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Introduction

Earthquake ground motions originate from rupture processes on faults in Earth.
Constraints on earthquake source models are important for better understand-
ing of earthquake physics and for seismic hazard analysis, which is particularly
significant for construction engineering and disaster mitigation planning. In ad-
dition, earthquake source models serve as input for studies like analysis of the
earthquake energy budget (e.g., [Kanamori & Rivera|2006|), dynamic stress drop
analysis, Coulomb stress modeling, etc. Realistic estimate of the uncertainty of
earthquake source models is essential for evaluation of solution quality. Strictly
speaking, any interpretation of centroid moment tensor or finite-extent model
requires proper assessment of their uncertainty (e.g., Sokos et al.|2015; Dettmer
et al.|2014; Duputel et al.|2015).

Earthquake source models are inferred from observed waveforms by inverse
modeling, which is subject to uncertainty. Synthetic waveforms required by the
inverse modeling are computed using Green’s functions (GFs) representing re-
sponse of Earth’s crust to an impulse stimulus. In the case of large tectonic
earthquakes, the major source of uncertainty of the inferred source models is
related to the uncertainty of the GFs due to the inaccuracy of the crustal mod-
els considered. In practical applications, the uncertainties of the inferred source
parameters are typically estimated by accepting all models within a given thresh-
old on the misfit value (e.g., Piatanesi et al.|[2007; Valentine & Trampert|2012;
Zahradnik & Custodiol 2012; (Gallovic & Zahradnik [2012). However, the value
of such threshold is not based on a proper analysis of the underlying origin of
the uncertainty. We point out that imprecise knowledge of the velocity model
can lead to spurious non-double-couple components in moment tensor inversions
(Zahradnik et al.2015) and artificial slip-rate peaks in slip inversions (Gallovi¢
et al.[2015).

Earthquake source model inversions with the assessment of the solution uncer-
tainty are usually performed in the Bayesian probabilistic framework (e.g., [Yagi
& Fukahatal 2011; Minson et al. 2013, 2014} Dettmer et al. [2007), 2014; Dupu-
tel et al. 2014}, 2015; [Kubo et al.|2016a; [Mustac & Tkalcic| 2016; Vackar et al.
2017). In this way a prior information on the physical model is specified, which is
then updated to a conditional posterior probability on model parameters affected
by the observed data (e.g., Tarantola & Valette |1982; Tarantola2005). In such
framework, the assumptions on uncertainty of the observed waveforms and com-
puted GFs can be incorporated, e.g., by means of Gaussian covariance matrices.
The inferred solution is then represented by the conditional posterior probability
on model parameters. The uncertainty of the inferred source model may be then
assessed by analytical formulas (if possible) or by ensemble of solutions drawn
from the posterior probability density.

The covariance matrix of GFs has been considered by other researchers, how-
ever a proper analysis of the GFs’ uncertainty has not been done yet. In partic-
ular, Yagi & Fukahata (2011) and [Minson et al.| (2013 considered diagonal GF
covariance matrix in their Bayesian slip inversion, treating the GF variance as an
unknown parameter. Duputel et al.| (2012)) showed the importance of consider-
ing the full covariance matrix of GF in the moment tensor inversion. However,



in their examples they assume that the major origin of the error is due to the
centroid mislocation. That study was extended by [Duputel et al. (2014} [2015),
who proposed to estimate the full covariance matrix approximately by consider-
ing linear relationship between the GFs and random, generally 3D, perturbations
of the velocity model. However, their approach requires evaluation of sensitivity
kernels, which are, in practice, expensive to acquire. An alternative approach is
represented by “empirical” estimation of the covariances from data residuals in so-
called hierarchical inversions (Dettmer et al.|2007, 2014; Musta¢ & Tkalcic|2016)).
In particular, Dettmer et al. (2007, 2014) took into account the non-stationary
character of the noise by scaling rows and columns of the covariance matrix by
running averages of the residual waveforms.

This research is focused on the influence of uncertainty of a crustal velocity
model by means of uncertainty of GFs in earthquake source inversions. We first
perform Monte-Carlo simulations of GFs in randomly perturbed velocity models
to reveal the effects of the imprecise velocity model on the synthetic waveforms.
We derive closed-form formulas for approximate covariance functions to obtain
fast and effective characterization of the GFs’ uncertainty avoiding any demand-
ing computations (Hallo & Gallovi¢[2016). The proposed approximate covariance
functions are tested on Bayesian moment tensor inversions of synthetic data, and
bench-marked on real earthquake from Corinth Gulf, Greece. In particular, exper-
iments with the large number of synthetic target datasets obtained by randomly
perturbing velocity models reveal the effects of the imprecise velocity model on
the inferred moment tensors. Inversion tests with the approximate covariance
functions of GFs show that the posterior covariance matrix of model parameters
provides accordant realistic estimate of the moment tensor uncertainties.

In the consecutive research, Hallo et al.| (2017)), we incorporated the approxi-
mate covariances into the Bayesian full-waveform centroid moment tensor inver-
sion code package ISOLA-ObsPy (Vackar et al.2017)). The modification of the
ISOLA-ObsPy with assessment of GF uncertainties was applied on foreshocks
and aftershocks of the 2016 Kumamoto, Kyushu, Japan, earthquake sequence.
The assessment of the uncertainties of the centroid moment tensors showed to be
beneficial in terms of interpretation of the results in the seismo-tectonic frame-
work.

Further, we developed a new Bayesian parametric fault slip inversion, which
accounts for the GFs’ uncertainty again by means of the approximate covariance
functions. Our non-linear finite-extent source inversion method relies on self-
adapting parametrization of slip function by means of varying number of spline
control points on the fault surface. The posterior probability density is then
sampled by trans-dimensional Markov chain Monte Carlo algorithm. Performance
of the slip inversion method is demonstrated on the destructive M,,7.1 mainshock
of the 2016 Kumamoto sequence. We infer ensemble of more than 590k possible
finite source models following the posterior probability density. This allows us
to inspect which features of the source model are reliable and which are rather
artifacts caused by imprecise knowledge of a crustal velocity model.



1. Approximation of Green’s
functions uncertainty

In the Bayesian framework the uncertainty of source inversions relies on statis-
tical description of the GF uncertainty. In accordance with other authors, we
assume that it can be described by a correlated multivariate Gaussian probabil-
ity density function (PDF) characterized by a covariance matrix. To understand
the relation between the uncertainty of the GFs and imprecise knowledge of the
velocity model, we analyze the dependence of the covariance on velocity model
perturbations using Monte-Carlo (MC) simulations considering stations at various
distances and data in various frequency ranges. Then we propose methodologies
for approximate yet simple estimation of the GF covariances.

1.1 Monte-Carlo estimation

We treat a GF due to randomly perturbed velocity model as a random function
x(t). The cross-covariance function (XCF) of two random GFs z(t) and y(t) is
defined as

zeov(t, 7)< E{ [:L‘(t) — E{x(t)}} {y(t +7) — E{y(t + 7')}} } = (1.1)
= B{z(t)y(t + )} — E{z(t)} B{y(t+ 1)}, (1.2)

where E{-} denotes expectation (mean over realizations of z(t) and y(t)), t is
time and 7 is a time lag between samples (e.g., Marple|[1986). Auto-covariance

function (CF) can be derived from considering y(t) = z(t),
cov(t,7) = E{a()a(t + 1)} — B{x@t)} E{a(t+1)}. (1.3)

A straightforward, though computationally demanding, approach to evaluate
the covariances is by MC simulations (e.g., Tarantola 2005, pp. 41-55), where
the expectations in and are directly obtained from a set of possible
GFs for a particular source-receiver settings. For this purpose we consider an
initial 1D layered velocity model and its 1500 random variations (Fig. [I.1h). In
particular, following |Tarantolal (2005, pp. 164-170), we randomly vary logarithms
of incompressibility modulus x*, shear modulus p*, and layer thicknesses. The
parameters are changed independently to each other and also independently in
all layers, assuming Gaussian distribution characterized by standard deviation
oy expressed in percentage of the initial (mean) value.

We simulate GFs for source-receiver distances 10,50, 100 km in the random
realizations of the velocity models by discrete wavenumber method (Bouchon
1981)), assuming a Dirac delta function as the source time function. GFs com-
puted in the mean velocity model are referred to as the “mother” GFs. Fig.
shows example of the generated GFs for one source-receiver distance. They
are similar in shape even though the velocity model perturbations are as large
as 10 % in the present example (maximal correlation coefficients are higher than
0.7 for all the generated GFs). A pronounced effect of the velocity model vari-
ations is represented by shifts of the generated waveforms in time. These time
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shifts (evaluated in this synthetic test from waveform cross-correlation lag from
low-frequency waveforms to avoid cycle skipping) have approximately Gaussian
distribution with standard deviation o; as demonstrated by the histogram in Fig.
. As illustrated in Fig. [I.Id, the characteristic width L of the time shift
distribution defined as L = 40, increases approximately linearly with the velocity
model perturbations oj; with rate depending on the epicentral distance.

The CFs determined by Eq. from a set of possible GFs for a particular
source-receiver settings could be used, in principle, for construction of the full
covariance matrix (example shown in Fig. [1.2h). However, the MC technique is

very demanding on computational power as there is required an enormous set of
possible GFs.
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Figure 1.1: Monte-Carlo simulations. a) Example of the set of randomly perturbed
velocity models with standard deviation oy = 10%. The red/blue lines are the mean
P-/S-wave velocity profiles and warm/cold colors are the P-/S-wave velocities of the
perturbed models, respectively. b) Examples of the GFs at one component simulated by
the discrete wavenumber method for the source-receiver distance of 50 km (o = 10% ).
The black line is the “mother” GF calculated in the mean velocity model. Other colors of
waveforms have no meaning and are used only for clearer view. ¢) Distribution of time
shifts of GFs from panel b estimated from waveforms filtered at very low frequencies
(0.05—0.09 Hz) to avoid cycle skipping. The red line shows its characteristic width 4oy.
d) The dependence of the characteristic width of the time shift distribution (4o¢) on
the strength of the velocity model perturbations oy for three source-receiver distances.

1.2 Approximate covariance functions

Here we propose to substitute the demanding MC estimation of the GF covari-
ance by a simplified approach, assuming that the only effect of the velocity model



perturbations on the covariances is the time shift of the mother GFs. As we
demonstrate later, despite of this assumption, the approximate covariances (ex-
ample shown in Fig. ) reproduce variations of both the arrival time and the
waveform amplitudes.

Let us derive the approximate formulas for XCF of two, generally different,
waveforms with random time shifts. We consider two “mother” waveforms f(¢)
and ¢(t) representing GFs in the mean velocity model. Assuming that these
waveforms are randomly shifted in time, we define new (random) waveforms
x(t) = f(t —1;) and y(t) = g(t — l; — l12). The time shift [; is random but
the same for both signals, while [;5 characterizes their relative random time shift.
We denote PDFs of I; and I35 as pi(l1) and pia(ly2), respectively. Expectations
E{-} in Eq. (1.2) can be evaluated using “mother” waveforms and the PDFs

pl(ll) and plg(lm) as

E{a(t)} = / F(t— 1) po(ly) diy (1.4)

E{y(t + 7')} = / / g(t + 7= ll — l12> p12(l12) pl(ll) dl12 dll (15)
E{x(t)y(t + T)} = / / ft=1) gt +7 =11 — la) pra(liz) pi(ly) dlyp dly
o (1.6)

The XCF formula for general PDFs p;(l;) and p12(l12) can be obtained by putting
(1.4), (L.5) and (1.6) into Eq. (1.2]) requiring only specification of the “mother”

waveforms and PDFs of the time shifts. It is, in principle, applicable in covariance
matrix estimation in this form; nevertheless, the formula can be further simplified
by assuming that the time-shift /; is uniformly distributed in the time interval
from (=L1)/2 to (+L1)/2 and the time-shift [;5 is uniformly distributed from (-Z12)/2

to (+L12)/2. The expectations of the random processes in ([1.4), (1.5) and ([1.6]
then simplify to

/ F(t— 1) Al (1.7)
Lo
/ T / t+ T — 11 — 112) dllz dll (18)
2 1 2
/ Lf / t — ll t—|— T — ll - llg) dllg dll (19)

Putting (1.7)), (1.8) and (1.9) into Eq. (1.2)), the final formula for approximate
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cross-covariance (AXCF) reads:

1
geou(t,7) = / /f(t—ll)g(t+T—l1—l12)dll2dll—
L1L12 T v
_Zz1 _f12
2 2
Ly Ly Lio
1 2 1 2 2
- / £t — 1) dly / /g(t+7—l1—l12) Al dli.  (1.10)
Ll ) L1L12 1, 7
K e

Approximate auto-covariance (ACF) can be derived analogously from (1.3]), or
alternatively from considering that the “mother” waveforms are identical
g(t) = f(t), and that PDF p15(l15) becomes formally a Dirac delta function. The
final formula for ACF then reads:

L

-y

Ly

2

c’(ﬁ;(t,r)zgl / ft=0) ft+7—1)d,—
_Lll / £t — 1) diy L11 / Flt+7— 1) di,. (1.11)

The ACF formula thus requires only specification of the “mother” waveform (i.e.
GF in the mean velocity model) and the width of the uniform time shift distri-
bution L;. Eq. is easy to implement as the integrals normalized by 1/L,
operate as smoothing by a moving time window of width L;.

1.3 Stationarized covariance functions

Since the real elastic parameters of the Earth are rather complex (3D, anisotropic,
etc.), the covariance determined by ACF and also MC simulations might not re-
flect the reality perfectly. Nevertheless, we can assume that the overall pattern
of the ACFs and simulated CFs effectively captures the main features of the GFs
uncertainty. In particular, we consider that such representative of the true un-

0.]
certainty for each time lag 7 is just the CF’s average over time, % [ covu(t,T) dt,
—00

where T is duration of the dominant part of the signal. By calculating the mean
of the (non-stationary) CF over time we obtain covariance dependent only on the
time lag 7, which is property of so-called wide-sense stationary random signals
(e.g., Marple |1986), and thus we denote this approach as stationarization. For
example, when the stationarized covariance function (SCF) is evaluated from the
ACF, we call it stationarized approximate covariance function (SACF),

e 1 T
con(r) < / coo(t, ) dt. (1.12)

Since the SACFs are by definition stationary (i.e. depending only on lag 7), the
respective covariance matrix has Toeplitz structure (see example in Fig. [1.2p).
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Such property may be useful in specific (e.g., large-scale or iterative) applications
because it permits very cheap calculation of the matrix’s inverse, which is required
when solving inverse problems (e.g., Tarantola 2005, pp. 62-68).

After substitution of the ACF in Eq. into definition of the SACF in Eq.
the formula for the SACF can be after simple algebra equally expressed as

1
cou(r) = [74(7) = Mo, (7) % 74(7)]. (1.13)
where * denotes temporal convolution, Agr,(7) is the triangle function of unit

. . . . d
area centered around zero with duration 2L, and r is auto-correlation (1) e

Ofo f(t)f(t+7)dt of the “mother” waveform f(¢). The complete derivation of the

SACF and the stationarized approximate cross-covariance function (SAXCF) are
included in the Thesis.

1.4 Performance in capturing GF variations

Covariance matrices and their approximations are used to statistically describe
the uncertainty of the GFs. However, it is not trivial to assess the quality of the
proposed approximations in terms of capturing the true variability of the GFs. To
address this issue, we draw random GF samples from their multivariate normal
distributions described by the “mother” waveforms and the auto-covariance ma-
trices to visually inspect their effects on the GF variability. Examples of random
GFs generated considering the various covariance matrices introduced herein are
shown in Fig. [1.2]

Random GFs generated using the MC covariance matrix (Fig. [1.2b) may serve
as a reference set. They reasonable agree with the variability of the original set
of the GFs calculated for the randomly perturbed velocity models (see Fig. [L.1pb).
Spread of the GFs generated by the ACF matrix (Fig. [1.2{d) is very similar to the
reference (Fig. [1.2p). Indeed, the random GFs generated using the ACF matrix
have similar time shifts as the reference GFs. We note that the variations in
GF amplitudes might come as a surprise because the ACF formula in Eq.
was derived assuming pure time shifts without any change of the signal shape.
This is due to the fact that the Gaussian PDF is not mathematically perfect
statistical model for capturing such variations. In other words, the variations
in amplitudes represent an artifact of using the chosen statistical model for the
randomly shifted signal in a mathematical sense. Nevertheless, despite being
an artifact, we consider it advantageous for our purpose since the ACF then
captures more general variability that is closer to the reference one obtained by
the expensive MC approach.

Variability of GFs for the SACF matrix (Fig. [L.2f) is similar to the reference
in the time interval where the mother GF has the strongest signal (i.e. 15 —
26 sec). Outside of this time interval, the time-independence of the SACF leads
to theoretically possible strong amplitude variations unobserved in the reference
set. If needed, these variations could be suppressed by applying an additional
taper on the rows and columns of the respective covariance matrix.

For illustration purposes we show in Fig. also the case of a diagonal
covariance matrix since it is most typically considered in current source inversions.
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Figure 1.2: Ezamples of GFs (b, d, f, h) generated as random samples from multi-
variate Gaussian distributions described by a mother GF's (in bold black) and the var-
ious auto-covariance matrices shown in the respective panels (a, ¢, e, g), see legend.
Waveform colors have no meaning and are used just for clearer view. The source-
recetver distance for this example is 50 km, and the strength of the model perturbation
oy = 10%.



2. Bayesian source inversion of
synthetic data

The proposed approximate covariances can be easily implemented into existing
seismic source inversions based on waveform modeling including those formulated
in the Bayesian framework. For example, it can be used in source inversion
proposed by, e.g., [Yagi & Fukahatal (2011) or [Duputel et al. (2012), where the
covariance matrix of the modeling errors (describing the GFs uncertainty) is added
to the data covariance matrix describing the seismic noise. In those approaches
the covariance of the modeling error is iteratively updated every source model
update. Here we show an alternative, simplified, Bayesian approach, assuming
that the data error is mainly due to the velocity model uncertainty. In other
words, the modeling error covariance is estimated using the approximate formulas
in Eqgs and evaluated directly from the observed waveforms. This
allows us to solve the inverse problem very efficiently without any iterations.

For the present example of moment tensor (MT) inversion from synthetic
data, we consider an earthquake from the Corinth Gulf, Greece, at depth 8 km
and with moment magnitude M,, = 5.4. Synthetic data were computed by the
discrete wavenumber method (Bouchon|/1981) assuming a Dirac delta function as
the source time function and pure shear mechanism with strike 327°, dip 32°, and
rake -45°. In the following tests we generate “data” for the inversion assuming a
realization of random variations of the wave speeds and depths of the layers (as
in the MC simulations described in previous sections. Such random variations
of the reference velocity model simulate a real case when the velocity model is
complex, yet well described by a mean velocity model.

2.1 Inversion method

We follow the approach of Kikuchi & Kanamori (1991)), where the full seismic MT
is parametrized by six elementary MTs defined herein. Full MT is then composed
of their linear combination described by six coefficients (a; . . . ag),

6 Qg — a5 + ag aq ay
M=> a,M, = a —as +ag  as . (2.1)
n=1 Ay as as + ag

For each of the elementary MT n we evaluate elementary seismogram E]' by
the discrete wavenumber method for a receiver r (vectors E consists of temporal
samples). Synthetic seismogram w,. for a general MT in can then be obtained
by a linear combination of the six elementary seismograms,

6
u. =Y a,E'=Gm (2.2)
n=1

where m = (a1, ay, as, as, as, ag)’ and G is linear operator of the forward problem
consisting of the elementary seismograms E]'. Generalization to more stations
and components is straightforward.
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The advantage of such linear formulation is the possibility to pre-compute
the elementary seismograms for all receivers, and then easily find coefficients
including their errors by means of the Bayesian approach (Tarantola|2005, pp. 62—
68). Indeed, assuming that observed data d,ps are characterized by Gaussian
data errors with covariance matrix Cp and considering no prior information (i.e.

infinite standard deviation) on the model parameters m, the posterior conditional
PDF p(m|dops) reads

1
p(m|dgps) = const. exp ( — - (dops — Gm)" Cp ™ (dopy — Gm)> (2.3)

where const. is a normalization constant. This Gaussian function attains its
maximum for

m=(G"Cp"' Q) (G" Cp dup). (2.4)

which is called best-fitting or maximum likelihood solution. The shape of the
Gaussian PDF is characterized by the (posterior) covariance matrix CM given by

M= (c"cp' @) . (2.5)

The 6 x 6 elements of matrix CM fully describe the uncertainty of the inverted
MT solution.

Let us explain an alternative view of the role of the data covariance matrix in
the Bayesian inversion. The covariance matrix is by definition positive semidefi-
nite, and if it is, moreover, positive definite, its inverse exists and can be factorized
by Cholesky decomposition

Cp '=R'R, (2.6)

where R is an upper triangular matrix. Putting (2.6) into (2.3), the posterior
PDF can be rewritten as

1
p(m|dops) = const. exp ( - §(Rdobs —~RGm)" (Rdgps — RGm)) (2.7)

meaning that the best-fitting solution minimizes L2-norm of so-called standard-
ized residuals obtained as a difference between the data and synthetics after they
both are multiplied by the triangular matrix R from the Cholesky decomposition.

2.2 The maximum likelihood solution

The MT inversion is performed for 1000 different target data sets computed in
randomly perturbed velocity models. For each realization, we obtain maximum
likelihood solutions in Eq. for each type of the covariance matrix considered.
Fig. shows the ensemble of the solutions displayed in terms of DC mechanism
nodal planes, and histograms of maximum difference to the true model in strike,
dip, rake, DC component ratio and the inferred scalar seismic moment M,. We
note that the spread of the differences to the reference solution (plotted in red)
is caused by variations of the randomly perturbed velocity model, hence by the
GFs uncertainty.

The maximum difference in the angles of the DC mechanisms reaches 10—
20° depending on the covariance matrix type considered. Asymmetry of the DC

11
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mechanism angle difference (e.g., Fig. [2.1d) is related to the particular spatial
settings of the monitoring network. The DC component ratios are scattered from
the simulated pure shear (DC = 1) down to values 0.8 — 0.6. The variability of
the inferred scalar moments is similar for all the considered covariance matrix
types ranging from 1.0 to 1.6x10'" Nm (i.e. 5.3 to 5.4 in moment magnitude
scale), except for the SAXCF case. Indeed, although nodal planes may be similar
to the reference, the scalar seismic moment is underestimated in order to reduce
the effect of the temporal averaging of the cross-correlations.

We note that the presented statistics of the inverted maximum likelihood pa-
rameters can be understood as the “true” MT uncertainty caused by the velocity
model uncertainty. It implies that such MT uncertainty is significant and thus
should not be neglected in applications. Therefore, in the next section we as-
sess the ability of the individual types of the covariances to estimate the “true”
uncertainty in terms of the posterior covariance matrix.

2.3 Moment tensor uncertainty estimate

We arbitrarily selected one of the synthetic target data sets, inferred the best-
fitting MT solution and estimated its uncertainty in terms of the posterior covari-
ance matrix (Eq. (2.5)). For each type of the data covariance matrix, Fig.
shows the maximum likelihood solution together with the posterior uncertainty
similarly to Fig. 2.1l However, here the ensemble of the solutions is obtained by
random sampling the posterior PDF (using Matlab function mwvnrnd). In Fig.
the true parameters are plotted by red color for comparison. We note that
the best-fitting solutions are biased due to the particular velocity model pertur-
bations considered in the target data. In the following we concentrate on the
uncertainty estimation in comparison with the “true” uncertainty as revealed in
previous Section.

In case of the constant diagonal covariance matrix (Fig. [2.2a) the posterior
PDF is characterized by very narrow uncertainty limits in contrast to the “true”
uncertainty (Fig. [2.1h). Such estimate of the MT uncertainty is clearly unac-
ceptable. Slightly better, yet still underestimated, uncertainty is attained when
including the ACF covariance matrix (Fig. in comparison with Fig. [2.1d).
However, the uncertainty estimate of ACF covers mostly also the target reference
shown by the red line. Inversion with the SACF in Fig. provides the largest
MT uncertainty estimate, being comparable with that shown in Fig. [2.1c. The
larger uncertainty estimate is linked to the time-invariance of the SACF covari-
ance matrix allowing for more general waveform changes as can be seen in Fig.
[I.2f. Finally, considering also the inter-component cross-covariances in the inver-
sion reduces the posterior PDF uncertainty estimate for both the SAXCF (Fig.
2.2k) and AXCF (Fig. [2.2f).

To conclude, experiments with the large number of synthetic target datasets
obtained by randomly perturbing velocity models reveal that the lowest scatter
of the maximum likelihood solutions is attained for the approximate covariance
function (ACF and AXCF). Tests also show that the posterior covariance matrix
of model parameters reflects the true uncertainty of the MT solution well when
considering the stationarized auto-covariance function (SACF)
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Figure 2.2: Result of a synthetic MT inversion test with a single realization of the
randomly perturbed velocity models to generate the target data. Panels in a row are
the mazimum likelihood solutions (text), DC mechanism fault planes (left), mazximum
difference to reference in strike, dip, rake (middle-left), DC component (middle-right)
and the My scatter (right). FEach row corresponds to the use of different type of the
data covariance matriz (see legend). The beach balls and histograms are built from 300
random samples of the posterior PDF to visualize the estimated parameter uncertainty.
The true solution (in red) is a pure shear mechanism (DC = 1) with strike 327°, dip
32° rake -45°, and scalar seismic moment My = 1.5 x 1017 Nm.
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3. Bayesian source inversion of
the 2016 Kumamoto earthquakes

The 2016 Kumamoto earthquake sequence started on April 14, 2016, with an
M a1 46.5 shallow earthquake in the central part of Kyushu, Japan. The seismic
activity continued by weaker events, including M ;y;45.8 and M;y;46.4 earth-
quakes 41 min and 2.6 h after the first shock, respectively. The mainshock of
the sequence of Mpr47.3 occurred on April 16, 2016 (01:25 of Japan Standard
Time), 28 h after the first earthquake. The mainshock generated destructive
ground motions in the near-source region, causing severe damage and casualties.
The following aftershocks had wide spatial distribution across the whole Kyushu
with the strongest event of M;3,45.9 that occurred 20 min after the mainshock.

This earthquake sequence occurred along the Futagawa-Hinagu fault system,
which is one of the major active fault zones in Kyushu. This shear zone is con-
sidered to be western extension of the Median Tectonic Line, the largest tectonic
line in southwestern Japan. The tectonic stress in Kyushu has large spatial het-
erogeneities. At Kumamoto area, the minimum principal tectonic stress o3 is in
the N-S direction, and the maximum principal tectonic stress oy has similar size
as oq; therefore, strike-slip and also normal faults are expected under such stress
regime.

3.1 Data and inversion method

We infer centroid moment tensors (CMTs) of 11 significant earthquakes with
My a4 magnitude in range of 4.8-6.5. The set consists of all foreshocks and
aftershocks with M 3,4 magnitude higher than or equal to 5, and two aftershocks
with My 4 magnitude 4.9 and 4.8. We estimate that more than 99 % of the total
scalar seismic moment of the 2016 Kumamoto sequence was released by these
events together with the M ;,,47.3 mainshock.

We use three-component strong-motion waveforms recorded by the K-NET,
KiK-net and F-net networks, operated by National Research Institute for Earth
Science and Disaster Resilience (NIED), in the distances of 10 — 60 km from the
epicenter. The stations are selected based on azimuthal coverage, distance and
sufficient signal-to-noise ratio in the low-frequency range. Stations located too
close to the epicenter are excluded to comply with the point source approximation.

For the CMTs inversion, we use modification of the Bayesian full-waveform
CMT inversion, ISOLA-ObsPy (Vackar et al.|[2017), which allows for reliable
assessment of the solution uncertainty. As the solution uncertainty is dominated
by modeling errors governed by the uncertainty of the GFs due to the inaccuracy
of the crustal model considered, we include the modeling errors in covariance
matrix Cp following approach by Hallo & Gallovi¢| (2016). GFs are computed by
the discrete wavenumber method (Bouchon|1981)) in 1D velocity model consisting
of homogenous layers. The model is prepared from the 3D Japan Integrated
Velocity Structure Model as a horizontal average over area of 40 x 40 km around
mainshock epicenter.
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3.2 Solutions of the CMT inversion

The inferred CMTs of the analyzed events exhibit significant systematic spatial
variations throughout the source region (Fig. . Analyzed CMTs of foreshocks
are strike-slip events located near the surface traces of the Hinagu and Futagawa
faults (red DC beach-balls in Fig. . Contrarily, aftershocks have various
mechanisms with majority of normal dip-slips (blue DC beach-balls in Fig. |3.1]).

Parameters of the inferred solutions together with their uncertainties are com-
piled in Table The percentage of the double-couple (DC) source content spans
from 64 to 98 %. In most cases, it is characterized by large uncertainty including
also possibility of pure shear (i.e. DC 100 %), and hence, the presence of CLVD
component cannot be proved (but also disproved) for most of the inferred CMT
solutions. The exceptions are events No. 1, 3 and 7 whose admissible DC values
do not exceed 90 % even taking the uncertainty into account. Hence, we consider
these events as having a significant CLVD component. Moreover, event No. 7
has the highest variance reduction in all the events, and hence, we consider its
significant CLVD component particularly well constrained.

| — surface traces of faults
hypocenters 2016/4/14 - 5/13
mainshock hypocenter
= & hypocenters of analyzed EQs
Il foreshocks 2016/4/14 — 4/15
Il aftershocks 2016/4/16

32.8°N 32.8°N

32.6'N S A3 —== 6N

130.6°E 130.8°E 131°E

Figure 3.1: Map of inferred CMTs of the Kumamoto earthquake sequence. CMTs are
shown by beach-ball representation of the best DC source. The background seismicity is
adopted from Kato et al. (2016). The sizes of the circles are proportional to the JMA
magnitude of the events.
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No. CMT location DC component DC component

uncertainty

Lat. Lon. Depth[km] M, VR% S/D/R[°] DC% S/D/R[?] DC%
1 32.780  130.809 8.1 6.1 44 33/82/-155 64 3/7/9 +24
2 32.696  130.768 3.8 6.0 58 212/77/178 87 2/9/12 +20
3 32.862  130.856 8.4 5.7 59 294/37/-48 67 6/4/8 +16
4 32.780  130.823 8.3 54 73 29/69/-149 94 2/3/4 +10
5 32.765  130.760 13.0 50 45 6/72/-142 79 5/7/10 +14
6 32.860  130.835 10.0 52 60 83/62/-71 89 3/2/3 +10
7 32.692  130.716 7.8 52 T4 68/63/-95 0] 3/2/3 +8
8 32.765  130.803 9.9 49 54 16/76/-163 92 2/4/4 +14
9 32.679  130.735 8.1 49 711 211/66/175 90 2/3/3 +8
10 32.745  130.752 5.7 4.7 53 215/81/-165 83 2/7/8 +22
11 32.800  130.788 5.7 4.6 61 79/29/-104 98 8/2/8 +12

Note: VR-variance reduction; M,,—moment magnitude; S/D/R-strike/dip/rake

Table 3.1: Parameters of the inferred CMT solutions together with their uncertainty
in terms of double standard deviation of Gaussian function (20 ) fitted to the respective
marginal PDF.

3.3 Seismo-tectonic interpretation

Foreshocks (red beach-balls in Fig. imply right-lateral strike-slip movements
in the NE-SW direction in the Hinagu fault zone. Those ruptures located close
to the intersection of the Hinagu and Futagawa fault zones are dipping slightly
to ESE, while those in the southern area are dipping to WNW. The assumed
activated ruptures span from surface to depth of approximately 14 km. Contrar-
ily, aftershocks are mostly normal dip-slip events (blue beach-balls in Fig.
and spread NW along the assumed fault plane of the M ;j;47.3 mainshock, where
the surface subsidence occurred as documented by InSAR (Himematsu & Fu-
ruya, 2016)). Aftershock’s ruptures are situated at depths greater than 5 km, close
to the assumed fault plane of the mainshock. These findings imply that fore-
shocks and partially also mainshock are driven by stresses of the NE-SW shear
zone, while aftershocks are mostly related to the N-S extensional stress regime
of Beppu-Shimabara graben (Kamata & Kodama|/1994).

Co-activation of the right-lateral strike-slips with normal faulting ruptures
through the sequence was introduced also by static slip model from geodetic data
(Himematsu & Furuya; 2016). Field investigation by Toda et al. (2016]) shows
that surface displacements along the previously mapped active fault traces of the
Hinagu—Futagawa fault zone are dominated by right-lateral strike-slip surface
displacement up to 2m. The normal dip-slip aftershocks that occurred along
the NW edge of the mainshock rupture had no clear relationship with co-seismic
surface ruptures; however, minor surface ruptures in downtown of Kumamoto
City have been mapped by InSAR (Himematsu & Furuyal[2016]). Further surveys
on imaging causative source faults beneath the surface are necessary to investigate
the relationship between the surface ruptures and the geometry of earthquake
source faults.
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4. Self-adapting Bayesian
inversion of finite-extent sources

The probabilistic kinematic finite-extent source inversions have been introduced
by several recent studies. For example, [Kubo et al.| (2016a) and Minson et al.
(2013) take into account the GFs variance, treating the GF variance as an un-
known parameter with uniform and log-normal prior PDF, respectively. [Duputel
et al. (2014} 2015)) show the importance of considering the full covariance matrix
in inversions, and propose to estimate the full covariance matrices by considering
a linear relationship between the GFs and random, generally 3D, perturbations
of the velocity model.

Such Bayesian finite-fault inversions estimate the solution uncertainty for the
particular choice of parametrization of the source model (e.g., assumptions on
spatial smoothing, temporal parametrization, etc.). The choice of parametriza-
tion may have a big influence on the inferred solution (e.g., Beresnev[2003), and
hence also on the estimated uncertainty of the solution. Therefore, it is advisable
to choose the source model parametrization considering the resolution power of
the observed data. Over-parametrization is associated with overfitting the ob-
served data (i.e. noise fitting), while under-parametrization is associated with
too rough source models.

Our work introduces a non-linear Bayesian fault slip inversion with effective
trans-D parametrization of the slip-rate functions (SRFs) and implemented un-
certainty of GFs (following |Hallo & Gallovi¢ 2016). The performance of our
parametric slip inversion method is demonstrated on the inversion of the destruc-
tive M,,7.1 mainshock of the 2016 Kumamoto, Japan, earthquake sequence. We
infer an ensemble of more than 590k possible finite-source models, representing
samples of the posterior probability density function. Such massive ensemble
of solutions is then statistically processed to reveal which features of the finite
source model of the 2016 Kumamoto mainshock are reliable and which are rather
artifacts.

4.1 Rupture parametrization

Assumed activated fault of finite size is considered as a complex tectonic struc-
ture composed from several planar fault segments. These fault segments are dis-
cretized into subfaults assumed to be small enough to be treated as point sources
with respect to the used wavelengths and source-receiver distances. The slip-
rate functions’ (SRFs) temporal parametrization relies on the regularized Yoffe
function (Tinti et al.|2005]), which was shown to be compatible with rupture dy-
namics (e.g., Bizzarri[2012)). The rupture times are modeled by a two-dimensional
eikonal equation, describing propagation of the rupture-front from a hypocenter
along the fault. The hypocenter location, spatially variable rupture-front ve-
locity, rake angles and parameters of SRFs are treated as the unknown source
parameters.

All source parameters in the forward computation are interpolated to the
subfaults’ centers from a sparse net of so-called control points on the fault. We
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define two independent systems of spatial control points differing in their spatial
positioning and the interpolation method. Firstly, we use a regular grid of control
points distributed over the whole fault (see Fig |4.1p). Such system is used for
parametrization of spatial distribution of rake, rupture-front velocity, rise time
and peak time. The value of any parameter in a subfaults’ position is obtained by
bilinear interpolation. For spatial distribution of values of slip we will utilize self-
adapting parametrization with varying number of movable control points (spline
points) where the density of control points can vary spatially (Causse et al.[2017;
see Fig|4.1p). In such formulation, positions of spline points are also parameters
of the earthquake source model. Such parametrization can effectively adapt to
heterogeneities of slip on the activated fault. The varying number of spline points
controls the spatial complexity of the resolved slip on the fault, which leads to the
self-adapting model space parametrization driven by the observed seismograms.

Spline control points
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Figure 4.1: Schemes of two systems of control points used for the spatial parametriza-
tion of the rupture. Shaded gray rectangles represent subfaults with parameter values
coded by the shade scale. Positions of control points on the fault are shown by red circles
for a) regular grid, and b) system of spline points.

4.2 Exploration of the model space

The forward problem, d = g(m), is formulated in the Bayesian probabilistic
framework with implemented uncertainty of GFs by Hallo & Gallovid (2016]). It is
solved as non-linear problem by random exploration of the model space by using
the Markov chain Monte Carlo (MCMC) method. Classical MCMC methods
sample posterior PDF in particular number of dimensions dim(m), hence, the
solution is, in principle, closely related to the selected parametrization. Therefore,
we use trans-D MCMC method (Sambridge et al.|[2006), where the number of
dimensions of the model space (i.e. varying number of spline points) is also
subject of inversion, i.e. dim(m) # const.

To draw random samples from the multiple-state (i.e. trans-dimensional) pos-
terior PDF p(m|dups), we utilize the reversible jump MCMC algorithm by
2003). The algorithm is based on Metropolis-Hastings algorithm, devel-
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oped by Metropolis et al.| (1953)) and generalized by Hastings| (1970), as a Markov
chain Monte-Carlo method for sampling posterior PDF by a chain of steps. The
used algorithm extends the Metropolis-Hastings to cases when the model change
the state between iterates of the Markov chain. The trans-D MCMC is a special
case of the reversible jump MCMC algorithm where the proposal moves between
model states may be achieved by the “dimension matching”. Further, the model
states’ transitions are considered in one Markov chain step only between neigh-
boring model states. This is so-called birth-death MCMC, and it consists of three
move types: “perturb” move with no change in dimensions, “birth” of new dimen-
sions (creation of one arbitrarily spline point), and “death” move, i.e. reducing
dimensions (deleting one arbitrarily spline point).

To increase the efficiency of the trans-D MCMC sampler, we apply the Parallel
tempering (PT) method introduced by |Sambridge (2014). The PT sampling
algorithm is similar to the simulated annealing method introducing modification
of the posterior PDF by an additional parameter called temperature ~.

To summarize, the utilized trans-D MCMC sampling algorithm with PT in
each Markov chain step:

1. Randomly selects the move type (perturb/birth/death).
2. Randomly perturbs the current model to create a new (proposed) model.

3. Creates a new spline point or deletes an existing spline point (only in cases
of birth or death moves).

4. Compute forward problem, and then, accepts or rejects the proposed model
based on the respective acceptance probability.

5. Tries to exchange the temperature v with another Markov chain driven by
balance condition of [Sambridge| (2014).

4.3 Application to the mainshock of 2016 Ku-
mamoto sequence

Following |Asano & Iwatal (2016), we assume a fault plane model consisting of
two planar fault segments based on surface traces of known active faults and the
aftershock distribution (e.g., Kato et al.[2016). The first fault segment #1 is set
along the Hinagu fault intersecting the hypocenter of the M, 7.1 mainshock. The
second (larger) fault segment #2 is set along the Futagawa fault spreading to
NE from the intersection of both faults (see Fig. [4.2). The Hinagu and Futagawa
fault segments are assumed to have rectangular shape of dimension larger than
assumed by |Asano & Iwatal (2016) to not restrain the distance of the rupture
propagation.

We use three-component waveforms recorded at 29 stations of the K-NET,
KiK-net and F-net strong motion networks operated by NIED, up to the distance
of 55 km from the mainshock epicenter (see Fig. . Few regional stations were
excluded, as their waveforms contain complex oscillations probably caused by
shallow sedimentary layers. Nevertheless, these stations are located on the edge
of the area of interest (see gray triangles in Fiq. [4.2)). Original acceleration data
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are filtered by a bandpass filter in the range of 0.05 — 0.5 Hz and then integrated
into displacements.

GFs are computed by the discrete wavenumber method (Bouchon|[1981)) in 1D
station dependent velocity models consisting of homogenous layers. As the upper-
most sedimentary layers may affect the amplitude and shape of the strong motion
waveforms at frequencies 0.05 — 0.5 Hz, we considered different one-dimensional
velocity model for each station. One-dimensional velocity models were extracted
from the three-dimensional Japan Integrated Velocity Structure Model as the
velocity depth profiles below the receivers.
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Figure 4.2: Map of the Kumamoto area, Japan, with the settings of the mainshock in-
version (the M, 7.1 earthquake from April 16, 2016). Blue rectangles denote projection
of the assumed Hinagu (#1) and Futagawa (#2) fault segments, and the yellow star
is the epicenter of the mainshock (from the JMA earthquake catalog). Black triangles
show positions of strong motion stations of the K-NET, KiK-net and F-net networks
used in the inversion. The gray triangles are stations excluded from the inversion (see
text). Red lines denote surface traces of the main known active faults.

The maximum likelihood solution estimate for the mainshock fault slip inver-
sion is shown in Fig. 4.3, The slip values with denoted rake angles (slip direction)
are illustrated for all the subfaults in Figs and [4.3p. In Figs and we
show rupture times on the both the fault segments. The inferred source model
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has seismic moment of 6.74 x 10 Nm (M, = 7.2). The maximum and average
slip values are 6.29 and 1.29 m, respectively. The variance reduction is 78.5 %,
which indicates good fit of observed and synthetic standardized waveforms.
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Figure 4.3: Slip a, b) and rupture times ¢, d) of the maximum likelihood solution
of the M jpra 7.8 mainshock inversion on the a, ¢) Futagawa (#2) and b, d) Hinagu
(#1) fault segments. The squares represent 2x 2 km subfaults spatially distributed along
strike x and along dip y directions, where (0,0) is the bottom-left corner of the fault
footwall. The final slip values and the rupture times are shown by color (see colorbars).
The rake angles (slip directions) are shown by blue arrows.

The maximum likelihood solution estimate has hypocenter located at the Hi-
nagu segment (#1) at the depth of 9 km. The rupture propagates by the average
rupture velocity of 2.5 km/s along segment #1, terminating at the intersection
of the both fault segments. A large slip on fault segment #1 is concentrated
in the zone between the hypocenter and intersection with the fault segment #2
at the depth of approximately 6 — 14 km. The inferred origin time in the Fu-
tagawa segment (#2) is delayed by 1.2 sec after the origin in segment #1. The
hypocenter on segment #2 is located approximately at depth of 13 km at the
intersection of the fault segments. The rupture then continuous upward and to
NE along segment #2 by the average rupture velocity of 2.7 km/s (see Fig. [4.3).
The largest slip on fault segment #2 is concentrated at shallower parts at depths
of approximately 1 — 8 km. The rupture terminates at the shallow depths inside
the Aso volcano caldera. The inferred rake angles in the segment #1 are close to
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pure right-lateral strike-slip movement. Contrarily, the slip directions on segment
#2 have significant normal-slip component.

The maximum likelihood solution estimate is not a unique solution, it is rather
one of many possible source models that fit the data well. The ensemble of the
total of 590264 possible finite fault source models (with variance reduction in
range of 74 — 78.5 %) allows statistical evaluation of the inferred source param-
eters and an assessment of the model uncertainty. To show statistics of the slip
distribution we introduce in the Thesis a modified polar histogram plot called slip
disc histogram (SDH). It shows the occurrence of the slip values on individual
subfaults as captured by the ensemble of all the finite model solutions. The SDH
plot for the ensemble of solutions of the M y;47.3 mainshock inversion shows that
the slip on fault segment #1 exhibits high uncertainty, especially in the deepest
part. The maximum slip in this segment is in the range of 2.6 — 5.7m. On the
other hand, the low slip value in the southernmost part of segment #1 is a feature
supported by the whole ensemble. The SDH plot for segment #2 suggests that
the maximum slip is in the range of 4.2 — 7.5 m. The slip value is well resolved in
the southwestern part, while it has large uncertainty in the shallow northeastern
zone, i.e. in the Aso volcano caldera.

Conclusion

This Thesis is focused on the influence of crustal velocity model uncertainty on
inferred earthquake source parameters. In particular, in Thesis Chapter 2 (also
published as Hallo & Gallovi¢| [2016), we perform Monte-Carlo simulations of
GFs in randomly perturbed velocity models to reveal the effects of the imprecise
velocity model on the synthetic waveforms. Based on the learned knowledge,
we derive closed-form formulas for approximate covariance functions to obtain
fast and effective characterization of the GFs’ uncertainty. These approximate
covariance functions require a GF calculated using a given (mean) velocity model
and statistical description of the assumed random time shifts of the signal as
an input. Experiments indicate that it is enough to assume a uniform PDF for
the time shifts of GFs. The width of the uniform PDF denoted as L; depends
on the source distance and velocity model perturbations linearly, and can be
implemented by a simple formula. Further, we point out that despite the fact
that the simplified formulas were derived assuming purely random time shifts of
GFs, the proposed approach produces variations of both the arrival time and the
waveform amplitudes as shown in Fig. [1.2]

The proposed approximate covariance functions are tested on Bayesian mo-
ment tensor inversions of synthetic and real data sets. Experiments with the
large number of synthetic target datasets obtained by randomly perturbing ve-
locity models reveal that the lowest scatter of the maximum likelihood solutions
is attained for the approximate covariance function (ACF and AXCF). Tests also
show that the posterior covariance matrix of model parameters reflects the true
uncertainty of the MT solution well when considering the stationarized auto-
covariance function (SACF). Similarly, real-data inversion using the SACF pro-
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vides MT uncertainty estimate comparable to the result of the jack-knifing ex-
periment. Finally, additional synthetic tests imply that using SACF in Bayesian
inversion allows reliable assessment of the CLVD component uncertainty. For
easier implementation in other researchers’ codes we release open source codes
for computing all the types of the proposed ACFs and SACFs. The source codes
in “Fortran90” and “Matlab” programming languages are available under GNU
license on the author’s website (http://geo.mff.cuni.cz/~hallo/) or in Thesis
Attachments.

We have extended the Bayesian full-waveform CMT inversion code package
ISOLA-ObsPy (Vackar et al.2017) with the source code for assessment of GFs’
uncertainties by ACFs and SACFs. The modified ISOLA-ObsPy is successfully
applied on selected earthquakes from the Kumamoto, Kyushu, Japan, earthquake
sequence of April 2016 with M4 magnitude in range of 4.8-6.5. The use of
SACF covariance matrices in the Bayesian inversion allow us to perform realistic
assessment of the uncertainties of the CMTs (Table The inferred CMT so-
lutions show systematic spatial and temporal variations (Fig. . We estimate
geometry of the major activated ruptures and interpret them in the seismotectonic
framework. Foreshocks imply right-lateral NE-SW strike-slip movements in the
Hinagu fault zone. Aftershocks are mostly normal dip-slip events spreading along
the NW edge of the assumed mainshock fault plane. The inferred CMTs with
significant CLVD component may suggest a complex source processes, however
this issue is still open because of non-uniqueness of the non-DC MTs” decomposi-
tion. Therefore, the realistic assessment of the uncertainties of the inferred CMTs
proved to be useful in terms of interpretation.

In last Chapter of Thesis we develop a new Bayesian non-linear fault slip
inversion which accounts for the GFs’ uncertainty by means of the approximate
covariance functions (ACF and SACF). The utilized self-adapting parametriza-
tion of slip function (by varying number of unattached spline control points)
captures features of the slip functions discernible by the observed waveforms.

The Bayesian fault slip inversion is applied on the destructive My, 47.3 main-
shock of the 2016 Kumamoto, Japan, earthquake sequence of April 16th, 2016
(01:25 of JST). According to our solution the mainshock started on the Hinagu
fault segment as right-lateral pure strike-slip movement. The rupture propagated
along the Hinagu fault reaching the intersection of the Hinagu and Futagawa
fault segments. Then, the rupture extended upward and to NE along the Fu-
tagawa fault segment as a strike-slip with a normal faulting component. The
largest slip of 4.2 — 7.5m took place on the Futagawa fault segment. Statistics
from the ensemble of possible solutions then show that the above features are well
constrained, being also consistent with other researchers’ models (e.g., Asano &
Iwata|2016; Kubo et al.[2016b; [Yoshida et al.|2017; Himematsu & Furuya|2016)).
Contrarily, the uncertainty analysis reveals that the zone of the largest slip on the
Hinagu fault segment and the slip at the shallow depth inside the Aso caldera are
less constrained. The latter is in agreement with the fact that these features are
not consistently imaged in the other published source models. The inferred source
model of the mainshock supplemented by its uncertainty completes the analysis
of the evolution of the Kumamoto sequence in the seismotectonic framework.
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