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for objective stress rate that �ts Maxwell's original idea the best. While the main
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planetary mantles are addressed too. We solve the traditional problem of glacial
isostatic adjustment on a rotating Earth and analyze the accompanying changes
in the rotational, gravitational and elastic energy of the planet.
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Abstrakt: Sou£asná limitace globálních simulací plá²´· terrestrických planet spo£ívá
v tom, ºe uvaºují £ist¥ viskózní nebo visko-plastické te£ení plá²´ových hornin, a
tedy zanedbávají jejich elasticitu. Tato aproximace není vyhovující ve studené
a pevné svrchní vrstv¥ plá²t¥, známé jako litosféra, která si uchovává elastické
vlastnosti i na £asových ²kálách odpovídajícíh geologickým proces·m subdukce
a sedimentace. V této práci p°ekonáváme toto zjednodu²ení a p°edstavujeme
numerický nástroj pro modelování visko-elasto-plastické plá²´ové konvekce. Zají-
mavá vlastnost na²ich simulací pramení ze schopnosti viskoelastického materiálu
pamatovat si prod¥lanou deformaci. A tak postupn¥ mohutn¥jící litosféra chlad-
noucí planety, vystavená vnit°ím nebo povrchovým zát¥ºím, ukládá informaci o
své tlou²´ce v okamºiku zát¥ºe. Tento jev je v souladu s hodnotami efektivní ela-
stické tlou²´ky získanými v rámci m¥°ení �exe litosféry, a my jej zde ozna£ujeme
jako �nap¥´ová pam¥´ materiálu�. Pozornost je v¥nována i teoretickým základ·m
viskoelasticity. Shrnujeme p°ístupy, které lze pouºít p°i formulaci konstitutivní
rovnice Maxwellova typu, a d·kladn¥ analyzujeme podmínku materiálové objek-
tivity za cílem nalezení objektivní tenzorové derivace, která odpovídá p·vodní
Maxwellov¥ my²lence nejlépe. Zatímco t¥ºi²t¥ práce spo£ívá v oblasti velkých
deformací, malé deformace planetárních plá²´· jsou adresovány také. �e²íme
tradi£ní úlohu postglaciálního výzdvihu na rotující Zemi a analyzujeme zm¥ny v
rota£ní, gravita£ní a elastické energii t¥lesa, ke kterým p°i tom dochází.
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Introduction

The rheological behaviour of the lithosphere has long been contentious in
geodynamics. The approaches developed over the years have essentially two end-
members that are mutually contrasting, one treating the lithosphere as an elastic
solid and the other treating it as a highly viscous �uid.

Several observations directly con�rm that the surface plates constituting the
lithosphere are very rigid. Many geological structures in the continental crust
have survived longer than 1 Gyr without �owing away and the linearity and
constant separation of transform faults proves that the oceanic plates strongly
resist to any intra-plate �ow. In fact, this is a fundamental postulate of plate
tectonics (e.g. Turcotte & Schubert, 2002). At the same time, the lithosphere
is observed to bend under imposed loads and its topography can often be �tted
by the curvature of a �exed elastic plate. Thickness of such theoretical plate is
referred to as the e�ective (or equivalent) �elastic thickness� of the lithosphere.

For this reason, modelling the lithosphere as an elastic solid has traditionally
played an important role in geodynamics, particularly when response to surface
loading and unloading is investigated. These �exure studies, however, also suggest
that the lithosphere relaxes with time, which means that it cannot be purely elas-
tic. It is best illustrated by the general disagreement between seismic thickness of
the lithosphere, as indicated by the depth of the low-velocity zone (e.g. Shapiro
& Ritzwoller, 2002), and the elastic thickness observed at long time scales, the
latter being much smaller. Moreover, there is evidence for a decrease of e�ective
elastic thickness of oceanic lithosphere with the age of imposed surface loads. An
insightful review by Watts et al. (2013) employs a large dataset of topographic
and gravity measurements to support and quantify these geophysical observa-
tions. In Section 0.1 of the thesis we repeat some of the conclusions presented by
Watts et al. (2013) and discuss them in the context of viscoelastic rheologies.

In numerical experiments of mantle convection a di�erent approach is taken,
since convection is a phenomenon linked with �uid-like behaviour of material.
The dominant type of creep mechanism in the upper and lower mantle is still
debated (e.g. Ranalli, 1995; Schae�er et al., 2016), but both major candidates
� the di�usion and dislocation creep � can be described by temperature and
pressure dependent viscous �ow laws. For present day temperatures of terrestrial
planets one obtains large viscosity contrasts with these �ow laws, resulting in a
mantle that convects below a highly viscous stagnant lid (Solomatov, 1995). The
rheological behaviour of the outer thermal boundary layer (the lid, more generally
the lithosphere) is then not of primary importance. Its internal deformation has
little e�ect on the overall thermal evolution, layering of convection, convective
vigor, the shape of plumes, or other typically addressed features.

When plastic yielding is introduced, more tectonic regimes can be obtained
in thermal convection models. Namely, the mobile lid regime, similar to plate
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tectonics on Earth (Tackley, 2000), and episodic lid regime, which could apply
to Venus (Armann & Tackley, 2012; Rozel, 2012). Lithosphere-scale shear zones
develop in these regimes due to plastic yielding, splitting the lid into plates which
then subduct. Most of the deformation is accommodated within boundaries of
the plates, that is, within some localized shear zones. In plate-like regimes the
rheology of the lithosphere is more important, as it controls the shape of sub-
ducted slabs during their descent (e.g. �íºková et al., 2007), which in turn a�ects
slab penetration through the transition zone (e.g. Tagawa et al., 2007), and thus
also the overall convection pattern. Nevertheless, elasticity is still only rarely
considered in global-scale numerical models of mobile and episodic lid regimes.
In regional-scale models the behaviour of subducting slabs is under closer scrutiny
and visco-elasto-plastic rheology is more common.

The basic premise of the thesis is that essentially all materials show viscoelas-
tic properties: their short term response is elastic or elasto-brittle and when
loaded for su�cient time the elastic strains are accommodated by a dissipative
mechanism, gradually diminishing the stored elastic strain energy. The key ques-
tion to ask is what the �su�cient time� is for a given material and given spatial
scale, as recognized already by Maxwell (1871): �In the case of a viscous �uid
it is time which is required, and if enough time is given, the very smallest force
will produce a sensible e�ect, such as would require a very large force if suddenly
applied. Thus a block of pitch may be so hard that you cannot make a dent in
it by striking it with your knuckles; and yet it will in the course of time �atten
itself by its weight, and glide downhill like a stream of water.� (adopted from
Málek & Rajagopal, 2005).

In the case of lithosphere the time needed for it to behave �like a stream
of water� is extremely large: it can preserve elastic energy even on geological
time scales, examples of which are given in Section 0.1 of the thesis. While this
alone advocates for considering elasticity in mantle convection modelling, there
is also another aspect. The e�ects of elastic deformation in regional modelling,
even when short-lived, suggest a possible in�uence on the long-term behaviour of
global-scale models. These are discussed in Section 0.2 of the thesis.

0.1 Structure and goals of the thesis

Although not discussed very often in geodynamical literature, the traditional
formulation of Maxwell constitutive equation violates the principle of material
frame-indi�erence. Every constitutive relation and other physical laws should
respect this principle. The traditional formulation of Maxwell rheology is only
acceptable when understood as an approximation of a more complete formulation,
with its range of applicability being restricted to small strains (e.g. postglacial
rebound, see below). The topic has been pioneered in the �fties by Oldroyd
(1950), but is recently again gaining attention as new thermodynamics based
formulations of constitutive laws are being proposed. In Chapter 1 of the thesis,
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we thoroughly review the principle of material frame-indi�erence and bring new
insights into its implications for generalizations of the traditional model.

Chapter 2 is devoted to a classical application of Maxwell rheology, in which
the Earth is subject to small deformations resulting from glacial isostatic adjust-
ment (GIA). The periodic accumulation and melting of ice loads and unloads
the Earth's surface within tens to hundreds of kyr, that is, on short time scales
when compared to geological processes (e.g. Peltier, 2004). Viscoelastic relax-
ation is crucial in explaining the postglacial rebound data. The rate at which
the surface is being uplifted due to historical ice caps is an observable directly
linked to the relaxation time of the lithosphere. A purely elastic Earth would
predict zero present day uplift due to the already melted ice caps, because elastic
models deform only when the load size is being changed. Purely viscous models,
on the other hand, would predict unrealistically small uplift rates � surface loads
cannot induce signi�cant deformation of the deeper mantle when emplaced onto
a non-elastic, highly viscous lithosphere. Moreover, secular drift of the rotation
axis in response to GIA would be too small in a purely viscous Earth, because
the readjustment of the rotational bulge would be too slow. For these reasons,
a viscoelastic rheology has always been a necessity in GIA modelling, with the
Maxwell model being the most common, almost unanimous, choice. Computing
GIA on a rotating Earth becomes a delicate exercise as one has to account for
the changes in Earth's rotation induced by the load induced deformation. In Sec-
tion 2.2 of the thesis we analyze this phenomena from an energetic point of view.
We derive a diagnostic tool that can be used, within the �eld of small planetary
deformations, to detect physically ill-posed problems, or to reveal numerically in-
correct solutions to physically well-posed problems. We apply this tool to review
the approximations commonly used in GIA modelling and demonstrate some of
their inconsistencies.

The main goal of the thesis is to investigate the footprints of viscoelasticity
in the context of mantle convection. We study how elasticity in�uences the sur-
face topography and lithospheric stresses when internal loading is generated by
self-consistently developed plumes and downwellings. The focus is on mantle-
lithosphere interaction: how the internal dynamics impacts the deformation of a
viscoelastic lithosphere and, conversely, how the elastic properties of the litho-
sphere a�ect the internal dynamics. In Chapter 2, we evaluate the response of
a stagnant lid and discuss the importance of the lid thickness and its evolution
in time. We perform simulations of a model Mars that is cooling down from its
initially hot state and analyze the stress patterns in its thickening lithosphere.
Statistically steady state, in which the lid thickness remains constant in time,
is also addressed. In Chapter 4 of the thesis, we study the transition from a
stagnant lid to plate-like mode of convection in visco-elasto-plastic models. We
asses the �uctuations of lithospheric stresses that are associated with the chaotic
movement of sinking and rising plumes and explore whether the expected e�ects
of elasticity and a free surface emerge despite these �uctuations.
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1. Small deformations of a

viscoelastic mantle

1.1 Eulerian formulation of the governing equa-

tions

Throughout the thesis we use Eulerian description of �eld variables, meaning
that the domain of these variables is the current con�guration of the body at time
t. Such an approach is typical when mantle convection is addressed, see Chapters
3 and 4 of the thesis, but it is not very common when small deformations of a
planet, for example caused by surface loads, are being computed. In this case
it is more common to use Lagrangian description of �eld variables, with their
domain being some convenient reference con�guration that has a regular shape.
The advantage is that a symmetrical domain allows for the use of fast numerical
methods � in planetary science it is often assumed to be a sphere or spherical
shell, allowing the use of so-called spectral methods (decomposing �eld variables
into spherical harmonics).

In Section 1.2, dealing with deformation of the Earth due to surface glaciers
and rotation, we use the Eulerian description of variables, but still choose the
computational domain to be a time constant spherical shell. This somewhat puz-
zling combination enables us to harvest the elegance intrinsic to the Eulerian
formulation � the absence of any additional terms related to the fact that in the
Lagrangian formulation the body forces are expressed at locations where they do
not actually act � and at the same time to employ a spectral method. The ap-
proach has appeared in geodynamical literature several times in the past decade
(e.g. Tobie et al., 2008; Golle et al., 2012; Sou£ek et al., 2016), but the papers are
mostly application driven. We carefully derive the governing equations in this
section in order to avoid any potential confusions.

Let us assume a spherical body at rest, its static pressure p0 counteracting the
gravitational forcing ρg0, ρ being the density and g0 the gravitational acceleration
(see the left panel of Fig. 1.1). When the body is subject to a conservative
forcing described by potential ζ it deforms. Eulerian formulation of the equation
of motion then reads

∇ · τ + ρg0 − ρ∇ζ = 0 in v(t), (1.1)

where τ is the Cauchy stress tensor and ζ is the potential driving deformation
(e.g. centrifugal potential or perturbation of the gravitational potential due to
the change of the body's shape � see Section 1.2). Eq. (1.1) is valid within the
deformed body occupying the region v(t). If the surface of the body is free, the
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boundary condition reads

τ · n = 0 on s− ∩ s+, (1.2)

where n is the outer normal vector to surfaces s− and s+ of the deformed body,
depicted on the right panel of Fig. 1.1. If the body's deformation is driven by
surface loads, the boundary condition (1.2) is replaced with τ ·n = (g0 +∇ζ)σL,
σL representing surface mass density of the load. In this section we further
assume σL = 0 for clarity. Systems described by eq. (1.1) are often referred to
as hydrostatically pre-stressed bodies. The e�ect of the static pressure p0, which
satis�es

−∇p0 + ρg0 = 0 in S0 (1.3)

and is equal to zero elsewhere, can be subtracted by subtracting eq. (1.3) from
eq. (1.1). The governing equations (1.1) and (1.2) then take the form

∇ · τ̄ − ρ∇ζ = 0 in vJ(t), (1.4)

∇ · τ̄ + ρg0 − ρ∇ζ = 0 in v+(t), (1.5)

τ̄ · n = p0n on s−(t), (1.6)

τ̄ · n = 0 on s+(t), (1.7)

where τ̄ := τ + p0I, I being the identity tensor. Note that the static pressure p0

is de�ned by eq. 1.3 as a positive quantity inside the sphere S0 and zero outside
that sphere. In Section 1.2 we solve, however, the following set of equations:

∇ · τ̄ − ρ∇ζ = 0 in S0, (1.8)

τ̄ · n = urρg0 on ∂S0, (1.9)

where er is the outer normal to surface ∂S0 and ur is the radial component of
the Eulerian displacement �eld u.

To show that eqs (1.8)�(1.9) are a reasonable approximation of the original
eqs (1.1)�(1.2), resp. of their equivalent eqs (1.4)�(1.7), we investigate the terms
(1.5) and (1.6). Upon integrating (1.5) over the volume v+(t) and using the Gauss
theorem, together with the free surface condition (1.7), we get

−
∫
∂S+

0

τ̄ · er ds+

∫
v+(t)

ρ(g0−∇ζ) dv = 0. (1.10)

The second term in eq. (1.10) can be subject to a series of approximations:∫
v+(t)

ρ(g0−∇ζ) dv ∼=
∫
v+(t)

ρg0 dv ∼=
∫
∂S+

0

ρg0 ur ds, (1.11)

where we �rst assumed ∇ζ � g0 and then we expressed the volume element dv

of v+(t) as ur ds. Note that the second step is approximative for two reasons: 1)
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Figure 1.1: A sphere S0 deforms and becomes volume v(t) due to the acting of a surface
load σL or due to a disturbing potential ζ. The surface ∂S0 can be separated into the

part ∂S+
0 which goes up and becomes s+ after the deformation. The other part, ∂S−0 ,

descends and becomes s− after the deformation.

radial variations of the integrand, ρg0, within the volume v+(t) are neglected, and
2) the height of topography above the sphere S0 is estimated by the value of ur
at the surface ∂S+

0 and not at the surface s+. Since we use Eulerian description
of variables, the displacement �eld u taken at ∂S+

0 represents the displacement
of material particles that are at ∂S+

0 after the deformation. It is thus only a
�rst-order estimate of the actual topography height, which is equal to the value
of ur taken at the surface of the deformed body s+. Eq. (1.11) together with
eq. (1.10) yield ∫

∂S+
0

(−τ̄ · er + ρg0 ur) ds ∼= 0, (1.12)

which is the boundary condition (1.9) on ∂S+
0 . In other words, the volumetric

force ρ(g0−∇ζ) was found dynamically equivalent to the surface traction ρg0 ur,
acting at the spherical surface ∂S+

0 . Also note that the approximation ∇ζ � g0

could be easily avoided by replacing g0 with (g0−∇ζ) in eq. (1.9).
For regions with negative topography we integrate the traction in eq. (1.6)

over the surface s−(t),∫
s−(t)

p0n ds ∼=
∫
s−(t)

−ρg0ur nds ∼=
∫
∂S−

0

ρg0ur ds , (1.13)

where in the �rst step the static pressure p0 at the surface s−(t) was set equal
to −ρg0ur, which neglects the radial variations of ρg0 within the volume v−(t),
similarly as in eq. (1.11). In the second step the surface element nds of s−(t)

was approximated by the surface element of ∂S−0 , which is a good �rst-order es-
timate. Observing eq. (1.13) directly shows that the boundary traction (1.6) is
dynamically analogous to the prescribed traction (1.9) on ∂S−0 , concluding the
correspondence of eqs (1.8)�(1.9) with the set (1.4)�(1.7).
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Instead of the procedure above, the same conclusions can be reached by per-
forming the Taylor expansion of (1.2), as done in appendix to Sou£ek et al. (2016):

0 = τ (rs+u) · n(rs+u) = (τ̄ − p0I)(rs+u) · n(rs+u) (1.14)
∼= np0(rs) + τ̄ (rs) · n+ u · [∇(p0n)]r=rs + u · [∇(τ̄ · n)]r=rs (1.15)
∼= τ̄ (rs) · er + ρg0ur(rs)er (1.16)

where rs is the position vector tracking the spherical surface ∂S0, p0(rs) was
recognized as zero, the normal vector n was approximated by er, the term
u·[∇(p0n)]r=rs was approximated by ρg0ur(rs)er, and the last term on the second
line was neglected. We believe, however, that the more detailed analysis provided
here may help the reader in understanding the derivations in Section 2.2 of the
thesis.

The following section is an excerpt from a publication in Geophysical Journal
International, Volume 212(2), p. 955-975, doi: 10.1093/gji/ggx469, 2017.

1.2 Energy balance of GIA on a rotating Earth

Understanding the feedback between glacial isostatic adjustment (GIA) and
the Earth's rotation is important for an accurate prediction of sea level changes
induced by climate and tectonic processes. Here we consider a simple, four-layer
incompressible Earth model, recently used for a benchmark of GIA codes, to es-
timate the accuracy of the linearized Liouville equation (LE) and to demonstrate
that models with an incomplete or missing rotational feedback violate the princi-
ple of energy conservation. First, we compute GIA on a rotating Earth by solving
the equation of motion coupled with LE in its full nonlinear form. By comparing
the nonlinear LE solution with the traditional linearized one, we �nd that the
radial component of the angular velocity vector is inaccurate in the latter case,
with an error exceeding 10% already after 1 kyr of evolution. To understand
the cause of this discrepancy, we investigate the time evolution of di�erent kinds
of energy involved in the process. While the rotational, elastic and dissipative
energies are straightforward to compute, the formula for the gravitational energy
contains an integral that requires a careful, higher-order accurate evaluation of
the gravitational potential perturbation. We circumvent this problem by trans-
forming the integral into a di�erent one, formulated in terms of displacement
instead of potential. We �nd that the solution of the linearized LE equation does
not conserve the energy, since, in the linearized case, the rate of change of the
rotational energy is not equal to the power of the centrifugal force. We also com-
pute the energy balance of GIA on a constantly rotating Earth, and demonstrate
the importance of the rotational feedback in the equation of motion. The formal-
ism derived in this study allows a detailed examination of the energy balance for
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a rotating, incompressible planetary body deformed by a surface load. As such,
it may not only serve as a reliable tool for a posteriori testing of GIA numerical
solutions but it can also be used in di�erent planetary science applications.

1.2.1 Selected results

In this section we analyze the temporal evolution of the gravitational, rota-
tional, elastic, and dissipative energy of a model Earth whose shallow layers are
being deformed by post-glacial rebound and whose rotation is changing in re-
sponse to this process. The setting of our numerical experiment corresponds to
the benchmark case adopted from Spada et al. (2011), the details of which are
discussed in Section 2.2.3 of the thesis. The rotating Earth model M3-L70-V01,
initially in equilibrium state, is suddenly loaded with a spherical ice cap. The
loading and the associated deformation induce a polar motion (PM) (Fig. 2.3a
of the thesis) and changes in the rotational speed (Fig. 2.3b of the thesis), which
are accompanied by large variations in the rotational and gravitational energy
(Fig. 1.2, red and green curves, respectively). The amplitudes of these variations
are of the order of 1022 − 1023 J and they are three orders of magnitude larger
than the variations in the elastic (magenta) and dissipative (blue) energy (cf. also
Figs 2.5 and 2.6 of the thesis). During the whole evolution, the sum of all energies
is constant (full black line).

So far we have discussed the results computed using the NLE. In Fig. 1.2 the
variations of the gravitational and rotational energy obtained using the LLE are
shown by dashed and dotted black lines, respectively. While the curve for the
gravitational energy coincides almost exactly with that obtained using the NLE,
the accuracy in determining the rotational energy decreases with increasing time,
resulting in a relative error of almost 100% after 5 kyr. Consequently, the total
energy of the system (dashed black line) is not conserved for the LLE solution.

As demonstrated in Fig. 1.3a, the large error in evaluating the rotational
energy is associated with determining the component m3, which is signi�cantly
larger than the value obtained using the NLE, in contrast to components m1

and m2, which are determined with high accuracy (see Fig. 2.3a of the thesis).
Figure 1.3b shows that the predicted degree 2 shape of the Earth does not depend
on whether we use the NLE or LLE, suggesting that the displacement obtained
using the LLE is only slightly a�ected by the error in m3. This explains the good
agreement obtained for the gravitational energy which is a function of the radial
component of displacement (see eq. 2.52 of the thesis) and, unlike the rotational
energy, does not depend directly on m3.

Note that the di�erence between the NLE and LLE solution for m3 is not
related to the free wobble, as illustrated by the green line in Fig. 1.3a. The line
represents a case in which the ice cap is being imposed only gradually onto the
surface of the Earth, over the period of 5 yr, signi�cantly reducing the amplitude
of the induced wobble but leading to the same long term behaviour as for the
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Figure 1.2: Time evolution of di�erent types of energy for rotating model M3-L70-V01
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vector is parallel to the main axis of the body. The results obtained using the NLE are

represented by coloured lines while the LLE solution is plotted in black.
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instantaneous loading.
In the light of the results presented in Section 2.2.3 of the thesis, the large

error in component m3 obtained using the LLE may be viewed as surprising. As
demonstrated in Fig. 2.3b of the thesis, both the NLE and LLE predict the same
LOD variation ∆LOD given by eq. (2.33) of the thesis (right), but m3 computed
as m3 = −c33/C is still signi�cantly a�ected by the neglect of the nonlinear
terms in the LE (Fig. 1.3a). To explain this apparent paradox, we start from the
formula (9.2.3) in Munk & MacDonald (1960)

∆LOD

LOD
= −m3 =

c33

C
, (1.17)

and we describe the simpli�cations that were used in its derivation. The �rst
equality in eq. (1.17) can be derived by linearization of the exact formula for
∆LOD:

∆LOD

LOD
=

2πω−1 − 2πω−1
0

2πω−1
0

=
ω0 − ω
ω

∼= ω0 − ω
ω0

= 1−
√
m2

1 +m2
2 + (1 +m3)2 .

(1.18)
Using the binomial theorem and neglecting the higher-order terms, we obtain

∆LOD

LOD
∼= −m3 +

1

2

(
m2

1 +m2
2 +m2

3

)
, (1.19)

which, after neglecting the quadratic terms, gives the �rst equality in eq. (1.17).
The second equality in eq. (1.17) comes from the LLE for component m3. In
Appendix A of the thesis we derive the following higher-order approximation:

−m3 +
1

2
(m2

1 +m2
2 +m2

3) ∼= c33

C
. (1.20)

Combining eq. (1.20) with eq. (1.19) yields a more accurate version of the original
equation (1.17):

∆LOD

LOD
∼= −m3 +

1

2
(m2

1 +m2
2 +m2

3) ∼= c33

C
. (1.21)

The de�nition of ∆LOD in eq. (2.33) of the thesis thus includes second-order
accurate evaluation of the LOD variation, while the equation m3 = −c33/C is
only �rst-order accurate, which explains the disagreement between the LLE and
NLE solutions in Fig. 1.3a.

The fact that the m3 component of the rotation vector is a�ected by a large
error does not invalidate the results of previous studies using the LLE solution.
As demonstrated above, the traditional equation for 4LOD that is used in these
studies is more accurate than the linearized equation for m3, and it gives the
same LOD variation as the NLE equation (Fig. 2.3b of the thesis), provided that
excursions of the rotation axis are small.

Our numerical tests (not presented in this paper) suggest that the shift of the
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rotation axis must be larger than 1 degree for the nonlinearity to signi�cantly (by
at least a few percent) a�ect the resulting PM and LOD. The ice cap considered
here is rather small and, since the characteristic time of equatorial bulge readjust-
ment is inversely proportional to the size of the load (Ricard et al., 1993), several
Myr would be needed to shift the pole by 1 degree. If we considered an unre-
alistic, ten times larger ice cap, the equatorial bulge readjustment would occur
faster and the linearized PM and LOD solutions would di�er from the nonlinear
one by few percent already after about 200 kyr.

The following chapter is an excerpt from a publication in Geophysical Journal
International, Volume 209(3), p. 1462-1475, doi: 10.1093/gji/ggx102, 2017
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2. Stress memory e�ect in

viscoelastic stagnant lid convection

Present thermo-chemical convection models of planetary evolution often as-
sume a purely viscous or visco-plastic rheology. Ignoring elasticity in the cold,
outer boundary layer is, however, questionable since elastic e�ects may play an
important role there and a�ect surface topography as well as the stress distribu-
tion within the sti� cold lithosphere. Here we present a modelling study focused
on the combined e�ects of Maxwell viscoelastic rheology and a free surface in the
stagnant lid planetary convection. We implemented viscoelastic rheology in the
StagYY code using a tracer-based stress advection scheme that suppresses sub-
grid oscillations. We apply this code to perform thermal convection models of the
cooling planetary mantles and we demonstrate that while the global characteris-
tics of the mantle �ow do not change signi�cantly when including viscoelasticity,
the stress state of the cold lithosphere may be substantially di�erent. Transient
cooling of an initially thin upper thermal boundary layer results in a complex lay-
ered stress structure due to the memory e�ects of viscoelastic rheology. The stress
state of the lid may thus contain a record of the planetary thermal evolution.

2.1 Governing equations and numerical methods

We employ two types of models. First, we perform models of purely compo-
sition driven convection with a simple density load (labeled as RC). A compo-
sitionally buoyant cylinder represents a rising plume head and we evaluate the
e�ects of elasticity and surface boundary condition on the topography. In the
second group of numerical experiments (labeled TC) we use viscoelastic thermal
convection models and concentrate on the stress evolution within the lithosphere.

2.1.1 Governing equations

We assume an incompressible �uid with in�nite Prandtl number with following
equations describing conservation of mass and momentum:

∇ · v = 0, (2.1)

−∇p+∇ · τ + ρg = 0. (2.2)

Here v is the velocity, ρ density, p pressure, g gravitational acceleration and τ
deviatoric stress. In case of the compositional models (RC) we further require
the conservation of composition:

∂ck
∂t

+ v · ∇ck = 0, (2.3)
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where ck is the concentration (either 0 or 1) of kth material with the density ρk.
In the thermal convection models (TC), eqs (2.1) and (2.2) are supplemented

by conservation of energy in the Boussinesq approximation:

∂T

∂t
= κ4T − v · ∇T, (2.4)

and a linearized equation of state:

ρ = ρ0(1− α(T − T0)). (2.5)

where T is the temperature, κ is the di�usivity, α is the thermal expansivity
and ρ0 is the density at reference temperature T0. Both thermal expansivity and
di�usivity are assumed constant.

2.1.2 Maxwell viscoelastic rheology

The rheological description of a Maxwell viscoelastic material is given by

D = Dviscous + Delastic =
1

2η(p0, T )
τ +

1

2G

Dτ
Dt , (2.6)

where D is the deviatoric part of the strain rate tensor, η(p0, T ) is the viscosity
dependent on temperature and hydrostatic pressure p0, and G is the shear mod-
ulus. DDt denotes an objective tensor rate (e.g. Liu & Sampaio (2014)). Here we
adopt the Jaumann rate that is traditionally used in viscoelastic convection (see
appendix A in Thielmann et al. (2015) and Muhlhaus & Regenauer-Lieb (2005)
for a discussion of objective rates in geodynamical context):

Dτ
Dt :=

∂τ

∂t
+ v · ∇τ + (τW−Wτ ), (2.7)

where W is the antisymmetric part of the velocity gradient (spin tensor)

W =
1

2

(
∇v − (∇v)T

)
. (2.8)

The corotational term (τW−Wτ ) accounts for rotation of a volume element
within the �ow. Inserting (2.7) into (2.6) gives the following form of the consti-
tutive equation:

2ηD = τ +
η

G

(
∂τ

∂t
+ v · ∇τ + τW−Wτ

)
. (2.9)

We consider an Arrhenius viscosity that depends exponentially on temperature
and hydrostatic pressure p0:

η(p0, T ) = η0 · exp

(
Eact + p0Vact

RT

)
, (2.10)
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where η0 is set such that η is the reference viscosity at T = 1600 K and p0 = 0

Pa, Eact is the activation energy, Vact is the activation volume and R is the
gas constant. In viscous models that will be used as a reference to evaluate
elasticity e�ects, G→∞ in Eq. (2.9) and viscosity follows the same pressure and
temperature dependency (Eq. (2.10)).

Following Moresi et al. (2002) we discretize Eq. (2.9) with a mixed Euler �rst-
order accurate scheme (implicit with respect to D, τ and viscosity, explicit with
respect to advectional and corotational terms) and obtain the equation for stress
in the nth time step:

τ n = 2ZηDn + (1− Z)τ̃ n−1, (2.11)

τ̃ n−1 := τ n−1 −4t (v · ∇τ + τW−Wτ )n−1 , (2.12)

Z =
4t

4t+ η/G
. (2.13)

The implementation of viscoelasticity into a viscous �ow code thus consists
of replacing viscosity by numerical viscosity ηnum := Zη and evaluating an extra
term ∇ · [(1 − Z)τ̃ n−1], which accounts for the e�ect of stress that did not fully
relax within one time step. The importance of elastic e�ects is measured by
viscoelasticity parameter Z that is closely related to the Maxwell relaxation time
tM = η/G (Z→ 1 when η/G�4t). In nondimensional studies, the role of tM is
played by the Deborah number, De := ηκG−1D−2, with D denoting the domain's
depth.

Let us consider a constant value of the shear modulus, G = 7 · 1010 Pa (repre-
sentative of the Earth's uppermost mantle). Then, for viscosity (in the mantle)
equal to 1022 Pa s the relaxation time η/G is ∼ 4.5 kyr. With a typical computa-
tional time step of 100 kyr more than 95% of stress is relaxed within one time step
and the material behaves e�ectively as a viscous �uid. However, if the viscosity
(in the lithosphere) is η = 1027 Pa s, the relaxation time is ∼ 450 Myr and for
the same computational time step only 0.02% of stress is relaxed within one time
step. Consequently, the material remembers its stress state from thousands of
previous time steps.

In order to evaluate the di�erences between di�erent viscous and viscoelastic
models we introduce a scalar measure of stress, the second invariant of the stress
tensor, which we will refer to as the e�ective stress:

τeff :=

√
τ 2
xx + τ 2

zz

2
+ τ 2

xz , (2.14)

with τxx, τzz and τxz denoting the Cartesian components of τ .
Time derivative of τ in Eq. (2.9) implies the need for an initial condition on

the deviatoric stress. In all viscoelastic models we assume τ (t = 0) equal to zero.
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2.2 Thermal convection (TC models)

2.2.1 Model setup

In Section 3.3 of the thesis we examined the basic characteristics of a vis-
coelastic response in free-slip and free-surface models of a cylinder rising below
a sti� lid. Now we proceed towards mantle convection models, in which the �ow
is driven by thermal buoyancy and the viscosity is controlled by the temperature
distribution and the depth.

We concentrate on the e�ects of viscoelasticity on the transient behaviour of
the sti� lid and demonstrate how viscoelasticity a�ects stress evolution in the
lithosphere during its cooling and thickening. To that end we perform models of
two planetary bodies with di�erent reference viscosities and thus di�erent vigour
of convection in the transient phase. The �rst one is an Earth-sized body (E-
models) with a relatively high ηref and model parameters based on Crameri &
Tackley (2014). The other one is a Mars-sized body (M-models) with lower
ηref and parameters taken from Golle et al. (2012). For each planet we test two
scenarios � one with an initially thin lithosphere (controlled by the initial thermal
boundary layer thickness dTB = 30 km) and the other one with an initially 300
km thick lithosphere.

We assume basally heated convection with constant temperature top and bot-
tom boundaries, while the sides are insulating with zero normal heat �ux. The
initial temperature distribution follows the relation:

T (z) = T0 + (Tsurf − T0) exp

( −z
dTB

)
+ (TCMB − T0) exp

(
z −D
dTB

)
, (2.15)

where T0 = 1900 K is the temperature at the mid-depth, Tsurf and TCMB are
surface and core-mantle boundary temperatures, dTB is the initial thickness of the
thermal boundary layer, D is the mantle thickness and z is the depth. Random
temperature perturbations with amplitude 20 K are used to initiate convection.
The model parameters are summarized in Table 2.1.

Each convection simulation starts with a transient stage in which the sublitho-
spheric �ow evolves and the cold, sti� lithosphere gradually changes its thickness.
Then, a statistically steady state is reached and the lithospheric thickness remains
constant. The temperature T0 in the mid-mantle is initially set to 1900 K. For
E-models this is less than the statistically steady state mid-mantle temperature,
thus the central part of the model heats up during transient phase and the vigour
of convection increases. For the Mars-like parameter set, on the other hand, 1900
K represents an overheated mantle, mainly because of the smaller temperature
drop between the core-mantle boundary and surface. Due to the lower reference
viscosity, a vigorous, downwelling dominated convection initially develops in the
model and is gradually quelled as the mid-mantle temperature decreases down to
cca. 1700 K.
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Table 2.1: Parameters used in the convection calculations

Parameter Symbol Model Eel Model Mel Units
Mantle depth D 2890 1666 km
Gravitational acceleration g 9.81 3.7 m s-2
Reference density ρ0 3300 3300 kg m-3

Temperature drop 4T 2500 1500 K
Reference viscosity ηref 1023 9.316 · 1019 Pa s
Upper viscosity cut-o� ηmax 1028 1028 Pa s
Thermal di�usivity κ 7.6 · 10−7 7.6 · 10−7 m2 s-1
Thermal expansivity α 3 · 10−5 3 · 10−5 K-1

Activation energy Eact 240 346 kJ mol-1
Activation volume Vact 8.9 · 10−7 2 · 10−7 m3 mol
Surface temperature Tsurf 289 230 K
Shear modulusa G 7 · 1010 7 · 1010 Pa
aModels Evis and Mvis are obtained by setting G→∞

The model domain is a 2-D Cartesian box with aspect ratio 1 and a mantle
depth of 2890 km for E-models and 1666 km for M-models. Impermeable free slip
boundaries are assumed at the bottom and sides of the box. The top boundary
is either assumed to be impermeable free slip, or similarly to the RC models, a
free surface using the sticky-air approach. Following Crameri & Tackley (2014)
we use a 150 km thick sticky-air layer with viscosity ηA = 1021 Pa s (given
our upper viscosity cut-o�, this choice provides a reasonable balance between
obtained accuracy and the length of computational time step necessary to avoid
the �drunken seaman� instability described by Kaus et al. (2010) and Duretz et al.
(2011)). The mesh resolution is 256×256 nodes.

2.2.2 Results: free surface

In Section 3.4.2 of the thesis we described the results of convection models
with a free-slip surface. Now let us focus on the models with a free surface.
Based on the results of our numerical experiments with a rising cylinder, we may
expect much stronger e�ects of elasticity, as the lithospheric �exure can now fully
develop.

Fig. 2.1 shows the stress evolution in the smaller Mars-like mantle models
Mvis and Mel � with initially thin lithosphere dTB = 30 km. In a purely viscous
model (left column) the stress pattern in the lithosphere re�ects its bending due
to the pull of the sublithospheric downwellings (no plumes are initially present
due to the fact that the mantle is overheated). The wavelength of the lithospheric
undulations is controlled by the temporary distribution of the downwellings and
by the actual thickness of the lithosphere. As the lithosphere cools and thickens,
the wavelength of the undulations generally increases. In a viscoelastic case (right
column) the stress pattern is again much more complex. Stresses obtained dur-
ing the bending of initially thin plate (easy to bend and thus reaching relatively
large strains) are remembered ('frozen') until cca. 4 Gyr and during cooling and
thickening of the lid its deeper parts adopt and remember the stresses due to
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later bending. The amplitude of the stress in the deeper layers is smaller than
the amplitude of the initial surface stress layer due to the fact that the colder
and thicker lid becomes increasingly di�cult to bend. These large stresses are
preserved on time scales comparable to the surface value of tM (4.5 Gyr). After 3
Gyr mantle has cooled down enough and plumes start to develop. Large stresses
associated with strong plumes pushing at the base of the lithosphere then over-
print the stress pattern associated with the cooling and early bending. Note that
the lithospheres of the models with a free surface exhibit bending stresses that
are order of magnitude larger than in the previously discussed simulations with
a free slip upper boundary.

Figure 2.2 shows vertical pro�les of e�ective stress (horizontally averaged) in
both models Mvis and Mel, evenly sampled over the �rst 3 Gyr. It demonstrates
thickening of the viscous lithosphere with a typical bending/unbending pattern
(left panel) while the viscoelastic lithosphere with generally lower stresses shows
preservation of the bending pattern of the initially thin lithosphere (right panel).
Note that the stresses associated with bending of the 30 km thick lithosphere
are in tens of MPa, while we observed stresses of only a few MPa in the free-slip
surface simulations. In the viscoelastic model, the stresses below the 30 km depth
are similar as in the free-slip case.

After examining the e�ects of lithospheric thickening, let us now look at the
models in which the lithosphere is initially thick (dTB = 300 km). Such models
display no di�erences between viscous and viscoelastic rheology, in case that a
free slip condition is prescribed at the top (Section 3.4.2 of the thesis). In free
surface models we do observe di�erences, but of a di�erent nature than the stress
memory e�ect described above.

In these models, the lithosphere is thinning and the layered stress structures
thus could not develop here. The stress patterns are dominated by the bending
stresses, and these are signi�cantly smaller for the viscoelastic simulations (see
the last paragraph of Section 3.3 and Fig. 3.3 of the thesis). We demonstrate
this in Figure 2.3, which shows the time evolution of the e�ective stress in E-
models within a 3 Gyr long time window taken 12 Gyr after the initiation of the
simulation.

Further evolution of the models is characterized by similar stress pro�les as
depicted in Fig. 2.3 � the stress reduction is a general characteristic of statistically
steady state viscoelastic convection with a free surface (i.e. regardless of the value
of dTB), as long as the lithosphere is bending and unbending in the reached
statistically steady state.

For the M-models the statistically steady states are almost stationary, with
a stable plume in the centre and downwellings at the sides. Due to this steady
loading the lithosphere is permanently bent, and not �exing up and down as in the
previous case. It then reaches the viscous limit and the e�ects of viscoelasticity
disappear (cf. the last snapshot in Fig. 2.1).

Table 2.2 summarizes how the viscoelastic e�ects depend on the initial and
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Figure 2.1: Vertical component of deviatoric stress τzz in model M with aspect ratio 1,
T0 = 1900 K, dTB = 30 km and a free surface. Stress scale is clipped for better visibility

of the memory e�ect. Negative depths (in km) show the sticky air layer.
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Figure 2.2: Temporal evolution of e�ective stress τeff in models Mvis and Mel with the

same parameters as in Figure 2.1. We show horizontally averaged radial pro�les that are

evenly sampled in time. Colour represents the time in Gyr, only the transient behaviour

is shown.

Figure 2.3: Temporal scatter of e�ective stress τeff in models Evis and Eel with aspect

ratio 1, T0 = 1900 K, dTB = 300 km and a free surface. We show 100 horizontally

averaged depth pro�les that are evenly sampled in time. Colour represents the time in

Gyr.
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Table 2.2: Summary of the viscoelastic e�ects in stagnant lid convection

Model characteristics �Frozen-in� stresses Stress reduction
Free-slip, initially thick lithosphere No No
Free-slip, initially thin lithosphere Yes No
Free surface, initially thick lithosphere No Yes
Free surface, initially thin lithosphere Yes Yes

boundary conditions. Both e�ects are stronger when the vigour of convection is
higher.

22



Conclusions and perspectives

Numerical models that evaluate the internal deformation of planetary mantles
are important for various applications. Perhaps the most unknown parameter en-
tering such calculations is the rock rheology, with the two end-member material
models being the elastic solid and viscous �uid. In the traditional view, elastic
models describe the short-term behaviour and viscous models the long-term be-
haviour of rocks. However, there are observations implying that elasticity plays
an important role in the lithosphere even on very long time scales (for a review,
see Watts et al., 2013).

The medium that combines both models in a simple way � by assuming that
both mechanisms are connected in series � is referred to as Maxwell-type vis-
coelastic material. The general idea on which the rheology is based was proposed
in the 19th century, but the exact form of its constitutive equation is still subject
to an open debate (see e.g. Málek & Pr·²a, 2016). The traditional formula that
appears in the literature has only the partial time derivative standing for the
stress rate. However, such formula is applicable only to problems dealing with
small deformations of a body. For a general deformation it is physically incon-
sistent because it violates the condition of material objectivity. Several objective
tensor rates have been proposed to complete the traditional formula, but one is
usually left without any physical argument that could help to choose a particu-
lar one, leaving the choice to experimental means. In Chapter 1 we review the
physical interpretation of the commonly assumed objective tensor rates. Based
on geometrical considerations, we argue that the so-called lower convected tensor
rate �ts the original idea of Maxwell material the best.

In studies of glacial isostatic adjustment the use of viscoelastic models has
always prevailed. Postglacial rebound of the Earth's surface is essentially caused
by a viscoelastic relaxation of its interior, and Maxwell model seems to provide
a good �rst-order �t to the observed data (e.g. Sabadini et al., 2016). In Chap-
ter 2 we investigate GIA from a rather overlooked perspective � its energetical
balance. We derive a numerical tool for analyzing the changes in the rotational,
gravitational, and elastic energies of a rotating planet that is subject to surface
loads. The tool is used to test the accuracy of the linearized Liouville equation in
determining the changes in Earth's rotation induced by GIA. We show that the
predicted changes in the magnitude of the angular velocity vector are signi�cantly
a�ected by the linearization of the Liouville equation.

Earth's deformation associated with postglacial rebound is very small and
there is no need for other than the traditional Maxwell constitutive formula. In
mantle convection this is no longer the case. Chapters 3 and 4 are devoted to
numerical modelling of mantle convection and assume the mantle rocks to behave
as Maxwell viscoelastic �uid with the constitutive relation containing an objective
stress rate. This is a step towards more realistic mantle convection models, as
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present-day simulations usually ignore elasticity.
One of the primary constraints on the internal structure and dynamics of

terrestrial planets is given by their surface topography. At the same time, surface
topography is an observable that is likely to be a�ected by considering elasticity
in the lithosphere, and so a number of studies have already addressed its potential
e�ects. In Chapter 3 we compute lithospheric �exure above a rising plume in a
fully viscoelastic model with a free surface and observe an elastic �ltering of the
resulting topography, consistently with previous �ndings by authors who used
more simpli�ed approaches (e.g. Golle et al., 2012).

We also observed an unforeseen e�ect in our mantle convection simulations.
While in GIA modelling it is obvious that current deformation depends on the
past (the observed uplift is caused by glaciers that no longer exist), in mantle
convection this is usually not assumed. Two common exceptions, in which the
internal dynamics at a given moment depend on the history of preceding �ow,
are simulations with grain size evolution and simulations with a prede�ned weak
zones. In the �rst case, shearing can reduce the grain size in some regions, forming
zones of low viscosity that further localize deformation (e.g. Rozel et al., 2011). In
the latter case, prede�ned weak zones are supposed to represent some structural
inheritance, that is, material that got weakened by deformation that preceded the
numerical experiment (recently e.g. Duretz et al., 2016). We observe a new type
of history dependence. When a planet cools down from its initially hot state,
its lithosphere is thin at the beginning and gradually grows in thickness. Due
to convective forcing, the thin lithosphere undergoes severe bending resulting in
large stresses. In Chapter 3 we describe how these bending patterns can �freeze�
into the growing lithosphere and are remembered there long after the sinking
and rising plumes that caused the bending have disappeared. The relaxation
of these features is governed by the Maxwell relaxation time of the lithosphere,
which depends on the poorly constrained value of lithospheric viscosity, and can
be comparable with the geological time scales.

We merely provide a proof of concept for the stress memory e�ect. 3-D spher-
ical simulations that would con�rm our hypothesis in a model with realistic pa-
rameters suited for a particular planet or moon are yet to be done. Especially
interesting may be to study how the di�erent spatial wavelengths of surface to-
pography evolve throughout viscoelastic convection of a cooling planet. An ideal
stagnant lid candidate seems to be the planet Mars, where the e�ective elastic
thickness Te of the lithosphere is observed to decrease with increasing age of
surface loads (e.g. McGovern et al., 2002). This may either indicate �frozen-in�
topography, consistent with the memory e�ect described here, or it can simply
be the result of viscoelastic relaxation under the surface loads (i.e. not related
to the changes of lithospheric thickness). Another open question is how much of
the stress that accumulates in the initially thin lid in our simulations would get
released if a realistic description of brittle and ductile yielding was involved. To
answer the question, global-scale numerical simulations with complex lithospheric
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rheology and high near-surface resolution must be performed.
While the behaviour of the lithosphere is altered substantially by including

elasticity into mantle convection simulations, sub-lithospheric dynamics seem to
be una�ected. The ability of our models to quickly build surface topography,
the resistance of this process being governed by the elastic shear modulus (and
not by the high value of lithospheric viscosity as in purely viscous runs), could
potentially stabilize or destabilize mantle upwellings and downwellings in their
spatial position, or change the number and stability of convection cells. However,
we have not observed any such changes in the internal dynamics, at least for
convection experiments in stagnant lid regime.

A convective regime that exhibits stronger interaction of the deep mantle
with the lithosphere is the one observed on Earth. In a plate-like regime the
thermal boundary layer breaks into plates which are being continuously created
and subducted. One of the outstanding problems of numerical simulations of
plate tectonics is that the highest possible (critical) value of yield stress that one
may prescribe and still obtain a plate-like regime is much lower than the values
suggested by laboratory measurements. This problem could be even worse when
elastic properties of rocks are accounted for. Considering an additional deforma-
tion mechanism lowers the lithospheric resistance, reducing the convective stresses
that develop in the lithosphere (to some extent, though in di�erent settings, the
e�ect is observed in the works of Kaus & Becker, 2007; Beuchert & Podladchikov,
2010; Thielmann et al., 2015; Pato£ka et al., 2017). In Chapter 4 the critical yield
stress value is analyzed in a parametric study. We compare sets of visco-plastic
and visco-elasto-plastic simulations with a free surface and with a free-slip sur-
face. We �nd that the importance of elasticity and a free surface depends on
the viscosity pro�le. If low viscosity is assumed, or if the viscosity exponentially
decreases right below the surface (i.e. without forming an e�ectively elastic layer
of non-negligible thickness), then little to no shift of the critical yield stress is
observed. A shift appears when a high-viscosity layer several tens of km thick
is assumed � the critical yield stress is higher in cases with a free surface when
compared to the cases with free-slip surface. However, no �rst-order di�erences
are observed between the visco-plastic and visco-elasto-plastic simulations with
a free surface. This may seem surprising, because in models with comparable
internal dynamics, presented in Chapter 3, the horizontally averaged lithospheric
stresses di�ered by up to tens of MPa between viscous and viscoelastic models.

To fully understand the role of elasticity in numerical models of planetary evo-
lution, it is necessary to perform global-scale experiments that employ complex
treatment of brittle and ductile yielding in the lithosphere. The pseudoplastic
yielding, commonly used to generate plate-like behaviour in global-scale convec-
tion models (e.g. Tackley, 2000), which is also used here in Chapter 4, is not
suitable to capture the complexities of lithospheric deformation. Especially when
low values of surface yield stress and low friction angles are employed the resulting
yielding is distributed into relatively large volumes of the lithosphere instead of
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forming narrow shear zones. Such behaviour disfavors the display of viscoelastic
e�ects. These can fully develop only in settings in which elastic stresses build up
in a large portion of the model domain and are subsequently released within a
localized shear zone � signi�cantly promoting the extent of deformation accom-
modated therein. An example of such setting was demonstrated by Jaquet et al.
(2016), who performed simulations of continental collision.

The methodological division between regional and global geodynamical mod-
elling is slowly falling apart. In numerical studies of single regions the boundary
conditions are often critically questioned. It is becoming increasingly obvious that
for many segments of Earth we cannot cut out a part of the mantle and model
its deformation without considering the feedback from the rest of the mantle.
That is, without considering how the region's boundary conditions change in
reaction to what is happening inside the region. On the other hand, in global
simulations of plate-like or episodic lid convection it is the lid behaviour that has
�rst-order in�uence on the internal dynamics. However, regional modelling im-
plies that a high-resolution lithosphere with non-linear, composition dependent
rheology that combines various creep mechanisms is necessary to capture the lid
behaviour correctly. One can thus expect the future models to be global-scale, but
with complexities typical for regional-scale models. The enhancement of StagYY
presented in this thesis is one of the necessary steps towards such models.
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