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Abstract: Traditionally, ocean tides have been modelled in frequency domain
with forcing of selected tidal constituents. It is a natural approach, however,
non-linearities of ocean dynamics are implicitly neglected. An alternative ap-
proach is time-domain modelling with forcing given by the full lunisolar po-
tential, i.e., all tidal constituents are included. This approach has been applied
in several ocean tide models, however, a few challenging tasks still remain to
solve, for example, the assimilation of satellite altimetry data. In this thesis, we
present DEBOT, a global and time-domain barotropic ocean tide model with
the full lunisolar forcing. DEBOT has been developed “from scratch”. The
model is based on the shallow water equations which are newly derived in ge-
ographical (spherical) coordinates. The derivation includes the boundary con-
ditions and the Reynolds tensor in a physically consistent form. The numerical
model employs finite differences in space and a generalized forward-backward
scheme in time. The validity of the code is demonstrated by the tests based on
integral invariants. DEBOT has two modes for ocean tide modelling: DEBOT-
h, a purely hydrodynamical mode, and DEBOT-a, an assimilative mode. We
introduce the assimilative scheme applicable in a time-domain model, which
is an alternative to existing frequency-domain techniques used in other assim-
ilative ocean tide models. The accuracy of DEBOT in both modes is assessed
against tide gauge data through a series of tests. The tests demonstrate that
DEBOT is comparable to state-of-the-art global ocean tide models for major
tidal constituents. Furthermore, as the signals of all tidal constituents are in-
cluded in DEBOT, modelling of minor tidal constituents and non-linear com-
pound tides, which are often overlooked in other studies, are also discussed.
Our modelling approach can be useful for those applications where the fre-
quency domain approach is not suitable.
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Abstrakt: Oceánské slapy se tradičně modelujı́ ve frekvenčnı́ oblasti s buzenı́m
na vybraných slapových frekvencı́. Je to přı́rozený přı́stup, nicméně nelinea-
rity oceánské dynamiky nejsou přı́mo zahrnuty. Alternativou je modelovánı́
v časové oblasti s buzenı́m, které je dáno kompletnı́m lunisolárnı́m slapovým
potenciálem, tj. všechny slapové frekvence jsou zahrnuty. Tento přı́stup byl
uplatněn v několika oceánských slapových modelech, nicméně stále zůstavá
pár problémů k vyřešenı́, napřı́klad asimilace satelitnı́ch altimetrických dat.
V této práci představujeme DEBOT, globálnı́ a časový barotropnı́ oceánský
slapový model s úplným lunisolárnı́m buzenı́m. DEBOT byl vyvinut ,,od pı́ky“.
Základem modelu jsou rovnice mělké vody, které jsou nově odvozeny v geo-
grafických (sférických) souřadnicı́ch. Odvozenı́ zahrnuje okrajové podmı́nky
a Reynoldsův tenzor ve fyzikálně konzistentnı́m tvaru. Numerický model je
řešen v prostoru metodou konečných diferencı́ a v čase zobecněným forward-
backward schématem. Funkčnost kódu je demonstrována testy na zachovánı́
integrálnı́ch invariantů. DEBOT má dva módy pro modelovánı́ oceánských
slapů: DEBOT-h, čistě hydrodynamický mód, a DEBOT-a, asimilačnı́ mód.
Navrhli jsme asimilačnı́ schéma vhodné pro časový model, které představuje
alternativu k existujı́cı́m frekvenčnı́m technikám, jež jsou použı́vány v ostat-
nı́ch asimilačnı́ch modelech oceánských slapů. Přesnost obou módů DEBOTu
je vyhodnocena pomocı́ srovnánı́ s daty z měřenı́ mořské hladiny. Testy doka-
zujı́, že DEBOT je srovnatelný s modernı́mi globálnı́mi modely oceánských
slapů pro hlavnı́ slapové frekvence. Navı́c, protože DEBOT obsahuje signál
všech slapových frekvencı́, diskutujeme modelovánı́ vedlejšı́ch slapů a ne-
lineárnı́ch složených slapů, které jsou často opomenuty v ostatnı́ch studiı́ch.
Náš přı́stup k modelovánı́ může být užitečný v přı́padech, kdy frekvenčnı́
přı́stup nenı́ vhodný.

Klı́čová slova: Globálnı́ oceánské slapy; Rovnice mělké vody; Slapový po-
tenciál; Modelovánı́ v časové oblasti; Asimilace dat
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INTRODUCTION

Time and tide wait for no man.
— Old English proverb

Ocean tides are an important phenomenon which has a significant impact
on the entire Earth system. Therefore, precise ocean tide modelling is

needed for many geophysical and geodetic applications. One of the most im-
portant application of ocean tide models is removing tidal signals from various
measurements, for example satellite altimetry or gravimetry, so any non-tidal
signal can be studied (e.g., Fu and Cazenave, 2001; Seeber, 2003; Visser et al.,
2010). Among other applications of ocean tide models, we can mention dis-
sipation of tidal energy, generation of internal tides and mixing of the oceans
(e.g., Vlasenko et al., 2005; Arbic et al., 2010; Müller et al., 2012; Taguchi et al.,
2014), variations of the Earth’s rotation due to tides (e.g., Weis, 2006; Schin-
delegger et al., 2016) or the induced magnetic field generated by motions of
conductive seawater in the main geomagnetic field (e.g., Tyler et al., 2003; Ku-
vshinov and Olsen, 2005; Sabaka et al., 2015; Velı́mský et al., 2016).

Great progress has been made in ocean tide modelling since the pioneer-
ing works of Pekeris and Accad (1969); Accad and Pekeris (1978); Schwiderski
(1979, 1980); Parke and Hendershott (1980); Parke (1982). Much of the progress
is owing to satellite altimetry. Data from Topex/Poseidon (T/P), a joint satel-
lite mission of NASA and CNES which was launched in 1992, enabled the de-
velopment of ocean tide models of unprecedented accuracy (Shum et al., 1997).
In the next years, more data from T/P, its ancestors Jason-1 and OSTM/Jason-
2 and other missions have led not only to improved tidal atlases but also to a
better understanding of ocean dynamics and energy budget (Stammer et al.,
2014). Satellite altimetry confirmed suggestions of tidal energy dissipation
through a conversion of barotropic tides into baroclinic internal waves (Egbert
and Ray, 2000). This discovery led to the improvements of purely hydrody-
namical models, i.e. those which are governed by physical laws but not con-
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strained by any data (Jayne and St. Laurent, 2001; Green and Nycander, 2013;
Stammer et al., 2014).

Traditionally, ocean tides have been modelled in frequency domain with
forcing of selected tidal constituents, e.g., M2, S2, O1, K1, etc. This is the case
of the historical models from 70s and 80s but also some modern hydrodynam-
ical models, e.g., STM-1B (Hill et al., 2011) and assimilative models, e.g., FES
(Lyard et al., 2006; Carrère et al., 2012), HAMTIDE (Zahel, 1995; Taguchi et al.,
2014) and TPXO (Egbert et al., 1994; Egbert and Erofeeva, 2002). Such an ap-
proach is natural since ocean tides are primarily composed of handful of peri-
odical or quasi-periodical signals, however, it neglects non-linearities of ocean
dynamics. It means that compound tides, e.g., M4, MS4, MN4, etc., which are
generated mainly on continental shelves by non-linear interactions of astro-
nomical tidal components, can not be predicted by frequency-domain models.
Although, we should note that the compound tides are still modelled in FES by
an iterative approach, however at the price of expensive computational costs
(Carrère et al., 2012). Apart from the compound tides, another non-linearity is
caused by the energy dissipation due to the friction at the sea bottom which is
usually parameterized in a quadratic form. Therefore, an alternative parame-
terization has to be implemented in frequency-domain models. STM-1B uses
an iterative scheme while the assimilative models include linearised bottom
drag terms.

In this thesis, we apply an alternative approach. We deal with ocean tide
modelling in time domain with the full lunisolar forcing. This means that
all tidal components, including the compound tides, are modelled simulta-
neously. Of course, this is not a completely novel approach. Several high-
quality time-domain models have been developed, e.g., OTIS (Egbert et al.,
2004) which is, however, forced by selected tidal components only; TiME (Weis
et al., 2008) with the full astronomical forcing but without a parameterization
of the important internal tide drag; or baroclinic models STORMTIDE (Müller
et al., 2012) and HYCOM (Arbic et al., 2010) which combine ocean circulation
and tides.

The model presented in this thesis is called “DEBOT” (David Einšpigel
Barotropic Ocean Tides) and incorporates the full lunisolar forcing given by
the astronomical tidal potential of the second and third order which is com-
puted from ephemerides, i.e., actual positions of the Moon and Sun. DEBOT
has been built up “from scratch” and has been developed since the author’s
master studies, see the author’s master thesis Einšpigel (2012). The model has
substantially changed since Einšpigel (2012) from a rather general shallow-
water model to a realistic ocean tide model. The derivation of the shallow-
water equations, which are a base of the model, has been revised and an orig-
inal semi-implicit time-stepping scheme has been replaced by a generalized
forward-backward scheme. And most importantly, a data assimilation scheme
has been developed and implemented in the time-domain model. As a conse-
quence, DEBOT has two modes: the purely hydrodynamical mode, denoted
as “DEBOT-h”, and the assimilative mode, denoted as “DEBOT-a”. These
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Introduction

changes has been documented in two peer-reviewed papers Einšpigel and
Martinec (2015, 2016), hereinafter EM15 and EM16. The source code of DE-
BOT is freely available at http://geo.mff.cuni.cz/~einspigel/debot.html.

The structure of the thesis is as follows: In Chapter 1, the shallow-water
equations in the geographical coordinates are derived from the fundamental
balance laws. Numerical methods employed to solve the shallow-water equa-
tions and used in DEBOT are described in Chapter 2. Chapter 3 is a general
treatise on ocean tides. Chapter 4 describes DEBOT-h and its results. A param-
eter study is discussed and DEBOT-h is compared to other purely hydrody-
namical models. Chapter 5 introduces the time-domain assimilation scheme,
shows results of DEBOT-a and compares DEBOT-a with state-of-the-art em-
pirical and assimilative models. A special attention is paid to minor tidal
constituents and compound tides which are often overlooked in global tidal
studies. They are discussed in Chapter 6.
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David Einšpigel Time-domain modelling of global barotropic ocean tides

6



CHAPTER

1

DERIVATION OF THE SHALLOW WATER
EQUATIONS IN THE GEOGRAPHICAL

COORDINATES

Ocean circulation represents a complex free boundary-value problem that is
mathematically described by the Navier–Stokes equations supplement-

ed by appropriate boundary conditions. However, as commonly known, there
has not been proven yet that there exists a smooth and globally defined solu-
tion in three dimensional space and time. This problem has been denoted by
the Clay Mathematics Institute as one of the seven most important open prob-
lems in mathematics (Fefferman, 2000). Moreover, the complicated nature of
the equations restricts possibilities of their numerical solution.

In modelling ocean circulation, the moving free surface represents a crucial
problem. An approximate way to overcome this problem is by the so-called
shallow water approximation. This approximation can be applied when the ver-
tical dimension of the solution domain is significantly smaller in comparison
with the horizontal dimension. Under this assumption, the Navier–Stokes
equations are reduced to the shallow water equations for the free-surface el-
evation and the horizontal components of flow velocity. The shallow water
equations, which were first derived by Adhémar Jean Claude Barré de Saint–
Venant, a french mechanician and mathematician, in 1871 (Barré de Saint-
Venant, 1871), are used in the modelling of many geophysical phenomena,
such as the oceans, atmosphere, shelf and coastal seas, rivers, and even ava-
lanches. The derivation of the shallow water equations, either in Cartesian or
spherical coordinates, can be found in many books and papers (e.g., Pedlosky,
1987; Vallis, 2006; Kolar et al., 1994; Randall, 2013; Gerbeau and Perthame,
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2000; Ferrari and Saleri, 2004; Marche, 2006), however, most of them do not
consider the turbulent viscosity (Pedlosky, 1987; Vallis, 2006; Randall, 2013),
or use stress tensors that are not suitable for large-scale ocean modelling (Ger-
beau and Perthame, 2000; Marche, 2006). Furthermore, the derivations are of-
ten vague with respect to the assumptions used. Hence, we decided to provide
a new derivation in geographical coordinates, which is as detailed and system-
atic as possible and includes a complete, physically consistent stress tensor,
boundary conditions and transparently introduced assumptions. This is the
topic of this chapter. The chapter is divided into five sections, each describes
one step in the derivation.

(1) We start the derivation with the fundamental balance laws and the as-
sumption of an incompressible fluid which leads to a formulation of the
incompressible Navier–Stokes system. The system is supplemented with
boundary conditions. In this paper, we assume a friction vector at the
bottom and that no fluid crosses the boundaries, see Section 1.1.

(2) The Reynolds tensor which describes energy losses in large-scale ocean
motions due to turbulences on very short scales is discussed in Section 1.2.

(3) The so-called spherical approximation is applied. The radial distance of
a material point in oceans is approximated by the mean Earth radius a,
see Section 1.3

(4) The equations are expressed in a dimensionless form and terms of small
magnitudes are neglected (the hydrostatic approximation), see Section 1.4.

(5) The non-dimensionalized equations are integrated in the radial direction
from the bottom to the surface, using the Leibniz integral rule and the
appropriate boundary conditions are applied. Next, we assume the hori-
zontal flow being only weakly dependent on depth such that the deriva-
tives of velocities with respect to the radial direction are negligible. Sec-
tion 1.5.

(6) Finally, we check whether the viscous term is physically consistent, see
Section 1.6.

1.1 The Navier–Stokes system and the boundary
conditions

As a starting point for the derivation, the fundamental balance laws are used,
namely the continuity equation and the equation of motion (see, e.g., Hutter
and Jöhnk, 2004)

∂ρ

∂t
+∇ · (ρ~v) = 0, (1.1)

ρ
D~v
Dt

= ∇ · t + ~f , (1.2)

where ρ is the applied density, ~v the velocity, t the stress tensor and ~f the
external body forces. Note that the material time derivative D

Dt in the Eulerian
representation is D

Dt =
∂
∂t +~v · ∇.

8



Chapter 1 Derivation of the shallow water equations in the geographical coordinates

We consider an incompressible fluid for which the continuity equation (1.1)
reduces to

∇ ·~v = 0. (1.3)

The external forces include the Coriolis force and gravitation. The stress tensor
takes the usual form consisting of the pressure p and a symmetric, trace-free
deviatoric tensor σ

t = −pI + σ. (1.4)

Under these conditions, the Navier–Stokes equation has the form

ρ

(
∂~v
∂t

+∇ · (~v⊗~v)
)
= −∇p +∇ · σ − 2~Ω×~v +~g, (1.5)

where ~Ω is the vector of the mean angular velocity of the Earth and ~g is the
vector of the gravitational acceleration.

Let us write the set of the Navier–Stokes equations (1.3) and (1.5) in the ge-
ographical coordinates (see Appendix A). In the formulae below, a is the mean
radius of the Earth, r the radial coordinate, φ the latitude, λ the longitude, u
the longitudinal velocity, v the latitudinal velocity, w the radial velocity, g = |~g|
and f the Coriolis parameter, f = 2Ω sin φ, where Ω = |~Ω| is the mean angular
velocity of the Earth.

The continuity equation (1.3) in the geographical coordinates is given by

1
r2

∂(r2w)

∂r
+

1
r cos φ

(
∂(cos φv)

∂φ
+

∂u
∂λ

)
= 0, (1.6)

while the momentum equation in the longitudinal direction is

∂u
∂t

+
1
r2

∂(r2uw)

∂r
+

1
r cos φ

(
∂(cos φ uv)

∂φ
+

∂v2

∂λ

)
+

1
r
(uw− tan φ uv) = f v+

1
ρ

[
− 1

r cos φ

∂p
∂λ

+
1
r2

∂(r2σrλ)

∂r
+

1
r cos φ

(
∂(cos φ σφλ)

∂φ
+

∂σλλ

∂λ

)
+

1
r
(
σλr − tan φ σλφ

)]
, (1.7)

the momentum equation in the latitudinal direction is

∂v
∂t

+
1
r2

∂(r2vw)

∂r
+

1
r cos φ

(
∂(cos φ v2)

∂φ
+

∂(uv)
∂λ

)
+

1
r

(
vw + tan φ u2

)
=

− f u +
1
ρ

[
−1

r
∂p
∂φ

+
1
r2

∂(r2σrφ)

∂r
+

1
r cos φ

(
∂(cos φ σφφ)

∂φ
+

∂σλφ

∂λ

)
+

1
r
(
σφr + tan φ σλλ

)]
, (1.8)
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and the momentum equation in the radial direction is

∂w
∂t

+
1
r2

∂(r2w2)

∂r
+

1
r cos φ

(
∂(cos φ vw)

∂φ
+

∂(uw)

∂λ

)
− 1

r

(
v2 + u2

)
= −g+

1
ρ

[
−∂p

∂r
+

1
r2

∂(r2σrr)

∂r
+

1
r cos φ

(
∂(cos φ σφr)

∂φ
+

∂σλr

∂λ

)
− 1

r
(
σφφ + σλλ

)]
.

(1.9)

The Navier–Stokes equations must be supplemented with boundary con-
ditions. For an ocean domain, we may have three kinds of boundaries, a coast,
an ocean bottom and an ocean free surface. The coast is represented by a two-
dimensional coast line where the normal flow condition is prescribed, meaning
that no fluid crosses the boundary,

~vh ·~nc = 0, (1.10)

where ~vh = (u,v) is the velocity in the horizontal plane and~nc is the unit outer
normal to the coast line. Additionally, we assume that the coast line does not
change over time.

At the ocean bottom and free surface, we also assume no fluid crosses the
boundaries. We introduce the elevation of the surface ζ(λ,φ,t), measured from
the geoid to the surface, the bathymetry b(λ,φ), measured from the geoid to
the bottom, and the height of water column h(λ,φ,t) = ζ + b (see Figure 1.1).
In this study, the geoid is defined by the mean Earth radius, r = a = const.

Since no fluid crosses the free surface, the vertical velocity of the free sur-
face is the material time derivative of the surface elevation

w =
Dζ

Dt
=

∂ζ

∂t
+~v · ∇ζ. (1.11)

The second condition constrains the stress tensor. We assume that no wind or
atmospheric pressure act on the ocean surface

t ·~ns =~0, (1.12)

where~ns is the unit outward normal to the free surface which is defined by

~ns =
1√

1 + |∇ζ|2

−
1

r cos φ
∂ζ
∂λ

−1
r

∂ζ
∂φ

1

 . (1.13)

The situation at the bottom is analogous. The velocity condition is

w = −Db
Dt

= −~v · ∇b. (1.14)

The stress condition slightly differs from that on the free surface. Only the
tangential components of the stress vector are taken in account. Moreover,
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Chapter 1 Derivation of the shallow water equations in the geographical coordinates

Figure 1.1: Boundary conditions on the free surface, at the ocean bottom and at the
coast. The moving elevation of the surface ζ, the varying bathymetry b and the height
of a water column h = ζ + b are shown by arrows.

we shall consider that water moves along the bottom with friction. The shear
condition takes the form

1
ρ
(σ ·~nb)tg +~τBF =~0, (1.15)

where~nb is the unit outward normal to the bottom,

~nb =
1√

1 + |∇b|2

−
1

r cos φ
∂b
∂λ

−1
r

∂b
∂φ

−1

 , (1.16)

and ~τBF is a stress vector due to bottom friction. A form of ~τBF is suggested
by empirical laws. For example, linear form is used for laminar flow (e.g.,
Gerbeau and Perthame, 2000), a quadratic form is often used for turbulent
flow, while some authors use both models (e.g., Bresch and Desjardins, 2003;
Marche, 2006). We consider turbulent flow (see Section 1.2) and assume that
the bottom friction vector is quadratic, ~τBF = cBF~v|~v| with a dimensionless
coefficient cBF. This is a standard parameterization of the bottom friction in
ocean tide models (e.g., Egbert et al., 2004; Weis et al., 2008; Hill et al., 2011;
Green and Nycander, 2013).

1.2 The Reynolds tensor
In oceanography, we are forced to deal with the turbulent character of ocean
flow. The Reynolds number, which controls whether the flow is laminar or
turbulent, is approximately 1011 for an ocean (Pond and Pickard, 1983) which
means that the flow is strongly turbulent. The turbulences on very short scales
cause energy losses in the large-scale motions, and thus we need to introduce

11



David Einšpigel Time-domain modelling of global barotropic ocean tides

a new stress tensor σ, the so-called Reynolds tensor. The Reynolds tensor is
based on the ideas of Joseph Valentin Boussinesq and Osborne Reynolds from
the late nineteenth century who presented a way of how turbulences can math-
ematically be modelled (see Boussinesq, 1877 and Reynolds, 1895, or Schmitt,
2007). This way assumes that the friction due to short-scale turbulences can
be described as linear combinations of the spatial derivatives of the large-scale
velocities.

Although the idea of the Reynolds tensor is widely spread and common in
oceanography, the form of the tensor differs in various ocean models. Histor-
ically, the friction terms in shallow water ocean models were formulated by
somewhat ad hoc manner. Several formulations of the friction term were pro-
posed and used in ocean models, for example, Ah∇2~v, ∇(Ah∇~v), A∇2(h~v),
where A is a viscous parameter (Shchepetkin and O’Brien, 1996), however,
it was shown that these parameterizations can violate the conservation laws
of energy, momentum and angular momentum (Gent, 1993; Shchepetkin and
O’Brien, 1996; Ochoa et al., 2011). Gent (1993) proposes a form of the friction
term which is energetically consistent while Schär and Smith (1993) deduce a
form which is consistent with all three laws. Ochoa et al. (2011) summarize
various parameterization of the friction and discuss their consistency with the
conservation principles. A physically consistent formulation in the shallow
water equations must have the following properties which were postulated by
Shchepetkin and O’Brien (1996):

(1) The linear momentum conservation principle requires that the viscous
term in the momentum equations have the form of the divergence of a
tensor.

(2) The angular momentum conservation principle requires that this tensor
must be symmetric.

(3) The friction must be dissipative. This implies that the dissipation in the
right-hand side of the kinetic energy equation consists of two parts: a
term that has a form of the divergence of a vector and a negatively de-
fined source term.

(4) The friction depends on the symmetric part of the local deformation ten-
sor due to invariance of coordinate transformations.

These postulates must be borne in mind when deriving the viscous shallow
water equation from the Navier–Stokes equations since vertical integration of
a physically consistent three-dimensional stress tensor can lead to an incon-
sistent two-dimensional friction term. Gent (1993) shows that the vertical in-
tegration of the three-dimensional primitive equations with a Laplacian form
of the stress tensor results in the friction term which is energetically inconsis-
tent. Hence, one should be very careful in the derivation which includes the
Reynolds tensor and check whether the final shallow water equations satisfy
the postulates above. This will be done in Section 1.6.

In classical books, such as Pedlosky (1987) and Pond and Pickard (1983),

12



Chapter 1 Derivation of the shallow water equations in the geographical coordinates

the Reynolds tensor in Cartesian coordinates is defined as

σ

ρ
=


2AH

∂u
∂x

AH

(
∂u
∂y

+
∂v
∂x

)
AV

∂u
∂z

+ AH
∂w
∂x

AH

(
∂u
∂y

+
∂v
∂x

)
2AH

∂v
∂y

AV
∂v
∂z

+ AH
∂w
∂x

AV
∂u
∂z

+ AH
∂w
∂x

AV
∂v
∂z

+ AH
∂w
∂x

2AV
∂w
∂z

 , (1.17)

where AV and AH are the vertical and horizontal eddy viscosities, respectively.
The estimates of AV for ocean flow range from 10−5 to 10−1 m2/s and from 10
to 105 m2/s for AH (Pond and Pickard, 1983; Pedlosky, 1987). However, form
(1.17) is also an ad hoc definition and such a tensor is physically inconsistent.
Two different coefficients, AH and AV , suggest an anisotropic fluid, however,
in the case of the simplest anisotropic medium, the transverse isotropy, there
are five independent coefficients (Hutter and Jöhnk, 2004). This number is
reduced to three by the incompressibility condition (1.3) and the zero trace of
the Reynolds tensor, as expressed in (1.4). However the trace of the tensor
(1.17) is not zero, hence the tensor is inconsistent with the assumption of the
transverse isotropy. It can be also shown that vertical integration of this tensor
would lead to the friction term in the shallow water equation which would not
satisfy the postulates above. Therefore, we need to use a different formulation
of the stress tensor. A generally consistent formulation of the Reynolds tensor
can be found in Wajsowicz (1993)

σ

ρ
= A : E, (1.18)

where A is a fourth-order tensor, whose elements depend on the local state of
the fluid, but not directly on the velocity distribution (Batchelor, 1967), and E
is the strain rate tensor,

E =
1
2

(
∇~v + (∇~v)T

)
. (1.19)

The fourth-order tensor A has 21 independent elements at most. Considering
that the fluid is transversal isotropic, there is an axis of symmetry about which
the fluid is isotropic and the number of independent elements ofA is reduced
to 5. For ocean circulation, it is natural to assume that the fluid is symmetric
with respect to the radial axis r. Hence, assuming the radial axis is the axis of
rotational symmetry, the incompressible fluid and that the trace of σ is zero,
the Reynolds tensor in geographical coordinates can be expressed as (Wajsow-
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icz, 1993)

σ

ρ
=2AδErr~er ⊗~er+(

(AH + Aδ)Eλλ + (Aδ − AH)Eφφ

)
~eλ ⊗~eλ+(

(Aδ − AH)Eλλ + (AH + Aδ)Eφφ

)
~eφ ⊗~eφ+

2AV Erλ(~er ⊗~eλ +~eλ ⊗~er)+

2AV Erφ(~er ⊗~eφ +~eφ ⊗~er)+

2AHEλφ(~eλ ⊗~eφ +~eφ ⊗~eλ), (1.20)

with three independent coefficients AH, AV and Aδ, which can be generally
time and spatially varying, however, for the sake of simplicity, we will assume
they are constant. AH and AV may be identified with the usual horizontal and
vertical eddy viscosities, respectively, strictly speaking, horizontal and verti-
cal along the coordinate system. It is assumed that AV is approximately 106

smaller than AH in the Earth’s oceans.
The coefficient Aδ is related to w′2, where w′ are the small-scale vertical

velocities and the overbar denotes the large-scale averaging (Williams, 1972),
therefore, the magnitude of Aδ is determined by the degree of vertical tur-
bulences. The magnitude lies between 0 and AH, depending on the type of
motion. For a highly convective flow in the vertical (such as the Jupiter’s at-
mosphere), it can be expected that Aδ ≈ AH. However, for a less convective, or
fairly stable flow, such as in the Earth’s oceans, it can be assumed that vertical
turbulence are negligible compared to horizontal turbulences and Aδ → 0.

1.3 Spherical approximation
First, let us introduce the so-called spherical approximation. The radial coordi-
nate r can be expressed as

r = a + z = a
(

1 +
z
a

)
, (1.21)

where z is the new radial coordinate, z ∈ (−b,ζ). For oceans, the absolute val-
ues of z are taken to be between 100 and 103 m while a ≈ 6× 106 m. Therefore,
the term z

a is of the order O(10−3) at most and can be neglected if compared
with terms O(1). Hence, we shall use the spherical approximation and approx-
imate the radial distance of a material point in the oceans by a,

r ≈ a (1.22)

Equation (1.21) also implies that

∂

∂r
=

∂

∂z
. (1.23)
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Chapter 1 Derivation of the shallow water equations in the geographical coordinates

After adopting the spherical approximation, the Navier–Stokes equations
slightly change. The continuity equation (1.6) is now

0 =
∂w
∂z

+
1

a cos φ

(
∂(cos φv)

∂φ
+

∂u
∂λ

)
, (1.24)

while the momentum equation in the longitudinal direction (1.7) is

∂u
∂t

+
∂(uw)

∂z
+

1
a cos φ

(
∂(cos φ uv)

∂φ
+

∂v2

∂λ

)
+

1
a
(uw− tan φ uv) = f v+

1
ρ

[
− 1

a cos φ

∂p
∂λ

+
∂σzλ

∂z
+

1
a cos φ

(
∂(cos φ σφλ)

∂φ
+

∂σλλ

∂λ

)
+

1
a
(
σλz − tan φ σλφ

)]
, (1.25)

the momentum equation in the latitudinal direction (1.8) is

∂v
∂t

+
∂(vw)

∂z
+

1
a cos φ

(
∂(cos φ v2)

∂φ
+

∂(uv)
∂λ

)
+

1
a

(
vw + tan φ u2

)
= − f u+

1
ρ

[
−1

a
∂p
∂φ

+
∂σzφ

∂z
+

1
a cos φ

(
∂(cos φ σφφ)

∂φ
+

∂σλφ

∂λ

)
+

1
a
(
σφz + tan φ σλλ

)]
(1.26)

the momentum equation in the radial direction (1.9) is

∂w
∂t

+
∂w2

∂z
+

1
a cos φ

(
∂(cos φ vw)

∂φ
+

∂(uw)

∂λ

)
− 1

a

(
v2 + u2

)
= −g+

1
ρ

[
−∂p

∂z
+

∂σzz

∂z
+

1
a cos φ

(
∂(cos φ σφz)

∂φ
+

∂σλz

∂λ

)
− 1

a
(
σφφ + σλλ

)]
, (1.27)

and, finally, the Reynolds tensor (1.20) is

σ

ρ
=2AδEzz~ez ⊗~ez+(

(AH + Aδ)Eλλ + (Aδ − AH)Eφφ

)
~eλ ⊗~eλ+(

(Aδ − AH)Eλλ + (AH + Aδ)Eφφ

)
~eφ ⊗~eφ+

2AV Ezλ(~ez ⊗~eλ +~eλ ⊗~ez)+

2AV Ezφ(~ez ⊗~eφ +~eφ ⊗~ez)+

2AHEλφ(~eλ ⊗~eφ +~eφ ⊗~eλ), (1.28)

15
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where

Ezz =
∂w
∂z

,

Eλλ =
1
a

(
1

cos φ

∂u
∂λ

+ w− tan φ v
)

,

Eφφ =
1
a

(
∂v
∂φ

+ w
)

,

Ezλ =
1
2

[
∂u
∂z

+
1
a

(
1

cos φ

∂w
∂λ
− u

)]
,

Ezφ =
1
2

[
∂v
∂z

+
1
a

(
∂w
∂φ
− v
)]

,

Eλφ =
1
2a

(
∂u
∂φ

+
1

cos φ

∂v
∂λ

+ tan φ u
)

. (1.29)

1.4 The non-dimensionalized system
Now we introduce dimensionless quantities to express the above equations in
a dimensionless form. This allows us to neglect the terms of small magnitudes.

Let H and L be the characteristic scales of the oceans in the vertical and
horizontal directions, respectively, and ε = H/L. In the case of global ocean
circulation, H ≈ 103 m, L ≈ 106 m, ε = 10−3 and ε can be considered as a small
parameter. Let U be the characteristic scale of the horizontal velocities and let
W = εU, P = U2 and T = L/U be the characteristic scales of the vertical
velocities and the pressure over density and time, respectively.

We can now define the following dimensionless quantities (denoted by the
tilde)

x̃ =
aλ

L
, ỹ =

aφ

L
, z̃ =

z
H

,

ζ̃ =
ζ

H
, b̃ =

b
H

, h̃ =
h
H

,

ũ =
u
U

, ṽ =
v
U

, w̃ =
w

εU
,

t̃ =
tU
L

, p̃ =
p

ρU2 .

Similarly, the dimensionless elements of the tensor E (1.29) can be defined as

Ẽzz =
EzzH
εU

, Ẽλλ =
EλλL

U
, Ẽφφ =

EφφL
U

,

Ẽzλ =
EzλH

U
, Ẽzφ =

EzφH
U

, Ẽλφ =
EλφL

U
.

Furthermore, we define the modified friction coefficient c0
BF = cBF/ε, the

spherical parameter γ = L/a and five dimensionless numbers, the inverse
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Chapter 1 Derivation of the shallow water equations in the geographical coordinates

Reynolds numbers νH, νV and νδ, the Froude number Fr and the Rossby num-
ber Ro, as

νH =
AH

UL
, νV =

AV

UL
, νδ =

Aδ

UL

Fr =
U√
gH

, Ro =
U
f L

.

For the sake of simplicity, we will drop the tilde in the following equations.
In the next step, the hydrostatic approximation is applied. The equations will be
written in the dimensionless forms and the terms of the order O(ε) will be
neglected. The terms proportional to the horizontal inverse Reynolds number
νH cannot be neglected since the horizontal eddy viscosity AH should have
the magnitude such that νH is of the order O(1). On the other hand, the terms
proportional to the Reynolds numbers νV and νδ will be neglected since AV
can be roughly estimated as ε2AH and Aδ is approximately zero in the oceans
as discussed in Section 1.2. The spherical parameter γ is of the order O(1)
since a and L are both of the order O(106). The Froude and Rossby numbers
will appear in the following equations as 1/F2

r and 1/Ro and these inversion
values are obviously of the higher order than O(1). The continuity equation
(1.24) remains formally unchained in the dimensionless form

∂w
∂z

+
1

cos φ

(
∂(cos φ v)

∂y
+

∂u
∂x

)
= 0. (1.30)

The longitudinal momentum equation (1.25) in the dimensionless form is then

∂u
∂t

+
∂(uw)

∂z
+

1
cos φ

(
∂(cos φ uv)

∂y
+

∂u2

∂x

)
+ γu (εw− tan φ v) = − 1

cos φ

∂p
∂x

+

v
Ro

+
2νV

ε2
∂Ezλ

∂z
+ 2νH

∂Eλφ

∂y
+

1
cos φ

∂

∂x
(
νH(Eλλ − Eφφ) + νδ(Eλλ + Eφφ)

)
+

2γ
(νV

ε
Ezλ − 2νH tan φ Eλφ

)
. (1.31)

After neglecting the terms of the order O(ε), we have

∂u
∂t

+
∂(uw)

∂z
+

1
cos φ

(
∂(cos φ uv)

∂y
+

∂u2

∂x

)
− γ tan φ uv = − 1

cos φ

∂p
∂x

+
v

Ro
+

2νV

ε2
∂Ezλ

∂z
+ νH

(
2

∂Eλφ

∂y
+

1
cos φ

∂

∂x
(Eλλ − Eφφ)

)
− 4γνH tan φ Eλφ. (1.32)

The latitudinal momentum equation (1.26) in the dimensionless form is

∂v
∂t

+
∂(vw)

∂z
+

1
cos φ

(
∂(cos φ v2)

∂y
+

∂(uv)
∂x

)
+ γ(εvw + tan φ u2) = −∂p

∂y
−

u
Ro

+
2νv

ε2

∂Ezφ

∂z
+

∂

∂y
(
νH(Eφφ − Eλλ) + νδ(Eφφ + Eλλ)

)
+

2νH

cos φ

∂Eλφ

∂x
+

2γ
(νV

ε
Ezφ + tan φ(Eλλ − Eφφ)

)
. (1.33)
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After neglecting the terms of the order O(ε), we have

∂v
∂t

+
∂(vw)

∂z
+

1
cos φ

(
∂(cos φ v2)

∂y
+

∂(uv)
∂x

)
+ γ tan φ u2 = −∂p

∂y
− u

Ro
+

2νv

ε2

∂Ezφ

∂z
+ νH

(
∂

∂y
(Eφφ − Eλλ) +

2
cos φ

∂Eλφ

∂x

)
+ 2γ tan φ(Eλλ − Eφφ). (1.34)

Finally, the radial momentum equation (1.27) in the dimensionless form is

ε2
(

∂w
∂t

+
∂w2

∂z
+

1
cos φ

(
∂(cos φ vw)

∂y
+

∂(uw)

∂x

))
− εγ(v2 + u2) = −∂p

∂z
−

1
F2

r
+ 2νδ

∂Ezz

∂z
+

2νV

cos φ

(
∂

∂y
(cos φ Ezφ) +

∂Ezλ

∂x

)
− 2νδεγ(Eλλ + Eφφ), (1.35)

and, after neglecting the terms of the order O(ε), we obtain the equation of
hydrostatic balance

∂p
∂z

= − 1
F2

r
. (1.36)

We will now express the dimensionless form of the boundary conditions.
The dimensionless velocity boundary conditions (1.11) and (1.14) read as

w|z=ζ =
∂ζ

∂t
+

u
cos φ

∂ζ

∂x
+ v

∂ζ

∂y
, (1.37)

w|z=−b = −
u

cos φ

∂b
∂x
− v

∂b
∂y

. (1.38)

The longitudinal component of the surface stress condition (1.12) is

2νV

ε2 Ezλ − 2νH
∂ζ

∂y
Eλφ −

1
cos φ

∂ζ

∂x
(
−p + νH(Eλλ − Eφφ) + νδ(Eλλ + Eφφ)

)
= 0,

(1.39)
and, after neglecting the terms of the order O(ε), we have

2νV

ε2 Ezλ − 2νH
∂ζ

∂y
Eλφ −

1
cos φ

∂ζ

∂x
(
−p + νH(Eλλ − Eφφ)

)
= 0 (1.40)

The latitudinal component of the surface stress condition is

2νV

ε2 Ezφ −
∂ζ

∂y
(
−p + νH(Eφφ − Eλλ) + νδ(Eφφ + Eλλ)

)
− 2νH

cos φ

∂ζ

∂x
Eλφ = 0,

(1.41)
and, after neglecting the terms of the order O(ε), we have

2νV

ε2 Ezφ −
∂ζ

∂y
(
−p + νH(Eφφ − Eλλ)

)
− 2νH

cos φ

∂ζ

∂x
Eλφ = 0. (1.42)

Finally, the radial component of the surface stress condition is

− p + 2νδEzz − 2νV
∂ζ

∂y
Ezφ −

2νV

cos φ

∂ζ

∂x
Ezλ = 0, (1.43)
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and, after neglecting the terms of the order O(ε), we have

− p = 0. (1.44)

The treatment of the boundary conditions at the bottom is analogous. The
longitudinal component of the bottom stress condition (1.15) is

2νV

ε2 Ezλ + 2νH
∂b
∂y

Eλφ +
1

cos φ

∂b
∂x
(
νH(Eλλ − Eφφ) + νδ(Eλλ + Eφφ)

)
=

Nc0
BFu
√

u2 + v2 + ε2w2, (1.45)

where N is the norm of the outward normal N =
√

1 + ε2|∇b|2. After neglect-
ing the terms of the order O(ε), the equation reads as

2νV

ε2 Ezλ + 2νH
∂b
∂y

Eλφ +
νH

cos φ

∂b
∂x

(Eλλ − Eφφ) = c0
BFu
√

u2 + v2, (1.46)

The latitudinal component of the bottom stress condition is

2νV

ε2 Ezφ +
∂b
∂y
(
νH(Eφφ − Eλλ) + νδ(Eφφ + Eλλ)

)
+

2νH

cos φ

∂b
∂x

Eλφ =

Nc0
BFv
√

u2 + v2 + ε2w2, (1.47)

and, after neglecting the terms of the order O(ε), we have

2νV

ε2 Ezφ + νH
∂b
∂y

(Eφφ − Eλλ) +
2νH

cos φ

∂b
∂x

Eλφ = c0
BFv
√

u2 + v2 (1.48)

1.5 Vertical averaging
The next step aims to eliminate the dependency on the vertical dimension in
the above equations and to simplify the 3D system to a 2D problem.

To do this, let us define the vertically averaged quantity of function
f (t,x,y,z) as

f̄ (t,x,y) =
1

h(t,x,y)

∫ ζ

−b
f (t,x,y,z)dz. (1.49)

Our strategy is to integrate the non-dimensionalized Navier–Stokes equations
in the radial direction from the bottom z = −b to the surface z = ζ, using the
Leibniz integral rule and applying the appropriate boundary conditions. Let
us start with the integration of the continuity equation (1.30)

0 =
∫ ζ

−b

∂w
∂z

+
1

cos φ

(
∂(cos φ v)

∂y
+

∂u
∂x

)
dz =

=
∫ ζ

−b

1
cos φ

(
∂(cos φ v)

∂y
+

∂u
∂x

)
dz + w|z=ζ − w|z=−b =

=
1

cos φ

(
∂

∂x

∫ ζ

−b
u dz +

∂

∂y

∫ ζ

−b
cos φ v dz

)
−

u|z=ζ

cos φ

∂ζ

∂x
− u|z=−b

cos φ

∂b
∂x
−

v|z=ζ
∂ζ

∂y
− v|z=−b

∂b
∂y

+ w|z=ζ − w|z=−b. (1.50)

19
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After applying the boundary conditions (1.37) and (1.38), we obtain the equa-
tion for the surface elevation

∂ζ

∂t
+

1
cos φ

(
∂(hū)

∂x
+

∂(hv̄)
∂y

)
= 0. (1.51)

The horizontal components of the equation of motion (1.32) and (1.34) are av-
eraged in a similar way. We integrate these equations in the radial direction
and apply the velocity boundary conditions (1.37) and (1.38) and the stress
boundary conditions (1.40), (1.42), (1.44), (1.46) and (1.48), which yields

∂(hū)
∂t

+
1

cos φ

(
∂(cos φ huv)

∂y
+

∂hu2

∂x

)
− γ tan φ huv =

− 1
cos φ

(
∂(hp̄)

∂x
− ∂b

∂x
p|z=−b

)
+

hv̄
Ro
− c0

BFu
√

u2 + v2|z=−b+

νH

[
2

∂

∂y
(hĒλφ) +

1
cos φ

∂

∂x
(
h(Ēλλ − Ēφφ)

)
− 4γ tan φ hĒλφ

]
, (1.52)

and

∂(hv̄)
∂t

+
1

cos φ

(
∂(cos φ hv2)

∂y
+

∂(huv)
∂x

)
+ γ tan φ hu2 =

− ∂(hp̄)
∂y

+
∂b
∂y

p|z=−b −
hū
Ro
− c0

BFv
√

u2 + v2|z=−b+

νH

[
∂

∂y
(
h(Ēφφ − Ēλλ)

)
+

2
cos φ

∂

∂x
(hĒλφ) + 2γ tan φ h(Ēλλ − Ēφφ)

]
. (1.53)

The pressure in these equations is given by the equation of hydrostatic balance
(1.36),

p(t,x,y,z) = − 1
F2

r
(z− ζ(t,x,y,)). (1.54)

Hence, integrating over z from −b to ζ, and dividing by h, we obtain the verti-
cally averaged pressure

p̄(t,x,y) =
h2

2F2
r

. (1.55)

Additionally, the pressure on the bottom is

p(t,x,y,z = −b) =
h
F2

r
. (1.56)

Therefore, it holds that

− 1
cos φ

(
∂(hp̄)

∂x
− ∂b

∂x
p|z=−b

)
= − h

F2
r cos φ

∂ζ

∂x
, (1.57)

−∂(hp̄)
∂y

+
∂b
∂y

p|z=−b = −
h
F2

r

∂ζ

∂y
. (1.58)
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In the next step, we will assume that the horizontal flow is only weakly
dependent on the depth such that the derivatives of the velocities with respect
to z are small quantities of the order O(ε):

∂u
∂z

(t,x,y,z) = O(ε),
∂v
∂z

(t,x,y,z) = O(ε). (1.59)

Besides the hydrostatic approximation, this is the second assumption of the
shallow water approximation. Therefore, we can write

u(t,x,y,z) = ū(t,x,y) + O(ε), v(t,x,y,z) = v̄(t,x,y) + O(ε), (1.60)

which implies that

u2 = ū2 + O(ε), v2 = v̄2 + O(ε), uv = ūv̄ + O(ε) (1.61)

and

Ēλλ − Ēφφ =
1

cos φ

∂ū
∂x
− ∂v̄

∂y
− γ tan φ v̄ + O(ε), (1.62)

Ēλφ =
1
2

(
∂ū
∂y

+
1

cos φ

∂v̄
∂x

+ γ tan φ ū
)
+ O(ε). (1.63)

Substituting equations (1.57) and (1.58) and the approximations (1.60)–(1.63)
into the horizontal components of the equations of motion (1.52) and (1.53),
we obtain the nondimensionalized system of the shallow water equation with
the precision of O(ε)

∂ζ

∂t
+

1
cos φ

(
∂(hū)

∂x
+

∂(hv̄)
∂y

)
= 0, (1.64)

∂(hū)
∂t

+
1

cos φ

(
∂(cos φ hūv̄)

∂y
+

∂hū2

∂x

)
− γ tan φ hūv̄ = − h

F2
r cos φ

∂ζ

∂x
+

hv̄
Ro
−

c0
BFū
√

ū2 + v̄2 + νH

[
2

∂

∂y
(hĒλφ) +

1
cos φ

∂

∂x
(
h(Ēλλ − Ēφφ)

)
− 4γ tan φ hĒλφ

]
,

(1.65)

∂(hv̄)
∂t

+
1

cos φ

(
∂(cos φ hv̄2)

∂y
+

∂(hūv̄)
∂x

)
+ γ tan φ hū2 = − h

F2
r

∂ζ

∂y
− hū

Ro
−

c0
BFv̄
√

ū2 + v̄2 + νH

[
∂

∂y
(
h(Ēφφ − Ēλλ)

)
+

2
cos φ

∂

∂x
(hĒλφ) + 2γ tan φ h(Ēλλ − Ēφφ)

]
. (1.66)
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1.6 The final form of the shallow water equations
The shallow water equations are now written in the dimensionless form. How-
ever, it is more practical to use physical quantities rather than the dimension-
less quantities. Hence, we shall use the relations from the beginning of Sec-
tion 1.4 and apply them to the dimensionless shallow water equations (note
that the dimensionless quantities were denoted by the tilde, however, we drop-
ped it from the equations for the sake of simplicity). Then, the shallow water
equations in the geographical coordinates have the final form

∂ζ

∂t
+

1
a cos φ

(
∂(hū)

∂λ
+

∂(cos φ hv̄)
∂φ

)
= 0, (1.67)

∂(hū)
∂t

+
1
a

∂(hūv̄)
∂φ

+
1

a cos φ

∂(hūū)
∂λ

− 2
tan φ

a
hūv̄ = − gh

a cos φ

∂ζ

∂λ
+ f hv̄−

cBFū
√

ū2 + v̄2 +
AH

a

[
2

∂

∂φ
(hĒλφ) +

1
cos φ

∂

∂λ

(
h(Ēλλ − Ēφφ)

)
− 4 tan φ hĒλφ

]
,

(1.68)

∂(hv̄)
∂t

+
1
a

∂(hv̄v̄)
∂φ

+
1

a cos φ

∂(hv̄ū)
∂λ

+
tan φ

a
(hūū− hv̄v̄) = −gh

a
∂ζ

∂φ
− f hū−

cBFv̄
√

ū2 + v̄2 +
AH

a

[
∂

∂φ

(
h(Ēφφ − Ēλλ)

)
+

2
cos φ

∂

∂λ
(hĒλφ) + 2 tan φ h(Ēλλ − Ēφφ)

]
, (1.69)

where

Ēλλ − Ēφφ =
1
a

(
1

cos φ

∂ū
∂λ
− ∂v̄

∂φ
− tan φ v̄

)
, (1.70)

Ēλφ =
1
2a

(
∂ū
∂φ

+
1

cos φ

∂v̄
∂λ

+ tan φ ū
)

. (1.71)

These equations can be rewritten to a more compact form as

∂ζ

∂t
+∇Ω · (h~v) = 0, (1.72)

∂(h~v)
∂t

+∇Ω · (h~v⊗~v) = −gh∇Ωζ + f h~v×~ez −~τBF + AH∇Ω · σ, (1.73)

where

~v = (ū,v̄), ~τBF = cBF~v|~v|, σ =

(
h(Ēλλ − Ēφφ) 2hĒλφ

2hĒλφ h(Ēφφ − Ēλλ)

)
,

(1.74)
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and ∇Ω is the spherical nabla operator. Let us check whether the viscous term
AH∇Ω ·σ is consistent with the postulates (1)–(4) from Section 1.2. Obviously,
the first, second and fourth postulates are satisfied. Regarding the third postu-
late, the kinetic energy equation is (with neglected bottom friction term)

d
dt

KE = AH〈~v · (∇Ω · σ)〉, (1.75)

where angle brackets denote a surface integral. The right-hand side can be
decomposed

AH〈~v · (∇Ω · σ)〉 = AH〈∇Ω · (~v · σ)〉 − AH〈∇Ω~v : σ〉. (1.76)

The left term has the form of the divergence of a vector and the right term is
always negative since it can be easily shown that ∇Ω~v : σ = h(Ēλλ − Ēφφ)2 +

h(2Ēλφ)
2. In summary, the viscous term in the shallow water equation is phys-

ically consistent.
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CHAPTER

2

NUMERICAL METHODS AND TESTS

This chapter is focused on numerical methods which are employed to solve
the shallow water equations in the geographical coordinates and are used

in the DEBOT model. The equations are spatially discretized by finite differ-
ences (Section 2.1) and with respect to time by a generalized forward-backward
scheme (Section 2.2). Validity of the numerical methods are tested by the con-
servation of integral invariants (Section 2.3).

2.1 Spatial finite differences
The shallow water equations are approximated in space by finite differences
on a staggered grid using the Arakawa C-grid (Arakawa and Lamb, 1977).
This lattice is very common in shallow water modelling. As you can see in
Figure 2.1, the ocean domain is divided into cells. In the centres of the cells,
there are ζ-points where the surface elevation ζ, height of water column h and
diagonal parts of the advection tensor P = h~v ⊗ ~v and viscous tensor σ are
evaluated. The zonal velocities u are evaluated at the east/west edges of the
cells (u-points) while the meridional velocities v at the north/south edges (v-
points). The non-diagonal parts of the advection and viscous tensors are eval-
uated at the corners of the cells (q-points). The grid intervals ∆λ and ∆φ are
distances between alike points in the zonal and meridional direction, respec-
tively. Land areas can be implemented in the lattice by defining “dry cells”,
where the elevation is set to be zero. To satisfy the boundary condition (1.10),
the velocities on the edges of the dry cells are set to be zero too.

Following the ideas of Lilly (1965); Arakawa and Lamb (1977); Shchepetkin
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Figure 2.1: The Arakawa C-grid. ζ-points are marked by red dots, u-points by blue
dots, v-points by purple dots and q-points by green dots. If grey color denotes the
“dry cell”, then the velocity points ui,j, ui+1,j, vi,j and vi,j+1 are kept at zero in every
time step.

and O’Brien (1996), let us introduce the average and finite-difference operators

xλ(λ,φ) =
x(λ + ∆λ

2 ,φ) + x(λ− ∆λ
2 ,φ)

2
, (2.1)

xφ(λ,φ) =
x(λ,φ + ∆φ

2 ) + x(λ,φ− ∆φ
2 )

2
, (2.2)

δλx(λ,φ) =
x(λ + ∆λ

2 ,φ)− x(λ− ∆λ
2 ,φ)

a cos φ∆λ
, (2.3)

δφx(λ,φ) =
x(λ,φ + ∆φ

2 )− x(λ,φ− ∆φ
2 )

a∆φ
, (2.4)

the mass fluxes U and V

U = h
λ

u, (2.5)

V = h
φ

v, (2.6)

and denote

Γ =
tan φ

a
. (2.7)
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The spatial discretization of equations (1.67)–(1.69) is as follows

∂ζ

∂t
+ δλU +

1
cos φ

δφ(cos φV) = 0, (2.8)

∂U
∂t

+ δλ(Pλλ) + δφ(Pλφ) = −gh
λ

δλζ + Cλ
λ − cBFu

√
u2 + (vλφ)2+

AH
[
δφ(σλφ) + δλ(σλλ)− 2Γσλφ

φ
]

, (2.9)
∂V
∂t

+ δλ(Pλφ) + δφ(Pφφ) = −gh
φ

δφζ + Cφ
φ − cBFv

√
(uλφ)2 + v2+

AH
[
δφ(σφφ) + δλ(σλφ) + 2Γσλλ

φ
]

, (2.10)

where the components of the advection tensor P are

Pλλ = Uλuλ, (2.11)

Pφφ = Vφvφ, (2.12)

Pλφ =
1
2
(Uφvλ + Vλuφ), (2.13)

Pλλ and Pφφ are evaluated at the ζ-points, Pλφ at the q-points. Note that in

general Uφvλ 6= Vλuφ due to the staggered grid. The Coriolis force and the
curvilinear metric terms arisen from the divergence of P are packed together
into Cλ and Cφ terms to ensure the conservation of the kinetic energy (Arakawa
and Lamb, 1977)

Cλ = hvφ(2Γuλ + f ), (2.14)

Cφ = −h(uλ(Γuλ + f )− Γvφvφ), (2.15)

Cλ and Cφ are evaluated at the ζ-points. The components of the viscous tensor
σ are

σλλ = h(δλu− δφv− Γvλ), (2.16)
σφφ = −σλλ, (2.17)

σλφ = h
λφ
(δφu + δλv + Γuφ), (2.18)

σλλ and σφφ are evaluated at the ζ-points, σλφ at the q-points.

2.2 Time-stepping scheme
The time-stepping scheme used in the DEBOT model is a generalized forward-
backward (FB) scheme using a combination of a third-order Adams–Bashforth
(AB3) step with a fourth-order Adams–Moulton (AM4) step (Shchepetkin and
McWilliams, 2005, 2008), abbreviated as “AB3-AM4 FB scheme”. However,
there is a slight modification of this scheme in the DEBOT model. The friction
at the bottom is approximated by the dimensionless bottom friction function
proposed by Backhaus (1983).

The AB3-AM4 FB scheme consists of four parts:
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(1) AB3-extrapolation of the elevation and the velocitiesζ
ū
v̄

n+ 1
2

=

(
3
2
+ δ

)ζ
ū
v̄

n

−
(

1
2
+ 2δ

)ζ
ū
v̄

n−1

+ δ

ζ
ū
v̄

n−2

, (2.19)

and computation of the height and mass fluxes U and V from the extrap-
olated values

hn+ 1
2 = b + ζn+ 1

2 , Un+ 1
2 = hn+ 1

2 ūn+ 1
2 , Vn+ 1

2 = hn+ 1
2 v̄n+ 1

2 . (2.20)

(2) Updating ζ and h by the continuity equation (1.67)

ζn+1 = ζn − ∆t∇hUn+ 1
2 , hn+1 = b + ζn+1 (2.21)

where ∇hU is the finite difference approximation of the spatial deriva-
tives in (1.67).

(3) Computation of provisional ζ ′ for the equation of motion

ζ ′ =

(
1
2
+ γ + 2ε

)
ζn+1 +

(
1
2
− 2γ− 3ε

)
ζn + γζn+1 + εζn−2. (2.22)

(4) Updating ū and v̄ by the equations of motion (1.68) and (1.69)(
ū
v̄

)n+1

= F

[(
hū
hv̄

)n

+ ∆t

(
P(ζ ′) +

(
X
Y

)n+ 1
2
)]

, (2.23)

where F is the discrete bottom friction function (see below), P(ζ ′) repre-
sents the gradients of the pressure and X and Y denote additional terms
at the u-points and v-points, respectively. The additional terms are the
Coriolis, advective and viscous terms, all are determined by the AB3-
extrapolated values.

Backhaus (1983) discussed two ways of how the bottom friction can be ap-
proximated. An explicit formulation can produce a numerical instability in the
case of shallow areas and strong currents. Hence, we use a semi-implicit for-
mulation, which is numerically stable. Let the u-component of the equation of
motion have a simple form

(hu)n+1 = (hu)n + ∆t(Xn − τBFu), (2.24)

where Xn again denotes additional terms and τBFu is the bottom friction at the
u-points, which is formulated semi-implicitly,

τBFu = cBFun+1
(√

ū2 + v̄2
)n

. (2.25)

By this, equation (2.24) takes the form

un+1
[

hn+1 + cBF∆t
(√

ū2 + v̄2
)n]

= (hu)n + ∆tXn, (2.26)
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which leads to the expression for the discrete bottom friction function at the
u-points

Fu =
1

hn+1 + cBF∆t
(√

ū2 + v̄2
)n . (2.27)

The bottom friction is routinely implemented in all kinds of ocean models,
however tidal models should also incorporate another dissipative term which
is called the internal tide drag and will be described in Chapter 4. The internal
tide drag τITD is linearly dependent on the velocity

τITD = CITD ·~v, (2.28)

where CITD is an internal tide drag tensor. In DEBOT, CITD has a scalar form
CITD and the internal tide drag is formulated implicitly in a similar way like
the bottom friction. As the result, the discrete friction function Fu is modified
as

Fu =
1

hn+1 + cBF∆t
(√

ū2 + v̄2
)n

+ CITD∆t
. (2.29)

Fv is obtained in an analogous way.

The AB3-AM4 FB scheme shows second-order accuracy for any values of
δ, γ and ε, is third-order accurate for δ = 5

12 and even up to a fifth-order
accuracy can be achieved. However, the scheme can easily become unstable.
For a barotropic model, like the DEBOT model, it is practical to choose δ =
0.281105, γ = 0.088 and ε = 0.013 (Shchepetkin and McWilliams, 2008) to
obtain the scheme with a large stability range for the combination of waves,
advection and the Coriolis rotation. However, the scheme is still limited by the
Courant condition of the form√

2gh∆t
∆x

∣∣∣∣∣
max

≤ ωmax

2
, (2.30)

where ωmax = 1.7802 for the setting above. For more detailed information
about the AB3-AM4 FB scheme, see Shchepetkin and McWilliams (2005, 2008).

The code of the DEBOT model is written in the free-form Fortran language
with implemented OpenMP parallelization. Computational times required per
a 30-day simulation of ocean tidal circulation for various spatial resolutions are
given in Table 2.1. It shows that simulations of duration of a couple of months
or even years with the resolution of 15′× 15′, or coarser, can be performed by a
four or six core computer within a reasonable time. However, for a resolution
finer than 15′ × 15′, the computational time is excessive and the implementa-
tion of MPI parallelization and performing computations on a cluster of com-
puters or a supercomputer would be necessary.
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Table 2.1: Computational times of a 30-day simulation of global ocean tidal circulation
with the North boundary at 85◦ latitude. Technical parameters: OpenMP paralleliza-
tion, Intel Fortran compiler, maximal optimization, hardware Intel Six-core i7-3930K,
3.2 GHz.

Resolution ∆tmax [s] ∆t [s] Computational time

60′ × 60′ 32.999 32 1 m 58 s
30′ × 30′ 15.693 15 22 m 51 s
20′ × 20′ 10.233 10 1 h 15 m
15′ × 15′ 7.574 7 3 h 12 m

2.3 Integral invariants tests
In this section we present results of numerical experiments based on the con-
servation of integral invariants. As derived by Pedlosky (1987) and McWilliams
(2006), they are that the total mass in the shallow water system is preserved,
meaning

dM
dt

= 0, (2.31)

where
M =

∫
ζ dS, (2.32)

and that the time rate of the total energy is equal to the total power of external
forces

dE
dt

= F , (2.33)

where
E =

∫ 1
2

(
h(u2 + v2) + gζ2

)
dS, (2.34)

and F is the total power of external forces.
A set of tsunami experiments are performed on a globe with continents at

the poles and an island at the equator. The continents are placed at the poles for
the sake of simplicity since the shallow water equations in the geographical co-
ordinates (1.67)–(1.69) are divergent at the poles. Moreover, the discretization
step in the latitudinal direction decreases towards the poles. The decrease of
the discretization step in space results in a restriction of the time step. The con-
tinents are confined by the latitudes 85◦ North and 85◦ South. The bathymetry
and the initial setting of the surface elevation are shown in Figure 2.2. The
bathymetry has a shape of a Gaussian hill which leads to the formation of a
circle island at the equator. The initial elevation of the free surface is given by
a Gaussian depression with the amplitude of 100 m. The initial velocities are
set equal to zero and the bottom friction is omitted. Figure 2.3 shows the time
evolution of the surface elevation.

We investigate the evolution of the total mass and total energy during the
10-day simulation for several settings of the turbulent viscosity coefficient AH
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Figure 2.2: The initial surface elevation (left) and bathymetry (right) on the globe with
the continents at the poles bounded by the 85◦ latitudes. The white circle centred at
λ = −60◦ and φ = 0◦ in both panels is an island of radius ∼ 5◦. The latitude and
longitude are in degrees, the bathymetry and surface elevation are in meters.

Figure 2.3: The time evolution of the surface elevation (in meters) of the tsunami ex-
periment (Fig. 2.2) for the first 32 hours (spatial resolution 20′ × 20′, time step 10 s,
zero eddy viscosity).
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Figure 2.4: Evolution of the total energy from the tsunami experiment (Fig. 2.2) for
spatial discretization of 60′ × 60′, 30′ × 30′, 20′ × 20′ and 15′ × 15′ and several values
of the turbulent viscosity coefficient AH.

with the spatial resolutions 60′ × 60′, 30′ × 30′, 20′ × 20′ and 15′ × 15′. In all
experiments (not shown here), the total volume retains a constant value of
−1.939× 1014 m3 with random deviations of the order m3 which is of the or-
der of the numerical errors. Hence, we focus only on the conservation of the
energy. The evolution of the total energy is plotted in Figure 2.4. The test-
ing of the energy demonstrates the validity of the numerical code since the
energy is preserved in the case of zero eddy viscosity and decreases with non-
zero viscosity. The decline of the energy is only slightly affected by the size
of the spatial discretization step. For AH = 1 × 104 m2/s, the final values
of the total energy after 10 days are 4.564× 1016 Jm3/kg, 4.553× 1016 Jm3/kg,
4.541× 1016 Jm3/kg and 4.528× 1016 Jm3/kg for resolutions 60′× 60′, 30′× 30′,
20′× 20′ and 15′× 15′, respectively. The decline of the energy is greater with in-
creasing eddy viscosity, however, the simulation becomes numerically unsta-
ble if the eddy viscosity is too large. For example, the simulation with a spatial
resolution 30′ × 30′, time step 15 s and AH = 8× 104 m2/s results in an unex-
pected and obviously unnatural increase of the energy up to 6.5× 1016 Jm3/kg
at the end of the 10-day simulation (not shown here). We checked whether
this energy growth is due to the violation of the Courant condition of the vis-
cous term. However, the same effect is observed if the time step is 5 s, with an
even larger increase in magnitude of the energy, with 8× 1017 Jm3/kg at the
end of the simulation. Hence, this undesirable effect is probably an attribute
of the time-stepping scheme in the case of too large AH. However, a thresh-
old value of AH above which computations become unstable must be found
experimentally for every setting.
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3

OCEAN TIDES

People have observed ocean tides since time immemorial. An understanding
of this phenomenon was a matter of intuition, common sense and rules

of thumb for centuries. Philosophers and scholars in ancient Greek, Rome
and also in China noticed and described the relationships between the tides
and lunar cycles (Cartwright, 1999), however, the physical explanation was not
known until the 17th century when the foundations of modern physics were
laid. Several theories were formulated (see Cartwright, 1999). Johannes Kepler
in 1609 suggested that the tides were caused by the Moon’s gravitation but
was not able to explain why the tides occurred twice a day and not just once.
Galileo Galilei in his Dialogue Concerning the Two Chief World Systems (1632)1

proposed that the tides are generated by the rotations of the Earth, around its
axis and around the Sun. The theory of René Descartes assumed that the entire
space was filled by invisible ether and the Moon’s motion induced pressure
waves in ether which consequently formed the tides. However, Isaac Newton
overcame all previous ideas with his theory of universal gravitation which was
formulated in Principia (1687).2 He was the first person who comprehensively
explained that the tide-generating force is a consequence of the solar and lunar
gravitational attraction.

Newton explained the origin of the tide-generating force however he did
not pursue ocean dynamic response to the tidal force at all. The first relevant
dynamic theory of the ocean tides came with Pierre-Simon Laplace who for-
mulated the Laplace tidal equations in 1775 (Cartwright, 1999; Smith, 1999;
Fok, 2012). The Laplace tidal equations are essentially a simplified version of

1The original title in Italian is Dialogo sopra i due massimi sistemi del mondo.
2The original title of the book in Latin is Philosophiæ Naturalis Principia Mathematica, in En-

glish Mathematical Principles of Natural Philosophy.
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the shallow water equations (see Chapter 1) and are still in use today. How-
ever, ocean dynamics will be discussed in details in the modelling part of this
thesis, in Chapters 4, 5 and 6. This chapter is a rather descriptive overview
on the ocean tides. The tide-generating potential and the tidal force which
acts on the ocean are described in Sections 3.1 and 3.2, respectively. Then,
the harmonic development of the tide-generating potential is discussed in Sec-
tions 3.3–3.5. Basic information about non-astronomical tides, i.e., the radia-
tional and compound tides, are provided in Section 3.6. Finally, the methods
of tidal analysis (the harmonic analysis and response method) are reviewed in
Section 3.7.

3.1 Tide-generating potential
The tides on the Earth are a consequence of the gravitational forces of the Moon
and Sun. Let V be the potential of these tide-generating forces. Then, at an
arbitrary point on the Earth P, V can be defined in terms of the Legendre poly-
nomials as

V(P) =
GM

d

∞

∑
l=2

( a
d

)l
Pl(cos θ), (3.1)

where G is the gravitational constant, M the mass of a celestial body, a the
mean Earth’s radius, d the geocentric distance of the celestial body, θ the zenith
distance at the point P (see Figure 3.1) and Pl(x) is the Legendre polynomial
of degree l. There are many books and lecture notes with a derivation of (3.1),
e.g., Pugh (1987); Novotný (1998) and the interested reader is referred to them
for details. Note that the potential (3.1) is defined positively as is conventional
in geodesy while the convention in physics involves a negative sign in (3.1). In
the geodetic convention, an increase of the potential is associated with a rise of
the ocean surface.

The zenith distance θ can be expressed in terms of terrestrial and celestial
coordinates as

cos θ = sin φ sin δ + cos φ cos δ cos H, (3.2)
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Figure 3.1: Definition of the geocentric distance d and zenith distance θ of a celestial
body at an arbitrary point on the Earth P.
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where δ is the declination of the celestial body, φ the latitude at P and H the
local hour angle which is

H = ΩTGr + λ− α, (3.3)

where Ω is the angular speed of the Earth’s rotation, TGr the Greenwich side-
real time (which is 00:00 at the moment when the vernal equinox crosses the
prime meridian at Greenwich), λ the longitude at P and α the right ascension
of the celestial body.

In the equatorial coordinate system, the right ascension and declination
are celestial equivalents of the terrestrial longitude and latitude. The declina-
tion describes the angle from the celestial equator towards the north celestial
pole. The right ascension is measured eastward from the First Point of AriesP
which is the point in the sky where the Sun is at the vernal equinox.3 The ce-
lestial poles and celestial equator are defined as projections of the Earth’s poles
and equator at the vernal equinox onto the celestial sphere, respectively. See
also Figures 3.2 and 3.3 for a graphical description of the astronomical nomen-
clature.

Using equation (3.2) and the addition theorem for the Legendre polynomi-
als, Pl(cos θ) can be expanded into (e.g., Hobson, 1965)

Pl(cos θ) =
l

∑
m=0

(2− δ0m)
(l −m)!
(l + m)!

Plm(sin φ)Plm(sin δ) cos(mH), (3.4)

where Plm(x) is the associated Legendre function of degree l and order m and
δ0m is the Kronecker delta (δ00 = 1 and δ0m = 0 if m 6= 0). Substitution of
equation 3.4 into equation 3.1 results in the following formulation of the tide-
generating potential

V(P) =
GM

d

∞

∑
l=2

( a
d

)l l

∑
m=0

(2− δ0m)
(l −m)!
(l + m)!

Plm(sin φ)Plm(sin δ) cos(mH).

(3.5)
The potential is proportional to d−(l+1), hence, usually, only the second de-

gree potential is considered and the potential of higher degrees is neglected.
However, some signals generated by the third degree potential can also be ob-
served. This is the case of the M3 tide which has been detected by many tide
gauges and its coefficient of the harmonic expansion (see Section 3.3) is compa-
rable to coefficients of some minor tidal constituents generated by the second
degree potential, see tables in Doodson (1921); Cartwright and Tayler (1971);

3The First Point of Aries was defined by Hipparchus of Nicaea in 130 BC when it was
located in the western part of the constellation of Aries near the border with Pisces. It was
called the First Point of Aries because at this point, the Sun entered the constellation of Aries
during its eastward movement in the sky. However, because of the Earth’s axial precession, the
points slowly moves westwards, approximately one degree per 72 years, and is now located
in the constellation of Pisces, near its border with Aquarius, about 30◦ away from the time of
Hipparchus.
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Figure 3.2: The ecliptic is defined by the mean Earth’s orbit around the Sun, the equa-
torial plane by the Earth’s equator at the equinoxes. The position of the Sun in the
sky at the vernal equinox determines the First Point of Aries P which is the reference
point for the right ascension (see Figure 3.3).
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Figure 3.3: The equatorial coordinate system. The celestial poles are projections of
the Earth’s poles onto the celestial sphere at the vernal equinox, the celestial equator
is a projection of the Earth’s equator. P denotes the First Point of Aries, α the right
ascension and δ the declination of a celestial body.
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Cartwright and Edden (1973).4 Therefore in this thesis, the tide-generating po-
tential of the second and third degree, V2 and V3, respectively, is considered,
which can be formulated as

V2 =
3
4
GMa2

d3

[
3
(

sin2 φ− 1
3

)(
sin2 δ− 1

3

)
+

sin(2φ) sin(2δ) cos H+

cos2 φ cos2 δ cos(2H)
]

, (3.6)

V3 =
1
4
GMa3

d4

[(
5 sin2 φ− 3

) (
5 sin2 δ− 3

)
sin φ sin δ+

3
2

(
5 sin2 φ− 1

) (
5 sin2 δ− 1

)
cos φ cos δ cos H+

15
4

sin(2φ) cos φ sin(2δ) cos δ cos(2H)+

5
2

cos3 φ cos3 δ cos(3H)

]
. (3.7)

Note that only the lunar third degree potential is of some importance since for
the Moon a/dK ≈ 1.7× 10−2 while for the Sun a/d@ ≈ 4.× 10−5. Hence, the
solar potential of the third degree is about five orders of magnitude smaller
than the second order potential and can be neglected.

As evident from equations (3.6) and (3.7), the tidal potential can be divided
into tidal species corresponding to different period bands. The first term in
(3.6), V20, is called the zonal term or the long-period species with the funda-
mental periods of half a month (for the Moon) and half a year (for the Sun)
which can be explained by the fact that the term is independent on H and
varies with the squared sine of the declination. The term is always negative in
polar latitudes and positive in mid-latitudes and the nodal lines are the paral-
lels 35◦16′ North and South. The second term in (3.6), V21, is called the tesseral
term or the diurnal species and corresponds to tidal variations once a day as it
contains H. The species reaches maximal and minimal values at the latitudes
of 45◦ and is always zero at the equator and poles. The third term in (3.6),
V22, is called the sectoral term or the semi-diurnal species, containing 2H, and
thus shows variations with periods of approximately 12 hours. Finally, the last
term in (3.7), V33, is the ter-diurnal species corresponding to three times per
day variations. The semi- and ter-diurnal species have maximal amplitudes
at the equator and are zero at the poles. The illustration of the tidal species is
shown in Figure 3.4. Note that V33 is two orders of magnitude smaller than V2.

4Doodson also included the potential of the fourth degree in his harmonic development,
however coefficients of the fourth degree constituents were so small that he ignored them in
his final tables. Cartwright, Tayler and Edden did not included the fourth degree potential in
their calculations at all.
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Figure 3.4: The four species of the tide-generating potential: the long-period (left),
diurnal (centre left), semi-diurnal (centre right) and ter-diurnal species. The potential
is generated by the Moon at an arbitrary time. The color scales are in 10−8 Nm.

3.2 Tidal forcing in oceans

The tidal forcing ~T which acts on the ocean in the shallow water approximation
(Chapter 1) is defined as the positive spherical gradient of the tide-generating
potential

~T = h(γ2∇ΩV2 + γ3∇ΩV3). (3.8)

The positive gradient of the tide-generating potential is due to the geodetic
convention mentioned at the beginning of Section 3.1. h is the height of the
water column which must be added since the momentum equation in the shal-
low water approximation (equation (1.73)) is formulated in terms of horizontal
transports h~v. γ2 and γ3 are the diminishing factors which accounts for the
effect of the solid Earth tides. They represent an additional gravitational po-
tential and a displacement which are generated as a response of the solid Earth
to the tidal force (Novotný, 1998; Agnew, 2007). It holds that γl = 1 + kl − hl,
where kl and hl are the Love numbers of the lth degree which can be com-
puted from standard Earth models (Agnew, 2007). In this thesis, γ2 = 0.6948
(Agnew, 2007) and γ3 = 0.804 (Melchior, 1972) are used.

If equation (3.8) is developed in terms of degrees and directions, the second
degree forcing in the zonal direction is

T2λ = −hγ2
3
2
GMa

d3

[
cos φ cos2 δ sin(2H) +

sin φ sin(2δ) sin H] , (3.9)

and in the meridional direction is

T2φ = hγ2
3
4
GMa

d3

[
sin(2φ)

(
3 sin2 δ− 1

)
+

2 cos(2φ) sin(2δ) cos H−

sin(2φ) cos2 δ cos(2H)
]

. (3.10)
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The third degree forcing in the zonal direction is

T3λ = −hγ3
15
8
GMa2

d4

[
5
(

sin2 φ− 1
5

)(
sinδ−1

5

)
cos δ sin H+

sin(2φ) sin(2δ) cos δ sin(2H)+

cos2 φ cos3 δ sin(3H)
]

, (3.11)

and in the meridional direction is

T3φ = hγ3
15
8
GMa2

d4

{
10
3

[(
sin2 φ− 3

5

)
+ sin φ sin(2φ)

]
sin δ

[
sin2 δ− 3

5

]
+

5
[

sin(2φ) cos φ−
(

sin2 φ− 1
5

)
sin φ

]
cos δ

[
sin2 δ− 1

5

]
cos H+[

cos(2φ)− sin2 φ
]

cos φ sin(2δ) cos δ cos(2H)−

cos2 φ sin φ cos3 δ cos(3H)
}

. (3.12)

3.3 Harmonic development of the potential
The tide-generating potential is a function of actual positions of the Moon and
Sun. Since the orbital motions of the Earth around the Sun and the Moon
around the Earth have a periodic character, it is possible to formulate the tidal
potential as a series of harmonic functions. The amplitudes of these harmonic
functions are assumed to be constant in time while their arguments are deter-
mined by linear combinations of fundamental astronomical angles which vary
almost linearly with time. The first development was given by George Howard
Darwin (Darwin, 1883) however, his development was quasi-harmonic and
included only 39 terms. The first truly harmonic and comprehensive develop-
ment was provided by Arthur Thomas Doodson (Doodson, 1921) who used
modern Brown’s lunar theory (Brown, 1905) and his expansion included 386
terms. The harmonic development were then independently recalculated by
David Edgar Cartwright using revised astronomical constants and a different
method (Cartwright and Tayler, 1971; Cartwright and Edden, 1973; see also
Section 3.5). Later, other authors provided more extensive harmonic decom-
positions of the tidal potential (Tamura, 1987; Xi, 1987; Hartmann and Wenzel,
1995; Roosbeek, 1996; Kudryavtsev, 2004), motivated by very precise astro-
nomical measurements and a need of greater accuracy for analysis of some
tidal data, e.g., gravity tides from superconductive gravimeters (Agnew, 2007).
The most recent expansion by Kudryavtsev (2004) includes 27 000 harmonics.

Each species of the tide-generating potential can be written as

Vlm = Glm(φ)∑
k
|ηk| cos(Θk(t) + χk + mλ), (3.13)

where Glm(φ) are the geodetic functions, the summation over k is over all har-
monics of the species, ηk are the coefficients of the harmonic development and
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Table 3.1: Values of the additive phase corrections χk depending on the degree l and
order m of the tide-generating potential and the sign of the coefficient of the harmonic
development ηk.

degree l order m ηk > 0 ηk < 0

2 0 0◦ 180◦

2 1 90◦ −90◦

2 2 0◦ 180◦

3 0 90◦ −90◦

3 1 0◦ 180◦

3 2 90◦ −90◦

3 3 0◦ 180◦

Θk the astronomical arguments or Doodson arguments at Greenwich. χk are
the so-called additive phase corrections which are multiplies of 90◦ and were
introduced by Doodson and Warburg (1941) to obtain a series of all positive
coefficients |ηk| and cosine functions only. This is known as the Doodson–
Warburg convention. The rules for applying the additive phase corrections are
summarized in Table 3.1.

The geodetic functions are (Doodson, 1921)

G20 =
1
2

G(1− 3 sin2 φ), (3.14)

G21 = G sin(2φ), (3.15)

G22 = G cos2 φ, (3.16)

G30 = 1.11803G sin φ(3− 5 sin2 φ), (3.17)

G31 = 0.72618G cos φ(1− 5 sin2 φ), (3.18)

G32 = 2.59808G sin φ cos2 φ, (3.19)

G33 = G cos3 φ, (3.20)

where the constant G is

G =
3GMKa2

4d̄3
K

, (3.21)

and MK and d̄K are the mass and mean geocentric distance of the Moon. An
analogous constant and geodetic functions can be introduced for the solar tides
using the Sun’s mass M@ and mean geocentric distance d̄@, however, it is more
convenient to normalize all coefficients of the harmonic development ηk with
respect to one constant G so the coefficients show relative importance of the

harmonics. It means that ηk of the solar harmonics contain the factor M@d̄3
K

MKd̄3
@

.

The Doodson arguments at Greenwich Θk are linear combinations of the
six fundamental astronomical angles

Θk(t) = n1τ + n2s + n3h + n4p + n5N′ + n6ps, (3.22)
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Table 3.2: Fundamental tidal frequencies and periods (from Agnew, 2007).

Symbol Freq. (cycles/day) Period What is it?

τ 0.9661368 24 h 50 m 28.3 s Lunar day
s 0.0366011 27.3216 d Tropical month
h 0.0027379 365.2422 d Solar year
p 0.0003095 8.847 yr Lunar apsidal precession
N 0.0001471 18.613 yr Lunar nodal precession
ps 0.0000001 20941 yr Solar apsidal precession

where τ is Greenwich mean lunar time (reduced to angle), s the Moon’s mean
longitude, h the Sun’s mean longitude, p the longitude of the Moon’s perigee
(the point of least distance of the Moon from the Earth), N′ = −N, where N is
the longitude of the Moon’s ascending node (the point where the orbit of the
Moon crosses the ecliptic from south to north), ps is the longitude of the Sun’s
perigee (the point of least distance of the Sun from the Earth) and n1, . . . , n6
are integers. These angles, which are six independent variables needed for the
expansions of V2 and V3, were chosen by Doodson (1921). Their correspond-
ing frequencies and periods are listed in Table 3.2. It should be note that all
angles are referred to the ecliptic and not to the equatorial plane like the right
ascension and declination defined earlier in this chapter (Section 3.1). Green-
wich mean lunar tide is related to Greenwich mean solar time 5 t and the mean
longitudes of the Moon and Sun through

τ = 15◦t + h− s. (3.23)

The relationships between the angles are also illustrated in Figure 3.5.
Numerical values of the angles s, h, p, N′, ps are given by the polynomial

expressions (Simon et al., 1994)

s = 218◦.31665436 + 481267◦.881342397T − 0◦.001326750T2+

0◦.000001856T3 − 0◦.000000015T4, (3.24)

h = 280◦.46645683 + 36000◦.769750953T + 0◦.000303217T2+

0◦.000000020T3 − 0◦.000000007T4, (3.25)

p = 83◦.35324299 + 4069◦.013711056T − 0◦.010323778T2−
0◦.000012492T3 + 0◦.000000053T4, (3.26)

N′ = 234◦.95544496 + 1934◦.136184889T − 0◦.002076167T2−
0◦.000002139T3 + 0◦.000000016T4, (3.27)

ps = 282◦.93734808 + 1◦.719459803T + 0◦.000456883T2−
0◦.000000018T3 − 0◦.000000003T4, (3.28)

5By definition, Universal Time (UT1) is mean solar time at Greenwich. Coordinated Uni-
versal Time (UTC), used as an international time standard for civil purposes, is equal to UT1
within 0.9 seconds.

41
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Figure 3.5: The fundamental angles which determine the Doodson arguments. Green-
wich mean solar time and Greenwich mean lunar time are denoted by t and τ, respec-
tively. Local mean solar time and local mean lunar time at an arbitrary point on the
Earth P are t + λ and τ + λ, respectively, where λ is the latitude at P. The Moon’s
mean longitude s and Sun’s mean longitude h are measured in the ecliptic, eastward
from the First Point of AriesP.

where the origin of time T is the epoch J2000.0 which is defined to be equiv-
alent to January 1, 2000, 11:58:55.816 Coordinated Universal Time (UTC), i.e.,
approximately noon at Greenwich.6 T is time in Julian centuries,7 i.e., 36 525
mean solar days.8 The expressions are referred to the equinox of date, i.e., the
effect of the Earth’s axial precession is considered. The terms of higher order
than T in (3.24)–(3.28) arise mainly from planetary perturbations on the eccen-
tricity of the Moon’s orbit and on the eccentricity of the Sun’s apparent orbit
(Smith, 1999). Obviously, on short-term time scales (years), the motions of the
Moon and Sun can be regarded as linear in time.

6J2000.0 is a Julian epoch corresponding to January 1, 2000, 12:00:00 Terrestrial Time (TT).
TT is a theoretical uniform time scale which is not defined by any measurements. Within
miliseconds accuracy, TT is parallel to International Atomic Time (TAI, based on atomic clocks)
and ahead of TAI by 32.184 seconds (due to historical reasons). TT is also ahead of UTC, by
roughly 68 seconds in 2015 (http://maia.usno.navy.mil/ser7/tai-utc.dat) and the gap is
increasing in time due to slowing of the Earth’s rotation. TT and UTC were approximately
equal around 1900.

7The expressions in Simon et al. (1994) are formulated in Barycentric Dynamical Time
(TDB), a relativistic coordinate time scale, which is equivalent to Terrestrial Time within ac-
curacy of 2 miliseconds.

8One mean solar day is 86 400 SI seconds.
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The argument Θk of each harmonic is determined by a unique combination
of the integers n1, . . . ,n6, for example,

Θk = 2τ + 4s− 3h + p + 2N′ − ps. (3.29)

In order to write such an expression in short, Doodson (1921) introduced a
systematic notation. Each tidal harmonic is denoted by the 6-digit argument-
number, also called the Doodson number, in the form

n1(n2 + 5)(n3 + 5).(n4 + 5)(n5 + 5)(n6 + 5). (3.30)

For example, the Doodson number for the expression above is

292.674. (3.31)

The reason why five is added to n2, . . . ,n6 is to avoid writing negative values
as much as possible and these numbers are only occasionally outside the range
−4 to 4. On the other hand, n1 is never negative and hence, no number needs
to be added.

The argument-number is divided into two parts. The reason is that many
tidal observations are not long enough to distinguish two harmonics with the
identical first part but different second one, i.e., if the arguments of the har-
monics differ by multiplies of p, N′ or ps. Doodson (1921) defined that the
first three digits of the argument-number are the constituent-number and all
harmonics with an equal constituent-number form a tidal constituent, e.g., all
harmonics with the constituent-number 255 form the M2 constituent. Analo-
gously, the first two digits of the argument-number are called the group-number
and all harmonics with an equal group-number form a tidal group, e.g., the
group-number 25 form the M2 group. Finally, the first digit of the argument-
number is the species-number and determines a tidal species, e.g., 2 stands for
the semi-diurnal species.

Sometimes, the Doodson number is extended by another digit containing
information about the additive phase correction χk. This 7-digit number is
called the extensive Doodson number (XDO) and the additional seventh num-
ber is a multiple of 90◦ plus five, e.g., 4 represents χk = −90◦. This formalism
is applied in IHO (2006).

The Doodson number is a convenient notation of tidal harmonics, however,
in some rare cases, the coefficients n2, . . . ,n6 are outside the range −4 to 4.
Doodson (1921) used 1̄ for ni = −6, 0 for ni = −5, X for ni = 5 and E for
ni = 6 in his tables, however, this system may be insufficient and overflow
if one wants to assign the Doodson numbers to the compound tides (also the
shallow-water tides) which are generated by non-linearities of ocean dynamics
and not by the astronomical tidal potential, see Section 3.6. Therefore, the
UK Hydrographic Office replaced the numerical system with an alphabetical
system in which Z represents 0, the letters A to N represent 1 to 14 and R to Y
represent −8 to −1 (IHO, 2006). For example, the argument-number of the R2
tide is 274.554 and χk = 180◦, then its alphabetical XDO is BBYZZYB.

43
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Although the Doodson numbers, whether the numerical or alphabetical
ones, provide a systematic notation, there is a convention in the tidal com-
munity to use the so-called Darwin symbols for selected tidal waves. Unfortu-
nately, this naming system, which was begun by Thomson for few tides and
extended by Darwin (and then by other authors for smaller tides), was built
in a somewhat ad hoc manner (Agnew, 2007) and thus, the symbols must be
memorized. The most important tides and their Darwin symbols are listed in
Table 3.3. There is some inconsistency in the usage of the Darwin symbols.
They may refer to tides of exact frequencies or to tidal constituents. For exam-
ple, M2 may refer to the tide with the Doodson number 255.555 and the period
of 12.4206 h (as is in Table 3.3) or to the constituent consisted of all harmonics
with the constituent-number 255.

The last column of Table 3.3 shows the origins of the tidal harmonics. The
principal tides are tides of a fictitious celestial body which moves in a circular
orbit in the equatorial plane. The declinational terms are caused by the lunar
and solar declination. The elliptical terms are modulations of the principal
tides converting the circular orbits into elliptical ones. The lunar evection and
variation are perturbations of the Moon’s revolution around the Earth caused
by the Sun’s gravitational force. The evection is the change in the eccentricity
of the Moon’s orbit. The variation is a distortion of the Moon’s motion dur-
ing a synodic month.9 If the hypothetical undisturbed motion of the Moon
was circular, the Sun’s attraction would change it to the elliptical one with the
Earth in the centre of the ellipse, i.e., the variational ellipse is different from the
eccentric Keplerian ellipse where the Earth is located in a focus.

The largest term of the long-period species is the permanent Z0 tide which
tends to increase the flattening of the Earth’s static figure (Smith, 1999). The so-
lar annual Sa and lunar monthly Mm tides arise from the ellipticity of the orbits
and their periods are respectively governed by the mean Sun’s longitude rela-
tive to the perihelion, ΘSa = h− ps, and the mean Moon’s longitude relative to
the lunar perigee, ΘMm = s− p. Sa and Mm can be viewed as elliptical modu-
lations of Z0. The long-period declinational tides are solar semi-annual Ssa and
lunar monthly M f . Their periods are respectively 182.622 d, corresponding to
the argument 2h, and 13.661 d, corresponding to the argument 2s, due to the
term sin2 δ in the long-period species of the potential V2 (see equation (3.6) in
Section 3.1).

The diurnal tides are all declinational as the diurnal species of V2 is pro-
portional to sin δ (equation (3.6)). As a consequence, these terms tend to occur
in pairs balancing each other when the lunar or solar declination is zero. The
principal pair of the lunar diurnal tides are O1 and K1 which have the argu-
ments τ − s and τ + s, respectively, and therefore are in phase every 13.661
days. O1 and K1 correspond to a circular orbit of a fictitious moon in the
mean plane of the real Moon. Two principal solar diurnal tides are P1 (ΘP1 =
τ + s − 2h) and again K1 (ΘK1 = τ + s) which are in phase every 182.622

9The synodic month is an average period of the Moon’s revolution with respect to the line
joining the Sun and Earth which is larger than the tropical month, approximately 29.53 days.
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days. They correspond to an apparent circular orbit of a fictitious sun in the
ecliptic. Keep in mind that τ = t − s + h, where t is UTC reduced to an-
gle, and so the arguments of P1 an K1 may be written as t − h and t + h,
respectively. It means that P1 an K1 are governed by mean solar time and
the Sun’s longitude, analogously to the lunar O1 and K1 tides which are gov-
erned by mean lunar time and the Moon’s longitude. One can see that K1 has
a contribution from both disturbers, the Moon and Sun. The lunar and so-
lar contributions to the harmonic coefficient ηK1 are in ratio of approximately
68:32 (Doodson, 1921). The lunar and solar part of K1 are inseparable in tidal
analyses and hence, K1 can be called the lunisolar diurnal tide. The princi-
pal diurnal tides are accompanied by a series of elliptic tides whose argu-
ments differ by s − p (lunar) or h − ps (solar). O1 is modulated mainly by
Q1 (ΘQ1 = τ − s − (s − p)), which is the largest diurnal elliptical tide, and
much smaller tide 155.455 (Θ155.455 = τ − s + (s− p)). The latter is not listed
in Table 3.3 however it is usually denoted as M1 (Doodson, 1921; Pugh, 1987;
IHO, 2006) as it is a part of the M1 constituent and its argument differs from
the argument of the M1 tide (155.655, listed in Table 3.3) by 2p. A separation
of these two harmonics from data would require at least an 8.85-years long
time-series (see Section 3.7.1). M1 (155.655, ΘM1 = τ − s − (s − p)) and J1
(ΘJ1 = τ + s + (s− p)) are lunar elliptical modulations of K1. π1, S1 and φ1
modulate solar P1 and K1 in an analogous way. The S1 component consists of
two harmonics, 165.554 (not listed in Table 3.3), which is the smaller elliptical
modulation of P1, and 165.556 (listed in Table 3.3), which modulates K1. Both
are very small so their signals in the oceans are barely detectable. However,
there exist significant observed signals at this frequency which have a meteo-
rological origin. This is called the radiational S1 tide and will be explained in
Section 3.6.

The principal semi-diurnal tides are lunar M2, whose period is exactly
half a mean lunar day, and solar S2, whose period is exactly half a mean
solar day. M2 and S2 correspond to circular orbits of a fictitious moon or
sun in the equatorial plane. They are accompanied by a series of elliptical
tides. N2 and smaller L2 are main elliptical modulations of M2 with the ar-
guments 2τ − (s− p) and 2τ + (s− p), respectively. Analogously, T2 (ΘT2 =
2τ + 2s− 2h− (h− ps)) and smaller R2 (ΘR2 = τ + 2s− 2h + (h− ps)) modu-
late S2. The lunar and solar declinational effects are represented by the K2 tide.
Its argument is obtained by adding 2s to the M2 argument or by adding 2h to
the S2 argument. Hence, the lunar part of K2 is inseparable from its solar part
and we may speak of the lunisolar semi-diurnal K2 tide. K2 is also accompa-
nied by a series of elliptical tides although almost all are negligibly small. Two
largest ones are lunar η2 and 265.655. The latter is a part of the L2 component
and its argument differ from L2 (265.455) by 2p. Hence, it is usually also called
L2 (Pugh, 1987; Smith, 1999).
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Table 3.3: The Darwin symbols of the most important tides and their Doodson numbers, harmonic coefficients ηk
(Cartwright and Tayler, 1971; Cartwright and Edden, 1973), Doodson arguments Θk, additive phase corrections χk, fre-
quencies, periods and origin (L stands for lunar, S for solar). Except for M3, all tides are of the second degree origin.

Darwin
symbol

Doodson
number

ηk Θk
χk
[◦]

Frequency
[◦/h]

Period Origin

long-period
Z0 055.555 0.73806 — 0 0.000000 — L+S permanent
Sa 056.554 0.01156 h− ps 0 0.041067 365.257 d S elliptical
Ssa 057.555 0.07281 2h 0 0.082137 182.622 d S declinational
MSm 063.655 0.01579 s− 2h + p 0 0.471521 31.812 d L evectional
Mm 065.455 0.08254 s− p 0 0.544375 27.555 d L elliptical
MS f 073.555 0.01369 2s− 2h 0 1.015896 14.765 d L variation
M f 075.555 0.15647 2s 0 1.098033 13.661 d L declinational
Mtm 085.455 0.02995 3s− p 0 1.642408 9.133 d L elliptical of M f

diurnal
2Q1 125.755 0.00954 τ − 3s + 2p −90 12.854286 28.0062 h L second-order elliptical
σ1 127.555 0.01151 τ − 3s + 2h −90 12.927140 27.8484 h L variation of O1
Q1 135.655 0.07214 τ − 2s + p −90 13.398661 26.8684 h L larger elliptical of O1
ρ1 137.455 0.01370 τ − 2s + 2h− p −90 13.471515 26.7231 h L larger evectional
O1 145.555 0.37690 τ − s −90 13.943036 25.8193 h L principal declinational
τ1 147.555 −0.00492 τ − s + 2h 90 14.025173 25.6681 h L variation of of K1
M1 155.655 −0.02963 τ + p 90 14.496694 24.8332 h L elliptical of K1
χ1 157.455 −0.00567 τ + 2h− p 90 14.569548 24.7091 h L smaller evectional
π1 162.556 0.01028 τ + s− 3h + ps −90 14.917865 24.1321 h S larger elliptical of P1
P1 163.555 0.17546 τ + s− 2h −90 14.958931 24.0659 h S principal declinational
S1 164.556 −0.00416 τ + s− h + ps 90 15.000002 24.0000 h S elliptical of K1
K1 165.555 −0.53009 τ + s 90 15.041069 23.9345 h L+S principal declinational

To be continued on the next page
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Table 3.3: (continued)

Darwin
symbol

Doodson
number

ηk Θk
χk
[◦]

Frequency
[◦/h]

Period Origin

ψ1 166.554 −0.00422 τ + s + h− ps 90 15.082135 23.8693 h S elliptical of K1
φ1 167.555 −0.00755 τ + s + 2h 90 15.123206 23.8045 h S second-order
θ1 173.655 −0.00567 τ + 2s− 2h + p 90 15.512590 23.2070 h L evectional
J1 175.455 −0.02963 τ + 2s− p 90 15.585443 23.0985 h L elliptical of K1
OO1 185.555 −0.01623 τ + 3s 90 16.139102 22.3061 h L second-order

semi-diurnal
ε2 227.655 0.00669 2τ − 3s + 2h + p 0 27.423834 13.1273 h L evectional
2N2 235.755 0.02298 2τ − 2s + 2p 0 27.895355 12.9054 h L second-order elliptical
µ2 237.555 0.02774 2τ − 2s + 2h 0 27.968208 12.8718 h L variation
N2 245.655 0.17380 2τ − s + p 0 28.439730 12.6583 h L larger elliptical of M2
ν2 247.455 0.03301 2τ − s + 2h− p 0 28.512583 12.6260 h L larger evectional
M2 255.555 0.90805 2τ 0 28.984104 12.4206 h L principal
λ2 263.655 −0.00669 2τ + s− 2h + p 180 29.455625 12.2218 h L smaller evectional
L2 265.455 −0.02567 2τ + s− p 180 29.528479 12.1916 h L smaller elliptical of M2
T2 272.556 0.02476 2τ + 2s− 3h + ps 0 29.958933 12.0164 h S larger elliptical of S2
S2 273.555 0.42248 2τ + 2s− 2h 0 30.000000 12.0000 h S principal
R2 274.554 −0.00354 2τ + 2s− h− ps 180 30.041067 11.9836 h S smaller elliptical of S2
K2 275.555 0.11495 2τ + 2s 0 30.082137 11.9672 h L+S declinational
η2 285.455 0.00642 2τ + 3s− p 0 30.626512 11.7545 h L elliptical of K2

ter-diurnal
M3 355.555 −0.01188 3τ 180 43.476156 8.2804 h L parallax
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Finally, the M3 tide is the most important tide of the ter-diurnal species and
of the tides generated by the third degree potential V3. Physically, it represents
the fact that the Earth’s radius is not negligible compared to the geocentric dis-
tance of the Moon. This is called the lunar parallax (Schureman, 1941; Pugh,
1987). It is interesting to mention that the third degree potential generates also
a smaller, but not completely negligible, tide which is a part of the M1 con-
stituent with the frequency of exactly one mean lunar day, Doodson number
155.555 and coefficient η155.555 = −0.00660.

3.4 Nodal parameters
As mentioned in the previous section, Doodson divided the argument-number
into two parts. While the first part determines a tidal constituent, the second
part determines long-term variations. The reason is that in the harmonic analy-
sis of a time-series (see Section 3.7.1), two harmonic signals are distinguishable
only if the length of the time-series is longer than the inverse value of the fre-
quency difference. In other words, if arguments of two harmonics differ by
p, an 8.85-years long time-series is needed to separate them unambiguously.
If their arguments differ by N′ then as 18.6-years long time-series is needed.
However, real data often do not span such long intervals which means that ex-
tracted tidal constituents are affected by the long-term variations. For example,
the M2 constituent consists of the M2 tide, 255.555, and the harmonic 255.545
which modulates the amplitude and phase of the M2 tide through a nodal pe-
riod of 18.6 years. These long-period modulations can be represented by the
so-called nodal parameters fk and µk. Then each species of the tide-generating
potential can be written as

Vlm = Glm(φ)∑
k
|ηk| fk(t) cos(Θk(t) + χk + mλ + µk(t)), (3.32)

where the summation over k is now over all constituents of the species and
not all harmonics. fk(t) are called the nodal factors and µk(t) the nodal angles,
both of them are functions of N and sometimes p.10 Only lunar constituent are
affected by the long-period modulations. For solar constituents, it holds that
fk = 1 and µk = 0. Theoretically, solar constituents are affected by a 20 941-
years long cycle of the solar apsidal precession (ps) however these effects are
negligible for all practical purposes.

The computation of the nodal parameters is shown in the following exam-
ple for M2. The M2 tide 255.555 is surrounded by several nearby terms, how-
ever the only significant one is 255.545 with the argument Θ255.545 = 2τ + N
and amplitude η255.545 = −0.03390 (Cartwright and Edden, 1973). Let α be the

10The name “nodal parameters” might be misleading if fk and µk are also functions of the
longitude of the Moon’s perigee p. A more precise name could be “long-period parameters”
or “nodal and apsidal parameters” however “nodal parameters” is an established concept in
the tidal community and the author of this thesis respects this convention.
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amplitude ratio, i.e., α = η255.545/η
.
= 0.037 (where η = ηM2). Then the total

constituent can be written as (neglecting mλ without loss of generality)

η cos(2τ) + αη cos(2τ + N) = η [(1 + α cos N) cos(2τ)− α sin(2τ) sin N]

= η [ f cos µ cos(2τ)− f sin µ sin(2τ)]

= η f cos(2τ + µ), (3.33)

where
f cos µ = 1 + α cos N, f sin µ = α sin N. (3.34)

Then the nodal factor and nodal angle for M2 are

f =
√

1 + 2α cos N + α2, µ = arctan
(

α sin N
1 + α cos N

)
. (3.35)

These formulae can be easily generalized for any lunar constituent which is
modulated by J harmonics with the amplitude ratios αj and argument differ-
ences β j as

fk =

√√√√(1 +
J

∑
j=1

αj cos β j

)2

+

(
J

∑
j=1

αj sin β j

)2

, (3.36)

µk = arctan

 ∑J
j=1 αj sin β j

1 + ∑J
j=1 αj cos β j

 . (3.37)

The factors αj and β j for the major lunar constituents are given in Table 3.4.
αj are computed from tables in Cartwright and Edden (1973). Only stronger
harmonics are listed; those whose coefficient η is larger than 0.00100, other
terms are neglected.

The last two columns of Table 3.4 show approximative formulae for fk and
µk. These or similar ones can be found in many publications (e.g., Pugh, 1987;
IHO, 2006) and are easy to derive by using Taylor series and neglecting small
terms, usually those which are O(α2

j ). For example, let us return to the example
for M2 and assume that α2 is negligible. Then

f =
√

1 + 2α cos N + O(α2) = 1 + α cos N + O(α2) ≈ 1− 0.037 cos N, (3.38)

µ =
α sin N

1 + α cos N
+ O(α3) = α sin N + O(α2) ≈ −2◦.1 sin N. (3.39)

The formulae for other constituents can be obtained in a similar way. Although
these formulae are only an approximation, they are a useful indicator how
large the nodal variations may be. It can be seen that the tides representing
the changes of the lunar declination (i.e., M f , all diurnal tides and K2) have the
largest variations of amplitudes (more than 11 %) as well as angles (8◦.9 and
more). On the other hand, semi-diurnal µ2, N2, ν2 and M2 are only slightly
affected by the nodal cycle with amplitudes varying by 3.7 % and angles by 2◦.1.
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Table 3.4: Nodal corrections for major tidal constituents. The tidal constituents are
denoted by their symbols and Doodson numbers of the main tidal harmonics. Long-
period variations are denoted by the last three digits of their Doodson numbers. The
factors αj and β j are used for the computation of the nodal parameters (equations
(3.36) and (3.37)). The approximative formulae for fk and µk are also listed.

Approximative formulae

Tide Variation αj β j fk µk

Mm 065.455

445 −0.066 N

1.000− 0.131 cos N −3◦.1 sin p465 −0.065 −N
655 −0.053 p
665 −0.002 p− N

M f 075.555
355 0.043 −2p

1.086 + 0.414 cos N −23◦.7 sin N565 0.414 −N
575 0.039 −2N

2Q1 125.755 745 0.188 N 1.018 + 0.188 cos N 10◦.8 sin N

σ1 127.555 545 0.188 N 1.018 + 0.188 cos N 10◦.8 sin N

Q1 135.655 645 0.188 N 1.018 + 0.188 cos N 10◦.8 sin N

ρ1 137.455 445 0.188 N 1.018 + 0.188 cos N 10◦.8 sin N

O1 145.555
535 −0.006 2N

1.018 + 0.189 cos N 10◦.8 sin N545 0.189 N
755 −0.006 2p

M1 155.655
445 0.066 −2p + N
455 0.360 −2p
665 0.200 −N

K1 165.555
545 −0.020 N

1.009 + 0.116 cos N −8◦.9 sin N565 0.136 −N
575 −0.003 −2N

J1 175.455 465 0.198 −N 1.020 + 0.198 cos N −11◦.3 sin N

OO1 185.555
355 0.150 −2p

1.205 + 0.640 cos N −36◦.7 sin N565 0.640 −N
575 0.134 −2N

µ2 237.555 545 −0.037 N 1.000− 0.037 cos N −2◦.1 sin N

N2 245.655 645 −0.037 N 1.000− 0.037 cos N −2◦.1 sin N

ν2 247.455 445 −0.037 N 1.000− 0.037 cos N −2◦.1 sin N

M2 255.555 545 −0.037 N 1.000− 0.037 cos N −2◦.1 sin N

L2 265.455
655 −0.250 2p
665 −0.110 2p− N

K2 275.555
545 −0.013 N

1.044 + 0.285 cos N −17◦.8 sin N565 0.298 −N
575 0.032 −2N
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The M1 and L2 constituents are more complicated and simple approximative
formulae can not be obtained. Therefore, the exact formulae for fk (3.36) and
µk (3.37) are always used for M1 and L2.

It should be noted that equations (3.36) and (3.37) are valid only for the
tides of the second degree origin. There are tidal constituents which have also
a third degree contribution (e.g., M1) however there is no way how to include
the third degree contribution into the nodal parameters because of the different
geodetic functions for degrees 2 and 3 (see equations (3.14)–(3.20)).

3.5 Development of the potential according to CTE
Doodson’s harmonic expansion was the most thorough and precise develop-
ment of the tide-generating potential for many years. The first independent
recalculation of the potential after Doodson was provided by Cartwright and
Tayler (1971); Cartwright and Edden (1973), hereinafter CTE. CTE were moti-
vated by a new method of analysing tidal data, the so-called response method
which was introduced a few years ago (Munk and Cartwright, 1966; see also
Section 3.7.2), and used a different approach than Doodson. CTE computed
the potential directly from the lunar and solar ephemerides (i.e., the lunar
and solar declinations, right-ascensions and geocentric distances) in contrary
to Doodson who used a massive algebraic expansion of Brown’s series. CTE
formulate the tide-generating potential as

V = Re

[
g

∞

∑
l=2

l

∑
m=0

c∗lm(t)Wlm(λ,φ)

]
, (3.40)

where g is the mean gravity acceleration on the Earth’s surface, Wlm(λ,φ) are
complex spherical harmonics

Wlm(λ,φ) = NlmPlm(cos φ)eimλ (3.41)

with the normalization factor

Nlm =

√
2l + 1

4π

(l −m)!
(l + m)!

, (3.42)

and c∗lm(t) denotes the complex conjugated equilibrium tide of degree l and
order m. The equilibrium tides represent ocean tides in meters which would
occur if the whole Earth was covered by the water only. The nodal parameters
are implicitly included in c∗lm(t). The equilibrium tides can be expressed in the
form of series

c∗lm(t) = (−1)qlm ∑
k
|Ck(t)|ei(Θk(t)+χk), (3.43)

where Ck(t) are the equilibrium amplitudes which are tabulated in CTE and
the term (−1)qlm , q2m = m + δ0m and q3m = m + δ0m + δ1m, is introduced to
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Table 3.5: Ratios of the equilibrium amplitudes of CTE’s expansion |Ck| to those ac-
cording to Doodson’s development |ηk|Gg for l = 2, 3. The ratios are defined by equa-
tion (3.45).

degree l order m ratio

2 0 1.58533
2 1 2.58883
2 2 2.58883
3 0 2.99598
3 1 2.24698
3 2 2.54219
3 3 2.39680

obtain series with all positive |Ck| and cosine arguments in order to achieve a
consistency with the Doodson’s expansion (3.13). The coefficients Ck(t) vary
slowly in time since CTE calculated them from highly precise ephemerides.
This means that all secular trends were included in the computations in con-
trary to Doodson who ignored them and his coefficients ηk are therefore con-
stant. The most important effect is a decrease in the obliquity of the ecliptic
(the angle between the ecliptic and equatorial plane) due to planetary pertur-
bations which is about 47′′ per century and leads to a trend of about 0.01 % a
century in magnitudes of Ck (Smith, 1999).

Apart from the fact that the coefficients of CTE are time variable while those
of Doodson are constant, both approaches are equal except for a different nor-
malization of the coefficients. By the comparison of (3.13) and (3.40) we get

Glm(φ)|ηk|ei(Θk(t)+χk)eimλ = g(−1)qlm |Ck|ei(Θk(t)+χk)NlmPlm(cos φ)eimλ, (3.44)

which leads to
|Ck|
|ηk|Gg

= (−1)qlm
Glm(φ)

GNlmPlm(cos φ)
. (3.45)

The ratios |Ck| : |ηk|Gg for degrees l = 2, 3 are listed in Table 3.5.

3.6 Radiational and compound tides
In addition to the tidal constituents which are obtained by the development
of the tide-generating potential, there are other harmonic signals in the ocean
which are classified as tides but are not a direct consequence of the gravita-
tional force of the Moon and Sun. These are the meteorological or radiational
tides, which are due to meteorological effects, and the compound or shallow-
water tides, which are generated by ocean dynamics.

The meteorological tides may be caused by changes in air temperature,
barometric pressure or sea breezes. These changes induce fluctuations in the
ocean surface elevation which are in general very irregular but there are some
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seasonal or daily variations that have a periodical character. These tides are
also called radiational (Munk and Cartwright, 1966) as they are related to the
cycles in direct solar radiation. The term “radiational tide” seems to be, to
the author’s best knowledge, more common and established today while “me-
teorological tide” can be found in older publications (e.g., Schureman, 1941).
The solar annual Sa and semi-annual Ssa tides are a good example of the ra-
diational tides as they are strongly enhanced by seasonal climate variations
while their gravitational forcing is very weak (Pugh, 1987). For this reason,
Sa usually refers to the signal with the period of exactly one mean solar year
and −ps in the argument of the gravitational Sa (see Table 3.3) is omitted in
tidal analysis. Of course, the frequency difference due to −ps is negligible
however the omission of −ps is important for a correct definition of the phase
shift. Another, very interesting example of the radiational tides is S1. The
ocean tides generated by the solar gravitational potential at the S1 frequency
should be very weak, not exceeding 3 mm (Schindelegger et al., 2016) but the
observed tides are higher and may have amplitudes of a few centimeters in
extreme causes (Pugh, 1987; Ray and Egbert, 2004; Lyard et al., 2006). This S1
tide is an ocean response to the atmospheric pressure tides which are gener-
ated by the thermal excitation in the upper atmosphere due to solar radiation
(Ray and Egbert, 2004; Lyard et al., 2006). Similarly to Sa, S1 usually refers to
the signal with the period of exactly one mean solar day and ps in the argu-
ment of the gravitational S1 is omitted in tidal analysis. Doodson (1928) and
Schureman (1941) employed the phase convention χS1 = 180◦ however there
are other phase conventions which are routinely in use (see Ray and Egbert,
2004) so one must be careful when using published S1 data. The S2 constituent
has also a significant radiational contribution in addition to the astronomical
contribution but radiational contributions to other solar constituents (e.g. K1)
are considered to be negligible (Lyard et al., 2006).

The compound tides are generated by non-linear physical processes in the
ocean. They are significant mainly in shallow seas, therefore they are also
called the shallow-water tides.11 Tidal waves in the oceans interact with each
other which leads to a creation of additional harmonic signals whose frequen-
cies are multiples, sums or differences of the frequencies of the astronomical
constituents listed in Table 3.3. For example, let the M2 wave with the fre-
quency ωM2 interacts with the S2 wave with the frequency ωS2 . Then, due to
non-linearities of ocean dynamics, additional waves are produced and their
frequencies are ωM2 + ωS2 , ωS2 − ωM2 , ωM2 + ωM2 , ωS2 + ωS2 , ωM2 + ωM2 +
ωS2 , etc. In principle, all combinations of the astronomical tidal constituents
are possible, however, only those tides which are composed from the strongest
constituents are important for practical purposes. Table 3.6 lists some of the
most important compound tides. Their symbols are determined by their ori-
gins. A sequence of letters corresponds to a sum of constituents, e.g., M2 +
S2 = MS4. However, if there is a difference in a combination of constituents,

11The author prefers “compound tides” since “shallow-water tides” may suggest that they
occur in shallow seas only which is generally not true.
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David Einšpigel Time-domain modelling of global barotropic ocean tides

Table 3.6: Selected compound tides. Listed are their symbols, origins, Doodson num-
ber, frequencies, periods and global maximal amplitudes from a simulation of the
DEBOT-h model (Chapter 4). If there is a tide which has the lunisolar origin (from
Table 3.3) and same frequency as one of the compound tides then its symbol is printed
in the last column (LS denote lunisolar).

Symbol Origin Doodson
number

Frequency
[◦/h]

Period
[h]

Amplitude
[cm]

LS
tide

long-period
SM f S2 −M2 073.555 1.015896 354.367 13.73 MS f

diurnal
2OK1 2×O1 − K1 125.755 12.854286 28.0062 5.11 2Q1
MP1 M2 − P1 147.555 14.025173 25.6681 12.08 τ1
2KP1 2× K1 − P1 162.556 14.917865 24.1321 5.06 φ1
SO1 S2 −O1 183.555 16.056964 22.4202 10.17
2KO1 2× K1 −O1 185.555 16.139102 22.3061 14.43 OO1

semi-diurnal
MNS2 M2 + N2 − S2 227.655 27.423834 13.1273 5.34 ε2
2NM2 2× N2 −M2 235.755 27.895355 12.9054 8.31 2N2
2MS2 2×M2 − S2 237.555 27.968208 12.8718 22.71 µ2
SNM2 S2 + N2 −M2 263.655 29.455625 12.2218 8.96 λ2
2MN2 2×M2 − N2 265.455 29.528479 12.1916 21.22 L2
2SM2 2× S2 −M2 291.555 31.015896 11.6070 8.43

ter-diurnal
MO3 M2 + O1 345.555 42.927140 8.3863 12.22
MK3 M2 + K1 365.555 44.025173 8.1771 11.94

fourth-diurnal
MN4 M2 + N4 445.655 57.423834 6.2692 10.22
M4 2×M2 455.555 57.968208 6.2103 29.55
MS4 M2 + S2 473.555 58.984104 6.1033 17.29
MK4 M2 + K2 475.555 59.066242 6.0949 6.97

sixth-diurnal
2MN6 2×M2 + N2 645.655 86.407938 4.1663 8.94
M6 3×M2 655.555 86.952313 4.1402 17.30
2MS6 2×M2 + S2 673.555 87.968208 4.0924 14.35

eighth-diurnal
M8 4×M2 855.555 115.936417 3.1052 2.21
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then it is indicated by the subscript number and the letter of the tide with nega-
tive sign is placed to the right, e.g., M2 + N2 + S2 = MNS6 but M2 + N2− S2 =
MNS2. The nodal parameters of the compound tides are assumed to follow the
parameters of the generating constituents. It holds that the nodal factor fk is
always obtained by a multiplication of the nodal factors of the generating con-
stituents while the nodal angle µk is obtained by the same combination as the
frequency. For example (note that for solar constituents f = 1 and µ = 0):

fM4 = f 2
M2

, µM4 = 2µM2 ,

fMO3 = fM2 fO1 , µMO3 = µM2 + µO1 ,

f2KO1 = f 2
K1

fO1 , µ2KO1 = 2µK1 − µO1 ,

fMS4 = fM2 , µMS4 = µM2 .

Some of the compound tides may reach amplitudes of several decimeters, see
the penultimate column of Table 3.6 which shows global maximal amplitudes
from a simulation of the DEBOT-h model (Chapter 4). For comparison, the
global maximal amplitude of M2 from the same simulation is 419 cm. Note
also that there are compound tides which have the exactly same frequencies
as some of the lunisolar tides from Table 3.3. Of course in such case, the non-
linear and gravitational contributions to the tidal wave are indistinguishable.

In some lists of tides or tide gauge data, one can find the terms which are
denoted as MA2 (254.555) and MB2 (256.555). Their arguments are 2τ− h and
2τ + h, respectively, and thus represent an annual modulation of the M2 tide.
Their names suggest they are compound tides however there is no tidal term
denoted as A or B. Here, the letter A is intended to signify annual differences.
Theoretically, they may be thought as interactions between M2 and Sa however
their physical origin is more likely due to seasonal changes in the weather and
their interaction with the tides (Pugh, 1987). In general, every tide may be
accompanied by seasonal variations however in almost all cases, the annual
terms are negligible. IHO (2006) lists also NA2 and NB2 apart from MA2 and
MB2.

3.7 Methods of tidal analysis

There are two basic methods how to determine tidal signals from satellite al-
timetry data or tide gauge measurements, the harmonic analysis and the re-
sponse method. Both of them are briefly introduced in Sections 3.7.1 and 3.7.2,
respectively. The kind reader is referred to the cited literature (Munk and
Cartwright, 1966; Pugh, 1987; Emery and Thompson, 1998; Smith, 1999; Parker,
2007; Fok, 2012) for more details. No effort is made to describe methods of pro-
cessing raw altimetry data since this is beyond the scope of this thesis.
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3.7.1 Harmonic analysis
The harmonic analysis is a standard method to determine tides from measure-
ments. It was first formulated by William Thompson (Lord Kelvin) in 1867 and
William Ferrel independently in 1874 (Parker, 2007). The harmonic analysis is
based on the idea that a time-series of the sea surface elevation ζ at the location
(φ,λ) can be expressed as a sum of harmonic signals (Emery and Thompson,
1998)

ζ(φ,λ,t) = ∑
k

fk(t)Hk(φ,λ) cos(Θk(t) + χk + µk(t)− Gk(φ,λ)) + ζr(t), (3.46)

where the summation is over tidal constituents, Hk and Gk are the unknown
amplitudes and Greenwich phase lags (expressed in interval 〈0◦,360◦)) of the
tidal constituents, respectively. ζr is a residual time series containing all non-
tidal signals. The Doodson arguments at Greenwich Θk and additive phase
corrections χk were already introduced in Section 3.3. The nodal factors fk
and nodal angles µk were discussed in Section 3.4.

Equation (3.46) can be rewritten as

ζ(φ,λ,t) = ∑
k
[ fk(t)Ak(φ,λ) cos(Θk(t) + χk + µk(t)) +

fk(t)Bk(φ,λ) sin(Θk(t) + χk + µk(t))] + ζr(t), (3.47)

where Ak and Bk are the in-phase and quadrature amplitudes, respectively.
They are related to the amplitudes Hk and Greenwich phase lags Gk through

Hk =
√

A2
k + B2

k , Gk = arctan
(

Bk
Ak

)
. (3.48)

The formulation (3.47) has two advantages over (3.46): its linear form enables a
convenient least-square estimate of Ak and Bk and singularities at the points of
zero amplitude of any tidal constituents (the so-called “amphidromic points”)
are avoided. To unambiguously distinguish two tidal constituents of distinct
frequencies, ω1 and ω2, the Rayleigh criterion must be fulfilled (Pugh, 1987;
Emery and Thompson, 1998). It states that

T >
1

|ω1 −ω2|
, (3.49)

where T is the length of the time-series.

3.7.2 Response method
Although the harmonic analysis is simple and convenient, its ability to re-
solve tidal signals with frequencies very close to each other is limited to a
lenght of time-series. Hence, Walter Munk and David Cartwright proposed
in 1966 the so-called response method (Munk and Cartwright, 1966). The idea
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of the method, which has its origin in electrical engineering, is that the equilib-
rium tide c∗2m(t) (input) is related to the ocean tidal elevation ζ(λ,φ,t) (output)
through the response weight function w2m(λ,φ,t) (system) under the assump-
tion of the credo of smoothness. The credo of smoothness states that sharp
resonance peaks does not occur for the ocean responses to the gravitational
forcing. In simple terms, the ocean elevation is “sufficiently smooth”. The
ocean elevation is expressed as a convolution of the equilibrium tides and the
response weight function (here, our attention is restricted on l = 2 only)

ζ(λ,φ,t) = Re

[
2

∑
m=0

c∗2m(t) ∗ w2m(λ,φ,t)

]
. (3.50)

This formulation supposes a linear system, therefore it is not suitable for shal-
low seas where the non-linear compound tides gain importance. However,
it can be extended to non-linear equations which also describe also the com-
pound tides (Munk and Cartwright, 1966; Pugh, 1987). This non-linear exten-
sion is not discussed here.

The equilibrium tide c∗2m(t) was introduced in Section 3.5. The response
weight function w2m(λ,φ,t) is defined for each tidal band m as

w2m(λ,φ,t) =
S

∑
s=−S

w2ms(λ,φ)δ(t− s∆T), (3.51)

where δ(t) is the unit impulse function, ∆T the time lag interval, usually equal
to two days (Fok, 2012) and w2ms(λ,φ) are the response weights. The number
of the response weights (S) is usually 1 or 2 (Fok, 2012). The response weights
are obtained from data by a least-square method. They represent the remain-
ing effect at time t of the ocean’s response to a unit impulse at time t − s∆T
(Munk and Cartwright, 1966; Smith, 1999). It means that the ocean tide can
be expressed as a weighted sum of past and future values of the equilibrium
tides. This can be seen by substituting (3.51) in (3.50) which yields

ζ(λ,φ,t) = Re

[
2

∑
m=0

S

∑
s=−S

w2ms(λ,φ)c∗2m(t− s∆T)

]
. (3.52)

Note that the future values of the equilibrium tide (negative s) are not physi-
cally justified and they are just a mathematical concept. Since the nodal param-
eters are implicitly contained in the equilibrium tide c∗2m, no nodal corrections
are applied in the response method.

The Fourier transform of the response weight function is called the tidal
admittance Z2m(ωk) (Munk and Cartwright, 1966)

Z2m(ωk) = X2m(ωk) + iY2m(ωk) =
∫ ∞

−∞
w2m(t)e−iωkt dt. (3.53)

Substituting (3.51) in (3.53), the relations for the real and imaginary parts of
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the tidal admittance are obtained

X2m(ωk) =
S

∑
s=−S

[u2ms cos(ωks∆T) + v2ms sin(ωks∆T)] , (3.54)

Y2m(ωk) =
S

∑
s=−S

[v2ms cos(ωks∆T)− u2ms sin(ωks∆T)] , (3.55)

where u2ms and v2ms are the real and imaginary parts of the response weight
w2ms, i.e., w2ms = u2ms + iv2ms. The tidal admittance is related to the harmonic
coefficients Ak and Bk through

Ak = (−1)m+δ0m |Ck|X2m(ωk), (3.56)

Bk = (−1)m+δ0m+1|Ck|Y2m(ωk), (3.57)

where the equilibrium amplitude |Ck| was already defined in Section 3.5.
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CHAPTER

4

DEBOT-H: A PURELY HYDRODYNAMICAL
MODEL

By purely hydrodynamical models we consider those tidal models whose
solution is not constrained by any measurements of sea level, whether

satellite altimetry or tide gauges data. Therefore, the model solution is given
by equations of fluid motion, usually the shallow-water equation. DEBOT-h
is such a model and this chapter is dedicated to it. Parameters of DEBOT-h
are described in Section 4.1. Testing tide gauge data and statistical methods
to assess accuracy of DEBOT are described in Section 4.2. Section 4.3 and 4.4
show results of DEBOT-h, their dependency on model parameters and com-
pares DEBOT-h with other purely hydrodynamical models. Finally, Section 4.5
discusses energy and dissipation properties of DEBOT-h.

4.1 Description of DEBOT
DEBOT is based on the shallow water equations (see the derivation in Chap-
ter 1 and numerical methods in Chapter 2)

∂ζ

∂t
+∇Ω · (h~v) = 0, (4.1)

∂(h~v)
∂t

+∇Ω · (h~v⊗~v) = −gεh∇Ωζ + f h~v×~ez −~τBF + AH∇Ω · σ −~τITD + ~T.
(4.2)

An attentive reader notices differences between equations (4.2) and (1.73)
from the end of Chapter 1. First, the gravitational constant g is replaced by the
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“reduced gravity” gε due to a parametrization of the self-attraction and load-
ing of the water. Second, the internal tide drag ~τITD, an additional dissipative
term, is added. Third, equation (4.2) contains the tidal forcing ~T which was
described in Section 3.2. The bottom friction ~τBF and eddy viscosity AH∇Ω · σ
were discussed in Chapter 1.

The self-attraction and loading (SAL) of the water is an essential part of
ocean tide modelling since its omission can change computed tidal amplitudes
by 10 % or more and phases by 30◦ or more (Ray, 1998). The effect of SAL can
be included as an additional forcing gh∇ΩζSAL where ζSAL is the equilibrium-
like tide which is related to the surface elevation ζ through convolution with
the SAL Green’s function GSAL (e.g., Ray, 1998; Egbert et al., 2004)

ζSAL = GSAL ∗ ζ. (4.3)

It is possible to use this convolution formula to compute the full SAL effect,
however it would require to solve an integro-differential equation iteratively
in every time step which would be computationally impractical. Hence, an
alternative approach may be applied. In our model, we adopt a simple scalar
approximation of the SAL, proposed by Accad and Pekeris (1978)

ζSAL = εζ, (4.4)

where ε is the scalar factor or SAL coefficient. This eventually leads to a
replacement of the gravitational constant g by the “reduced gravity” gε =
(1− ε)g in equation (4.2). Values of the scaling factor ε varies in the literature
between 0.08 and 0.12 (Accad and Pekeris, 1978; Parke, 1982; Ray, 1998; Egbert
et al., 2004). We are aware that this approximation is crude and none of con-
stant value of ε is appropriate for all times and all locations in the ocean (Ray,
1998), however relatively good results can be achieved with the scalar approx-
imation as we will show later. Accad and Pekeris (1978) also proposed an iter-
ation scheme to compute ζSAL which was implemented in DEBOT and tested,
however a combination with a time-stepping scheme used in DEBOT produces
unrealistic results. Therefore, the scalar approximation is implemented in DE-
BOT.

Energy conversion of barotropic tidal currents into baroclinic (internal)
waves is accounted for by the internal tide drag (ITD) which is formulated
as the vector ~τITD = CITD ·~v, where CITD is the internal drag tensor (Green
and Nycander, 2013). Several formulations of CITD have been proposed, e.g.,
Jayne and St. Laurent (2001); Nycander (2005); Zaron and Egbert (2006), see
also Green and Nycander (2013) for a comparison. In DEBOT, a scheme by
Jayne and St. Laurent (2001) is implemented, mainly because it is independent
on the tidal frequency in contrary to the other formulations. The tensor CITD
is then reduced to a scalar coefficient CITD

CITD = κ
π

L
ĥ2Nb, (4.5)

where ĥ is the bottom roughness, which is estimated by a standard deviation
of bathymetric data, Nb is the observed buoyancy frequency at the seabed and
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Figure 4.1: Locations of the deep ocean (blue), shelf (green) and coastal (red) tidal
station used for the comparisons in this study.

L is a wave or topography length scale which is a tunable parameter. In this
study, for practical reasons, we keep L = 10 000 m as suggested by Jayne and
St. Laurent (2001); Green and Nycander (2013) and introduce an independent
tunable factor κ which is of the order O(1). The observed buoyancy frequen-
cies were computed from the temperature and salinity datasets of the World
Ocean Atlas 2013 (Locarnini et al., 2013; Zweng et al., 2013).

4.2 Testing data and methods of comparison
DEBOT outputs are compared to “ground truth” tidal data. In this paper, we
present comparisons with data from deep-ocean bottom pressure recorders,
shelf seas tidal stations and tide gauges along coastlines. Locations of all tidal
stations are shown in Figure 4.1. The same datasets were used in a recent
comparison of state-of-the-art global barotropic ocean tide models by Stammer
et al. (2014).

The deep ocean data consists of harmonic constants derived from 151 bot-
tom pressure recorder (BPR) stations. The data were compiled and described
in detail by Ray (2013). Bottom pressure data provide the best information for
an assessment of barotropic tide models in the deep, open ocean since other
type of measurements, like island-tide gauge data are influenced by undesir-
able effects such as internal tides, or local tide effects.

The test data for shelf seas consist of harmonic constants from 194 stations
located in shallow waters (less than 200 m) but not along continental coast-
lines. The great majority of the stations are BPR on shelves, however, some
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tide gauges at small offshore islands are included, especially near Australia.
Tide gauges at continental coasts are avoided. A core of the shallow water
data is the dataset compiled and used by Ray et al. (2011), however other sta-
tions were added: from the Patagonian Shelf off Tierra del Fuego (Richter et al.,
2012), the Gulf of Gabes (Sammari et al., 2006), or South China Sea (Beardsley
et al., 2004), and also some unpublished data were added, e.g., data from the
Savu Sea (Stammer et al., 2014). As evident from Figure 4.1, a substantial por-
tion of the shallow water stations is located on the northwest European Shelf,
76 stations from 194. Hence, to avoid overweighting by one geographical re-
gion in global statistics, all statistical evaluations in this study will be made
separately for the NW European Shelf and for the remaining stations around
the globe, unless otherwise specified.

Finally, the coastal data consist of a set of harmonic constants from 56 tide
gauges located along continental coastlines or nearby islands, such as the sta-
tion at Zanzibar. This is a subset of data published by Ponchaut et al. (2001)
after removing tide gauges at open ocean islands. It should be note that 56
tide gauges are not enough for a global assessment and moreover, some of
station locations are deemed to be land by DEBOT. Though these stations are
excluded from the comparisons, this dataset may still bring some useful infor-
mation about the model.

The testing data are in a form of harmonic constants of selected tidal con-
stituents, i.e., their amplitudes and Greenwich phase lags, whilst DEBOT is
a time-domain model with full lunisolar tidal forcing and thus all tidal con-
stituents are a priori included. Therefore, harmonic constants need to be ex-
tracted from real-time simulations by a harmonic analysis (see Section 3.7.1).
The DEBOT simulations run for 401 days. Such long time-series enable the
amplitudes and phase lags of all relevant tidal constituents to be deduced. 267
tidal constituents are selected from the tables in IHO (2006) so that the Rayleigh
criterion (3.49) is satisfied. Their in-phase and quadrature amplitudes are then
computed by the least square method. Of the 267 constituents, 23 are used for
the comparison in this thesis. They are listed in Table 4.1.

For each testing stations and for every tide from Table 4.1, the tidal signals,
the root mean squares (RMS) differences and the relative RMS differences are
computed. The signal is defined by

Signalk =
√

H2
sta,k/2, (4.6)

where the overbar denotes an average over all stations and Hsta,k is the am-
plitude of the kth tide at a station. The RMS difference and the relative RMS
difference are defined by

RMSk =

√
(Hsta,k cos(ωkt− Gsta,k)− Hmod,k cos(ωkt− Gmod,k))

2, (4.7)

Relative RMSk =
RMSk

Signalk
, (4.8)

where the overbar denotes an average over all stations and over one full cycle
of the constituent, i.e., ωkt varies from 0 to 2π, Gsta,k is the Greenwich phase lag
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Table 4.1: 23 selected tidal constituents used for the comparison of the DEBOT model
with the tide gauge data. Listed are their signals in the deep ocean (DO), on the north-
west European Shelf (ES), in shallow waters elsewhere (SE) and along coastlines (C),
number of stations where the tide is determined, periods in hours and origins (“M”
denotes the Moon, “S” denotes the Sun). The tides in bold are the major tidal con-
stituents used for the comparison in this chapter and Chapter 5. The other tides are
the minor tidal constituents which are discussed in Chapter 6.

Signal [cm] Number of stations Period
[h]Tide DO ES SE C DO ES SE C Origin

2Q1 0.25 0.36 0.44 0.34 121 3 4 56 28.006 M
σ1 0.29 0.43 0.41 — 119 3 3 — 27.848 M
Q1 1.79 2.14 2.69 2.21 148 76 74 56 26.868 M
ρ1 0.35 0.27 0.51 — 117 1 3 — 26.723 M
O1 8.75 5.59 10.91 11.30 151 76 118 56 25.819 M
P1 3.99 1.50 5.91 5.73 146 27 82 56 24.066 S
K1 12.51 5.51 17.07 18.47 151 76 118 56 23.934 M + S
J1 0.71 0.92 0.85 1.09 125 51 12 56 23.098 M
OO1 0.43 0.93 0.50 0.67 124 51 12 56 22.306 M
2N2 0.80 6.02 1.70 1.73 123 2 24 56 12.905 M
µ2 0.95 4.44 2.44 — 123 27 52 — 12.872 M
N2 6.36 17.02 12.54 13.57 151 76 113 56 12.658 M
ν2 1.13 3.24 2.18 — 121 26 19 — 12.626 M
M2 30.22 87.74 53.95 65.38 151 76 118 56 12.421 M
L2 0.75 4.57 3.13 — 124 59 41 — 12.192 M
T2 0.63 1.99 1.69 — 118 11 21 — 12.016 S
S2 11.21 29.96 21.72 23.93 151 76 118 56 12.000 S
R2 0.12 0.85 0.59 — 116 3 2 — 11.984 S
K2 3.12 7.30 7.09 6.68 146 28 81 56 11.967 M + S
M3 0.23 0.92 1.18 0.68 130 67 15 56 8.280 M
MN4 0.09 1.76 1.45 0.77 120 75 14 56 6.269 M2 + N2
M4 0.22 4.68 1.82 2.03 130 76 63 56 6.210 2×M2
MS4 0.12 2.91 1.49 1.42 121 75 44 56 6.103 M2 + S2
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of the kth tide at a station and Hmod,k and Gmod,k are the modelled amplitude
and phase lags, respectively. Finally, the overall signal, the root sum squares
(RSS) and the relative RSS are computed as

Overall signal =
√

∑
k

Signal2k, (4.9)

RSS =
√

∑
k

RMS2
k, (4.10)

Relative RSS =
RSS

Overall signal
, (4.11)

where the summation is over 23 tides listed in Table 4.1.
The RMS statistic is not the only way how to evaluate model errors. An-

other possibility is a median statistic which is less sensitive to outliers than the
RMS. Hence, the median absolute differences (MAD) between the in-phase
and quadrature amplitudes of DEBOT and the testing data are computed as

MADk = med (|Asta,k − Amod,k|,|Bsta,k − Bmod,k|) , (4.12)

where the median is computed from all stations. We note that, in this study,
the MAD are usually in a good agreement with the RMS differences, except for
a few cases, and hence, we will focus mainly on the RMS statistic.

The final comparative method, which is not statistical but can be used for an
evaluation of model predictions at selected stations or locations, is the absolute
vector difference (AVD)

AVDk =
√

H2
sta,k + H2

mod,k − 2Hsta,kHmod,k cos(Gsta,k − Gmod,k). (4.13)

4.3 Results of simulations: a parameter study
The DEBOT-h solution is dependant on several parameters: the ITD factor κ,
SAL coefficient ε, eddy viscosity coefficient AH, bottom friction coefficient cBF,
bathymetric dataset and spatial resolution. In this section, we investigate the
effects of all these parameters using the testing data and methods described
in the previous section. Hundreds of DEBOT-h simulations have been carried
out in order to find the best setting in terms of the RMS differences. Here,
we present only a portion of all results to describe main characteristics of the
model.

First, the combined effect of the bathymetry, spatial resolutions and ITD pa-
rameterization is studied. We test two bathymetric datasets, ETOPO1 (Amante
and Eakins, 2009) and GEBCO (IOC et al., 2003), both distributed as 1′ × 1′

models. The bathymetric data are implemented into DEBOT as averages over
intervals equivalent to the spatial discretization step in both latitudinal and
longitudinal directions. Figure 4.2 shows the RSS differences between DEBOT-
h and the tidal stations for ETOPO and GEBCO, the spatial resolutions 30′× 30′

and 15′ × 15′ and various ITD factor κ. Several observations can be made:
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(1) As expected, the RSS differences are much larger when the ITD is ne-
glected (κ = 0.0).

(2) Significantly better results in the cases of the finer resolutions 15′ × 15′

for both bathymetric datasets.
(3) The ITD is applied in depths greater than 500 m. However, we have

also carried out simulations with the ITD cut-off depth of 100 m, that
is, the ITD is applied in depths greater than 100 m. The red points in
Figure 4.2 stand for the experiments when the ITD cut-off depth is 100 m.
The results for both border depths are similar, however, it seems that
smaller RSS are achieved with the cut-off depth of 500 m. This is also
our general experience from many other experiments (not shown here).
Hence, in the rest of the paper, all our results are obtained with the ITD
cut-off depth 500 m.

(4) GEBCO seems to be a generally better choice of the bathymetry than
ETOPO.

(5) Since the bottom roughness ĥ in the formula for the ITD parameterization
(4.5) is computed from the bathymetric data, it is not surprising that the
smallest RSS differences are given by different values of κ for GEBCO
and ETOPO.

(6) Although the ITD is computed from local values of the bottom roughness
and observed buoyancy frequency, it seems that the factor κ should be
also spatially dependent since the best RSS differences in each testing
dataset can be achieved with different values of κ. This also follows from
Figure 4.3 which shows the relative RMS differences of eight major tidal
constituents, Q1, O1, P1, S1, K1, N2, M2, S2 and K2, for various κ. While
the best RMS differences between DEBOT-h and the datasets in the deep
ocean, on the northwest European shelf and along coastlines are given
by κ ≈ 1.5, the best RMS differences in other shelf areas are given by
κ ≈ 0.8.

We have also carried out model simulations with finer spatial resolutions
for fixed parameters which is shown in Figure 4.4. The RMS differences are
not in general smaller for the resolutions of 6′ × 6′ and 10′ × 10′ than for the
resolution of 15′ × 15′. This unexpected behaviour indicates that a different
combination of parameters should be chosen for resolutions finer than 15′ ×
15′. Unfortunately, our computational possibilities are limited which prevents
us to perform a comprehensive parameter study for a very fine resolution.
Therefore, the following parameter study is for the 15′ × 15′ resolution.

Second, the effect of the self-attraction and loading of the water is investi-
gated. Figure 4.5 shows the relative RMS differences for various values of the
SAL coefficient ε. The immediate finding is that neglecting the SAL (ε = 0) re-
sults in large RMS differences which is an expected behaviour. Another finding
is that the best RMS differences of each dataset and also each tidal constituent
are related to different values of ε which points out limitations of the SAL
scalar approximation. We pick up ε = 0.1 as a global compromise, however in
future studies, the SAL should be treated in a more rigorous way.
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Figure 4.2: The RSS differences between DEBOT-h and the tidal stations in the deep-
ocean (topleft), on the northwest European shelf (top right), in shallow waters else-
where (bottom left) and along continental coastlines (bottom right) for two bathymet-
ric datasets, ETOPO and GEBCO, spatial resolutions 30′ and 15′ and various ITD fac-
tors κ. “ITD100” denotes simulations with the ITD applied in depths greater than
100 m, otherwise it is applied in depths greater than 500 m.
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Figure 4.3: The relative RMS differences between DEBOT-h and data from tidal sta-
tions for various ITD factors κ.
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Figure 4.4: The relative RMS differences between DEBOT-h and data from tidal sta-
tions for various spatial resolutions.

GEBCO 15', AH=1E4, cBF=0.003, κ=1.4

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

0.00 0.07 0.08 0.09 0.10 0.11 0.12 0.13

R
e
la

ti
v
e
 R

M
S

 d
iff

e
re

n
ce

s

SAL coefficient ε

Deep ocean

Q1
O1
P1
K1
N2
M2
S2
K2

RSS

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

0.00 0.07 0.08 0.09 0.10 0.11 0.12 0.13

R
e
la

ti
v
e
 R

M
S

 d
iff

e
re

n
ce

s

SAL coefficient ε

European shelf

Q1
O1
P1
K1
N2
M2
S2
K2

RSS

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

0.00 0.07 0.08 0.09 0.10 0.11 0.12 0.13

R
e
la

ti
v
e
 R

M
S

 d
iff

e
re

n
ce

s

SAL coefficient ε

Shallow elsewhere

Q1
O1
P1
K1
N2
M2
S2
K2

RSS

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

0.00 0.07 0.08 0.09 0.10 0.11 0.12 0.13

R
e
la

ti
v
e
 R

M
S

 d
iff

e
re

n
ce

s

SAL coefficient ε

Coast

Q1
O1
P1
K1
N2
M2
S2
K2

RSS

Figure 4.5: The relative RMS differences between DEBOT-h and the tidal stations for
various SAL coefficients ε.
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Figure 4.6: The relative RMS differences between DEBOT-h and the tidal stations for
various eddy viscosity coefficients AH.

Third, the effect of the eddy viscosity is shown in Figure 4.6. There is hardly
any sensitivity to the eddy viscosity coefficient AH in the range from 5× 102 m2

s

to 104 m2

s and only slightly worse results are for AH > 104 m2

s . Obviously, the
main source of the energy dissipation in DEBOT-h is the ITD while the eddy
viscosity plays a secondary role in the energy budget (see Section 4.5). Note
that in the older version of DEBOT without the ITD (EM15), the eddy viscosity
represents an important frictional term and larger values of AH are accom-
panied by better RMS differences. However, the eddy viscosity term is still
needed in present DEBOT-h to eschew numerical instabilities which can occur
if this term is omitted. Furthermore, in the case of too large AH, greater than
105 m2

s , the model produces completely unrealistic results (not shown here)
and thus, AH must be kept in the range circa 102 − 104 m2

s .
Finally, the effect of the bottom friction is shown in Figure 4.7. In the deep

ocean, the results are almost insensitive to the value of cBF while in the shelf
seas, the bottom friction has a much greater impact on the resulted RMS dif-
ferences and cBF = 0.002 or cBF = 0.003 seems to be an optimal value.

4.4 The best setting
After performing hundreds of simulations, we concluded that the best DEBOT-
h setting in terms of the RMS statistic is as follows: the GEBCO bathymetry,
κ = 1.4, ε = 0.1, AH = 104 m2

s and cBF = 0.003. This setting is picked up
as a compromise between the deep ocean and shelf seas. Table 4.2 summa-
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GEBCO 15', ε=0.10, AH=1E4, κ=1.4
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Figure 4.7: The relative RMS differences between DEBOT-h and the tidal stations for
various bottom-friction coefficients cBF.

rizes the RMS differences of this model setting against the testing tidal stations
(RMSTS) and also against data-assimilative TPXO8 over the entire ocean do-
main (RMSalt). As will be shown in the next chapter, assimilative models are
much more precise than purely hydrodynamical by approximately one order
of magnitude and therefore, TPXO8 can be used as another tool to evaluate er-
rors of DEBOT-h. RMSalt in the deep ocean are computed from all gridpoints
with depths greater than 1000 m and in the shelf seas from all gridpoints with
depths greater than 20 m but shallower than 200 m. In the deep ocean, both
RMS statistics are almost identical while on the continental shelves, RMSalt
give generally better results than RMSTS. This suggests that RMSTS may be
skewed by some outliers which is illustrated by Figure 4.8. The left part shows
the histogram of the absolute vector differences between DEBOT-h and the
shelf seas tidal stations. The mean value of the AVD is 33.3 cm but the median
is 23.5 cm. Hence, while model errors are less than 25 cm at most locations
in the shelf seas, there is still a handful of locations with much greater errors.
The right part shows locations of the tidal stations on the northwest Europeans
shelf and their AVD. In simple words, the closer to land, the worse prediction
with the largest errors in the English channel and the Irish sea. Regarding the
other shallow water areas, two stations with by far largest AVD are located
on the Patagonian shelf. Our conclusion is that the DEBOT-h errors on the
continental shelves are generally about 20 cm or less but much larger in some
coastal areas, bay, straits, etc.

Table 4.3 compares DEBOT-h with other state-of-the-art purely hydrody-
namical models. Only the M2 tide is considered here. The other models are
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Table 4.2: Tidal signals and RMS differences (in cm) between DEBOT-h and the tidal
stations (RMSTS) and between DEBOT-h and TPXO8 (RMSalt).

Q1 O1 P1 K1 N2 M2 S2 K2

Deep ocean
Signal 1.79 8.75 3.99 12.51 6.36 30.22 11.21 3.12
RMSTS 0.55 2.59 0.84 5.29 1.85 9.92 4.47 1.85
RMSalt 0.57 2.97 0.80 4.10 1.88 10.38 4.87 1.62

European shelf
Signal 2.14 5.59 1.50 5.51 17.02 87.74 29.96 7.30
RMSTS 1.32 3.34 1.23 4.69 6.59 38.98 15.78 3.24

Shelf seas elsewhere
Signal 2.69 10.91 5.91 17.07 12.54 53.95 21.72 7.09
RMSTS 1.66 6.64 2.85 8.68 5.45 25.10 12.66 4.34

Shelf seas overall
Signal 2.49 9.20 4.70 13.75 14.46 69.18 25.27 7.18
RMSTS 1.53 5.58 2.35 7.38 5.93 31.28 13.96 3.94
RMSalt 1.22 6.70 2.09 6.99 4.15 22.49 10.16 2.97

Coast
Signal 1.93 9.74 4.93 15.94 11.18 55.54 21.44 6.02
RMSTS 0.64 3.39 1.31 6.31 4.32 23.49 10.58 3.24
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Figure 4.8: Left: Histogram of the absolute vector differences between DEBOT-h and
the shallow seas tidal stations (the mean value of all stations is 33.3 cm, the median is
23.5 cm). Right: Map of the tidal stations on the northwest European shelf and their
AVD indicated by color.
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Table 4.3: The M2 RMS differences (in cm) of DEBOT-h and other purely hydrodynam-
ical models against the deep ocean and shelf seas tidal stations (RMSTS) and against
TPXO8 (RMSalt).

Deep ocean Shelf seas

Model RMSTS RMSalt RMSTS RMSalt

DEBOT-h 9.92 10.38 31.3 22.5
HIM 8.75 5.25 33.7 22.3
OTIS-GN 7.54 6.76 25.3 18.6
STORMTIDE 8.33 7.76 48.2 27.9
OTIS 5.63 4.65 23.6 24.0
STM-1B 12.69 7.74 30.5 25.8
HYCOM 7.82 7.00 49.0 26.2

HIM (Arbic et al., 2008), OTIS-GN (Green and Nycander, 2013), STORMTIDE
(Müller et al., 2012), OTIS (Egbert et al., 2004), STM-1B (Hill et al., 2011) and
HYCOM (Arbic et al., 2010). The RMS values are taken from Stammer et al.
(2014). We can say that DEBOT-h is comparable in accuracy with the other
models in the shelf seas, however it is still a little bit worse in the deep ocean.
This may be caused by several reasons. First, different bathymetry and reso-
lution of the other models (DEBOT-h has the resolution of 15′ while the others
7.5′ or finer). However, since the RMS differences of DEBOT-h on the continen-
tal shelves are relatively good, we rather think that the problem may be in the
parameterization of the ITD and the scalar approximation of the SAL. Future
works should be focused on an implementation of more rigorous parameteri-
zation of the ITD and SAL.

Besides statistical methods, model errors might be also evaluated by a vi-
sual inspection of global charts. Figure 4.9 shows the M2 amplitudes and
Greenwich phase lags of the surface elevations and zonal and meridional trans-
ports (h~v) for DEBOT-h and DEBOT-a (amplitudes and phase lags for other
major constituents are shown in Figures B.1–B.8 in Appendix B). Moreover,
Figure 4.10 shows the absolute vector differences of all three variables be-
tween DEBOT-h and DEBOT-a and also between DEBOT-a and the indepen-
dent, data-assimilative TPXO model for reference (AVD for other major con-
stituents are shown in Figures B.9–B.16 in Appendix B). As can be seen, general
patterns of both DEBOT-h and DEBOT-a are same, however there are some
problematic spots. Especially two large areas in the Pacific ocean with the sur-
face elevations AVD up to 40 cm which are probably the main reason of large
RMSalt in the deep ocean. Another problematic areas are a belt along the west
coast of North America and the Southern Ocean, especially in the Weddel and
Ross seas which are mostly covered by ice shelves. The ice-covered area of
the Weddel and Ross seas are not included in our solution and obviously, their
omission produces large errors. On the other hand, DEBOT-h seems to be gen-
erally good in the Atlantic and Indian oceans and the northwest part of the
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Figure 4.9: Comparison of DEBOT-h (left) and DEBOT-a (right): M2 amplitudes and
Greenwich phase lags of the surface elevations (two top panels), zonal transports (two
middle panels) and meridional transports (two bottom panels).

72



Chapter 4 DEBOT-h: a purely hydrodynamical model

Figure 4.10: Absolute vector differences between DEBOT-h and DEBOT-a (left) and
DEBOT-a and TPXO (right) for the M2 surface elevations (top), zonal transports (mid-
dle) and meridional transports (bottom).

Pacific ocean (except some smaller areas, e.g., Hudson bay, the Mozambique
channel, the Patagonian shelf, the Irish sea, etc.).

4.5 The energy and dissipation in DEBOT-h
The energy and dissipation properties of DEBOT-h are discussed in this sec-
tion. First, let us summarize basic formulae for the energy and dissipation of a
barotropic ocean model. For details, see classical texts, e.g., Pond and Pickard
(1983); Pedlosky (1987). The kinetic energy EK and potential energy EP are
defined as

EK =
ρ

2
h(u2 + v2), EP =

ρ

2
gζ2, (4.14)

where ρ is the density of the ocean water. The dissipation D in DEBOT-h con-
sists of three parts, the dissipation due to the internal tide drag DITD, due to
the bottom friction DBF and due to the eddy viscosity DEV ,

DITD = ρCITD|~v|2, DBF = ρcBF|~v|3, DEV = −ρAH~v · ∇Ω · σ. (4.15)

For the best setting in terms of the surface elevation, which was discussed
in the previous section, the globally integrated, time-averaged energy is

73
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449.27 PJ and the dissipation is 4.23 TW. The energy is in a relatively good
agreement with the value 517.11 PJ computed from the TPXO8 dataset. The
dissipation is larger than the observed values 3.51 TW (Egbert and Ray, 2003)
and 3.54 TW (Taguchi et al., 2014) by about 21 %, however the tidal dissipation
in models which do not assimilate any data is usually larger by 5–30 % than the
dissipation based on data-constrained models (Arbic et al., 2004; Egbert et al.,
2004; Simmons et al., 2004; Griffiths and Peltier, 2009). Therefore, we consider
our value 4.23 TW to be acceptable. 52 % of the dissipation (2.20 TW) occurs
in waters deeper than 1000 m, which is larger than 40 % (1.42 TW) quoted by
Taguchi et al. (2014). DEBOT-h is thus not completely physically consistent
and dissipates too much energy in the deep ocean. Note that Egbert and Ray
(2003) quotes even a smaller amount of the dissipation in deep waters, 29 %,
however they accounted for a less complete deep ocean area.

Time-averaged energy and dissipation are computed for various model pa-
rameters. The results are plotted in Figure 4.11 which shows some interesting
features. The total energy and dissipation are decreasing with larger values of
the internal tide drag factor κ but they are only slightly affected by the eddy
viscosity or bottom-friction coefficient. This is consistent with the tests against
the tide gauge data from Section 4.3 where the internal tide drag has the major
impact on the resulted surface elevations while the bottom friction is important
only in shallow and coastal seas and the eddy viscosity hardly has any influ-
ence on the elevations. A proportion of DITD, DBF and DEV is changing with
various values of κ, AH and r. The larger one of these parameters is the larger
the corresponding dissipation is and two other dissipation are attenuated.

The global energy and dissipation increase with the increasing resolution
and do not converge to the values deduced from the assimilative models. On
the other hand, the amount of the deep ocean dissipation decreases with the
increasing resolution. The ratio is 30 % and 42 % for 6′ × 6′ and 10′ × 10′,
respectively, which is in a better agreement with the values quoted by Egbert
and Ray (2003) and Taguchi et al. (2014) than for the 15′ × 15′ resolution.
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Figure 4.11: Global time-averaged energy (left panel) and dissipation (right panel) for
various spatial resolutions (top), internal tide drag factors κ (middle top), eddy vis-
cosity coefficients AH (middle bottom) and bottom-friction coefficients cBF (bottom).
Thin black lines are amounts (in percent, right y-axes) of the energy and dissipation
in the deep ocean (depths greater than 1000 m). The dashed lines denote values de-
duced from assimilative models: the energy is computed from the TPXO8 datasets,
the dissipation values are from Taguchi et al. (2014).
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CHAPTER

5

DEBOT-A: AN ASSIMILATIVE MODEL

For many years, knowledge of ocean tides was limited due to the fact that
most of the tide gauge measurements were located at coasts, islands and

ports only and hence there was a lack of information about tides in deep
oceans. During 1980s the Naval Surface Weapon Center (NSWC) model by
Schwiderski (1980), which assimilated tide gauges to determine global tides,
was regarded as the most precise global model, however, it was known that
it contained decimal and larger errors (Shum et al., 1997). This has been over-
come by satellite altimetry. TOPEX/Poseidon (hereafter T/P), a joint satellite
mission between NASA and CNES which was launched in 1992, was specially
designed to measure global ocean tides and achieved this goal with a great suc-
cess. Walter Munk described T/P as “the most successful ocean experiment
of all time” (Munk, 2002). During first years of T/P mission, altimetric data
significantly helped to develop and improve several global ocean tide models
which provided much better accuracy than NSWC. This dramatical progress
was described by Shum et al. (1997). T/P stopped to provide scientific data
in 2005 after a malfunction, however, its successor Jason-1 was already operat-
ing (launched 2001, deactivated 2013). Altimetric observations has continued
with the Ocean Surface Topography Mission (OSTM) on the Jason-2 satellite,
which has been providing data since 2008, and Jason-3 mission which was
launched in January 2016. Data from other satellite missions (e.g., ERS-1,2,
GFO, Envisat) are also used. In more than 20 years of satellite altimetry the re-
search on ocean tides has advanced dramatically resulting in improved global
tide models and more accurate tide atlases as well as better understanding of
tidal dynamics and energy dissipation. This progress was recently described
in Stammer et al. (2014).

In this chapter, DEBOT-a, an assimilative model constructed as an exten-
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sion of purely hydrodynamical DEBOT-h, is introduced. First, a short review
of modern assimilative and empirical models is provided in Section 5.1. The
assimilation scheme used in DEBOT-a is introduced and described in Sec-
tion 5.2 and results of DEBOT-a simulations are shown in Section 5.3.

5.1 A review of modern global ocean tide models
Modern global ocean tide models can be divided into three categories:

(1) Forward (purely) hydrodynamical models which are not constrained by
any data (tide gauge and/or altimetry). Purely hydrodynamical mod-
elling was discussed in the previous chapter.

(2) Barotropic hydrodynamical model constrained by tide information
through assimilation.

(3) Empirical models which can be either purely empirical models directly
derived from satellite data or semi-empirical models which are empirical
corrections of reference models.

State-of-the-art global ocean tide models are compared in Stammer et al.
(2014) and their accuracy is below 1 cm of root mean square model differences
against deep-ocean tidal measurements for major tidal constituents. Here, we
briefly describe assimilative and empirical approaches of the modern models.

5.1.1 Assimilative models
The assimilative modelling approach integrates satellite altimetry (and tide
gauges) data into barotropic hydrodynamic models. Such models are, for ex-
ample, TPXO8 (Egbert et al., 1994; Egbert and Erofeeva, 2002), FES2012 (Lyard
et al., 2006; Carrère et al., 2012) or HAMTIDE (Zahel, 1995; Taguchi et al., 2014).
All models are based on linearised momentum and continuity equation which
are solved in spectral domain

iωζ̂ +∇ · ~̂U = 0, (5.1)

Ω~̂U + gh∇ζ̂ = ~F, (5.2)

where

Ω =

(
iω + K − f

f iω + K

)
, (5.3)

ζ = ζ̂e−iωt, (5.4)

h~u = ~U = ~̂Ue−iωt, (5.5)

where i =
√
−1, ω is the tidal frequency, f the Coriolis coefficient, K the linear

drag coefficient and ~F the tidal forcing, self-attraction and loading. Such a
linear system can be formally written as

S~u = ~F. (5.6)
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A goal of the assimilation is to find such a vector of tidal velocities ~u which is
consistent with (5.6) as well as with a vector ~d of tidal data

~d = L~u, (5.7)

where L is an observational operator which projects the unknown tidal cur-
rents ~u on the observed data ~d. A general inversion approach can be applied
to satisfy both (5.6) and (5.7) which means to minimize the functional

J =
(

S~u− ~F
)H

Σ−1
m

(
S~u− ~F

)
+
(
~d− L~u

)H
Σ−1

d

(
~d− L~u

)
, (5.8)

where Σm and Σd are the covariances matrices for the model and data errors
and the upper index H denotes the Hermitian transpose. Methods for com-
puting the functional (5.8) and the covariance matrices are not described here
and we refer to the aforementioned papers for details.

Model equation (5.6) is linear, hence compound tides, which are generated
by non-linear interactions of astronomical tidal constituents, are not included.
However, there are two methods of how to include the compound tides into
the model’s tidal solution. In TPXO8, the prior solution ~u0 is computed for all
major tidal constituents simultaneously from the time-domain shallow water
equation with the advection, non-linear bottom friction and viscous terms. The
prior solution for the compound tides then can be added to the solution of the
assimilation process. In FES2012, non-linear forcing functions are added to the
spectral-domain shallow water equations (5.1) and (5.2) and the tidal potential
forcing at the compound tides frequencies is set to be equal to zero (see Lyard
et al. (2006) for details). To be complete, in HAMTIDE, the compound tides are
not a part of their solution.

5.1.2 Empirical models
Empirical models are derived by an analysis of satellite altimetry data which
means there are no ocean circulation equations to be solved. Such approach
lacks deep physical understanding of the tidal dynamics when compared to
the assimilative models, however, it can offer more precise estimation of tidal
heights without the knowledge of the bathymetry, bottom friction or internal
tide drag parametrization. A purely empirical model, which is derived directly
from data, is, for instance, OSU12 (Fok, 2012) while semi-empirical models, i.e.,
those which are empirical corrections to an a priori model, are, for example,
DTU10 (Cheng and Andersen, 2012), EOT11a (Savcenko and Bosch, 2012), both
use FES2004 (Lyard et al., 2006) as their reference model, or GOT4.8 (Ray, 1999)
which uses a collection of both global and regional models as its prior model.
Tidal constituents are determined by using the harmonic analysis (GOT4.8,
EOT11a) or response method (DTU10, OSU12). Both methods were introduced
in Section 3.7.

The empirical models include only the sea surface elevations, however, the
tidal currents can still be derived by a least-square method described in Ray
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(2001). Let us consider simple linear shallow water equations

∇ · ~̂U = −iωζ̂, (5.9)(
iω + K − f

f iω + K

)
~̂U = ~F− gh∇ζ̂. (5.10)

Then all terms on the right-hand sides are known and the two-dimensional
vector ~̂U is over-determined by the three equation. Hence, the unknown ve-
locities can be found by a least-square method.

5.2 The assimilation scheme in DEBOT-a
DEBOT-a is constructed as an extension of DEBOT-h, which means that it is
also a non-linear, time-domain model with the full lunisolar tidal forcing. This
is an alternative model compared to the state-of-the-art assimilative models
TPXO, FES or HAMTIDE which are all based on linearised, spectral-domain
equations and a general inversion scheme is applied for the assimilation of
satellite altimetry data as described in Section 5.1.1.

The assimilation scheme used in DEBOT-a is based on a periodical “up-
grade” of the surface elevation. It means that the model solution is given by
the hydrodynamical model and at regular time intervals ∆T, an assimilation
process is applied and the model solution is constrained by data information.
A flow diagram of this process is shown in Figure 5.1. The assimilation inter-
val ∆T is generally much larger than the model time step ∆t which is only a
few seconds (∆t = 7.5 s for the 15′ × 15′ resolution).

As data constraints, we use the DTU10 model (Cheng and Andersen, 2012)
which is a freely available, state-of-the-art empirical model comparable in ac-
curacy to other empirical or assimilative models mentioned in the previous
section. DTU10 is based on an empirical correction to FES2004 and provides
the surface elevation amplitudes and Greenwich phase lags of the Q1, O1,
P1, S1, K1, N2, M2, S2, K2 and M4 tidal constituents on a 7.5′ grid. The data
of DTU10 are assimilated into DEBOT in a form of the surface elevation ζE
which is a superposition of the aforementioned tides excluding the S1 tide, i.e.,
ζE = ∑i ζEi, i = {Q1, O1, P1, K1, N2, M2, S2, K2, M4}. S1 is a radiational tide

DEBOT upgrade

Empirical
model

Figure 5.1: Flow diagram of the assimilation process used in DEBOT-a.
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generated primarily by diurnal atmospheric pressure loading at the frequency
of exactly 1 cycle per solar day whereas the astronomical tidal potential at the
same frequency is negligible (Ray and Egbert, 2004). Modelling of the S1 tide
would require a model of atmospheric pressure which, however, is not imple-
mented in DEBOT. This issue should be addressed in future studies, however
in this study, we restrict our attention to tidal signals generated by the lunisolar
potential only.

The assimilation process is a weighted summation of the surface elevations
given by the hydrodynamical model, ζD, and the data, ζE,

ζ = wζE + (1− w)ζD, (5.11)

where w ∈ (0,1) is the weight given to the data and ζ the “upgraded” surface
elevation. Since the future time level in the DEBOT time-stepping scheme is
computed from three previous ones and in order to prevent some “big shocks”
to the system, the assimilation process is divided into four time steps with in-
creasing w. Let n denote a time level when the assimilation process is activated.
Then wn = w/4, wn+1 = w/2, wn+2 = 3w/4 and wn+3 = w. Let us emphasize
that the model time step ∆t between the time levels n and n + 1 is not equal
to the assimilation interval ∆T. The assimilation is activated every Nth time
step, where N = ∆T

∆t . Between the assimilation processes, the model solution
is given by the hydrodynamical model only.

There is one obvious critical issue with Equation (5.11). The DEBOT ele-
vations ζD are generated by the full tidal potential, i.e., all tidal constituents
are included whilst the elevations from DTU10 are composed of 9 tidal con-
stituents only. This means that signals of all other minor tidal constituents
which are contained in ζD would be destroyed by the assimilation process
and the main advantage of ocean tide modelling with the full lunisolar poten-
tial would be lost. However, it is possible to overcome this undesirable phe-
nomenon by launching DEBOT-h, computing time series of the elevation for
all gridpoints, extracting signals of the minor tidal constituents from the time
series and using them as another “data” for DEBOT-a. Then, ζE = ∑i ζEi +
∑j ζDj, where i stands for the aforementioned tides contained in DTU10 and j
stands for other minor tides extracted from DEBOT-h.

5.3 Results of simulations
The assimilation process is dependent on two parameters, the assimilation in-
terval ∆T and the weight w. These parameters are examined through series
of tests against the tidal stations (the testing datasets and methods were de-
scribed in the previous chapter, Section 4.2). A sampling of DEBOT-a, from
which the RMS and MAD statistics are computed, is chosen not to be equal to
∆T or multiples of ∆T to avoid picking up only those time steps which explic-
itly include assimilation. Figures 5.2 and 5.3 show the relative RMS differences
between DEBOT-a and the testing data for various values of ∆T and w, re-
spectively. The assimilation process has a great impact on resulted elevations
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Figure 5.2: The relative RMS differences between DEBOT-a and the tidal stations for
various values of the assimilation interval ∆T. Note that ∞ denotes results of non-
assimilative DEBOT-h.
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Figure 5.3: The relative RMS differences between DEBOT-a and the tidal stations
for various values of the assimilation weight w. Note that 0 denotes results of non-
assimilative DEBOT-h.
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even for relatively large intervals ∆T = 1− 2 h and relatively small weights
w < 0.5. However, better RMS differences are generally achieved with smaller
intervals and larger weights, though there are only slight differences among
simulations with ∆T = 10, 15, 20 min and w > 0.5, up to 1-2 mm in the deep
ocean and 1-2 cm in the shelf seas.

We compare our results with other state-of-the-art empirical and assimila-
tive models for the eight major tidal constituents which is summarized in Ta-
bles 5.1, 5.2 and 5.3 and Figures 5.4, 5.5 and 5.7. The empirical models are
DTU10, GOT4.8, OSU12 and EOT11a. The assimilative models are HAMTIDE,
FES2012 and TPXO8. The appropriate values are taken from Stammer et al.
(2014). For the comparison we use the results of the simulation with ∆T =
10 min and w = 1.0. In these tables, the RSS are computed from the RMS
values of the eight major tides only.

In the deep ocean (Table 5.1 and Figure 5.4), DEBOT-a is quite compa-
rable to the other models although some improvements are still required as
O1, K1 and K2 are a little bit worse than other models. This may be caused
by errors of the prior hydrodynamical model and we believe that better accu-
racy of DEBOT-a can be achieved by future improvements of hydrodynamical
DEBOT-h.

It is interesting that on the northwest European shelf (Table 5.2 and Fig-
ure 5.5), DEBOT-a is very good for diurnal constituents, approaching the best
numbers, but relatively poor for semi-diurnal constituents, especially for the
M2 tide where DEBOT-a drops behind the other model by about 0.5–3 cm. This
suggest that the RMS statistic of the European shelf datasets, which consists of
only 76 tidal stations, is affected by some outliers. This can be seen in Fig-
ure 5.6 which shows the histogram of the M2 AVD between DEBOT-a and the
shelf seas data and the map of the stations on the NW European shelf with
their AVD values. For the NW European shelf, the median of the M2 AVD is
2.85 cm but the mean value is 5.56 cm. Hence, while the M2 model errors are
less than 3 cm at most locations on the NW European shelf, there are still some
problematic spots with much larger errors, namely the station on Jersey island
in the English channel and some stations in the Irish sea close to a land. On the
other hand, the RMS statistic of the other shelf seas seems to be less affected by
outliers and more reliable. As shown in the histogram of Figure 5.6, there are
some stations in the “shelf seas elsewhere” with extraordinarily large M2 AVD,
however they are less significant than on the NW European shelf. The median
of the M2 AVD is 2.22 cm in these shelf seas and the mean value is 3.92 cm. The
RMS differences of DEBOT-a in the “shelf seas elsewhere” are comparable to
other models results without extremal values, as you can see in Table 5.2 and
Figure 5.5.

Finally, DEBOT-a is also comparable with the other models along continen-
tal coastlines, see Table 5.3 and Figure 5.7. Some tidal station locations are
deemed by DEBOT to be land and these stations are not included in the RMS
and MAD statistics. This is a little inconsistent with the RMS and median val-
ues from other models which were computed from all coastal stations using
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Table 5.1: Tidal signals and RMS differences of DEBOT-a and state-of-the-art empirical
and assimilative models against the deep ocean BPR stations (in cm).

Q1 O1 P1 K1 N2 M2 S2 K2 RSS

Signal 1.79 8.75 3.99 12.51 6.36 30.22 11.21 3.12 36.62
DEBOT-a 0.214 0.363 0.288 0.498 0.264 0.573 0.406 0.389 1.106
DTU10 0.226 0.277 0.292 0.449 0.274 0.613 0.415 0.383 1.088
GOT4.8 0.165 0.296 0.234 0.423 0.252 0.510 0.369 0.209 0.923
OSU12 0.304 0.369 0.194 0.430 0.441 0.578 0.940 0.287 1.395
EOT11a 0.232 0.317 0.224 0.404 0.335 0.564 0.428 0.365 1.056
HAMTIDE 0.160 0.317 0.199 0.373 0.245 0.513 0.397 0.176 0.904
FES2012 0.216 0.309 0.355 0.471 0.342 0.658 0.407 0.223 1.120
TPXO8 0.153 0.310 0.181 0.442 0.201 0.523 0.338 0.151 0.894
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Figure 5.4: The RMS differences of DEBOT-a and state-of-the-art empirical and assim-
ilative models against the deep ocean BPR stations.
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Table 5.2: Tidal signals and RMS differences of DEBOT-a and state-of-the-art empirical
and assimilative models against the shelf seas tidal stations (in cm).

Q1 O1 P1 K1 N2 M2 S2 K2 RSS

NW European shelf
Signal 2.1 5.6 1.5 5.5 17.0 87.7 30.0 7.3 94.9
DEBOT-a 0.84 0.79 0.41 1.21 2.32 6.25 2.72 1.19 7.50
DTU10 0.83 0.81 0.51 1.27 2.17 3.50 2.38 0.92 5.17
GOT4.8 0.93 0.92 0.55 1.30 1.97 5.87 2.51 1.09 7.04
OSU12 1.11 1.24 0.69 1.53 1.77 5.04 4.04 1.29 7.22
EOT11a 0.85 0.83 0.50 1.24 2.13 5.53 3.43 1.13 7.17
HAMTIDE 0.92 1.96 0.47 1.14 1.65 3.11 2.64 0.92 5.14
FES2012 0.88 0.82 0.71 1.19 1.39 3.71 1.94 0.63 4.82
TPXO8 0.88 0.72 0.46 1.21 1.58 3.85 1.70 0.74 4.87

Shelf seas elsewhere
Signal 2.7 10.9 5.9 17.1 12.5 54.0 21.7 7.1 63.6
DEBOT-a 0.82 1.12 1.00 1.68 1.81 4.01 2.51 1.65 5.84
DTU10 0.82 1.11 1.06 1.70 1.80 3.44 2.39 1.57 5.40
GOT4.8 0.69 1.05 0.92 1.68 1.97 4.14 2.93 1.59 6.11
OSU12 1.00 1.17 0.84 1.75 1.87 4.61 3.00 1.15 6.42
EOT11a 0.73 1.07 0.78 1.64 1.86 5.05 3.39 1.31 6.87
HAMTIDE 0.97 1.16 0.80 2.02 2.01 3.89 2.52 1.44 5.88
FES2012 0.80 1.00 0.89 1.51 1.58 3.33 2.30 1.02 4.96
TPXO8 0.82 1.00 0.82 1.47 2.00 3.50 1.93 1.12 5.07
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Figure 5.5: The RMS differences of DEBOT-a and state-of-the-art empirical and assim-
ilative models against the tidal stations on the NW European shelf (left) and in shallow
seas elsewhere (right).

85
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Figure 5.6: Left: Histogram of the absolute vector differences between DEBOT-h and
the shallow seas tidal stations (the mean value of all stations is 4.56 cm, the median is
2.52 cm). Right: Map of the tidal stations on the northwest European shelf and their
AVD indicated by a color.

some extrapolation where it was necessary (Stammer et al., 2014). Hence, the
median statistic is probably more meaningful than the RMS in this case. Nev-
ertheless, the DEBOT-a results are good when compared to the other models,
regardless of the used method.

At the end of this section, we present a comparison of tidal currents. There
is no global testing dataset of tidal currents, hence we compare DEBOT-h,
DEBOT-a, TPXO8 and FES2012 with each other. Table 5.4 shows global signals
of the transports h~v computed for DEBOT-h, DEBOT-a, TPXO8 and FES2012
and the RMS differences of the transports between the models. The RMS
differences are also shown in Figure 5.8. The model transports or velocities
are not directly constrained by any measurements, therefore the differences
might be relatively high. The RMS differences DEBOT-h/TPXO8 and DEBOT-
h/FES2012 are higher than DEBOT-a/TPXO8 and DEBOT-a/FES2012, respec-
tively, for all eight major tidal constituents, especially for M2 and S2. The
RMS differences DEBOT-a/TPXO8, DEBOT-a/FES2012 and TPXO8/FES2012
are approximately the same. This suggests that the assimilative models are
better in a prediction of tidal currents than purely hydrodynamical DEBOT-h,
however none of the three assimilative models is probably significantly bet-
ter than the other two. Unfortunately, without a global testing dataset of tidal
transports or velocities, it is impossible to say which assimilative model pro-
vides the most realistic tidal currents.
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Table 5.3: Tidal signals, RMS differences and median absolute differences of DEBOT-a
and state-of-the-art empirical and assimilative models against the coastal tide gauges
(in cm).

Q1 O1 P1 K1 N2 M2 S2 K2 RSS

Signal 1.9 9.7 4.9 15.9 11.2 55.5 21.4 6.0 63.8

RMS differences
DEBOT-a 0.49 1.06 0.65 1.74 1.47 5.68 2.87 1.17 6.99
DTU10 0.62 1.29 0.73 2.08 1.72 5.24 2.68 1.40 6.82
GOT4.8 0.46 1.01 0.57 1.80 1.92 7.00 3.53 1.34 8.47
OSU12 1.14 1.68 1.20 3.20 2.15 9.01 5.31 1.41 11.48
EOT11a 0.54 1.32 0.85 2.38 1.78 4.50 2.84 1.49 6.49
HAMTIDE 0.29 1.42 0.71 2.65 2.27 14.63 5.41 1.80 16.17
FES2012 0.32 0.89 0.61 1.65 1.74 6.60 2.27 0.77 7.50
TPXO8 0.43 1.13 0.93 2.01 3.34 15.65 7.79 2.12 18.10

Median absolute differences
DEBOT-a 0.16 0.34 0.28 0.56 0.37 1.20 0.64 0.40 1.64
DTU10 0.21 0.37 0.37 0.67 0.42 1.28 0.77 0.42 1.83
GOT4.8 0.14 0.42 0.27 0.62 0.60 1.30 0.80 0.37 1.87
OSU12 0.35 0.46 0.26 0.62 0.59 1.19 1.58 0.34 2.27
EOT11a 0.18 0.36 0.30 0.61 0.41 1.06 0.65 0.32 1.56
HAMTIDE 0.12 0.46 0.27 0.68 0.40 1.02 0.66 0.28 1.57
FES2012 0.18 0.43 0.44 0.66 0.47 1.36 0.66 0.24 1.85
TPXO8 0.13 0.26 0.25 0.58 0.28 1.49 0.49 0.21 1.75
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Figure 5.7: The RMS differences (left) and median absolute differences (right) of
DEBOT-a and state-of-the-art empirical and assimilative models against the coastal
tide gauges.
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Table 5.4: Global signals of the transports h~v computed for DEBOT-h, DEBOT-a,
TPXO8 and FES2012 and the RMS differences between the models (in m2

s ).

Q1 O1 P1 K1 N2 M2 S2 K2 RSS

Signal
DEBOT-h 3.31 15.18 6.06 18.25 10.35 53.58 22.16 5.99 64.16
DEBOT-a 3.11 13.89 6.32 19.49 11.24 53.66 22.24 6.64 64.55
TPXO8 3.08 16.25 7.02 23.22 10.78 51.97 21.37 6.01 64.59
FES2012 5.37 19.10 8.17 25.76 11.46 54.56 22.13 6.32 69.00

RMS differences
DEBOT-h/DEBOT-a 1.63 7.29 2.28 8.52 4.09 21.75 10.45 4.00 27.36
DEBOT-h/TPXO8 1.57 10.08 3.82 15.22 4.07 22.35 10.51 3.62 31.46
DEBOT-a/TPXO8 1.46 8.01 3.54 13.20 1.84 7.68 3.75 2.28 18.30
DEBOT-h/FES2012 4.43 14.05 5.60 19.10 5.06 26.28 11.51 3.77 38.42
DEBOT-a/FES2012 4.40 12.57 5.29 17.70 3.33 14.79 5.85 2.53 28.09
TPXO8/FES2012 4.22 13.20 5.92 20.33 3.02 13.85 4.85 1.40 29.44

 0

 5

 10

 15

 20

 25

 30

 35

 40

Q1 O1 P1 K1 N2 M2 S2 K2 RSS

R
M

S
 d

iff
e
re

n
ce

s 
[m

2
/s

]

DEBOT-h/DEBOT-a
DEBOT-h/TPXO8
DEBOT-a/TPXO8

DEBOT-h/FES2012
 DEBOT-a/FES2012

TPXO8/FES2012

Figure 5.8: Global RMS differences of the transports h~v between DEBOT-h, DEBOT-a,
TPXO8 and FES2012.
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CHAPTER

6

MODELLING OF MINOR TIDAL
CONSTITUENTS

So far, our attention has been focused on the eight major tides only. However,
as DEBOT is a non-linear ocean model forced by the full lunisolar poten-

tial of the second and third degree, it allows us to model all tidal constituents
simultaneously including non-linear compound tides. Although signals of mi-
nor constituents are generally very small compared to the major constituents
(especially to M2), reaching amplitudes usually several millimeters in the deep
ocean and several centimeters in the shallow shelf seas, knowledge of them
might still be useful in some applications. Hence in this chapter, we deal with
DEBOT predictions of selected minor tides. However, we should note that
long-term tides of greater periods than diurnal (e.g., fortnightly M f , monthly
Mm, semi-annual Ssa, etc.) are not addressed here due to lack of high-quality
testing data. There is a great need for a global test dataset of long-period tides,
however it would require very long time-series to distinguish such tidal sig-
nals from the background noise (Ray, 2013; Stammer et al., 2014).

Minor tidal constituents are usually not included in global ocean models
except for M4 which is a part of six of the seven modern empirical and as-
similative models mentioned in the previous chapter (HAMTIDE is the excep-
tion). TPXO8 includes also the non-linear MN4 and MS4 tides, however only
FES2012 provides global atlases of larger number of tidal constituents, 33 tides
in total.

Analogously to the previous chapters, we compute the RMS differences
and MAD for selected minor tidal constituents. The constituents was chosen
so that DEBOT can be compared to other models. We also excluded those tides
which were detected at only a few stations. For example, the R2 harmonic con-
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Table 6.1: Selected minor tidal constituents, their tidal signals and RMS differences
between the deep ocean BPR stations and the ocean models (in cm).

RMS differences

Signal DEBOT-a GOT4.8 FES2012 TPXO8

2Q1 0.25 0.093 0.085
J1 0.71 0.344 0.178 0.131
OO1 0.43 0.376 0.265
2N2 0.80 0.226 0.271 0.119
µ2 0.95 0.229 0.409 0.197
ν2 1.13 0.375 0.075 0.129
L2 0.75 0.393 0.250 0.235
T2 0.63 0.294 0.130 0.194
R2 0.12 0.102 0.101
M3 0.23 0.096 0.231
MN4 0.09 0.082 0.073 0.068
M4 0.22 0.092 0.089 0.115 0.075
MS4 0.12 0.113 0.104 0.134

stants are provided by only five shelf seas stations overall and thus, R2 is ex-
cluded from the shelf seas comparison. Final results are summarized in Tables
6.1 (deep ocean) and 6.2 (shelf seas) and graphically in Figure 6.1. DEBOT-a
is compared to FES2012, TPXO8 (for three compound tides) and in the deep
ocean also to GOT4.8 whose values were inferred from the tidal admittance
(Ray, 2013). In Figure 6.1, we also plot values from DEBOT-h to show that the
assimilation process, described in Section 5.2, does not affect minor tides. Of
course, this is not a case of M4 which is constrained by the DTU10 dataset.

The values inferred from GOT4.8 in the deep ocean are generally better
than the DEBOT-a ones except for 2N2 and µ2. This suggests that it could
be beneficial for DEBOT-a—at least in the deep ocean—to be constrained by
another data of harmonic constants of minor diurnal and semi-diurnal tides
deduced from an empirical model using the tidal admittance. The results
of FES2012 are generally better than DEBOT-a for diurnal and semi-diurnal
tides but DEBOT-a is obviously better for third-diurnal M3 owing to the im-
plemented forcing term of the third degree. Regarding non-linear MN4, M4
and MS4, the results of all three models, DEBOT-a, FES2012 and TPXO8, seem
to be roughly equal except for the NW European shelf where TPXO8 predic-
tions are significantly better, probably due to a very high resolution of 2′ for
shelf areas. As mentioned, M4 is included also in DTU10, EOT11a and OSU12.
Their RMS differences and MAD against the tidal stations are not shown here
but they are roughly the same as in the case of DEBOT-a.

In the deep ocean, the relative RMS differences for minor diurnal and semi-
diurnal tides are about 10–30 % of the signal (except for very small R2) which
is the same as for the eight major tides. This suggests that possible future
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Table 6.2: Selected minor tidal constituents, their tidal signals, RMS differences and
median absolute differences between the shelf seas tidal stations and ocean models (in
cm).

RMS differences Median absolute differences

Signal DEBOT-a FES2012 TPXO8 DEBOT-a FES2012 TPXO8

NW European shelf
J1 0.92 0.938 0.872 0.307 0.210
µ2 4.44 3.947 1.104 0.835 0.586
ν2 3.24 2.195 1.034 0.516 0.729
L2 4.57 2.686 1.769 1.133 0.897
T2 1.99 1.650 0.712 0.733 0.535
M3 0.92 0.557 1.000 0.174 0.341
MN4 1.76 1.812 1.141 0.717 0.625 0.478 0.274
M4 4.68 2.772 2.270 1.183 0.707 0.770 0.420
MS4 2.91 3.024 1.847 1.157 0.806 0.716 0.451

Shelf seas elsewhere
J1 0.85 0.544 0.423 0.323 0.100
2N2 1.70 1.100 0.547 0.546 0.244
µ2 2.44 1.998 1.749 0.649 0.461
ν2 2.18 1.272 0.648 0.832 0.313
L2 3.13 2.543 1.911 0.872 0.632
T2 1.69 1.040 0.558 0.586 0.366
M3 1.18 0.544 1.027 0.171 0.508
MN4 1.45 1.067 0.914 0.597 0.306 0.306 0.163
M4 1.82 1.254 0.946 0.928 0.373 0.257 0.317
MS4 1.49 1.498 1.331 1.515 0.345 0.446 0.562

improvements of DEBOT-h discussed in Section 4.4 (finer resolution, more rig-
orous treatment of the ITD and SAL) should also lead to more precise deter-
mination of minor tidal constituents. In the shelf seas, the relative differences
of minor tides are much larger, however, we should emphasize that the RMS
differences and MAD for the minor tides in the shelf seas are computed from
relatively small number of stations (see Table 4.1 in Section 4.2) and thus they
can not provide a general description of a global model and are rather indica-
tive.

In Appendix B, global charts of minor tidal constituents are plotted. Fig-
ures B.17–B.36 show the surface elevation amplitudes and Greenwich phase
lags from DEBOT-a and FES2012 for reference and also the absolute value dif-
ferences of the surface elevation between DEBOT-a and FES2012.
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Figure 6.1: The RMS differences (left) and median absolute differences (right) between
the ocean models and the deep ocean (top) and shelf seas (middle and bottom) tidal
stations for selected minor tidal constituents.
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CONCLUSIONS

The DEBOT model, a time-domain global barotropic ocean model has been
developed and is presented in this thesis. DEBOT is primarily designed

for ocean flow generated by the tidal attraction of the Moon and the Sun, how-
ever, it can be used for other ocean applications where the shallow water ap-
proximation is convenient, for instance, tsunami wave propagation.

In Chapter 1, the shallow water equations in the geographical coordinates
are derived from the complete Navier-Stokes equations, including the full
stress tensor with the Reynolds tensor which is usually omitted when perform-
ing this derivation and then, a posteriori, added into the final shallow water
equations.

The shallow water equations are a base for the numerical model which is
described in Chapter 2. The conservation of the total mass and the total energy
of the numerical model is tested (Section 2.3). The series of synthetic tests,
which comprise a tsunami wave propagating through the global ocean with an
artificial island, is presented (Figures 2.2 and 2.3). The results of the tests are
satisfactory, meaning that the total mass is preserved in all experiments and the
total energy is preserved in the case of zero eddy viscosity and decreases with a
non-zero viscosity (Figure 2.4). The eddy viscosity can effectively attenuate the
energy, however, a too large eddy viscosity coefficient makes the computations
unstable and results in an obviously unnatural increase in the energy.

As mentioned, DEBOT is designed for precise global ocean tides simula-
tions. The model can be launched in two modes: the purely hydrodynamical
mode, DEBOT-h, and assimilative mode, DEBOT-a.

Purely hydrodynamical DEBOT-h is presented in Chapter 4. DEBOT-h pre-
dictions are tested against the datasets of the deep ocean BPR stations, shelf
seas tidal station and tide gauges along continental coastlines. A parametric
study at the 15′ × 15′ spatial resolution has been performed to investigate ef-
fects of input parameters and to find the best setting. The parametric study
reveals that
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(1) GEBCO is a generally better choice of the bathymetric dataset than
ETOPO.

(2) The ITD scaling factor κ should be spatially dependent.
(3) The scalar approximation of the SAL is rather crude and should be re-

placed by some more rigorous formulation. Unfortunately, our attempts
with an iterative scheme of the SAL were unsuccessful and hence, it is an
open question how the SAL should be treated in our time-domain model.

(4) The eddy viscosity has hardly any effect on resulted ocean tides however
it should still be included in the model to avoid numerical instabilities.

(5) The bottom friction is important only in the shelf seas and coastal ar-
eas and has almost no effect in the deep ocean which is an expected be-
haviour.

DEBOT-h is comparable in accuracy with the state-of-the-art purely hydro-
dynamical models (Table 4.3) in the shelf seas however it is a bit worse in the
deep ocean which may be caused by a coarser resolution, the scalar approxi-
mation of the SAL or the parameterization of the ITD. A more rigorous treat-
ment of the ITD and SAL and their possible implementation in DEBOT will be
addressed in future works in order to reach generally better accuracy.

We also compares DEBOT-h with its data-assimilative version, DEBOT-a
to find possible problematic areas of purely hydrodynamical modelling (Fig-
ures 4.9 and 4.10). Larger errors are produced in the Southern ocean which
is caused by the omission of the ice-covered Weddel and Ross seas from the
DEBOT model domain. These seas should be definitively included in future
version of DEBOT.

The energy and dissipation properties are also documented. The total dissi-
pation is 4–4.5 TW for various model parameters (Figure 4.11), larger than the
observed value of 3.5 TW, however a similar behaviour is common for many
other non-assimilative models. DEBOT-h also dissipates too much energy in
the deep ocean, about 50 % of the dissipation occurs in waters deeper than
1000 m for the 15′ × 15′ spatial resolution while the realistic amount is about
40 %. A better ratio of the deep ocean dissipation is achieved at the higher
resolutions of 6′ × 6′ and 10′ × 10′.

DEBOT-a, the assimilative version of DEBOT, is introduced in Chapter 5.
The author proposes a simply yet efficient assimilation scheme which can be
used in a time-domain model and it is an alternative to spectral-domain gen-
eral inversion schemes used in FES, TPXO and HAMTIDE. The surface ele-
vation are periodically constrained by the elevations of the empirical model
DTU10. The tests against the “ground truth” tidal data prove that DEBOT-a
is comparable in accuracy with the state-of-the-art empirical and assimilative
ocean tide models though there are still some locations where DEBOT-a does
not reach desired accuracy, e.g., for semi-diurnal tides on the northwest Eu-
ropean shelf. We believe that future improvements of prior hydrodynamical
model (DEBOT-h) will allow us to achieve better results with DEBOT-a, also in
the problematic locations.

Finally, minor tidal constituents and their model predictions are discussed
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in Chapter 6. As DEBOT is a non-linear model with the full lunisolar forcing,
all tidal constituents can be modelled simultaneously. Selected minor tides
modelled by DEBOT-a are tested against the tidal stations and compared with
FES2012, TPXO8 and minor tides inferred from GOT4.8. Three conclusions can
be drawn:

(1) Good results for M3 (in comparison with FES2012).
(2) Roughly equal predictions of the non-linear compound MN4, M4 and

MS4 tides as FES and TPXO8, except for the NW European shelf where
TPXO8 is better.

(3) Generally worse predictions of diurnal and semi-diurnal minor tides than
FES and GOT4.8. These tides are not constrained by data and are given
by the purely hydrodynamical solution. The future improvements of
DEBOT-h, discussed above, should lead to a better estimation of the mi-
nor tides too.

DEBOT can be useful for those applications where other ocean tide models
are not suitable. The primary goal and original motivation was to use DE-
BOT for the research conducted in related geophysical disciplines. The model
has already been used to study the magnetic field induced by ocean tides
(Velı́mský et al., 2016) and the influence of ocean tides on the Earth’s rotation
(Schindelegger et al., 2016). The source code of DEBOT is freely available at
http://geo.mff.cuni.cz/~einspigel/debot.html.
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D. Einšpigel and Z. Martinec. Time-domain modelling of global ocean tides
generated by the full lunisolar potential. submitted to Ocean Dyn., 2016.

W. Emery and R. Thompson. Data analysis methods in physical oceanography.
Pergamon Press, 1998.

C. L. Fefferman. Existence and smoothness of the Navier–Stokes equa-
tion, 2000. URL http://www.claymath.org/millennium/Navier-Stokes_

Equations/navierstokes.pdf. The Clay Mathematics Institute, Cambridge
(Massachusetts).

S. Ferrari and F. Saleri. A new two dimensional shallow water model including
pressure effects and slow varying bottom topography. ESAIM: Mathematical
Modelling and Numerical Analysing, 38:211–234, 2004.

H. S. Fok. Ocean tides modeling using satellite altimetry. PhD thesis, Ohio State
University, Columbus, 2012.

L.-L. Fu and A. Cazenave, editors. Satellite Altimetry and Earth Sciences: A Hand-
book of Techniques and Applications. Academic Press, San Diego, California,
2001.

P. Gent. The energetically consistent shallow water equations. J. Atmos. Sci.,
50:1323–1325, 1993.

J.-F. Gerbeau and B. Perthame. Derivation of viscous saint-venant system for
laminar shallow water; numerical validation. Discrete Contin. Dyn. Syst. Ser.
B, 1(1):89–102, 2000.

99

http://www.claymath.org/millennium/Navier-Stokes_Equations/navierstokes.pdf
http://www.claymath.org/millennium/Navier-Stokes_Equations/navierstokes.pdf
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APPENDIX

A

INVARIANT DIFFERENTIAL OPERATORS

Below we briefly introduce curvilinear orthogonal coordinates and summa-
rize important formulae for invariant differential operators in the general

right-handed curvilinear orthogonal coordinates and in the geographical co-
ordinates. For more information and the derivation of the formulae, see, e.g.,
Batchelor (1967); Martinec (2011).

A.1 Basic formulae
Given the Cartesian coordinates of a point P in the 3D space (y1,y2,y3). We
can define a system of curvilinear coordinates by specifying three coordinate
transformation functions xk.

xk = xk(y1,y2,y3) for k = 1,2,3, (A.1)

which are C1 (continuous first partial derivatives) and the Jacobian of the trans-
formation is nonzero almost everywhere

j = det
(

∂xk
∂yl

)
6= 0. (A.2)

Then there is a unique inverse of (A.1)

yk = yk(x1,x2,x3) for k = 1,2,3. (A.3)

The geographical coordinates r, φ, λ(x1 ≡ r, x2 ≡ φ, x3 ≡ λ) are defined by
the relations to the rectangular Cartesian coordinates

y1 = r cos φ cos λ, y2 = r cos φ sin λ, y3 = r sin φ, (A.4)
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or inversely

r =
√

y2
1 + y2

2 + y2
3, φ = arctan

 y3√
y2

1 + y2
2

 , λ = arctan
(

y2

y1

)
. (A.5)

The inverse of the Jacobian j is given

j−1 = r2 cos φ. (A.6)

Given the rectangular Cartesian unit base vectors~i1,~i2,~i3 and the position
vector ~p of the point P, which can be expressed as

~p = pk~ik. (A.7)

Then the curvilinear coordinate unit base vectors can be defined by the rela-
tions

~ek =
1
hk

∂~p
∂xk

, for k = 1,2,3, (A.8)

where hk are the scale factors, so-called the Lamé coefficients which are defined
by the relation

hk =

√
∂~p
∂xk
· ∂~p

∂xk
. (A.9)

We assume that new curvilinear coordinates are orthogonal and the base vec-
tors form a right-hand system, i.e.

~ek ·~el = δkl, ~ek ×~el = εklm~em, (A.10)

where δkl is the Kronecker delta and εklm is the Levi-Civita symbol

δkl =

{
1, if k = l,
0, if k 6= l, (A.11)

εklm =


+1, if (k,l,m) is (1,2,3), (3,1,2) or (2,3,1),
−1, if (k,l,m) is (1,3,2), (3,2,1) or (2,1,3),
0, if k = l or l = m or k = m.

(A.12)

The Lamé coefficients in the geographical coordinates are

hr = 1, hφ = r, hλ = r cos φ. (A.13)

The unit base vectors ~ek are functions of position and vary in direction.
Therefore spatial derivatives of this base vectors are not zero:

∂~ek
∂xl

= ∑
m

Γm
kl~em, (A.14)
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where Γm
kl are the Christoffel symbols, which can be explicitly expressed by

Γm
kl =

1
hk

∂hl
∂xk

δlm −
1

hm

∂hk
∂xm

δkl. (A.15)

Now we can write formulae for the partial derivatives of any vector or
tensor. The partial derivative of a vector ~v can be formulated as

∂~v
∂xm

= ∑
k

vk;l~ek, (A.16)

where vk;l is the balanced derivative of vk with respect to xl

vk;l =
∂vk
∂xl

+ ∑
m

Γk
mlvm. (A.17)

The partial derivative of a second-order tensor T can be formulated as

∂T
∂xm

= ∑
kl

Tkl;m~ek ⊗~el, (A.18)

where Tkl;m is the balanced derivative of Tkl with respect to xl

Tkl;m =
∂Tkl
∂xm

+ ∑
n

Γk
nmTnl + ∑

n
Γl

nmTkn. (A.19)

A.2 Invariant differential operators
With use of the previous formulae we can express the invariant differential op-
erators in the curvilinear orthogonal coordinates.

The gradient of a scalar:

∇ f =
1
hk

∂ f
∂xk

~ek (A.20)

In the geographical coordinates:

∇ f =
∂ f
∂r
~er +

1
r cos φ

∂ f
∂λ

~eλ +
1
r

∂ f
∂φ

~eφ (A.21)

The divergence of a vector:

∇ ·~v =
1

h1h2h3

[
∂

∂x1
(h2h3v1) +

∂

∂x2
(h1h3v2) +

∂

∂x3
(h2h1v3)

]
(A.22)

In the geographical coordinates:

∇ ·~v =
1
r2

∂

∂r
(r2vr) +

1
r cos φ

(
∂vλ

∂λ
+

∂(cos φvφ)

∂φ

)
(A.23)
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The curl of a vector:

∇×~v =
1

h2h3

[
∂(h3v3)

∂x2
− ∂(h2v2)

∂x3

]
~e1+

1
h1h3

[
∂(h1v1)

∂x3
− ∂(h3v3)

∂x1

]
~e2+

1
h1h2

[
∂(h2v2)

∂x1
− ∂(h1v1)

∂x2

]
~e3 (A.24)

In the geographical coordinates:

∇×~v =
1

r cos φ

[
∂vφ

∂λ
− ∂(cos φvλ)

∂φ

]
~er+

1
r

[
∂vr

∂φ
−

∂(rvφ)

∂r

]
~eλ+[

1
r

∂(rvλ)

∂r
− 1

r cos φ

∂vr

∂λ

]
~eφ (A.25)

The gradient of a vector:

(∇~v)kl =



1
hk

∂vk
∂xk

+ ∑
m

m 6=k

1
hm

∂hk
∂xm

vm

 if l = k

1
hk

(
∂vl
∂xk
− 1

hl

∂hk
∂xl

vk

)
if l 6= k

(A.26)

In the geographical coordinates:

∇~v =
∂vr

∂r
~er ⊗~er +

∂vλ

∂r
~er ⊗~eλ +

∂vφ

∂r
~er ⊗~eφ+

1
r

(
1

cos φ

∂vr

∂λ
− vλ

)
~eλ ⊗~er +

1
r

(
1

cos φ

∂vλ

∂λ
+ vr − tan φ vφ

)
~eλ ⊗~eλ+

1
r cos φ

(
∂vφ

∂λ
+ sin φ vλ

)
~eλ ⊗~eφ+

1
r

(
∂vr

∂φ
− vφ

)
~eφ ⊗~er +

1
r

∂vλ

∂φ
~eφ ⊗~eλ +

1
r

(
∂vφ

∂φ
+ vr

)
~eφ ⊗~eφ (A.27)

The divergence of a second-order tensor:

(∇ · T)l =
1

h1h2h3

[
∂

∂x1
(h2h3T1l) +

∂

∂x2
(h1h3T2l) +

∂

∂x3
(h1h2T3l)

]
+

∑
k

1
hkhl

(
∂hl
∂xk

Tlk −
∂hk
∂xl

Tkk

)
(A.28)
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In the geographical coordinates:

∇ · T =

[
1
r2

∂(r2Trr)

∂r
+

1
r cos φ

(
∂Tλr

∂λ
+

∂(cos φ Tφr)

∂φ

)
− 1

r
(
Tλλ + Tφφ

)]
~er+[

1
r2

∂(r2Trλ)

∂r
+

1
r cos φ

(
∂Tλλ

∂λ
+

∂(cos φ Tφλ)

∂φ

)
+

1
r
(
Tλr − tan φ Tλφ

)]
~eλ+[

1
r2

∂(r2Trφ)

∂r
+

1
r cos φ

(
∂Tλφ

∂λ
+

∂(cos φ Tφφ)

∂φ

)
+

1
r
(
Tφr + tan φ Tλλ

)]
~eφ

(A.29)

The Laplacian of a scalar:

∆ f =
1

h1h2h3

[
∂

∂x1

(
h2h3

h1

∂ f
∂x1

)
+

∂

∂x2

(
h1h3

h2

∂ f
∂x2

)
+

∂

∂x3

(
h1h2

h3

∂ f
∂x3

)]
(A.30)

In the geographical coordinates:

∆ f =
1
r2

∂

∂r

(
r2 ∂ f
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(A.31)

The Laplacian of a vector can be best obtained by using the vector differential
identity

∆~v = ∇×∇×~v +∇ · (∇~v). (A.32)
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APPENDIX

B

GLOBAL CHARTS OF SELECTED TIDES

Selected tides were extracted from DEBOT simulations and their global charts
are plotted and presented in this appendix. Figures B.1–B.8 show the am-

plitudes and Greenwich phase lags of the surface elevation and zonal and
meridional transports for eight major tides, i.e., Q1, O1, P1, K1, N2, M2, S2, K2,
and for both DEBOT modes, DEBOT-h (Chapter 4) and DEBOT-a (Chapter 5).
Figures B.9–B.16 show the absolute vector differences of all three variables be-
tween DEBOT-h and DEBOT-a and also between DEBOT-a and TPXO for ref-
erence. Finally, Figures B.17–B.36 show the surface elevation amplitudes and
Greenwich phase lags of selected minor tides and compound tides for DEBOT-
a and FES2012 for reference and also the absolute value differences of the sur-
face elevation between DEBOT-a and FES2012. The minor and compound tides
were chosen so they can be compared to the FES2012 atlas and they are: long-
period Ssa, Mm, M f , Mtm; diurnal J1; semi-diurnal ε2, 2N2, µ2, ν2, λ2, L2, T2, R2;
ter-diurnal M3; compound N4, MN4, M4, MS4, M6, M8. For tidal frequencies
and more information about the selected tides, see Tables 3.3 and 3.6 in Chap-
ter 3. All charts in high resolution can be downloaded from http://geo.mff.

cuni.cz/~einspigel/debot.html.
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Figure B.1: DEBOT-h (left) and DEBOT-a (right): Q1 amplitudes and Greenwich phase
lags of the surface elevations (two top panels), zonal transports (two middle panels)
and meridional transports (two bottom panels).
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Figure B.2: DEBOT-h (left) and DEBOT-a (right): O1 amplitudes and Greenwich phase
lags of the surface elevations (two top panels), zonal transports (two middle panels)
and meridional transports (two bottom panels).
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Figure B.3: DEBOT-h (left) and DEBOT-a (right): P1 amplitudes and Greenwich phase
lags of the surface elevations (two top panels), zonal transports (two middle panels)
and meridional transports (two bottom panels).
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Figure B.4: DEBOT-h (left) and DEBOT-a (right): K1 amplitudes and Greenwich phase
lags of the surface elevations (two top panels), zonal transports (two middle panels)
and meridional transports (two bottom panels).
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Figure B.5: DEBOT-h (left) and DEBOT-a (right): N2 amplitudes and Greenwich phase
lags of the surface elevations (two top panels), zonal transports (two middle panels)
and meridional transports (two bottom panels).
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Figure B.6: DEBOT-h (left) and DEBOT-a (right): M2 amplitudes and Greenwich
phase lags of the surface elevations (two top panels), zonal transports (two middle
panels) and meridional transports (two bottom panels).

119
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Figure B.7: DEBOT-h (left) and DEBOT-a (right): S2 amplitudes and Greenwich phase
lags of the surface elevations (two top panels), zonal transports (two middle panels)
and meridional transports (two bottom panels).
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Figure B.8: DEBOT-h (left) and DEBOT-a (right): K2 amplitudes and Greenwich phase
lags of the surface elevations (two top panels), zonal transports (two middle panels)
and meridional transports (two bottom panels).
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Figure B.9: Absolute vector differences between DEBOT-h and DEBOT-a (left) and
DEBOT-a and TPXO (right) for the Q1 surface elevations (top), zonal transports (mid-
dle) and meridional transports (bottom).
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Figure B.10: Absolute vector differences between DEBOT-h and DEBOT-a (left) and
DEBOT-a and TPXO (right) for the O1 surface elevations (top), zonal transports (mid-
dle) and meridional transports (bottom).
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Figure B.11: Absolute vector differences between DEBOT-h and DEBOT-a (left) and
DEBOT-a and TPXO (right) for the P1 surface elevations (top), zonal transports (mid-
dle) and meridional transports (bottom).
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Figure B.12: Absolute vector differences between DEBOT-h and DEBOT-a (left) and
DEBOT-a and TPXO (right) for the K1 surface elevations (top), zonal transports (mid-
dle) and meridional transports (bottom).
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Figure B.13: Absolute vector differences between DEBOT-h and DEBOT-a (left) and
DEBOT-a and TPXO (right) for the N2 surface elevations (top), zonal transports (mid-
dle) and meridional transports (bottom).
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Figure B.14: Absolute vector differences between DEBOT-h and DEBOT-a (left) and
DEBOT-a and TPXO (right) for the M2 surface elevations (top), zonal transports (mid-
dle) and meridional transports (bottom).
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Figure B.15: Absolute vector differences between DEBOT-h and DEBOT-a (left) and
DEBOT-a and TPXO (right) for the S2 surface elevations (top), zonal transports (mid-
dle) and meridional transports (bottom).
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Figure B.16: Absolute vector differences between DEBOT-h and DEBOT-a (left) and
DEBOT-a and TPXO (right) for the KK surface elevations (top), zonal transports (mid-
dle) and meridional transports (bottom).
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Figure B.17: Ssa surface elevation amplitudes (top) and Greenwich phase lags (middle)
by DEBOT-a (left) and FES2012 (right) and absolute value differences between the two
models (bottom).
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Figure B.18: Mm surface elevation amplitudes (top) and Greenwich phase lags (mid-
dle) by DEBOT-a (left) and FES2012 (right) and absolute value differences between the
two models (bottom).
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Figure B.19: M f surface elevation amplitudes (top) and Greenwich phase lags (mid-
dle) by DEBOT-a (left) and FES2012 (right) and absolute value differences between the
two models (bottom).
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Figure B.20: Mtm surface elevation amplitudes (top) and Greenwich phase lags (mid-
dle) by DEBOT-a (left) and FES2012 (right) and absolute value differences between the
two models (bottom).

133
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Figure B.21: J1 surface elevation amplitudes (top) and Greenwich phase lags (middle)
by DEBOT-a (left) and FES2012 (right) and absolute value differences between the two
models (bottom).
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Figure B.22: ε2 surface elevation amplitudes (top) and Greenwich phase lags (middle)
by DEBOT-a (left) and FES2012 (right) and absolute value differences between the two
models (bottom).
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Figure B.23: 2N2 surface elevation amplitudes (top) and Greenwich phase lags (mid-
dle) by DEBOT-a (left) and FES2012 (right) and absolute value differences between the
two models (bottom).
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Figure B.24: µ2 surface elevation amplitudes (top) and Greenwich phase lags (middle)
by DEBOT-a (left) and FES2012 (right) and absolute value differences between the two
models (bottom).
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Figure B.25: ν2 surface elevation amplitudes (top) and Greenwich phase lags (middle)
by DEBOT-a (left) and FES2012 (right) and absolute value differences between the two
models (bottom).
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Figure B.26: λ2 surface elevation amplitudes (top) and Greenwich phase lags (middle)
by DEBOT-a (left) and FES2012 (right) and absolute value differences between the two
models (bottom).
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Figure B.27: L2 surface elevation amplitudes (top) and Greenwich phase lags (middle)
by DEBOT-a (left) and FES2012 (right) and absolute value differences between the two
models (bottom).

140



Appendix B Global charts of selected tides

Figure B.28: T2 surface elevation amplitudes (top) and Greenwich phase lags (middle)
by DEBOT-a (left) and FES2012 (right) and absolute value differences between the two
models (bottom).
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David Einšpigel Time-domain modelling of global barotropic ocean tides

Figure B.29: R2 surface elevation amplitudes (top) and Greenwich phase lags (middle)
by DEBOT-a (left) and FES2012 (right) and absolute value differences between the two
models (bottom).
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Figure B.30: M3 surface elevation amplitudes (top) and Greenwich phase lags (mid-
dle) by DEBOT-a (left) and FES2012 (right) and absolute value differences between the
two models (bottom).
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Figure B.31: N4 surface elevation amplitudes (top) and Greenwich phase lags (middle)
by DEBOT-a (left) and FES2012 (right) and absolute value differences between the two
models (bottom).
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Figure B.32: MN4 surface elevation amplitudes (top) and Greenwich phase lags (mid-
dle) by DEBOT-a (left) and FES2012 (right) and absolute value differences between the
two models (bottom).
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Figure B.33: M4 surface elevation amplitudes (top) and Greenwich phase lags (mid-
dle) by DEBOT-a (left) and FES2012 (right) and absolute value differences between the
two models (bottom).
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Figure B.34: MS4 surface elevation amplitudes (top) and Greenwich phase lags (mid-
dle) by DEBOT-a (left) and FES2012 (right) and absolute value differences between the
two models (bottom).
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Figure B.35: M6 surface elevation amplitudes (top) and Greenwich phase lags (mid-
dle) by DEBOT-a (left) and FES2012 (right) and absolute value differences between the
two models (bottom).
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Figure B.36: M8 surface elevation amplitudes (top) and Greenwich phase lags (mid-
dle) by DEBOT-a (left) and FES2012 (right) and absolute value differences between the
two models (bottom).
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