
DOCTORAL THESIS

Miroslav Halló
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Abstract: Earthquake ground motions originate from rupture processes on faults
in Earth. Constraints on earthquake source models are important for better un-
derstanding of earthquake physics and for assessment of seismic hazard. The
source models are inferred from observed waveforms by inverse modeling, which
is subject to uncertainty. For large tectonic earthquakes the major source of un-
certainty is an imprecise knowledge of crustal velocity model. The research topic
of this Thesis is the influence of the velocity model uncertainty on the inferred
source models. We perform Monte-Carlo simulations of Green’s functions (GFs)
in randomly perturbed velocity models to reveal the effects of the imprecise veloc-
ity model on the synthetic waveforms. Based on the knowledge gained, we derive
closed-form formulas for approximate covariance functions to obtain fast and
effective characterization of the GFs’ uncertainty. We demonstrate that approxi-
mate covariances capture correctly the GF variability as obtained by the Monte-
Carlo simulations. The proposed approximate covariance functions are massively
tested on moment tensor inversions of synthetic and real data sets. In particular,
Bayesian inversion tests show that the posterior probability density provides also
realistic estimate of uncertainty of the moment tensors. We apply the method
on the case study of foreshocks and aftershocks of the 2016 Kumamoto, Kyushu,
Japan, earthquake sequence, where our assessment of the realistic uncertainties
of the centroid moment tensors proved to be beneficial for interpretation of the
results in seismo-tectonic framework. Further, we develop a new Bayesian para-
metric fault slip inversion, which accounts for the GFs’ uncertainty by means
of the approximate covariance functions. Our non-linear kinematic finite-extent
source inversion method relies on self-adapting parametrization of slip. Perfor-
mance of the slip inversion method is demonstrated on the destructive Mw7.1
mainshock of the 2016 Kumamoto sequence. The posterior probability density
is sampled by trans-dimensional Markov chain Monte-Carlo algorithm, which re-
sults into an ensemble of more than 590k possible finite source models. This
allows us to inspect which features of the finite-extent source model are reliable
and which are rather artifacts caused by the imprecise knowledge of the velocity
model.
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Abstrakt: Zemětřesené pohyby pozorované na zemském povrchu jsou vyvolané
náhlým uvolněńım napět́ı na tektonických zlomech v zemské k̊uře. Výzkum
zemětřesných zdroj̊u je nutný pro lepš́ı pochopeńı fyziky vzniku a š́ı̌reńı trhliny
na zlomu a také pro vyhodnoceńı seismického ohrožeńı. Fyzikálńı modely tekton-
ických zemětřesných zdroj̊u jsou źıskávány pomoćı inverzńıho modelováńı, které
je zat́ıžené nejistotou zp̊usobenou nejednoznačnost́ı úlohy. U velikých tekton-
ických zemětřeseńı má na nejistotu výsledku zásadńı vliv neurčitost rychlostńıho
modelu zemské k̊ury, jenž je předmětem tohoto výzkumu. Zde nejprve studu-
jeme účinky nepřesného rychlostńıho modelu na vlnové pole pomoćı Monte-Carlo
simulaćı Greenových funkćı v náhodně perturbovaných rychlostńıch modelech.
Na zálkadě źıskaných poznatk̊u pak odvozujeme analytické vzorce pro výpočet
přibližných kovariančńıch funkćı, určených k rychlému a efektivńımu posouzeńı
neurčitost́ı Greenových funkćı. Ukazujeme, že tyto přibližné kovariančńı funkce
správně zachycuj́ı variabilitu Greenových funkćı źıskanou z Monte-Carlo simulaćı.
Pomoćı test̊u na syntetických a reálných datech pak ukazujeme, že obrácená úloha
na momentový tenzor v Bayesovské formulaci vede na realistický odhad nejistoty
výsledku. Dále je tato metoda použita na př́ıpadovou studii předtřes̊u a dotřes̊u
zemětřesné sekvence v Japonské prefektuře Kumamoto z dubna 2016, kde odhad
neurčitost́ı určených momentových tenzor̊u přispěl k sesmotektonické interpretaci
výsledk̊u. Dále byla vyvinuta nová Bayesovská obrácená úloha na skluz na zlomu
konečných rozměr̊u, která zahrnuje odhad neurčitosti Greenových funkćı po-
moćı odvozených přibližných kovariančńıch funkćı. Tato nelineárńı kinematická
obrácená úloha se oṕırá o adaptivńı parametrizaci skluzu na zlomu. Vlastnosti
této metody demonstrujeme na ničivém hlavńım otřesu ze zemětřesné sekvence
v Japonské prefektuře Kumamoto o magnitudu Mw7.1 (otřes z 16. dubna 2016).
Posteriorńı hustotu pravděpodobnosti vzorkujeme pomoćı trans-dimenzionálńıch
Markovových řetězc̊u. Výsledný soubor v́ıce než 590 tiśıc možných model̊u nám
umožňuje prozkoumat, které modelové rysy jsou spolehlivě určené, a které jsou
sṕı̌se artefakty zapř́ıčiněné neurčitost́ı rychlostńıho modelu.

Kĺıčová slova: zemětřesný zdroj, rychlostńı model, Greenovy funkce, Bayesovské
metody, zemětřesná sekvence Kumamoto 2016
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Introduction
Earthquake ground motions originate from rupture processes on faults in Earth.
Constraints on earthquake source models are important for better understand-
ing of earthquake physics and for seismic hazard analysis, which is particularly
significant for construction engineering and disaster mitigation planning (e.g.,
Hutchings et al. 2017). In addition, earthquake source models serve as input for
studies like analysis of the earthquake energy budget (e.g., Kanamori & Rivera
2006), dynamic stress drop analysis (e.g., Day et al. 1998), Coulomb stress mod-
eling (e.g., King & Devès 2015), etc. Realistic estimate of the uncertainty of
earthquake source models is essential for evaluation of solution quality. Strictly
speaking, any interpretation of centroid moment tensor or finite-extent model
requires proper assessment of their uncertainty (e.g., Sokos et al. 2015; Dettmer
et al. 2014; Duputel et al. 2015).

Earthquake source models are inferred from observed waveforms by inverse
modeling, which is subject to uncertainty. Synthetic waveforms required by the
inverse modeling are computed using Green’s functions (GFs) representing re-
sponse of Earth’s crust to an impulse stimulus. In the case of large tectonic
earthquakes, the major source of uncertainty of the inferred source models is
related to the uncertainty of the GFs due to the inaccuracy of the crustal mod-
els considered. In practical applications, the uncertainties of the inferred source
parameters are typically estimated by accepting all models within a given thresh-
old on the misfit value (e.g., Piatanesi et al. 2007; Valentine & Trampert 2012;
Zahradńık & Custódio 2012; Gallovič & Zahradńık 2012). However, the value
of such threshold is not based on a proper analysis of the underlying origin of
the uncertainty. We point out that imprecise knowledge of the velocity model
can lead to spurious non-double-couple components in moment tensor inversions
(Zahradńık et al. 2015) and artificial slip-rate peaks in slip inversions (Gallovič
et al. 2015).

Earthquake source model inversions with the assessment of the solution uncer-
tainty are usually performed in the Bayesian probabilistic framework (e.g., Yagi
& Fukahata 2011; Minson et al. 2013, 2014; Dettmer et al. 2007, 2014; Dupu-
tel et al. 2014, 2015; Kubo et al. 2016a; Mustać & Tkalčić 2016; Vackář et al.
2017). In this way a prior information on the physical model is specified, which is
then updated to a conditional posterior probability on model parameters affected
by the observed data (e.g., Tarantola & Valette 1982; Tarantola 2005). In such
framework, the assumptions on uncertainty of the observed waveforms and com-
puted GFs can be incorporated, e.g., by means of Gaussian covariance matrices.
The inferred solution is then represented by the conditional posterior probability
on model parameters. The uncertainty of the inferred source model may be then
assessed by analytical formulas (if possible) or by ensemble of solutions drawn
from the posterior probability density.

The covariance matrix of GFs has been considered by other researchers, how-
ever a proper analysis of the GFs’ uncertainty has not been done yet. In partic-
ular, Yagi & Fukahata (2011) and Minson et al. (2013) considered diagonal GF
covariance matrix in their Bayesian slip inversion, treating the GF variance as an
unknown parameter. Duputel et al. (2012) showed the importance of considering
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the full covariance matrix of GF in the moment tensor inversion. However, in
their examples they assume that the major origin of the error is due to the cen-
troid mislocation. That study was extended by Duputel et al. (2014, 2015), who
proposed to estimate the full covariance matrix approximately by considering lin-
ear relationship between the GFs and random, generally 3D, perturbations of the
velocity model. However, their approach requires evaluation of sensitivity ker-
nels, which are, in practice, very expensive to acquire. An alternative approach
is represented by “empirical” estimation of the covariances from data residuals
in so-called hierarchical inversions (Dettmer et al. 2007, 2014; Mustać & Tkalčić
2016). In particular, Dettmer et al. (2007, 2014) took into account the non-
stationary character of the noise by scaling rows and columns of the covariance
matrix by running averages of the residual waveforms.

This research is focused on the influence of uncertainty of a crustal velocity
model by means of uncertainty of GFs in earthquake source inversions. We first
perform Monte-Carlo simulations of GFs in randomly perturbed velocity models
to reveal the effects of the imprecise velocity model on the synthetic waveforms.
We derive closed-form formulas for approximate covariance functions to obtain
fast and effective characterization of the GFs’ uncertainty avoiding any demand-
ing computations (Hallo & Gallovič 2016). The proposed approximate covariance
functions are tested on Bayesian moment tensor inversions of synthetic data, and
bench-marked on real earthquake from Corinth Gulf, Greece. In particular, exper-
iments with the large number of synthetic target datasets obtained by randomly
perturbing velocity models reveal the effects of the imprecise velocity model on
the inferred moment tensors. Inversion tests with the approximate covariance
functions of GFs show that the posterior covariance matrix of model parameters
provides accordant realistic estimate of the moment tensor uncertainties.

In the consecutive research, Hallo et al. (2017), we incorporated the approxi-
mate covariances into the Bayesian full-waveform centroid moment tensor inver-
sion code package ISOLA-ObsPy (Vackář et al. 2017). The modification of the
ISOLA-ObsPy with assessment of GF uncertainties was applied on foreshocks
and aftershocks of the 2016 Kumamoto, Kyushu, Japan, earthquake sequence.
The assessment of the uncertainties of the centroid moment tensors showed to be
beneficial in terms of interpretation of the results in the seismo-tectonic frame-
work.

Further, we developed a new Bayesian parametric fault slip inversion, which
accounts for the GFs’ uncertainty again by means of the approximate covariance
functions. Our non-linear finite-extent source inversion method relies on self-
adapting parametrization of slip function by means of varying number of spline
control points on the fault surface. The posterior probability density is then
sampled by trans-dimensional Markov chain Monte Carlo algorithm. Performance
of the slip inversion method is demonstrated on the destructive Mw7.1 mainshock
of the 2016 Kumamoto sequence. We infer ensemble of more than 590k possible
finite source models following the posterior probability density. This allows us
to inspect which features of the source model are reliable and which are rather
artifacts caused by imprecise knowledge of a crustal velocity model.
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Structure of the Thesis
This Thesis is divided into four Chapters, each organized in Sections. The indi-
vidual Chapters are independent, though they subsequently follow and interlink
each other. The Thesis contains also short Appendix with major source codes
and supplementary material. The Chapters are organized as follows:

• Chapter 1 overviews the theoretical background and probabilistic tech-
niques used in Thesis. Section 1.1 contains description of the kinematic
representation of seismic sources with focus on tectonic earthquakes (point
source approximation and finite-extent fault sources). Then, in Section 1.2
we overview the basic concepts of the Bayesian probabilistic framework.
This Section includes Bayesian formulations of Linear Least-Squares meth-
ods and Metropolis-Hastings sampling algorithm.

• The aim of Chapter 2 (also published as Hallo & Gallovič 2016) is to in-
troduce a simple approach to efficiently involve the uncertainty of a crustal
velocity model in earthquake source inversions. After introduction in Sec-
tion 2.1, we propose a simple yet efficient method (Section 2.2), which is
tested on synthetic and real data (Section 2.3). This Chapter incorpo-
rates also its published electronic supplement. The Section 2.5 — “Un-
published supplementary material” includes additional unpublished results
which complement the content of the Chapter.

• In Chapter 3 (also published as Hallo et al. 2017) we apply modification
of the Bayesian full-waveform centroid moment tensor inversion, ISOLA-
ObsPy, to foreshocks and aftershocks of the 2016 Kumamoto, Kyushu,
Japan, earthquake sequence (see Section 3.1 for introduction of the 2016
Kumamoto earthquake sequence). The method in Section 3.2 is used to in-
fer centroid moment tensors of selected earthquakes (Section 3.3). Then, we
interpret the results in seismo-tectonic framework (Section 3.4) and show
the advantages of the used methodology (see Section 3.5). This Chapter was
conducted in co-operation with Dr. Kimiyuki Asano from the Disaster Pre-
vention Research Institute, Kyoto University. Section 3.7 — “Unpublished
supplementary material” includes additional analysis which completes the
content of this Chapter.

• In Chapter 4 we propose a new Bayesian parametric fault slip inversion
which accounts for GFs’ uncertainty by means of the approximate co-
variance functions (see Section 4.1). The newly developed method relies
on self-adapting parametrization, fast direct solver, and trans-dimensional
Markov chain Monte Carlo sampling algorithm (Section 4.2). The method
is demonstrated on the Mw7.1 mainshock of the 2016 Kumamoto sequence
(Section 4.3).
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1. Theoretical background
Here we overview theoretical background of physical and mathematical repre-
sentation of seismic sources and the Bayesian inference framework used in the
Thesis. The section with representation of seismic sources is based on well inves-
tigated theoretical problem in elastodynamics and classical books of seismology
(e.g., Aki & Richards 2002; Kanamori & Brodsky 2004). The overview of the
Bayesian framework includes the basic concepts of Tarantola (2005) necessary for
Bayesian earthquake source inversions and overview of the Metropolis-Hastings
algorithm (Metropolis et al. 1953; Hastings 1970).

1.1 Kinematic representation of seismic source
Seismic sources originating inside the solid Earth are connected to physical phe-
nomena as tectonic faulting, underground explosions, volcanic intrusions, cavity
collapses, etc. The most common faulting sources are associated with a fast dis-
location across an underground surface (i.e. fault plane). The description of
these sources is based on two different concepts. First, from the point of view of
dynamic forces applied on the medium to cause the seismic source (i.e. dynamic
representation); and second, by the slip or strain associated with the seismic
source process (kinematic representation). The kinematic representation of seis-
mic sources is deprived of dynamic forces actually causing the event, nevertheless
its advantage is a straightforward relation with the radiated seismic waves. Here
we follow the kinematic concept where the process of dislocation on a buried fault
and the respective radiated wavefield are related by the representation theorem.

Let us assume volume V inside the solid Earth bounded by surface S. Dis-
placement u = (u1, u2, u3) at a certain point from contribution due to body force
f throughout V can be expressed from Betti’s theorem (Aki & Richards 2002,
eq. 2.35). The representation theorem reads (Aki & Richards 2002, eq. 2.41)

un(x, t) =
∫∫∫

V

fi(ξ, t) ∗ Hni(x, t; ξ) dV (ξ), (1.1)

where ∗ denotes temporal convolution. Measured displacement field un(x, t) for
its n-th component, at position x and time t, is expressed by volumetric integral
from density of the body force fi(ξ, t) and Green’s tensor Hni(x, t; ξ). The body
force is assumed at source position ξ, and the Green’s tensor Hni for the n-th
component represents the elastic response of the medium to a unit point source
force acting at position ξ and in direction i with the Dirac δ(t) source time
function.

Assume that volume V surrounds buried fault surface Σ of finite size, along
which slip occurs. The total slip is small (cm to m) in comparison with the total
fault size (tens of m to tens of km), therefore the small-strain approximation
is assumed to hold and fault surface Σ itself is unchanged by the deformation.
Further, let us assume that the mutual arbitrary dislocations on both sides of the
surface have the same size of opposite direction, then the force corresponding
to an infinitesimal surface element dΣ(ξ) can be represented as sum of nine
couples of forces (Fig. 1.1). The seismic source is then considered as force system
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described by seismic moment tensor density mpq(ξ, t) along the fault plane Σ.
The representation theorem in Eq. (1.1) leads to (Aki & Richards 2002, eq. 3.20)

un(x, t) =
∫∫
Σ

mpq(ξ, t) ∗ Hnp,q(x, t; ξ) dΣ(ξ). (1.2)

Such a form of the representation theorem can be used for kinematic description
of various underground seismic sources including pure-shear movements, tensile
cracks, shear-tensile cracks, etc.
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Figure 1.1: Nine possible force couples that substitute generally oriented displacement
discontinuity in terms of seismic radiation (following Aki & Richards 2002, fig. 3.7).
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1.1.1 Point source approximation
Here we describe approximation of seismic source representation when the size
of the fault Σ is small enough with respect to the distance between the source
and the receiver and only long wavelengths are considered (see Aki & Richards
2002, pp. 49–52). In this particular case the Green’s functions Hnp,q(x, t; ξ) do
not vary significantly over the fault plane Σ and can be substituted by Green’s
functions with respect to an optimal point on the fault ξ0. The representation
theorem from Eq. (1.2) reduces to

un(x, t) =
∫∫
Σ

mpq(ξ, t) dΣ(ξ) ∗ Hnp,q(x, t; ξ0). (1.3)

Eq. (1.3) still describes a source of finite size, as mpq(ξ, t) may vary over Σ
in general. The integral of seismic moment tensor density over the whole fault
surface can be substituted by a system of couple forces located at point ξ0 by
time-dependent moment tensor Mpq(t) as

un(x, t) = Mpq(t) ∗ Hnp,q(x, t; ξ0). (1.4)

This is so-called point source approximation of seismic source, where contribu-
tions from different surface elements dΣ cannot be any longer distinguished from
each other. When the time dependence of the moment tensor is assumed to be
the same for all its components, Eq.(1.4) reduces to

un(x, t) = MpqΩ(t) ∗ Hnp,q(x, t; ξ0). (1.5)

Ω(t) is the moment time function and Mpq = Mpq(t → ∞) is the seismic moment
tensor (MT). It is advantageous to define so-called source time function (STF)
as the time derivative of Ω̇(t). Eq. (1.5) is then modified to

un(x, t) = MpqΩ̇(t) ∗ H̃np,q(x, t; ξ0), (1.6)

where H̃np,q represents Green’s function Hnp,q integrated in time. Note that

1 =
∞∫

−∞

Ω̇(t) dt, (1.7)

as denoted by hatched area in schematic Fig. 1.2a.
The rupture process is assumed to start at time tA, then the moment time

function is zero before the rupture process starts, i.e. Ω(t ≤ tA) = 0. Because
we assume a source of finite size, the rupture process cannot continue infinitely
long and the STF converges to zero in a finite time tB in which the process
terminates, i.e. Ω̇(t ≥ tB) = 0. As the STF is non-zero only for the finite time
interval (tA, tB) (see Fig. 1.2a), its source spectrum (Fourier amplitude spectrum,
Fig. 1.2b) defined as

Ω̇f (f) =
⏐⏐⏐F(Ω̇(t)

)⏐⏐⏐ (1.8)

tends to a constant equal to one at low frequencies (see Aki & Richards 2002, pp.
497–516). If we also assume that the STF never changes its sign, then the source
spectrum Ω̇f (f) achieve its maximum for f = 0 Hz. A reasonable STF model has
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then constant source spectrum on low frequencies, while its high frequency content
is proportional to a negative power of f . Brune (1970) defined a corner frequency
f0 as the intersection of flat low-frequency and high-frequency asymptotes of
the source spectrum Ω̇f (f). The corner frequency value is dependent on source
parameters, e.g., magnitude and stress drop, and its value is reciprocal to STF
duration. It is higher for small-size (Mw < 3) earthquakes (approx. f0 > 1.0 Hz)
than for mid-size (3 ≤ Mw < 6) earthquakes (approx. 1.0 Hz ≥ f0 > 0.2 Hz)
or large-size (Mw ≥ 6) earthquakes (approx. f0 ≤ 0.2 Hz), as the duration of
STFs for small-size earthquakes is shorter. Please consider these values of f0 as
orientative for educational purpose.

When Dirac delta function δ(t) is considered as STF, then the modeled source
spectrum results in a constant equal one. This leads to low-frequency approxima-
tion, where are used only low frequencies with “flat” part of the source spectrum
below the to corner frequency f0. The representation of the point source in low-
frequency approximation is then from Eq. (1.6) as follows:

un(x, t) = MpqH̃np,q(x, t − tA; ξ0), (1.9)

where is MpqΩ̇(t) from Eq. (1.6) substituted by centroid moment tensor (CMT)
defined as Mpqδ(ξ − ξ0)δ(t − tA). Note that δ(t − tA) is delayed Dirac delta
function by so-called centroid time tA.

The representation of seismic source by Eq. (1.9) is especially advantageous,
as it is linear form. Such linear formulation allows to effectively solve the inverse
problem by least-squares method for a given possible position of CMT (e.g.,
Kikuchi & Kanamori 1991; Vackář et al. 2017; Hallo et al. 2017; Zahradńık &
Sokos 2018). Nevertheless, even more complex source models with various STFs
can be described in point source approximation. For example, Zahradńık & Sokos
(2018) in their multiple-point MT inversion reproduce STF as a superposition of
multiple triangle functions.

To conclude, the point source approximation of seismic source is effective
in terms of inverse problem performance and diversity of possible source type
like pure-shear movements, tensile cracks, shear-tensile cracks and implicitly also
explosions (the last is not discussed in this work).
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Figure 1.2: Schematic example of simple STF and its Fourier spectrum. a) The
boxcar STF Ω̇(t) of total length 2 sec with start time tA and terminating time tB. Note
that hatched area has unit size (see Eq. (1.7)). b) The source spectrum Ω̇f (f) of the
boxcar STF; f0 is the source corner frequency.
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1.1.2 Finite fault source representation
The tectonic earthquakes can be characterized by heterogeneous distribution of
slip over the fault surface. Therefore, the seismic moment tensor density mpq(ξ, t)
is rather heterogeneous. Here, we describe representation of finite seismic source
which account for the possible heterogeneous distribution of slip.

Let us assume a pure shear slip movement (mutual dislocations exclusively
tangential to the fault surface) on the fault of finite size Σ. Then, slip corre-
sponding to an infinitesimal surface element dΣ(ξ) can be represented in terms
of wave radiation by combination of double-couple forces oriented in slip direction
νΣ and in normal to the surface nΣ (see Fig. 1.3).

��
n�

�

v

s

Figure 1.3: Schematic model of finite shear seismic source with depicted double-couple
forces. The surface of fault Σ shown by yellow rectangle is enclosed inside elastic volume
V bounded by surface S. Vectors νΣ and nΣ depict the shear slip direction and normal
to the surface, respectively. Colored arrows are the equivalent double-couple forces.

The seismic moment tensor density in Eq. (1.2) for such a source in isotropic
medium reads (see Aki & Richards 2002, eq. 3.22)

mpq(ξ, t) = µ(ξ) ∆u(ξ, t)
[
nΣ

p (ξ)νΣ
q (ξ) + nΣ

q (ξ)νΣ
p (ξ)

]
, (1.10)

where µ is the medium rigidity and ∆u(ξ, t) is the slip time function at fault
position ξ.

Putting Eq. (1.10) into Eq. (1.2) we get

un(x, t) =
∫∫
Σ

∆u(ξ, t) ∗ Tn(x, t; ξ) dΣ(ξ), (1.11)
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where Tn(x, t; ξ) is the impulse response of the medium at point ξ defined as

Tn(x, t; ξ) = µ(ξ)nΣ
p (ξ)νΣ

q (ξ)
[
Hnp,q(x, t; ξ) + Hnq,p(x, t; ξ)

]
. (1.12)

Formula in Eq. (1.11) is the kinematic representation of finite fault source by
means of source slip time functions. Further, the slip time functions are substi-
tuted by its time derivatives, i.e. slip rate function ∆u̇(ξ, t) (SRF). Eq. (1.11) is
then written as

un(x, t) =
∫∫
Σ

∆u̇(ξ, t) ∗ T̃n(x, t; ξ) dΣ(ξ), (1.13)

where T̃n represents the response of the medium Tn integrated in time.
The representation integrals in Eqs (1.11) and (1.13) relate the radiated wave-

field with slip time function ∆u(ξ, t) and slip rate function ∆u̇(ξ, t), respectively.
Therefore, these functions describe the spatially heterogeneous slip history on
the assumed fault plane Σ. These time functions may be generally arbitrary, but
there are two conditions: 1) as the rupture process is assumed to be dislocation
with defined rupture front arrival t0(ξ), so-called rupture time, then these func-
tions must be zero before the rupture process starts, i.e. ∆u

(
ξ, t ≤ t0(ξ)

)
= 0.

2) because we assume a source of finite size, the rupture process cannot con-
tinue infinitely long, SRF then converges to zero in finite time (t0(ξ) + τR(ξ)),
i.e. ∆u̇

(
ξ, t ≥ (t0(ξ) + τR(ξ))

)
= 0. The total slip A(ξ) on fault surface position

ξ is then defined as

A(ξ) =
∞∫

−∞

∆u̇(ξ, t) dt =
(t0(ξ)+τR(ξ))∫

t0(ξ)

∆u̇(ξ, t) dt =

=
τR(ξ)∫
0

∆u̇
(
ξ, t − t0(ξ)

)
dt, (1.14)

where τR(ξ) is so-called rise time, defined as the duration in which the total slip
reaches its final value. The formula for total slip in Eq. (1.14) allows us to express
SRF as

∆u̇(ξ, t) = A(ξ)s
(
ξ, t − t0(ξ)

)
, (1.15)

where s
(
ξ, t − t0(ξ)

)
describes the shape of SRF, where

1 =
τR(ξ)∫
0

s
(
ξ, t − t0(ξ)

)
dt. (1.16)

The broad analysis of tectonic seismic sources and dynamic modeling suggests
rise time τR(ξ) having duration of fractions of seconds to seconds. A comparison
of rise time τR(ξ) with the duration of the propagation of the rupture along the
fault plane, τΣ = max

(
t0(ξ)

)
− min

(
t0(ξ)

)
, may distinguish crack-like sources

where τR(ξ) ≈ τΣ, and pulse-like sources where τR(ξ) < τΣ, but this issue is
still widely discussed (e.g., Kanamori & Brodsky 2004). The particular duration
and shapes of SRF (as functions of time in Eq. (1.15)) can be subject of finite
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source inversion (e.g., Gallovič & Zahradńık 2010; Gallovič & Ampuero 2015), or
alternatively a prescribed SRF’s shapes parametrized by a few parameters can be
assumed (i.e. parametrized SRFs; e.g., Graves & Wald 2001; Minson et al. 2013;
Dettmer et al. 2014). There are several types of SRF’s shapes proposed by other
researches, here we show a few examples (see Fig. 1.4).

• Delayed Dirac delta function δ(t − t0(ξ)) (Fig. 1.4, black) can be used as
the simplest case, reducing the SRF to

∆u̇(ξ, t) = A(ξ)δ
(
t − t0(ξ)

)
. (1.17)

The respective slip time function is the Heaviside (Fig. 1.4b) with step in
rupture time t0(ξ). Then SRF is parametrized at each position on fault ξ
by two independent parameters A(ξ) and t0(ξ).

• As the shape of SRF are often used delayed boxcar or triangle functions ΠτR

and ∧τR
, respectively, and their superposition (Fig. 1.4, red and blue). Rise

time τR(ξ) define duration of boxcar (or triangle) function, while rupture
time t0(ξ) determines the time of the earliest non-zero value. When we
define general boxcar and triangle functions as centered around zero time
and having unit area, then SRFs reads

∆u̇(ξ, t) = A(ξ)ΠτR(ξ)

(
t − t0(ξ) − τR(ξ)

2

)
, (1.18)

∆u̇(ξ, t) = A(ξ) ∧τR(ξ)

(
t − t0(ξ) − τR(ξ)

2

)
, (1.19)

for boxcar and triangle function, respectively. Such SRFs are parametrized
at each position on fault ξ by three independent parameters A(ξ), t0(ξ) and
τR(ξ). These functions are widely used in parametric finite fault inversions,
for example Minson et al. (2013) use triangle shape of SRFs in his Bayesian
finite source inversion. Moreover, even more complex shapes of SRFs can
be described by their superposition, for example Kubo et al. (2016a) uti-
lize multiple boxcar functions in his multiple-time-window Bayesian finite
source inversion.

• The last example of SRF’s shape is regularized Yoffe function ΥτP
τR

as in-
troduced by Tinti et al. (2005), derived for earthquake kinematic modeling
(Fig. 1.4, green). Such SRF’s shape is compatible with dynamic propaga-
tion of earthquake ruptures (e.g., Bizzarri 2012), and hence, it may interlink
kinematic and dynamic source parameters using appropriate scaling laws.
Explicit analytical form was derived in Tinti et al. (2005) as dependent on
rise time duration τR(ξ) and time to peak slip velocity (i.e. the duration
of positive slip acceleration), called peak time τP (ξ). The formula for SRF
using regularized Yoffe function reads

∆u̇(ξ, t) = A(ξ)ΥτP
τR

(
t − t0(ξ)

)
. (1.20)

Such SRF is then parametrized at each position on fault ξ by four inde-
pendent parameters A(ξ), t0(ξ), τR(ξ) and τP (ξ).
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Figure 1.4: Schematic examples of slip functions of various shapes and their Fourier
spectra. Each color has meaning of different shape of SRF described in text (see legend).
Independent parameters defining these SRFs are the same for all shapes with A = 1 m,
t0 = 4 sec, τR = 2 sec and τP = 0.2 sec (unnecessary parameters are neglected). Panel
a) show slip rate functions (SRF) ∆u̇(t); panel b) represents their temporal integrals,
i.e. slip time functions ∆u(t). c) Fourier amplitude spectra of the respective SRFs.
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1.1.3 Moment tensor decomposition
Seismic moment tensor, MT, was introduced in Section 1.1.1 (see Eq. (1.5)) as
an earthquake source model in the point source approximation. Such MT is a
symmetric tensor of the second order describing nine couples of equivalent dipole
forces that substitute generally oriented strain in source region in terms of seis-
mic radiation. As the most common seismic sources originating inside the solid
Earth are associated with shear faulting across an fault plane (Section 1.1.2), the
most common type of MT is the double-couple (DC) source representing force
equivalent of a displacement on the fault. Nevertheless, there are many exam-
ples of real seismic sources with a non-double-couple (non-DC) force equivalent
as revealed by seismic wave radiation (e.g., Frohlich 1994; Miller et al. 1998).
A possible type of non-DC components is an isotropic (ISO) source associated
with a volumetric change in strain caused by underground explosions and implo-
sions (e.g., Liu et al. 2018). Another types of non-DC force equivalents can be
produced by volcanic intrusions (e.g., Nettles & Ekström 1998), cavity collapses
(e.g., Rudajev & Š́ılený 1985), presence of high-pressure fluids during faulting
(e.g., Vavryčuk 2011), shear faulting in anisotropic media (e.g., Vavryčuk 2005),
and by shear faulting on a non-planar or complex faults (e.g., Frohlich 1994).
The latter is also evident in Eq. (1.3) as the MT is an integral of the moment
tensor density over the whole fault surface, which may be curved in general. Note
that the non-DC force equivalents assumed in this section are not artifacts of MT
inversion but real features of full MTs.
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Figure 1.5: ISO, DC and CLVD elementary parts of MT, visualized by the beach-ball
representations of focal mechanisms (upper row) and by the scheme of focal deformation
(bottom row). The filled and blank segments in beach-ball plots distinguish directions
with positive and negative P-wave polarity, respectively.

These examples demonstrate that non-DC force equivalents may be often
present in the inverted MTs for all types of seismic sources. Such full MTs are
usually decomposed into some elementary parts with a physical representation.
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The most common decomposition by Knopoff & Randall (1970) divide a full
MT into three elementary parts: ISO, DC, and compensated linear vector dipole
(CLVD) (see Fig. 1.5). In the case of CLVD, the deformation along a polar
axis is compensated by deformation in an equatorial band. Nevertheless, the MT
decomposition can be performed in many alternative ways (see Jost & Herrmann
1989), e.g., ISO, DC1, DC2, and DC3; or ISO, DCmajor, and DCminor, etc.

The MT decomposition into ISO, DC and CLVD proved to be useful for
physical interpretation of earthquake sources, and became widely accepted and
further developed (e.g., Jost & Herrmann 1989; Vavryčuk 2015). In order to
derive its mathematical formulation, let us assume eigenvalues λ∗

1 ≥ λ∗
2 ≥ λ∗

3 of
full MT (M) with respective orthonormal row eigenvectors v1, v2 and v3. The
general formula for M in isotropic medium reads

M = λ∗
1v1

T v1 + λ∗
2v2

T v2 + λ∗
3v3

T v3. (1.21)
The first step is to decompose ISO and deviatoric (DEV) parts as

M = MISO + MDEV. (1.22)
The ISO part of the full MT is defined as

MISO = λ∗
1 + λ∗

2 + λ∗
3

3 ·

⎛⎜⎝1 0 0
0 1 0
0 0 1

⎞⎟⎠ (1.23)

= 1
3Tr(M) I (1.24)

= MISOI, (1.25)
where Tr(M) is the trace of the tensor M, I is identity matrix and MISO is
scalar seismic moment of the ISO component. Then, we assume eigenvalues
λ1 ≥ λ2 ≥ λ3 of the decomposed DEV part defined as

λi = λ∗
i − 1

3Tr(M) (i = 1, 2, 3), (1.26)

which fulfill the deviatoric condition λ1 + λ2 + λ3 = 0. The formula for deviatoric
moment tensor MDEV then reads

MDEV = λ1v
T
1 v1 + λ2v

T
2 v2 + λ3v

T
3 v3, (1.27)

where eigenvectors v1, v2 and v3 define T (tension), N (neutral), and P (pressure)
axes of MT, respectively.

Eq. (1.27) is further expressed as sum of selected elementary parts of the
deviatoric MT. In the case of MT decomposition into ISO, DC and CLVD parts
(e.g., Vavryčuk 2015), the formula for MDEV reads

MDEV = MDC + MCLVD (1.28)
= MDCEDC + MCLV DECLVD, (1.29)

where MDC and MCLV D are scalar seismic moments of respective source compo-
nents, and further EDC and ECLV D are elementary (base) tensors defined as

EDC =

⎛⎜⎝1 0 0
0 0 0
0 0 −1

⎞⎟⎠ E+
CLVD =

⎛⎜⎝1 0 0
0 −1

2 0
0 0 −1

2

⎞⎟⎠ E−
CLVD =

⎛⎜⎝
1
2 0 0
0 1

2 0
0 0 −1

⎞⎟⎠ .

(1.30)
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The elementary tensor for CLVD has two forms used as follows:

ECLVD =
⎧⎨⎩E+

CLVD when λ1 + λ3 − 2λ2 ≥ 0
E−

CLVD when λ1 + λ3 − 2λ2 < 0
(1.31)

The CLVD is then aligned to the eigenvector respective to the largest absolute
eigenvalue |λi|, (i = 1, 2, 3). This constraint arises from the deviatoric condition
λ1 + λ2 + λ3 = 0. Note that alternative definitions of CLVD elementary tensor
are possible (e.g., Chapman & Leaney 2012). Scalar seismic moments from Eq.
(1.29) are defined as

MCLV D = 2
3
(
λ1 + λ3 − 2λ2

)
, (1.32)

MDC = 1
2
(
λ1 − λ3 − |λ1 + λ3 − 2λ2|

)
. (1.33)

The total scalar seismic moment M0 of the non-DC MT can be defined as a
sum of scalar seismic moments of the respective source components defined in
Eqs (1.25), (1.32), and (1.33):

M0 = |MISO| + |MCLV D| + MDC . (1.34)

The same value of M0 is produced by the norm by Bowers & Hudson (1999)

M0 = ||MISO|| + ||MDEV|| (1.35)
= |MISO| + ||MDEV||, (1.36)

where the spectral norm of the deviatoric moment tensor ||MDEV|| = max(|λi|),
(i = 1, 2, 3). For details about definitions of the scalar seismic moment see
Vavryčuk (2015). Practically, the amount of content of the ISO, DC, and CLVD
components are expressed by their scale factors βi defined as βi = Mi/M0, (i =
ISO, DC, CLV D). While these scale factors satisfy

1 = |βISO| + |βCLV D| + βDC , (1.37)

then decomposition in Eq. (1.29) can be expressed as

M = M0
(
βISOI + βDCEDC + βCLV DECLVD

)
. (1.38)

These scale factors are often expressed by percentage of the ISO, DC, or CLVD
content in the non-DC MT (i.e. βi · 100 %).

The decomposition of non-DC MT is performed in order to physically interpret
components of the seismic source. Nevertheless, it has to be emphasized that the
source components (ISO, DC, and CLVD) cannot be understood as strictly sep-
arated focal mechanisms; the decomposition is merely mathematical description
of a complex earthquake source. Still, there is an overview in Tab. 1.1 of some
basic earthquake source types in terms of content of the ISO, DC, and CLVD
components in isotropic media (artificial non-DC components resulting from an
imprecise MT inversion are not assumed at this point). Further, please consider
values of βi in Tab. 1.1 as orientative as they may be influenced by many factors
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like fault geometry (e.g., Frohlich 1994), vP /vS ratios of elastic medium (e.g.,
Vavryčuk 2015), anisotropy of the medium (e.g., Vavryčuk 2005), etc.

βISO βDC βCLV D Source type Phenomenon

0.0⋆ 1.0⋆ 0.0⋆ pure shear faulting tectonic earthquakes
0.0⋆ 0.8 0.2 shear faulting on nonplanar fault complex tectonic earthquakes
0.2 0.0 0.8 magma intrusions volcanic earthquakes
0.3 0.0⋆ 0.7 pure tensile faulting fault opening
-0.3 0.0⋆ -0.7 pure compressive faulting fault closing
0.2 0.5 0.3 shear-tensile faulting fault opening during rupturing
-0.2 0.5 -0.3 shear-tensile faulting fault closing during rupturing
1.0⋆ 0.0⋆ 0.0⋆ underground explosion nuclear tests
Note: ⋆the exact βi value by definition

Table 1.1: Overview of basic types of the seismic sources in terms of MT’s content of
the ISO, DC, and CLVD components in an isotropic full-space medium.
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1.2 Bayesian probabilistic framework
A given description of an earthquake source from Section 1.1 can predict synthetic
data for given model parameters. This problem of predicting observations is
called as forward problem. The inverse problem then use observations to infer
the values of parameters characterizing the earthquake source model. While the
forward problem has a unique solution, the inverse problems may have multiple
possible solutions in general. Here we overview Bayesian probabilistic framework
for inverse problems (e.g., Tarantola & Valette 1982; Tarantola 2005), where a
solution is represented by a probability.

Following Tarantola (2005) we introduce an abstract multi-dimensional vector
space for an assumed choice of source parametrization, where each vector rep-
resents a model of the system. Such multi-dimensional space is called as model
space M, and each model is denoted by vector m. In analogy, the observed data
are treated as data vector d in an abstract multi-dimensional data vector space
D. Note that the number of dimensions of M and D differs by definition, with
meaning of total number of model parameters and total number of measured
data, respectively.

The theoretical forward problem, where data d for a given model m are
predicted by a theory (i.e. earthquake source representations), can be expressed
using a forward operator g(·) as

d = g(m), (1.39)

where the forward problem g(·) itself can be subject of uncertainty in general.
The Bayesian solution of the inverse problem (Bayes 1763) is then defined as
the conditional posterior probability density function (PDF) on the model space
p(m|d), expressed by Bayes theorem as

p(m|d) = p(m) p(d|m)
p(d) , (1.40)

where
p(d) =

∫
M

p(m) p(d|m) dm. (1.41)

Here p(m) is a prior PDF on the model parameters (i.e. independent on the
observed data), and p(d|m) is conditional probability of data for given model
m, i.e. so-called likelihood function. The likelihood function contains statistical
information on both the observed data and the theory uncertainty. Substituting
observed data dobs as d = dobs in Eq. (1.40), the posterior PDF on the model
space reads

p(m|dobs) = const. p(m) p(dobs|m), (1.42)
where const. is a normalization constant.

Let us assume that data space D is linear and that the observed data dobs of
finite length n are characterized by Gaussian data errors with n × n covariance
matrix CD (see Tarantola 2005, eq. 6.66). The likelihood function then reads

p(dobs|m) = const.√
(2π)n |CD|

· exp
(

− 1
2 L(m)

)
(1.43)
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where |CD| is determinant of the covariance matrix and L defines misfit between
observed data dobs and synthetics calculated using the theoretical relation in Eq.
(1.39). The misfit is written in matrix form as

L(m) =
(
dobs − g(m)

)T
CD

−1
(
dobs − g(m)

)
. (1.44)

Combining Eqs (1.42) and (1.43) we get a formula for the posterior PDF on the
model space assuming Gaussian data errors (Tarantola 2005, eq. 1.100) as

p(m|dobs) = const. p(m) exp
(

− 1
2 L(m)

)
. (1.45)

Note that since the uncertainty of the theory is incorporated into the uncertainty
of the observed data, CD = Cdata + Ctheory as in Tarantola (2005, example
1.36). This may be useful in earthquake source inversions, where the observed
data are subject of uncertainty originating from imprecise measurements and
also uncertainties in forward problem formulations (e.g., uncertainty of Green’s
functions). Then, the CD may include also uncertainty of Green’s functions.

We can further assume that the model space M is linear and that the prior
model parameters mprior of length j are characterized by Gaussian errors with
j × j covariance matrix CM. The prior PDF of the model parameters then reads
(Tarantola 2005, eq. 1.102)

p(m) = 1√
(2π)j |CM|

· exp
(

− 1
2 K(m)

)
, (1.46)

where K defines misfit between model parameters m and assumed prior model
parameters mprior, written in matrix form as

K(m) =
(
m − mprior

)T
CM

−1
(
m − mprior

)
. (1.47)

The Gaussian prior PDF of the model parameters in Eq. (1.46) can be included in
Eq. (1.45), which is then equivalently written as (see Tarantola 2005, eq. 1.104)

p(m|dobs) = const. exp
(

− 1
2
(
L(m) + K(m)

))
. (1.48)

Note that posterior PDF p(m|dobs) on the model space in Eq. (1.48) depends
on the sum of the data misfit and prior assumptions misfit, which implies that
biased prior assumptions on the model have an influence on solution even if
the theory is perfect. Further, when we assume no prior information on the
model parameters (i.e. infinite standard deviation in CM or equivalently constant
p(m)), the posterior PDF simplifies to

p(m|dobs) = const. exp
(

− 1
2 L(m)

)
. (1.49)

Practically speaking, the formulations of the posterior PDF by Eqs (1.48) and
(1.49) can be used for Bayesian inversions of various representations of earthquake
source. In our applications, the observed data dobs is a vector of all measured
seismograms, while the forward operator g(·) is a representation of an earthquake

21 Chapter 1



source as described in Section 1.1. The latter can be CMT representation of Eq.
(1.9) or finite-fault representation of Eq. (1.13), where both relate source param-
eters with predicted displacement (i.e. synthetic seismograms). The covariance
matrix CD then characterizes expected Gaussian errors between the observed and
synthetic seismograms. Finally, the solution of the inverse problem in such formu-
lation is the posterior PDF over multi-dimensional space M. This posterior PDF
can be inspected using analytical techniques (e.g., linear least-squares methods)
or extensive exploration of the model space (i.e. Monte-Carlo methods).

1.2.1 Linear least-squares methods
Linear least-squares methods are popular for solving inverse problems because of
undemanding computations. These methods can be applied if we assume linear
vector spaces D and M, and that all prior uncertainties can be modeled using
Gaussian distributions. Thereafter, when the forward problem solving the theo-
retical relation in Eq. (1.39) is linear, then the posterior uncertainty is Gaussian,
and an analytical expression for the posterior PDF can be found. We empha-
size, that even if the forward problem in Eq. (1.39) is non-linear a gradient
least-squares method can be used in principle (see Tarantola 2005, pp. 68–80).
Nevertheless, we overview here only the linear least-squares problem as required
by this thesis.

The linear forward problem can be written in matrix form as

d = Gm, (1.50)

where n × j matrix G is linear forward operator (also known as design matrix),
linearly relating model parameters m (vector of length j) and synthetic data d
(vector of length n). The formula for the posterior PDF of Eq. (1.49) then reads

p(m|dobs) = const. exp
(

− 1
2 (dobs − Gm)T CD

−1 (dobs − Gm)
)

. (1.51)

As the data misfit is quadratic, the posterior PDF p(m|dobs) is equivalently
written as Gaussian PDF. After simple algebra, this Gaussian function attains
its maximum for a center model m̃ (i.e. maximum likelihood solution) and its
shape is characterized by a posterior Gaussian covariance matrix C̃M. Such
posterior PDF can be formulated as

p(m|dobs) = cι exp
(

− 1
2 (m − m̃)T C̃−1

M (m − m̃)
)

, (1.52)

with normalization constant cι equal to

cι = 1√
(2π)j |C̃M|

. (1.53)

After some algebra the analytical solution for these posterior PDF’s properties
reads (see Tarantola 2005, eqs 3.40 and 3.41)

m̃ = (GT CD
−1G)−1 (GT CD

−1dobs), (1.54)
C̃M = (GT CD

−1G)−1. (1.55)
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For detailed derivation of Eqs (1.54) and (1.55) from Eqs (1.51) and (1.52) see
Tarantola (2005, pp. 64–68). Evaluation of m̃ and C̃M is then subject of the
inverse problem (see example of two-dimensional PDF characterized by m̃ and
C̃M in Fig. 1.6a). The biggest advantage of such formulation is that the maximum
likelihood solution m̃, supplemented by its Gaussian uncertainty C̃M, can be
inferred directly from the observed data dobs, given linear forward operator G
and data covariance matrix CD. Note that the maximum likelihood solution in
Eq. (1.54) is strongly sensitive to outliers in the observed data dobs exceeding
expected errors in the covariance matrix CD. Also note that the estimation
of the solution uncertainty by means of the posterior covariance matrix in Eq.
(1.55) scales with assumed data covariance matrix CD, witch means that larger
uncertainty of the data increases the uncertainty of the inferred model parameters.
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Figure 1.6: Example of Gaussian PDF and its random sampling. a) The Gaussian
posterior PDF in two-dimensional model space M. This particular PDF is characterized
by the center model m̃ = (0, 0) and posterior covariance matrix C̃M = I, where I is the
identity matrix. Random samples drawn from this posterior PDF forming the ensemble
of b) 100; c) 1000; and d) 10000 solutions.

A practical advantage of posterior Gaussian distributions is that it allows us to
effectively generate random samples following such probability distributions. The
random samples, drawn from the PDF by a random number generator algorithm,
form so-called ensemble of random samples (see Fig. 1.6). Algorithms for effective
generation of such ensembles are well described in literature for multi-dimensional
(multivariate) Gaussian probability distributions (e.g., Genz & Bretz 2009), and
they are implemented in standard numerical computational libraries (e.g., Matlab
function mvnrnd).
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1.2.2 Monte-Carlo methods
Some inverse problems require an extensive exploration of the model space M to
achieve reasonable solution(s) as in the case of strongly non-linear problems and
problems with complicated prior and/or posterior PDFs. Such exploration can
be systematic (e.g., grid-searched) only for a small number of model parameters
as the number of required tested models grows exponentially with the number of
dimensions of the model space M, bringing unbearable demands on computation
power. Hence, well-designed exploration algorithms need to be used.

The random samples (i.e. models m) drawn from a posterior PDF form
so-called ensemble of possible solutions as shown in Fig. 1.6. Here we assume
rather complicated PDFs, and hence an extensive exploration algorithms has
to be applied to create the ensemble. The class of computational algorithms
that rely on random explorations of M are called Monte-Carlo (MC) methods
(see Tarantola 2005, pp. 41–55). The problematic feature of these methods
is that the sampled model space tends to be very empty at zones with lower
probability density as deployed sampling algorithms have finite number of steps.
This implies that a sufficient number of random samples should be drawn. Note
that the measure of the “sufficient number” is rather subjective and depends on
the current application. Finally, the ensemble of solutions is the inversion result,
where it is possible to statistically inspect scatter or the most likely value of any
model parameter. The ensemble also allows one to infer statistical properties of
any derived quantities describing the solution.

Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm, developed by Metropolis et al. (1953) and
generalized by Hastings (1970), is a Markov chain Monte-Carlo (MCMC) method
for sampling the posterior PDF by a chain of steps. The Markov chain has no
memory in the sense that each step depends only on the previous step. The
basic idea is to perform a “walk” through the model space as a sort of Brownian
motion. Then using a probabilistic rule to modify the walk (some proposed
steps are accepted and some rejected) we can obtain the ensemble of solutions
drawn from posterior PDF. Such algorithms are considered as the most effective
especially if the number of dimensions of M is large.

The algorithm starts from initial state m0 which should be arbitrary in gen-
eral. In each step of the chain (i.e. m0 → m1 → m2 → . . .), the model pa-
rameters m are randomly perturbed with a forward step probability drawn from
the proposal distribution q(m′|m) to create new (proposed) model m′. The new
model is accepted or rejected based on the “Metropolis choice” (Metropolis et al.
1953):

m+1 =
⎧⎨⎩m′, m′ accepted with probability α(m → m′)

m, m′ rejected with probability 1 − α(m → m′)
(1.56)

Following Hastings (1970), the generalized acceptance probability of Eq. (1.56)
reads

α(m → m′) = min
(

1,
p(m′|dobs)
p(m|dobs)

q(m|m′)
q(m′|m)

)
, (1.57)
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where q(m|m′) is the proposal distribution used to draw probability of the reverse
step (m′ → m). Substituting posterior PDFs in Eq. (1.57) by the form in Eq.
(1.42), the acceptance probability leads to

α(m → m′) = min
(

1,
p(m′)
p(m)

p(dobs|m′)
p(dobs|m)

q(m|m′)
q(m′|m)

)
, (1.58)

being independent on the normalization constant.
A generic version of Metropolis-Hastings is so-called random walk Metropo-

lis–Hastings algorithm (or simply Metropolis algorithm; Metropolis et al. 1953),
where the chain is driven by the random walk process (Pearson 1905; Einstein
1905). In such process, the forward and reverse steps are assumed to be reversible,
i.e. q(m′|m) = q(m|m′) (see Hastings 1970, pp. 100). This condition is fulfilled
for cases of a symmetric proposal distribution (i.e. probability density distribu-
tion of random perturbations) which is re-centered after each step at the value
last generated by the Markov chain (e.g., Tierney 1994; Smith & Roberts 1993;
Gustafson 1998). Then Eq. (1.58) reduces to

α(m → m′) = min
(

1,
p(m′)
p(m)

p(dobs|m′)
p(dobs|m)

)
. (1.59)

It is common to assume that the model parameters are randomly perturbed con-
sidering Gaussian proposal distribution, defined by its standard deviations in the
model space M, i.e. Gaussian random walk Metropolis-Hastings algorithm. The
Gaussian proposal distribution is symmetric function, hence the forward and re-
verse steps are reversible as shown in Fig. 1.7. The performance of such MCMC
algorithm is then dependent on the choice of standard deviations of the proposal
distributions governing implicitly the acceptance rates. The acceptance rates that
are either “too high” or “too low” slow down the performance of the Markov chain
(by means of efficiency), nevertheless the particular choice of these standard devi-
ations does not influence the asymptotic distribution of drawn samples according
to the posterior PDF. Following Roberts et al. (1997), the effective acceptance
rate of the Gaussian random walk MCMC should to be close to 1/4.
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Figure 1.7: Proposal distribution in the case of the Gaussian random walk MCMC.
Current model m (blue) is randomly perturbed into proposed model m′ (red) with for-
ward step probability drawn from the proposal distribution q(m′|m). The proposal dis-
tribution used to draw probability of reverse step q(m|m′) is assumed to be reversible
q(m|m′) = q(m′|m) as the Gaussian proposal distribution is symmetric function.
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To complement, other versions of Metropolis-Hastings algorithm can be used
in principal (see Tierney 1994). They differ mainly by proposal distribution
q, or they are hybrids between random walk and general Metropolis-Hastings
algorithm. For example, in the case of so-called guided walk Metropolis-Hastings
algorithm the proposal distribution is symmetric, yet it is not re-centered after
each step (Gustafson 1998). An example of hybrid Metropolis-Hastings is so-
called reversible jump MCMC introduced by Green (1995, 2003). In the reversible
jump MCMC, the proposed models m′ are allowed to be drawn from a different
model space state, which can have different number of dimensions in general.

Parallel tempering

To increase the efficiency of a MCMC sampler it is possible to apply a method
called parallel tempering (PT; e.g., Sambridge 2014). The PT sampling algorithm
is similar to the better known simulated annealing method (Kirkpatrick et al.
1983) introducing modification of the posterior (sampled) PDF by an additional
parameter called temperature γ. The modified posterior PDF from Eq. (1.42) is
given by

p(m|dobs, γ) = const. p(m)
(
p(dobs|m)

)1/γ

. (1.60)
The random samples are then drawn following such modified posterior PDF as-
suming multiple values of temperature γ. The modified posterior PDF become
“smooth” for high temperatures, and as γ → ∞ it becomes the prior PDF. For
temperature γ = 1, as the other extreme, the modified posterior PDF equals
to the original posterior PDF (see example in Fig. 1.8). When including the
modified posterior PDF as defined in Eq. (1.60) in the acceptance probability
of general Metropolis–Hastings algorithm in Eq. (1.58), the modified acceptance
probability reads

α(m → m′, γ) = min
⎛⎝1,

p(m′)
p(m)

(
p(dobs|m′)
p(dobs|m)

)1/γ
q(m|m′)
q(m′|m)

⎞⎠, (1.61)

or alternatively the modified acceptance probability of the random walk Metropo-
lis–Hastings algorithm in Eq. (1.59) reads

α(m → m′, γ) = min
⎛⎝1,

p(m′)
p(m)

(
p(dobs|m′)
p(dobs|m)

)1/γ
⎞⎠. (1.62)

In the PT method, multiple parallel Markov chains sample the model space
M simultaneously, each with different temperature. The chains with lower tem-
peratures sample local areas of model space with PDF maxima, while chains with
higher temperatures are able to escape from local maximum and sample the model
space in a wider range. The temperature ladder is construct in order to have at
least one chain with γ1 = 1 and the temperatures span as γ1 ≤ γ2 ≤ . . . ≤ γmax. A
feature of the PT method called as “exchange temperature swap” then allows two
arbitrary chains to exchange the temperatures. The probability that two chains
swap their temperatures is given by a balance condition for the swap proposed
by Sambridge (2014, eq. 18), assuming a random walk through temperatures, as

α(γA, γB) = min
⎛⎝1,

(
p(dobs|mγB

)
p(dobs|mγA

)

)1/γA
(

p(dobs|mγA
)

p(dobs|mγB
)

)1/γB

⎞⎠, (1.63)
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where mγA
and mγB

are models in two arbitrary Markov chains on temperatures
γA and γB, respectively. Note that the swap balance condition in Eq. (1.63)
assumes no tempering of the prior PDFs. Finally, the ensemble of solutions
following the posterior PDF is formed only by random samples on temperature
γ1 = 1 sampling of the original posterior PDF p(m|dobs), while chains on other
temperatures work as a tool for exploration of the model space in a wider range.

For demonstration purpose, we perform MCMC sampling of a Gaussian pos-
terior PDF (Fig. 1.8a). For this particular example we assume that the prior
PDF is homogenous (Fig. 1.8b), with meaning of no available prior information
on the model parameters. Eq. (1.62) then simplifies to

α(m → m′, γ) = min
⎛⎝1,

(
p(dobs|m′)
p(dobs|m)

)1/γ
⎞⎠. (1.64)

We have performed Gaussian random walk MCMC with the acceptance probabil-
ity of Eq. (1.64) on three different temperatures (γ = 1, 2, 10). The temperature
swaps are not assumed in this example to demonstrate the influence of differ-
ent temperatures. Further for the demonstration purpose, the initial states m0
were the same for all three chains, while they should be random in practical ap-
plications. The walks through the model space were recorded, to illustrate the
performance of MCMC in 100, 1000, and 10000 consecutive steps (see Fig. 1.8c).
The chain with γ = 1 sample the original Gaussian posterior PDF (left panels
in Fig. 1.8c). The chain with γ = 2 sample a modified Gaussian posterior PDF
(middle panels in Fig. 1.8c), which results in more samples drawn from the “lower
probability zones” on edges. Finally, the chain with γ = 10 sample a strongly
modified Gaussian posterior PDF which becomes closer to a homogenous prior
PDF (right panels in Fig. 1.8c). This allows MCMC sampler to explore the model
space in a wider range.

The MCMC sampler can effectively sample general multi-dimensional PDFs
with very complex probability distributions, while the multivariate Gaussian
probability samplers (as shown in Fig. 1.6 drawn by Matlab function mvnrnd)
are restricted to the Gaussian PDF. Further, the performance of MCMC sampler
improves, while deploying temperature swaps and parallelize.
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Figure 1.8: Example of sampling of Gaussian posterior PDF by three independent
MCMC random walks. a) The original posterior PDF in two-dimensional model space
M (the same PDF as in Fig. 1.6). b) The homogenous prior PDF of model parameters.
c) 100, 1000, and 10000 consecutive steps of MCMC random walk (produced by Eq.
(1.64)) with the initial state m0 = (1.2, 1.8). The sets of samples are produced for three
different temperatures γ = 1, 2, 10 (from left to right panels).
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2. Fast and cheap approximation
of Green’s functions uncertainty
for waveform-based earthquake
source inversions
Published in Geophysical Journal International,
Volume 207, Issue 2, 1012–1029, August 2016, doi:10.1093/gji/ggw320,
text in this Chapter includes also its published supplementary material.

Miroslav Halló1 & Frantǐsek Gallovič1

Abstract: Green functions (GFs) are an essential ingredient in waveform-
based earthquake source inversions. Hence, the error due to imprecise knowledge
of a crustal velocity model is one of the major sources of uncertainty of the in-
ferred earthquake source parameters. Recent strategies in Bayesian waveform
inversions rely on statistical description of the GFs uncertainty by means of a
Gaussian distribution characterized by a covariance matrix. Here we use Monte-
Carlo approach to estimate the GF covariance considering randomly perturbed
velocity models. We analyze the dependence of the covariance on various param-
eters (strength of velocity model perturbations, GF frequency content, source-
station distance, etc.). Recognizing that the major source of the GF uncertainty
is related to the random time shifts of the signal, we propose a simplified approach
to obtain approximate covariances, bypassing the numerically expensive Monte-
Carlo (MC) simulations. The resulting closed-form formulas for the approximate
auto-covariances and cross-covariances between stations and components can be
easily implemented in existing inversion techniques. We demonstrate that the
approximate covariances exhibit very good agreement with the Monte-Carlo es-
timates, providing realistic variations of the GF waveforms. Furthermore, we
show examples of implementation of the covariance matrix in a Bayesian mo-
ment tensor inversion using both synthetic and real datasets. We demonstrate
that taking the GF uncertainty into account leads to improved estimates of the
moment tensor parameters and their uncertainty.

Keywords: Inverse theory; Earthquake source observations; Theoretical seis-
mology; Statistical seismology; Wave propagation.

2.1 Introduction
Inference of earthquake source parameters is an important subject in seismology.
Realistic estimate of the uncertainty of earthquake source inversion results is es-
sential for evaluation of solution quality. Strictly speaking, any geological inter-
pretation of centroid moment tensor or rupture model requires proper assessment
of their uncertainty (e.g., Sokos et al. 2015; Dettmer et al. 2014; Duputel et al.

1Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
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2015). For example, Valentine & Woodhouse (2010) also showed that imprecise
source parameters negatively affect seismic tomography models.

In waveform-based earthquake source inversions two major origins of uncer-
tainty can be recognized. The first one is related to the data error, which may
be due to instrumental or ambient noise effects (Mustać & Tkalčić 2016). Typi-
cally, when dealing with larger events, the signal-to-noise ratio is rather high and
data corrupted by strong disturbances (e.g., Zahradńık & Plešinger 2010; Vackář
et al. 2015) can be omitted. The second source of uncertainty, which is almost
always neglected, is related to the uncertainty of Green’s functions (GFs) due to
the inaccuracy of the crustal model considered. In practical applications, the un-
certainties of the inferred source parameters due to the above-mentioned causes
are typically estimated by accepting all models within a given threshold on the
misfit value (e.g., Piatanesi et al. 2007; Valentine & Trampert 2012; Zahradńık &
Custódio 2012; Gallovič & Zahradńık 2012). However, the value of such threshold
is often ad-hoc or “empirical”, not based on a proper analysis of the underlying
origin of the uncertainty. We point out that imprecise knowledge of the veloc-
ity model can lead to spurious non-double-couple components in moment tensor
inversions (Zahradńık et al. 2015) and artificial slip-rate peaks in slip inversions
(Gallovič et al. 2015).

In terms of the Bayesian inference the uncertainty of source inversion results
can be formulated by posterior probability density function (PDF) of the model
parameters (Tarantola 2005, pp. 32–37). In such a case the two major sources
of uncertainty (data error and GFs uncertainty) must be expressed by statistical
models, typically by Gaussian PDFs parametrized by mean values and covari-
ances. In particular, Yagi & Fukahata (2011) and Minson et al. (2013) also
considered diagonal GF covariance matrix in their Bayesian slip inversion, treat-
ing the GF variance as an unknown parameter with uniform and log-normal prior
PDF, respectively. Duputel et al. (2012) show the importance of considering the
full covariance matrix of GF in the moment tensor inversion. However, in their
examples they assume that the major origin of the error is due to the centroid
mislocation. This study has been extended by Duputel et al. (2014, 2015), who
propose to estimate the full covariance matrix approximately by considering lin-
ear relationship between the GFs and random, generally 3D, perturbations of the
velocity model. However, their approach requires evaluation of sensitivity kernels,
which are, in practice, very expensive to acquire (e.g., Kubo et al. 2016a). An
alternative approach is represented by “empirical” estimation of the covariances
from data residuals in so-called hierarchical inversions (Dettmer et al. 2007, 2014;
Mustać & Tkalčić 2016). In particular, Dettmer et al. (2007, 2014) take into ac-
count the non-stationary character of the noise by scaling rows and columns of
the covariance matrix by running averages of the residual waveforms.

We point out that not only the inversion procedures taking the GF uncertainty
into account but even the methodology for estimation of the GF covariance matrix
itself are not sufficiently developed yet. Moreover, besides exact uncertainty
estimations, simple and easy-to-implement approaches have to be developed in
order to efficiently involve the GF uncertainty in practical source inversions. The
primary aim of this paper is to introduce such an approach by means of finding
reasonable approximations for efficient evaluation of the GF covariance functions.
We also address the estimation of cross-covariances between components at a
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station and between stations, which have not been discussed in the literature yet
despite being essential to correctly account for possible mutual dependencies of
the GFs (e.g., Tarantola 2005, pp. 32–37).

In the present paper we first show by means of Monte-Carlo (MC) simula-
tions in randomly perturbed 1D velocity models that the major source of the GF
uncertainty is related to random time shifts of the GFs. This allows us to de-
rive closed-form formulas for approximate auto- and cross-covariance functions to
simplify the evaluation of the GF uncertainty avoiding any demanding computa-
tions. The proposed approximate covariances are tested on examples of moment
tensor inversions using both synthetic and real data sets.

2.2 Covariance of Green’s functions
In the Bayesian framework the uncertainty of source inversions relies on statistical
description of the GF uncertainty. In accordance with other authors, we assume
that it can be described by a correlated multivariate Gaussian PDF characterized
by a covariance matrix. To understand the relation between the uncertainty of
the GFs and imprecise knowledge of the velocity model, we analyze the depen-
dence of the covariance on velocity model perturbations using MC simulations
considering stations at various distances and data in various frequency ranges.
Then we propose methodologies for approximate yet simple estimation of the GF
covariances.

2.2.1 Monte-Carlo estimation
We treat a GF due to randomly perturbed velocity model as a random function
x(t). The cross-covariance function (XCF) of two random GFs x(t) and y(t) is
defined as

xcov(t, τ) def= E
{ [

x(t) − E{x(t)}
] [

y(t + τ) − E{y(t + τ)}
] }

= (2.1)

= E
{
x(t)y(t + τ)

}
− E

{
x(t)

}
E
{
y(t + τ)

}
, (2.2)

where E{·} denotes expectation (mean over realizations of x(t) and y(t)), t is
time and τ is a time lag between samples (e.g., Marple 1986). Auto-covariance
function (CF) can be derived from (2.2) considering y(t) = x(t),

cov(t, τ) = E
{
x(t)x(t + τ)

}
− E

{
x(t)

}
E
{
x(t + τ)

}
. (2.3)

A straightforward, though computationally demanding, approach to evaluate
the covariances is by MC simulations (e.g., Tarantola 2005, pp. 41–55), where
the expectations in (2.2) and (2.3) are directly obtained from a set of possible
GFs for a particular source-receiver settings. For this purpose we consider an
initial 1D layered velocity model and its 1500 random variations (Fig. 2.1a). In
particular, following Tarantola (2005, pp. 164–170), we randomly vary logarithms
of incompressibility modulus κ∗, shear modulus µ∗, and layer thicknesses. The
parameters are changed independently to each other and also independently in
all layers, assuming Gaussian distribution characterized by standard deviation
σM expressed in percentage of the initial (mean) value.
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Figure 2.1: Monte-Carlo simulations. a) Example of the set of randomly perturbed
velocity models with standard deviation σM = 10 %. The red/blue lines are the mean
P-/S-wave velocity profiles and warm/cold colors are the P-/S-wave velocities of the
perturbed models, respectively. b) Examples of the GFs at one component simulated by
the discrete wavenumber method for the source-receiver distance of 50 km (σM = 10 %).
The black line is the “mother” GF calculated in the mean velocity model. Other colors of
waveforms have no meaning and are used only for clearer view. c) Distribution of time
shifts of GFs from panel b estimated from waveforms filtered at very low frequencies
(0.05−0.09 Hz) to avoid cycle skipping. The red line shows its characteristic width 4σt.
d) The dependence of the characteristic width of the time shift distribution (4σt) on
the strength of the velocity model perturbations σM for three source-receiver distances
(see legend).

We simulate GFs for source-receiver distances 10, 50, 100 km in the random
realizations of the velocity models by discrete wavenumber method (Bouchon
1981), assuming a Dirac delta function as the source time function. GFs com-
puted in the mean velocity model are referred to as the “mother” GFs. Fig.
2.1b shows example of the generated GFs for one source-receiver distance. They
are similar in shape even though the velocity model perturbations are as large
as 10 % in the present example (maximal correlation coefficients are higher than
0.7 for all the generated GFs). A pronounced effect of the velocity model vari-
ations is represented by shifts of the generated waveforms in time. These time
shifts (evaluated in this synthetic test from waveform cross-correlation lag from
low-frequency waveforms to avoid cycle skipping) have approximately Gaussian
distribution with standard deviation σt as demonstrated by the histogram in Fig.
2.1c. As illustrated in Fig. 2.1d, the characteristic width L of the time shift
distribution defined as L = 4σt increases approximately linearly with the velocity
model perturbations σM with rate depending on the epicentral distance.

Solid lines in Figs 2.2a and 2.2b show examples of the CFs of a single GF
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component determined from the set of simulated GFs using Eq. (2.3) for various
lags τ and strengths of the velocity model perturbations σM . The CFs for given
lag τ between samples of the GFs are clearly non-stationary, i.e. depending,
generally, on time (see Figs 2.2a and 2.2b). The CFs determined this way could
be used, in principle, for construction of the full covariance matrix (shown in Fig.
2.2c). However, the MC technique is very demanding on computational power as
there is required an enormous set of possible GFs.

2.2.2 Approximate covariance function

Here we propose to substitute the demanding MC estimation of the GF covariance
by a simplified approach, assuming that the only effect of the velocity model
perturbations on the covariances is the time shift of the mother GFs. As we
demonstrate later in Section 2.2.4, despite of this rather strong assumption, the
approximate covariances reproduce variations of both the arrival time and the
waveform amplitudes.

Let us point out that the proposed methodology is intended to deal with
unknown velocity model perturbations that are close to the mean model. In
particular, it is not meant to substitute (or correct for) missing velocity structures
with strong effects on the waveforms, such as deep sedimentary basins. If some
stations are affected by such structures, the modeling should either account for
them or such stations should be omitted from the inversion. In any case, we point
out that any (even 3D) velocity model is subject to uncertainty, which could be
accounted for by our simplified approach.

Let us derive the approximate formulas for XCF of two, generally different,
waveforms with random time shifts. We consider two “mother” waveforms f(t)
and g(t) representing GFs in the mean velocity model. Assuming that these
waveforms are randomly shifted in time, we define new (random) waveforms
x(t) = f(t − l1) and y(t) = g(t − l1 − l12). The time shift l1 is random but
the same for both signals, while l12 characterizes their relative random time shift.
We denote PDFs of l1 and l12 as p1(l1) and p12(l12), respectively. Expectations
E{·} in Eq. (2.2) can be evaluated using “mother” waveforms and the PDFs
p1(l1) and p12(l12) as

E
{
x(t)

}
=

∞∫
−∞

f(t − l1) p1(l1) dl1 (2.4)

E
{
y(t + τ)

}
=

∞∫
−∞

∞∫
−∞

g(t + τ − l1 − l12) p12(l12) p1(l1) dl12 dl1 (2.5)

E
{
x(t)y(t + τ)

}
=

∞∫
−∞

∞∫
−∞

f(t − l1) g(t + τ − l1 − l12) p12(l12) p1(l1) dl12 dl1

(2.6)

The XCF formula for general PDFs p1(l1) and p12(l12) can be obtained by putting

33 Chapter 2



(2.4), (2.5) and (2.6) into Eq. (2.2):

xcov(t, τ) =
∞∫

−∞

∞∫
−∞

f(t − l1) g(t + τ − l1 − l12) p12(l12) p1(l1) dl12 dl1 −

−
∞∫

−∞

f(t − l1) p1(l1) dl1

∞∫
−∞

∞∫
−∞

g(t + τ − l1 − l12) p12(l12) p1(l1) dl12 dl1, (2.7)

requiring only specification of the “mother” waveforms and PDFs of the time
shifts. It is, in principle, applicable in covariance matrix estimation in this form;
nevertheless, the formula can be further simplified by assuming that the time
shifts are uniformly distributed,

p1(l1) = ΠL1(l1), (2.8)

p12(l12) = ΠL12(l12), (2.9)

where ΠL is a boxcar function of unit area centered around zero, L1 and L12
are widths of the uniform probability density distributions. The time-shift l1 is
uniformly distributed in the time interval from (−L1)/2 to (+L1)/2. And analog-
ically, the time-shift l12 is uniformly distributed from (−L12)/2 to (+L12)/2. The
expectations of the random processes in (2.4), (2.5) and (2.6) then simplify to

E
{
x(t)

}
= 1

L1

L1
2∫

− L1
2

f(t − l1) dl1 (2.10)

E
{
y(t + τ)

}
= 1

L1

L1
2∫

− L1
2

1
L12

L12
2∫

− L12
2

g(t + τ − l1 − l12) dl12 dl1 (2.11)

E
{
x(t)y(t + τ)

}
= 1

L1

L1
2∫

− L1
2

1
L12

L12
2∫

− L12
2

f(t − l1) g(t + τ − l1 − l12) dl12 dl1 (2.12)

Putting (2.10), (2.11) and (2.12) into Eq. (2.2), the final formula for approximate
cross-covariance (AXCF) reads:

x̃cov(t, τ) = 1
L1L12

L1
2∫

− L1
2

L12
2∫

− L12
2

f(t − l1) g(t + τ − l1 − l12) dl12 dl1−

− 1
L1

L1
2∫

− L1
2

f(t − l1) dl1
1

L1L12

L1
2∫

− L1
2

L12
2∫

− L12
2

g(t + τ − l1 − l12) dl12 dl1. (2.13)

Approximate auto-covariance (ACF) can be derived analogously from (2.3), or
alternatively from (2.13) considering that the “mother” waveforms are identical
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g(t) = f(t), and that PDF p12(l12) becomes formally a Dirac delta function. The
final formula for ACF then reads:

c̃ov(t, τ) = 1
L1

L1
2∫

− L1
2

f(t − l1) f(t + τ − l1) dl1−

− 1
L1

L1
2∫

− L1
2

f(t − l1) dl1
1

L1

L1
2∫

− L1
2

f(t + τ − l1) dl1. (2.14)

The ACF formula thus requires only specification of the “mother” waveform (i.e.
GF in the mean velocity model) and the width of the uniform time shift distri-
bution L1. Eq. (2.14) is easy to implement as the integrals normalized by 1/L1

operate as smoothing by a moving time window of width L1.
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Figure 2.2: Examples of the GF auto-covariances. Panels a) and b) show time-
dependence of the covariances assuming velocity model perturbations of strengths σM =
5 % and σM = 10 %, respectively, for three selected time lags (see legend) estimated
using the MC simulations (solid lines) and approximate ACF formula (2.14) (dashed
lines). The GFs are calculated for source-receiver distance 50 km and filtered between
0.1−0.5 Hz. The width of the uniform PDF L1 = 4σt used in the approximate formula
is adopted from the graph in Fig. 2.1d. Panels c) and d) show full covariance matrices
estimated by MC simulations and using formula (2.14), respectively, assuming velocity
model perturbations with σM = 10 %. Panel e) displays the differences between the
latter two covariance matrices.

To illustrate the performance of the proposed simplified formulas we use
“mother” GFs from the above-described MC simulations and consider uniform
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p1(l1) with width L1 = 4σt, where σt is estimated from the MC simulations (see
Fig. 2.1c). The resulting ACFs for such setting are shown in Figs 2.2a and 2.2b
by dashed lines. They fit very well the main features of the CFs from the MC
simulations (solid lines), confirming that in terms of the CFs the time shifts are
indeed the dominant effect of the velocity model uncertainty. We note that this
approximate approach is very effective because it skips the very demanding com-
putation of thousands of GFs in the MC approach. A set of ACFs for different
time lags then compose the full covariance matrix (Fig. 2.2d), which is again close
to the full covariance matrix from the MC simulations (Fig. 2.2c) in terms of its
pattern including signs. The rather minor differences between the two covariance
matrices are shown in Fig. 2.2e and discussed in more detail in Section 2.2.4.

2.2.3 Stationarized covariance function

Here we introduce even stronger simplification of the covariance function. The
motivation is as follows. Since the real elastic parameters of the Earth are rather
complex (3D, anisotropic, etc.), the covariance determined by MC simulations
might not reflect the reality perfectly. Nevertheless, we can assume that the
overall pattern of the simulated CFs and ACFs effectively captures the main fea-
tures of the GFs uncertainty. In particular, we consider that such representative
of the true uncertainty for each time lag τ is just the CF’s average over time,
1
T

∞∫
−∞

cov(t, τ) dt, where T is duration of the dominant part of the signal. By
calculating the mean of the (non-stationary) CF over time we obtain covariance
dependent only on the time lag τ , which is property of so-called wide-sense sta-
tionary random signals (e.g., Marple 1986), and thus we denote this approach as
stationarization. For example, when the stationarized covariance function (SCF)
is evaluated from the ACF, we call it stationarized approximate covariance func-
tion (SACF),

cov(τ) def= 1
T

∞∫
−∞

c̃ov(t, τ) dt. (2.15)

Note that this simplification will also help us to better understand the role of
the covariance function in the source inversion (see Section 2.3.4). Since the
SACFs are by definition stationary (i.e. depending only on lag τ), the respective
covariance matrix has Toeplitz structure (diagonal-constant). Such property may
be useful in specific (e.g., large-scale or iterative) applications because it permits
very cheap calculation of the matrix’s inverse, which is required when solving
inverse problems (e.g., Tarantola 2005, pp. 62–68; Trench 1964). Note that the
stationarized approximate cross-covariance (SAXCF) can be defined analogously

xcov(τ) def= 1
T

∞∫
−∞

x̃cov(t, τ) dt. (2.16)

After substitution of the AXCF in Eq. (2.13) into definition of the SAXCF

Chapter 2 36



in Eq. (2.16) the formula for the SAXCF reads:

xcov(τ) = 1
T

∞∫
−∞

1
L1L12

L1
2∫

− L1
2

L12
2∫

− L12
2

f(t − l1) g(t + τ − l1 − l12) dl12 dl1 dt

I.

−

− 1
T

∞∫
−∞

1
L1

L1
2∫

− L1
2

f(t − l1) dl1
1

L1L12

L1
2∫

− L1
2

L12
2∫

− L12
2

g(t + τ − l1 − l12) dl12 dl1 dt

II.

.

(2.17)

Integrals in (2.17) can be solved analytically using substitution z = t − l1, and
the definition of cross-correlation of real signals rfg(τ) def=

∞∫
−∞

f(t)g(t + τ)dt. The
first part (I.) of (2.17) is

I. = 1
TL1L12

L1
2∫

− L1
2

L12
2∫

− L12
2

∞∫
−∞

f(z) g(z + τ − l12) dz dl12 dl1

= 1
TL1L12

L1
2∫

− L1
2

L12
2∫

− L12
2

rfg(τ − l12) dl12 dl1

= 1
TL12

L12
2∫

− L12
2

rfg(τ − l12) dl12. (2.18)

The second part (II.) can be written as

II. = 1
TL1

2L12

L1
2∫

− L1
2

L1
2∫

− L1
2

L12
2∫

− L12
2

∞∫
−∞

f(z) g(z + τ − l12 + l1 − k1) dz dl12 dl1 dk1

= 1
TL1

2L12

L1
2∫

− L1
2

L1
2∫

− L1
2

L12
2∫

− L12
2

rfg(τ − l12 + l1 − k1) dl12 dl1 dk1

· · · after simple algebra with s = l1 − k1

= 1
TL1

2L12

L12
2∫

− L12
2

L1∫
−L1

(L1 − |s|) rfg(τ − l12 + s) ds dl12

= 1
TL12

L12
2∫

− L12
2

(∧2L1(τ) ⋆ rfg(τ − l12)) dl12. (2.19)

Equation (2.19) is an integral of correlation of the “mother” waveforms’ cross-
correlation rfg with the triangle function ∧2L1(τ) of unit area centered around
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zero with duration 2L1. The triangle function is symmetrical function, and hence
the result of correlation operation (⋆) is identical to convolution (∗). Combining
of (2.17), (2.18) and (2.19) we get simple analytical formula for the SAXCF:

xcov(τ) = 1
TL12

⎡⎢⎢⎣
L12

2∫
− L12

2

rfg(τ − l12) dl12 −

L12
2∫

− L12
2

(∧2L1(τ) ∗ rfg(τ − l12)) dl12

⎤⎥⎥⎦ =

= 1
T

ΠL12(τ) ∗
[
rfg(τ) − ∧2L1(τ) ∗ rfg(τ)

]
, (2.20)

where ΠL12(τ) is the time-centered boxcar function with base equal to L12 and
with unit area. The triangle function ∧2L1(τ) is a characteristics of the possi-
ble joint time shifts, while the boxcar function ΠL12(τ) is characteristics of the
possible relative time shifts.

The analytical formula for SAXCF (2.20) describes cross-covariance of two
different “mother” waveforms f(t) and g(t) with generally different time shifts.
Such settings is suitable for computing cross-covariance of signals recorded at two
different seismic stations or at two components of the same station. The formula
further simplifies assuming auto-covariance. The cross-correlation rfg becomes
auto-correlation rf (τ) def=

∞∫
−∞

f(t)f(t + τ)dt and ΠL12(τ) becomes the Dirac delta
function. The analytical formula for the SACF is then

cov(τ) = 1
T

[
rf (τ) − ∧2L1(τ) ∗ rf (τ)

]
. (2.21)

Figs 2.3a and 2.3b show examples of the SACFs (red lines) obtained using Eq.
(2.21). We consider the width of the uniform PDF L1 equal to the characteristic
width of the time shift distributions from the MC simulations (Fig. 2.1d), L1 =
4σt. In Figs 2.3a and 2.3b we scale the covariances by the arithmetic mean of the
squares of the signal f (i.e. square of the signal root-mean-square, RMS2(f(t)))
as it represents the maximum possible value of SACF. Indeed, by definition, the
auto-correlation rf (τ) has its maximum value at the zero time lag, and from Eq.
(2.21) it follows

limL1→∞
(
cov(0)

)
= rf (0)

T
= RMS2

(
f(t)

)
. (2.22)

Note that RMS2 (i.e. “signal energy density”) is determined from the dominant
part of the earthquake signal defined by the interval T .
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Figure 2.3: Examples of the stationarized auto-covariances (SCFs). Panels a) and
b) show the SCF for two strengths of the model perturbations, σM = 5 % and σM =
10 %, respectively, obtained by the MC simulations (black lines) and by the approximate
formula Eq. (2.21) (SACF, red lines). The source-receiver distance is 50 km and the
GFs are filtered in range 0.1 − 0.5 Hz. The width of the uniform PDF L1 = 4σt

used in the approximate formula is adopted from the graph in Fig. 2.1d. Duration
of the dominant part of the earthquake signal T = 15 sec. The SCF values on y-
axis are scaled by the signal energy density, i.e. the mean square amplitude of the
signal (RMS2). Panels c) and d) show full covariance matrices for velocity model
perturbations corresponding to σM = 10 % as obtained by the non-stationarized MC
approach and using SACF formula in Eq. (2.21), respectively. Panel e) shows the
difference between the SACF and the MC non-stationarized covariance matrices.

Fig. 2.3 compares the SACFs (in red) with the SCFs estimated by the MC
approach (in black). The agreement is very good even for velocity model per-
turbations as large as 15 % in the present example despite all the simplifications
made. Let us point out that, interestingly, the shape of the stationarized CFs is
similar to those obtained “empirically” from waveform residuals by Dettmer et al.
(2007, 2014), suggesting that their posterior estimate of the data uncertainty is
dominated by the velocity model uncertainty.

Let us discuss here specifically the zero time lag of the CF, expressing variance
(uncertainty) of the GF at each time sample t (Figs 2.2a and 2.2b, in red lines).
In particular, after stationarization of the CF (Figs 2.3a and 2.3b, zero time lag),
where the zero time lag represents mean GF variance over the waveform duration.
We evaluate the dependence of the SCFs’ zero time lag on various parameters:
source-receiver distances, Butterworth filtering frequencies, and strengths of ve-
locity model perturbations σM . Fig. 2.4 shows these dependencies obtained by
the approximate approach (dashed lines) as compared with the those obtained
from the MC simulations (solid lines). The variances for absolutely correct ve-
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locity model (σM = 0 %) are equal to zero by definition as there is no possible
variation of GFs. The variances then asymptotically increase with increasing ve-
locity model uncertainty up to the case of variations as large as the RMS2. The
increase of the GF variations is steeper for larger source-receiver distances (i.e. as
the wave travel-time through the inaccurate velocity model increases), and also
for higher considered frequencies (i.e. as the number of wavelengths along the
path increases).
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Figure 2.4: The dependence of the GF variance (SCFs at zero time lags) on various
parameters estimated by the MC simulations (solid lines) and using the approximate
formula for SACFs (dashed lines). The individual panels correspond to GFs filtered
in various frequency ranges: a) 0.1 − 0.5 Hz, b) 0.1 − 1.0 Hz, c) 0.1 − 3.0 Hz. In
each panel colors distinguish the source-receiver distance (see legend), the strength of
the velocity model perturbations is on the x-axis and the variance scaled by RMS2 of
the mother waveform (representing maximum possible value of the variance) is on the
y-axis.

We can relate our estimate of the GFs variance to an independent finding
of Gallovič & Ampuero (2015), who compared results of synthetic slip inver-
sion benchmark test SIV2a Mai et al. (2016) as obtained by several modelers.
They concluded that the results were consistent up to approximately 1/10 of the
maximum singular value of the forward design matrix, which corresponds to less
than 1 % mean data error (cov/RMS2 = 0.01). Since very close stations and low-
frequency data were considered in the benchmark, Fig. 2.4a suggests that mod-
elers had imprecise GF in terms of velocity model perturbations σM ≤ 2 %. Such
velocity model uncertainty can be translated using Fig. 2.1d to very small error of
arrival times σt ≤ 0.02 sec, which can be related just to some minor inconsisten-
cies among the modeler setups (including possible small shifts of the considered
fault plane).
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2.2.4 Performance in capturing the GF variations
Covariance matrices and their approximations are used to statistically describe
the uncertainty of the GFs. However, it is not trivial to assess the quality of the
proposed approximations in terms of capturing the true variability of the GFs.
In other words, it is not evident what kind of GF variability is actually captured
by the approximated covariances. To address this issue, we draw random GF
samples from their multivariate normal distributions described by the “mother”
waveforms and the auto-covariance matrices to visually inspect their effects on
the GF variability. Examples of random GFs generated considering the various
covariance matrices introduced herein are shown in Fig. 2.5. For drawing the
random samples we use Matlab function mvnrnd.

Random GFs generated using the MC covariance matrix (Fig. 2.5b) may
serve as a reference set. They reasonable agree with the variability of the original
set of the GFs calculated for the randomly perturbed velocity models (see Fig.
2.1b). Spread of the GFs generated by the ACF matrix (Fig. 2.5d) is very
similar to the reference (Fig. 2.5b), especially when taking into account the great
difference in the computational demands. Indeed, the random GFs generated
using the ACF matrix have similar time shifts and zero values prior and after the
useful signal as the reference GFs. We note that the variations in GF amplitudes
might come as a surprise because the ACF formula in Eq. (2.14) was derived
assuming pure time shifts without any change of the signal shape. This is due
to the fact that the Gaussian PDF is not, strictly speaking, a good statistical
model for capturing such variations. In other words, the variations in amplitudes
represent an artifact of using an inappropriate statistical model for the randomly
shifted signal in a mathematical sense. Nevertheless, despite being an artifact,
we consider it advantageous for our purpose since the ACF then captures more
general variability that is closer to the reference one obtained by the expensive
MC approach.

Variability of GFs for the SACF matrix (Fig. 2.5f) is similar to the reference
only in the time interval where the mother GF has the strongest signal (i.e.
15 − 26 sec). Outside of this time interval, the time-independence of the SACF
leads to generation of strong amplitude variations unobserved in the reference
set. If needed, these variations could be suppressed by applying an additional
taper on the rows and columns of the respective covariance matrix (see Fig. 2.3e),
reducing values in their upper-left and bottom-right corners.

For illustration purposes we show in Fig. 2.5h also the case of a diagonal
covariance matrix since it is most typically considered in practical source in-
versions. The resulting random samples of the GFs correspond to the mother
waveform perturbed by a white (uncorrelated) Gaussian noise in the whole time
window.
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Figure 2.5: Examples of GFs (b, d, f, h) generated as random samples from mul-
tivariate Gaussian distributions described by a mother GFs (in bold black) and the
various auto-covariance matrices shown in the respective panels (a, c, e, g), see leg-
end. The color scale used for the covariance matrices is the same as in Figs 2.2 and
2.3. Waveform colors have no meaning and are used just for clearer view. The source-
receiver distance for this example is 50 km, and the strength of the model perturbation
σM = 10 %.
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2.2.5 Examples of cross-covariance

We have showed examples of GFs’ auto-covariances, nevertheless approximate
analytical formulas were derived also for cross-covariances between generally dif-
ferent waveforms. Here we show two additional examples of GFs’ cross-covariance
to depict complete performance. In short, we firstly determine cross-covariances
by MC simulations in randomly perturbed velocity models (we use the same 1500
models with σM = 10 % as for auto-covariances; see Fig. 2.1a). Then we compute
AXCF and SAXCF and compare them with MC simulations as the reference case.

Firstly, Figs 2.6a and 2.6b show examples of the generated synthetic wave-
forms at two components of a single receiver. In this case, two random signals
x(t) and y(t) share the joint time shift distribution (L1 > 0 sec) while there is
no relative random time shift between components (L12 = 0 sec). Their cross-
covariance matrix determined directly from the definition in Eq. (2.2) (i.e. using
MC ensemble of the waveforms) is shown in Fig. 2.6c. Note that, contrarily to
the auto-covariance, the cross-covariance matrix is not symmetrical. Fig. 2.6d
displays the AXCF matrix obtained using Eq. (2.13). There is some difference
between the MC and AXCF matrices, but they are close in terms of their patterns
including signs. Next, simulated MC-SXCF and SAXCF, compared in Fig. 2.6f,
agree well.

The second example is the cross-covariance of two nearby receivers at the
source-receiver distance 50 km and 60 km from the source. Mother waveforms
f(t) and g(t), and respective realizations in perturbed velocity models, are shown
in Figs 2.7a and 2.7b. The cross-covariance matrix determined using Eq. (2.2)
and the MC ensemble of the waveforms is shown in Fig. 2.7c. The perturbed
realizations of x(t) and y(t) have generally different time shift distributions. How-
ever, in the case of nearby stations, the joint time shift distribution is assumed to
have higher influence on cross-covariance than the relative time shift distribution.
In other words, the inter-station differential wave travel path has smaller effect
on the GFs than the shared source-receive wave travel path (L1 > L12 > 0 sec).
The distributions of joint and relative time shifts l1 and l12 determined from the
ensemble of waveforms are shown in Figs 2.8a and 2.8b, respectively. Fig. 2.7d
displays the AXCF matrix obtained using Eq. (2.13), there is some difference
between the MC and AXCF matrices, but they are still close in terms of their
patterns including signs. We note that the difference might increase with mu-
tual distance of receivers, as the relative time shift L12 increases. Finally, note
that the simulated MC-SXCF and SAXCF in Fig. 2.7f are not centered around
zero time lag due to the different wave arrival times on two stations in different
distances from the source, as captured by the cross-correlation rfg.
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Figure 2.6: Example of the cross-covariance of two components at a single receiver.
Panels a) and b) show two sets of GFs for the North and vertical component, respec-
tively, computed by the discrete wavenumber method for the source-receiver distance of
50 km (σM = 10 %). The black lines are the mother GFs calculated in the mean velocity
model. Other colors of waveforms have no meaning and are used only for clearer view.
Panel c) shows cross-covariance matrix for velocity model perturbations (σM = 10 %)
as obtained by the MC approach, while matrices in panels d) and e) were obtained
by the approximate formulas in Eqs (2.13) and (2.20), respectively. The width of the
uniform PDF L1 = 4σt used in the approximate formulas is adopted from graph in
Fig. 2.1d; L12 is set to zero as the velocity model is the same for the both components.
Duration of the dominant part of the earthquake signal was set T = 15 sec. Panel f)
shows comparison of the stationarized MC cross-covariance function (black) and the
SAXCF obtained using Eq. (2.20) (red).
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Figure 2.7: Examples of the cross-covariance of two nearby receivers. Panels a) and
b) show sets of GFs for the source-receiver distances 50 km and 60 km, respectively,
computed by the discrete wavenumber method (σM = 10 %). The black lines are the
mother GFs calculated in the mean velocity model. Other colors of waveforms have
no meaning and are used only for clearer view. Panel c) shows cross-covariance ma-
trix for velocity model perturbations (σM = 10 %) as obtained by the MC approach,
while matrices in panels d) and e) were obtained by the approximate formulas in Eqs
(2.13) and (2.20), respectively. Widths of the uniform PDFs L1 and L12 used in the
approximate formulas are adopted from Fig. 2.8. Duration of the dominant part of the
earthquake signal was set T = 15 sec. Panel f) shows comparison of the stationarized
MC cross-covariance function (black) and the SAXCF obtained using Eq. (2.20) (red).
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Figure 2.8: Probability distributions of time shifts of GFs due to velocity model per-
turbations for the example in Fig. 2.7. Time shifts are estimated from waveforms
generated in perturbed velocity models, filtered at very low frequencies (0.05 − 0.09 Hz)
to avoid cycle skipping. The red lines show the characteristic widths of the time shift
distributions (4σt): a) Joint time shifts, 4σt = 1.86 sec; b) Relative (inter-station)
time shifts, 4σt = 0.49 sec.
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2.3 Example of application of the approximate
covariances in moment tensor inversion

The proposed approximate covariances can be easily implemented into existing
seismic source inversions based on waveform modeling including those formulated
in the Bayesian framework. For example, it can be used in source inversion
proposed by, e.g., Yagi & Fukahata (2011) or Duputel et al. (2012), where the
covariance matrix of the modeling errors (describing the GFs uncertainty) is added
to the data covariance matrix describing the seismic noise. In those approaches
the covariance of the modeling error is iteratively updated every source model
update. Here we show an alternative, simplified, Bayesian approach, assuming
that the data error is mainly due to the velocity model uncertainty. In other
words, the modeling error covariance is estimated using the approximate formulas
in Eqs (2.14) and (2.21) evaluated directly from the observed waveforms. This
allows us to solve the inverse problem very efficiently without any iterations.

For the present example of moment tensor (MT) inversion we consider a near-
regional distribution of broadband stations in the Corinth Gulf, Greece (Fig. 2.9).
Besides a synthetic example, for which the target waveforms are generated in
velocity models randomly perturbed for each station, we show also a real-data
inversion in the same setting.

2.3.1 Inversion method
We follow the approach of Kikuchi & Kanamori (1991), where the full seismic
MT is parametrized by six elementary MTs:

M1 =

⎛⎜⎝0 1 0
1 0 0
0 0 0

⎞⎟⎠ M2 =

⎛⎜⎝1 0 0
0 −1 0
0 0 0

⎞⎟⎠ M3 =

⎛⎜⎝0 0 0
0 0 1
0 1 0

⎞⎟⎠

M4 =

⎛⎜⎝0 0 1
0 0 0
1 0 0

⎞⎟⎠ M5 =

⎛⎜⎝−1 0 0
0 0 0
0 0 1

⎞⎟⎠ M6 =

⎛⎜⎝1 0 0
0 1 0
0 0 1

⎞⎟⎠ . (2.23)

Full MT is then composed of their linear combination described by six coefficients
(a1 . . . a6),

M =
6∑

n=1
anMn =

⎛⎜⎝a2 − a5 + a6 a1 a4
a1 −a2 + a6 a3
a4 a3 a5 + a6

⎞⎟⎠ . (2.24)

For each of the elementary MT n we evaluate elementary seismogram En
r by the

discrete wavenumber method for a receiver r (vectors E consists of temporal sam-
ples). Synthetic seismogram ur for a general MT in (2.24) can then be obtained
by a linear combination of the six elementary seismograms,

ur =
6∑

n=1
anEn

r = Gm (2.25)

where m = (a1, a2, a3, a4, a5, a6)T and G is linear operator of the forward problem
consisting of the elementary seismograms En

r . Generalization to more stations
and components is straightforward.
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The advantage of such linear formulation is the possibility to pre-compute
the elementary seismograms for all receivers, and then easily find coefficients
including their errors by means of the Bayesian approach (Tarantola 2005, pp. 62–
68). Indeed, assuming that observed data dobs are characterized by Gaussian data
errors with covariance matrix C and considering no prior information (i.e. infinite
standard deviation) on the model parameters m, the posterior PDF reads

PDF (m|dobs) = const. exp
(

− 1
2(dobs − Gm)T C−1 (dobs − Gm)

)
(2.26)

where const. is a normalization constant. This Gaussian function attains its
maximum for

m̃ =
(
GT C−1 G

)−1 (
GT C−1 dobs

)
, (2.27)

which is called best-fitting or maximum likelihood solution. The shape of the
Gaussian PDF is characterized by the (posterior) covariance matrix C̃ given by

C̃ =
(
GT C−1 G

)−1
. (2.28)

The 6 × 6 elements of matrix C̃ fully describe the uncertainty of the inverted MT
solution.

Let us explain an alternative view of the role of the data covariance matrix in
the Bayesian inversion. Covariance matrix is by definition positive semidefinite,
and if it is, moreover, positive definite, its inverse exists and can be factorized by
Cholesky decomposition,

C−1 = RT R (2.29)
where R is an upper triangular matrix. Putting (2.29) into (2.26), the posterior
PDF can be rewritten as

PDF (m|dobs) = const. exp
(

− 1
2(Rdobs − RGm)T (Rdobs − RGm)

)
(2.30)

meaning that the best-fitting solution minimizes L2-norm of so-called standard-
ized residuals obtained as a difference between the data and synthetics after they
both are multiplied by the triangular matrix R from the Cholesky decomposition.

2.3.2 Source inversion of synthetic data set
We assume an earthquake from the Corinth Gulf, Greece, at depth 8 km and
with moment magnitude Mw = 5.4. Fig. 2.9 shows the source location and the
station geometry. Synthetic data for the inversion test were computed by the
discrete wavenumber method (Bouchon 1981) assuming a Dirac delta function
as the source time function and pure shear mechanism with strike 327°, dip 32°,
and rake -45°. The waveforms were filtered by Butterworth bandpass filter with
corner frequencies 0.1 − 0.2 Hz and then downsampled to 5 Hz sampling rate. In
the following tests we generate “data” for the inversion assuming a realization
of random variations of the wave speeds and depths of the layers (as in the MC
simulations described in Section 2.2.1 for each station independently (σM = 10 %).
Such random variations of the reference velocity model simulate a real case when
the velocity model is complex, yet well described by a mean velocity model. In all
tests the inversions are performed in the reference (mean) layered velocity model.
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Figure 2.9: Seismic station distribution (triangles) in the Corinth Gulf used in the
MT inversion tests. The beachball plotted at the event epicenter corresponds to the
mechanism considered in the synthetic test (after Sokos & Zahradńık 2013).

Covariance matrices describing the velocity model uncertainty

In multi-station and multi-component inversion the data covariance matrix has
a block structure. Auto-covariance matrices for the individual waveforms are ar-
ranged along the diagonal, while off-diagonal blocks contain cross-covariance ma-
trices among the individual waveforms. Here we describe six covariance matrices
that are tested in the following inversions. As an example, we show here only
submatrix corresponding to the synthetic 3-component waveforms DSF station
(Fig. 2.10), as the complete covariance matrix is too large for the presentation
purpose.

The simplest case when the crustal model uncertainty is disregarded in the
inversion is represented by a diagonal covariance matrix with constant variance
equal to the square of 1/50 of the maximum signal amplitude from the entire
dataset (i.e. relatively weak noise corresponding to the almost negligible ambi-
ent noise in the real-data inversion in Section 2.3.3 (see example in Fig. 2.11a).
We also consider a diagonal covariance matrix consisting of diagonal values from
the SACF, which implicitly weights the waveforms considered (example in Fig.
2.11b). Furthermore, we consider covariance matrices with off-diagonal compo-
nents obtained using SACF and ACF (examples in Figs 2.11c and 2.11d, respec-
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tively). We apply an additional taper on the rows and columns of the SACF
matrix as suggested in Section 2.2.4. Finally, we show the case when even ap-
proximate cross-covariances between components of the same receiver are taken
into account using the (tapered) SAXCF and AXCF (examples in Figs 2.11e and
2.11f, respectively). We add the constant weak-noise variance discussed above
to all the covariance matrices considered to ensure positive definiteness of the
covariance matrix.
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Figure 2.10: Example of synthetic waveforms on a) North, b) East and c) vertical
component of the DSF station. Data are filtered by Butterworth bandpass filter between
0.1 − 0.2 Hz.

Formulas for the approximate covariances require definition of the width of
the uniform PDF describing the time-shift distribution, L1. We consider a linear
dependence on source-receiver distance, following values for σM = 10 % in graph
Fig. 2.1d. The implemented dependence reads

L1[sec] =
⎧⎨⎩1.5 for d

25 ≤ 1.5
d
25 for d

25 ≥ 1.5
(2.31)

where d is a source-receiver distance in kilometers.

Properties of the maximum likelihood solution

The MT inversion is performed for 1000 different target data sets computed in
randomly perturbed velocity models. For each realization, we obtain best-fitting
solutions in Eq. (2.27) for each type of the covariance matrix considered. Fig.
2.12 shows the ensemble of the solutions displayed in terms of DC mechanism
nodal planes, and histograms of maximum difference to the true model in strike,
dip, rake, DC component ratio and the inferred scalar seismic moment M0. We
note that the spread of the differences to the reference solution (plotted in red)
is caused by variations of the randomly perturbed velocity model, hence by the
GFs uncertainty.

The maximum difference in the angles of the DC mechanisms reaches 10–
20° depending on the covariance matrix type considered. Asymmetry of the DC
mechanism angle difference (e.g., Fig. 2.12d) is related to the particular spatial
settings of the monitoring network. The DC component ratios are scattered from
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Figure 2.11: Submatrices for the six different types of covariance matrices a)–f)
discussed in the text (see titles in figure) corresponding to the DSF station. There are
shown 3 blocks of auto-covariances arranged along the diagonal and 6 blocks of cross-
covariances among DSF station’s components in each submatrix. The values shown by
color have units [mm2]. Note especially the effect of the stronger signal on the North
component.
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the simulated pure shear (DC = 1) down to values 0.8−0.6. The variability of the
inferred scalar moments is similar for all the considered covariance matrix types
ranging from 1.0 to 1.6×1017 Nm (i.e. 5.3 to 5.4 in moment magnitude scale),
except for the SAXCF case. Indeed, the latter type of the covariance matrix
leads to significant underestimation of the scalar seismic moment (Fig. 2.12e).
It is perhaps related to the time averaging procedure in the SAXCF definition.
Although the time averaging seems to work well for the auto-correlation com-
ponents in SACF, calculating temporal mean over cross-covariance components
in SAXCF representing relation (correlation or even anti-correlation) between
individual samples of two waveforms seems to have negative consequences on
the inversion. In particular, although nodal planes solution may be similar to
the reference, the scalar seismic moment is underestimated in order to reduce
the effect of the time inappropriate temporal averaging of the cross-correlations.
Thus if cross-covariances are required, the non-stationary type (AXCF) should
be preferred.

We note that the presented statistics of the inverted best-fitting parameters
can be understood as the “true” MT uncertainty caused by the velocity model
uncertainty. Overall assessment of the performance of the individual covariances
in Fig. 2.12 suggests that implementation of ACF (Fig. 2.12d) possibly in com-
bination with AXCF (Fig. 2.12f) provides the lowest uncertainty of the inverted
MTs. Nevertheless, even in those cases the MT uncertainty remains significant
and thus should not be neglected in practical applications. Therefore, in the next
section we assess the ability of the individual types of the covariances to estimate
the “true” uncertainty in terms of the posterior covariance matrix.

Moment tensor uncertainty estimate

We arbitrarily selected one of the synthetic target data sets, inferred the best-
fitting MT solution and estimated its uncertainty in terms of the posterior covari-
ance matrix (Eq. (2.28)). For each type of the data covariance matrix, Fig. 2.13
shows the maximum likelihood solution together with the posterior uncertainty
similarly to Fig. 2.12. However, here the ensemble of the solutions is obtained
by random sampling the posterior PDF (using Matlab function mvnrnd). In Fig.
2.13 the true parameters are plotted by red color for comparison. We note that
the best-fitting solutions are biased due to the particular velocity model pertur-
bations considered in the target data. In the following we concentrate on the
uncertainty estimation in comparison with the “true” uncertainty as revealed in
Section 2.3.2.

In case of the constant diagonal covariance matrix (Fig. 2.13a) the posterior
PDF is characterized by very narrow uncertainty limits in contrast to the “true”
uncertainty (Fig. 2.12a). Such estimate of the MT uncertainty is clearly unac-
ceptable. Slightly better, yet still underestimated, uncertainty is attained when
including the ACF covariance matrix (Fig. 2.13d in comparison with Fig. 2.12d).
It is perhaps due to the slight overestimation of inter-sample cross-covariances in
the ACF, which can be visible in Figs 2.2e and 2.5d. Inversion with the SACF in
Fig. 2.13c provides the largest MT uncertainty estimate, being comparable with
that shown in Fig. 2.12c. The larger uncertainty estimate is linked to the time-
invariance of the SACF covariance matrix allowing for more general waveform
changes as can be seen in Fig. 2.5f. Finally, considering also the inter-component
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Figure 2.12: Statistical analysis of best-fitting solutions from MT inversion synthetic
tests with 1000 realizations of randomly perturbed velocity models used to generate pop-
ulation of target data for the inversion. Panels in each row show DC mechanism nodal
planes (left), maximum differences in strike, dip, rake to the reference (middle-left),
DC component bias (middle-right) and M0 scatter (right). Each row corresponds to
the use of different type of the data covariance matrix (see legend). The true reference
solution (in red) has a pure shear mechanism (DC = 1) with strike 327°, dip 32°, rake
-45°, and scalar seismic moment M0 = 1.5 × 1017 Nm.
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Figure 2.13: Result of a synthetic MT inversion test with a single realization of the
randomly perturbed velocity models to generate the target data. Panels in a row are
the maximum likelihood solutions (text), DC mechanism fault planes (left), maximum
difference to reference in strike, dip, rake (middle-left), DC component (middle-right)
and the M0 scatter (right). Each row corresponds to the use of different type of the
data covariance matrix (see legend). The beach balls and histograms are built from 300
random samples of the posterior PDF to visualize the estimated parameter uncertainty.
The true solution (in red) is a pure shear mechanism (DC = 1) with strike 327°, dip
32°, rake -45°, and scalar seismic moment M0 = 1.5 × 1017 Nm.
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cross-covariances in the inversion reduces the posterior PDF uncertainty esti-
mate for both the SAXCF (Fig. 2.13e) and AXCF (Fig. 2.13f). To conclude, the
most reliable estimate of the uncertainty of the MT parameters is revealed when
employing covariance matrix built from the SACFs.

2.3.3 Moment tensor inversion of real data set

Here, we illustrate the proposed methodology on a MT inversion using data writ-
ten by a real earthquake in Greece. The test event from 25 April 2012 (10:34
UTC) with moment magnitude Mw = 4.3 was located in the Corinth Gulf at
depth 8 km. Its centroid MT was well examined by the ISOLA full-waveform
inversion software by Sokos & Zahradńık (2013). The event was recorded by
near-regional stations (i.e. broadband sensors supplemented by accelerograph at
station TRIZ). As a reference MT solution for this event we adopt the result
obtained by Sokos & Zahradńık (2013) when considering the same dataset: strike
327°, dip 32°, and rake -45° with 87 % of DC component. We point out that jack-
knifing results of Sokos & Zahradńık (2013) indicated rather large variability of
the solutions with the most likely value of DC being larger than 95 %.

We perform the MT inversion tests in the reference layered velocity model
using only high quality records as identified by Sokos & Zahradńık (2013, fig. 3).
The setting of the real case test is then consistent with that of the synthetic
test (Fig. 2.9). The waveforms were filtered by Butterworth bandpass filter
between 0.1 − 0.2 Hz and then downsampled to 5 Hz sampling rate. The upper
bound of the ambient noise, measured prior the useful signal, was estimated
2.8 µm corresponding to 1/50 of the maximum signal amplitude from the entire
dataset. Square of such ambient noise level was used as variance in the diagonal
data covariance matrix to show the case when the crustal model uncertainty is
disregarded in the inversion. Then we perform inversion tests employing complete
covariance matrices analogously to the synthetic tests performed in Section 2.3.2.
The values of L1 used in this test were adopted from (2.31).

The inversion results are summarized in Fig. 2.14. The figure shows the max-
imum likelihood solution together with the MT uncertainty estimate by means of
posterior covariance matrix (Eq. (2.28)) for each data covariance matrix consid-
ered. The ensemble of the solutions is obtained as random samples of the posterior
PDF (using Matlab function mvnrnd). The behavior of the real-data inversion
is analogous to the synthetic-data inversion described in Section 2.3.2. However,
the “correct” source parameters (especially the DC parameter) are unknown in
this case. The inversion with constant diagonal covariance matrix (i.e. disre-
garding crustal model uncertainty; Fig. 2.14a) provides clearly underestimated
MT uncertainty. The ACF (Fig. 2.14d) provides good estimate in terms of the
variance reduction, but the uncertainty is still underestimated as it doesn’t fully
cover the reference solution. However, the maximum likelihood solution (notice
especially DC component value in Fig. 2.14d) seems to be more reliable than in
the case of the constant diagonal covariance matrix (Fig. 2.14a). Inversion with
the SACF (Fig. 2.14c) provides the largest MT uncertainty estimate. We note
that the related spread of the possible solutions is similar to that obtained by
jack-knifing by Sokos & Zahradńık (2013, fig. 3).
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Figure 2.14: Same as Fig. 2.13 but for the real dataset of the 25 April 2012 event
of moment magnitude Mw = 4.3 (M0 = 3.55 × 1015 Nm) from the Corinth Gulf. The
reference solution by Sokos & Zahradńık (2013) obtained using the same dataset has
strike 327°, dip 32°, rake -45° and DC component 87 % (in red).
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2.3.4 Remark on the role of the covariance matrix in the
inversion

As we discussed in Section 2.3.1, the MT inversion minimizes the difference (resid-
uals) between the recorded data and synthetics in terms of L2 norm (Eq. (2.26)).
Instead, if the covariance matrix with off-diagonal components is used, the in-
version minimizes the standardized residuals, i.e. waveforms multiplied by the
triangular matrix from the Cholesky decomposition (see Eq. (2.30)). In Fig. 2.15
we show normalized and standardized displacement fits for the real earthquake
inversion. We show data only for two selected representative stations (KALE as
a close station and DSF as a distant station) in Fig. 2.15, while the complete
sets of for the standardized waveforms are shown in Figs 2.17, 2.18 and 2.19 for
diagonal, ACF and SACF matrices, respectively.

Matrix R (see Eq. (2.30)) corresponding to a diagonal covariance matrix is
also diagonal, having reciprocals of square roots of the diagonal values from the
C matrix (i.e. reciprocals of standard deviations of the data samples). In such
a case, the maximum-likelihood solution is the model that best reproduces the
measured data in terms of the L2 norm of the residual seismograms weighted by
the reciprocals of the data standard deviations from the C matrix (see examples
in Figs 2.15a, 2.15b and 2.17). If the diagonal covariance matrix is built from
the variances of the SACF covariance matrix, then the station weights are pro-
portional to the signal RMS, where the constant of proportionality depends on
the signal shape and considered time shifts (as illustrated in Fig. 2.4). Multiply-
ing by R then normalizes the waveforms to a unit RMS and amplifies the near
stations with respect to the distant ones.

If the covariance matrix is constructed from a time-independent (stationar-
ized) CF, rows of matrix R are composed of all-pole (minimum-phase) IIR filters
with the given CF (Marple 1986). Multiplication by R in Eq. (2.30) thus works
approximately as a filter with Fourier spectrum equal to the reciprocal of the
square root of Fourier spectrum of the original CF. Considering the SACF from
Eq. (2.21), such a filter has spectrum

W (L1, f) = F
(

rf (τ) ∗
(
δ(τ) − ∧2L1(τ)

))− 1/2

=
(
rf (τ)

)− 1/2
(

1 − sin(πfL1)
πfL1

)− 1/2

. (2.32)

When applied to the data vector (see examples in Figs 2.15e, 2.15f and 2.19),
the first term in Eq. (2.32) works implicitly as data pre-whitening and normaliza-
tion, i.e. approximately equalizing the spectral content of the signal of all stations
to a common value. The second term then implicitly amplifies the low-frequency
part of the spectrum up to the reciprocal of L1 as it is shown in Fig. 2.16 for var-
ious values of L1. Since L1 generally increases with distance, the amplification at
close stations reaches higher frequencies than at distant stations (see Fig. 2.16).
Moreover, the closer is the station the more amplified is its spectrum in general
(Fig. 2.16).
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Figure 2.15: Standardized displacement data and synthetics at stations KALE (left)
and DSF (right) for the real event of 25 April 2012 from the Corinth Gulf. Epicentral
distances are 13 km and 47 km for the KALE and DSF stations, respectively. Black
waveforms are standardized displacements and colored waveforms are 300 realizations
of the standardized synthetics perturbed by the posterior covariance matrix. Data are
corrected by instrument response and bandpass Butterworth filtered between 0.1−0.2 Hz.
Panels a) and b) show displacements normalized by standard deviation of the ambient
noise (see text). Data in panels c), d) and e), f) are displacements standardized by
ACF and SACF covariance matrices respectively. Panels g) and h) show standardized
amplitude spectra of the real data for diagonal (red), ACF (blue), and SACF (green)
covariance matrices.
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Figure 2.16: Implicit weighting of the signal spectral components in an inversion with
SACF (see the second term in Eq. (2.32)). Colors represent various widths of the time
shifts window L1 (see legend). Note that L1 is considered to generally increase with
distance, so that the graph shows also implicit relative weighting in the spectral domain
between near and distant stations.

The pre-whitening effect and the low-frequency amplification are visible in
Figs 2.15g and 2.15h, comparing amplitude spectra of weighted real data wave-
forms (red) and seismograms standardized by SACF (green) for two selected
stations. In particular, in case of the SACF the amplitude spectra are flat and
increasing towards lower frequencies in the filter frequency range 0.1 − 0.2 Hz.
The closer station KALE has the low-frequency part of the spectrum amplified
more than the more distant station DSF (compare green lines in Figs 2.15g and
2.15h) due to the lower value of L1 considered for the smaller distance.

The case when the covariance matrix is constructed from the ACF (see exam-
ples in Figs 2.15c, 2.15d and 2.18) is more complex. Due to the time-dependence
of the ACF, it cannot be likened as an application of a time-invariant filter. How-
ever, this time-dependence is reduced when increasing L1, i.e. as the integrals
(i.e. expectations) in Eq. (2.14) make the ACF smoother in time. In the extreme
case of L1 ≥ T the ACF is nearly stationary in the period of the useful signal T ,
and hence almost the same as the SACF tapered over the signal duration. This
means that the described features of the SACF (such as equalizing the spectral
content and amplifying low-frequencies) are also present in the data standardized
by ACF to an extent depending on the parameter L1. These effects are percepti-
ble in Figs 2.15g and 2.15h, showing amplitude spectra of the weighted real data
waveforms (red), seismograms standardized by SACF (green) and by ACF (blue),
yet to lower extent than in the case of SACF. To summarize, the above inter-
pretation of the effect of the SACF gives a hint on the implicit behavior of the
inversion when the C matrix is constructed using the approximate covariances
proposed in the present work.
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Figure 2.17: The fit of the normalized displacement (black) and synthetics (color) for
the real event from 25 April 2012 from Corinth Gulf disregarding uncertainty of
GFs. Data are corrected by instrument response and filtered by Butterworth bandpass
filter between 0.1 − 0.2 Hz. Black waveforms are normalized displacement and colored
waveforms are 300 synthetic realizations of normalized displacement perturbed around
the best fitting solution by posteriori covariance.
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Figure 2.18: The fit of the normalized displacement (black) and synthetics (color) for
the real event from 25 April 2012 from Corinth Gulf considering uncertainty of GFs by
means of ACF. Data are corrected by instrument response and filtered by Butterworth
bandpass filter between 0.1−0.2 Hz. Black waveforms are normalized displacement and
colored waveforms are 300 synthetic realizations of normalized displacement perturbed
around the best fitting solution by posteriori covariance.
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Figure 2.19: The fit of the normalized displacement (black) and synthetics (color) for
the real event from 25 April 2012 from Corinth Gulf considering uncertainty of GFs by
means of SACF. Data are corrected by instrument response and filtered by Butterworth
bandpass filter between 0.1−0.2 Hz. Black waveforms are normalized displacement and
colored waveforms are 300 synthetic realizations of normalized displacement perturbed
around the best fitting solution by posteriori covariance.

Chapter 2 62



2.4 Conclusions
The aim of this Chapter is to introduce a simple and easy-to-implement approach
to efficiently involve the GF uncertainty in practical source inversions. Recent
Bayesian waveform inversions rely on statistical description of the GFs uncer-
tainty by means of a covariance matrix of a Gaussian distribution. Therefore,
we introduce a fast and simple method for evaluation of the covariance matrix of
GFs, incorporating uncertainty of a crustal velocity model (see Eqs (2.13), (2.14),
(2.20) and (2.21)).

Our approximate approach requires a “mother” GF and statistical description
of the random time shifts of the signal as an input. While the “mother” GF is
calculated using a given (mean) velocity model, which is required by the source
inversion anyway, the estimation of the random time shifts requires additional
considerations. In particular, experiments shown in the present paper suggest
that it is enough to assume a uniform PDF for the time shifts. Its width L1
depends on the source distance and velocity model perturbations linearly (Fig.
2.1d). Alternatively, one may estimate L1 from temporal residuals obtained dur-
ing event location, but it will require future investigation and testing. We point
out that despite the fact that the simplified formulas were derived assuming purely
random time shifts of GFs, the proposed approach produces variations of both
the arrival time and the waveform amplitudes as shown in Fig. 2.5.

An example implementation of the approach proposed in Section 2.3 was il-
lustrated on a moment tensor inversion applied to synthetic and real datasets.
Experiments with large number of synthetic target datasets obtained by randomly
perturbing velocity models suggest that the lowest scatter of the maximum like-
lihood solutions is attained for the approximate covariance function (ACF, Eq.
(2.14)), possibly in combination with the approximate cross-covariance (AXCF,
Eq. (2.13)), see Fig. 2.12. Tests with a single realization of the target synthetics
evaluated in the perturbed velocity models show that the posterior covariance
matrix reflects the true uncertainty of the moment tensor inversion well when
considering the stationarized auto-covariance function (SACF, Eq. (2.21)), see
Fig 2.13c. Similarly, real-data inversion using the SACF (Fig 2.14c) provides
moment tensor uncertainty estimate comparable to the result of the jack-knifing
experiment by Sokos & Zahradńık (2013, fig. 3).

It is clear that the performance of the proposed approach to evaluate the
GF uncertainty must undergo more thorough testing in a large number of prac-
tical applications. For easier implementation in other researchers’ codes we re-
lease open source codes for computing all the types of the proposed approxi-
mate (cross-)covariance matrices including the stationarized ones. The source
codes are available for downloading under GNU license on the author’s website
(http://geo.mff.cuni.cz/˜hallo/) or in Attachments A.1, A.2, A.3 and A.4.
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2.5 Unpublished supplementary material

2.5.1 Alternative estimation of parameter L
All of the functions AXCF, ACF, SAXCF and SACF in Eqs (2.13), (2.14), (2.20)
and (2.21), respectively, require prescription of parameter L1 [sec]. This param-
eter has meaning of the width of the uniform PDF p1(l1) defined by Eq. (2.8),
where l1 are random (joint) time shifts of “mother” waveforms f(t) (and g(t))
caused by the insufficient knowledge of the velocity model. Magnifying the pa-
rameter L1 leads to larger variance of the covariance matrix, as an effect of the
increase of velocity model uncertainty. In our approach, we consider L1 = 4σt

where σt has meaning of standard deviation of Gaussian PDF of waveform time
shifts generated by random velocity model perturbations (see Fig. 2.1c). Here we
show comparison with an alternative approach to estimate parameter L1 using
ray theory, as the ray tracing is much faster than computing the full wavefield.
In ray tracing, the standard deviation σt is obtained from the ensemble of P- or
S-wave arrival times in randomly perturbed velocity models. We performed this
procedure in the same set of perturbed velocity models as in Fig. 2.1d.

The estimated values of L1 for direct P- or S-waves (dotted and dashed lines,
respectively) are compared in Fig. 2.20 with values of L1 estimated from the
complete wavefield (solid lines). The discrepancy between P- or S-wave arrivals
and complete wavefield is due to assumed wavelength, which is much shorter in the
ray theory (i.e. high frequency approximation). The S-wave arrivals proximate
the time shift of the complete wavefield better as we assume wavefield on the
Earth’s surface composed mostly from low-frequency surface waves. To conclude,
the ray tracing offers undemanding method for estimation of values of L1. The
another alternative approach for estimation of the parameter L1 may utilize time
residuals from the earthquake hypocenter location in a velocity model.
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Figure 2.20: The dependence of the characteristic width of the time shift distribution
(L1 = 4σt) on the strength of the velocity model perturbations σM for three source-
receiver distances. The standard deviation of Gaussian distributions of time shifts σt

were determined from the whole wavefield generated by discrete wavenumber method,
and from arrivals of direct P- and S-waves by ray tracing (see legend).
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2.5.2 Inversion performance with non-DC MT
The analysis of moment tensor inversions with real and synthetic data for the test
event from the Corinth Gulf, Greece, in previous Sections revealed that the DC
component ratios are subject to significant uncertainty (see Figs 2.12 and 2.14c).
The reliable assessment of the content of the DC component in the inverted
deviatoric MTs is also an issue of our later application (see Chapter 3), hence
here we perform additional synthetic tests with deviatoric MTs of various DC
to CLVD ratios as the seismic sources. As the test event we assume a virtual
earthquake from Kumamoto, Japan, at depth 7 km and with moment magnitude
Mw = 6.2. Used source location and the station geometry as shown in Fig. 2.21
is consistent with the settings of the earthquake from 14 April 2016 (12:26 UTC;
i.e. the largest foreshock of 2016 Kumamote sequence).

 130.5° E  131.0° E  131.5° E

 32.5° N  

 33.0° N  

Figure 2.21: Seismic station distribution (triangles) in the Kumamoto area, Japan,
used in the synthetic tests with the deviatoric MTs. The beachball plotted at the event
epicenter corresponds to the pure-shear mechanism content of the source considered in
the synthetic tests.

The target deviatoric MTs, as source models, were generated as the sum of
DC MT with: strike 31°, dip 89°, and rake -157° and additional CLVD component
of 0, 20, 40, 60, 80 %, normalized to the prescribed total seismic moment. Syn-
thetic waveforms for the inversion test were computed by the discrete wavenumber
method (Bouchon 1981) assuming a Dirac delta function as the source time func-
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tion, filtered by Butterworth bandpass filter with corner frequencies 0.03−0.1 Hz
and then downsampled to 2 Hz sampling rate. In the following tests we gener-
ate “data” for inversion assuming a realization of random variations of the wave
speeds and depths of velocity model layers for each station independently (as in
the MC simulations described in Section 2.2.1). Such random variations of the
reference velocity model simulate a real case when the velocity model is not pre-
cisely known, yet well described by a mean model. In all tests the inversions are
then performed in the reference (mean) layered velocity model.

Similarly as in Section 2.3.2, the deviatoric MT inversions are performed for
1000 different target data sets computed in the randomly perturbed velocity
models, neglecting uncertainty of GFs in the inversion. For each realization, we
obtained best-fitting solutions in Eq. (2.27) for each considered amount of CLVD
component in the simulated source. Fig. 2.22 shows the ensemble of the solutions
for various amount of CLVD component in the source. The ensemble is displayed
in terms of DC mechanism nodal planes bias, histograms of the P-axis deviations
from target source model, CLVD component bias (1.0 = 100 %; 0.0 = 0 %; −1.0 =
−100 %) and the inferred scalar seismic moment M0.

We note that the spread of the differences to the target solution (plotted in
red) is caused by the variations of the randomly perturbed velocity model, hence
by the GFs uncertainty (in analogy to Fig. 2.12). Hence, the presented statis-
tics of the inverted best-fitting parameters can be understood as the “true” MT
uncertainty caused by the velocity model uncertainty. Overall assessment of the
performance of the inversions with the various amounts of CLVD content in the
target source model suggests that “true” MT uncertainties are almost indepen-
dent of the amount of the CLVD component in the source (compare histograms
among panels a)–e)). There is higher uncertainty of the inferred DC nodal planes
in case of CLVD content of 80 % as scalar moment of DC solution declines. The
estimated CLVD uncertainties caused by the imprecise knowledge of the velocity
model (of σM = 10 %) are up to ±25 %, and thus should not be neglected in
practical applications.
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Figure 2.22: Statistical analysis of best-fitting solutions from inversion of synthetic
deviatoric MT neglecting uncertainty of velocity model. 1000 realizations of randomly
perturbed velocity models are used to generate population of the target data. Panels in
each row show DC mechanism nodal planes (left), deviation of P-axis from the target
value (middle-left), CLVD component bias (middle-right) and M0 scatter (right). Each
row a)–e) corresponds to the use of different amount of CLVD content in the target
source of 0, 20, 40, 60, 80 %, respectively. The target solution (in red) has nodal planes
with strike 31°, dip 89°, rake -157°, and scalar seismic moment M0 = 2.12 × 1018 Nm.
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Next, we assess the ability of the SACF and diagonal covariance matrices to
estimate the “true” uncertainty of inverted deviatoric MTs. We selected three
of the data sets, inferred their best-fitting MT solutions and estimated their
uncertainties in terms of the posterior covariance matrix in Eq. (2.28). The
synthetic data sets were selected based on the preliminary inverted best-fitting
MT solution, in order to select examples with 1) significant underestimation
(Example1 ), 2) correct estimation (Example2 ) and 3) significant overestimation
(Example3 ) of the CLVD component. Figs 2.23 and 2.24 show the maximum
likelihood solutions together with their posterior uncertainties, for diagonal and
SACF covariance matrices, respectively. Note that contrarily to Fig. 2.22, here
the ensemble of the solutions is obtained by random sampling the posterior PDF
(using Matlab function mvnrnd). We plot ensembles of solutions for the various
amounts of CLVD content and the three selected data sets (Example1–3 ). The
true values of the CLVD content are plotted by red lines.

The deviatoric MT inference assuming diagonal covariance matrix (Fig. 2.23)
underestimates the CLVD uncertainty, and, in extreme case, even leads to ex-
clusion of the true (target) solution from the confidence interval. Contrarily, the
deviatoric MT inference with the SACF (Fig. 2.24) provides CLVD uncertainty
estimate up to approximately ±20 %, being comparable with the true uncertainty
shown in Fig. 2.22, and covering also the true (target) solution in all the inves-
tigated cases.

To conclude, using SACF covariance matrix improves the performance of the
deviatoric MT inversions. The estimate of the uncertainty of the amount of CLVD
component by means of posterior covariance matrix is also more reliable when
employing the covariance matrix built from the SACFs.
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Figure 2.23: Results of an inversion of deviatoric MT with three realizations of the
randomly perturbed velocity models to generate the target data, and using diagonal
constant covariance matrix. The realization of the randomly perturbed velocity models
is the same for all panels in each column (Example1–3). Panels show CLVD uncertainty
estimate, where each row a)–e) corresponds to the use of different amount of CLVD
content in the target source of 0, 20, 40, 60, 80 %, respectively. The histograms are built
from 300 random samples of the posterior PDF to visualize the estimated parameter
uncertainty. The true solutions of CLVD content are plotted by the red line.
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Figure 2.24: The same as Fig. 2.23 but for inversion of deviatoric MT using SACF
covariance matrix.
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3. Bayesian inference and
interpretation of centroid
moment tensors of the 2016
Kumamoto earthquake sequence,
Japan
Published in Earth, Planets and Space,
Volume 69, Article 134, 1–19, September 2017, doi:10.1186/s40623-017-0721-4,
text in this Chapter includes also its published supplementary material.

Miroslav Halló1, Kimiyuki Asano2 & Frantǐsek Gallovič1

Abstract: On April 16, 2016, Kumamoto prefecture in Kyushu region, Japan,
was devastated by a shallow MJMA7.3 earthquake. The series of foreshocks
started by MJMA6.5 foreshock 28 h before the mainshock. They have originated
in Hinagu fault zone intersecting the mainshock Futagawa fault zone; hence, the
tectonic background for this earthquake sequence is rather complex. Here we infer
centroid moment tensors (CMTs) for 11 events with MJMA between 4.8 and 6.5,
using strong motion records of the K-NET, KiK-net and F-net networks. We use
upgraded Bayesian full-waveform inversion code ISOLA-ObsPy, which takes into
account uncertainty of the velocity model. Such an approach allows us to reliably
assess uncertainty of the CMT parameters including the centroid position. The
solutions show significant systematic spatial and temporal variations throughout
the sequence. Foreshocks are right-lateral steeply dipping strike-slip events con-
nected to the NE–SW shear zone. Those located close to the intersection of the
Hinagu and Futagawa fault zones are dipping slightly to ESE, while those in the
southern area are dipping to WNW. Contrarily, aftershocks are mostly normal
dip-slip events, being related to the N–S extensional tectonic regime. Most of
the deviatoric moment tensors contain only minor CLVD component, which can
be attributed to the velocity model uncertainty. Nevertheless, two of the CMTs
involve a significant CLVD component, which may reflect complex rupture pro-
cess. Decomposition of those moment tensors into two pure shear moment tensors
suggests combined right-lateral strike-slip and normal dip-slip mechanisms, con-
sistent with the tectonic settings of the intersection of the Hinagu and Futagawa
fault zones.

Keywords: Tectonics, Inverse theory, Waveform source inversion, Centroid
moment tensors, Strong motion data, 2016 Kumamoto sequence, Foreshocks and
aftershocks, Futagawa and Hinagu faults.

1Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
2Disaster Prevention Research Institute, Kyoto University, Gokasho, Uji, Japan
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3.1 Introduction

The 2016 Kumamoto earthquake sequence started on April 14, 2016, with an
MJMA6.5 shallow earthquake in the central part of Kyushu, Japan (see Fig.
3.1). The seismic activity continued by weaker events, including MJMA5.8 and
MJMA6.4 earthquakes 41 min and 2.6 h after the first shock, respectively. The
mainshock of the sequence of MJMA7.3 occurred on April 16, 2016 (01:25 of Japan
Standard Time), 28 h after the first earthquake (the yellow circle in Fig. 3.1).
The mainshock generated destructive ground motions in the near-source region,
causing severe damage and casualties. The following aftershocks had wide spatial
distribution across the whole Kyushu with the strongest event of MJMA5.9 that
occurred 20 min after the mainshock. Increased seismic activity in the area was
notable even 2 weeks after the first foreshock, and it was daily reported by the
Japan Meteorological Agency (JMA). In the 2016 Kumamoto sequence, seven
earthquakes reached or exceeded instrumental intensity 6- of the JMA intensity
scale which consists of degrees 0, 1, 2, 3, 4, 5-, 5+, 6-, 6+, 7.

This earthquake sequence occurred along the Futagawa-Hinagu fault system,
which is one of the major active fault zones in Kyushu. This shear zone is con-
sidered to be western extension of the Median Tectonic Line (MTL), the largest
tectonic line in southwestern Japan (e.g., Okada 1980; Kamata & Kodama 1994).
The MTL is an active right-lateral strike-slip fault which originates at Honshu
Island and transects whole Shikoku Island. Extension of the MTL transects
Kyushu at NE–SW direction, with evidence of right-lateral strike-slip and ex-
tensional movements (Kamata & Kodama 1994). An area in the central part of
Kyushu, located north of the shear zone, is called the Beppu–Shimabara graben.
It is characterized by many normal faults formed in the N–S extensional stress
regime. According to Kamata & Kodama (1999), this extension can be related
to the effect of the Ryukyu Trench and convergence of the Philippine Sea slab,
where it possibly induces seafloor spreading at the Okinawa Trough. The tec-
tonic stress in Kyushu has large spatial heterogeneities (Matsumoto et al. 2015).
At Kumamoto area, the minimum principal stress σ3 (extension) is in the N–S
direction, and the maximum principal stress σ1 has similar size as σ2 (Matsumoto
et al. 2015); therefore, strike-slip and also normal faults are expected under such
stress regime (see Attachment A.5).

The mainshock created more than 30 km long system of co-seismic surface rup-
tures along the Futagawa–Hinagu fault system (e.g., Kumahara et al. 2016; Toda
et al. 2016; Shirahama et al. 2016) terminating in the Aso volcano caldera (e.g.,
Lin et al. 2016). The surface co-seismic ruptures were dominated by right-lateral
strike-slips with a secondary normal faulting component. The normal faulting
was dominant especially in the northeast part of the rupture zone (e.g., Toda
et al. 2016). Finite source models for the mainshock were inverted from strong
motion records (e.g., Asano & Iwata 2016; Kubo et al. 2016b; Hao et al. 2017;
Kobayashi et al. 2017; Yoshida et al. 2017). The inferred models suggest that the
MJMA7.3 event started near the intersection of the Futagawa and Hinagu faults
by right-lateral strike-slip movement; then, the rupture propagated to the NE
along the Futagawa fault as strike-slip with a normal faulting component. Finite
source models and also static slip models from geodetic data (Himematsu & Fu-
ruya 2016; Fukahata & Hashimoto 2016) are consistent with field measurements
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of co-seismic surface ruptures. The source models introduce two or three segments
of the mainshock rupture, but their physical relation to the foreshock ruptures
remains unclear because of the complex tectonic settings of the intersection of
the Futagawa and Hinagu faults.
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Figure 3.1: Spatial and temporal distribution of the Kumamoto earthquake sequence.
Top panel—map of earthquake’s locations inferred by Kato et al. (2016) for period
April 14–May 13, 2016. The size of circles is proportional to the JMA magnitude of
the events. Earthquakes with MJMA magnitude higher than or equal to 5 are distinguish
by color: foreshocks (red), mainshock (yellow) and aftershocks (blue). The topography
originates from the SRTM-90m digital elevation data. Bottom panel—temporal evolu-
tion of the earthquakes from the map in top panel is showing period from April 14–April
17, 2016, when all events with MJMA magnitude higher than or equal to 5 occurred.

This study focuses on the point source models of the significant foreshocks and
aftershocks of the Kumamoto sequence. The centroid moment tensors (CMTs) for
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these events were inferred routinely by JMA and by National Research Institute
for Earth Science and Disaster Resilience (NIED). However, these solutions are
not supplemented by their uncertainty, which is required when trying to draw
conclusions on the physical relations of ruptures in such case of complex tectonic
settings. Here we infer CMTs of the significant foreshocks and aftershocks and
their uncertainty by our novel full-waveform inversion from strong motion data.
The results are then interpreted in a seismotectonic framework.

3.2 Methods

3.2.1 Problem formulation
In the low-frequency point source approximation, the source is described by the
centroid moment tensor (CMT, Aki & Richards 2002, pp. 49–52). The CMT
consists of ten parameters: six moment tensor elements Mpq, location ξ and time
τ . The centroid denotes to temporal and spatial center of the moment tensor
density. Ground displacement un at position x and time t generated by CMT
with the source time function Ω(t) is given for the n-th component by

un(x, t) = Mpq(ξ)Ω(t − τ) ∗ Hnp,q(x, ξ, t), (3.1)

where star denotes convolution and Hnp,q is the spatial derivative of Green’s
function (GF) representing response of the medium to a unite force. Eistein
summation convention applies.

Kikuchi & Kanamori (1991) proposed to represent the moment tensor MT,
for a given centroid position and time, by a linear combination of six elementary
MTs defined therein (see Eqs (2.23) and (2.24)). Then, discretized Eq. (3.1) can
be expressed for a given source space–time position i and a given function Ω(t)
in a matrix form (Tarantola 2005, pp. 62–68),

di = Gimi, (3.2)

where di is a vector of synthetic seismograms and mi is a vector of six coeffi-
cients of the elementary MTs. Gi is a matrix of six columns composed of elemen-
tary seismograms, representing ground displacements caused by elementary MTs
placed at position i. The problem is then linear for a given source space–time
position (six elementary MT coefficients), whereas it is nonlinear for the other
four parameters (location ξ and time τ).

3.2.2 Bayesian inference of CMT
We apply modification of the Bayesian full-waveform CMT inversion, ISOLA-
ObsPy (Vackář et al. 2017), which allows for reliable assessment of the solution
uncertainty. In this method, a regular grid of four nonlinear CMT model param-
eters (location ξ and time τ) is considered. We assume one-column data vector
dobs characterized by Gaussian data errors with covariance matrix CD (will be
discussed in the next section). At a given space–time grid point i, assuming
no prior information (i.e., infinite standard deviation) on the model parameters
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mi , the posterior probability density function (posterior PDF) for the MT is
six-dimensional Gaussian function,

PDFi(mi|dobs) = 1
c

exp
(

− 1
2(dobs − Gimi)T CD

−1 (dobs − Gimi)
)

(3.3)

Parameter c is a constant normalizing the total ten-dimensional PDF to unity.
Note that the term including prior information on the model parameters (Taran-
tola 2005, eq. 1.104) is not present in Eq. (3.3) as it is equal to 1.

After simple algebra, Eq. (3.3) can be equivalently written as

PDFi(mi|dobs) = 1
c

exp
(

− 1
2(mi − m̃i)T (C̃M

i )−1 (mi − m̃i) − 1
2Li

)
(3.4)

with

Li = (dobs − Gim̃i)T CD
−1 (dobs − Gim̃i), (3.5)

m̃i = (GT
i CD

−1Gi)−1 (GT
i CD

−1dobs), (3.6)
C̃M

i = (GT
i CD

−1Gi)−1. (3.7)

In Eq. (3.6), m̃i corresponds to the least squares solution of the six model param-
eters with misfit Li from Eq. (3.5) (Tarantola 2005, eq. 3.40). The associated
uncertainties (of the least squares solution m̃i) are described by the posterior
model covariance matrix C̃M

i given in Eq. (3.7) (Tarantola 2005, eq. 3.41).
The role of the data covariance matrix CD in the inversion is apparent in defi-

nition of the misfit function. In MT inversion without considering CD, the misfit
function is difference (residuals) between the recorded data dobs and synthetics
di. If the covariance matrix CD is used, the misfit function is given by so-called
standardized residuals (Dettmer et al. 2014), i.e., waveforms multiplied by the
triangular matrix W from the Cholesky decomposition of CD

CD
−1 = WT W. (3.8)

The variance reduction, a parameter evaluating solution fit to measured data in
the grid point i, is then given by

V Ri =
⎛⎝1 −

WT dobs − WT di

2

∥WT dobs∥2

⎞⎠ · 100 % (3.9)

The normalizing constant c from Eq. (3.3) can be obtained by integration
over all the ten CMT parameters. In our case, we integrate over the space–time
grid points (Vackář et al. 2017),

1 =
∑

i

dVi

∫
PDFi(mi|dobs) dmi

=
∑

i

1
c

√
(2π)6 detC̃M

i exp
(

− 1
2Li

)
dVi (3.10)

=
∑

i

ai,

where the term dVi is the product of grid steps of all the four nonlinear model
parameters (i.e., the space and time discretization steps). The value ai is an
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integral of PDFi at the given space–time grid point. It depends on the most
likely solution misfit Li and the determinant of the posterior covariance matrix
of model parameters C̃M

i , in particular space–time grid point. It thus carries
information about the quality of the least squares solution in particular grid
point.

Vackář et al. (2017) propose to inspect posterior PDF of any CMT parameters
by generating set of random possible solutions from the total ten-dimensional
posterior PDF. This can be achieved by drawing ai random samples at each
space–time grid point from the multivariate normal distribution specified by m̃i

and C̃M
i . From such ensemble, it is then possible to statistically assess uncertainty

of any CMT parameter, including those that are not directly inverted for, but
can be derived from the MT components (e.g., strike angle, dip angle, rake angle
and DC component percentage).

3.2.3 Accounting for the uncertainty of the velocity struc-
ture

The reliability of the assessment of the solution uncertainty by this Bayesian
framework depends on the assessment of the data and modeling errors. The data
errors (i.e., the instrumental and ambient noise) are typically negligible when
dealing with larger events, as in our present application. We avoid using data
with rare instrumental artifacts (e.g., Zahradńık & Plešinger 2010). The solution
uncertainty is then dominated by modeling errors governed by the uncertainty of
the GFs due to the inaccuracy of the crustal model considered. We include the
modeling errors in covariance matrix CD following approach by Hallo & Gallovič
(2016). They compose CD from so-called stationarized approximate covariance
functions defined by

cov(ϕ) = 1
T

[
r(ϕ) − ∧2L(ϕ) ∗ r(ϕ)

]
, (3.11)

where r(ϕ) is auto-correlation of the observed seismogram as a function of time
lag ϕ, T is duration of the dominant part of the signal, star is convolution and
∧2L(ϕ) is a triangle function of unit area centered around zero with duration 2L.
Since Eq. (3.11) is stationary (i.e., depending only on time lag ϕ), the respective
covariance matrix has Toeplitz structure (diagonal constant). Parameter L gen-
erally depends on the source–receiver distance, frequency range and considered
uncertainty of the velocity model. Hallo & Gallovič (2016) tested the perfor-
mance of such covariance matrices by means of numerous MT inversions with
synthetic data generated in randomly perturbed velocity models. The posterior
model covariance matrix from inversion using Eq. (3.11) was therein shown to
reliably reflect the simulated uncertainty of the inferred MTs (see Chapter 2).

In the present multi-station and multi-component inversion, data covariance
matrix CD has block structure. The covariance matrices for the individual
waveforms are arranged along the diagonal, while off-diagonal blocks (cross-
covariances) are neglected and hence set to zeros. A station-specific water level
was added to the diagonal to preserve the covariance matrix invertible. As the
water level, we use 10 % of the maximum variance from all the three station com-
ponents. The parameters L from Eq. (3.11) were determined based on relation
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introduced by Hallo & Gallovič (2016) in a similar inversion setting

L = |x − xepic|
25 [km/s] , (3.12)

where |x − xepic| denotes horizontal distance between the station and epicenter
in kilometers. Such an estimate is found suitable for velocity model uncertainty
of 10 %. The duration of the dominant part of the signal T was set to 15 sec for
all stations and events.

3.3 Application to the Kumamoto sequence
We infer CMTs of 11 significant earthquakes with MJMA magnitude in range of
4.8–6.5 (see Table 3.1 for list of the events). The set consists of all foreshocks
and aftershocks with MJMA magnitude higher than or equal to 5 (denoted by
red and blue circles in Fig. 3.1), and two aftershocks with MJMA magnitude 4.9
and 4.8. The mainshock itself was omitted from the analysis as it has rather
complex earthquake source rupture process that was studied in detail in other
studies (e.g., Asano & Iwata 2016; Kubo et al. 2016b; Kobayashi et al. 2017).

3.3.1 Data selection and processing
We use three-component waveforms recorded by the K-NET, KiK-net and F-net
networks, operated by National Research Institute for Earth Science and Disaster
Resilience (NIED), in the distances of 10 − 60 km from the epicenter (depending
on the particular event). The stations are selected based on azimuthal coverage,
distance and sufficient signal-to-noise ratio in the low-frequency range. Stations
located too close to the epicenter are excluded to comply with the point source
approximation, i.e., to avoid station distances for which GFs along the fault dif-
fer significantly. Original acceleration data (K-NET and KiK-net) and strong
motion velocity data corrected for the instrument response (F-net) are filtered
by a bandpass filter and integrated into displacements (the K-NET and KiK-net
accelerometers have flat transfer function in our target frequency range). The
filter corner frequencies are determined empirically by manual inspection and

Event Hypocentre location⋆ Filter corner freq. [Hz] Number of
No. MJMA Date Time∗ Lat. Lon. Depth [km] High pass Low pass used stations

1 6.5 2016/4/14 21:26:35 32.74 130.81 11 0.03 0.07 12
2 6.4 2016/4/15 00:03:47 32.70 130.78 7 0.03 0.08 12
3 5.9 2016/4/16 01:46:56 32.86 130.90 11 0.04 0.07 11
4 5.8 2016/4/14 22:07:35 32.77 130.85 8 0.08 0.14 12
5 5.4 2016/4/16 01:44:06 32.75 130.76 15 0.15 0.20 10
6 5.4 2016/4/16 09:48:32 32.85 130.84 16 0.08 0.15 13
7 5.4 2016/4/16 16:02:01 32.70 130.72 12 0.08 0.15 11
8 5.1 2016/4/14 23:43:41 32.77 130.83 14 0.08 0.14 10
9 5.0 2016/4/14 22:38:43 32.68 130.74 11 0.09 0.15 10
10 4.9 2016/4/16 02:04:11 32.74 130.74 12 0.11 0.15 8
11 4.8 2016/4/16 07:23:55 32.79 130.77 12 0.12 0.16 9

Note: ⋆by Japan Meteorological Agency; ∗Japan Standard Time

Table 3.1: List of processed earthquakes from the Kumamoto sequence.
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processing of the waveforms (see Table 3.1). In general, the high-pass filter cor-
ner frequency is as low as possible in terms of signal-to-noise ratio. The low-pass
filter corner frequency is limited by corner frequency of the particular earthquake.
Waveform data are downsampled after the filtration and integration to the sam-
pling frequency 0.6 − 1.3 Hz, based on the low-pass filter corner frequency, in
order to reduce computational demands.

3.3.2 Velocity model

GFs are computed by the discrete wavenumber method (Bouchon 1981) in 1D
velocity model consisting of homogenous layers. The model is prepared from
the 3D Japan Integrated Velocity Structure Model (Koketsu et al. 2012) as a
horizontal average over area of 40 × 40 km around mainshock epicenter. The
horizontal average is calculated for a dense set of depths (smooth model in Fig.
3.2a) and then divided into homogenous layers preserving the vertical travel times
within layers (layered model in Fig. 3.2a). Figure 3.2b shows maximal deviation
of the 1D model from the original 3D model (maximal lateral heterogeneities
which are not included in the 1D model). These velocity variations are less
than 10 % for depths larger than 1 km. The shallow layers show higher lateral
heterogeneities, but they do not significantly affect the inversion using much
longer wavelengths for sources at depths of Kumamoto earthquakes.
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Figure 3.2: a) 1D velocity model of the Kumamoto area determined from the 3D
Japan Integrated Velocity Structure Model (Koketsu et al. 2012). b) maximal horizontal
deviation of the velocities of the determined 1D model from the original 3D model.
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3.3.3 Application details

The CMT inversion strategy consists of the following processing steps:

1. Inference of full CMT, including isotropic component, is performed by in-
version from extended set of stations without considering any model or data
uncertainty. At this stage, we consider a rough grid of space-time grid points
in the search of the nonlinear parameters, with regular grid steps of 1.4 km
in all three coordinate directions within 16 km around the hypocenter re-
ported by JMA. Time grid covers 0 − 4 sec after the hypocenter time with
regular time grid steps of about 0.3 − 0.1 sec (depending on the particular
event).

2. We manually inspect the best fit of the synthetic and measured waveforms
to reveal stations with unusable signal. The proposed Bayesian inference
is intended to deal with unknown velocity model perturbations which are
close to the 1D velocity model, but it cannot correct for missing velocity
structures or other systematical errors in the waveform data. Hence, sta-
tions with very poor fit are excluded from the next step of the processing.
Mostly, it is the case of very distant stations or receivers located in the
coastal area of the Ariake Sea. The final number of used stations is shown
in Table 3.1.

3. We perform the Bayesian inference of CMT taking into account velocity
model uncertainty of 10 %. Here we consider a denser grid in the search
of the nonlinear parameters with regular grid steps about 0.2 − 0.5 km in
all three coordinate directions within 3 − 5 sec around the CMT location
inverted in the first step. Time grid covers 0−4 sec after the hypocenter time
with regular time grid steps of about 0.1 sec. Since isotropic component of
MT was negligible in all cases, we conserve it at 0 %.

As the ensemble of acceptable solutions, we generate 1000 random possible so-
lutions drawn from the ten-dimensional posterior PDF. The resulting MTs are de-
composed into combination of double-couple (DC) and compensated linear vector
dipole (CLVD) sources. Marginal PDFs of selected CMT parameters (marginal
histograms) are fitted with Gaussian function defined by its mean and standard
deviation σ. We consider 2σ as the estimate of the uncertainty covering half-width
of a 95 % confidence interval of the normal distribution.

As examples of the application, we depict three selected CMT inversions in
Figs 3.3, 3.4 and 3.5. Figure 3.3 shows the CMT inversion of the strongest
MJMA6.5 foreshock (event No. 1) in terms of the network settings, the best fit
of the standardized waveforms at all stations and the best beach-ball solution
with uncertainty (see the figure caption). Figure 3.4 shows the same, but for
the MJMA5.8 foreshock (event No. 4), which is performed from the same set of
stations as for the previous event. The solution has a high variance reduction
and high DC content. The example in Fig. 3.5 corresponds to the MJMA5.4
aftershock (event No. 7), which is characterized by high variance reduction and
high (significant) CLVD content.
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Figure 3.3: CMT inversion for the MJMA6.5 foreshock from 2016/4/14 21:26:35
JST (event No. 1). The figures are produced by modified program ISOLA-ObsPy of
Vackář et al. (2017); a) the map of strong motion stations (red triangles) used for the
CMT inference; b) marginal PDF of the CMT location in a horizontal slice indicated by
the size of the beach-balls; the beach-balls depict inferred MTs at the individual spatial
points. The beach-ball highlighted by red circle is the solution with the highest variance
reduction (the best fitting solution); c) the comparison between measured and synthetic
standardized waveforms for the best fitting solution; d) the beach-ball representation of
the best fitting CMT; e) the uncertainty of the mechanism depicted by 1000 random
possible solutions drawn from the ten-dimensional posterior PDF; f) histogram of the
DC component.
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Figure 3.4: CMT inversion for the MJMA5.8 foreshock from 2016/4/14 22:07:35
JST (event No. 4). The figures are produced by modified program ISOLA-ObsPy of
Vackář et al. (2017); a) the map of strong motion stations (red triangles) used for the
CMT inference; b) marginal PDF of the CMT location in a horizontal slice indicated by
the size of the beach-balls; the beach-balls depict inferred MTs at the individual spatial
points. The beach-ball highlighted by red circle is the solution with the highest variance
reduction (the best fitting solution); c) the comparison between measured and synthetic
standardized waveforms for the best fitting solution; d) the beach-ball representation of
the best fitting CMT; e) the uncertainty of the mechanism depicted by 1000 random
possible solutions drawn from the ten-dimensional posterior PDF; f) histogram of the
DC component.
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Figure 3.5: CMT inversion for the MJMA5.4 aftershock from 2016/4/16 16:02:01
JST (event No. 7). The figures are produced by modified program ISOLA-ObsPy of
Vackář et al. (2017); a) the map of strong motion stations (red triangles) used for the
CMT inference; b) marginal PDF of the CMT location in a horizontal slice indicated by
the size of the beach-balls; the beach-balls depict inferred MTs at the individual spatial
points. The beach-ball highlighted by red circle is the solution with the highest variance
reduction (the best fitting solution); c) the comparison between measured and synthetic
standardized waveforms for the best fitting solution; d) the beach-ball representation of
the best fitting CMT; e) the uncertainty of the mechanism depicted by 1000 random
possible solutions drawn from the ten-dimensional posterior PDF; f) histogram of the
DC component.
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3.3.4 Solutions of the CMT inversion

Parameters of the inferred CMT solutions from the Kumamoto sequence together
with their uncertainty are compiled in Tables 3.2 and 3.3. The beach-ball repre-
sentations of these CMTs are shown in Fig. 3.6 together with comparison from
the JMA and NIED solutions (the comparison is discussed later).

The variance reduction defined by Eq. (3.9) is high for most events; never-
theless, solutions for two events (Nos. 1 and 5) have it below 50 %. In the case of
event No. 5, the raw waveforms seem corrupted at very low frequencies; hence,
slightly higher frequency band was used (see Table 3.1), which most likely causes
the fit deterioration. The event No. 1 is the strongest foreshock which was shown
to consist of two spatially separated asperities by Asano & Iwata (2016). Our
inferred CMT solution is located between the asperities; nevertheless, the lower
variance reduction is likely related to the fact that the distance of the nearest
station is at the margin of applicability of the point source approximation (20 km
CMT-to-site distance vs. 12 km length of the fault).

The uncertainties of the CMT locations are up to 1.5 km in both horizontal
and vertical directions for all events. Moreover, events with high variance reduc-
tion have CMT location uncertainty as small as 0.6 km. Table 3.2 documents
that the percentage of the DC source content has spans from 64 to 98 %. In most
cases, it is characterized by large uncertainty including also possibility of pure
shear (DC 100 %), and hence, the presence of CLVD component cannot be proved
(but also disproved) for most of the inferred CMT solutions. The exceptions are
events No. 1, 3 and 7 whose admissible DC values do not exceed 90 % even taking
the uncertainty into account (64 + 24, 67 + 16 and 75 + 8 %, respectively; see
Table 3.2). Hence, we consider these events as having a significant CLVD compo-
nent. Moreover, event No. 7 has the highest variance reduction in all the events,
and hence, we consider its CLVD component particularly well constrained.

No. CMT location DC component DC component
uncertainty

Lat. Lon. Depth [km] Mw VR % S/D/R [◦] DC % S/D/R [◦] DC %
1 32.780 130.809 8.1 6.1 44 33/82/-155 64 3/7/9 ±24
2 32.696 130.768 3.8 6.0 58 212/77/178 87 2/9/12 ±20
3 32.862 130.856 8.4 5.7 59 294/37/-48 67 6/4/8 ±16
4 32.780 130.823 8.3 5.4 73 29/69/-149 94 2/3/4 ±10
5 32.765 130.760 13.0 5.0 45 6/72/-142 79 5/7/10 ±14
6 32.860 130.835 10.0 5.2 60 83/62/-71 89 3/2/3 ±10
7 32.692 130.716 7.8 5.2 74 68/63/-95 75 3/2/3 ±8
8 32.765 130.803 9.9 4.9 54 16/76/-163 92 2/4/4 ±14
9 32.679 130.735 8.1 4.9 71 211/66/175 90 2/3/3 ±8
10 32.745 130.752 5.7 4.7 53 215/81/-165 83 2/7/8 ±22
11 32.800 130.788 5.7 4.6 61 79/29/-104 98 8/2/8 ±12

Note: VR–variance reduction; Mw–moment magnitude; S/D/R–strike/dip/rake

Table 3.2: Parameters of the inferred CMT solutions together with their uncertainty
in terms of double standard deviation of Gaussian function (2σ) fitted to the respective
marginal PDF.
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Event 

Our CMT solution JMA NIED (F-net) 
No. MJMA 

Date 
Time (JST) 

1 6.5 
2016/4/14 
21:26:35 

 

DC = 64% 
Mw = 6.1 

 

DC = 75% 
Mw = 6.2 

 

DC = 96% 
Mw = 6.1 

2 6.4 
2016/4/15 
00:03:47 

 

DC = 87% 
Mw = 6.0 

 

DC = 89% 
Mw = 6.0 

 

DC = 49% 
Mw = 6.0 

3 5.9 
2016/4/16 
01:46:56 

 

DC = 67% 
Mw = 5.7 

 

DC = 56% 
Mw = 5.8 

 

DC = 97% 
Mw = 5.7 

4 5.8 
2016/4/14 
22:07:35 

 

DC = 94% 
Mw = 5.4 

 

DC = 78% 
Mw = 5.4 

 

DC = 16% 
Mw = 5.4 

5 5.4 
2016/4/16 
01:44:06 

 

DC = 79% 
Mw = 5.0 

- - - - 

6 5.4 
2016/4/16 
09:48:32 

 

DC = 89% 
Mw = 5.2 

 

DC = 92% 
Mw = 5.2 

 

DC = 91% 
Mw = 5.2 

7 5.4 
2016/4/16 
16:02:01 

 

DC = 75% 
Mw = 5.2 

 

DC = 86% 
Mw = 5.1 

 

DC = 92% 
Mw = 5.1 

8 5.1 
2016/4/14 
23:43:41 

 

DC = 92% 
Mw = 4.9 

 

DC = 85% 
Mw = 5.0 

 

DC = 76% 
Mw = 4.9 

9 5.0 
2016/4/14 
22:38:43 

 

DC = 90% 
Mw = 4.9 

 

DC = 85% 
Mw = 4.9 

 

DC = 86% 
Mw = 4.9 

10 4.9 
2016/4/16 
02:04:11 

 

DC = 83% 
Mw = 4.7 

- - - - 

11 4.8 
2016/4/16 
07:23:55 

 

DC = 98% 
Mw = 4.6 

 

DC = 79% 
Mw = 4.6 

 

DC = 77% 
Mw = 4.6 

 

Figure 3.6: Beach-ball representation of the best fitting MTs for all the inferred events.
Our MT solutions are supplemented by uncertainty of the mechanism depicted by 1000
random possible solutions drawn from the ten-dimensional posterior PDF. JMA and
NIED solutions are adopted directly from the routine MT catalogues of these agencies
accessed through Web.
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Event Harvard/USGS MT M0 [Nm]
No. MJMA Date Time∗ [MrrMttMppMrtMrpMtp][Nm]

1 6.5 2016/4/14 21:26:35 [−0.42, 1.56, −1.14, −0.33, −0.53, 0.73] × 1018 1.84 × 1018

2 6.4 2016/4/15 00:03:47 [−0.49, 9.49, −9.00, −2.39, 0.84, 4.56] × 1017 1.10 × 1018

3 5.9 2016/4/16 01:46:56 [−3.26, 3.52, −0.26, −1.64, −2.17, −0.18] × 1017 4.69 × 1017

4 5.8 2016/4/14 22:07:35 [−0.53, 1.11, −0.58, 0.11, −0.67, 0.84] × 1017 1.47 × 1017

5 5.4 2016/4/16 01:44:06 [−0.96, 0.46, 0.50, 0.79, −1.67, 2.21] × 1016 3.15 × 1016

6 5.4 2016/4/16 09:48:32 [−4.54, 4.37, 0.18, −3.15, 0.42, 2.33] × 1016 6.12 × 1016

7 5.4 2016/4/16 16:02:01 [−4.26, 4.55, −0.29, −3.16, −1.46, 1.69] × 1016 6.22 × 1016

8 5.1 2016/4/14 23:43:41 [−0.48, 1.49, −1.01, 0.41, −0.84, 2.36] × 1016 2.91 × 1016

9 5.0 2016/4/14 22:38:43 [0.05, 1.74, −1.79, −0.86, 0.30, 0.86] × 1016 2.22 × 1016

10 4.9 2016/4/16 02:04:11 [−0.18, 1.08, −0.90, 0.03, 0.29, 0.40] × 1016 1.16 × 1016

11 4.8 2016/4/16 07:23:55 [−8.32, 8.36, −0.04, 5.59, −1.16, 0.43] × 1015 1.02 × 1016

Note: ∗Japan Standard Time

Table 3.3: MT elements of the inferred solutions for Kumamoto earthquakes in Har-
vard/USGS form.

3.3.5 CMTs with significant CLVD component
The inferred CMT solutions of the Kumamoto earthquakes were decomposed
into combination of DC and CLVD sources. While the DC component has direct
physical interpretation in terms of shear faulting, the CLVD component points
to possible complexity of the faulting (e.g., Frohlich 1994). Indeed, the non-
DC MT can be decomposed into a combination of two or more DC sources.
Unfortunately, such decomposition is mathematically non-unique, which brings
difficulties to interpretation, and requires some physical constraint.

Non-DC MT decomposition into two DC MTs

Jost & Herrmann (1989) decompose a deviatoric MT into so-called major and
minor DC sources preserving directions of the three principal stress axes (P-, T-
and N-axis). Note that despite the fact that the principal stress axes directions
are preserved, the axes types may generally interchange. Let us assume absolute
values of non-DC MT eigenvalues |λ1| ≥ |λ2| ≥ |λ3| with respective eigenvectors
v1, v2 and v3 (1 × 3 row vectors). We use definition of the major and minor DC
moment tensors as

MTmajor = λ2
(

− vT
1 v1 + vT

2 v2
)
, (3.13)

MTminor = λ3
(

− vT
1 v1 + vT

3 v3
)
. (3.14)

In such formulation, the major MT is the best DC approximation of a shear
seismic source, under additional assumption of preserved main principal stress
axis (axis with λ1) of the major and minor MTs.

The decomposition in Eqs (3.13) and (3.14) has one unique solution, but
the assumption of fixed directions of the principal stress axes for the subsources
is physically too restrictive. Therefore, we propose to weaken this assumption
by systematic search among subsources with slightly deviated directions of the
principal stress axes. To this, we apply a grid search for strike, dip and rake
angles of the two DC sources with prescribed main axis difference being less than
20°. The optimal scalar seismic moments of each of the two tested DC sources k
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and l are obtained by linear inversion
b̃kl = (BT

klBkl)−1 (BT
kln), (3.15)

where n is vectorized non-DC MT (9 × 1 column vector), Bkl is 9 × 2 matrix
composed of two tested vectorized DC MTs with unit scalar seismic moments and
b̃kl is vector of the optimal scalar seismic moments. The fit of the summed DC
MTs with the target non-DC MT n is measured by misfit (normalized variance)

ℓkl =

n − Bklb̃kl

2

∥n∥2 · 100 % (3.16)

Note that the scalar seismic moments obtained by (3.15) may also have negative
values; such solutions are considered unphysical and are thus excluded. Then, we
accept solutions with misfit (3.16) lower than 1 %. The result of this approach is
a set of possible decompositions of non-DC MT into two DC MTs with prescribed
main axis difference being less than 20°.

Application of the non-DC MT decomposition

The decomposition methodologies (Eqs (3.13), (3.14), (3.15) and (3.16)) are based
on preserving main principal stress axis with the largest absolute eigenvalue |λ1|;
it may be either P-axis or T-axis of MTs. In the Kumamoto area, the stress field
has σ3 as the main principal stress in the NNW–SSE direction, while σ1 and σ2
in WSW–ENE and vertical directions, respectively, have similar size (Matsumoto
et al. 2015, Fig. 3.7e). Hence, the decomposition of the selected non-DC MTs
was performed to preserve T-axis (related to the stable σ3 direction).

Three of the inferred MTs of the Kumamoto earthquakes (events No. 1, 3 and
7) have significant CLVD component. Two of them (events No. 1 and 7) have
T-axis as the main principal stress axis; hence, we analyzed those two in detail.
The first analyzed earthquake is the strongest MJMA6.5 strike-slip foreshock, and
the second event is MJMA5.4 normal faulting aftershock. The decomposition of
these non-DC MTs into major and minor DC sources is depicted in Fig. 3.7a, b.
The summed MTs in Fig. 3.7 are in perfect agreement with our original non-DC
MTs in Fig. 3.6. In the decomposition with preserved T-axis (Fig. 3.7a, b, and
Tables 3.4 and 3.5), the major MT is the best DC approximation of the shear
seismic source, while minor MT represents complexity of the faulting (secondary
faulting mechanism). It has to be emphasized that the major and minor DC
sources cannot be understood as two asperities of an activated fault system;
the decomposition is merely mathematical description of a complex earthquake
source.

Mechanism S/D/R [◦] DC % M0 [Nm]
(

M0/Msum
0

)
· 100 %

Original non-DC MT Strike-slip 33/82/-155 64 1.84 × 1018 100
MTmajor Strike-slip 33/82/-155 100 1.51 × 1018 82
MTminor Normal 93/60/-63 100 0.33 × 1018 18
MTsum Strike-slip 33/82/-155 64 1.84 × 1018 100

Note: Decomposed major and minor MTs and their sum MTmajor + MTminor = MTsum; S/D/R–strike/dip/rake

Table 3.4: Decomposition of non-DC MT of the MJMA6.5 foreshock from 2016/4/14
21:26:35 JST (event No. 1) and the decomposition by Eqs (3.13) and (3.14) preserving
MT T-axis.
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Better understanding can be gained from the examples of possible decom-
position provided by the grid search approach (Fig. 3.7c, d), documenting the
non-uniqueness of the decomposition. Nevertheless, all the selected examples
are, generally, a combination of a strike-slip and a normal dip-slip mechanism (as
shown in Fig. 3.7), which is consistent with the tectonic settings of the intersec-
tion of the Hinagu and Futagawa fault zones.

Figure 3.7: Decomposition of non-DC MTs of the MJMA6.5 foreshock (left column)
and the MJMA5.4 aftershock (right column) into combination of two DC MTs; DC MTs
are shown together with their sum MT1 + MT2 = MTsum by trinity of beach-balls;
radius of beach-balls is proportional to scalar seismic moment. a) and b) are unique
solutions of the MT decomposition preserving main (T-)axis (Eqs (3.13) and (3.14)).
c) and d) are selected representative solutions of the non-unique MT decomposition by
the grid search approach, where the scalar moments were obtained by a linear inversion
(3.15). e) the regional stress field indicated by directions of σ1, σ2 and σ3, dopted from
Matsumoto et al. (2015).

Mechanism S/D/R [◦] DC % M0 [Nm]
(

M0/Msum
0

)
· 100 %

Original non-DC MT Normal 68/63/-95 75 6.22 × 1016 100
MTmajor Normal 68/63/-95 100 5.44 × 1016 87
MTminor Strike-slip 297/81/16 100 0.79 × 1016 13
MTsum Normal 68/63/-95 75 6.22 × 1016 100

Note: Decomposed major and minor MTs and their sum MTmajor + MTminor = MTsum; S/D/R–strike/dip/rake

Table 3.5: Decomposition of non-DC MT of the MJMA5.4 aftershock from 2016/4/16
16:02:01 JST (event No. 7) and the decomposition by Eqs (3.13) and (3.14) preserving
MT T-axis.
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3.4 Geometry of the activated ruptures
The inferred CMTs of the analyzed events exhibit significant systematic spatial
variations throughout the source region (Fig. 3.8). Analyzed CMTs of foreshocks
are strike-slip events located near the surface traces of the Hinagu and Futagawa
faults (red DC beach-balls in Fig. 3.8). Contrarily, aftershocks have various
mechanisms with majority of normal dip-slips (blue DC beach-balls in Fig. 3.8).
We estimate that more than 99 % of the total scalar seismic moment of the
Kumamoto sequence in studied area was released by the analyzed events together
with the MJMA7.3 mainshock. Hence, we aim to construct the network of major
faults and ruptures, which were activated within the analyzed sequence, from the
CMT solutions.
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Figure 3.8: Map of inferred CMTs of the Kumamoto earthquake sequence. CMTs are
shown by beach-ball representation of the best DC source. The background seismicity is
adopted from Kato et al. (2016). The sizes of the circles are proportional to the JMA
magnitude of the events. Events are numbered according to Table 3.2. Black lines are
traces of vertical cross sections shown in Fig. 3.9. The topography originates from the
SRTM-90m digital elevation data. For details, see legend.

Firstly, we determine the preferred fault planes out of the two MT nodal
planes based on the (a) orientation of surface traces of the faults; (b) geometry
of clusters of the relocated hypocenters; and (c) by the mutual co-location of the
hypocenter and centroid (so-called H–C method, Zahradńık et al. 2008). In the
latter method, the fault plane is identified as that one from two nodal planes of
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CMT that encompasses the hypocenter location in 3D. The assumption is that
ruptures propagate from the hypocenter along a fault plane described by the CMT
solution. Major surface traces of the Hinagu and Futagawa faults are oriented
in the NE–SW direction, which is indicative for the strike-slip fault planes. The
strike-slip fault planes of Hinagu fault zone are noticeable also in the vertical
cross sections in Fig. 3.9 showing hypocenters of the Kumamoto earthquakes
as inferred by Kato et al. (2016). The H–C method is useful, especially for
the normal dip-slip aftershocks with unclear evidence of surface traces of faults;
moreover, it supports also assumed orientation of strike-slip fault planes. Hence,
the strike-slip fault planes are identified with higher certainty than the dip-slip
fault planes. Determined preferable nodal planes of the sources are listed in
Table 3.2 by means of their strike, dip and rake angles.
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Figure 3.9: Vertical cross sections with inferred CMTs (beach-balls) and relative loca-
tions (green dots) of earthquakes adopted from Kato et al. (2016). For events coloring
and cross-sectional placement, see Fig. 3.8. Events shown in the cross sections are
taken from volume spreading 5 km on each side of the cross-sectional plane. Events are
numbered according to Table 3.2

Secondly, we estimate the rupture area of the analyzed earthquakes from their
scalar seismic moments. The adopted empirical relationship from Somerville
et al. (1999) is based on the self-similar scaling of the large to midsize crustal
earthquakes. The rupture area A in square kilometers is given by

A = 2.23 · 10−15 · M
2/3
0 , (3.17)

where the scalar seismic moment M0 is in dyne − cm. The estimated rupture
areas supplemented by rupture lengths L, assuming square geometry of the fault
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planes, are listed in Table 3.6. The rupture area and geometry of the MJMA7.3
mainshock are adopted from the slip inversion by Asano & Iwata (2016), having
area of 756 km2.

Event
No. MJMA Date Time∗ A [km2] L [km] R [km]
1 6.5 2016/4/14 21:26:35 155.4 12.5 1.3
2 6.4 2016/4/15 00:03:47 110.3 10.5 1.1
3 5.9 2016/4/16 01:46:56 62.5 7.9 0.2
4 5.8 2016/4/14 22:07:35 28.8 5.4 1.6
5 5.4 2016/4/16 01:44:06 10.3 3.2 0.0
6 5.4 2016/4/16 09:48:32 16.1 4.0 1.7
7 5.4 2016/4/16 16:02:01 16.2 4.0 1.6
8 5.1 2016/4/14 23:43:41 9.8 3.1 1.7
9 5.0 2016/4/14 22:38:43 8.2 2.9 0.3

10 4.9 2016/4/16 02:04:11 5.3 2.3 3.9
11 4.8 2016/4/16 07:23:55 4.9 2.2 2.6
∗Japan Standard Time; A–total rupture area; L–rupture length assuming square geometry of the fault plane;
R–minimum distance in 3D between the hypocenter and the respective fault plane

Table 3.6: Rupture area of the analyzed Kumamoto earthquakes estimated from em-
pirical relation by Somerville et al. (1999) in Eq. (3.17)

We have centered the assumed rupture planes defined by their spatial orien-
tation (Table 3.2) and rupture size (Table 3.6) in their respective CMT locations
(Table 3.2) and plotted them in 3D visualization program ParaView (Fig. 3.10).
As locations of the inferred CMTs and also hypocenters are subjects of uncer-
tainty (estimated to be up to 1.5 km for CMTs), the assumed fault planes do
not necessarily cross perfectly the hypocenter. The minimum distance of the
hypocenters from the respective fault planes is shown in Table 3.6 as parame-
ter R. Foreshocks’ major ruptures (red squares in Fig. 3.10) continuously cover
the northernmost part of the Hinagu fault zone, having length of approximately
20 km. They span from the surface to the depth of approximately 14 km. The
aftershocks’ major ruptures (blue squares in Fig. 3.10) spread NW along the
adopted fault plane of the MJMA7.3 mainshock (yellow rectangles in Fig. 3.10).
Moreover, three of the inferred aftershock’s ruptures (events No. 3, 5 and 7)
intersect the mainshock fault plane.
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Figure 3.10: Visualization of the assumed activated fault planes in top, south-side,
east-side and west-side view; red squares = foreshocks’ ruptures; blue squares = after-
shocks’ ruptures; yellow rectangles = mainshock’s rupture adopted from Asano & Iwata
(2016); green dots = relative locations of earthquakes inferred by Kato et al. (2016) for
period April 14–May 13, 2016. The scale in figure is only orientative, because of used
perspective projection.
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3.5 Discussion

3.5.1 Solutions in seismotectonic framework

The relationship between the earthquakes, active tectonics and faults may play
role in the local seismic hazard assessment. The constructed network of activated
ruptures (Fig. 3.10) represents such seismotectonic description of the intersection
of the Hinagu and Futagawa fault zones. Foreshocks (red beach-balls in Fig. 3.8)
imply right-lateral strike-slip movements in the NE–SW direction in the Hinagu
fault zone. Those ruptures located close to the intersection of the Hinagu and
Futagawa fault zones are dipping slightly to ESE, while those in the southern
area are dipping to WNW. The activated ruptures span from surface to depth of
approximately 14 km. Contrarily, aftershocks are mostly normal dip-slip events
(blue beach-balls in Fig. 3.8) and spread NW along the assumed fault plane of
the MJMA7.3 mainshock (see Fig. 10), where the surface subsidence occurred
as documented by InSAR (Himematsu & Furuya 2016). Aftershock’s ruptures
are situated at depths greater than 5 km, close to the assumed fault plane of the
mainshock (adopted from Asano & Iwata 2016), and three of them intersect the
mainshock fault plane. These findings imply that foreshocks and partially also
mainshock are driven by stresses of the NE–SW shear zone (western extension
of the MTL), while aftershocks are mostly related to the N–S extensional stress
regime of Beppu–Shimabara graben (Kamata & Kodama 1994), being triggered
by the mainshock. This is confirmed by principal stress axes analysis performed
by code of Vavryčuk (2014), see Fig. 3.11, showing that the N–S extensional
stress σ3 is stable (blue dots in Fig. 3.11a, b), while main principal stress σ1 is
oriented NE–SW and vertically for foreshocks and aftershocks, respectively (red
dots in Fig. 3.11a, b).

Co-activation of the right-lateral strike-slips with normal faulting ruptures
through the sequence was introduced also by static slip model from geodetic data
(Himematsu & Furuya 2016; Kobayashi 2017). Field investigation by Toda et al.
(2016) shows that surface displacements along the previously mapped active fault
traces of the Hinagu–Futagawa fault zone are dominated by right-lateral strike-
slip surface displacement up to 2 m. A normal surface rupture zone of about
10 km in length dipping to northwest, which is parallel to the Futagawa fault out-
side the Aso caldera, was also reported by Toda et al. (2016), and its maximum
co-seismic displacement is also up to 2 m. The normal dip-slip aftershocks that
occurred along the NW edge of the mainshock rupture had no clear relationship
with co-seismic surface ruptures; however, minor surface ruptures in downtown
of Kumamoto City have been mapped by InSAR (Himematsu & Furuya 2016)
and field survey (Goto et al. 2017). The field investigations imply the complex
surface phenomena and tectonic settings in this region. Further surveys on imag-
ing causative source faults beneath the surface are necessary to investigate the
relationship between the surface ruptures and the geometry of earthquake source
faults.
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Figure 3.11: Principal stress axes analysis for foreshocks (left) and aftershocks (right)
by method of Michael (1984) with uncertainty estimate coded by Vavryčuk (2014). a)
and b) show confidence limits of principal stress axes visualized by 500 randomly per-
turbed pure shear solutions by the approach of Vavryčuk (2014) for foreshocks and
aftershocks, respectively. In panels c) and d) are histograms of their respective shape
ratios defined as = σ1−σ2

σ1−σ3
. Note that the relatively low shape ratios imply σ1 ≈ σ2.

Finally, here we summarize the temporal seismotectonic evolution of the Ku-
mamoto sequence:

• Activity started on April 14th by the MJMA6.5 foreshock close to the inter-
section of the Hinagu and Futagawa fault zones as right-lateral strike-slip
shear movement in the NE–SW direction on fault plane(s) dipping slightly
to the ESE (events No. 1 and 4).

• Right-lateral strike-slip shear movements continued by simultaneous activ-
ity in the northern (dipping to the ESE) and southern (dipping to the
WNW) segments of the Hinagu fault zone (events No. 8 and 9).

• On April 15th, activity migrated to the southern (dipping to the WNW)
segment of the Hinagu fault zone. The activity comprised the second largest
foreshock MJMA6.4 (event No. 2).

• This was followed by the mainshock on April 16th as right-lateral shear
slips complemented by normal dip-slip in the Futagawa fault segment in
the later phase of the rupture propagation.

• Aftershocks in the area of interest were mostly dip-slip events, spreading
along the NW edge of the mainshock rupture (events No. 3, 6, 7 and 11).
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3.5.2 Complexity of activated ruptures
The local stress field conditions (e.g., Matsumoto et al. 2015) and seismotectonic
settings of the intersection of the Hinagu and Futagawa fault zones imply com-
bination of a strike-slip and a normal dip-slip shearing mechanism. Indeed, the
source models for the mainshock (e.g., Asano & Iwata 2016; Kubo et al. 2016b)
suggest simultaneous right-lateral strike-slip shear movement complemented by
normal dip-slip movement of the Futagawa fault segment. The rupture of the
mainshock then has to be complex and segmented to two or more fault planes
(as suggested by the mainshock source models).

The analyzed foreshocks and aftershocks are mostly right-lateral strike-slip
and a normal dip-slip shearing event with insignificant CLVD component and
hence may be assumed as single fault plane ruptures. The exceptions are the
MJMA6.5 foreshock (event No. 1) and the MJMA5.4 aftershock (event No. 7)
with significant CLVD component and T-axis as the main principal stress axis.
These two events can be interpreted as a result of complex ruptures composed
of right-lateral strike-slip and a normal dip-slip fault plane with preserved T-axis
(Fig. 3.7). The assumption of preserved T-axis is in accord the inferred principal
stress in Fig. 3.11, where σ3 is stable in N–S direction. Such interpretation
of non-DC component is supported by the static slip model for the MJMA6.5
foreshock inferred from InSAR data (Kobayashi 2017), being composed of right-
lateral strike-slip displacement on the Hinagu fault segment and normal dip-slip
displacement on the Futagawa fault segment.

3.5.3 Comparison with routine MT catalogues
The MTs for most of the processed events were also inferred routinely by JMA
and NIED institutions. Our and JMA approaches infer CMTs by searching the
centroid location in both horizontal and vertical directions. Contrarily, NIED
fixes the horizontal centroid location at the (revised) JMA epicenter and searches
for the centroid depth only.

Our MTs are compared with solutions from JMA and NIED catalogues in
Fig. 3.6. Our solutions generally agree with both agency MTs in terms of nodal
planes angles, while non-DC components agree better with JMA (e.g., see the
DC component percentage for the MJMA6.4 foreshock, No. 2 in Fig. 3.6). This
can be related to the use of higher number of records from shorter epicenter
distances and searching CMT in both horizontal and vertical directions in our
and JMA approaches. Moreover, uncertainty estimate by our approach allows
the assessment of reliability of the inferred non-DC component. For example,
in cases of events No. 2 and 11 (Fig. 3.6), the JMA and our solutions exhibit
opposite signs of the CLVD component, but this difference is within the estimated
uncertainty.

Chapter 3 96



3.6 Conclusions
We have presented application of the innovative Bayesian full-waveform CMT
inversion method, which takes into account uncertainty of the velocity model.
The approach allows us to reliably assess the uncertainty of the source parameters,
which proved to be beneficial in terms of interpretation of the results (statistical
significance of selected source parameters). Additionally, we have implemented
decomposition of MT with significant CLVD component into two shear MTs with
preserved T-axis as a physical constraint.

The methodology has been applied to significant earthquakes from the Ku-
mamoto sequence of April 2016 with MJMA magnitude in range of 4.8–6.5. The
quality of the inferred solutions is mostly high as we have used dense network of
local to regional receivers. The inferred CMT solutions show systematic spatial
and temporal variations. Hence, we have estimated geometry of the major acti-
vated ruptures and interpreted them in the seismotectonic framework. Foreshocks
imply right-lateral NE–SW strike-slip movements in the Hinagu fault zone. Af-
tershocks are mostly normal dip-slip events spreading along the NW edge of the
assumed mainshock fault plane. Moreover, the inferred CMTs with significant
CLVD component may suggest a complex source process. These events can be
interpreted as a result of complex ruptures composed of right-lateral strike-slip
and a normal dip-slip fault plane. Our model of major activated ruptures in-
ferred from seismic data is consistent with the local tectonic settings, stress field
conditions and geodetic data.
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3.7 Unpublished supplementary material

3.7.1 ISO component
A full MT can be generally decomposed into DC, CLVD and ISO components.
As the volumetric ISO component is mostly negligible in the particular case of
tectonic earthquakes, MT inversion is often performed as deviatoric inversion to
increase stability of the inverse problem (suitable for shear tectonic earthquakes).
In the case of 2016 Kumamoto sequence, we first inferred full CMTs in a rough
space-time grid, then excluded stations with very poor fit, and finally performed
Bayesian deviatoric CMT inversion in a dense grid (see Section 3.3.3). However,
we should test whether the possible content of the ISO component could have
an influence on the inferred deviatoric solution and the uncertainty of the DC
to CLVD ratios. Therefore, we present here additional inference and analysis of
full CMTs and its comparison with inference of deviatoric CMTs. The aim is to
investigate the possible influence of neglecting ISO in the inversion.

For this analysis we selected the three largest foreshocks with MJMA6.5,
MJMA6.4, MJMA5.8 (events No. 1, 2 and 4) and the MJMA5.4 aftershock (event
No. 7) with the significant CLVD component (see Tabs 3.1 and 3.2). The inferred
full MT solutions for these events are compared with deviatoric MTs in Fig. 3.12.
The figure shows the best fitting MT solutions and their uncertainties depicted by
an ensemble of 1000 random possible solutions drawn from the ten-dimensional
posterior PDF. Particularly, we show in Fig. 3.12 marginal PDFs by means of
beach-ball representation, DC, CLVD and ISO components of the inferred full
MT in comparison with the deviatoric ones.

MTs from full and deviatoric inferences are generally in almost perfect agree-
ment in terms of the best fitting MT solutions. There is also very good con-
formity in the assessed uncertainty of the DC and CLVD components. The ISO
components decomposed from full MT solutions have very low values with narrow
uncertainty interval around 0 %.

To conclude, neglecting the ISO component does not play an important role in
the particular case of the 2016 Kumamoto CMTs and their interpretation. How-
ever, we acknowledge, that in specific cases the deviatoric MT may be generally
insufficient and the full MT should be preferred.
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Event 

CMT solution DC CLVD ISO 
No. MJMA 

Date 
Time (JST) 

1 6.5 
2016/4/14 
21:26:35 

Full CMT inversion

 

DC = 65(±22)%

 

CLVD = 29(±26)%

 

ISO = 7(±10)%

 
Deviatoric CMT inversion 

 

DC = 64(±24)%

 

CLVD = 36(±24)%

 

ISO = 0% 

2 6.4 
2016/4/15 
00:03:47 

Full CMT inversion 

 

DC = 86(±26)%

 

CLVD = 14(±32)%

 

ISO = -1(±12)%

 
Deviatoric CMT inversion 

 

DC = 87(±20)%

 

CLVD = 13(±26)%

 

ISO = 0% 

4 5.8 
2016/4/14 
22:07:35 

Full CMT inversion 

 

DC = 94(±12)%

 

CLVD = 6(±12)%

 

ISO = 0(±14)%

 
Deviatoric CMT inversion 

 

DC = 94(±10)%

 

CLVD = 6(±12)%

 

ISO = 0% 

7 5.4 
2016/4/16 
16:02:01 

Full CMT inversion 

 

DC = 73(±10)% 

 

CLVD = 27(±8)%

 

ISO = 0(±12)% 

 
Deviatoric CMT inversion 

 

DC = 75(±8)% 

 

CLVD = 25 (±8)%

 

ISO = 0% 

 

Figure 3.12: Comparison of inferred full and deviatoric CMTs for selected events.
The best fitting MT solutions are supplemented by uncertainty of the mechanism de-
picted by 1000 random possible solutions drawn from the ten-dimensional posterior
PDF. We show beach-ball representation and histograms of the DC, CLVD and ISO
values from this ensemble.
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4. Bayesian self-adapting fault
slip inversion with Green’s
functions uncertainty
Abstract: Kinematic finite-extent source models of earthquakes are inferred by
inverse modeling of observed seismic waveforms and/or geodetic data. The solu-
tions are subject of significant uncertainty as a result of inaccurate observations
and imperfect physical description of the complex properties of the Earth’s crust.
In the case of waveform-based earthquake source inversions the major source of
uncertainty is related to the uncertainty of Green’s function (GF) due to the inac-
curacy of the crustal model considered, and subjectively selected parametrization
of the finite-extent source model. Recently, Bayesian inversions of the fault slip
distribution taking into account the GFs’ uncertainty have been introduced by
several studies. We develop a Bayesian parametric slip inversion method with
self-adapting parametrization of slip functions and with an analytical represen-
tation of the GF uncertainty. Our finite fault inversion consists of four major
components: 1) convenient parametrization of the model space to limit its num-
ber of dimensions, 2) fast direct solver, which provides synthetics for a given set of
parameters, 3) trans-dimensional Markov chain Monte Carlo algorithm on sam-
pling the posterior Bayesian probability density in the self-adapting model space,
and 4) statistical processing of the ensemble of solutions to evaluate the result
uncertainty. The performance of our method is demonstrated on the case study
of the destructive Mw7.1 mainshock of the 2016 Kumamoto, Japan, earthquake
sequence. We infer ensemble of more than 590k possible finite source models, rep-
resenting samples of the posterior probability density function, and inspect which
features of the finite source model are reliable and which are rather artifacts.

4.1 Introduction
Earthquake ground motions originate from rupture processes on faults in Earth.
Constraints on earthquake source models are important for better understanding
of earthquake physics and for seismic hazard analysis (e.g., Hutchings et al. 2017),
which is particularly significant for construction engineering and disaster mitiga-
tion planning. In addition, earthquake source models serve as input for studies
like analysis of the earthquake energy budget (e.g., Kanamori & Rivera 2006),
dynamic stress drop analysis (e.g., Day et al. 1998), Coulomb stress modeling
(e.g., King & Devès 2015), etc.

Kinematics of tectonic earthquake sources can be described by finite-extent
source models with heterogeneous distribution of slip functions on a fault (see
Section 1.1.2). Such models are inferred by inverse modeling of observed seismic
waveforms and/or geodetic data. Nevertheless, the inverse solutions are subject
to significant uncertainty (e.g., Mai et al. 2016). Consideration of the solution
uncertainty is hence important for assessment of source model reliability, which
improves physical interpretation of the results, re-evaluation of seismic hazard,
and anti-seismic construction design.
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Approaches to the inference of fault slip models differ mainly by chosen
parametrization of the source model (e.g., Ide 2007, and references therein). The
inverse problem can be linear when a dense spatial and temporal discretization
of the slip rates over the assumed fault is considered (e.g., Olson & Apsel 1982;
Hartzell & Heaton 1983; Sekiguchi et al. 2000; Gallovič & Zahradńık 2010), as
commonly used to infer kinematic sources of large crustal earthquakes (e.g., Wald
& Heaton 1994; Asano et al. 2005; Asano & Iwata 2016; Gallovič et al. 2015; Pizzi
et al. 2017). Linear inversions (also known as multiple-time window methods) are
typically overparametrized and hence extremely unstable, requiring a regulariza-
tion by positivity of the slip rates and spatial-temporal smoothing. Such regular-
ization has to be specified a priori for the whole model and it has been shown to
produce artifacts (e.g., Zahradńık & Gallovič 2010). The issue of ill-posedness of
the linear rupture inversions was tackled by exploring the eigenstructure of the
inverse problem by Gallovič & Ampuero (2015). They decomposed the linear for-
ward operator by singular value decomposition, providing set of singular vectors
in the model space. Differencing large and small singular values then points on
the correctly resolved features of such inversion.

Non-linear fault slip inversions rely on spatial-temporal parametrization of
the slip-rate function (SRF). Such approach reduces the number of unknown
parameters and revoke requirements on a regularization (e.g., Archuleta 1984; Ji
et al. 2002; Bouchon et al. 2002; Liu & Archuleta 2004; Piatanesi et al. 2007;
Monelli et al. 2009; Minson et al. 2013; Minson et al. 2014; Dettmer et al. 2014).
However, these inversions require additional demands on computational power as
the strongly non-linear inverse problem should be solved by a Monte-Carlo (MC)
method.

Each particular selection of the parametrization represents an assumption on
the slip distribution and can lead to different inverse solutions (e.g., Clévédé et al.
2004). This brings concerns about the reliability of the inferred source models due
to the non-uniqueness of the inverse problem (e.g., Hartzell et al. 2007; Mai et al.
2016). In particular, Beresnev (2003) critically illustrated that the choice of a
particular inversion scheme, parametrization of the SRF, spatial parametrization
of the slip on the fault, and geometry of the monitoring array have big influence
on the inferred solution. It is rather complicated to distinguish between artificial
and real features of the finite-extent source models, and hence the importance of
the consideration of the solution uncertainty arises again.

The finite-extent source model inversions with the assessment of the solution
uncertainty are usually performed in the Bayesian probabilistic framework (see
Section 1.2). In the Bayesian framework a prior information on the physical
model is specified, which is then updated to a conditional posterior probability
of model parameters affected by the observed data. In such scheme, the assump-
tions on the uncertainty of the observed data and theory needs to be incorporated
(e.g., Tarantola & Valette 1982). Yagi & Fukahata (2011) and Hallo & Gallovič
(2016) emphasize that the major source of such uncertainty is related to the un-
certainty of Green’s function (GFs) due to the inaccuracy of the crustal model
considered. The Bayesian slip inversions have been introduced by several recent
studies. For example, Minson et al. (2013, 2014) and Kubo et al. (2016a) take
into account the GF variance, treating it as an unknown parameter with uniform
and log-normal probability distributions, respectively. Duputel et al. (2014, 2015)
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show the importance of considering the full covariance matrix in inversions, and
propose to estimate the full covariance matrices by considering linear relationship
between the GFs and random perturbations of the velocity model. Further, Hallo
& Gallovič (2016) introduced so-called approximate (analytical) covariance func-
tions inferred from observed seismograms, and have shown that these functions
can reliably represent GFs uncertainties (see Chapter 2).

Bayesian inversions estimate the solution uncertainty for the particular choice
of parametrization. The choice of parametrization may have big influence on
the inferred solution (e.g., Beresnev 2003), and hence also on the estimated
uncertainty of the solution. Therefore, it is advisable to choose the source
model parametrization considering the resolution power of the observed data
(e.g., Custódio & Archuleta 2007). Over-parametrization is associated with over-
fitting the observed data (i.e. noise fitting), while under-parametrization is as-
sociated with too simple models. This issue can be overcome by so-called trans-
dimensional (trans-D) Bayesian inversion method developed by Green (1995,
2003), where the number of model parameters is subject to inversion itself (e.g.,
Sambridge et al. 2006; Bodin et al. 2012; Dettmer et al. 2014). A non-linear
hierarchical Bayesian fault slip inversion with trans-D parametrization was intro-
duced by Dettmer et al. (2014). This approach does not include uncertainty of
the GFs, yet it takes into account the non-stationary character of the noise in the
residual waveforms (following Dettmer et al. (2007)).

Our work introduces a non-linear Bayesian fault slip inversion with effective
trans-D parametrization of the SRFs and implemented uncertainty of GFs (follow-
ing Hallo & Gallovič 2016). The SRFs’ parametrization relies on the regularized
Yoffe function (Tinti et al. 2005), which was shown to be compatible with rupture
dynamics (e.g., Bizzarri 2012), and hence, it may interlink kinematic and dynamic
rupture parameters. The slip on the fault is modeled using biharmonic spline in-
terpolation from variable number of spline points (Sandwell 1987; Causse et al.
2017). This parametrization permits the use of the trans-D Markov chain Monte
Carlo (MCMC) method (e.g., Sambridge et al. 2006), leading to a self-adapting
model space parameterization driven by the observed data.

The performance of our parametric slip inversion method is demonstrated on
the inversion of the destructive Mw7.1 mainshock of the 2016 Kumamoto, Japan,
earthquake sequence (see Chapter 3). We use strong motion records of the K-
NET, KiK-net and F-net networks (Okada et al. 2004) and infer an ensemble of
more than 590k possible finite-source models, representing samples of the pos-
terior probability density function. Such massive ensemble of solutions is then
statistically processed to reveal which features of the finite source model of the
2016 Kumamoto mainshock are reliable and which are rather artifacts.
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4.2 Method

4.2.1 Rupture parametrization
Let us assume a planar generally oriented finite-extent fault Σ in solid medium.
The displacement wavefield u = (uE, uN , uZ) measured at receiver position ζ
and time t is related to the slip-rate function ∆u̇(ξ, t) distributed along the fault
by the representation theorem (see Section 1.1.2). Assuming that the shear slip
direction does not change in time, the representation theorem reads

u(ζ, t) =
∫∫
Σ

∆u̇(ξ, t) ∗ G(ζ, t; ξ) dΣ(ξ), (4.1)

where ∗ denotes temporal convolution. G represents the displacement response
of the medium at location ζ to double-couple force acting at source position ξ
with Heaviside step time function. Note that here we denote G as the GFs while
their definition by Aki & Richards (2002) (Section 1.1) is more general.

The fault plane is spatially discretized into NΣ uniform rectangular subfaults
of area ∆Σ. These subfaults are assumed to be small enough to be treated as
point sources with respect to the used wavelengths and source-receiver distances.
Then, formula for the n-th displacement component reads

un(t) = ∆Σ
NΣ∑
i=1

∆u̇i(t) ∗ Gni(t), (4.2)

where Gni(t) is n-th component of the GFs for the subfault i. The fault geometry
is fixed and expected to be given apriori (e.g., from geological mapping or as result
of a centroid moment tensor inversion). Then, the subfaults are characterized by
their strike and dip angles (see Aki & Richards 2002, fig. 4.13), while rake angles
ϑi (i.e. slip direction on the fault) are subject to the inversion. The GFs for
given subfault i can be expressed by a linear combination of two GFs, Ĝni(t) and
Ǧni(t), for two given perpendicular rake angles ϑ̂ and ϑ̌ as

Gni(t) = Ĝni(t) cos(ϑi − ϑ̂) + Ǧni(t) cos(ϑ̌ − ϑi), (4.3)

where ϑ̌ − ϑ̂ = 90◦. The advantage of such formulation is possibility to pre-
compute GFs for all receivers and subfaults prior to the inversion (e.g., by discrete
wavenumber method, Bouchon 1981) for arbitrarily rake angle.

Slip-rate function (SRF)

In our approach, we utilize a temporal parametrization of ∆u̇i(t), and solve the
problem as non-linear. The time dependence of SRF is modeled by the regu-
larized Yoffe function Υ(t; τR, τP ) introduced by Tinti et al. (2005) (see Supple-
ment 4.5.1), and the formula for SRF then reads

∆u̇i(t) = AiΥ
(
t − t0

i ; τR
i , τP

i

)
, (4.4)

where t0
i is rupture time, Ai is slip, τR

i is rise time, and τP
i is so-called peak time

(i.e. duration of positive slip acceleration of SRF), respective to subfault i. Note
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that the regularized Yoffe function is non-negative function of unit area, i.e.

1 =
τR

i∫
0

Υ
(
t − t0

i ; τR
i , τP

i

)
dt. (4.5)

The regularized Yoffe function can be expressed analytically (Supplement 4.5.1)
and it is dynamically compatible with processes of sub-shear ruptures (Bizzarri
2012), therefore it is suitable as shape of SRF for fast forward problem compu-
tations. To summarize, the SRF of a given subfault i is in our formulation fully
parametrized by four parameters Ai, t0

i , τR
i , τP

i (i.e. slip, rupture time, rise time
and peak time).

Rupture propagation

Initiation of the rupture process in the subfaults distributed on the fault surface
is defined by rupture times t0

i (see Eq. (4.4)). We assume that the rupture
propagates from a hypocenter

h = (xH , yH , tH), (4.6)

where (xH , yH) ∈ Σ denote coordinates of the hypocenter on the fault and tH is
the hypocenter time. The rupture propagates with rupture-front velocity v0(Σ)
which is function of position on the fault plane. The rupture times are then
formally solution of two-dimensional eikonal equation, describing propagation
of the rupture-front along the fault. The eikonal equation can be numerically
solved on dense grid by a method relying on a systematic application of Huygens’
principle in the finite difference approximation (e.g., Podvin & Lecomte 1991).
Nevertheless, the selection of the particular rupture-front propagation solver is
not bounded to our inversion method.

Then, we treat the hypocenter h and rupture-front velocity function v0(Σ) as
model parameters instead of arbitrary rupture times t0

i . Such parametrization is
not too restrictive because of the assumption of spatially variable rupture-front
velocity. It forbids nucleation of the rupture from multiple spatially separated
areas and enforces causality.

Spatial parametrization

Parameters ϑi, Ai, τR
i and τP

i are assigned to positions of subfaults’ centers
(xi, yi) ∈ Σ on the fault. In our approach, these parameters are interpolated to
the subfaults’ centers from a sparse net of so-called control points on the fault
(e.g., Eiseman 1992; Mortenson 2006). Advantage of such approach are: lower
number of parameters and possibility of an irregular spatial parametrization.

We define two independent systems of spatial control points differing in their
spatial positioning and the interpolation method. Firstly, we use a regular grid
of control points distributed over the whole fault (see Fig 4.1a), with their to-
tal count of NΓ. Assigned parameters in the position of the r-th control point
(xr, yr) ∈ Σ can be expressed by vector Γr as

Γr =
(
ϑr, v0

r , τR
r , τP

r

)
, where (Γr)NΓ

r=1, (4.7)
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then NΓ × 4 matrix Γ parametrizes the earthquake source in terms of spatial
distribution of rake, rupture-front velocity, rise time and peak time. The value
of any parameter in i-th subfaults’ positions (xi, yi) is obtained by bilinear in-
terpolation (e.g., Jain 1989) from the regularly distributed control points with
assigned values stored in matrix Γ. In case of rupture-front velocity v0(Σ), the
values in control points are interpolated by the bilinear interpolation into the
dense finite-difference grid used by the rupture-front propagation solver (e.g.,
Podvin & Lecomte 1991), and then resampled to the given (xi, yi).

For the spatial parametrization of the slip Ai we use different system of control
points. We utilize self-adapting parametrization with varying number of control
points where the density of control points can vary spatially (Causse et al. 2017).
Such parametrization can effectively adapt to heterogeneity of slip such as, e.g., to
the case of multiple asperity source model (Lay et al. 1982). The used system of
control points consists of a varying number of points NΦ (called as “spline points”)
arbitrarily distributed over the fault plane (see Fig 4.1b). These spline points are
allowed to move over the whole fault surface during the inversion (Moreau et al.
2014; Causse et al. 2017). Then, assigned parameters of the s-th spline point can
be expressed by vector Φs as

Φs =
(
xs, ys, As

)
, where (Φs)NΦ

s=1, (4.8)

where (xs, ys) ∈ Σ are coordinates of the s-th spline point on the fault. Then
NΦ ×3 matrix Φ parametrizes the spatial distribution of the magnitude of slip on
the fault. In such formulation, positions of spline points are also parameters of
the earthquake source model. The slip magnitude at the i-th subfaults’ positions
(xi, yi) is then evaluated using biharmonic spline interpolation (Sandwell 1987).
The interpolation is performed with enforced zero slip at the fault edges; this is
achieved by adding fixed auxiliary spline points regularly distributed on the fault
edges with assigned zero slip magnitude (see Fig 4.1b). Then, utilizing biharmonic
spline interpolation by Sandwell (1987), magnitude of slip Ai at position (xi, yi)
is given by

Ai(xi, yi) =
NΦ∑
s=1

ϵs|z|2
(

ln |z| − 1
)

(4.9)

|z| =
√

(xi − xs)2 + (yi − ys)2,

where “strenght” of each spline point ϵs = ϵs′ is found by solving the following
linear system of equations:

As(xs, ys) =
NΦ∑

s′=1
ϵs′|z′|2

(
ln |z′| − 1

)
(4.10)

|z′| =
√

(xs − xs′)2 + (ys − ys′)2, with (As)NΦ
s=1.

As the system in Eq. (4.10) is linear, the values of ϵs′ can be calculated very
efficiently. Further, we allow slip magnitude As at each spline control point s vary
arbitrarily, i.e. As ∈ (−∞, ∞). Subsequently, the interpolated slip magnitudes
lower than zero are annulled as negative slip values are not expected, i.e. Ai ≥ 0.
Such approach permits to generate even sharp spatial slip distributions.
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In such system of spline points, the density of control points vary spatially,
and then the parametrization can effectively adapt to heterogeneity of slip (see
Fig. 4.1b). Furthermore, the varying number of spline points NΦ controls the
spatial complexity of the resolved slip on the fault in the inversion, which permits
the use of trans-D MCMC method (e.g., Sambridge et al. 2006). In this sense,
it leads to the self-adapting model space parametrization driven by the observed
data (trans-D Bayesian inversion).
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Figure 4.1: Schemes of two systems of control points used for the spatial parametriza-
tion of the rupture. Shaded gray rectangles represent subfaults with parameter values
coded by the shade scale (τR

i and Ai in panels a and b, respectively). Positions of con-
trol points on the fault are shown by red circles for a) regular grid, and b) system of
spline points. The blue circles show auxiliary control points setting slip magnitude on
the fault edges to zero. The total number of control points in this example is NΓ = 63
(panel a) and NΦ = 3 (panel b).

4.2.2 Forward problem
The representation theorem in Eq. (4.2) shows straightforward relation among
the synthetic displacement, GFs and the shear slip on the assumed fault. For the
sake of the numerical computations, the forward expression in Eq. (4.2) with Eq.
(4.3) included is rewritten in the discrete time samples form as

uk
n = ∆Σ ∆t

NΣ∑
i=1

NT∑
l=1

∆u̇l
i

(
Ĝk−l

ni cos(ϑi − ϑ̂) + Ǧk−l
ni cos(ϑ̌ − ϑi)

)
, (4.11)

where ∆t is temporal sampling interval of SRFs with NT samples in total (indexes
k and l denote temporal samples of waveforms and SRFs, respectively). The GFs
for two perpendicular rakes (ϑ̂ and ϑ̌) are pre-computed prior to the inversion for
all receivers and subfaults. Then, the n-th synthetic component can be directly
computed for a given set of SRFs, i.e. time series (∆u̇l

i)
NT
l=1, and respective rakes

ϑi. Note that for practical reasons, the temporal sampling interval ∆t is assumed
to be the same for the SRFs, GFs and synthetics.
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The forward problem of Eq. (4.11) is solved many times for various sets of
model parameters (or simply “models”), defined in our approach as

m = (h, vec(Γ), vec(Φ), NΦ), (4.12)

where vec(·) denote vectorization of a matrix. Vectors h and vec(Γ) (see Eqs (4.6)
and (4.7)) have a fixed size, while vec(Φ) (see Eq. (4.8)) is vector of varying length
NΦ. Such model m fully parametrizes the spatial-temporal rupture propagation
on the fault plane, where the vector’s length has meaning of the number of model
parameters.

The forward problem, where synthetic waveforms on all receivers for a given
model m are predicted by Eq. (4.11), can be expressed using a forward operator
g(·) as

d = g(m), (4.13)

where vector d contain all synthetic waveforms predicted on all three-component
receivers.

To summarize, the forward computation consists of the following steps:

• Interpolate parameters ϑr, τR
r and τP

r assigned to NΓ control points from
the regular grid (i.e. (Γr)NΓ

r=1) into all subfaults’ positions (xi, yi) by bilinear
interpolation.

• Interpolate parameter v0
r assigned to NΓ control points from the regular grid

(i.e. (Γr)NΓ
r=1) into a dense finite-difference grid used by the rupture-front

propagation solver (e.g., Podvin & Lecomte 1991).

• Evaluate rupture times t0
i in all subfaults by the eikonal solver, assuming

rupture-front propagation from the hypocenter h.

• Interpolate the slip magnitude prescribed by NΦ spline points (i.e. (Φs)NΦ
s=1)

and additional invariable auxiliary spline points distributed on the fault
edges into all the subfaults by biharmonic spline interpolation, Eq. (4.9).

• Compute SRFs for all the subfaults by Eq. (4.4).

• Perform the temporal discrete convolution of the computed SRFs and GFs
following Eq. (4.11) to acquire synthetic waveforms.

4.2.3 Bayesian inference
Lets us assume, for a moment, a constant number of spline control points, i.e.
fixed number of model parameters. In the Bayesian framework (see Section 1.2;
Tarantola & Valette 1982; Tarantola 2005) a prior assumption on the model is
specified, which is then updated to a conditional posterior probability on model
parameters affected by the observed data. The Bayesian solution of the inverse
problem is then defined as the conditional posterior probability density function
(PDF) on the model parameters p(m|dobs), where dobs denote one-column vector
of all observed data (i.e. vectorized measured seismograms).
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The Bayes’ theorem (Bayes 1763) is utilized to combine prior probability with
the observed data to acquire the posterior PDF by

p(m|dobs) = p(m) p(dobs|m)∫
p(m) p(dobs|m) dm

, (4.14)

where p(m) is a prior PDF on the model parameters, and p(dobs|m) is conditional
probability of data for given model m, i.e. so-called likelihood function. Note that
if the likelihood function is a constant function, with meaning of no information
carried by the observed data, then the posterior PDF is the same as the prior
PDF.

The likelihood function p(dobs|m) evaluates how well given model m describes
the observed waveforms dobs by means of misfit with synthetic waveforms calcu-
lated using the theoretical relation in Eq. (4.13) (i.e. misfit function). The
likelihood function p(dobs|m) can be expressed for Gaussian errors (Tarantola
2005, eq. 1.100) as

p(dobs|m) = const. exp
(

− 1
2 L(m)

)
, (4.15)

with the misfit function L(m) expressed in matrix form as

L(m) =
(
dobs − g(m)

)T
CD

−1
(
dobs − g(m)

)
. (4.16)

Gaussian covariance matrix CD characterizes cross-covariances of misfits, which
can be explained by the expected errors of observed data or the theory. The
covariance matrix CD can be decomposed by Cholesky decomposition as

CD
−1 = WT W, (4.17)

where W is an upper triangular matrix. Substituting Eq. (4.17) into Eq. (4.16),
the misfit function reads

L(m) =
(
Wdobs − Wg(m)

)T (
Wdobs − Wg(m)

)
(4.18)

=
(
d∗

obs − g∗(m)
)T (

d∗
obs − g∗(m)

)
, (4.19)

where d∗
obs and g∗(m) are so-called standardized waveforms (Dettmer et al. 2014;

Hallo & Gallovič 2016), i.e. waveforms multiplied by the upper triangular matrix
W from the Cholesky decomposition of CD.

If the estimate of data and theory uncertainties by means of the data covari-
ance matrix CD is given, then the standardized observed waveforms d∗

obs can
be pre-computed prior to the inversion. The standardized synthetic waveforms
g∗(m) can be evaluated utilizing Eq. (4.11) substituting GFs by so-called stan-
dardized GFs, Ĝ∗ and Ǧ∗. Such standardized GFs are pre-computed prior to the
inversion for the two perpendicular rakes as

vec(Ĝ∗
i ) = W · vec(Ĝi), where (Ĝi)NΣ

i=1 (4.20)
vec(Ǧ∗

i ) = W · vec(Ǧi), where (Ǧi)NΣ
i=1 (4.21)

where vec(·) denote here one-column vector of GFs for all receivers with the
source at i-th subfault position. The advantage of the formulation with stan-
dardized residuals in Eq. (4.19) is avoiding repetition of numerically demanding
multiplication by the large covariance matrix CD

−1 in Eq. (4.15). Such approach
significantly increases the efficiency of the numerical evaluation of the likelihood
function.
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Data covariance matrix

The reliability of the assessment of the solution uncertainty by such Bayesian
framework depends on the assessment of data and modeling errors. As, the
instrumental and ambient noise errors are typically negligible when dealing with
larger events, the covariance matrix CD is dominated by modeling errors governed
by the uncertainty of the GFs due to the inaccuracy of the velocity structure
considered (e.g., Yagi & Fukahata 2011; Duputel et al. 2014, 2015; Hallo et al.
2017). We include the modeling errors in covariance matrix CD following the
approach by Hallo & Gallovič (2016). They compose CD from discrete time
samples from approximate covariance functions (ACF or SACF). The formula for
ACF dependent on time t and time lag ϕ reads

ACFn(t, ϕ) = 1
L

L
2∫

− L
2

uobs
n (t − l) uobs

n (t + ϕ − l) dl−

− 1
L

L
2∫

− L
2

uobs
n (t − l) dl

1
L

L
2∫

− L
2

uobs
n (t + ϕ − l) dl, (4.22)

where uobs
n (t) is the n-th observed displacement component, and L [sec] is the

width of the uniform PDF of random perturbation defined in Eq. (2.8). The
second approximate function, the SACF, depends only on time lag ϕ as

SACFn(ϕ) = 1
T

(
robs

n (ϕ) − ∧2L(ϕ) ∗ robs
n (ϕ)

)
, (4.23)

where T is duration of the dominant part of the signal, ∗ denotes convolution,
∧2L(ϕ) is the triangle function of unit area centered around zero with duration
2L, and robs

n (ϕ) is auto-correlation of the n-th observed waveform uobs
n (t).

In the multi-station and multi-component inversions, data covariance matrix
CD has block-diagonal structure. The covariance matrices for each n-th waveform
are arranged along the diagonal, while the off-diagonal blocks are inter-component
and inter-station cross-covariances. Hallo & Gallovič (2016) successfully tested
the performance of these covariance matrices (created from ACF and SACF)
in capturing the GFs uncertainty (Chapter 2) in the moment tensor inversion
tests, and further Hallo et al. (2017) applied SACF in the Bayesian inference of
centroid moment tensors of foreshocks and aftershocks of the 2016 Kumamoto,
Japan, earthquake sequence (Chapter 3).

In this first test we deploy the time-dependent ACF covariance matrix, with
a station-specific water level added to the diagonal. As the water level we use
25 % of the maximum variance from all the three station components, which
preserves the covariance matrix invertible and also increases possible variations
of the waveforms.
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Trans-dimensional MCMC

“Everything should be as simple as it can be, but not simpler.” — Albert Einstein

“With four parameters I can fit an elephant, and with five I can make him wiggle
his trunk.” — John von Neumann

The forward problem is solved as non-linear problem by random exploration
of the model space (Monte Carlo method; see Section 1.2.2). As we assume a
varying number of spline points NΦ, the dimension of the model space may vary.
This leads to trans-D inverse problem, where the number of dimensions of model
space is treated as an unknown parameter (e.g., Green 1995, 2003; Richardson &
Green 1997; Sambridge et al. 2006; Fan & Sisson 2011).

Let us assume that we have a countable collection of model states K indexed by
parameter k ∈ K. Each model state has respective nk-dimensional model vector
wk in its own model space, wk ∈ Rnk We define state space Ξ for across-model
simulations (Green 2003, pp. 2) as

Ξ =
⋃

k∈K

(
{k} × Rnk

)
, (4.24)

which is the target of a Monte Carlo sampler (see example in Table 4.1). The
stationary posterior PDF of model m = (k, wk), where m ∈ Ξ, then following
Green (2003, pp. 2) reads

p(m|dobs) = p(k, wk|dobs) = p(k) p(wk|k) p(dobs|k, wk)∑
k′∈K

∫
Rnk′

p(k′) p(w′
k′|k′) p(dobs|k′, w′

k′) dw′
k′

,

(4.25)
where p(k) is a prior PDF on model state, p(wk|k) is prior PDF on model pa-
rameters under state k, and p(dobs|k, wk) = p(dobs|m) is conditional probability
of data for given model (k, wk), i.e. so-called likelihood function.

To draw random samples from the multiple-state posterior PDF p(m|dobs),
we utilize the reversible jump MCMC algorithm by Green (1995, 2003). The
algorithm is based on Metropolis-Hastings algorithm, developed by Metropolis
et al. (1953) and generalized by Hastings (1970), as a Markov chain Monte-Carlo
method for sampling posterior PDF by a chain of steps. The used algorithm ex-
tends the Metropolis-Hastings to cases when the model change the state between
iterates of the Markov chain. By such MCMC approach, model m = (k, wk) is
perturbed in each step of the Markov chain to create a new (proposed) model
m′ = (k′, w′

k′) with a forward step probability drawn from the proposal distribu-
tion q(m′|m) within the whole state space Ξ. The proposed model m′ is then
accepted or rejected based on the “Metropolis choice” (Metropolis et al. 1953):

m+1 =
⎧⎨⎩m′, m′ accepted with probability α(m → m′)

m, m′ rejected with probability 1 − α(m → m′)
(4.26)

Following Green (2003), the acceptance probability α(m → m′) as mechanism
of balance condition for construction of Markov chain in state space Ξ reads

α(m → m′) = min
(

1,
p(k′)
p(k)

p(w′
k′ |k′)

p(wk|k)
p(dobs|m′)
p(dobs|m)

q(m|m′)
q(m′|m)

)
, (4.27)
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where q(m|m′) is the proposal distribution used to draw probability of the re-
verse step (m′ → m). It resembles the standard Metropolis-Hastings acceptance
probability (Hastings 1970), and it includes it as a special case when dim(K) = 1.
This form of reversible jump MCMC is rather general as the model states K may
have generally different properties and/or dimensions.

A special case of the reversible jump MCMC algorithm is the trans-D MCMC,
where the proposal moves between model states may be achieved by the “dimen-
sion matching” (e.g., Green 2003; Fan & Sisson 2011). Let us assume that the
Markov chain is in the state k and we wish to propose a move to model state
k′ with a higher dimension, i.e. nk′ > nk. In order to “match dimensions”, a
random vector z of length (nk′ − nk) is generated from a prescribed joint den-
sity q(z). The model vector wk and random vector z are then mapped to the
proposed model vector w′

k′ by diffeomorphism (i.e. the transformation and its
inverse are differentiable). Assuming such mechanism of “dimension matching”,
the acceptance probability from Eq. (4.27) becomes (Green 2003, pp. 5)

α(m → m′) = min
(

1,
p(k′)
p(k)

p(w′
k′|k′)

p(wk|k)
p(dobs|m′)
p(dobs|m)

jk′→k

jk→k′

q(z′)
q(z) |J |

)
, (4.28)

where jk→k′ denotes the probability of proposing move from model state k to
k′, and vice versa. |J | =

⏐⏐⏐⏐∂(w′
k′ ,z

′)
∂(wk,z)

⏐⏐⏐⏐ is the determinant of the Jacobian for the
diffeomorphism from m to m′. Green (1995) shows, that samples of such Markov
chain are asymptotically distributed according the posterior PDF. For details see
Green (1995, 2003), Sambridge et al. (2006), Fan & Sisson (2011). The trans-D
MCMC algorithm with applications in geoscience is described also in previous
studies conducted by, e.g., Malinverno (2002), Gallagher et al. (2009), Bodin
et al. (2012), Dettmer et al. (2014) and Dettmer et al. (2016).

In our particular case (see Table 4.1), each model state consists of different
number of spline points, i.e. index k has meaning of number of spline points NΦ
in model m. The difference in number of dimensions of two neighboring model
spaces Rnk and Rnk+1 is (nk+1 − nk) = 3, as we define every spline point by three
parameters (see Eq. (4.8)). Further, let us assume the model states’ transitions
are considered in one Markov chain step only between neighboring model states.
It can be either model state with one extra or one less spline point (e.g., chain
steps as Rn1 → Rn2 → Rn2 → Rn1 → Rn2 → Rn3 → Rn3 → . . .). This is
so-called birth-death MCMC, and it consists of three move types which occur
with probabilities jP , jB and jD such that

1 = jP + jB + jD, (4.29)

where jP is probability of “perturb” move with no change in dimensions Rnk →
Rnk , jB is probability of “birth” of new dimensions Rnk → Rnk+1 (creation of
one arbitrarily spline point), and jD is probability of “death” , i.e. reducing
dimensions Rnk → Rnk−1 (deleting one arbitrarily spline point). The probabilities
of birth and death moves are equal, i.e. jB = jD, so as not to prefer either birth
or death proposals. On the other hand, the probability of perturb move may be
higher, i.e. jP > (jB + jD), in order to let the MCMC sampler explore various
parameters’ combinations of the model with temporarily fixed model state k. The
common values of moves’ probabilities are jP = 0.9, jB = 0.05, jD = 0.05. Note
that the term jk′→k

jk→k′
in Eq. (4.28) is then unity for all possible moves.
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model model state model vector wk model space

kmax NΦ h, vec(Γ) x1, y1, A1 · · · xkmax , ykmax , Akmax Rnkmax

· · · · · · · · ·
m = (k, wk) k = 3 NΦ h, vec(Γ) x1, y1, A1 x2, y2, A2 x3, y3, A3 Rn3

k = 2 NΦ h, vec(Γ) x1, y1, A1 x2, y2, A2 Rn2

k = 1 NΦ h, vec(Γ) x1, y1, A1 Rn1

Table 4.1: Structure of model m ∈ Ξ as appears in Eq. (4.12). Model state k has
meaning of varying number of spline points NΦ. MCMC then inspects posterior PDF
Eq. (4.25) by a chain of moves between (and within) the model states.

We utilize Gausian proposal distribution for random perturbations of the ex-
isting model parameters, which is re-centered after each step at the value last
generated by the Markov chain. In the case of “perturb” move, the Jacobian is
unity, and the trans-D MCMC behaves as Gaussian random walk MCMC (see
Section 1.2.2). The acceptance probability αP (m → m′) for this scenario then
reads

αP (m → m′) = min
(

1,
p(w′

k|k)
p(wk|k)

p(dobs|m′)
p(dobs|m)

)
. (4.30)

Sambridge et al. (2006) show that for the case of birth-dead MCMC the Ja-
cobian in Eq. (4.28) is unity as well. Furthermore, the acceptance probabilities
for “birth” and “death” moves αB(m → m′) and αD(m → m′), are given re-
spectively by (Sambridge et al. 2006, eqs 40 and 41)

αB(m → m′) = min
(

1,
p(k + 1)

p(k)
p(w′

k+1|k + 1)
p(wk|k)

p(dobs|m′)
p(dobs|m)

qD
k+1
qB

k

)
, (4.31)

αD(m → m′) = min
(

1,
p(k − 1)

p(k)
p(w′

k−1|k − 1)
p(wk|k)

p(dobs|m′)
p(dobs|m)

qB
k−1
qD

k

)
. (4.32)

Here qB
k and qD

k are probability densities of birth or death of a spline point, respec-
tively, assuming equally weighted spline points. Further, we assume homogenous
prior PDF on number of spline points in model, i.e. p(k + 1) = p(k), then the
prior PDF on model parameters under state k + 1 can be expressed by

p(k + 1) p(w′
k+1|k + 1) = p(k) p(w′

k|k) cΦ, (4.33)

where cΦ is a constant with meaning of the prior PDF of one spline point arbi-
trarily located on the fault. Further, assuming homogenous prior PDF on the
model parameters, i.e. constant p(wk|k) for a given model state k, and utilizing
probability densities of birth or death of a spline point in the same sense as in,
e.g., Bodin et al. (2012), the acceptance probabilities for “perturb”, “birth” and
“death” moves in Eqs (4.30), (4.31) and (4.32) simplify to

αP (m → m′) = min
(

1,
p(dobs|m′)
p(dobs|m)

)
, (4.34)

αB(m → m′) = min
(

1,
p(dobs|m′)
p(dobs|m)

1
NΦ + 1

)
, (4.35)
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αD(m → m′) = min
(

1,
p(dobs|m′)
p(dobs|m) NΦ

)
, (4.36)

where NΦ is the present number of spline points. The “birth” move is thus penal-
ized with increasing number of spline points, while the “death” move acceptance
probability increases with the number of spline points. Hence, a better mis-
fit function of data and synthetics is required to increase the number of spline
points in the ensemble of solutions.

To increase the efficiency of the trans-D MCMC sampler, we apply the Parallel
tempering (PT) method introduced by Sambridge (2014) (see Section 1.2.2). The
PT sampling algorithm is similar to the simulated annealing method (Kirkpatrick
et al. 1983) introducing modification of the posterior PDF by an additional pa-
rameter called temperature γ ≥ 1. The random samples are then drawn following
such modified posterior PDF assuming multiple values of temperature γ (mul-
tiple trans-D Markov chains), while at least one chain has γ = 1, i.e. so-called
“sampling” chain. The acceptance probabilities in Eqs (4.34), (4.35) and (4.36),
are modified as follows

αP (m → m′, γ) = min
⎛⎝1,

(
p(dobs|m′)
p(dobs|m)

)1/γ
⎞⎠, (4.37)

αB(m → m′, γ) = min
⎛⎝1,

(
p(dobs|m′)
p(dobs|m)

)1/γ 1
NΦ + 1

⎞⎠, (4.38)

αD(m → m′, γ) = min
⎛⎝1,

(
p(dobs|m′)
p(dobs|m)

)1/γ

NΦ

⎞⎠. (4.39)

Arbitrary trans-D chains are allowed to exchange the temperatures with a prob-
ability given by a balance condition for the swap (e.g., Sambridge 2014). Finally,
the ensemble of solutions following the posterior PDF is formed only by random
samples on temperature γ = 1 sampling of the original posterior PDF.

To summarize, the utilized trans-D MCMC algorithm with PT in each Markov
chain step:

1. Randomly selects the move type (driven by probabilities jP , jB and jD).

2. Randomly perturbs the current model to create a new (proposed) model.

3. Creates a new spline point or deletes an existing spline point (only in trans-
D moves).

4. Accepts or rejects the new model based on the respective acceptance prob-
ability of Eqs (4.37), (4.38), or (4.39).

5. Tries to exchange the temperature γ with another Markov chain.
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4.3 Application to the mainshock of the 2016
Kumamoto sequence

The mainshock of the 2016 Kumamoto earthquake sequence of MJMA7.3 (Mw7.1)
occurred in the central part of Kyushu, Japan on April 16, 2016 (01:25 of Japan
Standard Time). It generated destructive ground motions in the near-source
region, causing severe damage and casualties. The mainshock occurred 28 hours
after the first recognized foreshock of MJMA6.5, and it has been followed by a
series of aftershocks (see Chapter 3 and references therein).

Finite-extent source models for the mainshock were inverted from strong mo-
tion records (e.g., Asano & Iwata 2016; Kubo et al. 2016b; Hao et al. 2017;
Kobayashi et al. 2017; Yoshida et al. 2017). Moreover, the static slip models
were inverted from geodetic data (e.g., Himematsu & Furuya 2016; Fukahata
& Hashimoto 2016). The inferred models suggest that the rupture started near
the intersection of the Futagawa and Hinagu faults by right-lateral strike-slip
movement, with subsequent propagation to the NE along the Futagawa fault as
strike-slip with a normal faulting component.

4.3.1 Inversion settings
Fault geometry

Following Asano & Iwata (2016), we assume a fault plane model consisting of
two planar fault segments based on surface traces of known active faults and the
aftershock distribution (e.g., Kato et al. 2016). The first fault segment #1 is set
along the Hinagu fault intersecting the hypocenter of the Mw7.1 mainshock. The
second (larger) fault segment #2 is set along the Futagawa fault spreading to
NE from the intersection of both faults (see Fig. 4.2). The Hinagu and Futagawa
fault segments are assumed to have rectangular shape of dimension larger than
assumed by Asano & Iwata (2016) to not restrain the distance of the rupture
propagation. For detailed settings of the assumed fault planes and their spatial
parametrization see Table 4.2.

Hinagu segment #1 Futagawa segment #2
Origin time⋆ April 16 2016 / 01:25:06† April 16 2016 / 01:25:07†

Hypocenter⋆ 32.75◦N / 130.76◦E / 12 km 32.79◦N / 130.75◦E / 12 km
Fault strike/dip 205◦ / 72◦ 235◦ / 65◦

Fault length/width 18 km / 18 km 34 km / 18 km
Rake angle⋆ -160◦ -142◦

Subfault size 2 km × 2 km 2 km × 2 km
Num. of subfaults 81 153
Regular control points 7 along strike × 7 along dip 13 along strike × 7 along dip
Num. of control points 49 63
Note: ⋆initial model parameters, not fixed during inversion; †Japan Standard Time

Table 4.2: Geometry of the Hinagu and Futagawa fault segments considered in the slip
inversion (following Asano & Iwata 2016). The rupture process is assumed to initiate
formally at each fault segment separately, hence they have separate hypocenters and
origin times. Note that the hypocenter/origin time of segment #1 represents also the
mainshock hypocenter/origin time taken from the JMA unified earthquake catalog.
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In Section 4.2.1 we describe parametrization of the slip on a single fault seg-
ment. In the case of two fault segments, we consider parametrization of the slip
on each fault segment separately. The augmented model vector m, as originally
formulated in Eq. (4.12) for a single segment, then reads

m = (h#1, h#2, vec(Γ#1), vec(Γ#2), vec(Φ#1), vec(Φ#2), N#1
Φ , N#2

Φ ), (4.40)

where h# are hypocenters, Γ# are matrices of parameters assigned in the regularly
distributed control points, Φ# are matrices of slip spline control points, and N#

Φ
are numbers of the spline points.
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Figure 4.2: Map of the Kumamoto area, Japan, with the settings of the mainshock in-
version (the Mw7.1 earthquake from April 16, 2016). Blue rectangles denote projection
of the assumed Hinagu (#1) and Futagawa (#2) fault segments, and the yellow star
is the epicenter of the mainshock (from the JMA earthquake catalog). Black triangles
show positions of strong motion stations of the K-NET, KiK-net and F-net networks
used in the inversion. The gray triangles are stations excluded from the inversion (see
text). Red lines denote surface traces of the main known active faults. The topography
is created from the SRTM-90m digital elevation data.

Data selection and processing

We use three-component waveforms recorded at 29 stations of the K-NET, KiK-
net and F-net strong motion networks (e.g., Okada et al. 2004), operated by
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National Research Institute for Earth Science and Disaster Resilience (NIED), up
to the distance of 55 km from the mainshock epicenter (see Fig. 4.2). The stations
are selected based on distance and sufficient signal-to-noise ratio. Few regional
stations were excluded from the selection, as their waveforms contain complex
oscillations probably caused by shallow sedimentary layers. Nevertheless, these
stations are located on the edge of the area of interest (see gray triangles in
Fiq. 4.2).

Original acceleration data (K-NET and KiK-net) and strong motion velocity
data corrected for the instrument response (F-net) are filtered by a bandpass
filter in the range of 0.05 − 0.5 Hz and then integrated into displacements. The
processed waveforms are downsampled to the sampling frequency of 2.5 Hz in
order to reduce computational demands. The observed data time window used
in the inversion spans 0 − 40 sec after the adopted origin time of the mainshock
(Tab. 4.2).

Velocity models

GFs for all of the assumed subfaults are pre-computed by the discrete wavenumber
method (Bouchon 1981) considering one-dimensional station dependent velocity
models consisting of homogenous layers (Fig. 4.3). As the uppermost sedimentary
layers may affect the amplitude and shape of the strong motion waveforms at
frequencies 0.05 − 0.5 Hz (e.g., Asano & Iwata 2009), we considered different
one-dimensional velocity model for each station.
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Figure 4.3: One-dimensional velocity models for all stations used in the mainshock
inversion. a) P-wave and b) S-wave velocities are extracted from the three-dimensional
Japan Integrated Velocity Structure Model (Koketsu et al. 2012). The stations are sorted
by distance from the furthermost (blue) to the nearest (red) to the mainshock epicenter.
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One-dimensional velocity models were extracted from the three-dimensional
Japan Integrated Velocity Structure Model (Koketsu et al. 2012) as the velocity
depth profiles below the receivers. The models are shown in Fig. 4.3 in terms of
P-wave and S-weave velocities.

4.3.2 Application details
Prior PDF

The Bayesian framework enables to account for prior knowledge provided as a
prior PDF. Such prior PDF of the model parameters can be very subjective, which
may be targeted as the weak feature of the Bayesian framework. We assume prior
PDF for each model parameter z to have separate uniform distribution over the
interval Z = [zmin, zmax]. The prior PDF then reads

p(z) =
⎧⎨⎩

1
zmax−zmin

if z ∈ Z

0 otherwise.
(4.41)

In such formulation of prior PDF the only subjective information are range limits
zmin and zmax. The ranges of the uniform prior PDFs considered in the mainshock
inversion are shown in Table 4.3. The prior PDFs of hypocenter, origin time and
rake angle are assumed to have uniform distribution centered in the initial values
z0 as listed in Table 4.2. To complete, we assume homogenous prior PDF of the
slip spline control point locations over the whole fault plane of length X and
width Y . The prior PDF of occurrence of any spline point on the fault then reads

p(z) = 1
XY

, where z ∈ Σ. (4.42)

Model parameter z Low limit zmin High limit zmax

Rupture velocity 1500 m/s 5000 m/s
Rise time 2.0 s 6.5 s
Peak time 0.8 s 2.4 s
Origin time⋆ z0 − 1.0 s z0 + 1.0 s
Hypocenter (along strike distance)⋆ z0 − 6000 m z0 + 6000 m
Hypocenter (along dip distance)⋆ z0 − 6000 m z0 + 6000 m
Rake angle⋆ z0 − 45◦ z0 + 45◦

Note: ⋆prior PDFs defined around the initial model parameters z0 from Table 4.2.

Table 4.3: Range limits zmin and zmax of homogenous prior PDFs for various model
parameters as utilized in the MJMA7.3 mainshock inversion.
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Processing steps

The posterior PDF of source model parameters is sampled by the trans-D MCMC
algorithm with PT as described in Section 4.2.3. The sampling strategy consists
of the following processing steps:

1. Pre-compute GFs and ACF covariance matrices. Then, compute standard-
ized waveforms (d∗

obs) and standardized GFs (Ĝ∗ and Ǧ∗). This step has
big impact on the efficiency of the method as the standardized GFs do not
require to be re-computed in each Markov chain step.

2. Create 30 initial source models per each CPU. These initial source models
are random, yet model parameters are confined by their assumed prior
ranges. The slip distribution is initiated by one spline point (NΦ = 1)
randomly generated on each fault segment. These initial models are initial
states of the Markov chains of the PT algorithm. One “sampling” chain
per CPU has temperature γ = 1, while the other “exploration” chains have
assigned random temperatures γ > 1 as described in Section 1.2.2 (e.g.,
Sambridge 2014).

3. Start the “burning” phase of PT on all the deployed CPUs. In this phase,
various models are explored by the Markov chains, but the model samples
are excluded from the ensemble of solutions (i.e. no model is saved). The
“burning” phase takes approximately 3k chain steps in our case.

4. Start the “production” phase, providing model samples drawn from the
posterior PDF. The samples are recorded by the “sampling” chains with
temperature γ = 1. This phase lasts as many chain steps as necessary to
create a sufficiently large ensemble of solutions. We performed approxi-
mately 24k chain steps on deployed 24 CPUs in total, which took 48 hours
on the IT4I Salomon supercomputing cluster, i.e. 1152 CPU hours. The
produced samples then compose an ensemble of more than 590k possible
finite source models following the posterior PDF.

5. Process statistically the ensemble of solutions to find the maximum likeli-
hood solution and inspect uncertainties of the model parameters.

4.3.3 Solution of the fault slip inversion
The maximum likelihood solution

The maximum likelihood solution for the MJMA7.3 mainshock fault slip inversion
is shown in Figs 4.4 and 4.5. The inferred source model has seismic moment of
6.74 × 1019 Nm (Mw = 7.2). The maximum and average slip values are 6.29 and
1.29 m, respectively. The variance reduction is 78.5 %, which indicates good fit
of observed and synthetic standardized waveforms (Fig. 4.7).

In Fig. 4.4 we show inferred SRFs for all subfaults on both the Hinagu (#1)
and the Futagawa (#2) fault segments. The slip values with denoted rake angles
(slip direction) are illustrated for all the subfaults in Figs 4.5a and 4.5b. In
Figs 4.5c and 4.5d we show rupture times on the both the fault segments.
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Figure 4.5: Slip a, b) and rupture times c, d) of the maximum likelihood solution
of the MJMA7.3 mainshock inversion on the a, c) Futagawa (#2) and b, d) Hinagu
(#1) fault segments. The squares represent 2×2 km subfaults spatially distributed along
strike x and along dip y directions, where (0, 0) is the bottom-left corner of the fault
footwall. The final slip values and the rupture times are shown by color (see colorbars).
The rake angles (slip directions) are shown by blue arrows.

The maximum likelihood solution has hypocenter located at the Hinagu seg-
ment (#1) at the depth of 9 km (yellow star in Fig. 4.4b). The rupture propagates
by the average rupture velocity of 2.5 km/s along segment #1, terminating at the
intersection of the both fault segments. A large slip on fault segment #1 is con-
centrated in the zone between the hypocenter and intersection with the fault
segment #2 at the depth of approximately 6−14 km. The inferred origin time in
the Futagawa segment (#2) is delayed by 1.2 sec after the origin in segment #1.
The hypocenter on segment #2 is located approximately at depth of 13 km at
the intersection of the fault segments (yellow star in Fig. 4.4a). The rupture then
continuous upward and to NE along segment #2 by the average rupture velocity
of 2.7 km/s (see Fig. 4.5c). The largest slip on fault segment #2 is concentrated
at shallower parts at depths of approximately 1 − 8 km. The rupture terminates
at the shallow depths inside the Aso volcano caldera. The inferred rake angles in
the segment #1 are close to pure right-lateral strike-slip movement. Contrarily,
the slip directions on segment #2 have significant normal-slip component.
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Figure 4.6: The fit of observed (black) and synthetic (red) displacement wave-
forms for the MJMA7.3 mainshock (16 April 2016). The synthetics correspond to
the maximum likelihood solution inferred considering the ACF covariance matrix. Sta-
tions are sorted by epicentral distance. Data are corrected by instrument response and
both data and synthetics are bandpass Butterworth filtered between 0.05 − 0.5 Hz. The
displacement waveforms are normalized to the largest value of all stations and compo-
nents. The values shown next to the waveforms denote their maximum displacements in
cm. Note that these maximum absolute displacements are measured on the filtered and
integrated data, and hence do not include static displacements which were significant
(almost 200 cm) for stations close to the activated fault.
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Figure 4.7: The fit of the standardized data (black) and synthetics (blue) for the
MJMA7.3 mainshock (16 April 2016). The standardized synthetics correspond to the
maximum likelihood solution inferred considering the ACF covariance matrix. Stations
are sorted by epicentral distance. Data are corrected by instrument response and both
data and synthetics are bandpass Butterworth filtered between 0.05 − 0.5 Hz prior the
standardization by triangular matrix from the Cholesky decomposition of the ACF co-
variance matrix. The standardized waveforms are normalized to the largest value of all
stations and components.
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The maximum likelihood solution of our Bayesian inversion minimizes the
difference between the recorded data and synthetics. Since the ACF covariance
matrix is deployed the solution minimizes the standardized residuals, i.e. wave-
forms multiplied by the triangular matrix from the Cholesky decomposition of the
ACF covariance matrix (see Section 4.2.3). In Figs 4.6 and 4.7 we show displace-
ment and standardized waveform fits, respectively, for the maximum likelihood
solution. Note that the fit of the displacement waveforms (Fig. 4.6) is shown for
illustration purpose as the inversion itself minimizes the difference between the
standardized waveforms shown in Fig. 4.7.

Waveforms in Figs 4.6 and 4.7 can be used for inspection of the effects of the
ACF covariance matrix in the inversion. The standardized waveforms tend to
have equalized spectral content with amplified low-frequency part of the spec-
trum as described in Section 2.3.4. For example, the standardized waveforms of
station KMM004 (located inside the Aso caldera) have the high-frequency con-
tent suppressed. At the same time the stations in intermediate distances have
amplified the low-frequency part of the spectrum, which increases their weight
in the inversion. Generally, the overall fits are very good for the both displace-
ment and standardized displacement waveforms. The variance reduction of the
standardized displacement waveforms shown in Fig. 4.7 is 78.5 %.

Ensemble of source models - uncertainty estimate

The maximum likelihood solution is not a unique solution, it is rather one of
many possible source models that fit the data well. The ensemble of the total
of 590 264 possible finite fault source models allows statistical evaluation of the
inferred source parameters and an assessment of the model uncertainty.

Fig. 4.8a shows histogram of the variance reduction of the standardized wave-
forms from the complete ensemble of the possible source models. It spans the
range of 74 − 78.5 %, which means that all the models fit the observed data well.
Therefore, we should look critically on the maximum likelihood solution as merely
a single representation of the plausible source models. To complete, we show his-
tograms for inferred seismic moment M0 and moment magnitude Mw in Figs 4.8b
and 4.8c, respectively.

a) b) c)

Figure 4.8: Ensemble statistics for the MJMA7.3 mainshock inversion. Histograms
show occurrences of a) variance reduction, b) total seismic moment M0, and c) moment
magnitude Mw.
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Figure 4.9: Ensemble statistics for the MJMA7.3 mainshock inversion. The statistics
are shown for the Hinagu (#1) and Futagawa (#2) fault segments separately. a) and b)
are histograms of the number of slip spline control points, c) and d) show the scatter of
the hypocenter origin times (relatively to the mainshock JMA origin time in Table 4.2),
and e) and f) show spatial scatter of the hypocenter locations on the fault segments.
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Let us now inspect features of the finite source models on the Hinagu (#1)
and Futagawa (#2) fault segments. The slip distribution is controlled by the
spline control points, where their increasing number increases the possible spatial
complexity of the resolved slip. On the other hand, the number of spline points
is penalized by the birth-death probabilities of the trans-D MCMC sampler (see
Section 4.2.3). The statistics of the number of slip spline control points of the
inferred source models are shown in Fig. 4.9 (panels a and b).

The statistic from the inferred hypocenter origin times and locations on seg-
ments #1 and #2 are shown in Fig. 4.9 (panels c-f). The statistics show that
the origin times have scatter of about ±1 sec. It may be explained by possible
trade-offs among rupture velocity, rise times and/or peak times. Nevertheless,
the hypocenter locations are well resolved on both the fault segments, where the
uncertainty is higher in the along dip direction (especially for segment #1).

To show statistics of the slip distribution we introduce a modified polar his-
togram plot called slip disc histogram (SDH). It shows the occurrence of the slip
values on individual subfaults as captured by the ensemble of all the finite model
solutions. An example of SDH is shown in Fig. 4.10, which may serve as a legend
for the full SDH plot of the mainshock inversion in Fig 4.11. The radial coordi-
nate of SDH has the meaning of inferred slip value on the subfault, which spans
from zero up to 7.5 m. The angular coordinate has no meaning, and hence SDH
is radially symmetric. The radial coordinate of SDH is divided into several slip
value histogram bins, so that the SDH is composed of several concentric hoops
(with meaning of the histogram bins). If the occurrence of the slip value exceeds
in any bin the threshold of 10 %, then the hoop is colored by red color. The red
disc composed of the colored hoops then shows, by its inner and outer edge, the
range of possible slip values as captured by the whole ensemble of solutions. The
width of the SDH disc shows the estimate of the slip value uncertainty. Wider disc
represents wider histogram of the slip value occurrence with meaning of higher
uncertainty of the slip. If the center of the SDH is filled, the plausible slip values
from the inversion include also zero slip.

Figure 4.10: Example of slip disc histogram (SDH) plot which may serve as the
legend for the full SDH plot of the MJMA7.3 mainshock inversion in Fig 4.11. The
gray histograms indicate a source statistical data, which are displayed by the SDH plot
as the red discs. For further explanation see the text.
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The SDH plot for the ensemble of solutions of the MJMA7.3 mainshock inver-
sion is shown in Fig 4.11. The large slip on fault segment #1 (Fig. 4.11b) at the
depths of approximately 6 − 14 km exhibits high uncertainty, especially in the
deepest part. The slip value in this zone can be smaller than suggested by the
maximum likelihood solution, i.e. the maximum slip is in the range of 2.6−5.7 m.
On the other hand, the low slip value in the southernmost part of segment #1
is a feature supported by the whole ensemble. The SDH plot for segment #2 in
Fig. 4.11a suggests that the maximum slip is in the range of 4.2−7.5 m. The slip
value is well resolved in the southwestern part, while it has large uncertainty in
the shallow northeastern zone, i.e. in the Aso volcano caldera.

The parameters rise time, peak time and rake angle vary significantly at the
subfaults of the inferred models due to their spatial trade-offs. Hence, we present
only the statistical evaluation of their spatially weighted arithmetic means. The
weights are represented by the spatial distribution of the slip values. In such spa-
tially weighted averages the variability at the individual subfaults with relatively
low influence on the synthetic waveforms is suppressed. Histograms of these spa-
tially weighted averages of rise times, peak times and rake angles for the Hinagu
(#1) and Futagawa (#2) fault segments are shown in Fig. 4.12. The statistics
reveals that segment #1 has average rise time 4.2 − 5.8 sec, average peak time
1.5 − 1.9 sec and average rake angle −145◦ ± 10◦. Segment #2 has then average
rise time 3.6 − 5.2 sec, average peak time 1.3 − 1.7 sec and average rake angle
−180◦ ± 10◦. This highlights the significance of the inferred pure right-lateral
strike-slip movement on segment #1 and significant normal-slip component on
segment #2 as observed also in the maximum likelihood solution.

To complete, Fig. 4.13 shows histograms of spatially weighted averages of
rupture velocities for the Hinagu (#1) and Futagawa (#2) fault segments. The
statistics reveals that segment #1 has average rupture velocity in the range of
2.2−3.6 km/s, while segment #2 has it in the range of 2.2−3.2 km/s. Note that
these rupture front velocities suggest the sub-shear rupture propagation pattern.
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Figure 4.12: Ensemble statistics for the MJMA7.3 mainshock inversion, showing
histograms of weighted averages of rise times (a, b), peak times (c, d), and rake angles
(e, f). These statistics are created from spatially weighted averages for the Hinagu (#1)
and Futagawa (#2) fault segments. The weights are given by the spatial distribution of
the slip values.
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a) b)

Figure 4.13: Ensemble statistics for the MJMA7.3 mainshock inversion. These his-
tograms are created from spatially weighted averages of rupture front velocities for the
a) Futagawa (#2) and b) Hinagu (#1) fault segments. The weights are given by the
spatial distribution of the slip values.
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4.4 Discussion and Conclusions
We have developed and applied a kinematic Bayesian non-linear finite fault slip
inversion method, which accounts for uncertainty of Greens’ functions by means
of the approximate covariance functions introduced by Hallo & Gallovič (2016).
This inversion is applied to the MJMA7.3 mainshock of the 2016 Kumamoto,
Japan, earthquake sequence of April 16th, 2016 (01:25 of JST). The resultant
ensemble of the 590 264 plausible finite fault source models with the variance
reduction in the range of 74 − 78.5 % allows to perform an assessment of the
source model uncertainty.

Major characteristics of our solutions are in accord with previous studies (e.g.,
Asano & Iwata 2016; Kubo et al. 2016b; Yoshida et al. 2017; Himematsu & Furuya
2016). The mainshock rupture process started on the Hinagu fault segment (#1)
as a right-lateral pure strike-slip movement. The rupture propagated by the
average rupture velocity of 2.2 − 3.6 km/s along the Hinagu fault reaching the
intersection of the Hinagu and Futagawa fault segments. The rupture origin at
the Futagawa fault segment (#2) was located at the intersection of both faults
at the depth of approximately 11 − 16 km. Then the rupture extended upward
and to NE along the Futagawa fault segment by the average rupture velocity of
2.2 − 3.2 km/s as a strike-slip with a normal faulting component. The largest
slip of 4.2 − 7.5 m took place on the Futagawa fault segment approximately 9 sec
after the mainshock origin time. Duration of the whole rupture processes was in
the range of 16 − 19 sec.

The inferred scalar seismic moment of the mainshock is in the range of 5.5 −
8.0 × 1019 Nm. This value is larger than obtained by Asano & Iwata (2016),
i.e. 4.50 × 1019 Nm (Mw7.0), or by Yoshida et al. (2017), i.e. 4.70 × 1019 Nm
(Mw7.1). Nevertheless, the lower limit of our estimate agrees with the scalar
seismic moment obtained by Kubo et al. (2016b), i.e. 5.50 × 1019 Nm (Mw7.1).
The rather larger seismic moment of our solution may be caused by the larger
fault plane assumed in the inversion. Note that Yoshida et al. (2017) obtained
seismic moment 6.7 × 1019 Nm (Mw7.2) prior trimming the fault plane, which is
similar to the value obtained by our maximum likelihood solution.

Ensemble statistics show that the pure right-lateral strike-slip movement in
the Hinagu fault segment and the strike-slip with significant normal-slip compo-
nent in the Futagawa fault segment are the well resolved features. Indeed such
slip directions are present in other authors’ solutions by Asano & Iwata (2016),
Kubo et al. (2016b), and Yoshida et al. (2017)). The so-called slip disc histogram
(SDH) plot representing the uncertainty of the final slip in Fig. 4.11 shows that:

• The southernmost area of Hinagu fault segment (#1) is characterized by
low slip values as inferred also by the other studies.

• There is high uncertainty in the large slip zone on the Hinagu fault segment
(#1). This is in accord with the variability of solutions of the other authors.
Indeed, Asano & Iwata (2016) located this zone at shallow depth, while
models by Kubo et al. (2016b) and Yoshida et al. (2017) have this zone
less pronounced and at slightly different position both along dip and along
strike.

• The large slip in the southwest and in the central part of the Futagawa
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fault segment (#2), inferred with rather low uncertainties in our inversion,
can be considered as well resolved feature, being also consistently imaged
by the other studies.

• The slip at shallow depth inside the Aso caldera, i.e. northeast on the
Futagawa fault segment (#2), is considered as an uncertain feature as shown
by the SDH plot. Indeed, Asano & Iwata (2016) and Yoshida et al. (2017)
inferred only insignificant slip, while Kubo et al. (2016b) inferred slip value
> 2 m for this shallow zone.

Finally, we emphasize that this is the first application of the developed in-
version method. It may require more thorough long-term testing in order to be
routinely used. Nevertheless, the acquired results have already a significance in
terms of the evaluation of the finite source models quality as demonstrated on the
MJMA7.3 mainshock of the 2016 Kumamoto earthquake sequence. The ensem-
ble statistics in comparison with the other authors’ solutions point on the well
or poorly resolved features of the mainshock model. The inferred source model
of the mainshock supplemented by its uncertainty completes the analysis of the
evolution of the Kumamoto sequence in the seismotectonic framework described
in Section 3.5.1.
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4.5 Supplementary material

4.5.1 Regularized Yoffe function
The regularized Yoffe function Υ(t; τR, τP ) has been introduced by Tinti et al.
(2005) as a parametric SRF useful for non-linear earthquake source inversions.
The function is defined as convolution of Yoffe function (Yoffe 1951) and a triangle
of duration τS (i.e. temporal smoothing of the Yoffe function). Following Tinti
et al. (2005) τS can be approximately linearly related to the duration of positive
slip acceleration τP of SRF as

τS ≈ τP

1.27 . (4.43)

Further, rise time τR of the regularized Yoffe function reads

τR = τY + 2τS, (4.44)

where τY is rise time of the Yoffe function (Yoffe 1951). Longer effective duration
of the regularized Yoffe function results from the temporal smoothing by the tri-
angle function of duration τS. The regularized Yoffe function is then parametrized
by two parameters τR and τP , and it is analytically expressed (Tinti et al. 2005)
as follows:

Υ(t; τY , τS) = 2
πτY τ 2

S

·

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for t < 0
(C1 + C2) for 0 ≤ t < τS

(C1 − C2 + C3) for τS ≤ t < 2τS

(C1 + C3 + C4) for 2τS ≤ t < τY

(C3 + C4 + C5) for τY ≤ t < τY + τS

(C4 + C6) for τY + τS ≤ t < τY + 2τS

0 for τY + 2τS ≤ t

(4.45)

where

C1 =
(

t

2 + τY

4

)√
t(τY − t) + (tτY − τ 2

Y )

· arcsin
√

t

τY

− 3
4τ 2

Y · arctan
√

τY − t

t
(4.46)

C2 = 3
8πτ 2

Y (4.47)

C3 =
(

τS − t − τY

2

)√
(t − τS)(τY − t + τS) + τY (2τY − 2t + 2τS)

· arcsin
√

t − τS

τY

+ 3
2τ 2

Y · arctan
√

τY − t + τS

t − τS

(4.48)

C4 =
(

− τS + t

2 + τY

4

)√
(t − 2τS)(τY − t + 2τS) − τY (τY − t + 2τS)

· arcsin
√

t − 2τS

τY

− 3
4τ 2

Y · arctan
√

τY − t + 2τS

t − 2τS

(4.49)
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C5 = π

2 τY (t − τY ) (4.50)

C6 = π

2 τY (2τS − t + τY ). (4.51)

Note that C4 in Eq. (4.49) is corrected following Bizzarri (2012), as there is an
typographic error in corresponding equation in Tinti et al. (2005).

Bizzarri (2012) shows that the regularized Yoffe function appropriately de-
scribes the shape of SRFs for sub-shear ruptures. This function is especially
advantageous for pulse-like ruptures, however Bizzarri (2012) concludes that it
may also capture features of crack-like ruptures. Its versatility is demonstrated
in Fig. 4.14. In examples in Fig. 4.14a τP is fixed while τR varies. It leads to
frequency shifts of the source spectra with reciprocal of τR (Fig. 4.14c). In Fig.
4.14b τR is fixed while τP varies, resulting in a change in the amplitude spectra
fall off (Fig. 4.14d). Note that kinematic parameters of the regularized Yoffe
function can be related to dynamic rupture parameters (e.g., Tinti et al. 2005;
Bizzarri 2012).
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Figure 4.14: Regularized Yoffe functions Υ(t; τR, τP ) for various combinations of rise
time τR [sec] and peak time τP [sec]. Examples are shown for a) fixed peak time τP =
0.3 [sec], and b) fixed rise time τR = 4.0 [sec]. For the variable parameter see legend.
c) and d) show Fourier amplitude spectra of the functions in a and b, respectively.
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Conclusion
This research is focused on the influence of crustal velocity model uncertainty
on inferred earthquake source parameters. Chapter 1 overviews the fundamental
theoretical background and probabilistic techniques as used in this Thesis. It
is followed in Chapter 2 by introducing a simple approach to efficiently involve
the uncertainty of a crustal velocity model in earthquake source inversions. Such
approach is applied in Chapter 3 on the Bayesian full-waveform centroid moment
tensor inversion of foreshocks and aftershocks of the 2016 Kumamoto, Japan,
earthquake sequence. Finally, in Chapter 4, we propose new Bayesian parametric
fault slip inversion which accounts for velocity model’s uncertainty. The fault slip
inversion method is applied on the mainshock of the 2016 Kumamoto sequence.

In particular, in Chapter 2 (also published as Hallo & Gallovič 2016), we
perform Monte-Carlo simulations of GFs in randomly perturbed velocity models
to reveal the effects of the imprecise velocity model on the synthetic waveforms.
Based on the learned knowledge, we derive closed-form formulas for approximate
covariance functions to obtain fast and effective characterization of the GFs’ un-
certainty (see AXCF in (2.13); ACF in (2.14); SAXCF in (2.20); and SACF in
(2.21)). These approximate covariance functions require a GF calculated using a
given (mean) velocity model and statistical description of the assumed random
time shifts of the signal as an input. Experiments indicate that it is enough to
assume a uniform PDF for the time shifts of GFs. The width of the uniform PDF
denoted as L1 depends on the source distance and velocity model perturbations
linearly, and can be implemented by a simple formula (Eq. (2.31)). Alternatively,
the parameter L1 may be estimated by ray tracing, as shown in supplementary
Section 2.5.1. Further, we point out that despite the fact that the simplified
formulas were derived assuming purely random time shifts of GFs, the proposed
approach produces variations of both the arrival time and the waveform ampli-
tudes as shown in Fig. 2.5.

The proposed approximate covariance functions are tested on Bayesian mo-
ment tensor inversions of synthetic and real data sets (Section 2.3). Experiments
with the large number of synthetic target datasets obtained by randomly per-
turbing velocity models reveal that the lowest scatter of the maximum likelihood
solutions is attained for the approximate covariance function (ACF and AXCF).
Tests also show that the posterior covariance matrix of model parameters reflects
the true uncertainty of the MT solution well when considering the stationarized
auto-covariance function (SACF), see Fig. 2.13c. Similarly, real-data inversion
using the SACF (Fig. 2.14c) provides MT uncertainty estimate comparable to the
result of the jack-knifing experiment by Sokos & Zahradńık (2013, fig. 3). Finally,
additional synthetic tests imply that using SACF in Bayesian inversion allows
reliable assessment of the CLVD component uncertainty (supplementary Sec-
tion 2.5.2). For easier implementation in other researchers’ codes we release open
source codes for computing all the types of the proposed ACFs and SACFs. The
source codes in “Fortran90” and “Matlab” programming languages are available
under GNU license on the author’s website (http://geo.mff.cuni.cz/˜hallo/)
or in Attachments A.1, A.2, A.3 and A.4.
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We have extended the Bayesian full-waveform CMT inversion code package
ISOLA-ObsPy (Vackář et al. 2017) with the source code for assessment of GFs’
uncertainties by ACFs and SACFs. The modified ISOLA-ObsPy is successfully
applied on selected earthquakes from the Kumamoto, Kyushu, Japan, earthquake
sequence of April 2016 with MJMA magnitude in range of 4.8–6.5 (Chapter 3 also
published as Hallo et al. 2017). The use of SACF covariance matrices in the
Bayesian inversion allow us to perform realistic assessment of the uncertainties
of the CMTs (Table 3.2 and Fig. 3.6). The inferred CMT solutions show sys-
tematic spatial and temporal variations (Fig. 3.8). We estimate geometry of the
major activated ruptures and interpret them in the seismotectonic framework
(Section 3.5). Foreshocks imply right-lateral NE–SW strike-slip movements in
the Hinagu fault zone. Aftershocks are mostly normal dip-slip events spreading
along the NW edge of the assumed mainshock fault plane (see Fig. 3.10). The
inferred CMTs with significant CLVD component may suggest a complex source
processes, however this issue is still open because of non-uniqueness of the non-
DC MTs’ decomposition. Therefore, the realistic assessment of the uncertainties
of the inferred CMTs proved to be useful in terms of interpretation.

In Chapter 4 we develop a new Bayesian non-linear fault slip inversion which
accounts for the GFs’ uncertainty by means of the approximate covariance func-
tions (ACF and SACF). The utilized self-adapting parametrization of slip func-
tion (by varying number of unattached spline control points) captures features of
the slip functions discernible by the observed waveforms.

The Bayesian fault slip inversion is applied in Section 4.3 on the destructive
MJMA7.3 mainshock of the 2016 Kumamoto, Japan, earthquake sequence of April
16th, 2016 (01:25 of JST). According to our solution the mainshock started on
the Hinagu fault segment as right-lateral pure strike-slip movement. The rupture
propagated along the Hinagu fault reaching the intersection of the Hinagu and
Futagawa fault segments. Then, the rupture extended upward and to NE along
the Futagawa fault segment as a strike-slip with a normal faulting component.
The largest slip of 4.2−7.5 m took place on the Futagawa fault segment. Statistics
from the ensemble of possible solutions then show that the above features are well
constrained, being also consistent with other researchers’ models (e.g., Asano &
Iwata 2016; Kubo et al. 2016b; Yoshida et al. 2017; Himematsu & Furuya 2016).
Contrarily, the uncertainty analysis reveals that the zone of the largest slip on the
Hinagu fault segment and the slip at the shallow depth inside the Aso caldera are
less constrained. The latter is in agreement with the fact that these features are
not consistently imaged in the other published source models. The inferred source
model of the mainshock supplemented by its uncertainty completes the analysis
of the evolution of the Kumamoto sequence in the seismotectonic framework
described in Section 3.5.1.
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Hallo, M. & Gallovič, F., 2016. Fast and cheap approximation of Green func-
tions uncertainty for waveform-based earthquake source inversions, Geophysical
Journal International, 207(2), 1012–1029.
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A. Attachments

A.1 Fortran code for ACF (AXCF)

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! Fortran f90 su b ro ut i ne s f o r determining the ( c ros s −) covar iance
! matrix by approximate ( c ros s −) covar iance f u n c t i o n s (AXCF or ACF)
! ( Hal lo and Gal lov ic , 2 0 1 6 ) .
! Hallo ,M. , Gal lov ic , F . ( 2 0 1 6 ) : Fast and cheap approximation o f Green
! f u n c t i o n s unce r ta in ty f o r waveform−based earthquake source i n v e r s i o n s ,
! Geophysica l Journal Int . , 207 , 1012 −1029.
!
! Authors : Miros lav Hal lo and Frant i s ek G a l l o v i c (8/2017)
! Char les Univers i ty , Faculty o f Mathematics and Phys ics
! Rev i s ion 1/2018: Corrected and t e s t e d f o r r e a l s i g n a l s
!
! This code i s pub l i shed under the GNU General Publ ic L i cense . To any
! l i c e n s e e i s g iven permis s ion to modify the work , as w e l l as to copy
! and r e d i s t r i b u t e the work or any d e r i v a t i v e v e r s i o n . S t i l l we would
! l i k e to k ind ly ask you to acknowledge the authors and don ’ t remove
! t h e i r names from the code . This code i s d i s t r i b u t e d in the hope
! that i t w i l l be u s e f u l , but WITHOUT ANY WARRANTY.
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

SUBROUTINE axc f (N, f1 , f2 , L1 , L12 ,C)
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! Compute AXCF of f u n c t i o n s f 1 and f2 o f samples N
! L1 and L12 are time−s h i f t windows in samples
! −> Output i n t o covar iance matrix C
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

i m p l i c i t none
i n t e g e r , i n t e n t ( in ) : : N, L1 , L12
r e a l ( 8 ) , i n t e n t ( in ) : : f 1 (N) , f 2 (N)
r e a l ( 8 ) , i n t e n t ( out ) : : C(N,N)
complex ( 8 ) , a l l o c a t a b l e : : smooth1 ( : ) , smooth12 ( : ) , s1 ( : ) , s2 ( : ) ,XC( : , : )
complex ( 8 ) , a l l o c a t a b l e : : s1smooth1 ( : ) , s2smooth1 ( : ) , s2smooth12 ( : )
i n t e g e r : : i , j ,FFT, Lzeros

! Check the l ength o f smoothing window L1
i f (L1<2) then

wr i t e ( ∗ , ∗ ) ’ Warning ! L1 i s too shor t ’
e n d i f

! A l l o c a t i o n and i n i t o f v a r i a b l e s
FFT = 2∗∗( i n t ( l og ( dble (2∗N))/ log ( 2 . d0 )+0.99999999 d0)+1)
a l l o c a t e ( smooth1 (FFT) , s1 (FFT) , s2 (FFT) , s1smooth1 (FFT) )
a l l o c a t e ( s2smooth1 (FFT) , s2smooth12 (FFT) ,XC(FFT,FFT) )
C=0.d0
s1 =0.
s2 =0.
s1 ( 1 :N) = f1 ( 1 :N)
s2 ( 1 :N) = f2 ( 1 :N)

! Put z e r o s ( va lue s ) b e f o r e and a f t e r the s i g n a l
Lzeros = max(L1 , L12 ) ;
s1 (N+1:N+Lzeros ) = f1 (N)
s2 (N+1:N+Lzeros ) = f2 (N)
s1 (FFT−Lzeros +1:FFT) = f1 (1 )
s2 (FFT−Lzeros +1:FFT) = f2 (1 )

! f 2 smoothing by L12 window
i f ( L12>1) then

a l l o c a t e ( smooth12 (FFT) )
smooth12=0.
smooth12 ( 1 : i n t ( dble ( L12 )/2 .+.51) )=1 . d0/ dble ( L12∗FFT)
smooth12 (FFT:FFT−L12/2+1:−1)=1.d0/ dble ( L12∗FFT)
c a l l f our1 ( smooth12 ,FFT, 1 )
c a l l f our1 ( s2 ,FFT, 1 )
s2smooth12=s2 ∗smooth12

151



c a l l f our1 ( s2smooth12 ,FFT, −1)
d e a l l o c a t e ( smooth12 )

e l s e
s2smooth12=s2

e n d i f

! smoothing window L1
smooth1=0.
smooth1 ( 1 : i n t ( dble (L1 )/2 .+.51) )=1 . d0/ dble (L1∗FFT)
smooth1 (FFT:FFT−L1/2+1:−1)=1.d0/ dble (L1∗FFT)
c a l l f our1 ( smooth1 ,FFT, 1 )

! compute XCF
do i =1,FFT

XC( : , i )=s1 ( : ) ∗ c s h i f t ( s2smooth12 ( : ) , SHIFT=(FFT/2+1)− i )
c a l l f our1 (XC( : , i ) ,FFT, 1 )

XC( : , i )=XC( : , i )∗ smooth1 ( : )
c a l l f our1 (XC( : , i ) ,FFT, −1)

enddo

c a l l f our1 ( s1 ,FFT, 1 )
s1smooth1=s1 ∗smooth1
c a l l f our1 ( s1smooth1 ,FFT, −1)
c a l l f our1 ( s2smooth12 ,FFT, 1 )
s2smooth1=s2smooth12 ∗smooth1
c a l l f our1 ( s2smooth1 ,FFT, −1)

do i =1,FFT
XC( : , i )=XC( : , i )−s1smooth1 ( : ) ∗ c s h i f t ( s2smooth1 ( : ) , SHIFT=(FFT/2+1)− i )

enddo

! F i l l the covar iance matrix by AXCF
do i =1,N

do j =1,N
C( i , j )=dble (XC( i ,FFT/2+1−( j−i ) ) )

enddo
enddo

d e a l l o c a t e ( smooth1 , s1 , s2 , s2smooth12 , s1smooth1 , s2smooth1 ,XC)

END SUBROUTINE
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A.2 Fortran code for SACF (SAXCF)

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! Fortran f90 su b ro ut i ne s f o r determining the ( c ros s −) covar iance
! matrix by approximate ( c ros s −) covar iance f u n c t i o n s (SAXCF and SACF)
! ( Hal lo and Gal lov ic , 2 0 1 6 ) .
! Hallo ,M. , Gal lov ic , F . ( 2 0 1 6 ) : Fast and cheap approximation o f Green
! f u n c t i o n s unce r ta in ty f o r waveform−based earthquake source i n v e r s i o n s ,
! Geophysica l Journal Int . , 207 , 1012 −1029.
!
! Authors : Miros lav Hal lo and Frant i s ek G a l l o v i c (8/2017)
! Char les Univers i ty , Faculty o f Mathematics and Phys ics
! Rev i s ion 1/2018: Corrected and t e s t e d f o r r e a l s i g n a l s
!
! This code i s pub l i shed under the GNU General Publ ic L i cense . To any
! l i c e n s e e i s g iven permis s ion to modify the work , as w e l l as to copy
! and r e d i s t r i b u t e the work or any d e r i v a t i v e v e r s i o n . S t i l l we would
! l i k e to k ind ly ask you to acknowledge the authors and don ’ t remove
! t h e i r names from the code . This code i s d i s t r i b u t e d in the hope
! that i t w i l l be u s e f u l , but WITHOUT ANY WARRANTY.
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

SUBROUTINE s a x c f (N, f1 , f2 , L1 , L12 ,T,C)
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! Compute SAXCF of f u n c t i o n s f 1 and f2 o f samples N
! L1 and L12 are time−s h i f t windows in samples
! T i s c h a r a c t e r i s t i c l ength o f the s i g n a l in samples
! −> Output i n t o covar iance matrix C
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

i m p l i c i t none
r e a l ( 8 ) , parameter : : PI =3.1415926535 d0
i n t e g e r , i n t e n t ( in ) : : N, L1 , L12 ,T
r e a l ( 8 ) , i n t e n t ( in ) : : f 1 (N) , f 2 (N)
r e a l ( 8 ) , i n t e n t ( out ) : : C(N,N)
complex ( 8 ) , a l l o c a t a b l e : : s1 ( : ) , s2 ( : ) , Rfg ( : ) , fSACF ( : )
complex ( 8 ) , a l l o c a t a b l e : : smooth1 ( : ) , smooth12 ( : )
r e a l ( 8 ) , a l l o c a t a b l e : : SACF( : ) , tw ( : )
r e a l ( 8 ) : : taper , r
i n t e g e r : : i , j ,FFT

! Check the l ength o f smoothing window L1
i f (L1<2) then

wr i t e ( ∗ , ∗ ) ’ Warning ! L1 i s too shor t ’
e n d i f

! A l l o c a t i o n and i n i t o f v a r i a b l e s
FFT = 2∗∗( i n t ( l og ( dble (2∗N))/ log ( 2 . d0 )+0.99999999 d0)+1)
a l l o c a t e ( s1 (FFT) , s2 (FFT) , Rfg (FFT) , fSACF(FFT) , smooth1 (FFT) )
a l l o c a t e (SACF(2∗N−1) ,tw(2∗N−1))
C=0.d0
s1 =0.
s2 =0.
s1 ( 1 :N) = f1 ( 1 :N)
s2 ( 1 :N) = f2 ( 1 :N)

! FFT of the f and g f u n c t i o n s
c a l l f our1 ( s1 ,FFT, 1 )
c a l l f our1 ( s2 ,FFT, 1 )

! Prepare smoothing f u n c t i o n s in f r e q . domain
smooth1=0.
smooth1 ( 1 : i n t ( dble (L1 )/2 .+.51) )=1 . d0/ dble (L1)
smooth1 (FFT:FFT−L1/2+1:−1)=1.d0/ dble (L1)
c a l l f our1 ( smooth1 ,FFT, 1 )

! Cross−c o r r e l a t i o n o f s i g n a l s in f r e q . domain
Rfg = conjg ( s1 )∗ s2

! Convolution o f t r i a n g l e f u n c t i o n ( width 2∗L1) and cros s −c o r r
fSACF = Rfg − smooth1∗ conjg ( smooth1 )∗ Rfg

! Smoothing by j o i n t s h i f t ( width L12 ) in f r e q . domain
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i f ( L12>1) then
a l l o c a t e ( smooth12 (FFT) )
smooth12=0.
smooth12 ( 1 : i n t ( dble ( L12 )/2 .+.51) )=1 . d0/ dble ( L12 )
smooth12 (FFT:FFT−L12/2+1:−1)=1.d0/ dble ( L12 )
c a l l f our1 ( smooth12 ,FFT, 1 )
fSACF = smooth12∗fSACF
d e a l l o c a t e ( smooth12 )

e n d i f

! Norm by the e f f e c t i v e s i g n a l l ength
fSACF = fSACF/ dble (T)

! Back to time domain
c a l l f our1 (fSACF ,FFT, −1)
fSACF = fSACF/FFT
SACF( 1 :N−1) = dble ( fSACF(FFT−N+2:FFT) )
SACF(N:2∗N−1) = dble ( fSACF ( 1 :N) )

! Tapered c o s i n e window (SACF)
taper = 0.666 d0
tw=1.d0
do i =1 ,2∗N−1

r = dble ( i −1)/ dble (2∗N−2)
i f ( r . l e . ( taper /2 . d0 ) ) then

tw ( i ) = 0 .5 d0 ∗( 1 + cos ( ( 2 . d0∗PI/ taper )∗ ( r−taper /2 . d0 ) ) )
e l s e i f ( r . ge . ( 1 . d0−taper /2 . d0 ) ) then

tw ( i ) = 0 .5 d0 ∗( 1 + cos ( ( 2 . d0∗PI/ taper )∗ ( r−1+taper /2 . d0 ) ) )
e n d i f

enddo
tw = tw∗∗3 ! cube f o r b i g g e r e f f e c t
SACF = SACF ∗ tw ! Taper c o s i n e window

! F i l l the covar iance matrix by SACF
do i =0,N−1

C( i +1 ,1:N) = SACF(N−i : 2∗N−i −1)
enddo

d e a l l o c a t e ( s1 , s2 , Rfg , fSACF ,SACF, tw , smooth1 )

END SUBROUTINE
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A.3 Matlab code for ACF (AXCF)

f u n c t i o n C = axc f ( vararg in )
% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Matlab f u n c t i o n f o r determining the ( c ros s −) covar iance matrix by
% approximate ( c ros s −) covar iance f u n c t i o n (AXCF or ACF)
% ( Hal lo and Gal lov ic , 2 0 1 6 ) .
% Hallo ,M. , Gal lov ic , F . ( 2 0 1 6 ) : Fast and cheap approximation o f Green
% f u n c t i o n s unce r ta in ty f o r waveform−based earthquake source i n v e r s i o n s ,
% Geophysica l Journal Int . , 207 , 1012 −1029.
%
% Authors : Miros lav Hal lo and Frant i s ek G a l l o v i c (1/2016)
% Char les Univers i ty , Faculty o f Mathematics and Phys ics
% Revis ion 1/2018: Corrected and t e s t e d f o r r e a l s i g n a l s
%
% This code i s pub l i shed under the GNU General Publ ic L i cense . To any
% l i c e n s e e i s g iven permis s ion to modify the work , as w e l l as to copy
% and r e d i s t r i b u t e the work or any d e r i v a t i v e v e r s i o n . S t i l l we would
% l i k e to k ind ly ask you to acknowledge the authors and don ’ t remove
% t h e i r names from the code . This code i s d i s t r i b u t e d in the hope
% that i t w i l l be u s e f u l , but WITHOUT ANY WARRANTY.
% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% INPUT:
% f − F i r s t input s i g n a l ( vec to r )
% g − Second input s i g n a l ( vec to r )
% L1 − Width o f the j o i n t uniform d i s t r i b u t i o n o f time−s h i f t s [ s e c ]
% L12 − Width o f the r e l a t i v e u n i f . d i s t r i b u t i o n o f time−s h i f t s [ s e c ]
% dt − S i g n a l sampling [ s ec ] ( s c a l a r )
% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% OUTPUT:
% C − ( c ros s −) covar iance matrix (2D matrix )
% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% EXAMPLES:
% axc f ( f , L1 , dt ) − Compute auto−covar iance matrix o f f
% axc f ( f , g , L1 , L12 , dt ) − Compute cros s −covar iance matrix o f f and g
% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% REQUIREMENTS:
% smooth ( Matlab Curve F i t t i n g Toolbox )
% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

% Manage input arguments
i f narg in == 5 % cross −covar iance

f = vararg in {1} ;
g = vararg in {2} ;
L1 = vararg in {3} ;
L12 = vararg in {4} ;
dt = vararg in {5} ;

e l s e
i f narg in == 3 % auto−covar iance

f = vararg in {1} ;
g = f ;
L1 = vararg in {2} ;
L12 = 0 ;
dt = vararg in {3} ;

e l s e
e r r o r ( ’ axc f : I n c o r r e c t number o f input arguments ’ ) ;

end
end

% The number o f samples in f
nsampl = length ( f ) ;

% Check the s i z e o f the f i n a l covar iance matrix
i f nsampl > 22360

d i s p l a y ( ’ axc f : The covar iance matrix r e q u i r e more than 4GB of memory ’ ) ;
e l s e i f nsampl > 11180

d i s p l a y ( ’ axc f : The covar iance matrix r e q u i r e more than 1GB of memory ’ ) ;
e l s e i f nsampl > 5590

d i s p l a y ( ’ axc f : The covar iance matrix r e q u i r e more than 250MB of memory ’ ) ;
end

% Check the l ength and p r e a l l o c a t e output C matrix
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i f nsampl ∼= length ( g )
e r r o r ( ’ axc f : S i g n a l s f ang g have to have the same length ’ ) ;

e l s e
C = z e r o s ( nsampl ) ;

end

% Prepare smoothing windovs
L1s = c e i l (L1/ dt ) ;
i f L1s < 3

L1s = 3 ;
d i s p l a y ( [ ’ axc f : L1 changed to ’ , num2str ( L1s∗ dt ) , ’ [ s ] ’ ] )

end
L12s = max( c e i l ( L12/ dt ) , 1 ) ;

% Put z e r o s ( va lue s ) b e f o r e and a f t e r the s i g n a l
Lzeros = max( L1s , L12s ) ;
f = [ z e r o s ( Lzeros ,1)+ f ( 1 ) ; f ( : ) ; z e r o s ( Lzeros ,1)+ f ( end ) ] ;
g = [ z e r o s ( Lzeros ,1)+ g ( 1 ) ; g ( : ) ; z e r o s ( Lzeros ,1)+ g ( end ) ] ;

% New number o f samples
nsamplN = nsampl + 2∗ Lzeros ;

% Smooth f and g s i g n a l s
fSmooth = smooth ( f , L1s , ’ moving ’ ) ;
gSmooth = smooth ( g , L12s , ’ moving ’ ) ;

% Compute ACF f o r time−l a g s
ACF = z e r o s ( nsamplN , nsamplN ∗ 2 ) ;
f o r t s h i f t = 1 : nsamplN∗2 % loop f o r time−l a g s ( nsamplN+1 i s ze ro time−l ag )

g S h i f t = c i r c s h i f t ( gSmooth , t s h i f t −(nsamplN +1)) ;
ACF( : , t s h i f t ) = smooth ( f . ∗ gSh i f t , L1s , ’ moving ’ ) . . .

− ( fSmooth . ∗ smooth ( gSh i f t , L1s , ’ moving ’ ) ) ;
end

% F i l l the covar iance matrix by ACF
f o r i =1:nsampl % loop f o r rows

f o r j =1:nsampl % loop f o r columns
C( i , j ) = ACF( i+Lzeros , nsamplN+1−(j−i ) ) ;

end
end

% Check i f covar iance matrix i s symmetric ( in case any numerica l i s s u e s )
i f i s e q u a l ( f , g ) % only auto−covar iance

issym = @( x ) a l l ( a l l ( x==x . ’ ) ) ;
i f ∼ issym (C)

% Symmetrize i t
Cm = t r i u ( ones ( nsampl ) ) ;
C = C. ∗Cm;
C = C + t r i l (C. ’ , −1) ;
%d i s p l a y ( ’ axc f : The covar iance matrix was symmetrized ’ )

end
end

return
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A.4 Matlab code for SACF (SAXCF)

f u n c t i o n C = s a x c f ( vara rg in )
% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Matlab f u n c t i o n f o r determining the ( c ros s −) covar iance matrix by
% s t a t i o n a r i z e d approximate ( c ros s −) covar iance f u n c t i o n (SAXCF or SACF)
% ( Hal lo and Gal lov ic , 2 0 1 6 ) .
% Hallo ,M. , Gal lov ic , F . ( 2 0 1 6 ) : Fast and cheap approximation o f Green
% f u n c t i o n s unce r ta in ty f o r waveform−based earthquake source i n v e r s i o n s ,
% Geophysica l Journal Int . , 207 , 1012 −1029.
%
% Authors : Miros lav Hal lo and Frant i s ek G a l l o v i c (1/2016)
% Char les Univers i ty , Faculty o f Mathematics and Phys ics
% Revis ion 1/2018: Corrected and t e s t e d f o r r e a l s i g n a l s
%
% This code i s pub l i shed under the GNU General Publ ic L i cense . To any
% l i c e n s e e i s g iven permis s ion to modify the work , as w e l l as to copy
% and r e d i s t r i b u t e the work or any d e r i v a t i v e v e r s i o n . S t i l l we would
% l i k e to k ind ly ask you to acknowledge the authors and don ’ t remove
% t h e i r names from the code . This code i s d i s t r i b u t e d in the hope
% that i t w i l l be u s e f u l , but WITHOUT ANY WARRANTY.
% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% INPUT:
% f − F i r s t input s i g n a l ( vec to r )
% g − Second input s i g n a l ( vec to r )
% L1 − Width o f the j o i n t uniform d i s t r i b u t i o n o f time−s h i f t s [ s e c ]
% L12 − Width o f the r e l a t i v e u n i f . d i s t r i b u t i o n o f time−s h i f t s [ s e c ]
% dt − S i g n a l sampling [ s ec ] ( s c a l a r )
% T − Dominant s i g n a l l ength [ s ec ] ( s c a l a r )
% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% OUTPUT:
% C − s t a t i o n a r i z e d ( c ros s −) covar iance matrix (2D matrix )
% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% EXAMPLES:
% s a x c f ( f , L1 , dt ,T) − Compute auto−covar iance matrix o f f
% s a x c f ( f , g , L1 , L12 , dt ,T) − Compute cros s −covar iance matrix o f f and g
% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% REQUIREMENTS:
% smooth ( Matlab Curve F i t t i n g Toolbox )
% f i l t f i l t ( Matlab S i g n a l Proce s s ing Toolbox )
% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

% Manage input arguments
i f narg in == 6 % cross −covar iance

f = vararg in {1} ;
g = vararg in {2} ;
L1 = vararg in {3} ;
L12 = vararg in {4} ;
dt = vararg in {5} ;
T = vararg in {6} ;

e l s e
i f narg in == 4 % auto−covar iance

f = vararg in {1} ;
g = f ;
L1 = vararg in {2} ;
L12 = 0 ;
dt = vararg in {3} ;
T = vararg in {4} ;

e l s e
e r r o r ( ’ s a x c f : I n c o r r e c t number o f input arguments ’ ) ;

end
end

% The number o f samples in f
nsampl = length ( f ) ;

% Check the s i z e o f the f i n a l covar iance matrix
i f nsampl > 22360

d i s p l a y ( ’ s a x c f : The covar iance matrix r e q u i r e more than 4GB of memory ’ ) ;
e l s e i f nsampl > 11180

d i s p l a y ( ’ s a x c f : The covar iance matrix r e q u i r e more than 1GB of memory ’ ) ;
e l s e i f nsampl > 5590
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d i s p l a y ( ’ s a x c f : The covar iance matrix r e q u i r e more than 250MB of memory ’ ) ;
end

% Check the l ength and p r e a l l o c a t e output C matrix
i f nsampl ∼= length ( g )

e r r o r ( ’ s a x c f : S i g n a l s f ang g have to have the same length ’ ) ;
e l s e

C = z e r o s ( nsampl ) ;
end

% Check the t r i a n g l e f u n c t i o n base
L1s = round (L1/ dt ) ;
i f L1s < 2

L1s = 2 ;
d i s p l a y ( [ ’ s a x c f : L1 changed to ’ , num2str ( L1s∗ dt ) , ’ [ s ] ’ ] )

end

% Cross−c o r r e l a t i o n o f s i g n a l s
RfgP = z e r o s (1 , nsampl ) ;
RfgN = z e r o s (1 , nsampl ) ;
f o r t s h i f t =0:nsampl−1 % loop f o r time−l a g s

RfgN( t s h i f t +1) = sum( g ( 1 : nsampl−t s h i f t ) . ∗ f (1+ t s h i f t : nsampl ) )∗ dt ; % negat ive
RfgP ( t s h i f t +1) = sum( f ( 1 : nsampl−t s h i f t ) . ∗ g(1+ t s h i f t : nsampl ) )∗ dt ; % p o s i t i v e

end
Rfg = [ RfgN( nsampl : −1 :2) , RfgP ( 1 : nsampl ) ] ;

% Convolution o f t r i a n g l e f u n c t i o n ( width 2∗L1) and cros s −c o r r e l a t i o n
b = ones ( L1s , 1 ) / L1s ;
SCF = Rfg − f i l t f i l t (b , 1 , Rfg ) ;

% Smoothing by j o i n t s h i f t ( width L12 )
i f c e i l ( L12/ dt)>2

SCF = smooth (SCF, c e i l ( L12/ dt ) , ’ moving ’ ) ;
end

% Norm by the e f f e c t i v e s i g n a l l ength
SCF = SCF/T;

% Taper o f C matrix
taper = 0 . 6 6 6 ;
tw = tukeywin ( l ength (SCF) , taper ) ;
tw = tw . ˆ 3 ;
SCF = SCF ( : ) . ∗ tw ( : ) ;

% F i l l the covar iance matrix by SCF
f o r t s h i f t =0:nsampl−1 % loop f o r rows

C( t s h i f t +1 , : ) = SCF( nsampl−t s h i f t : 2∗nsampl−t s h i f t −1);
end

% Check i f covar iance matrix i s symmetric ( in case any numerica l i s s u e s )
i f i s e q u a l ( f , g ) % only auto−covar iance

issym = @( x ) a l l ( a l l ( x==x . ’ ) ) ;
i f ∼ issym (C)

% Symmetrize i t
Cm = t r i u ( ones ( nsampl ) ) ;
C = C. ∗Cm;
C = C + t r i l (C. ’ , −1) ;
%d i s p l a y ( ’ s a x c f : The covar iance matrix was symmetrized ’ )

end
end

return
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A.5 Tectonic cube - Earth’s stress regimes
The stress field in the solid Earth is not the issue of this thesis, however it is
an important topic connected to the interpretation of inferred earthquake source
models. While, the interpretation in the tectonic framework is tackled in the
case study of 2016 Kumamoto earthquakes in Chapter 3, I present here a brief
attachment related to the interpretation of earthquake sources in the tectonic
framework. For detailed information about Earth’s stress field and methods for
its estimation see Michael (1984), Gephart & Forsyth (1984), Angelier (2002),
and Vavryčuk (2014).

Briefly, the tectonic earthquakes are associated with ruptures exposed to a
stress field in the solid Earth. If the stress overcome the critical value of the
strength of a fault, fast slip occurs. The stress can have a non-tectonic or tectonic
origin. The stress field may be regionally very heterogeneous because it is affected,
among others, by regional topography, pore pressure and heterogeneity of the
Earth’s crust.

The stress field can be mathematically represented by a symmetric tensor of
second order τ , where the coordinate system can be always rotated in the way
that the stress tensor diagonalizes:

τ =

⎛⎜⎝σ1 0 0
0 σ2 0
0 0 σ3

⎞⎟⎠ , (A.1)

where σ1, σ2, and σ3 are called the maximum, intermediate and minimum prin-
cipal stresses with

σ1 ≥ σ2 ≥ σ3, (A.2)

while the orthonormal vectors of such coordinate system define so-called principal
stress directions. Following Anderson (1951), it is possible to distinguish three
basic stress regimes in the solid Earth with typical mechanisms of faulting: 1) the
“normal faulting” regime having σ1 vertical; 2) the “strike-slip faulting” regime
having σ2 vertical; and 3) the “reverse faulting” regime having σ3 vertical. The
activated faults are then spatially oriented with respects to the stress regime. By
the Coulomb shear failure criteria, the slip vector is close to direction of σ1 tilted
by a shear angle θ defined as

tan(2θ) = 1
µ

, (A.3)

where µ is coefficient of internal friction of the medium.
In Fig. A.1, I present a tool called “tectonic cube” useful for intuitive earth-

quake source interpretations and educational purpose. It is based on empirical
experiences from geology, and comply with the Coulomb shear failure criteria.
The tectonic cube shows spatial orientation of critically oriented (principal) faults
for the given orientation of principal stress directions. The coefficient of internal
friction is taken as µ = 0.75 corresponding to the shear angle θ ≈ 27◦ (practical
choice with tan(θ) = 0.5). Two conjugate principal faults are shown by red and
blue lines as projected fault-planes into the rotated coordinate system. The red
and blue arrows denote shear slip vectors on the principal faults as tangential to
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the cube plane. Further, ⊕ and ⊖ signs denote forward and backward slip vec-
tors tilted by θ from the cube normals. Moreover, the orange dashed line denotes
orientation of the fault plane of possible pure tensile cracks (i.e. µ → ∞).

As a demonstration of the cube usage, lets assume the stress field settings
of the Kumamoto area (Fig. 3.7e), i.e. fix σ3 in NNW-SSE direction and rotate
the cube along this axis to observe possible principal faults, and compare with
inferred CMT solutions in Fig. 3.8. This tool is presented with the hope that it
will be useful, keeping in mind that it is only a simplified model.
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Figure A.1: The tectonic cube as a tool for interpretations of earthquake sources
in tectonic framework. To construct the cube: 1) print or copy this page to a white
cardboard; 2) cut the cube according to solid black lines; 3) bend along dashed black
lines; 4) stick all folds by a glue.
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