)dV.

(1.28)

The second term of (1.28) disappears due to perturbation of the (constant, zero)
boundary condition (1.15) for wavefield u. The first term disappears, if we require
the boundary condition for φ(x, t) as

φ(x, t) = 0, for x ∈ ∂Ω. (1.29)

Then, (1.28) reduces to∫
Ω

∇·
(
c2(x)∇δcu(x, t)

)
φ(x, t)dV =

∫
Ω

∇·
(
c2(x)∇φ(x, t)

)
δcu(x, t)dV. (1.30)
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Note, that similarly to these operations, in (1.21) the term containing δc may
be expressed as∫

Ω

∇ · (2c(x)δc(x)∇u(x, t))φ(x, t)dV =

=

∫
Ω

[∇ · (2c(x)δc(x)∇u(x, t)φ(x, t))− 2c(x)δc(x)∇u(x, t) · ∇φ(x, t)] dV =

=

∫
∂Ω

n·(2c(x)δc(x)∇u(x, t)φ(x, t)) dS−
∫

Ω

2c(x)δc(x)∇u(x, t)·∇φ(x, t)dV

(1.31)

so applying the boundary condition (1.29) for φ(x, t), we get∫
Ω

∇· (2c(x)δc(x)∇u(x, t))φ(x, t)dV = −
∫

Ω

2c(x)δc(x)∇u(x, t) ·∇φ(x, t)dV.

(1.32)

Combining all terms (1.25), (1.30) and (1.32) in (1.21) and joining terms
containing δcu, we obtain

δcχ =

∫
Ω

∫
t

2c(x)δc(x)∇u(x, t) · ∇φ(x, t)+

+

[
−∆T

N
u̇obs(x, t+∆T )δ(x−xrec)+φ̈(x, t)−∇·

(
c2(x)∇φ(x, t)

) ]
δcu(x, t)dV dt.

(1.33)

So far, function φ(x, t) was arbitrary except for zero terminal and boundary
conditions above. However, if we consider φ(x, t) fulfilling

φ̈(x, t)−∇ ·
(
c2(x)∇φ(x, t)

)
=

∆T

N
u̇obs(x, t+ ∆T )δ(x− xrec), (1.34)

then the misfit derivative is reduced to

δcχ =

∫
Ω

∫
t

2c(x)δc(x)∇u(x, t) · ∇φ(x, t). (1.35)

Eq. (1.34) for φ(x, t) is called adjoint equation, φ(x, t) is then called adjoint
wavefield with source term

f †(x, t) =
∆T

N
u̇obs(x, t+ ∆T )δ(x− xrec), (1.36)

so-called adjoint source. Note that for the case of membrane waves, the adjoint
equation is identical to the original one (i.e., the problem is self-adjoint).

The sensitivity kernel for the cross-correlation traveltime is expressed from

δcχ = ∆Tδc(∆T ) = ∆T

∫
Ω

K(x)δc(x)dV. (1.37)

Comparing (1.35) and (1.37) we get

K(x) =

∫
t

2c(x)∇u(x, t) · ∇φ(x, t)dt. (1.38)

with φ(x, t) calculated using ∆T = 1 in (1.36).
As expected, the sensitivity kernel (1.38) depends on spatial coordinates x

and is nontrivial combination of the forward and adjoint wavefields. This makes
it less intuitive than simple ray sensitivity kernel (1.9).
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1.3 General derivation of the adjoint method

For the sake of completness, here we show derivation of the adjoint method of
misfit minimization for arbitrary linear differential operator following Lagrange
multiplier approach as in Liu and Tromp (2006).

We start from the misfit minimization assuming residuals Di obtained between
observed and synthetic wavefields ui(x, t)

χ =
1

2

∑
i

D
(
ui(xi, t)

)
, or (1.39)

=
1

2

∑
i

∫
Ω

D
(
ui(x, t)

)
δ(x− xi)dV. (1.40)

The residual D may represent residual of either traveltime measurement in L2
norm or directly the wavefield differences or other complex properties derived
from the wavefield (e.g., time-frequency misfits, Fichtner et al. (2008); Kristeková
et al. (2009)).

The wavefield u(x, t) for each measurement satisfies general condition

Lm(u(x, t)) = f(x, t) (1.41)

for all x and t. Here Lm represents linear differential operator on the wavefield
u(x, t), which depends on model parameters m(x), and f(x, t) is the source term.
Suppose, that Lm is also continuous, i.e. bounded.

To minimize/maximize a functional which is also subject to another con-
traint(s), the method of Lagrange multiplier is employed. Firstly, the Lagrangian
is constructed

L =
1

2

∑
i

{∫
Ω

D
(
ui(x)

)
δ(x− xi)dV+

+

∫
Ω

∫
t

λi(x, t) · [Lm(ui(x, t))− f i(x, t)] dtdV

}
. (1.42)

The (variational) derivative of the Lagrangian with respect to the model pa-
rameters m(x, t)

δmL =
∑
i

{∫
Ω

δmD(ui(x, t))δ(x− xi)dV+

+

∫
Ω

∫
t

λi · [Lm(δmui(x, t)) + δmLm(ui(x, t))] dtdV

}
. (1.43)

Using the definition of adjoint operator L† (considering inner product in form
〈., .〉 =

∫
Ω

∫
t
. .dtdV ):

〈Lm(ui(x, t)),λi(x, t)〉 = 〈ui(x, t),L†m(λi(x, t))〉, (1.44)

and in addition requiring that variation of D may be expressed as

δmD(ui(x, t)) =

∫
t

d
(
ui(x, t)

)
· δmui(x, t)dt, (1.45)
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it is possible to rewrite (1.43) as

δmL =
∑
i

{∫
Ω

∫
t

[
d(ui(x, t))δ(x− xi) +L†m(λi(x, t))

]
· δmui(x, t)+

+

∫
Ω

∫
t

λi(x, t) · δmLm(ui(x, t))dtdV

}
. (1.46)

If for each i, equation

L†m(λi(x, t)) = −d(u(x, t))δ(x− xi) (1.47)

is fulfilled, then the variation of Lagrangian (1.46) reduces to

δmL =
∑
i

∫
Ω

∫
t

λi(x, t) · δmLm(ui(x, t))dtdV. (1.48)

Since (1.47) employs the adjoint operator to Lm, function λi(x, t) is called
the adjoint wavefield. The term on the right-hand side of (1.47) represents the
adjoint source

f †i (x, t) = −d(ui(x, t))δ(x− xi). (1.49)

Note, that the adjoint source is a point source located in the receiver’s position
and its time function depends on the misfit definition.

Furthermore, let us assume that operator Lm is linear in model parameters
m, then δmLm = Lδm. We can define linear operator A as

Lδm(ui(x, t)) = Aui
(δm(x)), (1.50)

find its adjoint A† and rewrite the derivative of Lagrangian (1.48) as

δmL =
∑
i

∫
Ω

∫
t

A†ui
(λi(x, t))δm(x)dtdV. (1.51)

This gives the relation for the sensitivity kernel of the ith measurement

(Km)i(x) =

∫
t

A†ui
(λi(x, t))dt. (1.52)

Operator A† is applied to the adjoint wavefield λi(x, t) and depends on the for-
ward wavefield ui(x, t).

1.3.1 Adjoint method for elastic wave propagation

We derive the adjoint operator for problem of elastic wave propagation in 3D
heterogeneous media:

ρ(x)ü(x, t)−∇ ·
(
C(x) : ∇u(x, t)

)
= f(x, t), (1.53)
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where ρ(x) is density and C(x) is the 4th order tensor of elastic parameters. We
assume initial and boundary conditions

u(x, t0) = 0, (1.54)

u̇(x, t0) = 0, and (1.55)

n(x) · σ(x, t) = 0, for x ∈ ∂Ω (1.56)

where σ(x, t) = C(x) : ∇u(x, t) is the stress, and n(x) is normal to ∂Ω.
The linear operator is thus defined as

L = ρ(x)
∂2

∂t2
+∇ ·C(x) : ∇. (1.57)

In this case, the model parameters are represented by density and elastic
parameters

m(x) = (ρ(x),C(x)). (1.58)

We now search for the adjoint operator L†

〈L(u(x, t)),λ(x, t)〉 = 〈u(x, t),L†(λ(x, t))〉 (1.59)

where

〈L(u(x, t)),λ(x, t)〉 =

=

∫
Ω

∫
t

[
ρ(x)ü(x, t)−∇ ·

(
C(x) : ∇u(x, t)

)]
· λ(x, t)dtdV. (1.60)

The first term of (1.60) is solved using double per-partes integration∫
Ω

∫
t

ρ(x)ü(x, t) · λ(x, t)dtdV =

∫
Ω

ρ(x)
{[
u̇(x, t) · λ(x, t)

]t1
t0
−

−
[
u(x, t) · λ̇(x, t)

]t1
t0

+

∫
t

u(x, t) · λ̈(x, t)dt
}

dV. (1.61)

Now the initial conditions (1.54)–(1.55) for u are applied. Furthermore, when we
require the terminal conditions for λ in form:

λ(x, t1) = 0, (1.62)

λ̇(x, t1) = 0, (1.63)

(1.61) simplifies to∫
Ω

∫
t

ρ(x)ü(x, t) · λ(x, t)dtdV =

∫
Ω

∫
t

ρ(x)u(x, t) · λ̈(x, t)dtdV. (1.64)

Considering the second term in (1.60), we use identities based on divergence
of product and symmetries of C(x), obtaining

∇ ·
(
C(x) : ∇u(x, t)

)
· λ(x, t) =∇ ·

(
C(x) : ∇u(x, t) · λ(x, t)

)
−

−C(x) : ∇u(x, t) : ∇λ(x, t)

= ∇ ·
(
C(x) : ∇u(x, t) · λ(x, t)

)
−∇ ·

(
C(x) : ∇λ(x, t) · u(x, t)

)
+

+∇ ·
(
C(x) : ∇λ(x, t)

)
· u(x, t).

(1.65)
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Substituting (1.65) in the integral of (1.60) and applying Gaussian theorem, we
get∫
t

∫
Ω

∇·
(
C(x) : ∇u(x, t)

)
·λ(x, t)dV dt =

∫
t

{∫
∂Ω

n(x)·C(x) : ∇u(x, t)·λ(x, t)dS−

−
∫
∂Ω

n(x)·C(x) : ∇λ(x, t)·u(x, t)dS+

∫
Ω

∇·
(
C(x) : ∇λ(x, t)

)
·u(x, t)dV

}
dt.

(1.66)

Assuming the boundary conditions (1.56), the first term is zero. To cancel out
the second term, the boundary conditions are set similarly for λ(x, t):

n(x) ·C(x) : ∇λ(x, t) = 0 for x ∈ ∂Ω. (1.67)

Thus, we have derived the second part of the adjoint operator∫
Ω

∫
t

∇·
(
C(x) : ∇u(x, t)

)
·λ(x, t)dtdV =

∫
Ω

∫
t

∇·
(
C(x) : ∇λ(x, t)

)
·u(x, t)dtdV.

(1.68)

Summing up terms in equations (1.64) and (1.68)),∫
Ω

∫
t

[
ρ(x)ü(x, t)−∇ ·

(
C(x) : ∇u(x, t)

)]
· λ(x, t)dtdV =

=

∫
Ω

∫
t

[
ρ(x) · λ̈(x, t)−∇ ·

(
C(x) : ∇λ(x, t)

)]
· u(x, t)dtdV, (1.69)

we have found the adjoint operator to the operator of elastic wave equation

L† = ρ(x)
∂2

∂t2
+∇ ·C(x) : ∇. (1.70)

with terminal and boundary conditions (1.62),(1.63) and (1.67). The adjoint
operator is identical as the original operator L, that is the operator of the elastic
wave propagation is self-adjoint.

Furthermore, operator L is linear in model parameters ρ(x) and C(x), leading
to the variation of Lagrangian (for one measurement) in form

δmL = 〈Lδm(u(x, t)),λ(x, t)〉

=

∫
Ω

∫
t

[
δρ(x)ü(x, t)−∇ ·

(
δC(x) : ∇u(x, t)

)]
· λ(x, t)dtdV. (1.71)

The kernel for density ρ(x) is obtained directly as

Kρ(x) =

∫
t

ü(x, t) · λ(x, t)dt

= −
∫
t

u̇(x, t) · λ̇(x, t)dt. (1.72)

To find the kernel for C(x), similar operations to finding the adjoint operator
to L should be performed (applying rule for divergence of product and Gaussian
theorem, assuming boundary conditions) and we obtain

KC(x) =

∫
t

∇u(x, t)∇λ(x, t)dt. (1.73)
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1.3.2 Adjoint method for wave propagation in elastic isotropic
media

In isotropic case, the tensor of elastic parameters C(x) depends only on two
parameters, for example the Lamé parameters λ(x) and µ(x)

Cklmn(x) = λ(x)δklδmn + µ(x)(δkmδln + δknδlm). (1.74)

When applied into the definition of the sensitivity kernel for C for one mea-
surement (1.73), one easily obtains kernels for Lamé parameters:

Kλ(x) = KCklmn
(x)δklδmn (1.75)

=

∫
t

uk,l(x, t)λm,n(x, t)δklδmndt =

∫
t

uk,k(x, t)λm,m(x, t)dt (1.76)

=

∫
t

(∇ · u(x, t))(∇ · λ(x, t))dt, (1.77)

and

Kµ(x) = KCklmn
(x)(δkmδln + δknδlm) = 2KCklmn

(x)δkmδln (1.78)

=

∫
t

2uk,l(x, t)λm,n(x, t)δkmδlndt =

∫
t

2uk,n(x, t)λk,n(x, t)dt (1.79)

=

∫
t

2(∇u(x, t)) : (∇λ(x, t))dt. (1.80)

where in the first step we have used symmetric property of C.

1.3.3 Adjoint method for membrane wave

The membrane wave problem is a special case of isotropic elastic wave problem
assuming 2D (in general inhomogeneous) media (representing a membrane) and
scalar wavefield u which is perpendicular to the 2D membrane:

L = ρ(x)ü(x, t)−∇ ·
(
µ(x)∇u(x, t)

)
(1.81)

The sensitivity kernel is easily obtained for parameter µ using scalar wavefields
in (1.80):

Kµ(x) =

∫
t

2∇u(x, t) · ∇λ(x, t)dt (1.82)

Hereafter, this expression is employed.

1.4 Sensitivity kernels - examples and proper-
ties

Here, we show several examples of the sensitivity kernels calculated by 2D ad-
joint method (i.e., assuming membrane wave problem) and discuss their most
important properties.
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In membrane wave equation (1.81) we further assume constant density ρ. The
forward source used here is a point source with Ricker wavelet time function:

f(x, t) = δ(x− xsrc)

[
1

2
− (πfpt)

2

]
e−(πfpt)2 , (1.83)

with fp representing the dominant frequency of the wavelet.
Moreover, in these simple examples we assume homogenous media µ(x) = µ

and the perturbation in media generating the perturbed wavefield is also homoge-
nous, i.e. δµ(x) = δµ. The sensitivity kernels are calculated according to (1.82),
with adjoint wavefield generated by adjoint source depending on misfit according
to (1.49).

In the following, we show the sensitivity kernels assuming different misfit
types or frequency content. For the calculation, we have employed the 2D adjoint
version of software SeisSol. One forward calculation for the 20s Ricker wavelet
takes approximately 1 CPU-hour.

1.4.1 Sensitivity kernels for various misfits

Reminding Section 1.3, the dependency of the sensitivity kernels on the type of
the employed misfit (i.e. type of measurement D) is not straightforward but is
resulting from the adjoint wavefield as generated by the adjoint source:

f †(x, t) = −d(u(x, t))δ(x− xrec), (1.84)

where xrec is location of the receiver and function d(u(x, t)) representing the
adjoint source time function comes from expression

δµD =

∫
t

d(u(x, t))δµu(x, t)dt. (1.85)

Here, we show derivation of the adjoint sources and show examples of sensitiv-
ity kernels for some of traditionally employed misfit measurements. For sensitivity
kernels of other misfit types, the reader is referred to Tromp et al. (2005); Fichtner
et al. (2008); Chen et al. (2010); Bozdağ et al. (2011).

Full waveform misfit

The full waveform misfit for a measurement in xrec is defined as

χ =
1

2

∫
Ω

∫
t

[u(x, t)− uobs(x, t)]
2 δ(x− xrec)dtdV. (1.86)

The variation of the misfit with respect to model parameter µ(x) leads to

δµχ =

∫
Ω

∫
t

[u(x, t)− uobs(x, t)] δ(x− xrec)δµu(x, t)dtdV, (1.87)

leading straightforward to adjoint source in form

f †(x, t) = − [u(x, t)− uobs(x, t)] δ(x− xrec). (1.88)
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Cross-correlation traveltime misfit

As already mentioned above (see Section 1.2), the cross-correlation traveltime
misfit is defined

χ =
1

2
∆T 2, (1.89)

where the traveltime residual ∆T is obtained using cross-correlation function
between observed wavefield uobs(x, t) and calculated wavefield u(x, t)

C(x, t) =

∫
t

u(x, τ)uobs(x, t+ τ)dτ. (1.90)

as

∆T = arg max
t

∫
Ω

C(x, t)δ(x− xrec)dV (1.91)

Now, the derivative of ∆T with respect to µ should be expressed using δµu:

δµD = ∆Tδµ(∆T ) =

∫
t

d(u(x, t))δµu(x, t)dt. (1.92)

Firstly, we differentiate the cross-correlation function C(x, t) and employ that
for t = ∆T , C(x, t) attains its maximum:

∂C(x, t)

∂t

∣∣∣∣
t=∆T

=

∫
t

u(x, τ)u̇obs(x,∆T + τ)dτ = 0. (1.93)

This equation is now differentiated with respect to the model parameter µ. Note
that now not only the calculated wavefield u(x, t) but also the position of cross-
correlation maxima ∆T depends on the model parameter:∫

t

[δµu(x, τ)u̇obs(x, τ + ∆T ) + u(x, τ)üobs(x, τ + ∆T )δµ(∆T )] dt = 0. (1.94)

From (1.94), the variation in the traveltime residual may be expressed

δµ(∆T ) = −
∫
t
u̇obs(x, τ + ∆T )δµu(x, τ)dτ∫
t
u(x, τ)üobs(x, τ + ∆T )dτ

. (1.95)

Comparing equations (1.92) and (1.95), we find

d(u(x, t)) = −∆T
u̇obs(x, t+ ∆Ti)∫

t
u(x, τ)üobs(x, τ + ∆Ti)dτ

(1.96)

leading to adjoint source in form

f †(x, t) = ∆T
u̇obs(x, t+ ∆T )∫

t
u(x, τ)üobs(x, τ + ∆T )dτ

δ(x− xrec). (1.97)

Note that (1.97) deviates from the more traditional form of normalized calcu-
lated velocity weighed by the traveltime residual, as used and derived for instance
by Dahlen et al. (2000); Marquering et al. (1999):

f †(x, t) = −∆T
1

‖u̇(x)‖2
u̇(x, t)δ(x− xrec). (1.98)

To obtain (1.98), one assumes in (1.97) that the observed and calculated wave-
forms are similar, differing only in time shift ∆T , i.e. u̇obs(x, t + ∆T ) ≈ u̇(x, t).
Moreover, the integration per partes in the denominator is performed (assuming
zero waveforms at the beginning and end of time interval):

∫
t
u(x, τ)üobs(x, τ +

∆T )dτ ≈ −
∫
t
[u̇(x, τ)]2 dτ = −‖u̇(x)‖2
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Envelope cross-correlation traveltime misfit

Although this type of misfit is not generally used, it may be employed for the in-
version of group wave traveltimes when membrane wave approximation of surface
wave propagation is assumed.

The misfit would be defined as

χ =
1

2
∆T 2

env, (1.99)

where ∆Tenv is calculated from the cross-correlation of the signal envelopes e(x, t):

∆Tenv = arg max
t

∫
t

∫
Ω

e(x, τ)eobs(x, t+ τ)δ(x− xrec)dV dτ, (1.100)

with the signal envelopes e(x, t) defined as

e(x, t) =
√
u(x, t)2 +H(u(x, t))2, (1.101)

where H denotes the Hilbert transform.
As shown in (1.95), the variation using the cross-correlation function leads to

δµ(∆Tenv) = −
∫
t
ėobs(x, τ + ∆Tenv)δµe(x, τ)dτ∫
t
e(x, τ)ëobs(x, τ + ∆Tenv)dτ

. (1.102)

We further need to express the variation of the envelope δµe(x, t) using the vari-
ation of the waveform δµu(x, t):

δµe(x, t) =
∂e

∂u
δµu(x, t)

=
1

e(x, t)
[u(x, t)δµu(x, t) +H(u(x, t))H(δµu(x, t))] . (1.103)

Now we need to extract δµu(x, t) from the Hilber transform:∫
ėobs(x, τ + ∆Tenv)

e(x, τ)
H(u(x, τ))H(δµu(x, τ))dτ =

=

∫
ėobs(x, τ + ∆Tenv)

e(x, τ)
H(u(x, τ))

(∫
δµu(x, t)

π(τ − t)
dt

)
dτ

=

∫∫
ėobs(x, τ + ∆Tenv)

e(x, τ)
H(u(x, t))

1

π(τ − t)
dτδµu(x, t)dt

=

∫
−H

(
ėobs(x, t+ ∆Tenv)

e(x, t)
H(u(x, t))

)
δµu(x, τ)dτ, (1.104)

where we have interchanged the two time integrals (valid operation assuming that
the result exists).

To sum up all terms, the adjoint source is in form

f †(x, t) =
∆Tenvδ(x− xrec)∫

ė(x,∆Tenv + τ)ėobs(x, τ)dτ

[
ėobs(x, t+ ∆Tenv)u(x, t)

e(x, t)
−

−H
(
ėobs(x, t+ ∆Tenv)H(u(x, t))

e(x, t)

)]
. (1.105)
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Moreover, assuming (similarly as for the cross-correlation of waveforms) that the
envelopes e(x, t) and eobs(x, t) are similar and differ only by the time shift ∆Tenv,
the adjoint sources are simplified to

f †(x, t) = −∆Tenvδ(x− xrec)

‖ė(x)‖2

[
ė(x, t)u(x, t)

e(x, t)
−H

(
ė(x, t)H(u(x, t))

e(x, t)

)]
. (1.106)

One notices that in the denominator the envelope might be e(x, t) = 0. This
happens when both u(x, t) and its Hilbert tranformH(u(x, t)) are zero. When in-
specting the numerator, the envelope is multiplied by the waveform or its Hilbert
tranform. The estimations lead to the whole term ėu

e
in (1.105) or (1.106) to be

O(u(x, t)) for all t and is thus bounded.

Fig. 1.1 shows the example of the normalized adjoint sources for the three
different types of misfits assumed above. Although the definitions for all three
types are quite diverse, the time functions of the adjoint sources in Fig. 1.1 are
similar – especially for the waveform and their crosscorrelation traveltime misfit.
Omitting the amplitudes, they actually differ by a small time shift. This is
presumably the result of the simple setting in the example (homogenous media),
where the difference between the perturbed and unperturbed waveform leads
only to the time shift. The most distinct of them is the envelope cross-correlation
traveltime misfit with more complex behavior resulting from the combination of
the two terms in (1.105) or (1.106).

Figure 1.1: Normalized adjoint sources for different types of misfits (CC stands
for cross-correlation).

The sensitivity kernels corresponding to the above-mentioned misfit types are
shown in Fig. 1.2. The kernels have quite complex form and resemble the Fresnel
zones in optics. Moreover, they show very high amplitudes in the source and the
receiver. All kernels are similarly wide reflecting the same frequency content. The
waveform kernel shows positive and negative alternating (Fresnel) zones while the

23



traveltime kernels show one main (positive) Fresnel zone surrounded by weaker
and thinner (negative) higher Fresnel zones. In the central part of the kernels
along the ray, the waveform kernel shows reverse amplitude compared to the
traveltime kernels. The traveltime kernels show weaker amplitude in their central
part. This phenomenon is known in 3D as banana-doughnut paradox, where the
cross-correlation traveltime sensitivity kernel is zero along the ray path (Dahlen
et al., 2000; Hung et al., 2000). Note, that both (envelope and signal cross-
correlation) traveltime kernels are very similar. The envelope traveltime kernel
has only higher amplitudes (probably it is a result of positive superposition of
the wavefields generated by the adjoint sources containing the two terms). One
may, therefore, in case of the simple waveform employ in the inversion the simpler
form of the traveltime kernel (i.e., signal cross-correlation kernel).

Figure 1.2: Sensitivity kernels for 3 different types of misfits (CC stands for
cross-correlation).

In conclusion, the waveform misfit takes into account both phase and am-
plitudes of signals. However, if one is not interested in amplitudes or the data
consist of traveltime measurements only, the cross-correlation traveltime misfit
can be employed. We prefer the utilization of the cross-correlation traveltime mis-
fit over the first-arrival traveltime misfit as it better accounts for the frequency
content of the data. However, if the observed waveform is very complex, the
traveltime misfit is inapplicable and the waveform misfit may give questionable
results. In this case, use of a more advanced misfit (e.g., time-frequency misfit)
is desirable (Bozdağ et al., 2011; Fichtner et al., 2008).
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1.4.2 Frequency-dependence of the sensitivity kernels

To examine the dependency of the sensitivity kernels on the frequency content
of the data, we consider different dominant frequency of the Ricker wavelet in
particular 20 s, 10 s and 5 s. The wavelet and their spectra are shown in Fig. 1.3.

(a) (b)

Figure 1.3: Ricker wavelet function for different dominant frequencies (a) and
their normalized spectra (b).

The cross-correlation traveltime sensitivity kernels for each frequency are
shown in Fig. 1.4. From Fig. 1.4, we can deduce that when employing the higher
frequency data (i.e., low periods), the sensitivity kernels are narrower. This agrees
with the intuitive concept of the sensitivity kernel which should for infinitely high
frequency reduce to infinitely thin line – the ray.

1.4.3 Sensitivity kernel – Gaussian smoothing

The sensitivity kernel contains singularity inherited from the wavefields u(x, t)
and u†(x, t), located in the point source and adjoint point source, as already seen
in Fig. 1.2 and 1.4.

In the adjoint tomographic inversion, the individual kernels are summed into
the misfit gradient kernel, which is used, for example, in the steepest descent
method to update the model parameters. If the kernels are unmodified, the
model would change mainly in the vicinity of the singularities, that is where the
sources and the receivers are located. To avoid this issue, the kernels are usually
preconditioned by various means. One of the simpler and thus commonly em-
ployed kernel regularization is smoothing the kernels, for example by convolution
with a Gaussian function. This approach was also implemented in the Seissol2D,
therefore it is demonstrated here.

Fig. 1.5 shows cross-correlation traveltime sensitivity kernels smoothed by 2D
Gaussian of different widths, in particular 30, 60 and 100 km. The sensitivity ker-
nels in the example were calculated for 20 s Ricker wavelet assuming homogenous
media of 3km/s, which gives dominant wavelength of 60 km. Thus the assumed
size of the Gaussian represents either undersmoothing, ideal smoothing or over-
smoothing of the problem (see also Chapter 2) .

Already the smoothing using 30 km wide Gaussian significantly eliminates the
kernel’s singularities while preserving its main features – the second Fresnel zone
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Figure 1.4: Traveltime (cross-correlation) sensitivity kernels with different fre-
quency of Ricker wavelet source.

and weaker sensitivity in the central part. With the increasing the smoothing
width, the first Fresnel zone is more homogeneous and the second Fresnel zone
diminishes. In the case of oversmoothing by the 100 km wide Gaussian, the
traveltime sensitivity kernel is completely blurred in the first Fresnel zone.

In Fig. 1.6 we show the waveform sensitivity kernels for Gaussian smoothing
30 km and 100 km. As in the previous case, the smoothing of 30 km wide Gaussian
maintains the basic properties of the kernel and removes the singularities. On
the other hand, the oversmoothing leads to oversimplified kernel containing only
one Fresnel zone, which extends over all positive and negative Fresnel zones of
the original unsmoothed kernel (see also Fig. 1.2). In this case, the blurred kernel
shows decrease in amplitudes in the central part which is a relic of the negative
sensitivity in the original kernel.

The natural choice of the smoothing size might be considered lower than
the dominant wavelength, that is the one which reduces the singularities but
preserves the main features of the original kernel. In the presented examples
this corresponds to the smoothing by 30 km wide Gaussian. However, real data
application (which is considered later in Chapters 2 and 4) requires significantly
larger values of the smoothing width to reduce the effect of the data noise. In
particular, for the 20 s Love wave group traveltimes with the estimated noise level
the optimal smoothing width of the Gaussian was 100 km.
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Figure 1.5: Cross-correlation (CC) traveltime sensitivity kernels convolved with
Gaussian bell of different widths: 30 km, 60 km and 100 km.

1.5 Gradient based misfit minimization and im-
plementation

Gradient method is a common approach in misfit minimization for nonlinear
problems. The method is iterative, the new model is found by modifying the
current model in the so-called descent direction γn(x):

mn+1(x) = mn(x) + Cnγn(x) (1.107)

where Cn is a positive value, usually denoted as the stepsize. The process is
repeated until the misfit minimum is satisfactorily achieved.

To calculate the descent direction, the misfit gradient (steepest ascent di-
rection) is employed. If the descent direction is calculated as negative of the
gradient, the method is known as the steepest descent. However, the steepest
descent method may by converging to the minimum of the misfit slowly as the
steepest descent direction may apply only locally. Therefore, more advanced
methods to calculate the descent directions are applied: Newton method which
employs not only the misfit gradient but also the second derivative – Hessian,
or conjugate gradient method which calculates the descent direction using all
previous directions.

According to (1.51) and (1.52), we have expressed the gradient of the La-
grangian using the sensitivity kernels (Km)i(x) calculated by the adjoint method.
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Figure 1.6: Waveform sensitivity kernels convolved with Gaussian bell of dif-
ferent widths: 30km and 100km.

For the steepest descent method, (1.107) then reads

mn+1(x) = mn(x)− Cn
∑
i

(Kmn)i(x). (1.108)

However, in practice conjugate gradient approach is preferred as faster converging
method,

Minimization employing the adjoint calculation was implemented into the
2D version of SeisSol (http://www.seissol.org/). We have further developed this
implementation (originally prepared by Josep de la Puente) to be suitable for our
application.

The forward calculation is based on arbitrary high-order accurate derivative
discontinuous Galerkin method (ADER-DG, Käser and Dumbser (2006); Dumb-
ser and Käser (2006); Käser et al. (2007); Dumbser et al. (2007); de la Puente
et al. (2007)). We use unstructured triangular mesh, where the size of the ele-
ments depends on the dominant frequency (wavelength) of the propagating waves
– the lower frequency (i.e., the higher period) the larger is the size of the element.
Similarly, the temporal sampling is adjusted. In particular, for the 20s membrane
wave, the size of the mesh elements is 10 km and the time sampling is 0.1 s.

The kernels are calculated on regular 2D grid; its spacing depends likewise on
the dominant period of the calculated waves. To calculate the sensitivity kernels
the procedure is the following: the forward 2D wavefield is calculated and stored
in the computer memory for the 2D kernel grid in selected time intervals. To save
the memory space, the time sampling step of the stored wavefield is larger than the
time step of the forward calculation, i.e., several tens to hundred timesteps are not
stored. After the forward calculation, the adjoint sources are determined using
the residuals between the synthetics and the data and the adjoint calculation is
performed. During this calculation, adjoint wavefield is combined with the stored
forward wavefield for the corresponding time steps on the 2D regular grid and
integrated into the sensitivity kernel.

The calculated kernels are then summed into the misfit gradient kernel. The
sensitivity kernels derived in Section 1.3 correspond to each data residual, which
leads to high computational cost: (number of measurements)×(2 simulations).
To reduce the computational demand, Tromp et al. (2005) proposed to use the
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so-called event sensitivity kernels, where all kernels from a given forward source
are calculated at once: the forward wavefield is saved on the kernel grid, the
adjoint sources are computed for all receivers and then the adjoint wavefield is
backpropagated from all the adjoint sources together. During the latter calcula-
tion, the event sensitivity kernel is being evaluated. The computational cost is
(number of forward sources)×(2 simulations), which presents significant reduction
in case of large number of receivers – a common situation in seismic tomography.

The sensitivity kernels or their sum representing the gradient kernel are even-
tually smoothed out by convolution with 2D Gaussian function of chosen width.

The gradient method strongly depends on the choice of the starting model.
Since we have no detailed apriori information on the starting model, we use
homogeneous starting model with velocity obtained from average dispersion curve
of the studied area. We believe that this general model is less prone to be stuck
in local minimum of the misfit.

The new model is calculated iteratively from the previous one using the conju-
gate gradient method, the scheme employed in our application was either Polak-
Ribiére or Hestenes-Stiefel (see e.g., Tarantola (2005)). We have tested both
methods, they give similar results and have good properties when the old and
new gradients are significantly different. After determining the descent direction,
the stepsize Cn in descent direction γn(x) is decided: several test steps are per-
formed in the descent direction, the misfit in the testing models is calculated
and quadratic formula is fitted to the stepsize-misfit dependence. The minimum
obtained from the fitted parabola is assigned as the stepsize Cn. For this, one
would need to calculate the misfit for all measurements in several testing models,
which presents additional computational burden. Therefore, the misfit for the
test steps is calculated only for a subset of forward sources which are manually
chosen to achieve good coverage over the studied area.

1.6 Synthetic checkerboard tests

The synthetic tests were carried out to examine the performance of the adjoint
inversion by SeisSol2D. Here we present the results of the checkerboard tests for
2D membrane wave problem. The checkerboard tests, apart from their (mis)use
in real data application, may provide insight into the general properties of the
inversion.

The source–station configuration is taken from the real data application (see
Chapter 2). Therein, the 2D membrane wave problem is used to approximate the
surface wave propagation. The real data traveltimes are measured using cross-
correlations between the station pairs. Thus, some of the stations act also as
sources in the calculation. The source–station configuration is shown in Fig. 1.7.

The synthetic sources are characterized by Ricker wavelet time function with
dominant frequency 20 s. The average velocity in media is assumed 3 km/s, i.e.
the wavelength of the waves is ∼ 60 km. The synthetic waveform data are kept
noise-less. The checkerboard tests show mainly the data coverage of the domain.
Moreover, we have performed several checkerboard tests with different size of
the heterogeneities to estimate also the resolving power of the long-wavelength
dataset.
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Figure 1.7: Configuration of stations for the checkerboard tests. The stations
acting in the calculation as sources are marked by red circles. The station-pairs
with traveltime measurement are connected by lines.

The inversion employs the cross-correlation traveltime sensitivity kernels for
the membrane wave approximation (see Section 1.2). The individual kernels are
combined into the gradient kernel, which is used in the conjugate gradient method
(in particular Polak-Ribiére scheme). To diminish the kernels’ singularities, the
kernels are convolved with the Gaussian bell (5, 10 or 30 km wide). The iterations
are stopped when the model does not change significantly; the number of the
iteration steps varies between 5 and 8.

1.6.1 Checkerboard test with long-wavelength structure

In the first test (CB test I), the reference/target model is composed of relatively
large structures – the heterogeneities are 100 km apart and smoothed, their ampli-
tude reaches 5% (see Fig. 1.8 left). Thus the wavelength of the anomalies is larger
than the wavelength of the waves used for the inversion. The calculated misfit
gradient was smoothed using 10 km wide Gaussian bell to reduce the singularities
without artificially increasing the kernel size.

The inverted model (Fig. 1.8 right) generally recovers the original structures
in areas where the data coverage is good. Minor discrepancies are resulting from
the uneven station coverage and concentrate in the areas where the data coverage
is rather sparse (see Fig. 1.7). In addition, the recovered amplitudes are generally
smaller. The wavelength of the structures is larger than the wavelength of the
waves used, thus the model appears to be well resolved.
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Figure 1.8: Checkerboard test I (long-wavelength structures): left – target
model, right – inverted model.

1.6.2 Checkerboard test with short-wavelength structures

The second test (CB test II) is carried out for the checkerboard model with small-
scale structures but keeping the large distance between them (see Fig. 1.9a). The
wavelength of the waves employed for the inversion is much larger than the size
of the anomalies.

Fig. 1.9b shows the result of the inversion assuming two different widths of
the smoothing Gaussian (5 and 30 km) to demonstrate its effect on the resulting
model. Both results in Fig. 1.9b show similar large-scale structures. In addi-
tion, they resemble the result for the long-wavelength structure (see Fig. 1.8),
representing a bias caused by the finite-frequency effect of the employed wave-
forms. This confirms that the imaged structures are primarily affected by a) the
source-station configuration, b) the wavelength of the employed waves.

The differences between the two results in Fig. 1.9 arise on smaller-scales –
the model obtained with 5 km wide Gaussian smoothing appears to have much
more (though artificial) details. Furthermore, the maximal amplitudes of the het-
erogeneities are higher. The decrease in the amplitudes due to the regularization
by means of model smoothing is a well-known phenomenon.

In conclusion, we should bear in mind that the smaller-than-wavelength struc-
tures are difficult to recover correctly and are inherently smoothed out by the
long-wavelength waves into larger scale structures with decreased amplitudes.

1.6.3 Checkerboard test with mixed structures

The last presented checkerboard test (CB test III) is composed of a combination
of the previous reference models. The reference model thus contains both large-
scale and short-scale structures (see Fig. 1.10a). The results of the inversion
assuming again two different degrees of smoothing are shown in Fig. 1.10b.

The inverted models agree with the reference model and with each other in
the large-scale structures. The small-scale structures were smoothed out by the
long-wavelength waves and are, therefore, not perceptible in the resulting models.
Another problem in this case are the smallest-scale structures (peaks) present in
the model for the smoothing of 5 km. They correlate with the position of the
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(a)

(b)

Figure 1.9: Checkerboard test II (shorter-wavelength structures): a) target
model, b) inverted models using 5 km (left) and 30 km (right) Gaussian smooth-
ing.

stations (see Fig. 1.7) where the sensitivity kernel singularities are located. The
resulting model containing these distinct artifacts is considered underregularized
and, for the next application utilizing the long-period data, the regularization by
larger Gaussian smoothing function should be employed.

1.7 Conclusion

In this chapter, we have summarized the state-of-the-art adjoint method that is
with increasing favor applied in the seismic tomography. Although intuitively
it may be found as the generalization of the classical ray method, the theory
behind it is more complicated. The adjoint inversion method is based on iterative
improvement of the model using the gradient approach. The gradient employing
the volumetric sensitivity kernels is calculated using a forward wavefield and an
adjoint wavefield corresponding to the adjoint operator of the original problem.

The main advantage of the adjoint method is that the elastodynamic equation
may be employed without further approximations. Therefore, the only restric-
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(a)

(b)

Figure 1.10: Checkerboard test III (both long and short-wavelength structures):
a) target model, b) inverted models using 5 km (left) and 30 km (right) Gaussian
smoothing.

tions are placed by the computational resources of the calculation of the seismic
wave propagation and the reliability of the utilized data.

Although the adjoint tomography appears to be a powerful tool, it is not
without drawbacks. The most significant one is the inevitable presence of the
singularities in the sensitivity kernels (as presented in Section 1.4). This is usually
treated by various regularization techniques, from which we have presented one
employing the Gaussian smoothing of the sensitivity kernels.

Both strengths and weaknesses of the method were presented in this chapter
by means of the synthetic checkerboard tests. However, for real data application
the usage of the checkerboard tests as a tool for estimating the resolution power of
the inversion is strongly criticized (Lévêque et al. (1993); Rawlinson and Spakman
(2016)). In Chapter 2, which deals with real data inversion using adjoint method,
we introduce synthetic tests employing two distinct reference models to assess the
resolving power as well as the optimal regularization for the provided dataset.
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Chapter 2

Choice of regularization in
adjoint tomography based on
two-dimensional synthetic tests
Published in Geophysical Journal International,
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Abstract We present synthetic tests of 2-D adjoint tomography of surface wave
traveltimes obtained by the ambient noise cross-correlation analysis across the
Czech Republic. The data coverage may be considered perfect for tomography due
to the density of the station distribution. Nevertheless, artefacts in the inferred
velocity models arising from the data noise may be still observed when weak
regularization (Gaussian smoothing of the misfit gradient) or too many iterations
are considered. To examine the effect of the regularization and iteration number
on the performance of the tomography in more detail we performed extensive
synthetic tests. Instead of the typically used (although criticized) checkerboard
test, we propose to carry out the tests with two different target models – simple
smooth and complex realistic model. The first test reveals the sensitivity of
the result on the data noise, while the second helps to analyze the resolving
power of the data set. For various noise and Gaussian smoothing levels, we
analyzed the convergence towards (or divergence from) the target model with
increasing number of iterations. Based on the tests we identified the optimal
regularization, which we then employed in the inversion of 16 and 20 s Love-wave
group traveltimes.
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2.1 Introduction

With increasing computational power, the seismic tomography based on the so-
called adjoint calculation of sensitivity kernels in 3-D models is becoming a com-
mon tool for improving our knowledge of the Earth’s structure (e.g., Gauthier
et al. (1986); Tromp et al. (2005); Liu and Tromp (2006); Fichtner et al. (2006),
etc.). The greatest advantage of the adjoint method is the usage of numerical
solution of the elastodynamic equation (EDE), meaning the least amount of sim-
plifications (approximations) in the forward problem. To obtain the sensitivity
kernel one needs only two calculations solving the EDE, which makes the method
computationally feasible. Inversion is then performed by an iterative procedure
of improving model parameters based on the kernel calculation and misfit be-
tween data and synthetics. Adjoint tomographic calculations usually employ full
waveform information, that is surface and body waves by means of traveltimes
(e.g., Tape et al. (2010)) or instantaneous phase misfits obtained by the time-
frequency analysis (e.g., Fichtner et al. (2009); Colli et al. (2013); Rickers et al.
(2013); Fichtner et al. (2013)). Both amplitude and phase misfits were used in
the adjoint tomographic inversion, for example, of North-Atlantic and Europe by
Zhu et al. (2013). The adjoint method is closely related to the scattering-integral
method (Zhao et al. (2005); Chen et al. (2007a)), which is under certain conditions
(e.g., large number of sources) even more efficient (Chen et al. (2007b)).

In this study, the adjoint tomography is combined with traveltime measure-
ments originating from the ambient-noise cross-correlations. It has been shown
that by the cross-correlation of diffuse wave fields between two receiver points,
the Green’s function between receivers may be extracted (e.g., Weaver and Lobkis
(2002)). Many studies have been devoted to the extraction of Greens’ functions,
see, for example, Shapiro and Campillo (2004); Bensen et al. (2007).

The ambient-noise based Greens’ functions are usually dominated by surface
waves. Furthermore, there were also successful efforts to extract body waves (e.g.,
Gouédard et al. (2008); Zhan et al. (2010); Poli et al. (2012b,a); Lin et al. (2013a);
Lin and Tsai (2013); Boué et al. (2013)).

Nevertheless, in most cases the application of the ambient noise measurement
is focused on the surface wave tomography considering only vertical component
of the Rayleigh waves. Rayleigh wave group or phase velocity maps of different
regions from ambient noise data have already been retrieved using tomographic
methods, for example, Shapiro et al. (2005); Yang et al. (2007); Moschetti et al.
(2007); Verbeke et al. (2012). Love wave tomography was performed by, for
example, Bensen et al. (2008).

Surface wave tomography aiming to retrieve 2-D surface wave velocity maps
from ambient noise data usually employs the ray methods for traveltime cal-
culation (e.g., Barmin et al. (2001)). Several surface wave tomography studies
that compared the results obtained using the ray tomography with the Gaus-
sian smoothing constraint with those using the finite-frequency kernels from the
scattering theory (Born approximation) have found no significant improvement
with the finite-frequency method (e.g., Sieminski et al. (2004); Boschi (2006);
Zhou et al. (2005)). However, other authors (e.g., Ritzwoller et al. (2002); Yang
and Forsyth (2006)) have claimed significant improvement when using the finite-
frequency sensitivity kernels. Peter et al. (2009) used the membrane wave approx-
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imation instead of Born approximation to simulate finite-frequency surface wave
propagation. They demonstrated significant improvement by comparing with
the ray tomography results in synthetic tests in case of short-wavelength hetero-
geneities, but only marginal improvement for real data applications. Trampert
and Spetzler (2006) ascribe the contradictory results between the different au-
thors to the importance of regularization effects in both the finite-frequency and
ray approaches.

Recently, first attempts to perform full 3-D adjoint tomography employing
ambient noise data have been made by, for example, Xu et al. (2013); Chen et al.
(2014); Gao and Shen (2014). However, they come with large computational ex-
pense, making any extensive synthetic testing difficult. Less expensive approach
is the more traditional one mentioned above, where one first inverts for 2-D sur-
face wave velocity maps at distinct periods, which are then interpreted in terms
of a 3-D structure.

Here we employ the iterative 2-D adjoint tomography method with the mem-
brane wave approximation. Despite the method provides 2-D finite-frequency
sensitivity kernels, an additional smoothing of a kernel is commonly applied for
reducing singularities (peaks) in the position of point sources occurring in the
EDE, for example, Tape et al. (2007, 2010); Peter et al. (2011). Generally, the
strength of smoothing depends on the level of noise present in the data. However,
especially in the adjoint tomographic studies it is usually chosen ’ad-hoc’ and its
impact on the inversion results is not properly analysed.

Another technical problem occurring in the iterative methods is the choice of
the number of iteration steps. Both – amount of smoothing and the number of
iterations – are affecting quality of the resulting model. For example, application
of the smoothing function with a small width or too many iterations lead to rather
complex models, which merely translate the noise present in data into artefacts in
the model. On the other hand, oversmoothing or stopping the iteration process
too early results in oversimplified models, generally loosing a large amount of
information in the data.

In this paper, we perform a surface wave adjoint tomography employing the
Love group traveltimes obtained from the ambient noise cross-correlations across
the Czech Republic. In order to identify the proper smoothing strength and the
optimal number of iteration steps, we perform synthetic tests with data corrupted
by noise estimated from a real data set. Instead of using standard (albeit crit-
icized) checkerboard test, we propose synthetic tests for two target models: a
simple smooth model and a model with small-scale heterogeneities. Using the
first model we investigate occurrence of artefacts due to data noise. Using the
second model we test reliability of inferring small-scale structures. Combining all
synthetic tests we achieve the best relation between the quality of the obtained
model and the regularization in terms of (i) the amount of the smoothing and (ii)
number of iterations.

After understanding and discussing both the limits and benefits of our method,
we apply our methodology to the real data set, that is the 16 and 20 s Love-wave
group traveltimes in the Czech Republic.
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2.2 Data

The data consist of surface wave traveltimes obtained using ambient noise cross-
correlations. The ambient noise data were recorded at stations located in the
Czech Republic as well as in the adjacent border regions. The 54 stations (see
Fig. 2.1a) include permanent stations of the Czech Regional Seismological Net-
work (CRSN) and Virtual European Broadband Seismic Network (VEBSN), and
temporary stations, which operated within passive experiments PASSEQ (Wilde-
Piórko et al. (2008)), BOHEMA I, II and III (Plomerová et al. (2003); Babuška
et al. (2005)). The stations were equipped with broad-band sensors, most of
them with STS-2, few with Guralp. Three components were recorded continu-
ously with the sampling frequency 20 Hz. More details on the processing noise
data for obtaining surface wave traveltimes can be found in Appendix A.1 and in
the paper by Růžek et al. (2012).

(a) (b)

Figure 2.1: (a) Positions of stations used in the ambient noise processing. The
stations are connected with lines along which traveltimes of the 20 s Love waves
for the station pairs were obtained. The figure demonstrates the almost perfect
data coverage of the studied domain. (b) Normalized traveltime sensitivity kernel
for membrane waves with dominant period 20 s between two selected stations.

Because not all stations were in operation simultaneously, the maximum num-
ber of station pairs with available ambient noise data is only 819. Altogether 5525
Love-wave dispersion data were picked in the period range of 2–20 s. The trav-
eltime values corresponding to a station-pair dispersion curve at a given period
serve as input data in our inverse problem. In this work, we utilize only the
longest wavelength Love-wave data corresponding to the periods of 20 and 16 s.
Fig. 2.1a shows the 20 s Love-wave data coverage. Each of the 568 lines connects
two stations with estimated traveltime value. Fig. 2.1b shows an example of a
2-D sensitivity kernel corresponding to the 20 s Love wave between two stations
indicating an areal extent of the sensitivity of the waves used.
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2.3 Method

2.3.1 Forward problem

The data are the cross-correlation traveltimes at 16 and 20 s (representing rather
long periods in crustal studies). According to Fig. 2.1b, the corresponding waves
have a wide-area sensitivity to the structural model. Therefore, it is desirable
that the method employed for forward calculations can model the finite-frequency
effects. Thus, we apply the membrane-wave approximation to model the surface
wave propagation (e.g., Tanimoto (1990); Peter et al. (2007); Tape et al. (2007)).
With 2-D modelling, the approach enables extensive synthetic tests which are
not feasible in 3-D. We favour this over the ray method because it enables us to
use structural models with strong small-scale heterogeneities which pose a serious
problem for the ray-tracing methods.

In particular, when considering only Love waves, the membrane-wave approx-
imation leads to solving scalar wave equation in 2-D. Furthermore, we assume
homogeneous density distribution with arbitrarily chosen value. The perturba-
tions in the group velocities are then interpreted using perturbations in parameter
µ appearing in the membrane-wave equation (e.g., Tape et al. (2007)). We use
Ricker wavelet (centred at a considered period) as a source-time function. It rep-
resents any waveform of a given frequency content. Therefore, since we work with
the group surface wave traveltimes at periods of 20 and 16 s, the inferred velocity
maps (see below) correspond to group surface wave velocity heterogeneities at
the corresponding periods.

2.3.2 Inverse problem

Here we invert the traveltime residuals at each period independently (noise cross-
correlation signal was bandpass-filtered for each period separately). The misfit
is defined as the L2 norm of the weighted cross-correlation traveltime residuals
∆Ti,

χ =
1

2

∑
i

hi∆T
2
i . (2.1)

The sum is taken over all measured traveltime residuals (station–station pairs)
at the given period, hi represents the traveltime weight. In our application, we
assign hi = 0.5 if the receiver acts both as source and receiver (to prevent from
having duplicate data), otherwise hi = 1. The traveltime residual ∆Ti between
the synthetic seismogram ui and observed seismogram u0

i is given as the time of
their cross-correlation maximum:

∆Ti = arg max
t

∫
ui(τ)u0

i (t+ τ)dτ. (2.2)

When interpreting the complete cross-correlation waveform, the correct approach
to incorporate source in the adjoint calculation would follow Tromp et al. (2010).
However, since our data consist of noise cross-correlation traveltime values only
(i.e., complete observed waveforms are not used), we use the following simplified
approach. We create an ’observed’ waveform considering a point source with
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Ricker-wavelet time function in a homogeneous medium with velocity equal to
the station-station distance divided by the measured traveltime. The traveltime
of this waveform then corresponds to the traveltime obtained from the noise
cross-correlations. Ricker-wavelet source is also employed to generate synthetic
waveforms in the adjoint inversion.

The objective of the inverse problem is to find model parameters for which
misfit χ is minimal. This is accomplished using the conjugate gradient method
for which the misfit gradient must be evaluated. The misfit gradient in direction
δm is calculated using the Fréchet derivative kernels Ki, defined as

δmχ =
∑
i

hi∆Ti

∫
V

Ki δmdV. (2.3)

We apply the adjoint method to calculate kernels Ki. In case of membrane
waves, the kernel for the parameter µ corresponding to the given traveltime resid-
ual ∆Ti is given by (e.g., Fichtner et al. (2006))

Ki =

∫
t

(∇ui) · (∇u†i )dt, (2.4)

where ui represents the forward wavefield and u†i the so-called adjoint wavefield.
The adjoint wavefield u†i is calculated by back-propagating the wavefield from the
adjoint sources f †i (Luo and Schuster (1991))

f †i = − u̇i∫
u̇i

2dt
δ(x− xi), (2.5)

where xi stands for the position of the receiver. This means that the adjoint
source is a point source located at the receiver’s position with the time function
given by the normalized synthetic velocity u̇i from the forward calculation.

The adjoint method was implemented into software package SeisSol2D. The
forward calculation is carried out by the Discontinuous Galerkin method with the
Arbitrary High Order Time Derivatives (ADER-DG) on unstructured meshes
(Käser and Dumbser (2006); Dumbser and Käser (2006); Käser et al. (2007);
Dumbser et al. (2007); de la Puente et al. (2007)). The model parameters follow
the same triangular computational mesh given by the numerical solver of the wave
equation. Model parameters are constant in the elements. The total number of
elements is over 7000.

2.3.3 Iteration scheme and regularization

According to eq. (2.3), the misfit gradient is obtained as a sum of kernels mul-
tiplied by ∆Tihi. The conjugate gradient method (specifically Polak–Ribiére
scheme) is applied for iteratively improving the model.

As commonly applied in the adjoint methods, the misfit gradient is convolved
with the Gaussian bell. This efficiently removes the waveform singularities at the
sources and receivers – see Fig. 2.1b, where an example of the kernel for 20 s waves
is shown. No other advanced preconditioning, for example, the source subspace
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projection (Tape et al. (2009)) or approximate Hessian (Chen et al. (2007b)), was
applied for the sake of simplicity.

The step size taken in the descent direction is calculated as a minimum of a
parabola fitted to at least three test models obtained by perturbing the model in
the descent direction.

2.4 Synthetic tests

Using the synthetic tests we investigate two effects on the convergence towards
a correct model: the effect of (i) noise level added to synthetics and (ii) spatial
Gaussian smoothing of the gradient.

To quantify model improvement, we define the model misfit as the L2 norm
of the difference between the obtained model mn at iteration n and target (i.e.,
true) model mtarg normalized by the L2 norm of the initial model m0:

ζ =
||mn −mtarg||
||m0||

· 100% (2.6)

Usually the curve has a local minimum. We denote the model corresponding to
the minimum as the optimal model. Note that the model misfit is unknown in
real applications because we do not know the true model.

In our synthetic tests we use two models: Model I represents a smooth struc-
ture, Model II contains strong small-scale heterogeneities. Both models originate
from the model obtained by the preliminary inversion of the 20 s Love-wave data.
Note that our models are closer to reality than, for example, the checkerboard
model (standardly used in the seismic tomography despite criticism, e.g., by
Lévêque et al. (1993)).

The data coverage, that is the source-receiver configuration used in the syn-
thetic tests, is the same as in the case of the real 20/16 s Love-wave data inversion.
This may additionally help to distinguish which areas show stable results and are
not so much affected by the errors in the data or insufficient data coverage. The
analysis of the areas with stable results is useful when interpreting results of real
data application. We also perform an additional test with a modified station
distribution.

2.4.1 Target models

The tests are performed using two different target models:

• Model I: smooth model with small maximum amplitudes of the heterogene-
ity.

• Model II: complex model with pronounced small-scale structures and large
maximum amplitudes.

The models are based on the real group velocity model in the studied region.
Model I was created by smoothing Model II by convolution with the spatial
Gaussian bell of 200 km width. This suppresses the small-scale structures in
Model II and reduces the amplitudes of heterogeneities. Model II was obtained by
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the adjoint inversion of the 20 s Love group traveltimes with an initial parameter
setting. It is suitable to test the inversion for the short-wavelength structures in
Test II (see Fig. 2.2b).

The two target models used to generate synthetic data for the tests are shown
in Fig. 2.2. To reduce the time demand of the computations, not all receivers are
used as sources. The stations acting simultaneously as the point source in forward
calculations are marked with a circle. Note that the corresponding source–station
pairs are downweighted by hi = 0.5 in the data misfit; see Section 2.3, eq. (2.1).

(a)

(b)

Figure 2.2: Velocity (target) models I (a) and II (b) for synthetic tests us-
ing 20 s data. Stations and sources are shown by inverted triangles and circles,
respectively.
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2.4.2 Synthetic data errors and regularization

We employ the 16 and 20 s Love-wave group traveltimes to estimate data error to
be used in the synthetic tests. Because they are determined by almost the same
structure, the differences between the corresponding values do not originate from
the differences between the physical models but from the errors of the traveltime
estimation.

Fig. 2.3a shows differences between the 20 and 16 s Love-wave group trav-
eltimes as functions of distance. The absence of an obvious correlation with
distance supports our assumption on the origin of the differences. The histogram
of the differences between the 20 and 16 s Love-wave group traveltimes is shown
in Fig. 2.3b. The histogram is fitted by a Gaussian distribution centred close to 0
with σt = 1.53. This additionally confirms that the differences between the data
sets are random, originating rather from the data processing than from properties
of the real structure.

(a) (b)

Figure 2.3: Differences between the 20 and 16 s Love-wave group traveltimes
plotted in terms of (a) station-pair distance and (b) differences displayed as a
histogram and fitted by the Gaussian distribution.

In the following tests, we use three values of the noise level specified in terms
of the standard deviation. One of them corresponds to the real noise-level σt.
The other two levels are chosen for analysing the effect of smaller and larger data
noise considering 1/3σt and 3/2σt, respectively. The Gaussian distributions for
all three noise levels are shown in Fig. 2.4. The ’accurate’ synthetic seismograms
calculated for models shown in Fig. 2.2 are shifted by a value generated randomly
from the corresponding Gaussian distribution. The waveforms themselves are not
perturbed.

We smooth the calculated misfit gradients by means of convolution with a
2-D isotropic Gaussian function. We consider three widths (denoted as σx), 50,
100 and 150 km, representing different strengths of the smoothing. The smallest
width corresponds to the wavelength of the 20 s data (or little less). This might
be considered the natural choice because it prevents the smaller-than-wavelength
structures without oversmoothing. The other two smoothing levels represent
two different degrees of over-regularization. With increasing level of smoothing
the smaller-scale heterogeneities should be suppressed and the resulting model is
expected to contain less detailed structure.
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Figure 2.4: Gaussian functions used for generating traveltime noise in the syn-
thetic tests: red, green and blue curves correspond to the Gaussian distributions
with the standard deviations σt (from real data), 1/3σt and 3/2σt, respectively.

2.4.3 Test I - inversion of the long-wavelength structures

The results for Test I are shown in the left column of Fig. 2.5. The individual rows
show results for the three gradient smoothing levels σx (50, 100 and 150 km) with
distinct colours and symbols. The decrease of data misfit (traveltime residual
RMS) for the three noise levels is plotted in grey using the respective symbols.
Fig. 2.6 shows several model examples at selected iteration steps and for different
levels of the gradient smoothing σx. Note that the areas with negligible model
update are masked.

For the weakest smoothing σx = 50 km (Fig. 2.5a), the optimal model was
achieved in 1–3 iteration steps for all noise levels. Fig. 2.6a shows the optimal
model (iteration 3) for noise level σt and smoothing σx = 50 km. In the case
of the lowest noise level the results remain stable with further iterations and
artefacts do not appear (Fig. 2.6c). For other noise levels, the model misfit starts
to increase from the optimum. This is due to emergence of small-scale false
structures originating from the noise in the data. The stronger the noise, the
more pronounced heterogeneities are obtained (compare Figs. 2.6b and 2.6d),
which results in the increase of the model misfit.

With the increasing level of the gradient smoothing, the results stabilize in the
optimum after a larger number of iteration steps (Figs. 2.5c and 2.5e). Fig. 2.6e
shows the model example for σx = 100 km and data noise σt obtained after the
seventh iteration. The best results in Test I were achieved when the strongest
smoothing (σx = 150 km) was applied, even for the highest level of noise. This
is due to the fact that the target model is very smooth. The example model
obtained after the seventh iteration for noise level σt is shown in Fig. 2.6f. Note
that the long-wavelength structures in all the inferred models in Fig. 2.6 are
similar because they are obtained in the initial iterations.

To sum up Test I, if data are corrupted by low noise level, the results are stable
and do not depend on the amount of regularization (i.e., smoothing level and
number of iterations). If the noise level is higher, the smoothing corresponding
to the wavelengths used, that is σx = 50 km, is mostly inadequate (Fig. 2.6d).
The inversion results in model with false structures despite the almost perfect
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station coverage. Therefore, a certain degree of over-regularization is necessary
for obtaining a more stable result. However, in the case of very high data noise,
it may be still insufficient and the inversion should be stopped after just a few
iterations. Assuming that noise in the real data is close to the noise σt estimated
from differences between 20 and 16 s Love-wave data, the most reliable results are
obtained with smoothing width of at least 100 km and up to the sixth iteration.

2.4.4 Test II - inversion of a realistic structure

The evolution of the model misfit and data misfit during iterations of Test II
is shown in the right column of Fig. 2.5. Gradient smoothing σx increases in
Fig. 2.5 from the top to bottom. For illustration, Fig. 2.7 shows several examples
of models obtained during the inversions.

Common characteristic of both tests is the overall behaviour of the model mis-
fit with iterations: Except for the cases with the lowest noise level, the divergence
from the target model (expressed by the increase in the model misfit) emerges
after achieving the optimum. The main difference from Test I is the generally
higher number of iterations needed to achieve the optimum, namely 6–8. In other
words, since the target model contains smaller-scale structures than that of Test
I, more iterations are needed in order to obtain the main features of Model II.
Figs. 2.7a and 2.7b show models obtained after iteration 3 and 7 (optimal), re-
spectively, considering the same parameters (σt noise level and σx = 50 km). The
inferred structures differ mainly in the value of the maximum amplitudes: the
inversion is not able to reveal smaller-scale structures with correct amplitudes in
the initial phase of the inversion.

To test solely the effect of smoothing, we have also performed a noise-free
test (not shown here). For all σx the amplitudes were increasing with increasing
iterations, still the correct values were not achieved. This was clearly controlled
by the smoothing constraint that generally blurs the structures. In particular,
for smoothing σx = 50km the amplitudes of the heterogeneities obtained by the
inversion of the noise-free and noisy data are similar only during the first several
iteration steps. In later steps, the artefacts of noisy data occur and inversion of
the noise-free data performs much better. Obviously, when the gradient smooth-
ing is increased, the results stabilize close to the optimum for more iterations,
see Fig. 2.5d. For the smoothing of 100 km and 150 km, the amplitudes of the
heterogeneities are similar for all iterations, both for the noise-free and noisy data
inversion.

The problem arises with application of the strongest smoothing of 150 km,
when the recovered model is bound to contain only very long wavelength struc-
tures, see Fig. 2.7f. This is observed as the higher value of the model misfit in
the optimum as compared with other cases, Fig. 2.5f.

It is important to note that none of the smallest scale structures of Model II
were correctly resolved for any of the cases considered, not even considering noise-
free data. These structures emerge during very late iteration steps (much later
after the optimum is achieved) and are, therefore, most vulnerable to adverse
effects of the data noise. This should be always taken into account when the
model with too many details is found.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.5: Results of Test I (left column) and Test II (right column). Colour
curves and left vertical axis: convergence towards the target model represented
by the model misfit. Grey curves and right vertical axis: data misfit in terms
of traveltime residual RMS. Each row corresponds to a different level of the
gradient smoothing: 50 km (top), 100 km (middle) and 150 km (bottom). The
individual lines and symbols correspond to the different levels of noise applied to
the synthetic data.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.6: Models obtained in Test I for various noise levels (σt,1/3σt and
3/2σt; see Fig. 2.4), various smoothing levels σx and iterations.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.7: Same as Fig. 2.6, but for Test II.
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To examine whether the conclusions of the previous tests are not biased by
using the same station configuration in all cases, we perform a synthetic test with
a different station configuration but with the same target model. Synthetic data
are generated using Model II and noise level σt. The width of smoothing function
σx applied to the misfit gradient is 50 km. The number of sources and receivers is
unchanged, the locations of stations are simply swapped north to south and vice
versa.

The results of the inversion are shown in Fig. 2.8 together with the results
of the inversion using original stations’ positions for comparison. In particular,
Fig. 2.8a shows the model misfit and the decrease of the data misfit with itera-
tions. The decrease of the data misfit is almost identical for both configurations.
The behaviour of the model misfit with iterations also confirms that the optimal
models are obtained at iterations 6 and 7 as found above. The model misfit in
the case of the modified station configuration is generally higher than the one
from Test II. Fig. 2.8b shows the model obtained at iteration 7 (i.e., the optimal
model). The model does not contain false heterogeneities. However, the inver-
sion is unable to recover all structures due to the insufficient station coverage
(see, e.g., strong low-velocity anomaly in the southeast). This also explains the
increase in the model misfit.

(a)
(b)

Figure 2.8: (a) Model and data misfit with iterations for the original and mod-
ified station configurations using Model II, noise level σt and gradient smoothing
50 km. (b) Model for modified station configuration in the minimum of the model
misfit.

To conclude, Test II confirms several outcomes of Test I: in cases of the weaker
smoothing, the false small-scale structures evolve during later iteration steps.
However, extreme oversmoothing and/or too few iteration steps may lead to
smoothed structures with underestimated amplitudes. The best results for Test
II are achieved using gradient smoothing of maximally 100 km in 6–8 iteration
steps. This conclusion is independent of the station configuration.
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2.5 Real data example: inversion of the 20s and
16s Love-wave group traveltimes in the Czech
Republic

We have applied the adjoint tomographic inversion to the 20 and 16 s Love-
wave group traveltimes obtained by cross-correlation of the ambient noise on
the territory of the Czech Republic.

We assume that the real data error corresponds to the variance σt, estimated
from the differences between the 16 and 20 s traveltime data (Section 2.4.2).
From the synthetic tests with the Gaussian errors (Section 2.4) it follows that
the iteration process should be stopped after 6 iterations considering Gaussian
smoothing width σx = 100km. If the noise level was underestimated and the real
model contains small-scale structures, the result should be stable without any
profound artefacts (Section 2.4.4). In case the real model does not contain small-
scale structures and the data noise level is higher, the obtained model may suffer
from false small-scale heterogeneities. However, the amplitudes of these anoma-
lies should not be high (Section 2.4.3) and the artefacts should not be dominant
features in the obtained models. When increasing the number of iterations above
6, the heterogeneities in the velocity image increase only in their amplitudes.
Test II shows similar effects as a consequence of the data noise. Geological in-
terpretations that consider only the shape of the heterogeneities would probably
not be significantly affected. However, interpretations based on the local 1-D
velocity profiles obtained from the inferred dispersion curves must carefully take
this possibility into account.

The inferred models are shown in Figs. 2.9a and 2.9b for the 20 and 16 s waves,
respectively. The recovered models are obviously similar which supports both the
obtained results and the assumption that the differences between the two data
sets originate in the measurement errors.

Figs. 2.9c and 2.9d show the decrease of the data misfit for the two periods
considered. The distribution of the traveltime residuals is also shown (Figs. 2.9e
and 2.9f). It is obvious that the greatest change in the data misfit is achieved
already at the first iteration. However, some considerable improvement in the
traveltime residuals is still evident up to iteration 3. There is only a small im-
provement during the next iteration steps. This behaviour suggests that the real
structure is indeed more complicated than that of Test I.

Inversion using other frequency data and also the Rayleigh wave data together
with geologic interpretations are the subject of our further study.

2.6 Discussion

We have analysed the choice of regularization parameters for the 2-D adjoint
tomography using synthetic tests. We benefit from having two independently
obtained data sets of close frequency content, namely the 20 and 16 s Love-wave
group traveltimes from noise correlations. The differences between the data sets
exhibit a Gaussian distribution. Assuming that these differences are mostly due
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(a) (b)

(c) (d)

(e) (f)

Figure 2.9: Results of real Love-wave data inversion: left 20 s; right 16 s. (a,
b) Group velocity models; (c, d) traveltime residual RMS with iterations; (e, f)
traveltime residual histograms for initial model and resulting model.
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to the measurement error, their standard deviation is used as a reference data
noise for the synthetic tests.

We have used the synthetic tests to identify the appropriate smoothing strength
and the optimal number of iteration steps so that the inferred model contains not
only large-scale but also small-scale heterogeneities without false structures. In-
stead of using the typical checkerboard test, we suggest performing synthetic tests
with two very different structural characteristics – smooth (Test I) and complex
(Test II) target models. We show that the optimal strength of regularization
depends not only on the level of noise but also on the complexity of the target
model. Furthermore, even the proper regularization does not necessarily stabilize
the result in the optimum. Estimating where the obtained model is still reliable
and where the false structures develop is the key purpose of our synthetic tests.

Generally, during the first iteration steps of the inversions the structural model
is improved at the longest wavelengths and both the model and the data misfit
decrease considerably. During further iterations, the shorter wavelength struc-
tures of the model are revealed. At this point the performance of the inversion
depends on the noise and smoothing levels. For the lowest noise level the model
does not evolve considerably. In case of strong noise and weak smoothing, the dif-
ference between the target and the inverted model grows with further iterations.
This result may be surprising given the almost perfect station coverage. For the
higher noise level the increase of the model misfit starts earlier and is steeper.
Nevertheless, the data misfit keeps decreasing, showing that the inversion starts
explaining the noise in the data by new artificial structures in the model.

A similar test where we changed the position of stations confirms that the
conclusions are independent on the source–receiver coverage.

One important feature revealed by the synthetic tests is the behaviour of
the data misfit with increasing number of iterations. In Test I, the data misfit
improved significantly at the first iteration and remained almost unchanged for
the rest of the inversion process. In Test II, the decrease of the data misfit
exhibits more complex behaviour (resembling quadratic decrease) during the first
few iterations and remains almost constant after iteration 4. The final data misfit
value depends almost entirely on the level of noise applied to data. This means
that the misfit behaviour with iterations gives indication not only of the noise
level present in data but also of the complexity of the structural model with
respect to the starting model.

We have also investigated application of the common L-curve method to iden-
tify the optimal iteration step for a given noise level and given smoothing (see
Appendix A.2). Since it was difficult for us to draw conclusions based on the
usual analysis of the L-curve, we prefer the above mentioned approach and rather
combine both tests to obtain the optimal values of the gradient smoothing and
number of iterations for our particular application.

The inferred optimal regularization parameter setting was applied to real data
of the 20 and 16 s Love waves. In this way we obtained tomographic maps of the
Czech Republic’s shallow crust with the highest resolution and reliability possible,
for the given data and method.

In the real data application, the decrease of the data misfit observed in Figs.
2.9c and 2.9d does not resemble the behaviour observed in Test I. This indicates
that the real model is not extremely smooth, but contains rather smaller-scale
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structures. The traveltime residual RMS value, to which the data misfit of the
real-data inversion converged, is greater than 2 s which would correspond to the
greatest noise level (3/2σt) in the synthetic tests. We note that when we underes-
timated the data noise, according to Test II the gradient smoothing σx = 100 km
gave similar results for both noise levels up to iteration 13 (see Fig. 2.5d).

If the initial and target models are close, the first iteration of the nonlinear
inversion may be considered as the result of the standard linearized inversion.
Therefore, we are able to compare these methods reasonably only in Test I (the
smooth model). In this case, almost the same model misfit was achieved at the
first iteration for all noise levels and all regularizations. After this step (i.e.,
in the nonlinear part of the inversion), there is no considerable improvement
with iterations; on the contrary, it may lead only to complex models formed by
artefacts if improper smoothing is applied. However, when the initial model is
not close to the target one (see our Test II), the model misfit does not reach
the optimal value in the first iteration step. It is attained in further iteration
steps (the nonlinear inversion). To sum up, the regularization, as applied in our
problem, mostly affects the nonlinear part of the inversion.

We note that since the full 3-D adjoint inversions are computationally ex-
tremely expensive, the tests presented in this paper are feasible only in 2-D. We
believe that they provide important insight into the method itself and reveal its
main problems and limitations in general. From the presented numerical ex-
periments, one may infer that the regularization (e.g., in the form of gradient
smoothing) is recommended to be greater than the wavelength considered to pre-
vent the bold structural artefacts. The proper number of iterations cannot be
easily generalized because it strongly depends on the choice of the initial model.
For applications similar to ours, the tests suggest that the number should be
rather low (≈ 5 − 10). Otherwise, the model may be spoiled by the data noise
artefacts even if the data coverage seems perfect.

2.7 Conclusion

The tomographic problem addressed in the present study is based on the iterative
adjoint inversion of the Love-wave group traveltimes obtained from the ambient
noise cross-correlations across the Czech Republic. In order to investigate the
undesired regularization effects due to the Gaussian smoothing and the choice
of the total number of iterations, we performed synthetic tests for two different
target models – a simple smooth and a more complex heterogeneous model. We
analysed effects of smoothing strengths and data noise levels. In particular, we
used realistic noise levels derived from differences of the observed traveltimes at
two adjacent periods (16 and 20 s). Tests with the simple model demonstrate the
possibility of obtaining false small-scale structures even in areas with an ideal
station coverage, when insufficient smoothing is applied or too many iteration
steps are performed. Contrarily, the tests with the complex target model reveal
the possible resolving power of the present data set. The tests made it possible to
find the optimal regularization parameters for the investigated problem (100 km
wide smoothing Gaussian and 6 iterations). The conclusions are relatively in-
sensitive to the station distribution. Eventually, we applied the regularization
parameter setting in the real data inversion of the Love-wave groups at the 16
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and 20 s periods. The real data inversion results are very similar and show only
minimal discrepancies.
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Appendix

A.1 Ambient noise data processing

The ambient noise processing follows the procedures in Bensen et al. (2007). The
first phase (i.e., the single-station data preparation) consists of data selection
and basic preprocessing, such as demeaning and downsampling. In the next step,
the temporal running-absolute-mean normalization using 150-s long window was
applied to reduce the effect of the strong events in records.

During the next phase of the data processing, the records are cut into 1 hr
segments and rotated to R-T-Z coordinates. The signals are then cross-correlated
between the stations for every component to reveal the Greens’ functions. All
the obtained 1-hr long cross-correlations are summed to improve the signal-to-
noise ratio (SNR). The shortest time interval of stacking the signal was 26 d,
the longest was more than 8 yr, the mean interval is 2.66 yr. Only the Green
functions with SNR> 5 were used to estimate the traveltime data.

In the R-T-Z coordinate system, the transverse component corresponds to
the Love wave Green’s function. To obtain the dispersion measurements, narrow
band-pass filters of given central frequencies were applied. The envelope of the
filtered signal was calculated and the maximum of the envelope function was
picked as the group traveltime corresponding to the filter frequency. Altogether
5525 Love-wave dispersion data were picked for all frequencies. The traveltime
values corresponding to the dispersion curve at a given frequency of the station–
station pair serve as input values in the inverse problem of this study.

54



A.2 L-curve criterion

One of the most common way to estimate the ideal value of necessary regulariza-
tion is the so-called L-curve criterion. This criterion is based on the fact that the
dependency of data misfit with respect to a model characteristic is supposed to
have shape of letter L. The most suitable model is chosen as that corresponding
to the corner of the L-curve, where the sufficient decrease of the data misfit is
achieved by the model with the smallest complexity.

The gradient inversion method is known to change the model parameters on
long wavelengths during the first iteration steps and the smaller-scale features
of the model are obtained during the later steps. Indeed, the model complexity
increases with iterations as shown in our Tests I and II. For several test examples,
we demonstrate the performance of the L-curve and try to use this criterion to
estimate which iteration gives the best result. The plot of data misfit with respect
to the model complexity measured by the norm of the Laplace operator applied
to the model, ||∇2mn||, for every iteration is used as the modification to the
standard L-curve plot. The corner in the plot should reveal when to stop the
iteration process.

The L-curves for the synthetic Tests I and II with the Gaussian noise of
variance σt added to the synthetic data and different gradient smoothing levels
σx are shown in Fig. 2.10. During the first few iterations, there is a sharp decrease
of the data misfit with a small change in the model complexity. After that, the
model complexity continues to increase while the decrease in the data misfit slows
down. When the strongest smoothing is applied to the gradient (blue curves in
Fig. 2.10), the curve tends to be more complicated containing one or several local
edges. We assume that the model complexity is being artificially reduced during
iterations while the data misfit is decreasing. This would also explain the absence
of the edges in case of the weakest smoothing which corresponds to the original
wavelength of the data set.

Let us remark that the optimal models for Tests I and II are achieved at itera-
tions 2 and 6–8, respectively. After that, depending on the amount of smoothing,
the model misfit starts to increase. Omitting the local edges in the curve, the op-
timal models determined according to the L-curve criterion are achieved for Test
I at iteration 2 for 50 km smoothing, at iteration 3 for 100 km smoothing and at
iteration 4 for 150 km smoothing. According to the results shown in Fig. 2.5 of
the main text, these conclusions drawn according to the L-curve plot are reason-
able. The optimal model according to the L-curve criterion for Test II would be
at iteration 4 for 50 km smoothing, iteration 3 for 100 km smoothing and iteration
6 for 150 km smoothing. Comparing with Fig. 2.5, in case of a complex target
model, the optimal iteration step suggested by the L-curve would be underesti-
mated resulting in the oversmoothing the model. This analysis documents that
the L-curve criterion is difficult to apply.
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(a) (b)

Figure 2.10: L-curve plot between model complexity and data misfit for Test I
(a) and Test II (b); for Gaussian noise with standard deviation σt.

56



Chapter 3

Bayesian tomographic inversion
of surface waves

The Bayesian solution of the inverse problem is defined as the posterior prob-
ability density function (PDF) on model parameter space. The solution of the
problem, instead of one best fitting model, is usually given by a large number
of model samples which may be used to estimate also the model parameter un-
certainties, correlations and resolution. With increasing computational power,
Monte Carlo (MC) methods for drawing samples on the model parameter space
following the posterior PDF are increasingly used. The MC method may be
considered as an alternative to grid search algorithm, which usually fails in high-
dimensional model spaces. To increase the sampling efficiency, the algorithm is
modified to improve the sampling in that parts of the model parameter space
where the PDF attains significant value – so-called importance sampling.

Seismic tomography is an example of inverse problem in high-dimensional
parameter space for which the MC sampling algorithms have been successfully
applied. One of the more traditional representatives are the genetic algorithms,
applied, for example, in crustal tomographic studies by Lomax and Snieder
(1995). Seismic tomographic problems are often solved also by simulated an-
nealing method (e.g., Pullammanappallil and Louie (1994)). Bodin et al. (2012)
performed MC inversion to obtain a 1-D velocity model of South-East Australia.
3-D tomography combined with MC method was performed by Piana Agostinetti
et al. (2015) for local earthquake data in Southern Italy or for ambient noise
data in different regions by Young et al. (2013b); Galetti et al. (2017); Pilia et al.
(2015).

In addition to the estimation of the uncertainty of the model parameters, the
Bayesian approach may also give insight into the shortcomings of the employed
methods. Galetti et al. (2015) used MC method to invert ambient noise surface
wave data for a group velocity model employing ray method calculation of the
surface wave traveltime. When analyzing the results, they found so-called ’un-
certainty loops’ surrounding the high velocity anomalies. These were interpreted
as a consequence of employing ray method for the traveltime calculation.

Unlike the traditional approaches, there is no requirement on the linearity
of the forward calculation in the MC algorithms. Therefore, the MC methods
appear suitable for a wide variety of problems. However, their main drawback
is the high number of forward simulations needed to determine the PDF value
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for each tested model. Therefore, a very fast forward-problem solver is necessary,
which presents the main limitation for the range of applications.

In this chapter, we introduce Bayesian approach to the inversion of surface
wave dispersion curves into an S-wave velocity model. In the next section, we
remind the formulae for Bayesian solution of inverse problem, define the model
parameter space and briefly introduce the employed sampling algorithm (parallel
tempering) and the method for forward calculation (matrix method). Then,
we present the Bayesian solution of dispersion curve inversion by means of 1D
synthetic tests. The tests enable us to explore the sensitivity of the employed data
and effectivity of our sampling algorithm. The application to the 3D problem in
the second step of the two-step surface wave inversion is shown in the next chapter
for ambient noise tomography of the Bohemian Massif.

3.1 Methods

3.1.1 Bayesian solution of inverse problem

Tarantola (2005) defines the solution of the inverse problem as a posterior prob-
ability density function (PDF) on model parameter space p(m) given as a con-
junction of a priori information given by PDF pprior(m), theoretical information
usually expressed as conditional probability θ(d|m) and data information from
measurements with PDF ρ(d) (i.e., independent on model prior and theoretical
information). Further we assume that the model parameter space m is linear.
Then the posterior PDF is

p(m) = k1pprior(m)

∫
ρ(d)θ(d|m) dd. (3.1)

Although it is recommended to assume the theoretical information in this
general form, in most cases the error due to the theoretical information (e.g.,
computational modelling) is considered much smaller than the measurement error
and the theoretical information is approximated by Dirac distribution θ(d|m) ≈
δ(d− g(m)) where d = g(m) is the forward problem,

p(m) = k1pprior(m)

∫
ρ(d)δ(d− g(m))dd

= k1pprior(m)ρ(g(m)) (3.2)

This expression may be also easily obtained employing Bayes theorem.
Usually, the measurement uncertainties are considered in form of a Gaussian

distribution with covariance matrix Cd centered around the observed value dobs

ρ(g(m)) ≈ exp

(
−1

2
(dobs − g(m))TC−1

d (dobs − g(m))

)
(3.3)

The model prior information pprior is usually assumed either Gaussian centered
around a prior value mprior with covariance matrix Cm, or as a special case with
very large values on main diagonal of Cm leading to constant PDF as no apriori
information. The posterior PDF is then expressed

p(m) = C exp (−S(m)) (3.4)
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where S(m) is called misfit:

S(m) =
1

2

[
(dobs − g(m))TC−1

d (dobs − g(m)) + (m−mprior)
TC−1

m (m−mprior)
]

(3.5)

or in case of no apriori information (C−1
m → 0), it is reduced to

S(m) =
1

2
(dobs − g(m))TC−1

d (dobs − g(m)). (3.6)

In the Bayesian framework, the inverse problem solution is represented by
the full knowledge of the posterior PDF p(m). When the forward problem is in
addition linear, it can be shown, that the resulting posterior PDF is in form of
a Gaussian function centered around the best/mean model mbest = mmean with
posterior covariance matrix C (Tarantola (2005)). Therefore, if one estimates
these two parameters of the Gaussian distribution, one obtains the complete
solution of the inverse problem.

However, in case of nonlinear forward problem, the resulting posterior PDF
may be very complex and obtaining the full posterior information may not be
achievable. If the model parameter space is lower-dimensional, the grid search al-
gorithm, i.e. calculation of PDF p(m) for regularly distributed model parameters
m over a priori chosen part of the model space, may be successfully applied to
estimate the form of PDF. Nevertheless, for the most of the inverse problems (not
excluding the tomographic problems) model parameter space is high-dimensional,
therefore the evaluation of p(m) is reduced to that parts of model space, where
p(m) attains more significant values. This is usually accomplished by employing
the Monte Carlo method to generate the model samples.

3.1.2 Parallel Tempering algorithm

The parallel tempering method (PT, Earl and Deem (2005); Sambridge (2014))
belongs to Monte Carlo methods, that use random number generator to sam-
ple the model parameter space. The so-called Metropolis-Hastings algorithm
(Metropolis et al. (1953)) ensures that the sampling follows the posterior PDF.

As in the most MC algorithms, the Markov chain random walker generates
new model sample mi+1 depending only on a previous step mi. The new model
sample is either accepted or rejected given the Metropolis-Hastings rule: if the
new model has higher PDF value than the previous one (p(mi+1) ≥ p(mi)), the
new model is accepted and the next step of the chain starts from it. If the new
model has lower PDF value, it is accepted with probability given by p(mi+1)

p(mi)
. If

the model is not accepted, the chain is restarted again from the ith step. The
Metropolis-Hastings rule is considered the most efficient rule for accepting the
maximum of the proposed models. Still it has been shown that the sampling
algorithm converges to p(m) with infinite number of iteration steps (Tierney
(1994)).

The success of the sampling algorithm depends on the acceptance rate of the
proposed models. This can be affected mainly by the stepsize of the random
walker. The smaller is the stepsize for the proposed model, the higher is the
acceptance rate (since p(mi+1) is close to p(mi)). However, the walker then
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moves in the model parameter space slowly and a large number of steps are
performed, consuming large amount of computational time and being thus less
efficient. When increasing the size of the perturbation, the sampler converges
faster towards the PDF maxima. However, for a multimodal PDF the sampler
may be unable to escape the local maxima, where the acceptance rate may be
really low.

To avoid the sampler to be entrapped in local maxima, the PDF in the original
Metropolis-Hastings algorithm is modified by adding a new parameter, usually
called temperature T (the algorithm was motivated by the crystallization process
during cooling which minimizes the energy of the crystal). The modified posterior
PDF is assumed in form

p(m, T ) = p(m)
1
T ≈ exp

(
−S(m)

T

)
. (3.7)

The probability of accepting the new model in the tempered chain is

p(mi→i+1, T ) = min

[
1,
p(mi+1, T )

p(mi, T )

]
. (3.8)

The effect of the temperature parameter T on the PDF is displayed in Fig. 3.1,
where multimodal misfit S(m) with two local minima (one of them also global)
is assumed (shown by black curve). The normalized PDF corresponding to three
different temperature levels T = 1, 5, 100 is displayed with different color curves.
The PDF corresponding to the original temperature T = 1 (brown curve in
Fig. 3.1), shows one distinct global maximum and one local maximum several
times smaller. In case the Markov chain sampler reaches the global maximum,
it might be difficult to explore other local maxima, as the PDF between them
is very low. With increasing temperature to T = 5, the difference between the
maxima is less pronounced and when assuming the highest temperature T = 100,
the PDF is almost flat. The sampler would accept most of the proposed models
and sample the model parameter space almost uniformly.

This convenient property of the tempered chain has been used in a well-known
simulated annealing algorithm (Kirkpatrick et al. (1983)), which uses tempered
Markov chains to sample the PDF starting from high temperatures and gradually
decreasing the temperature to focalize in areas with high value of the original
PDF.

In the PT algorithm, several chains, each with generally different tempera-
ture, sample the model space simultaneously. The chains at high temperatures
sample the model parameter space more globally, whereas lower temperature
chains concentrate more on areas with higher value of the PDF. To obtain the
sampling of the original PDF, chains with T = 1 are employed. The efficiency of
the algorithm is provided by temperature swaps between two Markov chains in-
between the chainsteps. The probability α(i, j) of the temperature swap between
chains [mi, Ti] and [mj, Tj] (leading to [mi, Tj] and [mj, Ti] if accepted) follows
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Figure 3.1: Effect of temperature for tempered Markov chain: multimodal misfit
(black curve, left axis), PDF of the corresponding misfit modified by different
T = 1, 5, 100 (color curves, right axis). Note that the PDFs are not properly
normalized.

the Metropolis-Hastings rule:

α(i, j) = min

[
1,
p(mi, Tj)p(mj, Ti)

p(mi, Ti)p(mj, Tj)

]
= min

[
1,

(
p(mi)

p(mj)

) 1
Tj

(
p(mj)

p(mi)

) 1
Ti

]

= min

[
1,

(
p(mi)

p(mj)

) 1
Tj
− 1

Ti

]
. (3.9)

The PT algorithm shows good convergence towards the posterior PDF and due to
the mixing of the tempered chains, it is less likely to stuck in a local PDF maxima
(see also Sambridge (2014)). Another great advantage is avoiding evaluation of
the PDF normalizing constant C in (3.4).

Markov chain MC random walker usually generates new models by perturbing
the current model. This may present several problems. Firstly, in the Markov
chain MC sampler it is important from the theoretical point of view that the
samples are independent on each other. However, for thus constructed sampler
it is not necessarily fulfilled. For this purpose, several chainsteps in random walk
are performed without being saved. Another problem occurs in case of no or
poor information on the starting model. Therefore, the so-called burn-in phase is
introduced: the starting model is generated (randomly or fixed) from which the
random walk is launched. However, during the burn-in phase the walker transfers
to the parts of the model space containing permissible models, but the visited
samples are not saved for further processing.
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3.1.3 Surface wave inversion

For the Bayesian inversion, we need to define model vector m and data vector
d, theoretical relation between the data and the model, d = g(m), and their
statistical distributions in form of PDFs. In the inversion based on the surface
wave measurements, the dispersion curves obtained at a point on the Earth’s
surface serve as input data to estimate the vertical velocity structure beneath the
given point.

The dispersion curves in our application were extracted from the ambient
seismic noise cross-correlation (see Růžek et al. (2016)). We employ the phase
velocity dispersion curves for all three components: transversal Love (T), and two
Rayleigh – vertical (Z) and radial (R), i.e. d =

[
cT(x, T ), cR(x, T )cZ(x, T )

]T
. The

input data are measured at N points on the Earth’s surface (i.e., data points, see
Fig. 3.2) and discretized in periods ranging between 4 and 20s. Here, only phase
velocity dispersion curves are utilized although the group velocity data may be
also assumed. The data vector in our inverse problem is thus given as

d =
[
cT1 (4s), ..., cT1 (16s), cT1 (20s), cR1 (4s), ..., cR1 (20s), ...cZN(20s)

]T
. (3.10)

We assume the data measurement PDF, ρ(d), in form of a Gaussian with
diagonal covariance matrix with standard error σd estimated from the Rayleigh
data differences between the two components (see further).

The model vector is composed of the S-wave velocity and alternatively also
vp/vs ratio: m = [β(x), (vp/vs)(x)]T . To calculate the dispersion curve, we em-
ploy the VDISP code which is based on the matrix method (Novotný (1999)).
The matrix method assumes the seismic wave propagation in homogeneous ver-
tical layers. Therefore, we parametrize our model space by a set of 1D layered
S-wave velocity models (and possibly vp/vs assumed here as depth-independent)
on a regular horizontal grid – model control points (see Fig. 3.2). The number
of layers and their thicknesses are considered fixed during the inversion. The
interfaces are located at 7 depths: (2, 4, 8, 12, 18, 24, 32) km. The model vector is
thus in form

m = [β11, β12, ..., β17, β18, (vp/vs)1, β21, ..., βM8, (vp/vs)M ]T , (3.11)

where M is the number of model control points. We set the distance between
the model points larger than the distance of the data points (so that N > M).
Since the model control points and data points are not collocated, the cubic spline
interpolation of the model parameters from the model control points into the data
points is performed when evaluating the misfit.

3.1.4 Matrix method for dispersion curve calculation in
1D layered media

As already mentioned, the forward problem si solved using a matrix method for
the dispersion curve calculation. Here, the method is briefly reviewed assuming
Love waves, following the derivation of Novotný (1999).

Assume 1D layered media with homogeneous layers over a homogeneous half-
space with interfaces located at depths (z2, z3, ..., zn−1, zn). Each layer has thick-
ness di = zi+1 − zi and material parameters P-wave velicity αi, S wave velocity
βi and density ρi. The halfspace with αn, βn, ρn is located below depth zn.
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Figure 3.2: Horizontal distribution of data points (green pluses) and model
control points (red dots) for Bayesian inversion of dispersion maps into 3D S-
wave velocity model.

Let us assume Love waves displacement in form u = (0, v, 0) and the only
nonzero component of the stress tensor τyz = τ = µ∂v

∂z
. The boundary conditions

for each of the layer interfaces is the continuity of the displacement and stress.
Free surface is assumed at z1. In halfspace we require v(x, z, t) → 0 for z → ∞.
In each layer the displacement fulfills the equation (Aki and Richards (2002))

β2
i ∆vi(x, z, t) =

∂2vi
∂t2

. (3.12)

where ∆ is the Laplace operator.
The ansatz to the displacement is assumed in form of harmonic plane wave

propagating along x:

vi(x, z, t) = fi(z)eiω(t−x
c ), (3.13)

where fi(z) is the amplitude of the wave, ω is the angular frequency and c is the
wavespeed.

Inserting ansatz (3.13) into (3.12) gives

d2fi(z)

dz2
+

(
ω2

β2
i

− k2

)
fi(z) = 0, (3.14)

where k = ω
c

is the wave number. The solution for fi(z) to (3.14) is

fi(z) = ai sin(si(z − zi)) + bi cos(si(z − zi)), (3.15)

where we denote si =

√(
ω
βi

)2

− k2.
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The displacement and stress then reads

vi(x, z, t) = [ai sin(si(z − zi)) + bi cos(si(z − zi))] eiω(t−x
c ) (3.16)

τi(x, z, t) = µisi [ai cos(si(z − zi))− bi sin(si(z − zi))] eiω(t−x
c ). (3.17)

Now, we compare the solution on top of each layer with the solution on the
bottom. For z = zi

vi(x, zi, t) = bie
iω(t−x

c ) (3.18)

τi(x, zi, t) = µisiaie
iω(t−x

c ) (3.19)

and for z = zi+1

vi(x, zi+1, t) = [ai sin(si(di)) + bi cos(si(di))] e
iω(t−x

c ) (3.20)

τi(x, zi+1, t) = µisi [ai cos(si(di))− bi sin(si(di))] e
iω(t−x

c ). (3.21)

Thus one can express the displacement and stress on the bottom of the layer
using the displacement and stress on top of the layer:

vi(x, zi+1, t) =
sin(sidi)

µisi
τi(x, zi, t) + cos(sidi)vi(x, zi, t) (3.22)

τi(x, zi+1, t) = cos(sidi)τi(x, zi, t)− µisi sin(sidi)vi(x, zi, t), (3.23)

rewritten using the matrix notation(
vi(x, zi+1, t)
τi(x, zi+1, t)

)
= Ai

(
vi(x, zi, t)
τi(x, zi, t)

)
(3.24)

with Ai

Ai =

(
cos(sidi)

sin(sidi)
µisi

−µisi sin(sidi) cos(sidi)

)
. (3.25)

Consider now the continuation of the solution between two layers on their
common interface(

vi(x, zi, t)
τi(x, zi, t)

)
=

(
vi−1(x, zi, t)
τi−1(x, zi, t)

)
. (3.26)

Starting from the bottommost interface and alternately using continuation
condition (3.26) with matrix formula (3.24) one obtains(

vn(x, zn, t)
τn(x, zn, t)

)
=

(
vn−1(x, zn, t)
τn−1(x, zn, t)

)
= An−1

(
vn−1(x, zn−1, t)
τn−1(x, zn−1, t)

)
= · · · = An−1 · · ·A2A1

(
v1(x, z1, t)
τ1(x, z1, t)

)
, (3.27)

or denoting A = An−1An−2 · · ·A2A1(
vn(x, zn, t)
τn(x, zn, t)

)
= A

(
v1(x, z1, t)
τ1(x, z1, t)

)
. (3.28)

This gives the relation between the solution on the surface and in the halfspace.
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Let us now consider the solution in the halfspace in form

vn(x, z, t) =
(
ene
−isn(z−zn) + fne

isn(z−zn)
)
eiω(t−x

c ), (3.29)

where sn =

√(
ω
βn

)2

− k2. If c > βn, then sn is real and the solution in the half-

space oscilates. However, the physically reasonable solution requires amplitude
decrease with increasing z. Therefore, we need c < βn, then sn is imaginary.
Denote s∗n = isn, then

vn(x, z, t) =
(
ene
−s∗n(z−zn) + fne

s∗n(z−zn)
)
eiω(t−x

c ) (3.30)

and when requiring vn → 0 with z →∞, we must set fn = 0.
For z = zn, we thus have

vn(x, zn, t) = ene
iω(t−x

c ) (3.31)

τn = −ens∗nµne
iω(t−x

c ) (3.32)

Moreover, assuming free surface condition τ1(x, z1, t) = 0, (3.28) simplifies to(
en

−ens∗nµn

)
= A

(
v1(x, z1, t)

0

)
, (3.33)

which can be rewritten as(
1 −A11

−s∗nµn −A21

)(
en

v1(x, z1, t)

)
= 0. (3.34)

This system of equations has non-trivial solution when its determinant is zero
which gives the dispersion equation of Love surface waves for c(ω)

−A21 − µnA11

√(ω
c

)2

−
(
ω

βn

)2

= 0. (3.35)

The equation has infinite solutions for c(ω), each representing different mode of
Love wave.

Alternative notation for vector ( v̇i(x,z,t)
c

, τi(x, z, t))
T leads to the solution using

so-called Thomson-Haskell matrices:(
v̇i(x,zi+1,t)

c

τi(x, zi+1, t)

)
= Ãi

(
v̇i(x,zi,t)

c

τi(x, zi, t)

)
(3.36)

with matrix

Ãi =

(
cos(sidi)

ik sin(sidi)
µisi

iµisi sin(sidi)
k

cos(sidi)

)
(3.37)

and dispersion curve equation

Ã21 − iµnÃ11

√
1−

(
c

βn

)2

= 0. (3.38)

Similarly, one can derive the dispersion equation for Rayleigh waves.
The matrix method has been implemented in code VDISP by prof. Novotný,

which we employ for the calculation of the forward problem.
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3.2 Bayesian 1D synthetic tests

Here, the inverse problem (inversion of surface wave dispersion curves into 1D
layered media) is solved in the Bayesian framework employing the PT method.
The forward problem uses the matrix method for the calculation of dispersion
curves.

We have performed several types of 1D synthetic tests to assess the capabilities
(e.g., reliability, sensitivity, resolution) of the applied method (see Section 3.1).

The 1D reference (target) model for the tests is composed of 7 layers and half-
space with fixed interfaces, although some of the layers share the same parameters
(see Table 3.1).

Layer # Depth [km] S-wave velocity [km/s]
1 0-2 3.4
2 2-4 3.4
3 4-8 3.4
4 8-12 3.6
5 12-18 3.6
6 18-24 3.79
7 24-32 4.03

halfspace > 32 4.13

vp/vs > 0 1.5735

Table 3.1: Reference model for synthetic tests.

The synthetic phase dispersion curves are calculated in the reference model
for periods corresponding to the real data inversion ((4, 6, 8, 10, 12, 16, 20)s) for all
components (T, R, Z). The synthetic data were kept noise-less or were modified
by Gaussian white noise with standard devation as assumed for the real dataset
(0.14km/s, see Chapter 4).

The model parameters are S-wave velocity values for the same layers as the
reference model and depth-independent vp/vs ratio. The number of layers and
their thicknesses are kept fixed. As a prior information we assume homogenous
PDF within fixed bounds. The data covariance matrix is assumed diagonal with
variance given by real data (σd = 0.14 km/s).

3.2.1 Single parameter tests

In this set of synthetic tests, we have run the MC inversion using dispersion curves
at one data point (N=1) collocated with model control point (M=1), but only for
each (single) model parameter – S-wave velocity model in each layer individually
or eventually vp/vs ratio, i.e. model vector consists of only one value. All other
model parameters were kept at the reference value. This basic test examines our
data sensitivity to each model parameter independently. The tests were carried
out using separate Love- or separate Rayleigh-wave dispersion curve and also
using both. The synthetic data were not modified by random noise. We should
keep in mind that even for perfect data the variance of the PDF is nonzero, as
it is defined using, among other, PDF of data measurement for which nonzero
standard deviation is assigned.
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We run the inversion on 2 (in one case 4) CPUs, each with 12 Markov chains
for 1k steps in burn-in phase and 10k steps in post-burn phase. The resulting
number of models sampling the posterior PDF for each layer is ≈ 30k.

Figure 3.3: Normalized posterior PDF results of synthetic single parameter
inversion for Love(T), Rayleigh(Z) or both (TZ) phase dispersion data. The
reference value is shown by black line.

In Fig. 3.3 we present the results in form of PDF for each model parameter
when Rayleigh, Love or both phase velocity dispersion curves are inverted. We
have found no significant difference regarding the S-wave velocity model in any
layer when inverting Love or Rayleigh wave data separately. The vp/vs ratio is
determinable only when Rayleigh data are employed. Nevertheless, the resulting
PDF is very broad and thus this parameter is very poorly resolved. The improve-
ment in resolution of S-wave velocity parameters emerges when both Rayleigh
and Love phase dispersion curves are employed.

We have also estimated the mean value and its standard error for each case.
For all results, the mean value tends to overestimate the original value by ≈
0.1 km/s, but lies within the margin of the estimated error. This is caused by the
assymetry in the PDF. The location of the PDF maximum corresponds to the
reference values.

From these tests, we may also draw some conclusions on the sensitivity of
selected model parameters for the employed dataset (i.e. phase velocity dispersion
curves in period range 4-20 s). The best resolution is obtained in S-wave velocity
parameter in the third layer (depths 4-8 km). Then the variance of the PDF
increases (i.e. resolution decreases) to similar value for the top layers and layers
4 and 5 (0-4 km, 8-18 km). Then the resolution deteriorates with increasing depth
except for the halfspace.
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It may seem surprising that the variance in the halfspace is better compared
to the layer above. However, the bottommost parameter is not better resolved by
the employed dataset than the parameters of the deep layers above. We carried
out a set of synthetic tests, where we modified thickness of an additional artificial
layer above the halfspace (see Fig. 3.4). There is anticorrelation between the
variance of the model parameter and the corresponding layer thickness up to
critical thickness ≈ 50 km. After this, the variance remained almost constant
with increasing layer thickness, close to the value corresponding to that of purely
halfspace.
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Figure 3.4: Normalized posterior PDF of 1-parameter inversion for velocity in
the deepest additional layer or in halfspace. The model contains additional layer
situated below 32km with varying thickness.

This test demonstrates the effects of the selected parametrization. When the
model space is parameterized using layers with fixed thicknesses, the inversion
estimates the average value of the parameter over the whole layer. The thicker is
the layer, the greater is the impact of the model parameter on the data, resulting
in the decrease of that model parameter variance. In addition, the model param-
eter is affected by the sensitivity of the dataset. In this case, the layer thickness
recognizable by our dataset corresponds to the 50km.

The anticorrelation between the layer thickness and S-wave velocity variance
in the particular layer may be viewed also as warning for models parametrized
by a large number of thin layers, especially at greater depths.

3.2.2 1D inversion

The inversion is performed for one data point (N=1) synthetic dispersion curves
(Love or Rayleigh or both) into a 1D layered model with fixed layers at the same
point (M=1). The data are not modified by noise. In this test, the regularization
by means of nonnegative velocity gradient with depth is applied: every new model

68



generated by perturbing the current model in the Markov chain is controlled
whether it contains a layer with decreased S-wave velocity compared to the layer
above. Until such layer is not present, new model is repeatedly generated from
the current one.

The PT algorithm runs using 12 chains, for 1k burn-in and 10k post-burn
steps. The total number of posterior PDF samples is ≈ 28k.

The results are shown in Fig. 3.5. The best and the mean model deviate more
from the reference model than in the previous case, but the results lie within the
margin of error. It may be observed that the best model reproduces the reference
model better. The variance increases naturally with depth and the decrease in
the halfspace is not present.

(a) (b)

(c) (d)

Figure 3.5: Resulting normalized posterior PDF of synthetic 1D inversion for
one data point (color coded). The mean, the best and the reference model are also
shown (see legend). a) Love wave dispersion curve inversion to S-wave velocity,
b) Rayleigh wave dispersion curve inversion to S-wave velocity and vp/vs, c) both
Love and Rayleigh wave dispersion curves inversion to S-wave velocity and vp/vs,
d) Love and Rayleigh wave dispersion curve inversion to S-wave velocity without
regularization constraint of non-negative velocity gradient.

The results of inversion of separate Love and Rayleigh components into S-
wave velocity model are very similar as shown in Fig. 3.5a and 3.5b. When
inverting Rayleigh component for both S-wave velocity and vp/vs, the S-wave
velocity results are unchanged, but vp/vs has no clear single maximum of PDF
and resolution of this parameter is very poor (Fig. 3.5b). This shows that the
data-model relation for parameter vp/vs is much more complex than for S-wave
velocity. The improvement in the resolution of the vp/vs arises when both Love
and Rayleigh components are inverted at the same time (Fig. 3.5c). Although
the variance in this parameter is still high, both the mean and the maximum of
PDF are close to the reference value.
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Another feature revealed by these tests is the trade-off between S-wave velocity
parameters for different layers. For example, in layers 1 and 4, the posterior PDF
is skewed towards lower values than the reference value. This is compensated in
the next layers (in particular 3 and 5), where the model samples are drawn towards
higher values than the reference ones. The calculated mean model therefore leads
to the lower/higher values for the S-wave velocities in the corresponding layers.
This observed assymetry in the PDF is a consequence of combined effect of the
applied regularization (non-negative velocity gradient) and nonlinearity of the
forward problem.

When we allow the model parameters to decrease with depth, the trade-off
between the parameters in nearby layers intensifies and leads to the oscillatory
solution. The variance in each model parameter becomes very high and neither
the best nor the mean model is reasonable (Fig. 3.5d, mind the different vs range).
This example shows that our regularization by nonnegative velocity gradient ad-
equately reduces the model parameter space and restricts the solution towards a
sound result.

3.2.3 Inversion of dispersion maps into 1D model

In this case, we use the synthetic dispersion curves generated in the 1D reference
model and ”distribute” them into the data points of the real inversion (N =
Ndat = 775, see Fig. 3.2) – we obtain the dataset similar to the inversion of the
real 3D all-component data. The data are kept noise-less or are modified by
the white noise corresponding to the noise estimated from the real data. The
inversion is performed using these distributed data into a 1D model (i.e. M=1).

The PT inversion is run for 10k steps in burn-in phase and 200k steps in
output phase on 48 Markov chains. The resulting number of accepted samples
exceeds 500k.

The results for both perfect (Fig. 3.6a) and noisy (Fig. 3.6b) data are very
similar, the best model as well as the mean model lies close to the reference model
within the standard error. Furhermore, the variances in the model parameters
are also almost identical for both noise-free and noisy data. Since the variance
of the model parameters for the noisy data inversion is similar to that of the
perfect data inversion, it suggests that the data noise almost cancels out when
high number of data (e.g., number of real data) was employed.

The general increase in the S-wave velocity variance with increasing depth can
be traced for both synthetic tests (and real-data inversion as well, see Chapter 4).
This might be interpreted as decrease of data sensitivity with increasing depth.
Contrarily, PDF in the halfspace is remarkably narrow. We have performed
several synthetic tests and found out, that when increasing the number of data,
the model variance is reduced, but not evenly for all depths. The greatest impact
of data addition is on the S-wave velocity in the halfspace and the vp/vs ratio.
As already mentioned, for these two parameters the inversion is estimating the
average value over their whole (infinite) depths. This average value is in general
better determined.

We would like to note that this test showed the dependence of the posterior
PDF on the number of data points. If the data (i.e. data errors) were not corre-
lated, the resulting posterior covariance would be estimated properly. However,
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in our case the data are correlated as a result of the applied Gaussian smoothing
in the adjoint localization, mainly for the long periods. Theoretically, this should
be accounted for in the data covariance matrix in the misfit calculation, otherwise
the posterior model uncertainty is underestimated. To at least partially correct
for this underestimation, we have increased the data variance by a factor of 9,
which was estimated as follows: assuming 10 s surface wave data, the width of the
Gaussian smoothing function is aproximately 50 km covering 3 × 3 data points
in our inversion of dispersion maps. For simplicity, this factor was used for all
periods.

The results of these last synthetic tests may be compared with the results from
the real data 1D inversion shown in Fig. 4.4c (see also Section 4.5.2). In the real
data case, greater variance in the S-wave velocity parameters is observed, pre-
dominantly in the deeper layers and in the subsurface parts. The tests presented
above have shown that this is not to be attributed to the data noise. Therefore,
we explain the increased variance as a consequence of the variability in the real
data due to the true 3D velocity structure.

3.3 Notes on implementation of MC(PT) algo-
rithm

3.3.1 MC setting for real data application

The performance of the MC (PT) sampling algorithm depends on several param-
eter settings, which may have impact on the efficiency of the resulting sampling.
In this part, we would like to specify setting for the real data inversion.

As already mentioned in Section 3.1, one of the important parameters is the
stepsize used to generate the new/proposed model from the current one. If the
stepsize is small enough, the new model is accepted and the Markov chain samples
the domain successfully but in too many steps. If the stepsize is chosen too large,
the sampler is prone to stuck in the local maxima of the PDF. Since the PT
algorithm enables the walker to escape the local maxima, we may be able to use
larger stepsize for the model perturbation. We use Gaussian perturbation in each
model parameter with deviation 0.01 km/s and 0.001 for the S-wave velocity and
vp/vs, respectively. In the later part (i.e., after the sampler does not accept the
new models indicating convergence to a local minimum of the misfit) the size of
this Gaussian is reduced to 0.002 km/s and 0.0001. To ensure that the samples
are indendepent, we have chosen to save every 100th chainstep. Only after the
chains converge for the smaller perturbations, we stop the random walk. In the
real-data inversion, this leads to more than 100k steps.

The distribution of the temperature parameter T affects the ability of the
Markov chains to leave the local extrema of the PDF. We have decided to use
randomly distributed temperature values between 1 and 50. It was not necessary
to assume higher values for temperature, as the sampled PDF does not generally
show such pronounced local extrema. Furthermore, to ensure the sufficient sam-
pling of the original PDF, several chains (in particular every 5th) are forced to
have T = 1.
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(a)

(b)

(c)

Figure 3.6: Posterior PDF of the synthetic inversion of dispersion maps into a
1D model. PDF is normalized to the best model shown. The mean and reference
models are also shown. Inversion of: a) error-free data, b) data modified by noise,
c) real dispersion maps using the same model parameters as synthetic tests.
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Since we have poor prior information on the model parameters (in particular
constant on wide interval), in the real-data application we use burn-in phase
consisting of 1000 chainsteps. This was found to be sufficient mainly thanks to
the larger stepsize.

In the next section, the effect of several parameters (e.g. number of chains
distributed between the CPUs and number of chainsteps) on the performance
of the PT sampling algorithm is examined with the help of 1D synthetic tests.
Therefore, here we only specify that the overall number of Markov chains in the
real application is > 500.

3.3.2 Effect of some of the PT parameters

Here we use 1D synthetic tests to examine the performance of the PT algorithm
for different technical parameters, in particular number of CPUs (nCPU), number
of chains and chainsteps. The synthetic data as well as model parameters for the
1D inversion are the same as in Section 3.2.2. We assess the efficiency of the
sampling algorithm by evaluating the number of saved model samples as well as
the best found misfit but we should keep in mind the randomness in the sampling
process. Furthermore, we also investigate the computatational time which then
plays important part for 3D problem. The results are shown in Table 3.2. Also
keep in mind that the efficiency of the sampling algorithm depends also on the
other setting parameters. In these tests they were kept fixed.

According to the minimal obtained misfit (see the last column), all results
show very good convergence towards the maximum PDF except for one – the MC
inversion without the temperature swaps between the chains (last line). When
comparing the performance of the PT algorithm, we rather concentrate on the
number of successful samples (i.e., samples accepted every 100th chain step with
temperature T = 1 after the burn-in phase, see also Section 3.1.2). When increas-
ing the number of chain steps, the resulting number of samples scales accordingly.
The same holds when increasing the number of CPUs, but keeping the number
of chains per CPU. However, this is not valid when scaling the number of chains:
increasing the number of chains twice while keeping the nCPU does not generate
twice more samples. It appears that the PT sampling algorithm performs better
for lower number of chains per CPU. To compensate for this effect, either the
higher number of CPUs or the chain steps should be performed. The calculation
time for PT with temperature swaps differs only slightly from the one where the
swaps are not allowed showing the efficiency of the PT algorithm. The calcula-
tion time scales with number of chains and also number of chainsteps (assuming
the small difference to be caused by the chainsteps in the burn-in phase). When
employing more CPUs, the calculation time scales linearly if the number of chains
per CPU is kept.

To conclude, the efficiency of the sampling is the same when increasing the
number of chains (when sufficient number of CPUs is employed) as when perform-
ing larger number of chainsteps. This shows good scalability of the PT algorithm
making it suitable for parallel implementation.
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nCPU # chains # steps # samples comp. time min. misfit
2 24 5000 28.5k 3m6s 3.86e-03
2 24 10000 57.3k 5m43s 3.86e-03
2 12 5000 18.9k 1m33s 3.76e-03
2 12 10000 38.3k 3m46s 1.72e-03
4 48 5000 55.8k 5m59s 7.36e-04
4 24 10000 76.7k 4m32s 4.81e-03

2 24 5000 28.3k 3m 1.47e-02

Table 3.2: Performance of the PT algorithm for simple 1D synthetic inversion.
The number of CPUs (nCPU) and PT parameters: number of chains and chain-
steps were varied. The effect on computational time, number of saved samples
and best misfit is examined. The last line shows the results when the temperature
swaps between the chains are not allowed.

3.4 Conclusion

In this chapter, we have presented the inversion of surface wave dispersion curves
into a velocity model in the Bayesian framework. Contrarily to the traditional
approach when the solution is represented by a model minimizing misfit (i.e.,
maximizing posterior PDF) and its covariance matrix, our Bayesian solution is
represented by a large number of model samples. The selection of the eligible
models employs Monte Carlo method, which draws model samples according to
the posterior PDF. This method is also suitable for problems with rather complex
data-model relationship which have complex or multimodal PDFs.

In our application, the parallel tempering method is employed and tested on
1D synthetic inversion of the dispersion curves. The tests show that the mean
and best model are close to the reference model. Moreover, the variance of the
model parameters is easily examined. The algorithm shows good performance in
parallel implementation which makes it suitable for large-scale problems. Thus,
in the next chapter this method is applied to invert the dispersion maps (i.e.,
regularly distributed dispersion curves) into the 3D S-wave velocity model of the
Bohemian Massif (Chapter 4).
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Chapter 4

Three-dimensional S-wave
velocity model of the Bohemian
Massif from Bayesian ambient
noise tomography
Published in Tectonophysics,
Volume 717, 16 October 2017, 484–498, doi:10.1016/j.tecto.2017.08.033

Lubica Valentová1,František Gallovič1,Petra Maierová2

Highlights

• First ambient noise surface-wave tomography of the Bohemian Massif was
performed.

• Dispersion curves were inverted into phase velocity maps by adjoint inver-
sion.

• Phase velocity maps were inverted to 3D S-wave velocity model by Bayesian
approach.

• Mean S-wave velocity model correlates well with main geologic structures.

• Two distinct velocity anomalies with unknown geologic interpretation were
recovered.

Abstract We perform two-step surface wave tomography of phase-velocity dis-
persion curves obtained by ambient noise cross-correlations in the Bohemian Mas-
sif. In the first step, the inter-station dispersion curves were inverted for each
period (ranging between 4 and 20 s) separately into phase-velocity maps using 2D
adjoint method. In the second step, we perform Bayesian inversion of the set of
the phase-velocity maps into an S-wave velocity model. To sample the posterior
probability density function, the parallel tempering algorithm is employed pro-
viding over 1 million models. From the model samples, not only mean model but

1Department of Geophysics, Faculty of Mathematics and Physics, Charles University in
Prague, V Holešovičkách 2, 18000 Prague, Czech Republic
2Center for Lithospheric Research, Czech Geological Survey, Klárov 3, 11821 Prague 1,

Czech Republic
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also its uncertainty is determined to appraise the reliable features. The model is
correlated with known main geologic structures of the Bohemian Massif. The up-
permost low-velocity anomalies are in agreement with thick sedimentary basins.
In deeper parts (4-20km), the S-wave velocity anomalies correspond, in general,
to main tectonic domains of the Bohemian Massif. The exception is a stable
low-velocity body in the middle of the high-velocity Moldanubian domain and
high-velocity body resembling a promontory of the Moldanubian into the Teplá-
Barrandian domain. The most pronounced (high-velocity) anomaly is located
beneath the Eger Rift that is a part of a Tertiary rift system across Europe.

Keywords: ambient noise tomography; Bayesian inversion; Bohemian Massif;
geologic domains

4.1 Introduction

Earth’s ambient seismic noise, generated mainly by processes in oceans and at-
mosphere, has been present in seismic records to distress and vex seismologists
for many years. It was only recently that the recordings of the ambient noise were
recognized to be useful: by cross-correlating long series of noise recordings be-
tween two stations the Green’s function between them may be obtained (Campillo
and Paul (2003); Shapiro and Campillo (2004)). The Greens’ functions represent
response in a given location to an impulsive source in another point and thus
contain purely information about the seismic properties of the media between
the two points. Therefore, it is natural to use them in tomography.

In the first ambient noise tomography applications, the results were presented
by a set of 2D group (and later phase) velocity dispersion maps obtained by the
inversion of traveltimes between station pairs for each period separately. The
dispersion maps for various regions were estimated: US – Shapiro et al. (2005)
and Lin et al. (2008), New Zealand – Lin et al. (2007), Korean peninsula – Cho
et al. (2007), Europe – Yang et al. (2007), etc. They show good correlations with
known geologic structures and may be used for preliminary intepretations.

The phase/group velocity dispersion maps at a set of periods can be also
translated into a 3D velocity model. This has been done on various scales, from
global (Nishida et al. (2009); Haned et al. (2015)) to regional (Li et al. (2010);
Badal et al. (2013); Pang et al. (2016)), up to local networks, for example, around
volcanos (Matos et al. (2015); Spica et al. (2015); Ryberg et al. (2016); Obermann
et al. (2016)). The ambient noise traveltime dataset may be also combined with
another dataset, for instance, with teleseismic traveltimes to increase the resolu-
tion at greater depths (e.g., Yang et al. (2008); Ouyang et al. (2014); Guo et al.
(2016); Rawlinson et al. (2016)), or with receiver functions beneath the stations
to improve sensitivity to interfaces in the velocity structure (e.g., Bodin et al.
(2012); Guo et al. (2015); Shen et al. (2012); Růžek et al. (2012)). The ambient
noise tomography has proved useful also for broader applications, such as tomog-
raphy of ocean ridges using a network of ocean-bottom seismometers (Mordret
et al. (2014); Zha et al. (2014)) or assessment of seismic anisotropy (Guo et al.
(2012); Shirzad and Shomali (2014)).
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Inversion of surface wave dispersion data into a 3D velocity model tradition-
ally employs a two-step approach. In the first step, the period-dependent travel-
times based on dispersion curves measured between two points are inverted into
phase/group velocity dispersion maps. In the second step, the dispersion curves
on a regular grid are extracted and inverted for each grid point independently into
a set of 1D velocity models. These 1D models are then assembled into a final 3D
velocity model. In this second step, various techniques are employed. Standard
deterministic approach is based on iterative linearized least square inversion (e.g.
Li et al. (2010); Luo et al. (2012); Matos et al. (2015); Porritt et al. (2016)). How-
ever, stochastic approaches based on Monte Carlo (MC) methods are becoming
more popular. The great advantage of the MC methods is that the result is not
represented by a single model, but by a rather large set of models sampling the
posterior probability density function. This is essential in the case of multimodal
probability density functions, when the solution is nonunique and should not be
represented by one particular model. The MC methods are able to explore several
areas of model parameter space where the probability density function attains sig-
nificant values. One may either extract coherent properties of the models (e.g., by
model averaging), or assess uncertainties and correlations between the retrieved
model parameters. Moreover, the MC solutions are numerically more stable –
one does not have to deal with matrix inversion as in the case of the linearized
inversion. Various MC methods have already been employed in ambient noise
tomographic applications, for example, simulated annealing (Spica et al. (2014,
2015)), neighborhood algorithm (Mordret et al. (2014); Gao et al. (2011)) or other
MC search algorithms (Jiang et al. (2014, 2016); Guo et al. (2015)). In our ap-
plication, we employ another MC technique called parallel tempering, which was
introduced into geophysical problems only recently by Sambridge (2014). The
method is well balanced between fast convergence and avoiding entrapment in
local maxima of the probability density function.

In the traditional two-step inversion, a 3D model is compiled from separately
inverted 1D vertical models defined on a regular horizontal grid. The 1D models
may be defined by a large number of velocity layers (Li et al. (2010); Pang et al.
(2016); Porritt et al. (2016)) but also in a transdimensional way, where the number
of model parameters is regarded as a hyperparameter (e.g., Young et al. (2013b,a);
Pilia et al. (2015); Galetti et al. (2017)). However, we take a different approach:
instead of performing 1D inversion for each point of the dispersion map separately,
the 3D model is parametrized using fixed layers and the inversion is carried out
for all the model parameters simultaneously.

We apply the methodology to the Bohemian Massif – a remnant of the Variscan
orogen with a complex structure and history (see Fig. 4.1a) summarized in Sec-
tion 4.2. The input data consist of phase velocity dispersion curves between the
station pairs in periods 4–20s obtained from ambient-noise cross-correlations –
see Section 4.3. In Section 4.4, we outline the methods applied in our problem.
Then, we present the results in a form of dispersion maps and S-wave velocity
model in Section 4.5. As a result of the limited period range of the dispersion
data, the resulting model is bound to recover only the top 25 km of the Bohemian
Massif crustal structure. In Section 4.6, the models are interpreted in terms of
known geologic structures and compared with models obtained by other authors.
The work represents the first 3D ambient noise tomography of the Bohemian
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Massif. Moreover, since the inversion is performed in the Bayesian framework,
the model uncertainty is estimated as well.

Figure 4.1: Map of the studied region: a) Main geologic structures of the Bo-
hemian Massif modified after Franke (2000) and Schulmann et al. (2014). MLC –
Mariánské Lázně Complex, CBPC – Central Bohemian Plutonic Complex, CMPC
– Central Moldanubian Plutonic Complex, KVP – Karlovy Vary Pluton, FZ –
fault zone. b) Distribution of points where the models are defined: Green pluses
– data points where phase velocity dispersion maps are determined by 2D ad-
joint localization (first step). Red dots – model control points from which 3D
velocity model is interpolated in the 3D inversion (second step). Selected seis-
mic profiles measured during seismic experiments CELEBRATION 2000 (CEL09,
CEL10) and SUDETES 2003 (S01, S02 and S04) across the studied region, are
shown by red lines. Blue outlines show main geologic structures (solid – tectonic
domains, dashed – post-Variscan sedimentary cover). Black thin outlines show
state borders.

4.2 Bohemian Massif

4.2.1 Tectonic setting

The Bohemian Massif (Fig. 4.1a) is a relic of the European Variscan orogenic
belt that formed ∼400–300 Myr ago as a result of convergence between Gond-
wana and Laurussia (Franke (2000); Matte (2001)). It consists of several major
tectonic domains with different history and dominant rock types (for overview
see Schulmann et al. (2009)). Most of them originally formed a part of the
Gondwanan active margin, and separated as continental micro-plates during the
Late-Cambrian–Ordovician times. When the motion of the plates changed and
the region between Gondwana and Laurussia was closing, the Saxothuringian
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domain was a part of the subducting plate (e.g., Franke (2000)). It recorded
significant deformation and metamorphism with intensity increasing towards its
south-eastern boundary where the oceanic suture was located. The most promi-
nent relic of the suture is the Mariánské Lázně Complex that contains mafic
rocks buried along a cold geotherm in a sequence typical for closure of an oceanic
domain (Beard et al. (1995)).

The Teplá-Barrandian domain was a part of the upper plate during the
orogeny and preserved the pre-Variscan upper crust including sedimentary se-
quences affected only by low-grade deformation and metamorphism (Drost et al.
(2004)). The south-eastern margin of the Teplá-Barrandian domain was intruded
by magmatic rocks together forming the Central Bohemian Plutonic Complex.
The composition of these rocks corresponds to melting of mantle variably enriched
by crustal component, which is typical for a magmatic arc above a subduction
zone (Janoušek et al. (2000)).

The Moldanubian domain was a continuation of the Teplá-Barrandian domain
during the orogeny, but it was affected by medium-to-high grade metamorphic
conditions (Schulmann et al. (2009)). The contrasting character of the two adja-
cent domains results from their respective vertical displacement at a shear zone
that developed in the weakened magmatic arc region (the Central Bohemian Plu-
tonic Complex, Dörr and Zulauf (2010)). Erosion of the elevated Moldanubian
surface then led to exposure of its middle and lower crust. The central part of
the Moldanubian domain also contains a large accumulation of plutonic bodies
that formed by crustal melting at the late stage of the orogeny – the Central
Moldanubian Plutonic Complex (Finger et al. (2009)).

The easternmost part of the Massif is the Brunia (or Brunovistulian) do-
main. Along the margin with the Moldanubian domain, the Brunia-derived rocks
were strongly deformed and metamorphosed within the so-called Moravo-Silesian
Zone as a result of thrusting of Brunia underneath the Moldanubian domain (see
references in Schulmann et al. (2009)). The interpretation of the Bouguer grav-
ity anomaly suggests that the Brunia basement continues 50–70 km west of its
surface margin and is covered only by a thin layer of Moldanubian rocks (Guy
et al. (2011)). In addition, westward continuation of Brunia on the level of the
mantle lithosphere was inferred from the seismic anisotropy (Babuška and Plom-
erová (2013)). The Brunia basement is covered by Variscan as well as younger
sedimentary sequences (Kalvoda et al. (2008)).

During the collapse of the Variscan orogen, its elevated topography was sub-
ject to extension and gradual erosion which resulted in formation of several
Permo–Carboniferous sedimentary basins. Later on in the Permian, subsidence
of the Polish basin started eventually leading to formation of a several kilometers
thick sedimentary cover north of the Bohemian Massif.

At ∼70 Myr ago, the onset of the Alpine orogeny led to activation of the Elbe
Fault Zone, subsidence of the surrounding area and formation of the Bohemian
Cretaceous Basin (Uličný et al. (2009)). Its today’s thickness reaches 1 km and it
covers a significant part of the Teplá-Barrandian domain. North-east of the Elbe
Fault Zone, the Sudetes domain is located showing similar characteristics as the
Saxothuringian domain.

The Alpine orogeny further reactivated existing fractured zones across Europe
by rifting and related volcanism and sedimentation (Dèzes et al. (2004)). In the
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Bohemian Massif the Eger Rift was activated along the Saxothuringian–Teplá-
Barrandian boundary showing recent regular earthquake swarms, CO2 emana-
tions and elevated surface heat flow (Čermák (1994); Cloetingh et al. (2010)).
Various seismic studies pointed to anomalous character of the crust and to as-
thenospheric updoming beneath the Eger Rift (e.g., Heuer et al. (2006); Geissler
et al. (2005); Plomerová et al. (2007); Hrubcová and Środa (2015)). The Alpine
orogeny also shaped the southern margin of the Bohemain Massif that is now
covered by Alpine-Carpathian foreland basins and overthrust by the Western
Carpathians in the east.

4.2.2 Previous tomographic studies

Due to its complex history and structure, the region of the Bohemian Massif has
been subject to many seismologic studies starting from the 80s (see Novotný and
Urban (1988)). Most of the recent crustal studies use active experiments along
profiles, such as CELEBRATION 2000 and SUDETES 2003. The applied tomo-
graphic methods result in 2D vertical mainly P-wave velocity models. The crustal
models along the active experiment profiles (see also Fig. 4.1b) were determined:
CEL09 crossing most of the tectonic domains (Hrubcová et al. (2005); Novotný
(2012)), CEL10 along the Moravo-Silesian Zone (Hrubcová et al. (2008)), S01
along the Eger Rift (Grad et al. (2008); Novotný et al. (2009)), S04 almost parallel
with CEL09 (Hrubcová et al. (2010)). Models along several profiles concentrating
on the Bohemian Massif were acquired by Růžek et al. (2007) and in the Sudetes
by Majdański et al. (2006). The models show some common basic characteristics
of the Bohemian Massif: firstly, there is very thin or no sedimentary coverage
on the Bohemian Massif in the seismic data. Secondly, one can divide the crust
into upper and lower one with P-wave velocity contrast of ∼0.5km/s in almost all
tectonic domains. Usually, both upper and lower crust is strongly homogenized
with low vertical gradient. In the subsurface parts, the high-velocity bodies are
correlated with mafic intrusions whereas the low-velocity anomalies with granitic
structures. In the upper crust, the distinct anomalies were found in the area of the
Eger Rift. The Moldanubian domain shows higher P-wave velocities compared
to the other domains representing the high-grade rocks. The Moho beneath the
Bohemian Massif reaches to depths 30–40 km.

Thanks to numerous experimental data, tomographic inversion into 3D models
was performed as well, for example, focused on the Moravo-Silesian region by
Růžek et al. (2011), or over larger regions: P-wave velocity model for the Sudetes
region by Majdański et al. (2007) or S-wave velocity model of the Bohemian
Massif and Alps by Behm (2009). These models show good correlation of the
subsurface structures with known geology. 3D P- and S-wave local velocity model
of West Bohemia using not only experimental but also local earthquake data was
acquired by Růžek and Horálek (2013). In this model, the areas with low Poisson
ratio correlate with focal zones of the West-Bohemia earthquakes. Several crustal
models were compiled together into a 3D model using different interpolation
techniques by Karousová et al. (2012). The map of the Moho depth extracted
from this model shows significant crustal thickening in the southern part of the
Moldanubian domain and in the Brunia domain.
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The crustal domains of the Bohemian Massif were found to continue also in the
mantle lithosphere where they are characterized by different P-wave anisotropy
patterns (Plomerová et al. (2005); Babuška and Plomerová (2013)).

1D S-wave velocity models beneath the stations in the Bohemian Massif are
provided by receiver function studies (e.g., Wilde-Piórko et al. (2005); Geissler
et al. (2012); Heuer et al. (2006)). Receiver function studies combined with
ambient noise cross-correlation data focused on the crust of the Bohemian Massif
were performed by Růžek et al. (2012). Beneath the stations located in different
tectonic domains, the coherent properties in the receiver functions may be found.
Except for the Moho deepening under the Moldanubian, the Moho updoming
was found not only beneath the Eger Rift, but also in the area of the Bohemian
Cretaceous Basin where it was connected to the tectonic activity along the Elbe
Fault Zone.

The stepping stone for our work are the ambient noise cross-correlation stud-
ies by Růžek et al. (2016) who investigated the S-wave velocity properties for
different domains of the Bohemian Massif. The domains show slightly different
characteristics, but the variability within each domain is comparable with the
differences among them.

In our work, we utilize these ambient noise cross-correlation data to obtain
3D S-wave crustal velocity model of the whole Bohemian Massif.

4.3 Data

We adopt inter-station dispersion curves estimated independently for all compo-
nents (transverse T, radial R and vertical Z), which were extracted from ambient
noise cross-correlations by Růžek et al. (2016). The stations used in the process-
ing are a) permanent stations belonging either to the Czech Regional Seismologi-
cal Network (CRSN) or the Virtual European Broadband Seismological Network
(VEBSN); b) temporary stations operating within experiments BOHEMA I–III
or PASSEQ (Plomerová et al. (2003); Babuška et al. (2005); Wilde-Piórko et al.
(2008)); c) stations belonging to adjacent regional networks (Saxonian and Bavar-
ian). The total number of stations is 72. The selected stations are equipped with
broadband sensors and the noise measurements span over a time period of 12
years. To extract dispersion curves between the stations, the cross-correlations of
the preprocessed noise between pairs of stations were calculated. More details on
the method and resulting inter-station dispersion curves can be found in Růžek
et al. (2016). The resulting inter-station dispersion curves range between periods
4 and 20 s. In the inversion, we employ only phase velocity dispersion curves with
high signal-to-noise ratio in the cross-correlation function.

Fig. 4.2 shows the station and data coverage for the R component. The
number of measured traveltimes is almost 700. Note, that for the other two
components, the data coverage is even better due to generally higher-quality
cross-correlation functions.
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Figure 4.2: Station configuration of the investigated area. The station-pairs
with measured phase-velocity dispersion curve for the R component are connected
by lines. The selected stations (marked by circle) serve as source for the adjoint
inversion.

4.4 Methods

The inversion method is derived from the traditional two-step approach described
in Section 4.1. In the first step, we invert the inter-station dispersion curves
separately for the selected periods into a 2D regular grid (so-called phase velocity
dispersion maps) using 2D adjoint method. For the second step, we perform the
inversion of the dispersion maps into a 3D S-wave velocity model in a Bayesian
framework.

4.4.1 Adjoint localization

To obtain phase velocity dispersion maps, we apply 2D adjoint inversion (Tromp
et al. (2005); Fichtner et al. (2006); Tape et al. (2007)) to inter-station disper-
sion curves for selected periods. The station coverage as well as the number of
dispersion traveltimes in the studied region may be considered sufficient for the
tomographic problem (see Fig. 4.2).

The adjoint method belongs to iterative gradient methods of the misfit min-
imization. The misfit considered in our problem is the L2 norm of the cross-
correlation traveltime differences. The misfit gradient (i.e., the derivative of the
misfit with respect to the model parameters) is calculated using one forward and
one so-called adjoint calculation. In our problem, the adjoint calculation is repre-
sented by backpropagation of so-called adjoint wavefield from the receivers back
to the sources (Peter et al. (2007); Tape et al. (2007)). The forward and adjoint
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wavefields are then combined into finite-frequency or sensitivity kernels, which
emphasize areas with increased values of the misfit gradient.

The greatest advantage of the adjoint method is that it accounts for the finite-
frequency effects of the wave propagation. Nevertheless, the method requires
regularization, for example, by means of Gaussian smoothing that is applied to
the calculated sensitivity kernels (Tape et al. (2007, 2010); Peter et al. (2011)).
The width of the Gaussian smoothing function as well as the optimal number of
iteration steps was determined using preliminary synthetic tests with actual data
noise (Valentová et al. (2015)). More details are to be found in Section 4.4.3.

4.4.2 Bayesian inversion

We apply a Bayesian approach to solve the second stage of the inverse problem.
The result of the inversion is represented by a set of model samples obtained by
a random walk according to the posterior PDF. The method is appropriate for
non-linear problems, such as inversion of dispersion curves. Moreover, from the
model samples one may estimate not only the best or the mean model, but also
its uncertainty.

The posterior PDF is defined as conditional PDF on model parameter space
after measurement of data ddd is acquired (e.g., Tarantola and Valette (1982);
Mosegaard and Tarantola (1995); Tarantola (2005)). This is usually expressed
using the Bayes theorem:

p(mmm|ddd) =
p(mmm)p(ddd|mmm)

p(ddd)
, (4.1)

where p(mmm) is the model parameter PDF which is independent on the data mea-
surement (i.e., prior PDF, denoted pprior). Conditional probability of observing
data given model mmm, p(ddd|mmm), is so-called likelihood function. The likelihood
function for measured data ddd = dddobs contains statistical information on the data
measurement error, but may also include modeling error. However, the informa-
tion on the modeling error is usually difficult to estimate or negligible compared
to the measurement error, and is therefore not assumed. The posterior PDF as a
function of model parameters mmm for measured data ddd = dddobs can be rewritten as

p(mmm) = k pprior(mmm)p(dddobs|mmm) (4.2)

where k is a PDF normalization constant.
Usually, the data PDF is considered in a form of Gaussian distribution, then

p(dddobs|mmm) ∝ exp(−S(mmm)), (4.3)

where S(mmm) defines misfit between measured data dddobs and synthetics calculated
using a theoretical relation ggg(mmm) with Gaussian covariance matrix Cd:

S(mmm) = (dddobs − ggg(mmm))TC−1
d (dddobs − ggg(mmm)) (4.4)

To draw samples from the model space according to the posterior PDF, the
Markov chain MC random walker is employed. In each step of the chain, the
model parameters are randomly perturbed considering Gaussian probability func-
tion. The new (proposed) model is accepted or rejected based on the Metropolis
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algorithm: if the posterior PDF of the proposed model is higher, the model is
accepted; if the PDF is lower, the model may be still accepted with some proba-
bility. The acceptance rate depends on the width of the Gaussian generating the
perturbations, i.e., the perturbation of the misfit. To increase the efficiency of the
sampler we apply a method called parallel tempering (PT, Sambridge (2014)).
The PT algorithm is similar to the better-known simulated annealing, as it in-
troduces modification of the PDF by an additional parameter called temperature
T . The modified PDF p(mmm,T ) is given by

p(mmm,T ) = k pprior(mmm) exp

(
−S(mmm)

T

)
. (4.5)

The samples are drawn following this modified PDF assuming multiple values of
the temperature T .

For high temperatures, the PDF becomes smooth (note that for T → ∞,
p → pprior ). For low temperatures, the PDF maxima are more pronounced and
as T → 0, PDF converges to δ function located in the global maximum (i.e., global
minimum of S(mmm)). For T = 1, the modified PDF equals to the original PDF.
During the simulated annealing, temperature T gradually decreases from high
values to lower values so that the sampler gradually concentrates into areas with
higher PDF values. In the PT method, multiple Markov chains each with different
temperature sample the model parameter space simultaneously. The chains with
lower temperature values sample locally areas of PDF maxima, whereas chains
with higher temperatures are able to escape the local maxima of PDF. Moreover,
two chains can exchange their temperature values between the chain advances.
The probability that two chains (denoted [mmmi, Ti] and [mmmj, Tj]) swap their tem-
peratures (resulting in [mmmi, Tj] and [mmmj, Ti]) is given by the Metropolis-Hastings
criterion. This condition ensures, that the subset of samples for temperature
T = 1 represents sampling of the original untempered PDF p(mmm). The PT algo-
rithm is well balanced between efficiency and stability for complex multimodal
PDFs (Sambridge (2014)). Another advantage is straightforward parallelization
of the sampling computer code.

4.4.3 Implementation details

In the 2D adjoint localization, the regularization is applied primarily by means
of Gaussian smoothing of the sensitivity kernels and by the number of iterations.
The regularization parameters are estimated by synthetic tests using a smooth
and a complex model to examine reliability of both long-scale and short-scale
features. For the 20 s Love data inversion, the width of the Gaussian smoothing
function is set to 100km with iterations stopping at 6th step (for more information
and related synthetic tests see Valentová et al. (2015)). For other periods (both
Love and Rayleigh datasets), the size of the Gaussian function scales with the
corresponding wavelength.

The phase velocity dispersion maps are calculated for periods (4, 6, 8, 10, 12,
16, 20) s in the first stage and serve as input data in the second step of the inver-
sion in which the Bayesian approach is applied. We extract dispersion curves in a
selected 2D regular grid of data points (green pluses in Fig. 4.1b). The 3D velocity
model is represented by a set of vertical 1D layered models on a regular horizon-
tal grid of model control points (red dots in Fig. 4.1b). The spacing of the data
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and model control points is 16 km and 50 km, respectively. In each model control
point, we assume 7 layers above a halfspace with interfaces at depths of 2, 4, 8,
12, 18, 24, and 32 km. Although the model is parametrized in 3D, the synthetic
dispersion curves are calculated for computational reasons assuming 1D layered
model at each data point. In the MC methods, the forward problem is calculated
numerous times and thus a fast solver (such as 1D) is necessary. We employ
the code VDISP which is based on a matrix method using Thomson-Haskell and
Watson’s matrices for Love and Rayleigh waves, respectively (Novotný (1999)).
To obtain a 1D layered model for the synthetic dispersion curve calculation, the
model is interpolated in each layer from the model control points into the data
grid points by cubic spline interpolation.

The Bayesian inversion is regularized by the adopted parametrization. Firstly,
the number of layers is rather low and with fixed thicknesses; the number of model
control points is kept lower than the number of data points. Furthermore, the
model is interpolated into the data points using smooth functions (cubic splines).

The Bayesian inversion employs the PT algorithm to sample the posterior
PDF. As the model prior information pprior(m) we use homogeneous PDF on a
selected interval for all model parameters, in particular between 1 and 15 km/s.
Another constraint on the model parameters is the requirement of a nonnegative
velocity gradient with depth for each model control point. For simplicity, the
data covariance matrix Cd is assumed to be diagonal with standard deviation
corresponding to error of dispersion maps (see Section 4.5.1).

We run the computations in parallel on 12–24 CPUs, the temperature T ranges
between 1 and 50. To remove the dependency of Markov chains on the starting
model, we introduce long burn-in phase (10k steps) when the accepted models are
not saved. The main (post-burn) phase is stopped when the sampler appears to
have converged on the model space (i.e., no improvement in model space sampling
occurs with further thousands of chain steps). Only the samples from chains at
temperature T = 1 accepted every 100th step are saved and further processed.
The resulting number of samples from the posterior PDF exceeds 1 million.

4.5 Results

In the first step, the inter-station dispersion curves were inverted for each period
separately by the 2D adjoint method. The results are represented by a set of
phase velocity maps in Section 4.5.1.

In Section 4.5.2, we present the results of the Bayesian inversion of the disper-
sion maps into a 1D S-wave velocity model (and vp/vs) using different datasets
and assumptions. The 1D Bayesian model of the Bohemian Massif reflects its
average structure. Moreover, with the help of synthetic tests we discuss to what
extent the variance in the 1D velocity model parameters contains also variability
due to the 3D structures.

In Section 4.5.3, the results of the Bayesian inversion of the dispersion maps
into a 3D model is presented as 2D depth-slices for both absolute and relative S-
wave velocities, as well as horizontal variations of the vp/vs ratio. The correlations
of the results with geology are discussed in Section 4.6.
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4.5.1 Phase velocity maps

Fig. 4.3 shows the inverted phase velocity dispersion maps for each period as
obtained from the three components individually: Love (T) and both Rayleigh
(R and Z). The perturbations in phase velocities are shown with respect to average
values specified on the right side of each map.

(a) (b) (c)

Figure 4.3: Phase velocity dispersion maps obtained by the 2D adjoint inversion
for each period from all components: a) transverse T (i.e., Love wave), b) radial
R c) vertical Z (both Rayleigh waves). The period increases from top to bottom
(see legend). The model perturbations (color scale) are presented relative to mean
phase velocity model, denoted for each map to the right in km/s.

We treat the dispersion curves for R and Z component as two independent
datasets, so that by comparing the resulting models we get insight into the ac-
curacy of the first part of the inversion. Regarding the average models, both
components give very similar results. Contrarily, the phase-velocity perturba-
tions of the R and Z component, although similar in some features, differ in some
details as well.

We use differences between both Rayleigh dispersion maps to estimate the
error of the dispersion maps. The RMS of the differences ranges between 0.10−
0.15 s for different periods, which agrees well with the value of 0.14 s estimated

86



from Rayleigh phase velocity differences between inter-station pairs by Růžek
et al. (2016).

4.5.2 1D velocity model

Here, we apply our stochastic MC inversion to obtain a representative 1D layered
velocity model for the real dataset. We assemble data from all phase velocity
maps, excluding points where the initial velocity remains unchanged (i.e., there
is no sensitivity of the data on the velocity structure).

1D inversion is computationally cheap (≈ 4 h on 8 CPUs) and thus may be
used with the help of synthetic 1D tests to investigate properties of the inverse
problem. The 1D inversions were performed employing different datasets: only
Love phase velocities or all-component phase velocities. The 1D model is com-
posed of 2 km thick layers down to 32 km and a halfspace. Furthermore, the
addition of the vp/vs model parameter to 1D S-wave velocity parameters was
examined.

Fig. 4.4a shows results of Love phase velocity inversion into a 1D S-wave ve-
locity model. The model appears to have a relatively wide but unique maximum.
This shows that although the result is stable, either the data sensitivity to the
S-wave velocity model is low or the 1D model is inappropriate to represent the
dataset due to the actual higher spatial variability of the true velocity model, or
both.

In Fig. 4.4b, we show the results of inversion of Love and Rayleigh phase veloc-
ity dispersion data into a 1D layered S-wave velocity model with fixed vp/vs = 1.57
. By increasing the number of data, the variance of the model parameters de-
creases. This suggests that the data from all components are well represented by
a common 1D S-wave velocity model.

Fig. 4.4c displays models obtained from the inversion of all components into
a 1D S-wave velocity model and an additional parameter – depth-independent
vp/vs. The resulting S-wave velocity model is similar to the previous one (Fig. 4.4b),
both in terms of the best model and the variance. This shows that the inver-
sion of the vp/vs parameter does not affect the inversion of the S-wave velocity
model much, except for slightly amplifying the velocity increase at ∼20 km. The
obtained vp/vs ratio has low variance and appears to be well resolved. However,
by assuming depth-independent vp/vs, the inversion estimates vp/vs correspond-
ing to the average over all depths. In general, the averaged parameter is better
constrained than vp/vs at a given depth. Therefore, it must not be interpreted
as a low variability of the vp/vs of the real 3D structure.

From the 1D velocity models, it is difficult to distinguish between the effects
of data resolution and inherent variability due to the 3D structure. To separate
these two effects, we performed several synthetic tests. The synthetic tests with
both noiseless and noisy data were performed with similar setting as the real
data inversion. The resulting variance of the real data inversion is distinctly
larger than that of the synthetic tests. This suggests that the most of the 1D
model variability is due to the lateral inhomogeneity of the real crust.
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(a) (b)

(c)

Figure 4.4: Results of the inversions of the phase velocity dispersion maps
into 1D layered models by the PT algorithm. The color scale corresponds to
the normalized PDF (nPDF) scaled by the PDF value of the best model (black
dashed line). a) Inversion of Love dispersion maps into a 1D S-wave velocity
model. b) Inversion of all Love and Rayleigh dispersion maps into a 1D S-wave
velocity model, vp/vs being fixed. c) Inversion of all Love and Rayleigh dispersion
maps into a 1D S-wave velocity model (left) and depth-independent vp/vs ratio
(right).
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4.5.3 3D velocity models

The result of our Bayesian inversion consists of > 1 million PDF samples (i.e.,
3D models). To present the results, we display the mean model calculated from
all models and the best model. The advantage of the mean model is that it
presents only stable features. Therefore, the mean model is typically smoother
than any single model drawn by the MC sampler. The best model is shown as a
representative model to examine differences in properties between a single model
and the averaged one.

Fig. 4.5 presents the depth-slices of the mean and the best 3D S-wave velocity
model. To better visualize its lateral variations, Fig. 4.6 shows the same models
but in terms of perturbations relative to the horizontally averaged model.

All models show increase of S-wave velocity with depth. Regarding the lateral
variations, both mean and best model share the most significant structures. The
differences between them appear on smaller scales.

Simultaneously with S-wave velocities, we have performed the PT exploration
also for the depth-independent vp/vs ratio. The reasons for the vp/vs depth-
independence are: a) poor resolution of vp/vs and b) to reduce the parameter
space. The resulting mean model and its standard deviation are shown in Fig. 4.7.
Although, the range of the vp/vs ratio is wide (1.5–1.8), the standard deviation
in recovered areas lies mostly below 0.05, suggesting strong horizontal structural
variability of this parameter.

4.5.4 Uncertainty of the 3D model

The greatest advantage of employing MC methods to solve the inverse problem
lies in the plurality of models representing the solution. As an example, Fig. 4.8a
shows vertical 1D models in a model control point located in the middle of our
domain. From this example, we see that the best resolved part in the inversion
lies at depths of 2–18 km. At greater depths, the variance in the S-wave velocities
is very high. It also appears that the PDF of the S-wave velocities in deeper parts
as well as vp/vs ratio have 2 local maxima. We ascribe this to the undersampling
of the PDF in the particular parameter domain. Also note that for model control
points located at the boundaries of our domain, the overall uncertainty increases.

Uncertainty of the model along a profile can be estimated by standard de-
viation of the mean model (Fig. 4.8b right). In general, the lowest uncertainty
(as indicated also by the 1D models in Fig. 4.8a) is achieved down to ∼20 km.
However, the uncertainty changes also laterally along the profile (between 1–2%
for the well resolved part). Alternatively, we visualize these changes via standard
deviation of selected S-wave velocity isolines (Fig. 4.8b left).

We emphasize that we should be extremely cautious when interpreting the
imaged structures below 25 km, where the model variance increases rapidly. In
particular, our models are not suited for the search of the Moho. The following
geologic interpretation should be confined to large-scale structures only. This lim-
itation is a consequence of the method applied, namely: a) employment of surface
wave data, which is inherently sensitive to the averaged (smoothed) structures
both horizontally and vertically, making it impossible to obtain velocity inter-
faces; b) model parametrization – horizontal grid with relatively large (50 km)
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Figure 4.5: Depth slices through the mean (left) and best (right) S-wave velocity
models obtained by our 3D inversion using the PT algorithm. The layers are
shown in the left. The areas with no station coverage are masked.
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Figure 4.6: The same as Fig. 4.5 but for S-wave velocity perturbations calculated
as relative differences from horizontally averaged velocities (left panel).
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Figure 4.7: Mean model and standard deviation of vp/vs value obtained by our
3D inversion. The vp/vs ratio is assumed to be depth-independent.

(a)

(b)

Figure 4.8: a) 1D vertical models in a selected model control point in the middle
of the domain. Color palette shows nPDF – PDF normalized to its maximum
(best model, see legend). b) 2D mean model and its variance interpolated along
the CEL09 profile. Two velocity isolines are shown with their standard deviation.
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spacing; and c) averaging of great amount of single models generated by the MC
inversion which produces stable but smooth structures.

4.6 Discussion

4.6.1 Geological interpretation of dispersion maps and
1D S-wave velocity profile

The result of the first part of the inversion – the phase-velocity dispersion maps –
usually correlate well with known geology and are used for preliminary interpre-
tation (e.g., Saygin and Kennett (2010); Nicolson et al. (2012)). In our dispersion
maps (see Section 4.5.1, Fig. 4.3), there is a high velocity structure in the south-
ern part of the domain present in almost all maps, which may be related to the
Moldanubian domain. Another stable high velocity anomaly, located in the cen-
ter of the north-west border of the Czech Republic is found easily on maps for
components T and R for periods 8–16 s, where it is surrounded by low velocities.
Moreover, this anomaly can be also tracked for the Z component. This anomaly is
situated beneath the Eger Rift zone, where a high velocity body is usually found
in the tomography (Grad et al. (2008); Růžek et al. (2007); Alexandrakis et al.
(2014); Mousavi et al. (2015)). For the shortest periods, the structures are much
more complex and stable features present for all components are more difficult
to determine. In the Elbe Fault Zone, one may observe a narrow low velocity
anomaly for all maps at periods 4–6 s.

Before the inversion into 3D model, we performed Bayesian inversion of the
dispersion maps into 1D S-wave velocity model and vp/vs ratio (see Section 4.5.2,
Fig. 4.4). This 1D model may be considered as a representative model of the
Bohemian massif. In the near-surface part (depth less than 4 km), there is a
moderate velocity gradient and relatively large variance. This may point out to
uneven sedimentary cover of the Bohemian Massif. The rest of the upper crust
(from 4 to ∼ 12 km) shows very low velocity gradient and a very low variance.
This suggests strongly homogenized upper crust across the whole domain.

Around 20 km depth, there is a strong S-wave velocity increase indicating
significant structural difference between the upper and lower crust. The increased
variance in these depths may be associated with the high velocity gradient being
laterally heterogeneous in the real structure.

Below 25 km, there is no significant velocity jump corresponding to the Moho.
Moreover, the variance in these depths decreases, namely in the halfspace. This
is due to the fact that the variance estimated for the S-wave velocity at these
depths is only formal as it represents variance of the S-wave velocity averaged
over all depths below 32 km. Therefore, the obtained variance reflects neither
vertical nor lateral variability of the real 3D structure, and thus the Moho is not
resolved in our model.

The Bohemian Massif shows low vp/vs value ∼1.6 indicating rather rigid,
consolidated material. The interpretation of the vp/vs horizontal perturbations
in Fig. 4.7 is rather ambiguous as the uncertainty of this parameter may be
poorly estimated. In similar sense as the S-wave velocity of the halfspace velocity
mentioned above, the estimated vp/vs corresponds to the average over all depths.
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The increase in the northern part (Sudetes), may be attributed to the presence
of the thick sedimentary coverage.

4.6.2 Geological interpretation of 3D S-wave velocity model

Here, we discuss the correlation of our 3D mean S-wave velocity model with known
geology with the help of vertical cross-sections (Fig. 4.9, 4.10), corresponding
to selected profile measurements of active seismic experiments CELEBRATION
2000 (CEL09, CEL10) and SUDETES 2003 (S01, S02, S04). We also compare
the cross-sections with 2D models obtained along these profiles by other authors,
but with great caution. Indeed, the latter models were interpreted in terms of
P-wave velocities and were based on other kind of data than in our case (body
waves, frequency ranges).

Fig. 4.9 shows the vertical cross-sections through the mean and the best 3D
models interpolated along the profiles. The mean isovelocity lines of 3.5 and
4.0km/s are delineated together with standard deviation representing their un-
certainty. Furthermore, Fig. 4.10 shows the velocity model perturbations relative
to their horizontal averages to better distinguish different structures.

Although the Bohemian Massif is composed of several main tectonic domains,
its overall structure is much more complicated. As our results also imply, the
correlation with geologic domains is not that obvious. This was already suggested
by Růžek et al. (2016) who obtained rather heterogeneous models for each domain.

For the following discussion, to better distinguish the horizontal extent of
the velocity structures, Fig. 4.11 displays maps of two isovelocity topographies –
for values 3.25 and 3.6km/s. The values were chosen to show the near-surface
structures (0–4 km) and the deeper parts (4–16 km), respectively.

Sedimentary basins

For the shallowest layers (0–2 km in Figs. 4.5 and 4.6, and Fig. 4.11a), we find
good correlation of low velocity perturbations with sedimentary basins. The
extensive Bohemian Cretaceous Basin is visible in our model mainly where the
sedimentary cover is presumably thicker. Such area is located at the northern
rim of the Bohemian Cretaceous Basin in the Sudetes (including the Intra-Sudetic
Basin) continuing further to the Polish Basin, where the pronounced low-velocity
anomaly is present. Thicker lower-velocity layer in this area is also visible on
profile S02 at distances > 250km (see Figs. 4.9, 4.10), and can be also found in
S02 velocity profiles by Růžek et al. (2007) and Majdański et al. (2006). Other
such area corresponds to the Eger Rift where the low near-surface velocities are
retrieved in a ∼50 km wide zone (see also profiles S01 and S04 in Figs. 4.9 and
4.10).

The anomaly corresponding to the sedimentary cover of Brunia is rather vari-
able with its largest amplitude in the north-western part, where the thickness
of the sedimentary layer increases. Similar anomalies were identified on CEL10
profile by Hrubcová et al. (2008) and Růžek et al. (2007).
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Figure 4.9: The mean (top) and best (bottom) S-wave velocity model in selected
profiles across the studied domain. The isoline depths of S-wave velocity values
3.5 and 4.0 km/s are shown by black curves. In the mean model, the standard
deviation around these values is shown by dashed curves. The main geologic
structures are denoted on the top of each profile as indicated in the map in
the inset panel. MLC – Mariánské Lázně Complex, CBPC – Central Bohemian
Plutonic Complex, CMPC – Central Moldanubian Plutonic Complex, ER – Eger
Rift, KVP – Karlovy Vary Pluton, EFZ – Elbe Fault Zone, Mold – Moldanubian,
Sax – Saxothuringian, TB – Teplá-Barrandian, MSZ – Moravo-Silesian Zone.
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Figure 4.11: Topography of the iso-S-wave velocity surface for value 3.25km/s
and 3.6km/s of the mean model. The main geologic structures are shown (MLC –
Mariánské Lázně Complex, CBPC – Central Bohemian Plutonic Complex, CMPC
– Central Moldanubian Plutonic Complex, KVP – Karlovy Vary Pluton, FZ –
Fault Zone).
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Tectonic domains

Deeper parts of our model (depths 4–24 km in Figs. 4.5 and 4.6, Fig. 4.11b) reflect
the main geologic domains.

• The Moldanubian domain is characterized by a high-velocity anomaly, as it
represents middle/lower crust denuded by erosion. The low-velocity upper-
most layers are usually not present there (see also models of Růžek et al.
(2007); Hrubcová et al. (2005); Majdański et al. (2006); Novotný (2012);
Růžek et al. (2016)). Conversely, exceptionally high-velocity structures near
the surface (see Fig. 4.11a and profile S04 in Figs. 4.9, 4.10) were detected in
the same area also by Růžek et al. (2007) and Hrubcová and Środa (2015).
Some of these anomalies spatially coincide with exposed high-grade rocks
(see Fig. 4.1a). In the middle of the high velocity Moldanubian domain, a
low-velocity body is present in our model (see also profiles CEL09 – dis-
tance 300 km, S04 – distance 300 km and S02 – distance 100 km in Figs. 4.9
and 4.10). Similar low-velocity zone down to 15 km was found on CEL09
profile by Novotný (2012), who interpreted it as an accretionary wedge on
the contact of the Moldanubian and Moravian (i.e., Brunia) domains.

• The Teplá-Barrandian domain (partially hidden under the Bohemian Cre-
taceous Basin) is on the contrary to the Moldanubian characterized by a
low-velocity anomaly corresponding to its composition of less consolidated
upper crustal rocks. An exception is a high velocity anomaly extending
northward from the Moldanubian domain in the middle of the Bohemian
Cretaceous Basin. The structure is also displayed on profile S02 at the
distance of 200km (Figs. 4.9 and 4.10) and evokes a promontory of the
Moldanubian into the Teplá-Barrandian under the Bohemian Cretaceous
Basin (see Fig. 4.11b). However, this is not confirmed by known geology
(Uličný et al. (2009)).

• The Saxothuringian domain and the Sudetes show mainly low-velocity anoma-
lies (see also profiles S01, S02 and S04 in Figs. 4.9 and 4.10) which reflect
their similar composition and origin. Lower velocities on S02 were also
obtained by Majdański et al. (2006).

• The Brunia domain in the north-eastern part shows a high velocity anomaly
representing a well consolidated crystalline basement. Higher S-wave veloc-
ity values in this domain were also found by Růžek et al. (2016).

Plutonic bodies

In the Bohemian Massif, numerous granitic intrusions are present. Our inver-
sion is not able to distinguish small-scale structures and thus we focus on large
plutons and plutonic complexes only. Among the large plutons, the low-velocity
anomaly corresponding to the Karlovy Vary Pluton may be found in our model in
Fig. 4.11b and on profiles CEL09 and S01 in Fig. 4.9. The low-velocity anomaly
corresponding to the Karlovy Vary Pluton is also present in models of Hrubcová
et al. (2005) and Novotný et al. (2009). Moreover, Málek et al. (2004) derived
1D models for different units of the West-Bohemia region obtaining lower P-wave
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velocities for the plutons compared to the crystalline units. Such results are also
in agreement with laboratory measurements for granitic rocks in this area (see
also Pros et al. (1998)).

Another large plutonic bodies that might be inferred by our inversion are
the Central Bohemian Plutonic Complex and the Central Moldanubian Plu-
tonic Complex. In the vicinity of the Central Bohemian Pluton a low-velocity
anomaly is observed. This anomaly may, however, belong to the adjacent Teplá-
Barrandian domain, where the lower velocities are typical. In the case of the
Central Moldanubian Pluton, a low-velocity anomaly is present just below its
northern tip. However, it does not continue below the southern part of the Plu-
ton, which makes interpretation of this anomaly debatable.

All these three anomalies are clearly visible as low-velocity perturbations in
Fig. 4.10 – profiles CEL09 and S01, where they extend down to ∼20 km depth.
For plutonic bodies, such a large depth extent is unlikely as confirmed by other
studies: i) gravity modeling by Guy et al. (2011) indicated that the Central
Bohemian Plutonic Complex and Central Moldanubian Plutonic Complex reach
to 5 and 10 km, respectively, and ii) the Karlovy Vary Pluton was identified
as a low velocity anomaly extending down to 10 km on the CEL09 profile by
Hrubcová et al. (2005) and Novotný (2012). The supposed overestimation of the
depth extent of these anomalies in our model may be ascribed to the vertical
smoothing effect of the surface waves.

Eger Rift

The most distinct structure in our model is in the area of the Eger Rift: the
Saxothuringian – Teplá-Barrandian boundary fault active even nowadays. Un-
der the sediments, the Eger Rift is characterized by a very strong high-velocity
anomaly extending deep in the lower crust (see Fig. 4.11b; profiles S01 and S04
and the southern rim of the Eger Rift anomaly is also seen at distances 100–
150 km of CEL09, Figs. 4.9 and 4.10). In this area, higher S-wave velocities down
to lower crust were already found by Kolínský et al. (2011). High P-wave veloc-
ities were found by Alexandrakis et al. (2014); Mousavi et al. (2015). The S01
profile extends along the Eger Rift where the high velocity bodies were already
found by Růžek et al. (2007) and by Grad et al. (2008). Grad et al. (2008) inter-
preted their two separate high-velocity bodies originating in the lower crust and
continuing to the shallower depths as a result of the Saxothuringian subduction.
The Moho updoming in this area was found by Heuer et al. (2006) and in the
S04 model of Hrubcová and Środa (2015). However, our model, despite apparent
reversal of the anomaly at greater depths (see bottomost map in Figs. 4.5 and
4.6), is less sensitive to the deep structures and is unable to contradict or confirm
the continuation of the high-velocity anomaly to greater depths.

4.7 Conclusions

We have inverted ambient noise inter-station dispersion curves into the 3D S-
wave velocity model of the Bohemian Massif. The traditional two-step approach
is modified by employing the finite-frequency adjoint method in the first step, and
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in the second step by performing Bayesian inversion by the parallel tempering
algorithm for all model parameters simultaneously.

For the interpretation, we have considered the mean velocity model and its
uncertainty which were calculated from all resulting 3D models sampling the pos-
terior PDF (more than 1 million models). The mean model reveals the structures
that are stable in the inversion. The estimated uncertainty helps us to assess reli-
ability of the individual model features. As the main drawback of our model one
may consider its lack of the more detailed structures for the geological interpreta-
tions. In addition, the surface geology is not perfectly related to the deep crustal
structure that is imaged by surface waves inherently smoothing both laterally
and vertically the true velocity structure.

The inferred 3D S-wave velocity model shows good correlation with main
geologic domains of the Bohemian Massif. The Moldanubian domain is char-
acterized by high S-wave velocities representing exposed middle/lower crustal
material, except for a distinct anomaly located in its central part. Similarly to
the Moldanubian, Brunia shows higher S-wave velocity anomalies. In contrast,
the Teplá-Barrandian, Saxothuringian and Sudetes domains show lower S-wave
velocities. In the Teplá-Barrandian domain, we have recovered a high veloc-
ity region with unclear geological interpretation resembling a promontory of the
Moldanubian domain.

The most prominent high-velocity anomaly in the model is found beneath the
Eger Rift. Moreover, some of the low S-wave velocity anomalies present in our
model may correspond to large plutonic bodies, and the topmost low velocity
structures correlate well with the sedimentary cover of the Bohemian Massif.
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Chapter 5

Discussion

In this chapter we discuss some aspects of our results. Firstly, we compare the
input data with the synthetics corresponding to the inferred models. Next we
compare the inferred 1D model with other published S-wave velocity models,
in particular the mean 1D model of the Bohemian Massif and a local model of
Western Bohemia.

5.1 Dispersion curves and maps

We have calculated the synthetic phase velocity dispersion curves for the inverted
1D mean model of the Bohemian Massif (see Section 4.5.2). We display these
synthetic phase velocity dispersion curves together with all the original inter-
station dispersion curves obtained by processing the ambient noise (after selection
for high SNR), which served as the input data for the adjoint inversion (see
Fig. 5.1). Here we omit displaying synthetic dispersion curves corresponding to
all model samples as they are very similar (see, e.g. Fig. 5.6). From Fig. 5.1
one can see that the inverted 1D mean model of the Bohemian Massif explains
sufficiently the inter-station dispersion curves.

Figure 5.1: Inter-station dispersion curves serving as input data for the 2D
adjoint localization for all components and corresponding synthetic dispersion
curves calculated in the resulting mean 1D model of the Bohemian Massif (darker
color).

Next, we compare the synthetic dispersion curves of the 1D model with dis-
persion curves obtained by the adjoint localization in all data points (Fig. 5.2a).
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(a)

(b)

Figure 5.2: Synthetic dispersion curves for all components corresponding to the
inverted mean 1D model of the Bohemian Massif (darker color) compared with:
a) dispersion curves extracted from the phase velocity dispersion maps for all
data points, b) synthetic dispersion curves calculated in all data points using the
mean 3D model of the Bohemian Massif.

The variability of the localized data decreased mainly for the longer periods – this
may be partially explained by the applied Gaussian smoothing which is frequency-
dependendent. However, for the Z component the localized data are close even
for period 12 s, which may be explained rather by homogeneous structure of the
deeper parts. We also display the synthetic dispersion curves calculated in all
data points from the mean 3D model (see Fig. 5.2b). They show smaller variabil-
ity for both shorter and longer periods than the localized data suggesting that
the smaller-scale shallow structures were not inverted in the 3D model.

To review the results of the second step of the 3D inversion, we calculate
synthetic dispersion maps for the mean model and compare them with the real
dispersion maps of the adjoint inversion. The results are displayed relatively with
respect to the mean phase velocity (denoted on the right of each map) for each
period for Love waves in Fig. 5.3 and for Rayleigh waves in Fig. 5.4. We also
remind that the error assumed for the phase velocities of the dispersion map was
0.14km/s.

Similarly as seen for the 1D model, the mean values of the phase velocity
dispersion are fitted very well for all components and all periods. Regarding the
2D perturbations in the phase velocities, most of the long-wavelength structures
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present in the data are also present in the synthetic dispersion maps. One may
also observe that the amplitudes of the perturbations in the synthetic maps do not
always reflect the original (localized) amplitudes. However, as already mentioned
in Chapter 2, the amplitudes of the perturbations are strongly dependent on the
employed regularization in the adjoint localization (i.e., size of the smoothing
Gaussian function and the number of iterations). Therefore, it should not be
considered as drawback if the Bayesian inversion fails to invert the amplitudes of
these phase velocity perturbations correctly.

The greatest drawback of our inversion may be considered its inability to fit
the short-wavelength perturbations which are present in the short-period phase
velocity data. Besides random errors, these are affected by the small-scale sub-
surface structures which are not present in our resulting model. To be on the safe
side, we have chosen the model space parameterization, in particular the distance
between the model control points, relatively large (≈ 50km), thus not allowing to
invert for such small-scale structures. However, when comparing the small-scale
phase velocity perturbations for the two components of the Rayleigh waves, they
were found to be less reliable than the large scale perturbations. Therefore, the
inversion is regularized to prevent the artificial small-scale structures.

5.2 Comparison of 1D models

In the previous Chapter 4, 2D cross-sections through our model along selected
profiles were compared with the corresponding 2D models of other authors. Here
in addition, we compare the 1D S-wave velocity models, both local and that of the
whole Bohemian Massif, with models of other authors. Although numerous to-
mographic studies were performed for the Bohemian Massif, they provide mainly
P-wave velocity models while S-wave velocity models are rather sparse.

5.2.1 1D models of the Bohemian Massif

Firstly, we compare our 1D model of the Bohemian Massif obtained by the
Bayesian inversion of the dispersion maps with the following models (see Fig. 5.5):

• DSS1988: an older model corresponding to the Bohemian Massif from the
review paper on the deep seismic sounding (DSS) studies by Novotný and
Urban (1988), obtained by Beránek and Tobyáš (1971). The original P-wave
velocity model was recalculated into S-wave velocity model using traditional
formula vs = vp/

√
3.

• Kolinsky2011: Kolínský et al. (2011) performed inversion of two-station
phase velocity Love wave dispersion curves into 1D S-wave velocity model.
The model represents average model along the profile between the stations
and for the longest profile (200 km long) may be considered as a represen-
tation of the 1D model of the Bohemian Massif.

• Ruzek2012: Růžek et al. (2012) performed joint inversion of the teleseismic
receiver functions with group velocity dispersion maps from the ambient
noise cross-correlation into a 1D layered S-wave velocity models beneath
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Figure 5.3: Phase velocity perturbations for each period for Love wave com-
ponent, the mean value (in km/s) is shown on the right for each map. Left:
phase velocity dispersion maps obtained by the 2D adjoint localization. Right:
synthetic phase velocity dispersion maps calculated for the mean S-wave velocity
model obtained by our 3D Bayesian inversion.
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Figure 5.4: Phase velocity perturbations for each period for Rayleigh wave com-
ponents, the mean value (in km/s) is shown on the right for each map. Left and
middle: phase velocity dispersion maps obtained by the 2D adjoint localization
for R and Z components, respectively. Right: synthetic phase velocity dispersion
maps calculated for the mean S-wave velocity model obtained by our 3D Bayesian
inversion.
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the stations and vp/vs ratio. These models were averaged over all stations
into 1D S-wave velocity model and vp/vs ratio.

Figure 5.5: Result of the 1D Bayesian inversion (color coded): left – S-wave
velocity model, right – vp/vs ratio. The resulting model samples are colored
according to the normalized PDF value (nPDF), and the mean and best models
are shown (see legend). The models are compared with 1D S-wave velocity models
of the Bohemian Massif by other authors (for more details see text).

For the top 20km, all the models show rather homogeneous upper crust with
low velocity gradient. The best correlation of our model is obtained for the
DSS1988 model despite its advanced age and simplified relation between the
P- and S-wave velocity. Model by Růžek et al. (2012) is systematically biased
towards the lower values of our model, whereas model of Kolínský et al. (2011)
shows very low subsurface velocities, which appear to be compensated by the
higher velocities below 5 km leading to discrepancies between the models for the
top 15 km. Our model lies between these two models. Also note, that Kolínský
et al. (2011) used phase velocity dispersion curves in period range 10-40 s in their
inversion.

Below the 20 km, our model prefers a sharp increase in the S-wave velocity
(red-color models in Fig. 5.5) which is not present in other published models. All
of the published models show increased gradient in these depths but keep lower
values in the S-wave velocity. The gradient increase can be found also in part of
our resulting models. It is also appropriate to account for the estimated errors
of the models by other authors. Kolínský et al. (2011) indicate rms error of their
model 0.136 km/s, Růžek et al. (2012) obtained standard deviation increasing
with depth from ≈0.2 km/s for the top 20 km to ≈0.5 km/s below the 30 km.
When considering the estimated errors of all the models, the disagreements be-
tween them may be explained.

As already mentioned, Růžek et al. (2012) inverted not only for S-wave velocity
model but also for vp/vs ratio displayed for the comparison with our model in
right panel of Fig. 5.5. Although they found a low value of vp/vs than usually
assumed, we have obtained even smaller vp/vs even when including the estimated
variance.

For all the models we have also calculated corresponding phase velocity dis-
persion curves (see Fig. 5.6). First of all, despite variability of our resulting 1D
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Figure 5.6: Synthetic dispersion curves of Love waves (upper) and Rayleigh
waves (lower) corresponding to models of Fig. 5.5.

models (Fig. 5.5), the corresponding dispersion curves vary only slightly. This
may explain why the inversion is unable to absolutely distinguish between the
model with sharp velocity increase from the model with gradual velocity increase
around 20 km depth. The dispersion curves of the DSS1988 model fit the Rayleigh
dispersion curve almost perfectly but diverge in the Love dispersion curves, prob-
ably due to different vp/vs ratio. Note that DSS1988 model was derived using
P-wave reflection and refraction traveltimes. The Love wave dispersion curve of
model by Kolínský et al. (2011) fits the synthetic dispersion curve corresponding
to our model well for periods 6-10 s and differs only slightly for other periods.

We would like to note that the disagreement of our 1D model of the Bohemian
Massif with other published model is probably only apparent as it is related rather
to how and which parts of the region were averaged. Therefore, we focus on
models representing smaller area where better agreement between the models is
expected.

5.2.2 Local 1D models of Western Bohemia

We have extracted 1D model in a specific point (namely in station Nový Kos-
tel, NKC) from our 3D model using cubic spline interpolation. This station
is located in Western Bohemia region with periodic occurrence of earthquake
swarms. Therefore, this area was subject to many tomographic invesigations,
results of which are compared with ours (see Fig. 5.7):

• Novotny1988: older DSS studies layered model of the Ore Mountains from
Novotný and Urban (1988). We have calculated S-wave velocity model from
the P-wave velocity using the formula vs = vp/

√
3.

• Novotny1996: the top 5 km is assembled from local models of the region,
for the greater depths the model Novotny1988 is used (Novotný (1996)).
The S-wave velocity was also recalculated from the P-wave velocity.

• Malek2000: Málek et al. (2000) inverted local earthquake data into 1D
layered P- and S-wave velocity model individually for different subregions
of the Western Bohemia as well as the whole Western Bohemian region.
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• Ruzek2013: local earthquake and experimental data were used by Růžek
and Horálek (2013) to obtain a 3D P- and S-wave velocity model and calcu-
lated their average along horizontal planes. We should keep in mind, that
our 3D model is rather averaged (and thus smoothed) model also when
considering a single point. Therefore, we compare our extracted 1D model
with the models of Málek et al. (2000) and Růžek and Horálek (2013) cor-
responding to whole Western Bohemia.

• Malek2005iso: Málek et al. (2005) used both local earthquakes as well as
controlled shot data to infer 1D isotropic and anisotropic model of the
Western Bohemia. Here, we compare our model with its isotropic part.

• WildePiorko2005: the S-wave velocity model was derived using teleseismic
receiver function beneath the station NKC (Wilde-Piórko et al. (2005)).

• Ruzek2012: the model was obtained from joint inversion of teleseismic re-
ciever function and group dispersion data beneath the station NKC (Růžek
et al. (2012)).

• Kolinsky2011: model obtained by Kolínský et al. (2011) for short profile
NEC-NKC crossing the Eger Rift.

In general, all models are very close to our extracted 1D model mainly at
depths 2-25 km. A larger discrepancy is in the subsurface part between our
model and the shallow models (models reaching only to 10-15 km, i.e. Malek2000,
Malek2005iso and RuzekHoralek2013, see also zoomed inset in the middle of
Fig. 5.7), which is probably caused by low sensitivity and resolution of our data
to these depths. Model by Wilde-Piórko et al. (2005) deviates from all other
models in top 15 km, but its lower part (20-40 km) agrees with them.

Where available, we also compared the value of vp/vs (see Fig. 5.7 right).
We have obtained generally smaller value of the vp/vs ratio when compared with
other models, although values of Málek et al. (2000) and Růžek et al. (2012) lie
at the upper bound of the permissible values of our model.

To sum up, we have compared our inverted 1D S-wave velocity model with
other models of the Bohemian Massif. Moreover, we have compared the 1D
S-wave velocity model extracted from the 3D model in Western Bohemia with
other available S-wave velocity models of the particular region. Except for the
shallowest subsurface structure (<1 km), we have found good agreement between
our model and most of the models which were derived using different methods
and input data. The comparison between the local models supports our results
much better than the 1D model of the Bohemian Massif, averaged over different
geologic domains. Therefore, we claim that our model sufficiently represents the
S-wave velocity structure of the Bohemian Massif as well as its smaller parts.
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Conclusions

We have performed the first 3D ambient noise tomography of the Bohemian
Massif. The input data comprise of inter-station phase-velocity dispersion curves
in range 4–20s prepared from ambient noise processing by Růžek et al. (2016).
The inversion was carried out using two-step approach: in the first step, the
dispersion curves were localized for each period into phase velocity dispersion
maps and in the second step, these maps were inverted into a 3D S-wave velocity
model.

To account for the finite-frequency effect, 2D adjoint inversion was utilized in
the first step. Particular attention has been given to estimate the regularization
parameters, such as width of the gradient smoothing function and number of iter-
ations – subject not properly covered by literature despite having a crucial effect
on the resulting model. To this aim, synthetic tests for the longest periods with
two distinct target models were used, the first model was simple smooth model
to demonstrate the emergence of model artifacts when insufficient smoothing is
applied or too many iterations are performed. The second target model con-
tains pronounced smaller-scale heterogeneities revealing the possibility to recover
more-detailed structures in the resulting model. The synthetic data were modi-
fied by noise estimated from the differences between the 16s and 20s Love group
data. According to the tests, relatively large smoothing width (almost twice the
wavelength) and rather small number of iterations (≈ 5) were found to be op-
timal. These values may appear to give too simple or over-regularized models.
On the other hand, the resulting models contain weak but apparent smaller-scale
heterogeneities which are, moreover, considered reliable assuming the estimated
noise level.

The phase velocity dispersion maps were determined with the regularization
parameters derived from the synthetic tests with the smoothing width scaled
according to the respective wavelength. These maps serve as input data in the
Bayesian inversion to obtain the 3D S-wave velocity model of the Bohemian Massif
(and additionally depth-independent vp/vs ratio). The inversion was carried out
employing Monte-Carlo sampler (in particular the so-called parallel tempering
algorithm), combined with calculation of the dispersion curves in the layered
model using matrix method. The main advantage of the Bayesian inversion is
that the solution is represented not only by one ’best’ model but by a large set of
models, which are used to determine a mean model together with the uncertainty
of the model parameters. As a result, more than one million model samples (i.e.,
3D velocity models) following the posterior probability density function were
obtained. From the estimated standard deviation we find that the best resolved
part lies at depths 2-18 km ruling out determination of the Moho depth.
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The mean model was correlated with known geologic structures of the Bo-
hemian Massif. We must keep in mind that our method is able to recover only
large-scale (smoothed) structures. The most prominent structure in the resulting
model is a high velocity anomaly located beneath the Eger Rift, presently the
most active area of the Bohemian Massif. The individual domains of the Bo-
hemian Massif show higher velocity anomalies where high-grade metamorphism
is expected (Moldanubian, Brunia), whereas other domains are characterized by
rather low-velocity anomalies (Teplá-Barrandian, Saxothuringian and Sudetes).
The uppermost part of the 3D velocity model shows good correlation between the
low-velocity anomalies and sedimentary cover of the Bohemian Massif. Moreover,
two significant anomalies with unknown geological interpretation were recovered:
a low velocity anomaly in the Moldanubian domain and a high-velocity anomaly
resembling a promontory of the Moldanubian into the Teplá-Barrandian domain
under the Bohemian Cretaceous Basin.

Finally, our 1D S-wave velocity model of the Western Bohemia was compared
with local models found by other authors, showing in general very good agreement
in depths 2-18 km (i.e., where low variance of our model is obtained). This sup-
ports the results of our ambient noise tomography of the Bohemian Massif’s crust
as whole, which may give additional insight into its structure and development.
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A. Guterch, W. Hanka, E. Hegedüs, B. Heuer, P. Jedlička, J. Lazauskiene,
G. Keller, R. Kind, K. Klinge, P. Kolínský, K. Komminaho, E. Kozlovskaya,
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