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Introduction

We have performed 3D ambient noise tomography of the Bohemian Massif. We
invert adopted inter-station dispersion curves of both Love and Rayleigh waves
in periods 4–20 s, which were extracted from ambient noise cross-correlations by
Růžek et al. (2016), using a two-step approach. In the first step, the inter-station
dispersion curves are localized for each period into the so-called dispersion maps.
To account for finite-frequency effects, gradient method employing Fréchet kernels
is used. Assuming membrane wave approximation of the surface wave propagation
at each period, the kernels were calculated using the adjoint method (Tromp et al.
(2005); Fichtner et al. (2006)). To reduce the effect of data noise, the kernels were
regularized by Gaussian smoothing. The proper level of regularization is assessed
on synthetic tests. In the second step, the phase-velocity dispersion maps are
inverted into a 3D S-wave velocity model using Bayesian approach (Tarantola
(2005)). The posterior probability density function describing the solution is
sampled by more than one million models obtained by Monte-Carlo approach,
in particular parallel tempering algorithm (Sambridge (2014)). The calculated
variance of the model shows that the well resolved part corresponds to the upper
crust (i.e., upper 20 km). The mean velocity model contains mainly large scale
structures that show good correlation with the main geologic domains of the
Bohemian Massif. Furthermore, in the well-studied area of Western Bohemia our
model agrees well with S-wave velocity models published by other authors.
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1 Method

1.1 Adjoint tomography

The adjoint method may be viewed as a finite-frequency generalization to tra-
ditionally employed ray method as it accounts for the volumetric dependency
of wave propagation on seismic properties of media (similar to Fresnel zone in
optics) represented by the so-called sensitivity kernels.

Simply put, the objective of the seismic tomography is to minimize the misfit
between the synthetics and measurements as function of material parameters.
For our application, we assume misfit as L2 norm of cross-correlation traveltime
residuals:

χ =
1

2

∑
i

hi∆T
2
i . (1)

where the traveltime residual ∆Ti between the synthetic seismogram ui and ob-
served seismogram u0

i is given as the time of their cross-correlation maximum:

∆Ti = arg max
t

∫
ui(τ)u0

i (t+ τ)dτ. (2)

Moreover, the synthetic wavefield ui satisfies condition of membrane wave
propagation for all x and t

ρ(x)ü(x, t)−∇ ·
(
µ(x)∇u(x, t)

)
= f(x, t) (3)

and corresponding boundary and initial conditions. In further, we assume density
ρ to be homogeneous.

To minimize/maximize a functional which is also subject to another con-
traint(s), the method of Lagrange multiplier is employed (Liu and Tromp (2006)).

It can be shown, that the derivative of the Lagrangian L with respect to the
model parameter µ(x) can be simplified to

δµL =
∑
i

∫
Ω

∫
t

2δµ(∇λi(x, t) · ∇ui(x, t))dtdV, (4)

if the Lagrange multipliers λi satisfy the so-called adjoint equation, which in case
of membrane waves is identical to the original equation of membrane wave, but
with adjoint sources (e.g., Luo and Schuster (1991))

f †i = − u̇i∫
u̇i

2dt
δ(x− xi). (5)

To obtain the derivative of the Lagrangian, two calculations for each measure-
ment i are performed: one forward calculation of the wavefield propagation from
source to receiver and one adjoint calculation (in our application this refers to
the backward propagation of the wavefield from receiver to the sources). After
combining these wavefields into the Lagrangian derivative according to (4), it is
used in the minimization procedure using e.g. conjugate gradient method.
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Here, the volumetric distribution of the Lagrangian (and also the misfit)
derivative is corresponding to the sensitivity kernel

Kµ(x) =

∫
t

2∇u(x, t) · ∇λ(x, t)dt. (6)

The sensitivity kernels have several important properties: firstly, they are depen-
dent on the chosen type of misfit. Secondly, they are dependent on the frequency
content of the employed data: the higher is the frequency, the narrower is the
corresponding sensitivity kernel. Moreover, the sensitivity kernels contain singu-
larities in points of source and receivers (i.e. where the adjoint source is located).
In Fig. 1, we show example of cross-correlation traveltime kernel corresponding
to 20 s wavefield.

Figure 1: Sensitivity kernels for cross-correlation traveltime misfit using wave-
field with 20 s dominant period.

The adjoint method can be derived for arbitrary misfit when the measurements
are subject to condition that can be expressed by any linear differential operator.

1.2 Bayesian tomographic inversion

We apply Bayesian approach to solve the second stage of the inverse problem.
The result is given by the posterior probability density function (PDF) on model
space (e.g., Tarantola (2005)).

The posterior PDF is usually expressed using the Bayes theorem:

p(mmm) = k pprior(mmm)p(dddobs|mmm) (7)

where k is a PDF normalization constant, pprior(mmm) is prior PDF, p(dddobs|mmm) is the
so-called likelihood function. The likelihood function contains statistical infor-
mation on the data measurement error, but may also include modeling error.

Usually, the data PDF is considered in a form of Gaussian distribution, then

p(dddobs|mmm) ∝ exp(−S(mmm)), (8)

where S(mmm) defines misfit between measured data dddobs and synthetics calculated
using a theoretical relation ggg(mmm) with Gaussian covariance matrix Cd:

S(mmm) = (dddobs − ggg(mmm))TC−1
d (dddobs − ggg(mmm)) (9)
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The result of the inversion is represented by a set of model samples obtained
by a random walk according to the posterior PDF. In our application, the data
are represented by 2D distribution of dispersion curves. The model is given as
3D S-wave velocity distribution.

To draw samples from the model space according to the posterior PDF, the
Markov chain MC random walker is employed. To increase the efficiency of the
sampler we apply a method called parallel tempering (PT, Sambridge (2014)).
The PT algorithm is similar to the better-known simulated annealing, as it in-
troduces modification of the PDF by an additional parameter called temperature
T . The modified PDF p(mmm,T ) is given by

p(mmm,T ) = k pprior(mmm) exp

(
−S(mmm)

T

)
. (10)

The samples are drawn following this modified PDF assuming multiple values
of the temperature T . The chains with lower temperature values sample locally
areas of PDF maxima, whereas chains with higher temperatures (i.e. the PDF
is more flat) are able to escape the local maxima of PDF. Moreover, two chains
can exchange their temperature values between the chain advances. The PT
algorithm is well balanced between efficiency and stability for complex multimodal
PDFs (Sambridge (2014)). The method is appropriate for non-linear problems,
such as inversion of dispersion curves.

2 Choice of regularization in adjoint tomogra-
phy based on two-dimensional synthetic tests

The tomographic problem addressed here is based on the 2D adjoint inversion of
the 20 s Love-wave traveltimes obtained from the ambient noise cross-correlations
across the Czech Republic.

The adjoint method belongs to finite-frequency iterative gradient methods of
the misfit minimization. The sensitivity kernels of the misfit gradient are obtained
as a combination of the forward and adjoint wavefields. Nevertheless, to avoid
artefacts in the resulting model originating in the data noise the method requires
regularization, for example, by smoothing of the sensitivity kernels. It should be
noted that, besides explicit regularization (e.g., by smoothing of the gradient ker-
nel), the implicit regularization (e.g., number of iteration in the gradient method)
is also involved. The regularization setting has an important influence on the re-
sulting model and one must take great care in its choice. We analyse the choice of
regularization parameters for the 2-D adjoint tomography using synthetic tests.

Instead of the typically used (although criticized, e.g., Lévêque et al. (1993))
checkerboard test, we propose to carry out the tests with two different target
models – simple smooth and complex realistic model. Tests with the simple model
demonstrate the possibility of obtaining false small-scale structures. Contrarily,
the tests with the complex target model reveal the possible resolving power of
the present data set. The models shown are shown in Fig. 2:

• Model I: smooth model with small maximum amplitudes of the heterogene-
ity.
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• Model II: complex model with pronounced small-scale structures and large
maximum amplitudes.

(a) (b)

Figure 2: Velocity (target) models I (a) and II (b) for synthetic tests using 20 s
data. Stations and sources are shown by inverted triangles and circles, respec-
tively.

In the following tests, the synthetic data are modified assuming three values
of the noise level specified in terms of the standard deviation. We benefit from
having two independently obtained data sets of close frequency content, namely
the 20 and 16 s Love-wave group traveltimes. Assuming that the differences be-
tween them are mostly due to the measurement error, their standard deviation
is used as a reference ”real” data noise for the synthetic tests σt. The other
two levels are chosen for analysing the effect of smaller and larger data noise
considering 1/3σt and 3/2σt, respectively. The ’accurate’ synthetic seismograms
calculated for models shown in Fig. 2 are shifted by a value generated randomly
from the corresponding Gaussian distribution. The waveforms themselves are not
perturbed.

We smooth the calculated misfit gradients by means of convolution with a
2-D isotropic Gaussian function. We consider three widths (denoted as σx), 50,
100 and 150 km, representing different strengths of the smoothing. The smallest
width corresponds to the wavelength of the 20 s data (or little less). This might
be considered the natural choice because it prevents the smaller-than-wavelength
structures without oversmoothing. The other two smoothing levels represent two
different degrees of over-regularization.

The data coverage, that is the source-receiver configuration used in the syn-
thetic tests, is the same as in the case of the real 20/16 s Love-wave data inversion
and may be considered almost perfect for the inversion (see Fig. 2). The calcula-
tions were carried out using 2D adjoint version of software package SeisSol (Käser
and Dumbser (2006) etc., see also http://www.seissol.org/).

Using the synthetic tests we investigate two effects on the convergence to-
wards (or divergence from) a correct model: the effect of (i) noise level added
to synthetics and (ii) spatial Gaussian smoothing of the gradient. To quantify
model improvement, we define the model misfit as the L2 norm of the difference
between the obtained model mn at iteration n and target (i.e., true) model mtarg
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normalized by the L2 norm of the initial model m0: ||mn−mtarg||||m0|| ·100%. Usually the
curve has a local minimum. We denote the model corresponding to the minimum
as the optimal model. Note that the model misfit is unknown in real applications
because we do not know the true model.

The results for Test I and Test II are shown in the left and right column
of Fig. 3, respectively. The individual rows show results for the three gradient
smoothing levels σx (50, 100 and 150 km) with distinct colours and symbols. The
decrease of data misfit (traveltime residual RMS) for the three noise levels is
plotted in grey using the respective symbols and right axis.

Generally, during the first iteration steps of the inversions the structural model
is improved at the longest wavelengths and both the model and the data misfit
decrease considerably. During further iterations, the shorter wavelength struc-
tures of the model are revealed. The main difference between Test I and II is
the number of iterations needed to achieve the optimum. When the target model
contains smaller-scale structures, more iterations are needed in order to obtain
the main features of the model and reach the optimum. At this point the per-
formance of the inversion depends on the noise and smoothing levels. For the
lowest noise level the model does not evolve considerably from the optimum. In
case of the strong noise and weak smoothing, the model misfit grows with further
iterations. For the higher noise level the increase of the model misfit starts ear-
lier and is steeper. Nevertheless, the data misfit keeps decreasing, showing that
the inversion starts explaining the noise in the data by new artificial structures
in the model. With the increasing level of the gradient smoothing, the results
stabilize in the optimum for more iterations. However, with application of the
strongest smoothing of 150 km the recovered model is bound to contain only very
long wavelength structures. This results in the higher value of the model misfit
in the optimum in Test II as compared with other cases.

These tests show that in the presence of data noise a certain degree of over-
regularization is necessary for obtaining a more stable result. However, in the
case of very high data noise, it may be still insufficient and the inversion should
be stopped after just a few iterations. For the real application (i.e. 20 s Love
wave traveltimes) it follows that the iteration process should be stopped after 6
iterations considering Gaussian smoothing width σx = 100km. If the noise level
σt was underestimated and the real model contains small-scale structures, the
result should be stable without any profound artefacts. In case the real model
does not contain small-scale structures and the data noise level is higher, the
obtained model may suffer from false small-scale heterogeneities. However, the
amplitudes of these anomalies should not be high and the artefacts should not
be dominant features in the obtained models.

We also performed a similar test where we changed the position of stations.
This test confirmed that these conclusions are independent on the source–receiver
coverage.

We note that since the full 3-D adjoint inversions are computationally ex-
tremely expensive, the tests presented in this paper are feasible only in 2-D. We
believe that they provide important insight into the method itself and reveal its
main problems and limitations in general. From the presented numerical ex-
periments, one may infer that the regularization (e.g., in the form of gradient
smoothing) is recommended to be greater than the wavelength considered to pre-
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(a) (b)

(c) (d)

(e) (f)

Figure 3: Results of Test I (left column) and Test II (right column). Colour
curves and left vertical axis: convergence towards the target model represented
by the model misfit. Grey curves and right vertical axis: data misfit in terms
of traveltime residual RMS. Each row corresponds to a different level of the
gradient smoothing: 50 km (top), 100 km (middle) and 150 km (bottom). The
individual lines and symbols correspond to the different levels of noise applied to
the synthetic data.
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vent the bold structural artefacts. The proper number of iterations cannot be
easily generalized because it strongly depends on the choice of the initial model.
For applications similar to ours, the tests suggest that the number should be
rather low (≈ 5 − 10). Otherwise, the model may be spoiled by the data noise
artefacts even if the data coverage seems perfect.

3 Three-dimensional S-wave velocity model of
the Bohemian Massif from Bayesian ambient
noise tomography

Here we present the results of our ambient noise tomography into a 3D velocity
model of the Bohemian Massif (see Fig. 4).

Figure 4: Map of the studied region: a) Main geologic structures of the Bo-
hemian Massif modified after Franke (2000) and Schulmann et al. (2014). MLC –
Mariánské Lázně Complex, CBPC – Central Bohemian Plutonic Complex, CMPC
– Central Moldanubian Plutonic Complex, KVP – Karlovy Vary Pluton, FZ –
fault zone. b) Distribution of points where the models are defined: Green pluses
– data points where phase velocity dispersion maps are determined by 2D ad-
joint localization (first step). Red dots – model control points from which 3D
velocity model is interpolated in the 3D inversion (second step). Selected seis-
mic profiles measured during seismic experiments CELEBRATION 2000 (CEL09,
CEL10) and SUDETES 2003 (S01, S02 and S04) across the studied region, are
shown by red lines. Blue outlines show main geologic structures (solid – tectonic
domains, dashed – post-Variscan sedimentary cover). Black thin outlines show
state borders.

The stepping stone for our work are the ambient noise cross-correlation studies
by Růžek et al. (2016) from which we adopted high quality inter-station dispersion
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curves estimated independently for all components (transverse T, radial R and
vertical Z) in period range 4–20 s.

The inversion is based on the traditional two-step approach. In the first step,
we inverted the inter-station dispersion curves separately for the selected periods
into a 2D regular grid (so-called phase velocity dispersion maps) using 2D adjoint
method. For the second step, we performed the inversion of the dispersion maps
into a 3D S-wave velocity model in a Bayesian framework.

The phase velocity dispersion maps are calculated for periods (4, 6, 8, 10,
12, 16, 20) s in the first stage and serve as input data in the second step of the
inversion in which the Bayesian approach is applied. We extract dispersion curves
in a selected 2D regular grid of data points (green pluses in Fig. 4b). The 3D
velocity model is represented by a set of vertical 1D layered models on a regular
horizontal grid of model control points (red dots in Fig. 4b). The spacing of the
data and model control points is 16 km and 50 km, respectively. In each model
control point, we assume 7 layers above a halfspace with interfaces at depths of
2, 4, 8, 12, 18, 24, and 32 km. Although the model is parametrized in 3D, the
synthetic dispersion curves are calculated for computational reasons assuming 1D
layered model at each data point. We employ the code VDISP which is based
on a matrix method using Thomson-Haskell and Watson’s matrices for Love and
Rayleigh waves, respectively (Novotný (1999)). To obtain a 1D layered model
for the synthetic dispersion curve calculation, the model is interpolated in each
layer from the model control points into the data grid points by cubic spline
interpolation.

The Bayesian inversion employs the PT algorithm with temperatures 1–50
to sample the posterior PDF. As the model prior information pprior(m) we use
homogeneous PDF on a selected interval for all model parameters, in partic-
ular between 1 and 15 km/s. Another constraint on the model parameters is
the requirement of a nonnegative velocity gradient with depth for each model
control point. For simplicity, the data covariance matrix Cd is assumed to be
diagonal with standard deviation corresponding to error of dispersion maps (see
Section 3.1).

3.1 Phase velocity maps

Fig. 5 shows the inverted phase velocity dispersion maps for each period as ob-
tained from the three components individually: Love (T) and both Rayleigh (R
and Z). The perturbations in phase velocities are shown with respect to average
values specified on the right side of each map.

We treat the dispersion curves for R and Z component as two independent
datasets to get insight into the accuracy of the first part of the inversion. We
use differences between both Rayleigh dispersion maps to estimate the error of
the dispersion maps. The RMS of the differences ranges between 0.10− 0.15 s for
different periods.

The phase-velocity dispersion maps were found to correlate well with known
geology and are usually used for preliminary interpretation. In our dispersion
maps (see Fig. 5), there is a high velocity structure in the southern part of the
domain present in almost all maps, which may be related to the Moldanubian
domain. Another stable high velocity anomaly, located in the center of the north-
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(a) (b) (c)

Figure 5: Phase velocity dispersion maps obtained by the 2D adjoint inversion
for each period from all components: a) transverse T (i.e., Love wave), b) radial
R c) vertical Z (both Rayleigh waves). The period increases from top to bottom
(see legend). The model perturbations (color scale) are presented relative to mean
phase velocity model, denoted for each map to the right in km/s.

west border of the Czech Republic is situated beneath the Eger Rift zone, where
a high velocity body is usually found in the tomography (e.g., Grad et al. (2008)).

3.2 3D velocity models

The result of our Bayesian inversion consists of > 1 million PDF samples (i.e.,
3D models). To present the results, we display the mean model calculated from
all models and the best model. The advantage of the mean model is that it
presents only stable features. Therefore, the mean model is typically smoother
than any single model drawn by the MC sampler. The best model is shown as a
representative model to examine differences in properties between a single model
and the averaged one.

Fig. 6 presents the depth-slices of the mean and the best 3D S-wave veloc-
ity model in terms of perturbations relative to the horizontally averaged model.
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Both mean and best model share the most significant structures. The differences
between them appear on smaller scales.

Mean Best
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Figure 6: Depth slices through the mean (left) and best (right) S-wave ve-
locity perturbations calculated as relative differences from horizontally averaged
velocities (left panel). The areas with no station coverage are masked.

4 Discussion

4.1 Uncertainty of the 3D model

The greatest advantage of employing MC methods to solve the inverse problem
lies in the plurality of models representing the solution. As an example, Fig. 7a
shows vertical 1D models in a model control point located in the middle of our
domain. From this example, we see that the best resolved part in the inversion
lies at depths of 2–18 km. At greater depths, the variance in the S-wave velocities
is very high. It also appears that the PDF of the S-wave velocities in deeper parts
as well as vp/vs ratio have 2 local maxima. We ascribe this to the undersampling
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of the PDF in the particular parameter domain. Also note that for model control
points located at the boundaries of our domain, the overall uncertainty increases.

Uncertainty of the model along a profile can be estimated by standard devi-
ation of the mean model (Fig. 7b right). In general, the lowest uncertainty (as
indicated also by the 1D models in Fig. 7a) is achieved down to ∼20 km. How-
ever, the uncertainty changes also laterally along the profile (between 1–2% for
the well resolved part). Alternatively, we visualize these changes via standard
deviation of selected S-wave velocity isolines (Fig. 7b left).

(a)

(b)

Figure 7: a) 1D vertical models in a selected model control point in the middle
of the domain. Color palette shows nPDF – PDF normalized to its maximum
(best model, see legend). b) 2D mean model and its variance interpolated along
the CEL09 profile. Two velocity isolines are shown with their standard deviation.

We emphasize that we should be extremely cautious when interpreting the
imaged structures below 25 km, where the model variance increases rapidly. In
particular, our models are not suited for the search of the Moho. The following
geologic interpretation should be confined to large-scale structures only. This lim-
itation is a consequence of the method applied, namely: a) employment of surface
wave data, which is inherently sensitive to the averaged (smoothed) structures
both horizontally and vertically, making it impossible to obtain velocity inter-
faces; b) model parametrization – horizontal grid with relatively large (50 km)
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spacing; and c) averaging of great amount of single models generated by the MC
inversion which produces stable but smooth structures.

4.2 Geological interpretation of 3D S-wave velocity model

We solved the ambient noise tomography in the region of the Bohemian Mas-
sif, Variscan orogen with complex structure and history (see overview in Matte
(2001); Franke (2000)). Due to its complex history and structure, the region of
the Bohemian Massif has been subject to many seismologic studies starting from
the 80s (see Novotný and Urban (1988)). Most of the recent crustal studies use
active experiments along profiles, such as CELEBRATION 2000 and SUDETES
2003. The applied tomographic methods result in 2D vertical mainly P-wave
velocity models (Hrubcová et al. (2005); Novotný (2012); Grad et al. (2008);
Novotný et al. (2009); Hrubcová et al. (2010); Růžek et al. (2007))

Here, we correlate our 3D mean S-wave velocity model with known geology
with the help of vertical cross-sections (Fig. 8), corresponding to selected pro-
file measurements of active seismic experiments CELEBRATION 2000 (CEL09,
CEL10) and SUDETES 2003 (S01, S02, S04), see also Fig. 4b).

The inferred 3D S-wave velocity model shows good correlation with main
geologic domains of the Bohemian Massif. The Moldanubian domain is char-
acterized by high S-wave velocities representing exposed middle/lower crustal
material, except for a distinct anomaly located in its central part. Similarly to
the Moldanubian, Brunia shows higher S-wave velocity anomalies. In contrast,
the Teplá-Barrandian, Saxothuringian and Sudetes domains show lower S-wave
velocities. In the Teplá-Barrandian domain which is composed of less consoli-
dated upper crustal rocks, we have recovered a high velocity region with unclear
geological interpretation resembling a promontory of the Moldanubian domain.

The most prominent high-velocity anomaly in the model is found beneath the
Eger Rift. Moreover, some of the low S-wave velocity anomalies present in our
model may correspond to large plutonic bodies, and the topmost low velocity
structures correlate well with the sedimentary cover of the Bohemian Massif.

4.3 Comparison with local 1D models of Western Bo-
hemia

Here we compare our model with 1D S-wave velocity models of Western Bohemia
of other authors. We have extracted 1D model in a specific point (namely in
station Nový Kostel, NKC) from our 3D model using cubic spline interpolation.
This station is located in Western Bohemia region with periodic occurrence of
earthquake swarms. Therefore, this area was subject to many tomographic in-
vesigations, results of which are compared with ours (Novotný and Urban (1988);
Novotný (1996); Málek et al. (2000); Růžek and Horálek (2013); Málek et al.
(2005); Wilde-Piórko et al. (2005); Růžek et al. (2012); Kolínský et al. (2011),
see Fig. 9).

13



S04

S02S01

CEL10

D
ep

th
 (

km
)

Distance (km)

D
ep

th
 (

km
)

Distance (km)

D
ep

th
 (

km
)

Distance (km)

D
ep

th
 (

km
)

Distance (km)

D
ep

th
 (

km
)

Distance (km)

CEL09

VSrel (%)

TB Mold.KVP MLC
CPBC

CMPC
BruniaSax.

EFZKVP SudetesSax. ER EFZMold. Sudetes

MSZMold. Brunia

ER Mold. BruniaSax.

CEL09

S04

S01

S
02

C
EL

10

Figure 8: The S-wave velocity perturbations with respect to average model for
each depth calculated from the mean model along the studied profiles. The main
geologic structures are denoted on the top of each profile as indicated in the map
in the inset panel. MLC – Mariánské Lázně Complex, CBPC – Central Bohemian
Plutonic Complex, CMPC – Central Moldanubian Plutonic Complex, ER – Eger
Rift, KVP – Karlovy Vary Pluton, EFZ – Elbe Fault Zone, Mold – Moldanubian,
Sax – Saxothuringian, TB – Teplá-Barrandian, MSZ – Moravo-Silesian Zone.
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Figure 9: 1D model extracted from our 3D Bayesian model at station NKC
(color coded): left – S-wave velocity model, right – vp/vs ratio. The resulting
model samples are colored according to the normalized PDF value (nPDF), and
the mean and best models are shown (see legend). The model is compared with
1D S-wave velocity models of Western Bohemia/NKC station of other authors
(for more details see text). The inset in the middle is a zoom of the top 12km.

In general, all models are very close to our extracted 1D model mainly at
depths 2-25 km. A larger discrepancy is in the subsurface part between our
model and the shallow models (models reaching only to 10-15 km, i.e. Malek2000,
Malek2005iso and RuzekHoralek2013, see also zoomed inset in the middle of
Fig. 9), which is probably caused by low sensitivity and resolution of our data to
these depths. Model by Wilde-Piórko et al. (2005) deviates from all other models
in top 15 km, but its lower part (20-40 km) agrees with them.

Conclusions

We have performed the first 3D ambient noise tomography of the Bohemian
Massif. The input data comprise of inter-station phase-velocity dispersion curves
in range 4–20s prepared from ambient noise processing by Růžek et al. (2016).
The inversion was carried out using two-step approach: in the first step, the
dispersion curves were localized for each period into phase velocity dispersion
maps and in the second step, these maps were inverted into a 3D S-wave velocity
model.

To account for the finite-frequency effect, 2D adjoint inversion was utilized in
the first step. Particular attention has been given to estimate the regularization
parameters, such as width of the gradient smoothing function and number of iter-
ations – subject not properly covered by literature despite having a crucial effect
on the resulting model. To this aim, synthetic tests for the longest periods with
two distinct target models were used, the first model was simple smooth model
to demonstrate the emergence of model artifacts when insufficient smoothing is
applied or too many iterations are performed. The second target model con-
tains pronounced smaller-scale heterogeneities revealing the possibility to recover
more-detailed structures in the resulting model. The synthetic data were modi-
fied by noise estimated from the differences between the 16s and 20s Love group
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data. According to the tests, relatively large smoothing width (almost twice the
wavelength) and rather small number of iterations (≈ 5) were found to be op-
timal. These values may appear to give too simple or over-regularized models.
On the other hand, the resulting models contain weak but apparent smaller-scale
heterogeneities which are, moreover, considered reliable assuming the estimated
noise level.

The phase velocity dispersion maps were determined with the regularization
parameters derived from the synthetic tests with the smoothing width scaled
according to the respective wavelength. These maps serve as input data in the
Bayesian inversion to obtain the 3D S-wave velocity model of the Bohemian Massif
(and additionally depth-independent vp/vs ratio). The inversion was carried out
employing Monte-Carlo sampler (in particular the so-called parallel tempering
algorithm), combined with calculation of the dispersion curves in the layered
model using matrix method. The main advantage of the Bayesian inversion is
that the solution is represented not only by one ’best’ model but by a large set of
models, which are used to determine a mean model together with the uncertainty
of the model parameters. As a result, more than one million model samples (i.e.,
3D velocity models) following the posterior probability density function were
obtained. From the estimated standard deviation we find that the best resolved
part lies at depths 2-18 km ruling out determination of the Moho depth.

The mean model was correlated with known geologic structures of the Bo-
hemian Massif. We must keep in mind that our method is able to recover only
large-scale (smoothed) structures. The most prominent structure in the resulting
model is a high velocity anomaly located beneath the Eger Rift, presently the
most active area of the Bohemian Massif. The individual domains of the Bo-
hemian Massif show higher velocity anomalies where high-grade metamorphism
is expected (Moldanubian, Brunia), whereas other domains are characterized by
rather low-velocity anomalies (Teplá-Barrandian, Saxothuringian and Sudetes).
The uppermost part of the 3D velocity model shows good correlation between the
low-velocity anomalies and sedimentary cover of the Bohemian Massif. Moreover,
two significant anomalies with unknown geological interpretation were recovered:
a low velocity anomaly in the Moldanubian domain and a high-velocity anomaly
resembling a promontory of the Moldanubian into the Teplá-Barrandian domain
under the Bohemian Cretaceous Basin.

Finally, our 1D S-wave velocity model of the Western Bohemia was compared
with local models found by other authors, showing in general very good agreement
in depths 2-18 km (i.e., where low variance of our model is obtained). This sup-
ports the results of our ambient noise tomography of the Bohemian Massif’s crust
as whole, which may give additional insight into its structure and development.
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