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Introduction
The thesis deals with methods for automated inversion of seismic source parame-
ters. We studied the influence of structure model used and show an example how
the existing model can be improved. We have developed a new, fully automated
tool for the centroid moment tensor (CMT) inversion in a Bayesian framework.
It includes automated data retrieval from ArcLink server or local data storage.
Step-like disturbances are detected using modeling of the disturbance according
to instrument parameters and such components are automatically excluded from
further processing. Frequency ranges for the filtration and time windows for the
inversion are determined automatically due to epicentral distance. Full-waveform
inversion is performed in a space-time grid around a provided hypocenter. A data
covariance matrix calculated from pre-event noise yields an automated weight-
ing of the station recordings according to their noise levels and also serves as an
automated frequency filter suppressing noisy frequency ranges. The method is
tested on synthetic and observed data. It is applied on a dataset from the Swiss
seismic network and the results are compared with the existing high-quality MT
catalog. The software package programmed in Python is designed to be as versa-
tile as possible in order to be applicable in various networks ranging from local to
regional. The method can be applied either to the everyday network data flow,
or to process large pre-existing earthquake catalogues and data sets.
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1 Bayesian formulation of the inverse problem
of centroid moment tensor

A Bayesian approach is a probabilistic method projecting data errors and prior
information into the uncertainty of model parameters. In addition to the best-
fitting CMT solution, the method provides a posterior probability density func-
tion (PPDF) of the parameters. The PPDF can be obtained analytically for linear
inverse problems in a L2-norm and Gaussian distributions of data uncertainties.
For non-linear problems a systematic grid search can be used, but (except for
problems with very few parameters) it is computationally highly inefficient. That
is why stochastic sampling algorithms have been developed to provide an approx-
imation of the PPDF [Sambridge, 2014; Sambridge and Mosegaard, 2002].

Here we propose a hybrid approach, where the centroid position and time are
evaluated on a grid of points, and the MT is solved by least squares. In each grid
point the PPDF of the MT solution (which is Gaussian because the problem is
linear) is obtained analytically. Then such PPDFs are combined to obtain a full
(non-Gaussian) PPDF. So we obtain the same PPDF as would be obtained by a
stochastic method, but using just a 4-dimensional grid search instead of sampling
a 10-dimensional model space. The grid is chosen in such a way that it covers
all relevant locations and its sampling density controls PPDF discretization. By
choosing the grid, we define a prior information for centroid location and time,
which is uniform within the grid and zero elsewhere. In other words, we assume
that the hypocenter definitely lies within the grid, but no position within the grid
is preferred.

In the linear MT problem in a given space-time grid point i (xi, yi, zi, ti) the
observables d and model parameters m are related by d = Gm, where matrix
G (forward problem matrix) is composed of Green’s functions (more exactly, the
forward problem matrix G in our method is composed of elementary seismograms
of 6 elementary moment tensors, which are calculated from Green’s functions).
Let the measured data, which include measurement uncertainties, be denoted
dobs, and assume that their uncertainties are Gaussian with the data covariance
matrix denoted as CD (the content of the data covariance matrix is described in
the next Chapter 3). With no prior information about the MT parameters (i.e.,
formally, Gaussian prior with infinite variance), the least-squares solution for the
model parameters is [Tarantola, 2005, eq. 3.40–3.41]

m̃i =
(
GT

i C−1
D Gi

)−1
GT

i C−1
D dobs , (1)

where m̃i denotes the inverted model parameters in grid point i, which gener-
ally differ from the true model parameters m. The uncertainties of the model
parameters are described by the model parameters covariance matrix C̃M

i , given
by

C̃M
i =

(
GT

i C−1
D Gi

)−1
. (2)

The misfit value is then

misfiti = (dobs − Gim̃i)T C−1
D (dobs − Gim̃i) . (3)

The PPDF for MT components in a fixed space-time point i is given by 6-
dimensional Gaussian function which is centered in the best solution for the given
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grid point i,

PPDFi(m) = 1
c

exp
(

−1
2 (dobs − Gim)T C−1

D (dobs − Gim)
)

, (4)

where c is a constant normalizing the total (10-dimensional) PPDF to unity (see
lower). After an algebra, the PPDF can be equivalently written

PPDFi(m) =

= 1
c

exp
(

−1
2

[
(dobs − Gim)T C−1

D (dobs − Gim)
])

=

= 1
c

exp
(

−1
2

[
(m − m̃i)T C̃−1

M (m − m̃i) + (dobs − Gim̃i)T C−1
D (dobs − Gim̃i)

])
=

= 1
c

exp
(

−1
2

[
(m − m̃i)T C̃−1

M (m − m̃i) + misfiti

])
=

= 1
c

exp
(

−1
2 (m − m̃i)T C̃−1

M (m − m̃i)
)

exp
(

−1
2misfiti

)
.

(5)

The purpose of this transformation is to rewrite PPDF of unknown shape by the
misfit and 6-D Gaussian function, which can be integrated later.

The normalizing constant c is obtained by integration over all model param-
eters and summation over space-time grid points

1 =
∑

i

∫
PPDFi(m) dm ∆Vi =

=
∑

i

∫ 1
c

exp
(

−1
2 (m − m̃i)T C̃−1

M (m − m̃i)
)

exp
(

−1
2misfiti

)
dm ∆Vi =

=
∑

i

1
c

∫
exp

(
−1

2 (m − m̃i)T C̃−1
M (m − m̃i)

)
dm exp

(
−1

2misfiti

)
∆Vi =

=
∑

i

1
c

√
(2π)6 det CM

i exp
(

−1
2misfiti

)
∆Vi =

=
∑

i

ai ,

(6)

where we used n-dimensional Gaussian integral and the ∆Vi is a volume belonging
to the grid-point i. In our case (uniform sampling in both space and time), it is

∆Vi = ∆x ∆y ∆z ∆t , (7)

where ∆x, ∆y, and ∆z is grid spacing in direction of the coordinates x, y, and
z, respectively, and ∆t is time-grid spacing.

We denoted ai the PPDF integrated over all MT parameters at a given space-
time grid point i. It is composed of the analytically estimated uncertainties of
all MT parameters (determining the model covariance matrix CM

i ) and misfit of
the best model at that grid point

ai = 1
c

√
(2π)6 det CM

i exp
(

−1
2misfiti

)
∆Vi . (8)
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1.1 Marginal probability density
Marginal probability density of the inverted parameters as well as marginal prob-
ability densities of some parameters non-linearly related to MT (e.g. strike angle
or double-couple percentage, which are not directly inverted, but can be cal-
culated from the inverted moment tensor components) can be determined. To
manage this, we generate random samples of MT from a multivariate normal
(Gaussian) distribution at each grid point specified by its mean m̃i and model
parameters covariance matrix C̃M

i (determined in Eqs. 1 and 2). The number of
random samples at each grid point i is proportional to ai, i.e. PPDF integrated
over the MT parameters in the specific grid point (Eq. 8). Having an ensemble
of random samples drawn from the total PPDF, we can easily plot histograms of
parameters of interest (both inverted as well as their combinations) or scattering
of nodal planes. Examples are given later.

2 Automated detection of long-period distur-
bances in seismic records; MouseTrap code

We developed a code MouseTrap for automated detection of fling step distur-
bances in seismic records. The program is available as an ObsPy module under
GNU/GPL license at website http://geo.mff.cuni.cz/~vackar/mouse. Many
of the observed disturbances can be modeled as a seismometer response to an
acceleration step on the input [Zahradník and Plešinger, 2005] (Fig. 1). Fitting
the synthetic disturbance into real records provides four parameters of the input
acceleration step, namely its onset time t0, amplitude A, azimuth ϕ, and incli-
nation θ. The code can be applied either to an individual record or to a set of
records with metadata in a database.

We expect the code to be useful in many applications for automatic data
processing, e.g. waveform inversion and S/N ratio evaluation, where detection
and removal of contaminated records is a must.

We also developed the code SwissMouse for automated analysis of fling step
existence in broad-band records of Swiss Digital Seismic Network over the last 18
years, at stations close to located events. Fling steps are present at all types of
studied broad-band instruments, at many different stations. We observed a higher
percentage of fling steps at some stations. Azimuths of fling steps remain the same
at some (but not all) stations. In particular there is a higher occurrence of fling
steps with azimuths 30°, 90°, and 150°. Most of the fling steps are horizontal, but
a significant number have inclination ∼ 35°. These preferred directions are very
likely related to pendulums in Galperin’s design seismometers, so these cases are
probably of instrumental origin. There is a good reason (supported by limited
authors’ experience) to expect, that in instruments operating with pendulums in
N, E, Z setup, such as e.g. Guralp CMG 3-T, the disturbances might sometimes be
preferentially related to a single component. The fling steps are more common at
records with higher PGA and PGV, near the source, and at higher magnitudes (M
1–4 mostly examined). Besides this paper we have also observed such disturbances
at short-period instruments, where they are naturally characterized by much
shorter durations than at broad-band seismometers.

There are also similar disturbances which can be described as instrument
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Figure 1: Example of a fling step disturbance in the integrated output (raw
displacement) of the Nanometrics Trillium T40 seismometer. The disturbance
is well fitted by the simulated instrument response to an acceleration step of
amplitude A = 8.7 · 10−7 m · s−2, azimuth ϕ = 209.7◦, and inclination θ = 35.9◦.
The recorded earthquake has magnitude MLh = 1.7 (Swiss Seismological Service),
its epicentral distance is 1.9 km.

response to a spurious step in the input velocity [Zahradník and Plešinger, 2010],
which can be explained as caused by saturation in the force-balance system.
These might be implemented in future updates of the MouseTrap code, including
diagnostics of a joint occurrence of both kinds of disturbances.

3 Covariance matrix of the noise

In this chapter we describe the construction of the data covariance matrix CD.
In our definition, it reflects the properties of the seismic noise. We assume that
seismic noise time series can be considered as a stationary Gaussian random
process with zero mean. Then the data covariance matrix can be written for a
discrete series x(ti), which represents a single component of seismic noise at a
single station, as [Tarantola, 2005, Example 5.1]

CD =

⎛⎜⎜⎜⎜⎝
C(τ0) C(τ1) · · · C(τN−1)
C(τ1) C(τ0) · · · C(τN−2)

... ... . . . ...
C(τN−1) C(τN−2) · · · C(τ0)

⎞⎟⎟⎟⎟⎠ . (9)

where C(τk) is a value of covariance function for a time lag τk and N is a number
of samples in the discrete series x(ti) . For estimation of the covariance function,
we assume ergodicity, so that the averaging over realizations can be replaced
by averaging over time. Then the covariance for discrete time series may be
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estimated as the auto-correlation defined by

C(τk) ergodicity= (x ⋆ x)[τk] def= 1
2N + 1

N∑
m=−N

x[τm] x[τm+k] . (10)

So far, we have assumed only a single scalar time history of the noise (i.e.,
a single component of the motion at a single station). Nevertheless, the data
covariance matrix could be generalized for the three component noise recordings
acquired at L stations. In general, one should assume all potential correlations
in the recorded noise wave field, so that the full covariance matrix would consist
of 3 times L matrices defined in equation (9). On one hand, since the noise wave
field still consists of propagating seismic waves (e.g., surface waves), one cannot
neglect the correlation between the components of recorded ground motion at a
single station. On the other hand, we assume zero correlations between the noise
recordings at different stations. This is valid assumption for stations which are
far away from each other and for high frequency seismic noise, so that different
noise sources dominate the recording at different stations. For stations close to
each other, seismic arrays, collocated sensors, and for low frequency noise, it
might be useful to take into account cross-covariance between stations. The data
covariance matrix for two stations, each of them with three components (with
ordering station first and then components) would be then [Tarantola, 2005, eq.
5.10–5.11]

CD =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

CZZ
st1 CZN

st1 CZE
st1 0 0 0

CNZ
st1 CNN

st1 CNE
st1 0 0 0

CEZ
st1 CEN

st1 CEE
st1 0 0 0

0 0 0 CZZ
st2 CZN

st2 CZE
st2

0 0 0 CNZ
st2 CNN

st2 CNE
st2

0 0 0 CEZ
st2 CEN

st2 CEE
st2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (11)

where blocks on the diagonal (e.g., CZZ
st1 , CNN

st1 , etc.) are given by Eqs. (9 and
10), while at non-diagonal blocks (e.g., CEN

st1 , CEZ
st1 , etc.) are given by Eq. (9),

except C(τk) is discrete cross-covariance, estimated by discrete cross-correlation,
so that, for example,

CEZ(τk) ergodicity= (xE ⋆ xZ)[τk] def= 1
2N + 1

N∑
m=−N

xE[τm] xZ [τm+k] , (12)

would be an estimate of cross covariance for East-West (xE(ti)) and vertical
component (xZ(ti)) noise time series at a single station. The empty blocks are
from the assumption that the seismic noise is not correlated between the seismic
stations.

We illustrate a data covariance matrix on a simple example in Fig. 2.

3.1 Standardized data calculated using the covariance ma-
trix

The real vs. synthetic waveform match is commonly plotted as it provides visual
control of the difference between the reality and a model. For the most simple
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a) b)

Figure 2: Example of data covariance matrix (panel a) and related seismograms
(panel b). We generated synthetic data for three 3-component stations for a given
seismic source and added planar wave white noise coming from azimuth 54° and
inclination −21°, so all components are affected (panel b). The data covariance
matrix CD (panel a) is calculated from the before event noise (orange time window
in panel b). The data covariance matrix consists of three large non-empty blocks
corresponding to three stations, their 3 × 3 sub-blocks correspond to auto- and
cross-covariance of the 3 components. We can see that some components are
correlated (red color at the diagonal) and the others anticorrelated (blue color).
The correlation between stations is assumed to be zero.

case of the inverse problem with diagonal data covariance matrix with constant
data variance σ2 (CD = σ2I), the solution of the inverse problem (eq. 1) is

m̃ =
(

GT
(
σ2I

)−1
G

)−1
GT

(
σ2I

)−1
dobs =

(
GT G

)−1
GT dobs . (13)

Then the real/synthetic waveform difference, which is plotted, is also minimized
in the L2-norm. For general CD described in this chapter, interpreting such a
waveform match as a criterion of the fit quality is problematic, because the misfit
value and the difference between the real and synthetic waveform is weighted
by the data covariance matrix (Eq. 3). Consequently, a large difference between
the observed and simulated waveforms may be caused by frequencies which are
actually suppressed in the inversion by the effect of CD and the stations with the
largest amplitudes might not be the ones with the largest impact. In this section,
we present a way how to visualize the waveform difference, which is directly
related to the minimized misfit.

Since CD is positive-definite matrix by its definition (we use biased estimate
of the covariance function in Eqs. 9 and 11), we can use Cholesky decomposition.

C−1
D = LLT . (14)

Then we can rewrite the misfit definition (Eq. 3) in the following way:

misfiti = (dobs − Gm̃i)T LLT (dobs − Gm̃i) =

=
(
LT dobs − LT Gm̃i

)T (
LT dobs − LT Gm̃i

)
=

= (d′
obs − d′

i)
T (d′

obs − d′
i) ,

(15)
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where
d′

obs = LT dobs

d′ = LT Gm̃i .
(16)

The difference between d′
obs and d′ (called standardized residuals, according to

Dettmer et al. [2014]) is minimized in the L2-norm, so it can be plotted to visual-
ize waveform agreement as used in inversion. The effect of the automated station
weighting and frequency filtering, that are also included in the approach, (shown
in Section 5.1) can be seen in d′

obs (standardized observed data) and d′ (stan-
dardized synthetic data) also. As a drawback, the information at components of
d′

obs (standardized data) may be mixed compared to components of dobs (original
data). This may happen if, e.g., the noise on horizontal components E and N is
strongly correlated. Then the information about its correlation, contained in CD,
helps in the inverse problem, but the CD also causes tradeoff between components
E and N of standardized waveforms. This tradeoff is intrinsically connected with
removing the effect of the noise correlated between components.

4 Developed method and its technical aspects
The method described in the previous chapters, together with a few other proce-
dures for optimal data selection and some plotting routines, is programmed as a
software package ISOLA-ObsPy, which can be used for fully automated moment
tensor inversion, including near-real-time data flows, as well as large data sets of
previously recorded events.

The package includes automated data retrieval (saved in any file format sup-
ported by ObsPy [Krischer et al., 2015] or accessible via ArcLink [SeisComP3
documentation]), removal of components with various instrumental disturbances,
setting frequency ranges for each station individually according to its distance and
event magnitude, and full-waveform inversion in space-time grid around hypocen-
ter. The size of the space-time grid is automatically chosen according to the lo-
cation uncertainty and magnitude. Time sampling is 100-times higher then the
high limit of the inverted frequency band. Spatial sampling can be adjusted by
user by entering horizontal and vertical step directly and/or by entering maximal
number of grid points.

Grid search over time and space is effectively combined with analytical (least-
squares) MT inversion in a Bayesian framework. This way not only the best
solution is found, but also the full posterior probability density function of the
CMT is inferred. The marginal probability density function for any CMT pa-
rameter can be plotted. Data covariance matrix calculated from the before-event
noise yields an automated weighting of the stations according to their noise levels
and also serves as an automated frequency filter suppressing noisy frequencies.
To speed up the inversion, the time demanding tasks such as the Green’s function
calculations and the spatial grid search are parallelized. The software package is
programmed as versatile as possible in order to be applicable in various networks
ranging from local to regional.

The code shares some similarities with the broadly used ISOLA software
[Sokos and Zahradník, 2013] in terms of the inversion methods and input/out-
put file structures, but most codes have been re-written from the scratch for
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maximum computational efficiency (combing Fortran and Python, using ObsPy,
NumPy, and MatPlotLib). In contrast to ISOLA, whose advantage is in a friendly
manual processing of individual events using Matlab GUI, the new codes are in-
tended rather for a massive automated application on large sets of earthquakes
from a database, and/or for near real-time applications.

Although the process is fully automated, the inversion can be visually in-
spected later. For this reason, many figures are automatically plotted.

The ISOLA-ObsPy software package is available under GNU/GPL licence1

and can be downloaded from http://geo.mff.cuni.cz/~vackar/isola-obspy/,
where there is also full documentation.

4.1 Technical solution

Here we add some technical details related to the developed method extending
the description in the lead-in of this chapter.

For programming the automated CMT inversion, we have chosen Python be-
cause it is powerful and high-level programming language, with a wide range of
standard libraries, and it is available for many operating systems. During the
development, we appreciated high code readability and syntax which enable to
express concepts in a brief way. We wrote the package using object-oriented
programming2. The core of the package is a class3 ISOLA. This class contains
input data (like seismograms and initial location), calculated intermediate prod-
ucts (like the data covariance matrix), and results (e.g. most probable CMT and
its uncertainty), as well as methods performing all steps of the calculation. This
concept enables an easy implementation of the method to a larger product, like a
program for real time data processing or analysis of a large dataset of historical
earthquakes.

In the development, we benefit from many standard libraries of Python (e.g.
numpy, pyproj.Geod, psycopg2, matplotlib, etc.) and seismological toolbox
ObsPy.

The calculation of Green’s functions is out of scope of the thesis. They are
computed by code axitra [Bouchon, 1981; Coutant, 1989], which is called from
our code.

The most computationally demanding parts of the calculation are calcula-
tion of the Green’s function and searching the solution of the inverse prob-
lem on space-time grid. These two parts are parallelized using Python module
multiprocessing. This module runs separate tasks as subprocesses and allows
the programmer to fully leverage multiple processors on a given machine.

1The GNU General Public License (GNU GPL) is a widely used free software license, which
guarantees end users the freedom to run, study, share and modify the software. Available at
https://gnu.org/licenses/gpl.html

2concept of programming, which uses “objects”, which may contain several data fields (often
called ‘attributes’) and code in the form of procedures (called ‘methods’)

3program-code-template for creating objects, providing initial values for member variables
and implementations of the methods

9
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4.2 Results plotting

The method is optimized for automated data processing, but a possibility for later
visual inspection of algorithm is highly desirable in many applications. For that
reason, the code has procedures for plotting various figures visualizing input data,
result stability, uncertainty, waveform fit, as well as some intermediate products,
like the figure of the covariance matrix. Here we show just one example of them,
a figure showing spatial stability of the solution (Fig. 3).

In addition to these figures, the ISOLA-ObsPy package contains a function
for creating an HTML page containing a description of the result illustrated these
figures. We can decide which plots should be included in HTML report and/or
add a reference solution for comparison by setting parameters of the function.

Beside graphical output, the code provide also a plain text output of moment
tensor itself, its position, and its tensor decomposition.

5 Tests and applications of the developed method

5.1 Synthetic tests

There are three representative synthetic tests presented in this section. They
show that the proposed method can not only assess the uncertainty of the CMT
solutions with respect to seismic noise, but it can also improve the CMT results.
The improvement is possible because when analyzing the noise, the inversion can
automatically be focused onto the least noisy part of the data.

5.1.1 Dependence of the uncertainty on the noise level and number
of stations

To illustrate the performance of the proposed method, we conduct a synthetic test
showing behavior of the Bayesian inversion for different noise levels and station
configurations (Fig. 4). We generated synthetic waveforms (in the same velocity
model as used in the inversion), then we added white noise of specified level,
and used it as “data” in the inversion. Narrowing the marginal probability of
each parameter can be observed for higher number of stations, lower noise level,
and better azimuthal coverage. The marginal probability densities are plotted
by method described in Section 1.1. The dependence on the noise level is driven
by the data covariance matrix CD (described in Chapter 3), which reflects the
properties of before-event noise.

The marginal probability distribution is not always centered at the true solu-
tion (for which synthetic seismograms were generated; red line in the figure), but
usually close to the best fitting model, which can be biased. The bias changes
for every realization of random white noise. The ‘DC %’ parameter never has
a maximum at 100 % because every perturbation around a pure-DC mechanism
results in a non-DC part, so obtaining pure-DC moment tensor is highly improba-
ble when generating realizations within a given probability density function. But
maximum probability of ‘DC %’ gets closer to original 100 % when the uncertainty
is decreasing.
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a) b)

Figure 3: Solution varying with depth and west-east coordinate (view from the
south). The color of the beachball corresponds to the DC percentage for the best
solution at a given grid point. In panel (a), the size of the beachballs corresponds
to the posterior probability density function (PPDF) and the PPDF is summed
over third dimension (N-S coordinate) and time. In panel (b), the beachball size
corresponds to the variance reduction (VR), the solutions are shown in the plane
in which the best solution (circled) lies, the color in the background corresponds
to the inverted centroid time at a given grid point, and the contour lines show the
condition number. Plotted for an MW = 3.7 earthquake at Sargans, Switzerland
on 2013-12-27 07:08:28.
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Figure 4: Case example
(synthetic test), how the
Bayesian uncertainty of the
resulting CMT varies in five
different configurations. 400
focal mechanisms were gen-
erated randomly based on
the calculated PPDF (see
Section 1.1). The configura-
tions differ by the number of
the stations, their azimuthal
distribution, and by the
noise level. True parameters
are shown in red and the best
solution by the green dot-
ted line. Marginal probabil-
ity densities are shown for
nodal lines, moment mag-
nitude Mw, centroid depth
and for the MT decom-
posed into its double-couple,
CLVD and isotropic compo-
nent [Vavryčuk, 2015]. The
marginal probability func-
tion gets narrower (more fo-
cused) as the number of the
stations increases, their az-
imuthal coverage improves,
and as the noise decreases.
Noise denoted ‘strong’ has 4
times higher standard devia-
tion than ‘weak’ one.

number of station 3 8 3 3 8
noise strong strong weak weak weak
max. azimuthal gap 138° (good) 105° (good) 329° (poor) 138° (good) 105° (good)
condition number 5 6 10 5 6
variance reduction 14 % 8 % 71 % 71 % 62 %

DC uncertainty

MW

depth

DC %

CLVD %

ISO %



5.1.2 White noise test, station dependent

In practice, the seismic noise level often varies from station to station. An auto-
matic algorithm or manual operator needs to choose the stations according their
signal-to-noise ratio. In this test we examine ability of the data covariance matrix
to automate such a procedure, i.e. to prefer the stations at which the noise level
is low. Because in practice we often use the same frequency range at many sta-
tions, and this range is relatively narrow (1–2 octaves wide), for simplicity here
we assume a white noise.

We simulated waveforms of an event with a given focal mechanism, adding a
strong white noise to 3 stations of 5, and weak noise to the others. The level of
the “strong noise” was chosen to be such that in manual processing such stations
would be eliminated. The reason was to test the capability of the procedure to
manage extreme conditions. Then we sampled down the waveforms to the rate
1.2 Hz, dropping frequencies above the Nyquist frequency, and then we filtered
them by Butterworth filter to frequency range 0.02–0.15 Hz.

The results are presented in Fig. 5. As a reference, we show best-fitting
solution with a diagonal CD (the same standard deviation for all stations). It is
given just as an example of a common approach for the purpose of comparison
with our new method. The covariance matrix automatically down-weighted the
strongly disturbed stations, so that the inversion is controlled almost entirely by
the low-noise stations. It usually improves results, but sometimes might produce
unfavorable station geometry. To identify such cases, we recommend to have
a look at the plot of standardized data together with the plot of the station
geometry (panels (a) and (g) in Fig. 5).

5.1.3 Colored (correlated) noise

In real data we always encounter a frequency-dependent noise, and standard
manual CMT inversions need to carefully select a frequency range with suitable
signal-to-noise ratio. For example, in regional CMT inversions, we can usually
use only frequency range below the microseism noise. In this synthetic test we
study whether the covariance matrix of the data is able to avoid the noisy part
of spectrum automatically.

We simulated waveform for the same focal mechanism as in the previous
example and added coloured noise of the same spectral content to all stations.
The noise is strong between frequencies 0.05–0.25 Hz, while it is negligible outside
this frequency band. Again, the level of the strong noise is such that in manual
processing that spectral range would be avoided. Then we down-sampled the
waveforms to the rate 4 Hz, dropping frequencies above the Nyquist frequency,
and then we filtered them by Butterworth filter between 0.10–0.50 Hz.

The results are shown in Fig. 6. It shows that the new method with the data
covariance matrix avoids using the noisy frequency range itself, so it indeed works
as an automated filtering scheme.

In both synthetic tests we compare the new method (which uses the full
data covariance matrix CD, described in Chapter 3) with solution using diagonal
CD, which assumes the same standard deviation for all stations. The method
with diagonal CD is equivalent to simple minimization of difference between the
observed and simulated data in L2 norm, which is common in MT inversion.
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a) station distribution b) true solution c) diagonal CD d) full CD

e) diagonal CD f) full CD
g) full CD

(standardized data)

Figure 5: White noise synthetic test: (a) source-station configuration, (b) mecha-
nism for which waveforms were generated (‘true solution’), (c) best-fitting solution
with a diagonal CD (the same standard deviation for all stations), (d) best-fitting
solution with full (i.e. block-diagonal) data covariance matrix CD (Chapter 3).
Waveform comparison for: (e) solution with a diagonal CD, (f) solutions with full
CD–original seismograms and (g) solutions with full CD–multiplied by Cholesky
decomposition of the CD (see Section 3.1), ‘standardized data’. Panels (e–g) show
original waveforms without noise (dashed black lines), waveforms with the added
white noise which were inverted (solid black lines), and modeled waveforms for
the retrieved focal mechanism (colored solid line). Comparing panels (f) and (g) it
is demonstrated that the covariance matrix strongly up-weighted the weak-noise
stations.
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In this sense, the new method represents improvement compared to the common
approach. We observe that the new method finds the best solution closer (both in
time and space) to the ‘right’ centroid position than the method with a diagonal
CD.

5.2 Inversion of real events — Comparison with Swiss MT
catalog

In order to evaluate the performance of the proposed algorithm, we systematically
compare CMT solutions using this approach with an independent methodology.
As a reference event data set we have selected all (139) events with magnitude
≥ 3 from the Swiss earthquake catalogue from 1999 to June 2015. We compare
the results from our method with moment tensor solutions obtained from the
scmtv module from SeisComP3 package (hereafter called as ’manual processing’).
For both methods, a similar set of 1-D Green’s Functions, optimized for the
Alpine region [Diehl et al., 2009], is used. Local and Regional MT catalogues
for Switzerland have been produced by the SED in the past [Bernardi et al.,
2004; Braunmiller et al., 2002], though at the SED these methods have been
discontinued and now are replaced by the scmtv approach. For both the methods,
all broadband data that is available in the archives of the SED are used. Sensors
used in the inversion are restricted to broadband sensors ranging from 40s–120s,
though the majority of 120s.

The manual processing uses the workflow implemented within the routine
catalogue curation at the Swiss Seismological service. The methodology is based
on the linear least squares inversion of Dreger [2003]. The methodology assumes
that the isotropic component is zero, the epicentral coordinates are fixed (though
the depth can vary), and the source time function is fixed, so it is an MT rather
than CMT approach. A limited set of predefined parameters is used to select
stations and prepare the data, which is automatically implemented depending on
the events’ Local Magnitude (ML) as contained in the earthquake catalogue. An
automatic algorithm can be applied to select the optimal set of stations and event
depth that produces the best MT, taking into account the Variance Reduction and
the % Double Couple of the solution, whilst retaining as many stations as possible.
Interactively, the solution can be tweaked to select and remove individual station
components.

Of the 139 candidate events, MT solutions were obtained for 40 events. The
remaining events could not provide a high quality solution for various reasons: too
few station components provide high waveform fits with high Variance Reduction
due to high background noise, too few stations are available (a small event is
located at edges of the network, or the event occurred during the start of the
network when station density was sparse). These 40 events were also processed
by our new automated code.

The automated procedure followed using the proposed algorithm; all broad-
band stations within a radius controlled by the ML magnitude (obtained during
catalogue creation at the Swiss Seismological Service) were used. The maxi-
mum epicentral distance was limited according to ad hoc formula r < 22·ML km.
Moreover, stations closer than 2 km were removed, because they make inversion
unstable in many cases. Stations components, where instrumental disturbances
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a) station distribution b) true solution c) diagonal CD d) full CD

e) diagonal CD f) full CD g) full CD

(standardized data)

Figure 6: Same as Fig. 5, but for colored noise synthetic test: Strong noise in
the frequency band 0.05–0.25 Hz at all stations. The inverted frequency band is
0.10–0.50 Hz, so only its higher part is not disturbed (noise free). The inversion
with the covariance matrix CD (panel d) provides a solution close to the right
one, contrasting with a wrong solution with a diagonal CD (panel c). Comparing
panels (f) and (g) it is obvious that the covariance matrix serves as an automatic
frequency filter enhancing the undisturbed part of the spectrum, thus improving
the inversion.
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were detected automatically by the MouseTrap code [Vackář et al., 2015], were
removed. Also eliminated were records with data gaps in the period required for
the earthquake and the noise analyses. The code does not remove any station
with high noise because we wanted to test practical ability of the covariance ma-
trix to manage datasets with noisy stations. We require at least 2 stations which
have at least 5 usable components, otherwise the event was removed.

Prior to the inversion, the mean was subtracted from the records and 4-pole
Butterworth bandpass filter was applied restricting the frequency range to 0.02–
0.15 Hz. Moreover, for stations with epicentral distance larger than 100 km, the
high frequency limit was restricted in such a way that the minimum wavelength is
no more than 5 times shorter than the source to station distance for a reference S-
wave velocity 3 km/s. The restriction is to prevent errors arising from inaccurate
Earth model resulting in Green’s function modeling errors [Hallo and Gallovič,
2016] as well as limited frequency range of the sensor. The centroid position was
searched on a grid with sampling 1 km (both in horizontal and vertical direction).

Comparison of the automatic and manual processing is illustrated in Fig. 7.
The comparison is quantified by measuring the difference in the orientation of
the DC parts of the moment tensors using Kagan’s angle, and the difference in
depth and moment magnitude MW . The majority of the automatically processed
events (over 70 %) have similar focal mechanism as that obtained in the man-
ual SeisComP3 processing, as expressed by their Kagan angle 0°–20°. Events
with large Kagan angle were inspected manually; in all cases, there was another
problem with the event, e.g. large azimuthal gap, a not-detected disturbance in
inverted waveforms, unstable mechanism strongly varying with depth with almost
the same variance reduction, or a combination of these problems. The difference
in moment magnitude is below 0.05 at the majority of the events, and within
0.15 in more than 90 % cases. We also compared the inverted centroid depth,
and found the difference lower than 2.5 km for 44 % of the events. Taking into
account that the station set was usually different in both methods we consider
these results as a good agreement.

In addition to this comparison we also summarize our new automatic solutions
for all 139 inverted events of Swiss Digital Seismic Network including also events
having no counterpart in the manual processing. At each inverse problem we have
to decide whether we trust the solution or not. Although some objective measures,
like variance reduction or condition number, might be helpful in this point, the
decision is always partly subjective and depends on specific application. For
the described procedure, we empirically set up a criterion which defines reliable
(“trusted”) solutions based on variance reduction V R, condition number CN
(square root of the ratio of the maximal to the minimal eigenvalue of the matrix
GT

i C−1
D Gi in Eq. 1), double-couple percentage DC, and standard deviation of the

following parameters: double-couple and CLVD percentage, moment magnitude
Mw, centroid time t, and centroid position x, y, z. The standard deviation of
parameters is measured from the points sampling the calculated PPDF. The
criterion to consider the solution as reliable is

V R > 0.5 ∧ CN < 8 ∧ DC > 50 % ∧

∧ σDC + σCLV D

100 % + σMw

1 + σt

1 s + σx + σy + σz

1 km < 2 .
(17)

The formula indicates trust in solutions with good waveform fit, which are well
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a) b) c) d)

Figure 7: Statistics of the comparison between the new automatic processing
of 36 earthquakes recorded in Swiss Digital Seismic Network and their manual
processing in scmtv module of SeisComP3. Similarity of the solutions is expressed
by (a) Kagan’s angles, (b) differences in moment magnitude, and (c) differences in
centroid depth, and (d) centroid position. All the events are shallow earthquakes
with hypocenter depth up to 35 km, magnitudes are between 3.0–5.0.

resolved (measured by the condition number), with dominant DC part (assuming
tectonic origin), and with small uncertainty. The variance reduction is calculated
using the standardized data (d′

obs and d′, Section 3.1).
From the 139 events there were 24 events skipped, because too few stations

were available. Of the 115 remaining events, there were 45 events which passed
the criterion (Eq. 17). These events, together with their solutions, are plotted in
Fig. 8 and the statistic of some of their parameters is plotted in Fig. 9. Most of the
trusted events have their variance reduction in the range 0.8-0.9 and condition
number between 2–4. From this set, 32 events have their counterpart in the
manual processing and 13 events were newly obtained. The 70 untrusted events
include also 8 events previously manually processed. We inspected in detail all
the removed and newly added events one by one. In case of 8 untrusted events,
in most cases we consider that our result is not really reliable. This does not
necessary mean that the result from the manual processing is not reliable too,
the proper selection of stations and components as well as some other operations
in manual processing may help in these specific cases. Inspecting visually all
13 newly obtained events, we confirmed all. We speculate that the reason why
manual solutions cannot be made is because of the inflexibility of the manual
method to accommodate narrow bandpasses in noisy records, which is a key
feature of the proposed method.

A list of all results linked with detailed output for each event is available at
http://geo.mff.cuni.cz/~vackar/CH_catalog/. For each event, it includes
several automatically generated plots and tables in form of a HTML page: cen-
troid location, moment tensor and its decomposition including uncertainty vi-
sualization, quality measure V R and CN , uncertainty histogram for several pa-
rameters, list and map of used station, waveform fit, noise, and spectral plots,
data covariance matrix plot, and figures of the grid of solutions showing posterior
probability density function, centroid time, variance reduction, condition number
and the best solution at each grid point.
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Figure 8: Map of all events with a CMT solution calculated by the proposed
method. Events which passed the criterion (Eq. 17), i.e. “trusted events”, are
shown in red, the others in black. The stations available from the SED data
archives at arclink.ethz.ch are shown by blue triangles. Note that only a specific
subset of the stations was used in the inversion of each MT. Magnitudes are
between 3.0–5.0, hypocenter depths are up to 35 km.

a) b) c) d)

Figure 9: Statistics of quality measures for 45 earthauakes of Swiss earthquake
catalogue whose focal mechanisms were newly obtained by the automatic process-
ing and evaluated as reliable by the automated criterion (Eq. 17). Note reasonable
reliability of the new solutions, expressed by their (a) high values of the variance
reduction, (b) low condition number, (c) low DC percentage, and (d) low com-
bined standard deviation of CMT parameters (see Eq. 17). The cut-of value of
the criterion is shown by the red line.
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Conclusion and perspectives

The thesis is focused on development of a new, fully automated method for a
centroid moment tensor (CMT) inversion. This task covers a wide range of topics,
e.g. data selection and retrieval, disturbance detection, seismogram preparation
and filtration, station weighting, solution of the inverse problem, uncertainty
assessment, result plotting and output presentation etc.

In the beginning of the PhD work, we dealt with a closely related topic,
a velocity model, which is a prerequisite for the CMT inversion [Vackář et al.,
2014]. We studied how an existing model can be improved to explain the observed
seismic waves including leaking modes. Than we focused on the main theme, with
a special focus on data quality control, disturbance detection, and uncertainty
assessment [Vackář et al., 2015, 2017]. We accented this topic because we wanted
to have a robust method with reliable outputs. Therefore, the main results of the
work are three papers [Vackář et al., 2014, 2015, 2017], a code for automated CMT
inversion freely available at http://geo.mff.cuni.cz/~vackar/isola-obspy/,
and the thesis.

Our newly developed method and code for the CMT inversion is innovative
in the following aspects: (i) the CMT inversion is fully automated, no user inter-
action is required, although the details of the process can be visually inspected
later, using many figures which are automatically plotted. (ii) The automated
process includes detection of disturbances. The detection, although not includ-
ing all types of disturbances, and further development is welcome, avoids most
of problems which can cause misleading results. (iii) The data covariance matrix
calculated from before-event noise is used. It works as an automated frequency
filter and station weighting according to the noise level. (iv) Bayesian approach
is used, so not only the best solution is obtained, but also the posterior proba-
bility density function. (v) A space-time grid search effectively combined with
the least-squares inversion of moment tensor components speeds up the inversion
and allows to visually inspect solution variability over the grid.

Some of these features were used by other authors, but the combination of
them is novel. To the best of our knowledge, automated MT solution using a
Bayesian approach was published just by Stähler and Sigloch [2014] for teleseismic
events. The combination of an analytical solution for the MT components with a
spatial-temporal grid-searching was suggested by the same authors, but we do not
know any other study using it in practice. We did not find also any other Bayesian
method eliminating disturbances in seismograms, although hierarchical weights
[Dettmer et al., 2014] could overcome this issue. Other works using Bayesian
inversion of MT or CMT, which are not automated, include Duputel et al. [2012],
Mustać and Tkalčić [2016], and Wéber [2006]. We differ not only in automation
and analytical determination of MT components, but also in construction of the
data covariance matrix using a non-parametric approach.

We have demonstrated usefulness of the data covariance matrix in terms of au-
tomatically identifying a set of stations and frequency ranges most suitable for the
waveform inversion. In this sense, our new method is more efficient than various
existing procedures in which the inversion is repeatedly performed in different fre-
quency ranges, either manually, or automatically. Our proposed approach seems
to be useful for weak events and records with low signal-to-noise ratio, where the
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seismic noise is a dominant source of errors. It is important to keep in mind, that
such uncertainties correspond just to noise in data, and do not reflect the errors
in Green’s functions or any other sources of errors. So the obtained uncertainties
are usually underestimated in real cases. For more general use, it would be useful
to combine our approach (covariance matrix from before-event noise covariance)
with some other methods reflecting Green’s function uncertainty.

The automated procedure has been tested by comparison with manually pro-
cessed moment tensors of all events greater than M≥3 in the Swiss catalogue
over 16 years using data available at the Swiss data center at arclink.ethz.ch.
The quality of the results of the presented automated process is comparable with
careful manual processing of data.

The method, developed in the thesis, is programmed in Python and our code
is freely available. For its applicability to wider range of seismic events and to
make it more user-friendly, some extensions and new features, which were out
of scope of the thesis, are welcomed. This further development does not need
to be done by the author himself only, but can be done be other developers.
The code is open source, so anyone can download the source code and modify
it, and also to suggest to incorporate his modified version to the original one.
The development is welcomed especially in the following areas: reflecting Green’s
function uncertainty in the covariance matrix [Bodin et al., 2012; Dettmer et al.,
2012; Hallo and Gallovič, 2016], multi-point source approximation [Zahradník
and Sokos, in press], detection of other types of disturbances as well as detection
of clipped records, and using other codes than Axitra for calculation of Green’s
functions.
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