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Abstract: Classical results of hydrodynamics such as Stokes’ force law and Kirch-
hoff’s moment (torque) law are re-derived for laminar viscous flow in the frame-
work of modern compact simplified vector calculus notation. First perturbations
of these laws are found and compared visually with experiments. The Magnus
drag force on a rotating and moving sphere surrounded by an incompressible vis-
cous Newtonian fluid is derived from the perturbation series of the Navier-Stokes
equations in low speed regimes with a small Reynolds number.

Abstrakt (v češtině): Jsou znovuodvozeny klasické výsledky hydromechaniky jako
např. Stokes̊uv a Kirchhof̊uv zákon ve zjednodušené kompaktńı vektorové sym-
bolice. Tyto zákony jsou opraveny o prvńı perturbaci malého Reynoldsova č́ısla a
poté vizuálně porovnány s experimentem. Pro dokonalou rotuj́ıćı a pohybuj́ıćı se
kouli obklopenou Newtonovskou vizkózńı kapalinou je pro malé podélné rychlosti
a malé rotace (malá Reynoldsova č́ısla) odvozena Magnusova śıla z perturbačńı
řady Navierových-Stokesových rovnic.
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List of symbols

O Big O notation
a, b, c . . . scalars/scalar fields
∆ Laplacian operator
ϱ density (of a fluid)
v∞ far-distance speed
ω angular speed
Γ ratio of angular versus far-distance speed
t time
η dynamical viscosity
p pressure
Re Reynolds number
x, y, z Cartesian coordinates
ρ, ϕ, z cylindrical coordinates
r, θ, ϕ spherical coordinates
w, y, s rotated Cartesian coordinates
σ, φ, s rotated cylindrical coordinates
r, ϑ, φ rotated spherical coordinates
a, b, c . . . vectors/vector fields
0 null vector
r position vector
v velocity vector field
ω angular velocity vector
∇ nabla vector operator
F force vector
f force vector field
â, b̂, ĉ . . . unit vectors/ unit vector fields
x̂, ŷ, ẑ Cartesian coordinate unit vectors
ρ̂, ϕ̂, ẑ cylindrical coordinate unit vectors
r̂, θ̂, ϕ̂ spherical coordinate unit vectors
ŵ, ŷ, ŝ rotated Cartesian coordinate unit vectors
σ̂, φ̂, ŝ rotated cylindrical coordinate unit vectors
r̂, ϑ̂, φ̂ rotated spherical coordinate unit vectors
A,B,C . . . tensors/tensor fields
I identity tensor
T Cauchy stress tensor
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Introduction
The field of theoretical hydrodynamics is still very active today. The impor-
tance of semi-exact solutions is clear when considering that simulations of many
hydrodynamical problems are often numerically unstable and require a lot of com-
putational power. Semi-exact solutions form an essential tool for understanding
the global evolution of the motion of a fluid as a whole. Moreover, they are often
used to test whether a numerical model or simulation gives the correct result for
certain flow regimes.

The drag force acting on a moving sphere in a Newtonian fluid with a constant
viscosity was first obtained in an analytical form for zero Reynolds number (the
so-called Stokes flow) by Stokes [1851] using the so-called Stokes equations, which
now bare the name after him. The Stokes equations are a special case of the
so-called Navier-Stokes equations describing the motion of various fluids for a
non-zero Reynolds number. The solution of the Navier-Stokes equations does
not, in general, exist in a closed form. However, a semi-exact solution given as a
perturbation series in terms of Reynolds number was proposed by Lamb [1916].
The solution is found separately in the region near the surface of a sphere (the
so-called Stokes expansion) and in the far-field (the so-called Oseen expansion),
which are then assymptotically matched via the matching principle given by
Proudman and Pearson [1957] and Van Dyke [1975].

Several modifications of the problem of finding the drag and moment due to
Stokes flow have been proposed and solved in literature. The solutions for spe-
cific axially symmetric bodies were found by Happel et al. [1983] and Datta and
Srivastava [1999]. The slip flow solution was obtained by Deo and Datta [2002]
for a spheroid. The drag force due to a slip flow of a micropolar fluid around a
sphere was obtained by Ramkissoon and Majumdar [1976]. The flow around a
spherical particle coated with a porous layer was solved by Cichocki and Felderhof
[2009]. The Stokes flow around a torus has been also studied, the drag force on
a torus can be found in a semi-exact form as an infinite series involving toroidal
harmonic functions, see Majumdar and O’Neill [1977] for analytical derivation
and Amarakoon et al. [1982] for experimental results.

In this thesis, we will present the derivation of the first two terms of a Stokes
expansion of a low Reynolds number flow around a rotating sphere in transverse
motion (the so-called Magnus flow). These terms were suggested by Rubinov and
Keller [1961]. To accomplish this, we will first treat the cases of translation and
rotation separately and solve them up to the second order in accordance with the
matching principle. From these solutions, we will then derive the formulae for
the Magnus flow, from which the formula for the drag force follows subsequently
(the Magnus force). Throughout the thesis, we will assume the flow is due to the
motion of an incompressible homogeneous viscous Newtonian fluid with density
and viscosity being constant. On the surface of a sphere we assume the no-slip
condition.

The thesis is divided into Chapters 1, 2, 3 and Appendices A, B, C, D, E.
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The capital letters F , G, H, I, J , K, L, M , N , O, P , Q, R, S, T , U , V are
mostly reserved for functions dependent on r. Therefore, in the cases it does not
cause ambiguity, we will, for brevity, leave out the r-dependence notation. For
example, we write R instead of R(r).
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1. World as a continuum

1.1 Stress tensor
Suppose that a force F acts on a cross-section of a continuum body. In the limit,
when the area S of the cross-section with a normal vector n̂ approaches dS, we
assume there exists t(n̂) such that, for any infinitesimal force dF acting on the
infinitesimal cross-section, it holds that dF = t(n̂) dS. The force and moment
balance can be then used to define the stress tensor T by a relation known as
the Cauchy force formula

t(n̂) = n̂ • T, (1.1)

or, written as a sum of three terms

T = x̂t(x̂) + ŷt(ŷ) + ẑt(ẑ), (1.2)

where x̂, ŷ, ẑ are the unit vectors in the direction of Cartesian coordinates x, y
and z, respectively. Its components are often graphically depicted on the surface
of an elementary cube.

1.2 Cauchy momentum balance equations
The conservation of momentum applied to an infinitesimal volume of the body
gives the Cauchy momentum balance equations

ϱ
Dv
Dt = f + ∇ • T, (1.3)

where D/Dt is the material derivative with respect to time, ϱ is the density of the
continuum at a point in space and time, v is the velocity vector field describing
the motion of material particles of the body and f is the external forcing per unit
volume due to the volume forces. All these variables are generally dependent on
time, temperature et cetera. In this thesis, we will assume there is no dependence
on temperature nor any other measurable quantity except the position and time1.

Similarly, the conservation of mass applied to an infinitesimal volume gives a
relation known as the continuity equation

ϱ,t + ∇ • (ϱv) = 0, (1.4)

where ,t stands for the partial derivative with respect to time. For an incompress-
ible fluid ϱ is a constant, so the relation will simplify to

∇ • v = 0. (1.5)
1dependence on time will be later also omitted
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1.3 Material relations
To complete the description of the motion of a continuous medium, its material
relation is necessary to specify. In this thesis, we will deal with an incompress-
ible isotropic homogeneous Newtonian fluid, for which the relation between
the stress and strain tensor has the form

T = −pI + η
(
∇v + ∇vT

)
, (1.6)

where p is called the pressure, η is the so-called dynamical viscosity and I is
the identity tensor. In this thesis, we will assume that η is a constant independent
of position and time.

1.4 Navier-Stokes equations
To derive the Navier-Stokes equations from the Cauchy momentum equation, we
first apply divergence to the material relation of a Newtonian fluid (1.3), to obtain

∇•T=∇ •
(
−pI+η

(
∇v+∇vT

))
=−∇p+η∆v+η∇∇ • v=−∇p+η∆v. (1.7)

By the continuity equation for an incompressible fluid (1.5), this simplifies to the
Navier-Stokes equations for an incompressible Newtonian fluid

ϱv,t + ϱv • ∇v = f − ∇p+ η∆v, (1.8)

these equations describe the behaviour of the fluid in time and space under ex-
ternal forcing f . Note that if the flow is steady (i.e., neither p nor v depend on
time), we have v,t = 0, and the corresponding equations are called the steady-
state Navier-Stokes equations

ϱv • ∇v = f − ∇p+ η∆v. (1.9)
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2. Stokes flow
Definition 1 (Stokes Flow). A Stokes flow (or creeping flow) is the flow described
by the steady-state Navier-Stokes equations in which the inertial term ϱv • ∇v is
omitted.

Stokes flow is described by the Stokes flow equations. In this thesis, we will
assume there is no external forcing f . The Stokes flow equations then have the
following form

∇p = η∆v, (2.1)
∇ • v = 0. (2.2)

2.1 Transverse flow

Figure 2.1: Creeping flow around a
sphere

Let us consider the case of transverse flow.
The solution presented here is a modifica-
tion of the solution by Landau and Lifshitz
[1984]. The sphere of a radius r = a sur-
rounded by a Newtonian fluid (with viscos-
ity η) moves with a constant speed v∞ in
the direction of ẑ. Assuming the flow is
Stokesian, we will calculate the drag force
F exerted on the sphere (see Figure 2.1).

Boundary conditions

We place the center of the reference coor-
dinate system to the center of the moving
sphere. Since the velocity of the sphere is constant, the reference frame is inertial.
Hence, the flow surrounding the sphere is described by the equations introduced
above. We additionally assume the flow is stationary far from the sphere. How-
ever, from the point of view of our reference frame, the flow appears to be moving
at the speed v∞ in the direction of the axis z far from the sphere (see Figure 2.1).
We also assume the fluid does not move on the surface of the sphere (the so-called
no-slip condition). In summary, the boundary and far-field conditions have the
form

v|r→∞ = v∞ẑ, (2.3)
v|r=a = 0, (2.4)
p|r→∞ = p∞ = 0, (2.5)

where we have defined, without a loss of generality, p∞ = 0.

Velocity

Since the velocity is divergence free, the ansatz v = ∇×ψ holds, where ψ is
the so-called stream vector field. This solves (2.2) immediately. Inserting this
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relation into (2.1) and taking the curl of the result, we get by the commutativity
of partial derivatives (see (C.14)):

∇×∇×∆ψ = 0. (2.6)

The rotational symmetry of the problem implies that v = v1 (r, ρ) θ̂ + v2 (r, θ) ẑ
(note we have used mixed coordinates – spherical r, θ and cylindrical z, ρ, see
Appendix D on coordinates). Therefore, ψ = ψ (r, ρ) ϕ̂; otherwise the rotational
symmetry of the velocity will be broken. Moreover, ∇•ψ = ∇•(ψϕ̂) = ∇ψ•ϕ̂ = 0
since ∇ψ is perpendicular to ϕ̂ and ∇ • ϕ̂ = 0. Therefore, (2.6) becomes (using
(C.15))

∆2 (ψϕ̂) = 0. (2.7)
In view of (E.3), we may use the ansatz ψ(r, ρ) = ρR, where R = R(r) is an
unknown function of r. By (E.6), the velocity is expressed as

v = ∇×(ρRϕ̂) = 2Rẑ − ρR′θ̂. (2.8)

The boundary and far-field conditions (2.3) – (2.5) are satisfied when R(a) =
R′(a) = 0 (the no-slip condition) and R(∞) = 1

2v∞. In view of (E.3), the
solution of (2.7) is

E2
4 [R] = 0, (2.9)

where we define Eα [f(r)] def= f ′′(r) + α
r
f ′(r). This is an Euler differential equation

(see (B.6) for its general solution). Instead of solving a system of equations for
the constants of integration associated with a solution of the Euler differential
equation, we will proceed differently and integrate (2.9) directly (an approach
discussed in Appendix B, Section B.1). This is possible to apply due to the
arrangement Eα [f ] = r−α (rαf ′)′, integrating the previous equation twice with
respect to r, we obtain (see (B.3))

Q
def= E4 [R] = A

r3 +B, (2.10)

whereQ has been introduced for the sake of simplicity of further calculations. The
constant B must vanish, otherwise an additional integration of Q with respect to
r will produce a term r2 which diverges for r → ∞. In view of the arrangement
E4 [R] = 1

r4 (r4R′)′, integrating Q with respect to r gives

r4R′ = a4R′(a) +
∫ r

a
r4Q dr =

∫ r

a
r4Q dr, (2.11)

since R(a) = 0 and R′(a) = 0. Furthermore, in view of (2.10), we have

R =
∫ r

a

1
r4

∫ r

a
r4Q drdr = A

2

∫ r

a
r−4

(
r2−a2

)
dr = A

2

(
2
3a − 1

r
+ a2

3r3

)
. (2.12)

When r approaches to infinity, R takes the value

R(∞) = A

3a. (2.13)

Therefore, since R(∞) = 1
2v∞, A = 3

2av∞. For Q then

Q = A

r3 = 3av∞

2r3 . (2.14)
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Hence,

R = v∞

2

(
1 − 3a

2r + a3

2r3

)
= v∞

2

(
1 + a

2r

)(
1 − a

r

)2
. (2.15)

Substituting (2.15) into (2.8), we get for the velocity

v = v∞

(
1 − a

r

) [(
1 + a

2r

)(
1 − a

r

)
ẑ − 3aρ

4r2

(
1 + a

r

)
θ̂
]
. (2.16)

Pressure

By (2.1) and in view of (E.6), the pressure gradient becomes

1
η

∇p = ∆v = ∇×∆ψ = ∇×(ρQϕ̂) = 2Qẑ − ρQ′θ̂. (2.17)

Since ∇p is conservative, we choose an oriented straight line γ from r (r > a) to
infinity in accordance with the boundary conditions (2.5), and obtain

p =
∫

γ
∇p • dr = −η

∫ ∞

r

(
2Qẑ − ρQ′θ̂

)
• r̂ dr = −2ηẑ • r̂

∫ ∞

r
Q dr, (2.18)

where ẑ • r̂ = cos θ (see Table D.3) has been taken out of the integral since it does
not depend on r. The integration in (2.18) yields

p = −3ηazv∞

2r2 ẑ • r̂ = −3ηazv∞

2r3 . (2.19)

Force

Let us calculate the drag force exerted on the surface of the sphere. A force
t(n̂) dS acts on a very small element of the surface with normal n̂ (for the sphere
n̂ = r̂). By Cauchy’s formula t(n̂) = n̂ • T, the net force acting on the sphere is
given by a sum of all these infinitesimal forces:

F =
∫∫

r=a
t(n̂)dS =

∫∫
r=a
r̂ • T dS =

∫∫
r=a

−pr̂ + ηr̂ •
(
∇v + ∇vT

)
dS. (2.20)

Let us simplify the last expression using the fact that R = R′ = 0 at r = a. It
means that only the second- and higher-order derivatives of R contribute to the
force (2.20). Therefore,

∇v|r=a =∇(2Rẑ−ρR′θ̂)|r=a =−ρ (∇R′) θ̂|r=a =−ρR′′(a)r̂θ̂=−3ρv∞

2a2 r̂θ̂, (2.21)

where R′′(a) = R′′(a) + 4
r
R′(a) = E4 [R] |r=a = Q(a) = 3v∞

2a2 since R′(a) = 0.
Substituting this together with the pressure into (2.20), we obtain the Stokes’
law

F = 3ηv∞

2a2

∫∫
r=a
zr̂ − ρθ̂ dS = 6πaηv∞ẑ, (2.22)

where zr̂ − ρθ̂ = rẑ, i.e. (D.5), has been used. Hence, the force points in the
direction of the unit vector ẑ, which is in agreement with the rotational symmetry
of the setting. Figure 2.2 shows the flow pattern (velocity field v given by (2.16))
plotted by Mathematica.
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Figure 2.2: Cross-section of creeping flow around a sphere

2.2 Rotating flow

Figure 2.3: Creeping
rotational flow around
a sphere

We now consider the case where the sphere rotates with
angular velocity ω pointing in the direction of ẑ, i.e.
ω = ωẑ, where ω is the angular speed. Assuming
the flow is Stokesian, we will calculate the moment M
exerted on the sphere (see Figure 2.3).

Boundary conditions

We use the same inertial frame as in the previous case,
although we now assume no transverse motion. The
boundary condition and the asymptotic conditions at in-
finity are

v|r→∞ = 0, (2.23)
v|r→a = ρωϕ̂, (2.24)
p|r→∞ = 0. (2.25)

Velocity and pressure

Stokes flow equations (2.1) and (2.2) still hold in this reference frame. Due to
rotational symmetry, a solution has a form v = v (r, ρ) ϕ̂. In view of (E.3), we
suggest the ansatz v = ρP ϕ̂, where P = P (r) is an unknown function of r.
Therefore, (2.1) becomes

1
η

∇p = ∆v = ∆ (ρP ϕ̂) = ρE4 [P ] ϕ̂. (2.26)

Since p = p (r, ρ) due to rotational symmetry, ∇p = p,rr̂ + p,ρρ̂. Hence, p
is constant, since the right-hand side of (2.26) cannot be expressed as a linear

12



combination of r̂ and ρ̂. The assumption p = 0 at infinity then gives p = 0
everywhere. Therefore, we get from (2.26) that

E4 [P ] = 0. (2.27)

This is an Euler differential equation with a solution (B.3), i.e.

P = A

r3 +B. (2.28)

The constants A and B are determined from the boundary conditions (2.23) and
(2.24). Since v vanishes for r → ∞, B = 0. Assuming the no-slip condition on
the surface, we obtain A = ωa3, and thus

P = ω
a3

r3 . (2.29)

In summary,
v = ρω

a3

r3 ϕ̂. (2.30)

Note that, in case the sphere rotates around a general ŝ-axis, the solution of the
velocity is given, using the rotated coordinates (see Appendix D), by

v = σω
a3

r3 φ̂. (2.31)

Force and moment

The drag force exerted on the sphere is zero by the rotational symmetry. However,
the drag force has a moment that slows down the rotation of the sphere. Again,
the total moment is a sum of the infinitesimal moments r×t(n̂)dS = rr̂×T • r̂dS.
Therefore,

M =
∫∫

r=a
r×t(n̂)dS = aη

∫∫
r=a
r̂×

(
∇v + ∇vT

)
• r̂ dS. (2.32)

Let us simplify the argument of the integral by using (E.4):

r̂×(∇v+∇vT) • r̂
⏐⏐⏐
r=a

= ρP ′(a) r̂×(r̂ϕ̂+ϕ̂r̂) • r̂ = ρP ′(a) r̂×ϕ̂ = −ρP ′(a)θ̂. (2.33)

In view of (2.29), we have P ′(a) = −3ω
a

. Finally, we get the Kirchhoff’s moment
law

M = aη
∫∫

r=a
ρP ′(a)θ̂ dS = −3ωη

∫∫
r=a
ρθ̂ dS = −8πηωa3ẑ, (2.34)

where we have used (E.12) for the evaluating the integral. This formula was
originally presented in Kirchhoff [1876]. In a similar way, it is possible to derive
the result given in Lamb [1916], Art. 334., for concentric spheres of radii a < b,
for which a coupled moment, assuming the inner sphere is rotating with angular
speed ω and the outer sphere is fixed, is given by

M = 8πηω a3b3

a3 − b3 ẑ. (2.35)

In particular, when b → ∞, we get Kirchhoff’s result.
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2.3 Combined flow
We briefly discuss the case of combined flow, i.e., Stokes flow around a sphere that
travels through a fluid with a constant speed v∞ along the z-axis and rotates with
a constant angular speed ω around the s-axis, ω = ωŝ (see Figure 3.5, Section 3.6
on Magnus flow). This flow solves the Stokes flow equations (2.1) and (2.2) with
boundary conditions (2.3), (2.24)1. Due to linearity in v and p, the combined flow
is constructed by superposing transverse and rotating flow (see Sections 2.1 and
2.2). Since there is no contribution of pressure from the rotating flow, the total
pressure is given by (2.19). Summing (2.16) with (2.31), we get for the velocity:

v = v∞

[(
1 − a

r

) [(
1 + a

2r

)(
1 − a

r

)
ẑ − 3aρ

4r2

(
1 + a

r

)
θ̂
]

+ σΓa
2

r3 φ̂

]
, (2.36)

where Γ def= aω
v∞

. Moreover, since the net drag force given by (2.20) is linear in v and
p, only the drag parallel to the motion of the sphere due to transverse flow exists.
Similarly, the net moment is due to rotating flow only and thus given by (2.34)
(replacing ẑ by ŝ). The flow given by (2.36) is no longer rotationally symmetrical,
Figure 2.4 shows only the yz-plane cross-section of the flow in which we have
chosen ŝ = x̂ and Γ = 3. In this set up, the sphere rotates counter-clockwise
around the x-axis pointing perpendicularly out of the plane of the page.

Figure 2.4: yz-plane cross-section of combined flow for Γ = 3

1replacing ρ by σ and ϕ̂ by φ̂ in (2.24)
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3. First perturbation in Reynolds
number

3.1 Lamb flow

Definition 2 (Lamb Flow). In terms of a perturbation series in α
def= ϱ/η small,

a Lamb flow is a flow which solves the steady-state Navier-Stokes equations up to
the first order.

The steady-state Navier-Stokes equations (1.9) rewritten in terms of α have the
form:

αv • ∇v = −1
η

∇p+ ∆v, (3.1)

∇ • v = 0. (3.2)

Let us assume that α is a small number. The solution of (3.1) and (3.2) will be
searched in the form of a so-called perturbations series

v = v0 + αv1 + α2v2 + · · · , (3.3)
p = p0 + αp1 + α2p2 + · · · . (3.4)

This perturbation series is called the Stokes expansion (see Gavnholt et al.
[2004]). In this thesis, we will find only the first terms of the perturbation series
(3.3) and (3.4), i.e. v = v0 +αv1 and p = p0 +αp1. Substituting these series into
(3.1), we obtain, up to the first power of α, the following equations

αv0 • ∇v0 + O
(
α2
)

= −1
η

∇p0 − α

η
∇p1 + ∆v0 + α∆v1, (3.5)

∇ • v0 + α∇ • v1 = 0, (3.6)

where O (α2) contains quadratic and higher-order terms of α (Big O notation).
Neglecting these terms, we get a set of four partial differential equations. The
first two are the Stokes flow equations for v0 and p0, i.e.

∇p0 = η∆v0, (3.7)
∇ • v0 = 0. (3.8)

The remaining two equations for the functions v1 and p1 are called the Lamb
equations,

∆v1 − 1
η

∇p1 = v0 • ∇v0, (3.9)

∇ • v1 = 0. (3.10)
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3.2 Oseen flow
We should note that any real k-multiple of functions ṽ0 and p̃0 that satisfy the
Stokes flow equations can be added to v1 and p1 so the functions

ṽ1 = v1 + kṽ0, (3.11)
p̃1 = p1 + kp̃0 (3.12)

also satisfy the Lamb equations (3.9) and (3.10). Due to failing of the pertur-
bation series expansion in α at far-distance, it is not guaranteed that there is a
solution v1 and p1 of the Lamb equations that satisfies simultaneously both the
boundary conditions (2.3) and the asymptotic condition (2.4) (or both (2.23) and
(2.24), respectively). The Stokes expansion is a good approximation of the actual
flow only for r ∼ a. However, for r ≫ 1/α, the inertial term αv • ∇v in (3.1) is
no longer small compared with ∆v and ∇p and the Stokes expansion is no longer
valid (the argument known as the Oseen criticism, see Lamb [1916]).

Therefore, besides the Stokes expansion, another expansion valid at far-distance
has to be constructed. These expansions are then joined by a matching condi-
tion. We will proceed to find the matching condition according to Proudman
and Pearson [1957] via the so-called method of asymptotic expansion (the
method extensively described for example in Zhu [2009], Holmes [2012] or Lager-
strom [2013], for within fluid mechanics context, see Van Dyke [1975], Happel
et al. [1983] or Steinrück [2012]). In order to match our solution, we first find a
governing equation for far-distance flows. We begin with defining the so-called
Oseen variable r∗:

r∗ def= αr, (3.13)

where α now plays a role of a scale factor. Similarly, other quantities scaled by α
are ρ∗ = αρ, z∗ = αz, x∗ = αx, y∗ = αy. The position vector r scales as r∗ = αr.
However, angles do not scale, i.e. θ∗ = θ, ϕ∗ = ϕ. Also, the unit vectors do
not scale, i.e. r̂∗ = r̂, ρ̂∗ = ρ̂, ẑ∗ = ẑ et cetera. Clearly, in view of (3.13),
when α → 0, we have for fixed r∗ that r → ∞. That means an expansion in α
assuming r∗ fixed might be indeed valid at far-distance. Note that care should
be taken with boundary condition (2.4) on the surface, since for every finite r we
have r∗ → 0 when α → 0. Only the boundary conditions for r → ∞ are applied.
Moreover,

∇
( 1
r∗

)
= ∇

( 1
rα

)
= − α

α2r2 r̂ = − α

r∗2 = α∇∗
( 1
r∗

)
, (3.14)

where we have introduced ∇∗ such that it acts on rescaled coordinates the same
way as ∇ on unscaled coordinates. This a useful notation since the formulae
derived for the unscaled quantities can be used in the same form for the scaled
quantities. Clearly, in view of the chain-rule of differentiation, we obtain for any
function

∇f(r∗) = α∇∗f(r∗). (3.15)

Generally,
∇ = α∇∗. (3.16)
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The solution of (3.1) valid at far-distance is then found by the perturbation
series in α, similarly as in case of the Lamb equations. Assume that v0 solves
the unperturbed problem (3.11) and (3.12). However, a perturbation series for
v satisfying the Navier-Stokes equations in far-distance will not simply be v =
v0 + αv1 since v0 is a function of r rather than r∗. First, we will write v0 in
terms of r∗ as a series in α

v0 = αhv∗
00(r∗) + αh+1v∗

01(r∗) + · · · , (3.17)
where h is the lowest power of α and v∗

00(r∗) is its corresponding coefficient
depending on r∗ (equivalently, for v given by v = ∇×ψ, we expand ψ in terms
of series in α). Then, according to the formula (3.17), we seek a perturbation
series solution in the form

v = αhv∗
00(r∗) + αh+1v∗

1(r∗), (3.18)
where v∗

1(r∗) is an unknown function of r∗. This perturbation series is called the
Oseen expansion (see Gavnholt et al. [2004]). Equivalently, for v = ∇×ψ, we
have v = α∇∗×ψ and ψ is sought in the form

ψ = αh−1ψ∗
00(r∗) + αhψ∗

1(r∗) (3.19)
to match the relation for v, where ψ∗

1(r∗) is an unknown function of r∗.

For the pressure, the Stokes equation ∇p0 = η∆v0 gives α∇∗p0 = ηα2∆∗v0, so
p0 is expanded in the series of α with the lowest power of h + 1; otherwise the
equation cannot be matched. Hence,

p0 = αh+1p∗
00(r∗) + αh+2p∗

01(r∗) + · · · . (3.20)
Moreover, since the first Stokes flow equation (2.1) is linear with respect to su-
perposition in velocity, every pair αh+kv∗

0k, α
h+1+kp∗

0k satisfies the Stokes equation
(3.11). Equivalently,

∇∗p∗
0k = η∆∗v∗

0k (3.21)
for any k = 0, 1, 2, . . . Similarly as in (3.20), the perturbed pressure is searched
in the form

p = αh+1p∗
00(r∗) + αh+2p∗

1(r∗). (3.22)
where p∗

1(r∗) is an unknown function of r∗. Substituting these ansatzes for v and
p into the steady-state Navier-Stokes equations (3.1), comparing the terms at the
same power of h, we obtain the so-called Oseen equations for v∗

1. In particular,
for h = 0 and v∗

00 = const., for which v∗
00 • ∇∗v∗

00 = 0, the Oseen equations (see
Oseen [1910]) take the form

∆∗v∗
1 − 1

η
∇∗p∗

1 = v∗
00 • ∇∗v∗

1, (3.23)

∇∗ • v∗
1 = 0. (3.24)

The case of transverse flow, in which v∗
00 = v∞ẑ, has been solved by Oseen [1910]

up to the first order of α. The solution for ψ∗
1 given by Lamb [1916], Art. 340, is

ψ∗
1 = −3av∞

1 + cos θ
sin θ

(
1 − e− ρ∗v∞

2 (1−cos θ)
)
ϕ̂, (3.25)

higher-order terms are found in Proudman and Pearson [1957]. This solution
enables us to perform appropriate matching with the first order Stokes expansion
(3.3).
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3.3 Matching condition

We are not able to determine the most appropriate form of the approximate
solution of the steady-state Navier-Stokes equations (1.9) from the Stokes expan-
sion only. For example, a solution with any k given by (3.9), (3.10) will solve
the Lambs equations as well. To determine unknown constats, the matching of
Stokes and Oseen expansions is needed. Due to Proudman and Pearson [1957],
this matching condition is

lim
r→∞

v(r) = lim
r∗→0

v∗(r∗). (3.26)

According to Van Dyke [1975], we may additionally require matching of coeffi-
cients of

v
(
r

α

)
∼ v∗(αr). (3.27)

That means, the coefficients of Taylor expansion of both left- and right-hand side
of (3.27) in powers of α equal. Under certain circumstances (see Proudman and
Pearson [1957] or Datta and Singhal [2011]), it is possible to write ṽ0 = v0 and
p̃0 = p0 and choose the constant k such that the matching (3.26) is satisfied.
Since (3.25) is the exact solution of Oseen equation, the condition for the first-
order expansion of the transverse flow reduces to a simple condition ψ1|r→∞ = 0
at θ = 0. The flow vanishes in the direction of the z+ halfaxis. In case of the
Magnus flow (see Section 3.6) around a rotating sphere with the angular speed
ω and moving with the velocity v∞ẑ, we will also assume that the flow vanishes
in a particular direction, which is justified by employing the exact solution of the
Oseen equations for the Magnus flow found in Rubinov and Keller [1961].

3.4 Transverse flow
In this section, we will find the next term in the Stokes expansion corresponding
to the transverse flow discussed in Section 2.1.

Boundary conditions

The boundary conditions for transverse flow are given by (2.3) – (2.5). Since
v = v0 + αv1 and p = p0 + αp1, the perturbation functions v1 and p1 satisfy

v1|r→∞ = 0, (3.28)
v1|r=a = 0, (3.29)
p1|r→∞ = 0. (3.30)

Lamb equations

We will now solve the transverse flow around a sphere. As in case of the Stokes
equation (2.1), let us take the curl of the first Lamb equation (3.9):

∆∇×v1 = ∇×(v0 • ∇v0) . (3.31)
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In view of v0 = ∇×ψ0 and ∇ • ψ0 = 0, the right-hand side of (3.31) can be
simplified by (C.16) and (C.18) as

∇×(v0 • ∇v0) = (∆ψ0) • ∇v0 − v0 • ∇∆ψ0, (3.32)

where v0 is given by the transverse Stokes flow solution (2.8) (more specifically,
by (2.16)), i.e.

v0 = ∇×ψ0 = ∇×(ρRϕ̂) = 2Rẑ − ρR′θ̂ (3.33)

and R is given by (2.15). To get ∇v0, we use (E.7):

∇v0 = R′

r

(
3rr̂ẑ + ρθ̂r̂ − zI

)
− ρR′′r̂θ̂. (3.34)

Similarly, by (E.3), we have

∆ψ0 = ∆ (ρRϕ̂) = ρQϕ̂, (3.35)

where Q = E4 [R]. By the identity (E.4), we have then

∇∆ψ0 = ρQ′r̂ϕ̂+Q (ρ̂ϕ̂− ϕ̂ρ̂) . (3.36)

Substituting (3.33) – (3.36) into the identity (3.32), we get

∇×(v0 • ∇v0) = −2zρ
r
RQ′ϕ̂ = 9azρv2

∞
2r5

(
1 + a

2r

)(
1 − a

r

)2
ϕ̂. (3.37)

Velocity

In order to solve (3.31), let us write a particular solution v1 in the form v1 = ∇×ψ1
which satisfies the equation (3.10). Due to the form of the right-hand side of
(3.31), we will search for ψ1 in the form ψ1 = zρSϕ̂, where S = S(r) is an
unknown function of r. Using the identity (E.9), we obtain

v1 = ∇×(zρSϕ̂) = 2Szẑ − Sρρ̂− zρS ′θ̂. (3.38)

The boundary condition (3.29) gives S = S ′ = 0 at r = a. Similarly, (3.28) gives
S(∞) = 0. Function S is now determined in terms of v0 by (3.31). Using (E.8),
we have

∆∇×v1 = ∆∇×∇×(zρSϕ̂) = −∆2 (zρSϕ̂) = −zρE2
6 [S] ϕ̂. (3.39)

Therefore, we have

E2
6 [S] = −9av2

∞
2r5

(
1 + a

2r

)(
1 − a

r

)2
= −9av2

∞
2

(
1
r5 − 3a

2r6 + a3

2r8

)
(3.40)

with boundary conditions S(a) = S ′(a) = 0 and S(∞) = 0. This is an Euler
differential equation with a non-zero right-hand side. Let us denote T = E6 [S],
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i.e. ∆ψ1 = ∆ (zρSϕ̂) = zρT ϕ̂. The solution for T is given by (B.8):

T =
∫
r−6

∫
r6 E6 [T ] drdr

= −9av2
∞

2

∫
r−6

∫ (
r − 3a

2 + a3

2r2

)
drdr

= −9av2
∞

2

∫ (
1

2r4 − 3a
2r5 − a3

2r7 + C̃

r6

)
dr

= 9av2
∞

4

(
1

3r3 − 3a
4r4 + C

r5 − a3

6r6

)
.

(3.41)

Note that T does not contain a constant of integration since T approaches zero for
r → ∞; otherwise S will contain r2 term and thus diverging for r → ∞. We now
use the condition S(a) = S ′(a) = 0. Therefore, S might be found using (B.12)
(or (B.19)). We first find the constant C by applying (B.20) and the condition
S(∞) = 0:

0 = 5S(∞) =
∫ ∞

a
r T dr = 9av2

∞
4

(
1
3a − 3a

4 · 2a2 + C

3a3 − a3

6 · 4a6

)
. (3.42)

Hence,
C = a2

4 , (3.43)

which gives T in the form

T = 9av2
∞

4

(
1

3r3 − 3a
4r4 + a2

4r5 − a3

6r6

)
= 3av2

∞
4r3

(
1− 2a

r

)(
1− a

4r+ a2

4r2

)
. (3.44)

Note that
T (a) = −3v2

∞
4a2 . (3.45)

Function S is derived by using (B.12):

S =
∫ r

a
r−6

∫ r

a
r6 T dr dr

= 9av2
∞

4

∫ r

a
r−6

∫ r

a
r6
(

1
3r3 − 3a

4r4 + a2

4r5 − a3

6r6

)
dr dr

= 9av2
∞

4

∫ r

a
r−6

(
r4

12 − ar3

4 + a2r2

8 − a3r

6 + 5a4

24

)
dr

= −3av2
∞

16

(
1
r

− 3a
2r2 + a2

2r3 − a3

2r4 + a4

2r5

)

= −3av2
∞

16r

(
1 − a

r

)2
(

1 + a

2r + a2

2r2

)
.

(3.46)

Pressure

The pressure term p1 is derived in a similar way as for transverse Stokes flow, see
Section 2.1. In view of (3.9), we have

p1 =
∫

γ
∇p1 • dr = −η

∫ ∞

r
(∆v1 − v0 • ∇v0) • r̂ dr. (3.47)
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The integrand can be arranged by (E.9):

∆v1 = ∇×∆ψ1 = 2Tzẑ − Tρρ̂− zρT ′θ̂. (3.48)

Therefore,
r̂ • ∆v1 = T

r

(
2z2 − ρ2

)
. (3.49)

Similarly, to arrange (v0 • ∇v0) • r̂, we start with (∇v0) • r̂, where ∇v0 is given
by (3.34):

(∇v0) • r̂ = R′

r

(
2zr̂ + ρθ̂

)
. (3.50)

Taking the scalar product with v0 given by (3.33), we get

(v0 • ∇v0) • r̂ =
(
2Rẑ − ρR′θ̂

)
•
R′

r

(
2zr̂ + ρθ̂

)
= 2RR′

r2

(
2z2−ρ2

)
−ρ

2

r
R′2. (3.51)

Now, p1 takes the form

p1 = −η
∫ ∞

r

T

r

(
2z2 − ρ2

)
− 2RR′

r2

(
2z2 − ρ2

)
+ ρ2

r
(R′)2 dr. (3.52)

Substituting ρ = r sin θ and z = r cos θ and keeping in mind that θ does not
change along the path of integration, we obtain, after cumbersome algebra, the
final expression for p1:

p1 =−ηq2v2
∞

64
(
q
(
14−24q+5q3

)
−3

(
12−14q+12q2−q4

)
cos (2θ)

)
, (3.53)

where q def= a/r. At r = a, q = 1, so

p1|r=a = ηv2
∞

64 (5 + 27 cos (2θ)) = ηv2
∞

64a2

(
5a2 + 27

(
z2 − ρ2

))
. (3.54)

Force

Now, we compute the drag force. Similarly, as in case of the Stokes transverse
Newtonian fluid flow (equation (2.20)), the drag force is

F =
∫∫

r=a
−pr̂+ηr̂ •

(
∇v+∇vT

)
dS=F0+α

∫∫
r=a
−p1r̂+ηr̂ •

(
∇v1+∇vT

1

)
dS. (3.55)

The Stokes’ drag force F0 = 6πaηv∞ẑ is present due to the expansion v = v0+αv1
and p = p0 +αp1. Let us simplify the integrand using the fact that S = S ′ = 0 at
r = a. It means that only the second and higher-order derivatives of S at r = a
are contained in the result. Hence,

∇v1|r=a = ∇
(
2Szẑ − Sρρ̂− zρS ′θ̂

)
|r=a = −zρS ′′(a)r̂θ̂ = zρ

3v2
∞

4a2 r̂θ̂ (3.56)

since S ′′(a) = E6 [T ] |r=a = −3v2
∞

4a2 . Substituting this together with the pressure
term p1 at r = a given by (3.54) into (3.55), we get, in view of integral formulae
(E.10), (E.13), (E.14) and (E.15), that

F = F0 + αηv2
∞

64a2

∫∫
r=a

(
−5a2 − 27z2 + 27ρ2

)
r̂ + 48zρθ̂ dS = F0. (3.57)
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Surprisingly, the additional drag force exerted on the surface of the sphere created
by perturbation terms is zero. We would expect an increase in drag, but (3.57)
does not show it. However, from physical point of view, there must be a non-
zero correction drag force to F0 such that F and F0 differ. The reason of missing
additional drag force in the first-order perturbation theory of the Stokes expansion
is its failure in far-field, which was demonstrated by Oseen [1910] (Note that
v1|r→∞ ̸= 0). For r ∼ a, v1 is only a particular solution, the general solution,
which vanishes at the surface, is

v1 = ∇×(zρSϕ̂+ kρRϕ̂) = 2Szẑ − Sρρ̂− zρS ′θ̂ + k
(
2Rẑ − ρR′θ̂

)
(3.58)

or, equivalently,
ψ1 = zρSϕ̂+ kρRϕ̂ = zρSϕ̂+ kψ0. (3.59)

This form of the solution of the Stokes expansion is then asymptotically matched
according to the matching principle of Van Dyke [1975]. Employing the exact
solution of the Oseen equations, the matching principle reduces to the condition
ψ1|r→∞ = 0 in the direction of the z+ halfaxis (θ = 0). Since r̂|ρ=0 = ẑ, r = z

and θ̂|ρ=0 = ρ̂ in z > 0, it suffices that we ensure ψ1 to vanish for r → ∞. Since

ψ1 = ρzSϕ̂+ kρRϕ̂ = ρ (rS + kR) ϕ̂|z=r, (3.60)

we have
k = lim

r→∞
−rS(r)
R(r) = 3

8av∞ (3.61)

by simple calculation. Therefore,

ψ = ψ0 + αψ1 = ψ0

(
1 + 3

8av∞α
)

+ αzρSϕ̂. (3.62)

The velocity field v is then given by v = ∇×ψ:

v =
(

1 + 3Re
8

)(
2Rẑ − ρR′θ̂

)
+ Re
av∞

(
2Szẑ − Sρρ̂− zρS ′θ̂

)
, (3.63)

where Re def= aϱv∞/η = av∞α is the Reynolds number. By linearity of (3.55)
with respect to v and p, the Oseen correction has the form

F = F0(1 + kα) = 6πaηv∞

(
1 + 3

8Re
)
ẑ. (3.64)

The higher-order corrections of the force have been found using the method of
matched asymptotic expansion (see Proudman and Pearson [1957]). The solution
(3.62) is also derived in Van Dyke [1975] and in Proudman and Pearson [1957].
Higher-order perturbations terms v2,v3, . . . are derived in Datta and Singhal
[2011]. The flow pattern for Re = 100 is shown in Figure 3.2. Figure 3.1 compares
visually the cross-sections of flow patterns for various values of the Reynolds
number (right column) with the photographs of experimental results performed
by Taneda [1956] (left column). Radius of the sphere was 19.8 cm (note that
Taneda’s definition of the Reynolds number uses the diameter of the sphere, while,
in this thesis, the Reynolds number is defined as Re = aρv∞

η
, hence, its value is a

half of Taneda’s definition). Despite of similarities, Taneda’s photographs show
the real flow appears to be slightly wider than predicted by (3.63).
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Re = 8.95 Re = 8.95

Re = 14.40 Re = 14.40

Re = 18.85 Re = 18.85

Re = 36.80 Re = 36.80

Re = 59 Re = 59

Figure 3.1: Visual comparison of real and model transverse flow for different
Reynolds numbers
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Figure 3.2: Cross-section of perturbated transverse flow for Re = 100

3.4.1 Geometrical properties
Let us find mathematical formulae describing certain geometric properties of the
transverse flow. Figure 3.3 shows the visualisation of the set up. Let us denote
θsep the angle between the z axis and the region on the surface of the sphere,
where the flow has zero tangential component at r = a. We will refer to θsep as
the angle of separation. The streamlines which start at the separation (in red)
enclose the so-called vortex region. At the cross-section (see 3.3) the centre of
the vortex corresponds to two nodes with cylindrical coordinates [zver, ρver] and
[zver,−ρver], respectively. The outermost point of the vortex region will be called
an antipode point with coordinates [zant, 0]. The antipode point is a stagnation
point.

Figure 3.3: Geometrical characteristics of perturbated transverse flow
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Re = 0 Re = 4 Re = 7 Re = 7.7

Re = 8 Re = 8.3 Re = 9 Re = 10

Figure 3.4: Flow patterns near the surface of the sphere for specific Reynolds
numbers

Vortex formation

Let us first find the coordinates of the antipode point. The antipode point lies
on the axis of symmetry z, that is, when z = r, ρ = 0, θ = 0, ẑ = r̂, θ̂ = ρ̂. With
this setting, we get using (3.63):

r̂ • v|ρ=0 = v∞

(
1− a

r

)2
((

1+ 3Re
8

)(
1+ a

2r

)
− 3Re

8

(
1+ a

2r+ a2

2r2

))
. (3.65)

Since the fluid is not moving at the antipode point, its z coordinate, zant, is
determined by (3.65) for v = 0, which results in a quadratic equation for zant.
Its solution is

zant = a

4
(
−1 +

√
1 + 3Re

)
. (3.66)

So, zant > a only for Re > 8, while for Re ≤ 8 there are no vortices present, so
Re = 8 has a meaning of a bifurcation point which separates two geometrically
different flows. Figures 3.4 illustrate this transition. At first, when Re < 8, there
is no vortex region. Thus, there are no stagnation points in the flow except the
surface of the sphere itself. The transition happens when Re = 8. The flow
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patterns for Re > 8 contain a vortex as seen in Figures 3.4. Moreover, the only
stagnation point outside the sphere except the centres of vortices is the antipode
point [zant, 0] seen on the right of Figures 3.4 for which Re > 8.

Angle of separation

A similar condition holds at the angle of separation, where the velocity vanishes.
By Taylor expansion of (3.63) at r = a in terms of 1 − a/r, we obtain

v = −ρθ̂
(

1 − a

r

)(
aR′′(a)

(
1 + 3Re

8

)
+ zS ′′(a)Re

v∞

)
+ O

((
1 − a

r

)2
)
. (3.67)

The term aR′′(a)
(
1 + 3Re

8

)
+ zS ′′(a) Re

v∞
vanishes at the flow separation. Since

z = a cos θ, we have

θsep = arccos
(

−(8 + 3Re)R′′(a)v∞

8S ′′(a)Re

)
= arccos

(
8 + 3Re

4Re

)
(3.68)

since R′′(a) = Q(a) = 3v∞
2a2 and S ′′(a) = T (a) = −3v2

∞
4a2 . For Re = 8, we have

θsep|Re=8 = arccos 1 = 0 (3.69)

as expected (since a vortex forms for Re > 8, see Figures 3.4). For Re < 8, the
formula (3.68) does not make sense mathematically (there is no vortex present).
An interesting limit happens for Re → ∞, we get

θsep|Re→∞ = arccos
(3

4

)
≈ 41◦ 25′. (3.70)

However, this is not a valid limit of the separation angle since the assumption that
Re is small no longer applies. Although, numerical results have been found for the
sphere in the regime of large Reynolds numbers. From the numerical solution of
the Navier-Stokes equations (1.8) for transverse flow Achenbach [1972] estimates
θsep in the limit as

θsep|Re→∞ ≈ 59◦. (3.71)

This result is actually not so surprising since from Figures 3.1 we see that the
real flow has indeed a wider vortex zone.
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3.5 Rotating flow
In this section, we find the next term in the Stokes expansion corresponding to
the rotating flow discussed in Section 2.2.

Boundary conditions

The boundary conditions for the flow around a spinning sphere are given by
(2.23) – (2.25). For the perturbation functions v1 and p1 they have the following
form

v1|r→∞ = 0, (3.72)
v1|r=a = 0, (3.73)
p1|r→∞ = 0. (3.74)

Lamb equations

Taking the curl of the first of Lamb equation (3.9), we have

∆∇×v1 = ∇×(v0 • ∇v0) , (3.75)

where v0 = ρP ϕ̂ = ρω a3

r3 ϕ̂ from (2.30). First, for v0 • ∇v0 standing on the
right-hand side of (3.75):

v0 • ∇v0 = ρP ϕ̂ • (ρP ′r̂ϕ̂+ P (ρ̂ϕ̂− ϕ̂ρ̂)) = −ρP 2ρ̂ = −ρω2a
6

r6 ρ̂. (3.76)

Taking the curl of the last expression and using the identity (E.5), we get

∆∇×v1 = ∇×(v0 • ∇v0) = zρ
6a6ω2

r8 ϕ̂. (3.77)

Velocity

Equation (3.77) is a partial differential equation for v1. The form of the equation
suggests to search for the solution in the form v1 = ∇×ψ1. We chose

ψ1 = zρOϕ̂, (3.78)

where O = O(r) is an unknown function of r. Note that this particular form
satisfies ∇ •ψ0 = 0. Then,

v1 = ∇×(zρOϕ̂) = 2Ozẑ −Oρρ̂− zρO′θ̂. (3.79)

The boundary condition (3.73) gives O(a) = O′(a) = 0. Similarly, the boundary
condition (3.72) gives O(∞) = 0. Since

∆∇×v1 = −∆2ψ1 = −∆2 (zρOϕ̂) = −zρE2
6 [O] ϕ̂, (3.80)

we get

E2
6 [O] = −6a6ω2

r8 , (3.81)
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which is an Euler differential equation with a non-zero right-hand side. Let us
denote I def= E6 [O]. By (B.8), we get for I:

I=
∫
r−6

∫
r6 E2

6 [O] drdr = 6a6ω2
∫
r−6

(1
r

−C̃
)

dr = a6ω2
(
C

r5 − 1
r6

)
, (3.82)

where the integration constant for the second integral is zero, otherwise O diverges
for r → ∞. From (B.20) we find the constant C:

0 = 5O(∞) =
∫ ∞

a
rIdr = a6ω2

(
C

3a3 − 1
4a4

)
. (3.83)

Hence,
C = 3

4a. (3.84)

Therefore,
I = a5ω2

( 3a
4r5 − a

r6

)
. (3.85)

The function O is given by (B.12):

O =
∫ r

a
r−6

∫ r

a
r6 Idrdr

= a5ω5
∫ r

a
r−6

∫ r

a
r6
( 3a

4r5 − a

r6

)
dr dr

= a5ω2
∫ r

a
r−6

(
3r2

8 − ar + 5a2

8

)
dr

= −a5ω2

8

(
1
r3 − 2a

r4 + a2

r5

)

= −a5ω2

8r3

(
1 − a

r

)2
.

(3.86)

Pressure

The pressure term p1 is given by (3.47), we get

p1 =
∫

γ
∇p1 • dr = −η

∫ ∞

r
(∆v1 − v0 • ∇v0) • r̂ dr. (3.87)

Simplifying the integrand by using (3.49), i.e.

r̂ • ∆v1 = I

r

(
2z2 − ρ2

)
, (3.88)

we get

p1 =−η
∫ ∞

r

I

r

(
2z2−ρ2

)
+ρ2ω2a

6

r7 dr=−1
8ηa

2ω2q3 (1+(3−4q) cos (2θ)) , (3.89)

where q def= a/r. At r = a, we have q = 1, so

p1|r=a = −1
8ηa

2ω2 (1 − cos (2θ)) . (3.90)

Force and moment

Since the form of the solution ψ1 (see (3.78)) and p1 is the same as in Section 3.4,
there is no additional force nor moment due to the perturbation terms v1 and p1.
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3.6 Magnus flow

Figure 3.5: Magnus flow as the first
combined flow perturbation

We now consider the sphere that travels
through a fluid with a constant speed v∞
along the z-axis and rotates with a con-
stant angular speed ω around the s-axis,
ω = ωŝ (see Figure 3.5). The angle be-
tween the s- and z-axes is β (see Appendix
D on coordinates).

Boundary conditions

We place the center of the reference frame
in the center of the moving sphere. Since
the transverse velocity of the moving
sphere is constant, this reference frame is inertial. Let us denote v the veloc-
ity of the fluid and and p the pressure. Since v = v0 +αv1 and p = p0 +αp1, the
boundary conditions take the form:

v0|r→∞ = v∞ẑ (3.91)

v0|r=a = ωσφ̂ (3.92)
p0|r→∞ = 0 (3.93)

v1|r→∞ = 0 (3.94)
v1|r=a = 0 (3.95)
p1|r→∞ = 0 (3.96)

Lamb equations

The fields v0 and p0 satisfy the Stokes flow equations (2.1) and (2.2). Since
these equations are linear with respect to linear combination in velocity, v0 can
be expressed as the superposition of the transverse and rotating flow, i.e. v0 =
v0t +v0r. Similarly, p0 can be expressed as p0 = p0t +p0r (see Sections 2.1 and 2.2
for the derivation of v0t, v0r, p0t and p0r). Substituting this form into the Lamb
equation (3.9), we get

∆v1 − 1
η

∇p1 = v0t • ∇v0t + v0r • ∇v0r + v0t • ∇v0r + v0r • ∇v0t. (3.97)

Let us write v1 and p1 as v1 = v1t + v1r + v1m and p1 = p1t + p1r + p1m,
where v1t,v1r, p1t, p1r are the perturbation terms derived in previous sections for
transverse and rotating flow, respectively (Sections 3.4 and 3.5). Substituting
this ansatz for v1 and p1 into the equation (3.97), and since each of the terms
v1t,v1r, p1t, p1r satisfies its corresponding Lamb equation separately, we get for
unknown functions v1m and p1m:

∆v1m − 1
η

∇p1m = v0t • ∇v0r + v0r • ∇v0t. (3.98)

Taking the curl of (3.98), we get

∆∇×v1m = ∇×(v0t • ∇v0r + v0r • ∇v0t) . (3.99)
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This is simplified by using (C.17) and (C.18):
∆∇×v1m = (∆ψ0t)•∇v0r−v0r •∇∆ψ0t+v0t •∇∇×v0r−(∇×v0r)•∇v0t, (3.100)

where v0t = ∇×ψ0t with ψ0t = ρRϕ̂. The function R is given by (2.15). Due to
the boundary condition (3.92), the solution v0r of the Stokes equations (2.1) and
(2.2) is given in the rotated spherical system by (2.30), where ρ is replaced by σ
and ϕ̂ by φ̂ (see (2.31)). Hence, v0r = σP φ̂, where P is given by (2.29). In view
of (E.6), we get

∇v0r = ∇
(
σP φ̂

)
= σP ′r̂φ̂+ P

(
σ̂φ̂− φ̂σ̂

)
. (3.101)

Substituting this expression into the first term of the right-hand side of (3.100)
and using ∆ (ρRϕ̂) = ρQϕ̂ with Q = E4 [R], we get

(∆ψ0t) • ∇v0r = ρPQ (ϕ̂ • σ̂) φ̂− ρPQ
(
ϕ̂ • φ̂

)
σ̂. (3.102)

Substituting (3.34) into the second term of the right-hand side of (3.100), we get

v0r • ∇∆ψ0t = σPQ
(
φ̂ • ρ̂

)
ϕ̂− σPQ

(
φ̂ • ϕ̂

)
ρ̂. (3.103)

For ∇∇×v0r term, we use (E.7) to get

∇∇×v0r = P ′

r

(
3rr̂ŝ+ σϑ̂r̂ − sI

)
− σP ′′r̂ϑ̂. (3.104)

Similarly, the third term on the right-hand side of (3.100) simplifies by using
(3.33):

v0t • ∇∇×v0r =6zP ′R

r
ŝ+ 2σP ′R

r

(
ẑ • ϑ̂

)
r̂ − 2sP ′R

r
ẑ

− 2zσP ′′R

r
ϑ̂− ρσR′P ′

r

(
θ̂ • ϑ̂

)
r̂ + sρR′P ′

r
θ̂.

(3.105)

Finally, in view of (E.6), we get
∇×v0r = 2P ŝ− σP ′ϑ̂. (3.106)

Hence, by (3.34), the fourth term on the right-hand side of (3.100) becomes

(∇×v0r) • ∇v0t =6sPR′

r
ẑ + 2ρPR′

r

(
ŝ • θ̂

)
r̂ − 2zPR′

r
ŝ

− 2sρPR′′

r
θ̂ − σρP ′R′

r

(
ϑ̂ • θ̂

)
r̂ + zσP ′R′

r
ϑ̂.

(3.107)

The first two terms (3.102) and (3.103) subtract to PQu, where

u
def= ρφ̂ (ϕ̂ • σ̂) + σρ̂

(
ϕ̂ • φ̂

)
− σϕ̂

(
φ̂ • ρ̂

)
− ρσ̂

(
φ̂ • ϕ̂

)
. (3.108)

Let us express u as a linear combination of three base vectors r̂, θ̂, ϑ̂ (i.e. u =
Ar̂+Bθ̂+Cϑ̂). Taking the scalar product of u with base r̂, ϕ̂, φ̂ and expressing
the coefficients of the linear combination, we get

u = ρθ̂

(
ϕ̂ • σ̂

φ̂ • θ̂

)
− σϑ̂

(
φ̂ • ρ̂

ϕ̂ • ϑ̂

)
, (3.109)

where the coefficient A at vector r̂ vanishes since ρ̂ • r̂ = ρ
r

and σ̂ • r̂ = σ
r
, so

u • r̂ = 0. In addition, in view of (D.3) and (D.2), we can simplify (3.109):

u = ρθ̂

(
ϕ̂ • σ̂

φ̂ • θ̂

)
− σϑ̂

(
φ̂ • ρ̂

ϕ̂ • ϑ̂

)
= −ρs

r
θ̂ + σz

r
ϑ̂ = sẑ − zŝ. (3.110)
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Balancing relations

Therefore, in view of (3.110), the third and fourth term on the right-hand side of
(3.100) are expressible as a linear combination of another three base vectors r̂, ẑ
and ŝ. Moreover, in view of (D.2), the first and second term on the right-hand
side of (3.100) are expressible in r̂, ẑ and ŝ as well. Simplifying all four terms,
we finally obtain

∆∇×v1m = szF r̂ + zGŝ+ sHẑ + J (ŝ • ẑ) r̂, (3.111)

where we have introduced

F = 2
r2 (P ′R − PR′) − 2

r
(P ′′R − PR′′) , (3.112)

G = −PQ+ 6P ′R

r
+ 2P ′′R + 2PR′

r
+ P ′R′, (3.113)

H = PQ− 6PR′

r
− 2PR′′ − 2P ′R

r
− P ′R′, (3.114)

J = −2 (P ′R − PR′) . (3.115)

Note that they are rational functions of r. Moreover, they are not independent
on each other since

0=∇ • (∆∇×v1m) = sz

(
F ′+ 4

r
F+G′

r
+H ′

r

)
+ŝ • ẑ

(
J ′+ 2

r
J+G+H

)
, (3.116)

where we have used sr̂ • ẑ = zr̂ • ŝ = sz
r

(see Table D.3). Since (3.116) must hold
for all sz and ŝ • ẑ, the terms standing in the front of sz and ŝ • ẑ must vanish:

F ′ + 4
r
F + 1

r
(G′ +H ′) = 0, (3.117)

J ′ + 2
r
J +G+H = 0. (3.118)

By differentiation of (3.115), J ′ = −2 (P ′′R − PR′′). Substituting this result into
(3.112), we obtain

F = − J

r2 + J ′

r
=
(
J

r

)′
, (3.119)

which is the first so-called balancing relation. The second balancing relation
is obtained by summing up (3.113) and (3.114):

G+H = 4
r

(P ′R − PR′) + 2 (P ′′R − PR′′) = −2J
r

− J ′. (3.120)

Velocity

The solution of (3.100) will be searched in the form v1m = ∇×ψ1m with

ψ1m = zKŝ+ sLẑ, (3.121)

where K = K(r) and L = L(r) are functions of r only (note that generally
∇ •ψ1m ̸= 0). In view of the product rule of differentiation for the curl, we get

v1m = ∇×(zKŝ+ sLẑ) = Kẑ×ŝ+ zK ′r̂×ŝ+ Lŝ×ẑ + sL′r̂×ẑ. (3.122)
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The boundary condition (3.95) gives K(a) = K ′(a) = L(a) = L′(a) = 0. More-
over, this form of solution for velocity satisfies the second Lamb equation (3.10).
To check that, taking the divergence of (3.122), we get

∇ • v1m = ∇ • (Kẑ×ŝ+ zK ′r̂×ŝ+ Lŝ×ẑ + sL′r̂×ẑ)
= K ′ (ẑ×ŝ) • r̂ +K ′ẑ • (r̂×ŝ) + L′ (ŝ×ẑ) • r̂ + L′ŝ • (r̂×ẑ) = 0,

(3.123)

where (ẑ×ŝ) • r̂ + ẑ • (r̂×ŝ) and (ŝ×ẑ) • r̂ + ŝ • (r̂×ẑ) vanish by using (C.7).
The divergence of r×ẑ and r×ŝ, respectively, is zero by the formula (E.1). Now,
we simplify the left-hand side of (3.111). Since partial derivatives commute,
∆∇×v1m = ∆∇×∇×ψ1m = ∇×∇×∆ψ1m. First, we evaluate the Laplacian:

∆ψ1m = ∆ (zKŝ+ sLẑ) = ∇ · (Kẑŝ+ zK ′r̂ŝ+ Lŝẑ + sL′r̂ẑ)

= z
(
K ′′ + 4

r
K ′
)
ŝ+ s

(
L′′ + 4

r
L′
)
ẑ,

(3.124)

since ∆ = ∇ • ∇. Let us introduce M def= K ′′ + 4
r
K ′ = E4 [K] and N def= L′′ + 4

r
L′ =

E4 [L]. Hence,
∆ψ1m = zM ŝ+ sN ẑ. (3.125)

In view of (C.15), we get

∆∇×v1m = ∇×∇×∆ψ1m = ∇∇ • (zM ŝ+ sN ẑ) − ∆ (zM ŝ+ sN ẑ) . (3.126)

The second term reduces to ∆ (zM ŝ+ sN ẑ) = zE4 [M ] ŝ + sE4 [N ] ẑ. Let us
simplify the first term. Since ∇∇ • (zM ŝ) =

∇
(
M ŝ • ẑ + sz

M ′

r

)
= M ′ (ŝ • ẑ) r̂ + (zŝ+ sẑ) M

′

r
+ sz

(
M ′

r

)′

. (3.127)

Replacing non-rotated coordinates with rotated coordinates and M with L, we
get ∇∇ • (zM ŝ+ sN ẑ) =

(M ′+N ′) (ŝ • ẑ) r̂+(zŝ+sẑ)
(
M ′

r
+N ′

r

)
+sz

(
M ′

r
+N ′

r

)′

. (3.128)

Substituting the last expressions into (3.126) and comparing the result with
(3.111), we obtain a system of four ordinary differential equations:

F =
(
M ′

r
+ N ′

r

)′

, (3.129)

G = −E4 [M ] + M ′

r
+ N ′

r
, (3.130)

H = −E4 [N ] + M ′

r
+ N ′

r
, (3.131)

J = M ′ +N ′. (3.132)
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Let us introduce U def= M + N and V
def= M − N . We then obtain an equivalent

system

F =
(
U ′

r

)′

, (3.133)

G+H = −E4 [U ] + 2U ′

r
, (3.134)

G−H = −E4 [V ] , (3.135)
J = U ′ (3.136)

of four differential equations for two unknown functions U and V . This system
seems to be overdetermined due to a larger number of equations than the number
of unknown functions. However, substituting (3.136) into (3.133), we obtain

F =
(
J

r

)′
, (3.137)

which is exactly the first balancing relation (3.119). Moreover, by (3.134) and
(3.136), we have

G+H = −E4 [U ] + 2U ′

r
= −U ′′ − 2

r
U ′ = −J ′ − 2

r
J, (3.138)

which is exactly the second balancing relation (3.120). It means that three equa-
tions for U , namely (3.133), (3.134) and (3.136), are all dependent dependent on
each other. Form the three equations, we will employ (3.136). By (2.15) and
(2.29), U can be computed by (3.132), (2.15) and (2.29) as follows:

U =
∫
J dr = −2

∫
P ′R − PR′dr = ωv∞

(
3a4

4r4 − a3

r3

)
. (3.139)

Note that U does not contain the constant of integration since U approaches zero
for r → ∞; otherwise K + L will contain r2 term and thus diverging for r → ∞.
Unlike the previous flows (see Sections 3.4 and 3.5), where S(∞) = O(∞) = 0,
we cannot put (K + L)(∞) = 0 since by (B.20):

K + L|r→∞ = 1
3

∫ ∞

a
rUdr = 1

3ωv∞

∫ ∞

a

(
3a4

4r3 − a3

r2

)
dr = − 5

24ωv∞a
2. (3.140)

It is a similar argument as in Section 3.4, where ψ1 ̸= 0 as r approaches infinity.
The boundary condition (3.95) gives K(a) + L(a) = K ′(a) + L′(a) = 0. Since
U = E4 [K + L], in view of (B.12), we get

K + L =
∫ r

a
r−4

∫ r

a
r4 U drdr

= ωv∞

∫ r

a
r−4

∫ r

a
r4
(

3a4

4r4 − a3

r3

)
dr dr

= ωv∞a
2
∫ r

a
r−4

(
3a2r

4 − ar2

2 − a3

4

)
dr

= ωv∞a
2

4

(
−3a2

2r2 + 2a
r

+ a3

3r3 − 5
6

)

= −ωv∞a
2 5
24

(
1 − a

r

)2 (
1 − 2a

5r

)
.

(3.141)
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Now, we will find the function V . First, let us simplify the left-hand side of
(3.135), taking the difference of (3.113) and (3.114) and simplifying by (2.10)
and (2.27), we get:

G−H = −2PQ+ 2 (PR′′ − P ′′R) + 8
r

(P ′R − PR′) + 2P ′R′

= 2P ′′R + 8
r
PR′ + 2P ′R′ = 2E4 [P ]R + 2P ′R′ = 2P ′R′.

(3.142)

Finally, in view of (B.8), we can successively write

V = −2
∫
r−4

∫
r4 P ′R′ dr dr

= ωv∞
3
2

∫
r−4

∫ 3a4

r2 − 3a6

r4 dr dr

= ωv∞
3
2

∫
r−4

(
−3a4

r
+ a6

r7 + C̃

r4

)
dr

= ωv∞
3
2

(
3a4

4r4 − a6

6r6 − C

r3

)
.

(3.143)

Matching condition

The solution zKŝ + sLẑ is not a general solution of (3.100) since we can add a
multiple of a solution of the Stokes equation (2.1) to (3.121) and (3.100) is still
satisfied. The general solution, used for matching, is

ψ1m = zKŝ+ sLẑ + kR (zŝ− sẑ) . (3.144)

The second term corresponds to Stokes flow in the direction ẑ×ŝ since R(zŝ −
sẑ) = R (ẑ×ŝ)×r. This is indeed a transverse flow in the direction ẑ×ŝ since a
transverse flow in the direction ẑ is ψ = ρRϕ̂ = Rẑ×r. Hence, for the Stokes
flow in the direction of the unit vector n̂ is given by ψ = Rn̂×r. In accordance
with the matching principle, there should be no flow in the direction ẑ×ŝ. There
is no k in (3.143), the constant C in (3.143) is chosen such K − L vanishes for
r → ∞. In view of (B.20), we get

0=3 (K−L) |r→∞ =
∫ ∞

a
r (K−L) dr=ωv∞

3
2

∫ ∞

a

(
3a4

4r3 − a6

6r5 − C

r2

)
dr. (3.145)

Hence,

C = a3

3 , (3.146)

which gives V in the form

V = ωv∞
3
2

(
3a4

4r4 − a6

6r6 − a3

2r3

)
. (3.147)
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Since K(a) − L(a) = K ′(a) − L′(a) = 0 and E4 [K − L] = V , in view of (B.12),
we get

K − L =
∫ r

a
r−4

∫ r

a
r4 V dr dr

= ωv∞
3
2

∫ r

a
r−4

∫ r

a
r4
(

3a4

4r4 − a6

6r6 − a3

2r3

)
dr dr

= ωv∞
3
2

∫ r

a
r−4

(
3a4r

4 + a6

6r − a3r2

6 − 3a5

4

)
dr

= ωv∞
1
8

(
−9a4

2r2 − a6

2r4 + 2a3

r
+ 3a5

r3

)

= ωv∞a
2

4r

(
1 − a

r

)2 (
1 − a

4r

)
.

(3.148)

Hence, by adding and subtracting (3.141) and (3.148), we obtain separate expres-
sion for K and L:

K = ωv∞a
2

96r2

(
1 − a

r

)2 (
−3a2 + 16ar − 10r2

)
, (3.149)

L = ωv∞a
2

96r2

(
1 − a

r

)2 (
3a2 − 8ar − 10r2

)
, (3.150)

which, together with ψ1m = zKŝ+ sLẑ, solves the equation (3.100).

Pressure

Now, let us find the expression for the pressure. By (3.98), we get

p1m =
∫

γ
∇p1 • dr = η

∫ ∞

r
v0t • ∇v0r • r̂ + v0r • ∇v0t • r̂ − r̂ • ∆v1m dr, (3.151)

where v0t is given by (2.8), ∇v0t • r̂ by (3.50), and ∇v0r by (3.101), respectively.
For ∇v0r • r̂, we can successively write

∇v0r • r̂ =
(
σP ′r̂φ̂+ P

(
σ̂φ̂− φ̂σ̂

))
• r̂ = −σP φ̂ σ̂ • r̂ = −σ

r
P φ̂. (3.152)

Then,

v0t • ∇v0r • r̂ = −
(
2Rẑ − ρR′θ̂

)
•
σ

r
P φ̂ = − (2PR + rPR′) (ẑ×ŝ) • r̂, (3.153)

where we have used σφ̂ = rŝ× r̂ and identity (D.3). Similarly, for the second
term in (3.151):

v0r • ∇v0t • r̂ = PR′

r
σρφ̂ • θ̂ = −rPR′ (ẑ×ŝ) • r̂. (3.154)

Finally, in view of r̂ • ∆v1m = r̂ • ∇×∆ψ1m, the third term in (3.151) can be
arranged as follows:

r̂ • ∆v1m = r̂∇×(zM ŝ+ sN ẑ) = (M−N) (ẑ×ŝ) • r̂ = V (ẑ×ŝ) • r̂. (3.155)
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In summary,
p1m = (ẑ×ŝ) • r̂

∫ ∞

r
−2rPR′ − 2PR − V dr. (3.156)

Substituting for R,P, V and from (2.15), (2.29) and (3.147), we get

p1m = −v∞ωa
3η

4r2

(
1 + 3a

2r − a3

r3

)
(ẑ×ŝ) • r̂. (3.157)

At r = a, we have
p1m(a) = −3aηv∞ω

8 (ẑ×ŝ) • r̂. (3.158)

Magnus force

Let us now calculate the force. By linearity of Lambs equations in v1 and p1, we
have for the force:

F = F0

(
1 + 3Re

8

)
+ FM , (3.159)

where
FM = α

∫∫
r=a

−p1mr̂ + ηr̂ •
(
∇v1m + ∇vT

1m

)
dS (3.160)

we have denoted the so-called Magnus force. Integrating the pressure term
−p1mr̂ and using (E.16), we obtain∫∫

r=a
−p1mr̂ dS = 3aηv∞ω

8 (ẑ×ŝ) •

∫∫
r=a
r̂r̂ dS = πa3ηv∞ω

2 ẑ×ŝ. (3.161)

Now, let us simplify the second term of the equation (3.160) using the fact that
K = K ′ = L = L′ = 0 at r = a. Since

∇v1m = ∇∇×(zKŝ+ sLẑ) , (3.162)

therefore,

∇v1m|r=a = ∇ (zK ′r̂×ŝ+ sL′r̂×ẑ) |r=a = zK ′′(a)r̂r̂×ŝ+sL′′(a)r̂r̂×ẑ. (3.163)

Hence,

r̂ •
(
∇v1m+∇vT

1m

)
|r=a= r̂ •∇v1m+∇v1m •r̂|r=a=zK ′′(a)r̂×ŝ+sL′′(a)r̂×ẑ, (3.164)

since r̂ • (r̂×a) = 0 for a constant vector a. Integrating zr̂ and sr̂, respectively.
In view of the formula (E.11), we get:∫∫

r=a
r̂ •
(
∇v1m+∇vT

1m

)
dS= 4

3πa
3 (K ′′(a)−L′′(a)) ẑ×ŝ= 4

3πa
3V (a)ẑ×ŝ, (3.165)

since V (a) = E4 [K − L] |r=a = K ′′(a)+ 4
r
K ′(a)−L′′(a)− 4

r
L′(a) = K ′′(a)−L′′(a).

Substituting r = a into V (see (3.147)), we get

V (a) = 3av∞ω

8 . (3.166)

Hence, ∫∫
r=a
r̂ •
(
∇v1m + ∇vT

1m

)
dS = πa3v∞ω

2 ẑ×ŝ. (3.167)
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Finally, summing up (3.161) and (3.167), we get the for the Magnus force:
FM = πϱa3v∞ω ẑ×ŝ. (3.168)

This is the formula obtained by Rubinov and Keller [1961]. Note that both the
pressure and the viscous term contribute to the Magnus drag force formula in the
ratio 1 : 1 (compare (3.161) with (3.167)). In contrast, in transverse Stokes flow
they contribute in the ratio 1 : 2 (see (2.22) in view of (E.11) and (E.12)).

Visualisation

We define a non-dimensional parameter Γ def= aω/v∞. Generally, Magnus flow is
3-dimensional and lacks rotational symmetry. Therefore, only cross-sections can
be well-visualised. If we choose β = 90◦ (see Figure 3.5), we get a flow with the
flow pattern in yz-plane (x = 0) shown for Re = 100 and Γ = 0.5 in Figure 3.6.
In this set up, the sphere rotates counter-clockwise around the x-axis pointing
perpendicularly out of the plane of the page. Flow patterns with Γ = 0.5 for
various values of the Reynold numbers are given in Figure 3.8 on the next page.

Figure 3.6: yz-plane cross-section of Magnus flow with Re = 100 and Γ = 0.5

Figure 3.7: Magnus flow
- Boundary layer

The streamlines seem to point to the right at the top
of Figure 3.6. However, since the sphere is spinning
counter-clockwise, we would expect the streamlines to
point to the left. Close-up inspection of Figure 3.6 re-
veals they indeed point to the left as the flow posses
a boundary layer near the surface of the sphere (see
Figure 3.7, the units are given such that a = 1). Quali-
tativelly, the presence of a vortex as well as the bound-
ary layer coincides with the (steady) numerical simula-
tion by Bagchi and Balachandar [2002]. However, Mag-
nus force obtained by Bagchi and Balachandar [2002]
is nearly half of Rubinov and Keller [1961] and we need
to consider more perturbation terms.
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Re = 0 Re = 20 Re = 40

Re = 50 Re = 55 Re = 60

Re = 65 Re = 70 Re = 100

Re = 150 Re = 300 Re = 1000

Figure 3.8: yz-plane cross-section of Magnus flow with Γ = 0.5 for various values
of the Reynolds number
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Summary
In the first chapter, we have outlined a framework for the thesis. General go-
verning Navier-Stokes equations are derived for an incompressible homogeneous
isotropic Newtonian fluid with density ϱ and dynamical viscosity η, assuming
being constant.

In the second chapter, we have found the explicit solution of the Stokes equations
for the transverse flow around a sphere with a radius a moving with a small
constant speed v∞ (formulae (2.16) and (2.19))

v = v∞

(
1 − a

r

) [(
1 + a

2r

)(
1 − a

r

)
ẑ − 3aρ

4r2

(
1 + a

r

)
θ̂
]
,

p = −3ηazv∞

2r3

and for the flow around a rotating sphere with a small constant angular speed ω
(formula (2.30))

v = ρω
a3

r3 ϕ̂,

p = 0.

Using these explicit formulae, we have re-derived classical results of hydrodyna-
mics, that is, the Stokes’ law (formula (2.22))

F = 6πaηv∞ẑ,

giving us the force due to the transverse flow, and the Kirchhoff’s law (formula
(2.34))

M = −8πηωa3ẑ,

giving us the moment due to the rotating flow.

In the third chapter, we have seen how a simple asymptotic matching condition
can be used for the derivation of approximate solutions of perturbated problems.
We have found the second term in the perturbation series for transverse, rotational
and combined (Magnus) flow around a sphere. Section 3.4 summarises the basic
characteristics of transverse flow around a sphere for low Reynolds numbers. An
exact solution for the velocity and pressure field of a perturbated problem has
been derived (formulae (3.62) and (3.53)):

v =v∞

2

(
1 + 3

8av∞α
)

∇×
(
ρ
(

1 + a

2r

)(
1 − a

r

)2
ϕ̂

)

− 3av2
∞

16 α∇×
(
zρ

r

(
1 − a

r

)2
(

1 + a

2r + a2

2r2

)
ϕ̂

)
,

p=− 3ηq2v∞

2a

(
1+ 3

8av∞α
)

cos θ

−αηq2v2
∞

64
(
q
(
14−24q+5q3

)
−3

(
12−14q+12q2−q4

)
cos (2θ)

)
,

39



where q = a/r and α = ϱ/η. Using this formula, we have derived the Oseen
correction for the force (formula (3.64))

F = 6πaηv∞

(
1 + 3

8Re
)
ẑ,

where Re = aϱv∞/η = av∞α is the Reynolds number. Unlike the case of the
transverse Stokes flow where streamlines are nearly parallel to the motion of
the sphere, the case in which a Reynolds number is larger the streamlines form
a vortex behind the sphere. This transition has been obtained from the exact
solution of the perturbated problem. The corresponding critical Reynolds number
turned out to be

Re = 8.
For Re > 8, a vortex is formed. Similarly, we have derived the distance zant from
the center of the sphere to the point behind the sphere where the fluid stands
still, and the angle θsep where the fluid separates from the surface (formulae (3.66)
and (3.68)):

zant = a

4
(
−1 +

√
1 + 3Re

)
,

θsep = arccos
(

8 + 3Re
4Re

)
.

The flow pattern obtained from this solution was then compared visually for
various values of the Reynolds number with the photographs of experimental
results performed by Taneda [1956] (see Figure 3.1). The correction of the flow
around a rotating sphere has been also derived (formulae (3.86) and (3.89))

v = ρω
a3

r3 ϕ̂− α∇×
(
zρ
a5ω2

8r3

(
1 − a

r

)2
ϕ̂

)
,

p = −1
8ϱa

2ω2q3 (1 + (3 − 4q) cos (2θ)) .

In fact, these additional terms of rotating flow do not contribute to force nor
moment. In accordance with the matching principle, we have found the explicit
expressions for the correction of velocity and the pressure due to the Magnus flow
around a rotating sphere with a small angular speed ω and moving with a small
constant velocity v∞ẑ (formulae (3.149), (3.150) and (3.157)):

v1m = ωv∞a
2

96 ∇×
((

1− a

r

)2
(
sẑ

r2

(
3a2−8ar−10r2

)
− zŝ

r2

(
3a2−16ar+10r2

)))

p1m = −v∞ωa
3η

4r2

(
1 + 3a

2r − a3

r3

)
(ẑ×ŝ) • r̂,

where ŝ is a unit vector pointing in the direction of the axis of rotation. Then,
using these results, we have re-derived the Magnus force acting on the sphere (the
formula (3.168)) for low Reynolds numbers:

FM = πϱa3v∞ω ẑ×ŝ.
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Conclusion

We have derived a formula for the Magnus force acting upon a rotating sphere
moving in an incompressible viscous Newtonian fluid for low Reynolds numbers
in a new way. We have also studied certain properties of the vortex formation of
transverse flow and presented corresponding formulae.

Recent research and the discovery of new artificial materials offers a great oppor-
tunity for numerical analysts to study their properties. These materials are not
always placed in a vacuum and therefore a shear flow may exist around them. The
study of a behaviour of the materials has to be then extended for an interaction
with liquid mediums. In case of the liquid medium itself is a new material and the
properties of the medium are known, a numerical simulation can be used to study
behaviour of the material in more complex and general situations. Formulae de-
rived in the thesis can then be used, for example, for the validation of numerical
simulations when simplified initial and boundary conditions, considered in this
thesis, are applied.

Solving the Stokes flow around a sphere for the no-slip boundary condition is a
special case of a broader class of problems, which have been studied in literature,
some of which are yet unsolved analytically. It turns out the force (and moment,
respectively) due to a Stokes flow with a prescribed initial velocity on the surface
of a sphere can be expressed in the form of a single integral formula. These
formulae offer an easy proof of the so-called Faxén’s laws and can be used to
approximate the force and moment due to transverse or rotational flow exerted
on almost spherical particles. The proof of these statements involves a use of
vector harmonic functions and goes beyond the scope of this thesis.

The third- and higher-order terms of the Stokes expansion can be found for trans-
verse flow around a non-spinning sphere (see Proudman and Pearson [1957] and
Datta and Singhal [2011]). Similarly, the third- and higher-order terms of the
expansion series could be also found for the Magnus flow. Although the aim of
this thesis was not to consider higher-order terms, it would be interesting to find
them and compare them with experimental results by Briggs [1959] and (steady
as well as unsteady) numerical simulations by Bagchi and Balachandar [2002].
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Appendices

A Some formulae on distributions
This section presenting some formulae on distribution is rather informal, for more
formal modern approach see Schwartz [1957]. The Dirac delta distribution
δ(x) is defined by ∫ ∞

−∞
ϕ(x)δ(x) dx = ϕ(0) (A.1)

for any sufficiently smooth test function ϕ(x). Moreover, we define a shifted delta
distribution δ(x− a) such that∫ ∞

−∞
ϕ(x)δ(x− a) dx = ϕ(a). (A.2)

For any sufficiently smooth f(x), it also holds

f(x)δ(x− a) = f(a)δ(x− a), (A.3)

since∫ ∞

−∞
ϕ(x)f(x)δ(x− a) dx = ϕ(a)f(a) =

∫ ∞

−∞
f(a)ϕ(x)δ(x− a) dx. (A.4)

Let us derive the action of the derivative of the delta distribution δ′(x) on a
smooth function f(x). Integration by parts yields∫ ∞

−∞
ϕ(x)δ′(x) dx = −

∫ ∞

−∞
ϕ′(x)δ(x) dx = −ϕ′(0). (A.5)

Hence, in view of the product rule of differentiation, we get

f(x)δ′(x) = f(0)δ′(x) − f ′(0)δ(x). (A.6)

Therefore,

δ′(x)f(x) + δ(x)f ′(0) = δ′(x)f(x) + δ(x)f ′(x) = (δ(x)f(x))′ = δ′(x)f(0). (A.7)

More formally, the last formula follows from∫ ∞

−∞
ϕ(x)f(x)δ′(x) dx = −

∫ ∞

−∞
(ϕ(x)f(x))′ δ(x) dx (A.8)

= −
∫ ∞

−∞
(ϕ′(x)f(x) + ϕ(x)f ′(x)) δ(x) dx = −ϕ′(0)f(0) − ϕ(0)f ′(0) (A.9)

=
∫ ∞

−∞
f(0)ϕ(x)δ(x) dx−

∫ ∞

−∞
f ′(0)ϕ(x)δ(x) dx. (A.10)

Let us define the Heaviside step function θ(x) such that d
dx
θ(x) = δ(x) and

θ(x) =
∫ x

−∞
δ(t) dt, (A.11)

thus:

θ(x) =

⎧⎨⎩0 x < 0
1 x > 0

(A.12)
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Hence, ∫ x

−∞
δ(x− a) dt = θ(x− a) + C. (A.13)

Moreover, F ′(x) = f(x), so∫
f(x)δ(x− a) dx = f(a)θ(x− a) + C = −f(a)θ(a− x) +D, (A.14)

where (A.3) was used. Therefore,∫
f(x)δ(x− a) dx =

∫
f(a)δ(x− a) = f(a)θ(x− a) + C. (A.15)

The two apparently different results in the last expression are actually the same
since θ(a− x) = 1 − θ(x− a). Also,∫

f(x)θ(x− a) dx = (F (x) − F (a)) θ(x− a) + C (A.16)

since, differentiating and applying the product rule of differentiation,

((F (x)−F (a))θ(x−a))′=f(x)θ(x−a)+(F (x)−F (a))δ(x−a)=f(x)θ(x−a), (A.17)

where the second term (F (x) − F (a)) δ(x − a) = (F (a) − F (a)) δ(x − a) = 0
vanishes by (A.3). Another form includes∫

f(x)θ(a− x) dx = (F (x) − F (a)) θ(a− x) + C. (A.18)

Special cases include (assuming s > a and r > a)∫ r

a
f(u)θ(u− s) du = (F (r) − F (s)) θ(r − s) (A.19)

and ∫ r

a
f(u)θ(s− u) du = (F (r) − F (s)) θ(s− r) − (F (a) − F (s)) , (A.20)

which both follow from the previous cases.
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B Euler differential equation
Definition 3. A linear ordinary differential equation anr

nR(n)+an−1r
n−1R(n−1)+

. . .+a0R = f(r) with constant coefficients ak, where f(r) is some known function
and R = R(r) is a function to be solved, is called an Euler differential equation.
We will assume that r > 0. The Euler differential equation’s characteristic solu-
tion is of the form rλ (or rλ lnk(r) if λ is a root of the characteristic polynomial
with multiplicity k). In this paper, we are mostly solving the equations of the
form Eα [R] def= d2R

dr2 + α
r

dR
dr

= 0. Multiplying by r2, it is easy to see, that this
is indeed a homogeneous Euler differential equation. Let us solve the equation
substituting the characteristic solution rλ, we get

Eα

[
rλ
]

=
d2
(
rλ
)

dr2 +α

r

d
(
rλ
)

dr = λ (λ− 1) rλ−2+αλrλ−2 = λ(λ−1+α)rλ−2. (B.1)

Hence, for α ̸= 1, the roots of the characteristic polynomial are λ = 0 and
λ = 1 − α, respectively. The solution of a homogeneous ODE is, therefore,

R(r) = A

rα−1 +Br. (B.2)

For example, for α = 4, the general solution is

R(r) = A

r3 +Br. (B.3)

Another important example in an equation with the same operator E applied
twice, i.e. E2

α [R] = 0. Substituting R = rλ, we get

Eα

[
Eα

[
rλ
]]

= λ(λ−1+α)Eα

[
rλ−2

]
= λ(λ−1+α)(λ−2)(λ−3+α)rλ−4. (B.4)

The general solution is, therefore,

R(r) = A

rα−1 + B

rα−3 + C +Dr2, (B.5)

where α ̸= ±1 nor α ̸= ±3. Two other important special cases include α = 4, for
which

R(r) = A

r3 + B

r
+ C +Dr2 (B.6)

or α = 6, for which
R(r) = A

r5 + B

r3 + C +Dr2 (B.7)

are the solutions.

B.1 Nonhomogeneous equation
Since Eα [R] def= R′′ + α

r
R′ = r−α (rαR′)′, we get, integrating the solution of the

nonhomogeneous equation Eα [R] = f :

R(r) =
∫
r−α

(∫
rαf(r) dr

)
dr. (B.8)

Substituting f = 0 into (B.8), we recover the homogeneous solution (B.3)

R(r) =
∫
r−αÃ dr = A

rα−1 +B. (B.9)
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Special cases

Let us consider an Euler differential equation with a non-zero right-hand side
Eα [R(r)] = f(r). Special cases include when the functionR and its first derivative
vanish at some r = a (i.e. the boundary conditions are R(a) = R′(a) = 0). In
that scenario, note that

R′′(a) = R′′(a) + α

a
R′(a) = Eα [R(r)] |r=a = f(a). (B.10)

Moreover, we are able to express R(r) in terms of f(r) as a single integral. Inte-
grating (rαR′)′ = rαf(r) from a to r, we get

rαR′(r) − aαR′(a) = rαR′(r) =
∫ r

a
sαf(s)ds. (B.11)

Multiplying the previous relation by r−α and integrating, we get, finally,

R(r) =
∫ r

a
t−α

∫ t

a
sαf(s) ds dt. (B.12)

Green’s function approach

We can express (B.12) as a single integral. Let us suppose, that the solution of
Eα [R] = f(r) with the boundary conditions R(a) = R′(a) = 0 may be written as

R(r) =
∫ ∞

a
G(r, s)f(s) ds, (B.13)

where G(r, s) is the so-called Green’s function. This solution satisfies the
boundary conditions R(a) = R′(a) = 0 if G(a, s) = G,r(a, s) = 0. Moreover, if
Eα [G(r, s)] = δ(r − s), where δ(r − a) is the Dirac delta distribution and where
Eα [ · ] is applied with respect to r, then, straightforwardly,

Eα [R(r)] =
∫ ∞

a
Eα [G(r, s)] f(s) ds =

∫ ∞

a
δ(r − s)f(s) ds = f(r), (B.14)

so (B.13) is indeed a solution. Let us solve the system
Eα [G(r, s)] = δ(r − s), (B.15)
G(a, s) = 0, (B.16)
G,r(a, s) = 0. (B.17)

By (B.12) and in view of the properties of Dirac delta and Heaviside distributions
(the formulae (A.14) and (A.16)), we get (assuming s > a, so θ(a− s) = 0)

G(r, s) =
∫ r

a
t−α

∫ t

a
uαδ(u− s)dudt =

∫ r

a
t−αsαθ(t− s)dt

= sα

1 − α

(
r1−α − s1−α

)
θ(r − s).

(B.18)

Hence, for R(r), we get

R(r) =
∫ ∞

a
G(r, s)f(s) ds =

∫ ∞

a

sα

1 − α

(
r1−α − s1−α

)
θ(r − s)f(s) ds

= r

α− 1

∫ r

a

(
s

r
−
(
s

r

)α)
f(s) ds.

(B.19)

From this expression, we have, for example (for α > 1), that

R(∞) = 1
α− 1

∫ ∞

a
sf(s) ds. (B.20)
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C Vector and tensor calculus
This thesis works solely with 3-dimensional Euclidean metric space E3 (through-
out the thesis, the word “space” is used for E3). In this space, we are able to
measure distances, magnitudes of vectors and angles as usual. For any two vec-
tors a and b with magnitudes |a| and |b|, we define the so-called scalar product
of a and b as a scalar a • b such that

a • b = |a||b| cos γ, (C.1)

where γ is the angle between a and b. Similarly, we define the so-called vector
product of a and b as a vector a×b perpendicular to both a and b such that
the triple (a, b,a×b) is a right-handed base and

|a×b| = |a||b| sin γ, (C.2)

where γ is again the angle between a and b.

Algebraic identities

a×b = −b×a (C.3)
a×a = 0 (C.4)
a • (a×b) = 0 (C.5)
a×(b×c) = b (a • c) − c (a • b) (C.6)
a • (b×c) = c • (a×b) = b • (c×a) (C.7)

Tensors

Tensors are generalisations of scalars and vectors: 0-rank tensor is a scalar, 1-rank
tensor is a vector. Generally, a tensor A of rank n may be written as a sum

A =
m∑

i=1
Aiai1ai2ai3 . . .ain, (C.8)

where Ai are scalars and aij are vectors.

Definition 4 (Trace and Cross-trace). Let A be a tensor of rank n given by (C.8).
The trace of A is a tensor TrA of rank n− 2 defined by

TrA =
m∑

i=1
Aiai1 • ai2ai3 . . .ain. (C.9)

Similarly, the cross-trace of A is a tensor CrA of rank n− 1 defined by

CrA =
m∑

i=1
Aiai1×ai2ai3 . . .ain. (C.10)
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Fields

Definition 5 (Field). A field is a function which assigns a tensor of the same
rank to any point in space (i.e., a tensor-valued function). If the rank is 0, the
tensors are scalars and we say the field is a scalar field. If the rank is 1, the
tensors are vectors and we say the field is a vector field. Generally, we say the
field is a tensor field (of rank n). We say a vector field is a unit vector field if it
consists only of vectors of unit length.
Definition 6 (Isosurface). An isosurface of a scalar field f is a set of points in
space for which f is constant.
Definition 7 (Gradient). The gradient of a tensor field F of rank n is another
tensor field ∇F of rank n+ 1 which at any point X in space satisfies

a • ∇F(X) = lim
h→0

F(X + ha) − F(X)
h

(C.11)

for any constant vector a.
This definition of the gradient satisfies all usual properties – linearity under ad-
dition and multiplication by constants and the product rule of differentiation. If
the field is a scalar field, the gradient is a vector field which is perpendicular to
all isosurfaces of that scalar field.
Definition 8 (Divergence, Curl and Laplacian). Let F be a tensor field of rank
n, we define the divergence of F as a tensor ∇ • F of rank n− 1 given by

∇ • F = Tr∇F. (C.12)
Similarly, we define the curl of F as a tensor ∇×F of rank n given by

∇×F = Cr∇F. (C.13)

The Laplacian ∆ is defined as ∆ def= ∇ • ∇.

Differential identities

The following identities hold for any sufficiently smooth vector fields a and b.
∆∇×∇×a = ∇×∇×∆a (C.14)
∇×∇×a = ∇∇ • a− ∆a (C.15)

a • ∇a = 1
2∇ (a • a) − a×(∇×a) (C.16)

∇ (a • b) = a • ∇b+ b • ∇a+ a×(∇×b) + b×(∇×a) (C.17)
∇×(a×b) = a∇ • b− b∇ • a− a • ∇b+ b • ∇a (C.18)

These identities are not independent. For example, if we write a → a+ γb for γ
real and substitute this into (C.16), the left-hand side simplifies:

a • ∇a+ γ [a • ∇b+ b • ∇a] + O
(
γ2
)
.

Similarly, the right-hand side turns out to be
1
2∇ (a • a) − a×(∇×a) + γ [∇ (a • b) − a×(∇×b) − b×(∇×a)] + O

(
γ2
)
.

Comparing the coefficients at γ, we get (C.17). Similarly, putting a = b, we get
(C.16) from (C.17).
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D Coordinate systems
Definition 9 (Coordinate system). A coordinate system in E3 is a set of any three
sufficiently smooth distinct scalar fields, the so-called coordinates. A coordinate
system is said to be orthogonal if the isosurfaces of coordinates are perpendicular
to each other at any point in space (except at a finite number of points).

In this thesis, six orthogonal coordinate systems are used: Cartesian (x, y, z),
cylindrical (ρ, ϕ, z), spherical (r, θ, ϕ), rotated Cartesian (w, y, s), rotated
cylindrical (σ, φ, s) and rotated spherical (r, ϑ, φ). These systems are con-
structed out of in total 12 scalar fields x, y, z, ρ, ϕ, r, θ, w, σ, φ, s, ϑ. We will refer
to x, y, z, ρ, ϕ, r, θ as the non-rotated coordinates, w, y, s, σ, φ, r, ϑ are the ro-
tated coordinates (note that y and r are both rotated and non-rotated at the
same time). The fields, with respect to a particular point X, correspond to either
distances (x, y, z, w, s, σ, ρ, r) or angles (ϕ, φ, ϑ, θ) – see Figure D.1. In this figure,
the point X ′ is the orthogonal projection of the point X to the xy-plane, whereas
the point X ′′ is the orthogonal projection to the inclined wy-plane. The angle
between the xy- and wy-planes is β. Also, in view of Figure D.1, the coordinates
are related by relations given by Table D.1. Note that these relations are invari-
ant under replacement of the non-rotated coordinates by the rotated coordinates
and vice versa, in addition with β ↔ −β. Table D.2 summarizes the types of
isosurfaces of the coordinates.

Figure D.1: Coordinates
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Table D.1: Relations between coordinates

Non-rotated Rotated Mixed
x = ρ cosϕ w = σ cosφ z = s cos β − w sin β
y = ρ sinϕ y = σ sinφ x = s sin β + w cos β
z = r cos θ s = r cosϑ s = z cos β + x sin β
ρ = r sin θ σ = r sinϑ w = −z sin β + x cos β

Table D.2: Isosurfaces of coordinates

Coordinate Isosurfaces
x, y, z, s parallel planes
ρ, σ coaxial cylinders
r concentric spheres
ϕ, φ coaxial half-planes
θ, ϑ concentric cones

D.1 Coordinate unit vectors
Definition 10. A coordinate unit vector is a unit vector field perpendicular to
isosurfaces of its corresponding coordinate pointing in the direction in which the
coordinate is increasing.

The coordinate unit vectors corresponding to the coordinates given by Figure
D.1 are x̂, ẑ, ρ̂, ϕ̂, θ̂ (non-rotated), ŵ, ŝ, σ̂, φ̂, ϑ̂ (rotated) and ŷ, r̂ (both being
rotated and non-rotated). The non-rotated coordinate unit vectors are visualised
at particular z and ϕ isosurfaces in Figure D.2.

Figure D.2: Coordinate unit vector fields – z- and ϕ-isosurfaces

The triples (x̂, ŷ, ẑ) , (ρ̂, ϕ̂, ẑ) ,
(
r̂, θ̂, ϕ̂

)
, (ŵ, ŷ, ŝ) ,

(
σ̂, φ̂, ŝ

)
,
(
r̂, ϑ̂, φ̂

)
form or-

thonormal right-handed bases. That means, the scalar product of two different
unit vectors from the same base vanishes (for example x̂ • ŷ = 0, r̂ • ϕ̂ = 0,
ŝ • ρ̂ = 0 etc.). Similarly, the cross product of two different unit vectors from
the same base gives the third unit vector with plus or minus according to the
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orientation (for example ϕ̂× ẑ = ρ̂, r̂×ϕ̂ = −θ̂, ŷ× ŝ = ŵ etc.). In order to
find the scalar and vector products of two unit vectors from different bases, we
first, in view of Figure D.2, obtain the diagrams given by Figure D.3 (the third
diagram is obtained from Figure D.1 as a y-isosurface). The standard notation
for vectors pointing in (ϕ̂, ŷ) or out (ẑ) of a plane is used in Figure D.3.

Figure D.3: Coordinate unit vector fields – Diagrams

These diagrams show how the unit vector fields x̂, ŷ, ẑ, ρ̂, ϕ̂, r̂, θ̂ are related to
each other at a point. In view of the definition of the scalar and cross products
(see (C.1) and (C.2)), we obtain Table D.3.

Table D.3: Scalar and vector products of coordinate unit vectors

Scalar product

x̂ • ρ̂ = cosϕ ẑ • r̂ = cos θ ẑ • ŝ = cos β

x̂ • ϕ̂ = − sinϕ ẑ • θ̂ = − sin θ ẑ • ŵ = − sin β

ŷ • ρ̂ = sinϕ ρ̂ • r̂ = sin θ x̂ • ŝ = sin β

ŷ • ϕ̂ = cosϕ ρ̂ • θ̂ = cos θ x̂ • ŵ = cos β

Vector product

x̂×ρ̂ = sinϕẑ ẑ×r̂ = sin θϕ̂ ẑ×ŝ = sin βŷ

x̂×ϕ̂ = cosϕ ẑ×θ̂ = cos θϕ̂ ẑ×ŵ = cos βŷ

ŷ×ρ̂ = − cosϕẑ ρ̂×r̂ = − cos θϕ̂ x̂×ŝ = − cos βŷ

ŷ×ϕ̂ = sinϕẑ ρ̂×θ̂ = sin θϕ̂ x̂×ŵ = sin βŷ

Other identities are obtained from Table D.3 replacing non-rotated coordinate
unit vectors by rotated coordinate unit vectors and vice versa, in addition with
replacement β ↔ −β.

Miscellaneous

In this thesis, the following identities are used:

−ρs

r
θ̂ + σz

r
ϑ̂ = sẑ − zŝ, (D.1)
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σrẑ • ϑ̂ = ρrŝ • θ̂ = −ρσθ̂ • ϑ̂ = zs− r2ŝ • ẑ, (D.2)

zrϕ̂ • σ̂ = −szφ̂ • θ̂ = −srφ̂ • ρ̂ = −szϕ̂ • ϑ̂ = szr2

ρσ
(ẑ×ŝ) • r̂. (D.3)

To prove them, we first decompose ρ̂, θ̂ into base r̂, ẑ and σ̂, ϑ̂ into base r̂, ŝ,
respectively. Using Table D.1 and Table D.3, we get:

ρϕ̂ = r ẑ×r̂ (D.4)

ρθ̂ = zr̂ − rẑ (D.5)
ρρ̂ = rr̂ − zẑ (D.6)

σφ̂ = r ŝ×r̂ (D.7)

σϑ̂ = sr̂ − rŝ (D.8)
σσ̂ = rr̂ − sŝ (D.9)

The proof of (D.1) is straightforward, by using (D.5) and (D.8):

−ρs

r
θ̂ + σz

r
ϑ̂ = −s

r
(zr̂ − rẑ) + z

r
(sr̂ − rŝ) = sẑ − zŝ.

To prove (D.2), by using (D.8), we get

σẑ • ϑ̂ = ẑ • (sr̂ − rŝ) = zs

r
− rẑ • ŝ,

where ẑ • r̂ = cos θ = z
r

by Table D.3 and Table D.1. The other equal signs in
(D.2) are proved in the same way by using (D.4) – (D.9). Similarly, by using the
formulae (C.5) and (C.7), we get

ρσϕ̂ • σ̂ = (r ẑ×r̂) • (rr̂ − sŝ) = −sr (ẑ×r̂) • ŝ = srr̂ • (ẑ×ŝ) ,

the rest in proving (D.3) is obvious.
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D.2 Differential identities

Table D.4: Differential identities for coordinates and coordinate unit vectors

Scalar gradient Vector gradient Divergence

∇r = r̂ ∇r̂ = 1
r

(I − r̂r̂) ∇ • r̂ = 2
r

∇ρ = ρ̂ ∇ρ̂ = 1
ρ
ϕ̂ϕ̂ ∇ • ρ̂ = 1

ρ

∇ϕ = 1
ρ
ϕ̂ ∇ϕ̂ = −1

ρ
ϕ̂ρ̂ ∇ • ϕ̂ = 0

∇θ = 1
r
θ̂ ∇θ̂ = z

ρr
ϕ̂ϕ̂− 1

r
θ̂r̂ ∇ • θ̂ = z

ρr

Curl Scalar Laplacian Vector Laplacian

∇×r̂ = 0 ∆r = 2
r

∆r̂ = − 2
r2 r̂

∇×ρ̂ = 0 ∆ρ = 1
ρ

∆ρ̂ = − 1
ρ2 ρ̂

∇×ϕ̂ = 1
ρ
ẑ ∆ϕ = 0 ∆ϕ̂ = − 1

ρ2 ϕ̂

∇×θ̂ = 1
r
ϕ̂ ∆θ = z

ρr2 ∆θ̂ =− z
ρr2 r̂− 1

ρ2 θ̂

Similarly, as in case of Table D.3, other identities are obtained from Table D.4
replacing non-rotated coordinates by rotated coordinates.

Derivations

We now derive the identities given by Table D.4. By definition, ∇x = x̂,∇y =
ŷ,∇z = ẑ and r = xx̂+ yŷ + zẑ. From this, r̂ • x̂ = x/r, r̂ • ŷ = y/r, r̂ • ẑ = z/r
and also ∇r = x̂x̂ + ŷŷ + ẑẑ = I. Since the identity tensor is independent on
coordinate system, we have for the other two orthogonal systems I = ρ̂ρ̂+ ϕ̂ϕ̂+
ẑẑ = r̂r̂ + θ̂θ̂ + ϕ̂ϕ̂. Comparing, we get ρ̂ρ̂ + ẑẑ = r̂r̂ + θ̂θ̂ def= Iϕ. Taking the
scalar product of the previous relation with ẑ and ρ̂, we get

zr̂ − ρθ̂ = rẑ, (D.10)
zr̂ + zθ̂ = rρ̂. (D.11)

Another comparison gives x̂x̂+ ŷŷ = ρ̂ρ̂+ ϕ̂ϕ̂ def= Ixy. Taking the scalar product
with x̂, we get

ρx̂ = xρ̂− yϕ̂. (D.12)

Similarly, since ρ = xx̂+yŷ, we get ∇ρ = x̂x̂+ŷŷ = Ixy. Since r2 = x2+y2+z2,
in view of the chain-rule of differentiation, 2r∇r = 2xx̂ + 2yŷ + 2zẑ = 2r =
2rr̂, so ∇r = r̂. Similarly, ρ2 = x2 + y2, so ∇ρ = ρ̂. Taking the gradient
of r sin θ = ρ, we get ρ

r
r̂ + z∇θ = ρ̂ in view of the chain-rule. Therefore,

∇θ = 1
r
θ̂. Similarly, since the gradient of ρ cosϕ = x gives x

ρ
ρ̂ − yϕ̂ = x̂,

we get ∇ϕ = 1
ρ
ϕ̂. The vector gradients are given, straightforwardly, as ∇r̂ =
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∇
(
r
r

)
= 1

r
(I − r̂r̂) since ∇r = I. Similarly, ∇

(
ρ
ρ

)
= 1

ρ
(x̂x̂+ ŷŷ − ρ̂ρ̂) = 1

ρ
ϕ̂ϕ̂,

since there are two ways of expressing Ixy. Taking the gradient of the identity
ẑ×r = ϕ̂r sin θ = ϕ̂ρ, we get by the product rule of differentiation: ρ∇ϕ̂+ ρ̂ϕ̂ =
−I× ẑ = − (ẑẑ + ρ̂ρ̂+ ϕ̂ϕ̂)× ẑ = ρ̂ϕ̂ − ϕ̂ρ̂, so ∇ϕ̂ = −1

ρ
ϕ̂ρ̂. Similarly, since

ρθ̂ = ρϕ̂×r̂ = r (ẑ×r̂)×r̂ = zr̂ − rẑ, we recover a known identity. Taking the
gradient, we get ρ∇θ̂+ρ̂θ̂ = ẑr̂−r̂ẑ+ z

r
(I − r̂r̂) = 1

r

(
rẑr̂ − rr̂ẑ + zθ̂θ̂ + zϕ̂ϕ̂

)
.

Simplifying, using previously found identities, we get, finally, ∇θ̂ = z
ρr
ϕ̂ϕ̂− 1

r
θ̂r̂.

The other differential identities

Actually, only the scalar gradients and vector gradients (together with vector
calculus rules) suffice to derive all the other identities. The divergences, for
example, are derived from the vector gradients by the relation ∇ • v = Tr∇v,
which holds for any vector field v. Similarly, ∇×v = Cr∇v. For example,
∇ •θ̂ = Tr

(
z
ρr
ϕ̂ϕ̂− 1

r
θ̂r̂
)

= z
ρr
ϕ̂ •ϕ̂− 1

r
θ̂ • r̂ = z

ρr
and ∇×θ̂ = Cr

(
z
ρr
ϕ̂ϕ̂− 1

r
θ̂r̂
)

=
z
ρr
ϕ̂×ϕ̂− 1

r
θ̂×r̂ = 1

r
ϕ̂. For any scalar Laplacian, we use the identity ∆f = ∇•∇f ,

which holds for any suitable scalar function f . This identity also holds for any
vector field v. Moreover, for vector Laplacian, one can also use the identity
∆v = ∇∇ • v − ∇×∇×v, which holds for any suitable vector field v.
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E Miscellaneous identities
In the next section, R = R(r) and S = S(r) are functions of r variable only, ψ will
be a function of variables with unit vectors perpendicular to ϕ̂, i.e. ϕ̂ • ∇ψ = 0.
Vector field a will be a constant vector field, whereas v will be any solenoidal
field, i.e. ∇•v = 0. The differential operator Eα [ · ] is defined by Eα [f ] def= f ′′+ α

r
f ′.

E.1 Differential identities

∇ • (r×a) = 0 (E.1)

∆ (ψϕ̂) =
(

∆ψ − 1
ρ2ψ

)
ϕ̂ (E.2)

∆ (ρRϕ̂) = ρE4 [R] ϕ̂ (E.3)
∇ (ρRϕ̂) = ρR′r̂ϕ̂+R (ρ̂ϕ̂− ϕ̂ρ̂) (E.4)

∇×(ρRρ̂) = zρ

r
R′ϕ̂ (E.5)

∇×(ρRϕ̂) = 2Rẑ − ρR′θ̂ (E.6)

∇∇×(ρRϕ̂) = R′

r

(
3rr̂ẑ + ρθ̂r̂ − zI

)
− ρR′′r̂θ̂ (E.7)

∆ (zρSϕ̂) = zρE6 [S] ϕ̂ (E.8)
∇×(zρSϕ̂) = 2Szẑ − Sρρ̂− zρS ′θ̂ (E.9)

E.2 Integral identities∫∫
r=a
r̂ dS = 0 (E.10)∫∫

r=a
zr̂ dS = 4

3πa
3ẑ (E.11)∫∫

r=a
ρθ̂ dS = −8

3πa
3ẑ (E.12)∫∫

r=a
z2r̂ dS = 0 (E.13)

∫∫
r=a
ρ2r̂ dS = 0 (E.14)∫∫

r=a
zρr̂ dS = 0 (E.15)∫∫

r=a
r̂r̂ dS = 4

3πa
2I (E.16)∫∫

r=a
rẑ dS = 4πa3ẑ (E.17)

Derivations

In order to improve readability, we will derive some of identities (E.1) – (E.17)
successively in separate text blocks. The number of each identity will be placed
at the beginning of each block in italics.

E.1. By the definition of the divergence and by using (C.5):

∇ • (r×a) = Tr [∇r×a] = Tr [I×a] = Tr [x̂ (x̂×a) + ŷ (ŷ×a) + ẑ (ẑ×a)]
= x̂ • (x̂×a) + ŷ • (ŷ×a) + ẑ • (ẑ×a) = 0.
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E.2. With help of the product rule of differentiation for Laplacian, we get

∆ (ψϕ̂) = ∆ψϕ̂+ 2∇ψ • ∇ϕ̂+ ψ∆ϕ̂ = ∆ψϕ̂− ψ

ρ2 ϕ̂ =
(

∆ψ − 1
ρ2ψ

)
ϕ̂,

which proves the original identity.

E.3. Since ∆R = ∇ • ∇R = ∇ • (R′r̂) = R′′ + 2
r
R′ and ∆ρ = 1

ρ
, we have in view

of (E.2):

∆ (ρRϕ̂) =
(

∆(ρR) − R

ρ

)
ϕ̂ =

(
R

ρ
+ 2ρ∆R + ρ∆R − R

ρ

)
ϕ̂,

which proves the original identity.

E.4. With help of the product rule of differentiation for the gradient, we get

∇ (ρRϕ̂) = ρ̂Rϕ̂+ ρR′r̂ϕ̂+ ρR∇ϕ̂,

which proves the original identity.

E.5. With help of the product rule of differentiation for the curl,

∇×(ρRρ̂) = ρ̂×Rρ̂+ ρR′r̂×ρ̂+ ρR∇×ρ̂,

which proves the original identity.

E.6. With help of the product rule of differentiation for the curl, we get

∇×(ρRϕ̂) = ρ̂×Rϕ̂+ ρR′r̂×ϕ̂+ ρR∇×ϕ̂,

which proves the original identity.

E.7. With help of the product rule of differentiation for the gradient and by (E.6),
we get

∇∇×(ρRϕ̂) = ∇
(
2Rẑ − ρR′θ̂

)
= R′r̂ẑ −R′ρ̂θ̂ − ρR′′r̂θ̂ − ρR′∇θ̂,

which proves the original identity.

E.8. With help of the product rule of differentiation for Laplacian and by (E.4),
we get

∆ (zρSϕ̂) = (∆z) ρSϕ̂+ 2ẑ • ∇ (ρSϕ̂) + z∆ (ρSϕ̂) = 2zρ
r
S ′ϕ̂+ zρE4 [S] ϕ̂,

which proves the original identity.
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E.11. By rotational symmetry, ∫∫
r=a
zr̂ dS = Aẑ,

where A is some constant. Taking the scalar product with ẑ and since ẑ • r̂ = z
r

at r = a, we get ∫∫
r=a
z2 dS = aA.

Since we have not specified any preferred orientation in space for the ẑ-axis, we
have

aA =
∫∫

r=a
x2 dS =

∫∫
r=a
y2 dS =

∫∫
r=a
z2 dS.

Summing these three up, we get

3aA =
∫∫

r=a
x2 + y2 + z2 dS = a2

∫∫
r=a

dS = 4πa4,

where we have used the value of the surface of the sphere with radius r = a, which
is 4πa2. Dividing the previous relation by 3a, we get the original identity.

E.12. By rotational symmetry, ∫∫
r=a
ρθ̂ dS = Aẑ,

where A is some constant. Taking the scalar product with ẑ, we get at r = a
since ẑ • θ̂ = −ρ

r
: ∫∫

r=a
ρ2 dS = −aA.

Since ρ2 = x2 + y2, we have

−aA =
∫∫

r=a
x2 + y2 dS =

∫∫
r=a
x2 + y2 + z2 dS −

∫∫
r=a
z2 dS = 4πa4 − 1

3 · 4πa4.

Dividing the previous relation by a, we get the original identity.

E.16. By symmetry in all directions,∫∫
r=a
r̂r̂ dS = AI,

where A is some constant. Taking the trace of both sides,

3A = ATr [I] =
∫∫

r=a
r̂ • r̂ dS =

∫∫
r=a

dS = 4πa2.

Dividing by 3, we get the original identity.
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