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Introduction
Ocean tides are an important phenomenon which has a significant impact on
the entire Earth system. Therefore, precise ocean tide modelling is needed for
many geophysical and geodetic applications. One of the most important ap-
plication of ocean tide models is removing tidal signals from various measure-
ments, for example satellite altimetry or gravimetry, so any non-tidal signal
can be studied (e.g., Fu and Cazenave, 2001; Seeber, 2003; Visser et al., 2010).
Among other applications of ocean tide models, we can mention dissipation
of tidal energy, generation of internal tides and mixing of the oceans (e.g.,
Vlasenko et al., 2005; Arbic et al., 2010; Müller et al., 2012; Taguchi et al., 2014),
variations of the Earth’s rotation due to tides (e.g., Weis, 2006; Schindelegger
et al., 2016) or the induced magnetic field generated by motions of conductive
seawater in the main geomagnetic field (e.g., Tyler et al., 2003; Kuvshinov and
Olsen, 2005; Sabaka et al., 2015; Velı́mský et al., 2016).

Traditionally, ocean tides have been modelled in frequency domain with
forcing of selected tidal constituents, e.g., M2, S2, O1, K1, etc. This is the case
of the historical models from 70s and 80s but also some modern hydrodynam-
ical models, e.g., STM-1B (Hill et al., 2011) and assimilative models, e.g., FES
(Lyard et al., 2006; Carrère et al., 2012), HAMTIDE (Zahel, 1995; Taguchi et al.,
2014) and TPXO (Egbert et al., 1994; Egbert and Erofeeva, 2002). Such an ap-
proach is natural since ocean tides are primarily composed of handful of peri-
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odical or quasi-periodical signals, however, it neglects non-linearities of ocean
dynamics. It means that compound tides, e.g., M4, MS4, MN4, etc., which are
generated mainly on continental shelves by non-linear interactions of astro-
nomical tidal components, can not be predicted by frequency-domain models.
Although, we should note that the compound tides are still modelled in FES by
an iterative approach, however at the price of expensive computational costs
(Carrère et al., 2012). Apart from the compound tides, another non-linearity is
caused by the energy dissipation due to the friction at the sea bottom which is
usually parameterized in a quadratic form. Therefore, an alternative parame-
terization has to be implemented in frequency-domain models. STM-1B uses
an iterative scheme while the assimilative models include linearised bottom
drag terms.

In this thesis, we apply an alternative approach. We deal with ocean tide
modelling in time domain with the full lunisolar forcing. This means that
all tidal components, including the compound tides, are modelled simulta-
neously. Of course, this is not a completely novel approach. Several high-
quality time-domain models have been developed, e.g., OTIS (Egbert et al.,
2004) which is, however, forced by selected tidal components only; TiME (Weis
et al., 2008) with the full astronomical forcing but without a parameterization
of the important internal tide drag; or baroclinic models STORMTIDE (Müller
et al., 2012) and HYCOM (Arbic et al., 2010) which combine ocean circulation
and tides.

The model presented in this thesis is called “DEBOT” (David Einšpigel
Barotropic Ocean Tides) and incorporates the full lunisolar forcing given by
the astronomical tidal potential of the second and third order which is com-
puted from ephemerides, i.e., actual positions of the Moon and Sun. DEBOT
has been built up “from scratch” and has been developed since the author’s
master studies, see the author’s master thesis Einšpigel (2012). The model has
substantially changed since Einšpigel (2012) from a rather general shallow-
water model to a realistic ocean tide model. The derivation of the shallow-
water equations, which are a base of the model, has been revised and an orig-
inal semi-implicit time-stepping scheme has been replaced by a generalized
forward-backward scheme. And most importantly, a data assimilation scheme
has been developed and implemented in the time-domain model. As a conse-
quence, DEBOT has two modes: the purely hydrodynamical mode, denoted
as “DEBOT-h”, and the assimilative mode, denoted as “DEBOT-a”. These
changes has been documented in two peer-reviewed papers Einšpigel and
Martinec (2015, 2017), hereinafter EM15 and EM16. The source code of DE-
BOT is freely available at http://geo.mff.cuni.cz/~einspigel/debot.html.

1 Shallow water equations
In modelling ocean circulation, the moving free surface represents a crucial
problem. An approximate way to overcome this problem is by the so-called
shallow water approximation. This approximation can be applied when the ver-
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tical dimension of the solution domain is significantly smaller in comparison
with the horizontal dimension. Under this assumption, the Navier–Stokes
equations are reduced to the shallow water equations for the free-surface el-
evation and the horizontal components of flow velocity. The shallow water
equations, which were first derived by Adhémar Jean Claude Barré de Saint–
Venant, a french mechanician and mathematician, in 1871 (Barré de Saint-
Venant, 1871), are used in the modelling of many geophysical phenomena,
such as the oceans, atmosphere, shelf and coastal seas, rivers, and even ava-
lanches. The equations can be derived from the incompressible Navier–Stokes
system

ρ

(
∂~v
∂t

+∇ · (~v⊗~v)
)
= −∇p +∇ · σ − 2~Ω×~v +~g, (1)

where ρ is the applied density, ~v the velocity, ~Ω the vector of the mean angu-
lar velocity of the Earth, σ a symmetric, trace-free deviatoric tensor and ~g is
the vector of the gravitational acceleration. The system is supplemented with
boundary conditions. In this thesis, we assume a friction vector at the bottom
and that no fluid crosses the boundaries. The stress tensor σ is the Reynolds
tensor which describes energy losses in large-scale ocean motions due to tur-
bulences on very short scales. The derivation can be divided into three steps.

1. First, the so-called spherical approximation is applied. The radial dis-
tance of a material point in oceans is approximated by the mean Earth
radius a.

2. The equations are expressed in a dimensionless form and terms of small
magnitudes are neglected (the hydrostatic approximation).

3. The non-dimensionalized equations are integrated in the radial direction
from the bottom to the surface, using the Leibniz integral rule and the
appropriate boundary conditions are applied. Next, we assume the hori-
zontal flow being only weakly dependent on depth such that the deriva-
tives of velocities with respect to the radial direction are negligible.

The final form of the shallow water equations is

∂ζ

∂t
+∇Ω · (h~v) = 0, (2)

∂(h~v)
∂t

+∇Ω · (h~v⊗~v) = −gh∇Ωζ + f h~v×~ez −~τBF + AH∇Ω · σ, (3)

where ζ is the surface elevation ~v horizontal, depth-averaged velocities, ∇Ω is
the spherical nabla operator, h the height of the water column from the ocean
bottom to the surface, g is the gravitational constant, f = 2Ω sin φ is the Cori-
olis parameter, where Ω is the mean angular velocity of the Earth and φ the
latitude,~τBF is the bottom-friction vector, AH the eddy viscosity coefficient and
σ the eddy viscosity tensor. The eddy viscosity term describes energy losses
on large scales due to small-scale turbulences. The friction on the bottom of

3



the ocean is parametrized by a quadratic formula ~τBF = r~v|~v| which is a stan-
dard way in ocean tide modelling (e.g., Egbert et al., 2004; Weis et al., 2008; Hill
et al., 2011; Green and Nycander, 2013).

2 Numerical methods and tests

Let us briefly overview numerical methods used to solve the shallow water
equations (2) and (3). The equations are approximated in space by finite dif-
ferences on a staggered grid using the Arakawa C-grid (Arakawa and Lamb,
1977). The spatial resolution is defined by a user. The most of testing sim-
ulations whose results are discussed in Sections 3 and 4 are performed for
the resolution of 15′ × 15′. The model does not include the North pole area
to avoid the pole singularity. Therefore, in this study, we consider an artifi-
cial continent at the North pole bounded by the 85◦ North parallel line. The
time-stepping scheme in DEBOT is a generalized forward-backward scheme
using a combination of a third-order Adams-Bashforth step with a fourth-
order Adams-Moulton step (Shchepetkin and McWilliams, 2005, 2008). This
is a stable and verified time-stepping scheme which computes values on the
next time-level from three previous ones. The bottom friction is approximated
by a semi-implicit scheme proposed by Backhaus (1983). The code of DEBOT is
written in the free-form Fortran language with implemented C pre-processing
switches and OpenMP parallelization.

Validity of the numerical methods are tested by the conservation of integral
invariants. A set of tsunami experiments are performed on a globe with con-
tinents at the poles and an island at the equator. The bathymetry has a shape
of a Gaussian hill which leads to the formation of a circle island at the equator.
The initial elevation of the free surface is given by a Gaussian depression with
the amplitude of 100 m. The initial velocities are set equal to zero and the bot-
tom friction is omitted. We investigate the evolution of the total mass and total
energy during the 10-day simulation for several settings of the turbulent vis-
cosity coefficient AH with the spatial resolutions 60′ × 60′, 30′ × 30′, 20′ × 20′

and 15′ × 15′. In all experiments, the total volume retains a constant value of
−1.939× 1014 m3 with random deviations of the order m3 which is of the order
of the numerical errors. The evolution of the total energy is plotted in Figure 1.
The testing of the energy demonstrates the validity of the numerical code since
the energy is preserved in the case of zero eddy viscosity and decreases with
non-zero viscosity. The decline of the energy is only slightly affected by the
size of the spatial discretization step. The decline of the energy is greater with
increasing eddy viscosity, however, the simulation becomes numerically un-
stable if the eddy viscosity is too large. This undesirable effect is probably an
attribute of the time-stepping scheme in the case of too large AH.
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Figure 1: Evolution of the total energy from the tsunami experiment for spatial dis-
cretization of 60′ × 60′, 30′ × 30′, 20′ × 20′ and 15′ × 15′ and several values of the
turbulent viscosity coefficient AH.

3 DEBOT-h: a purely hydrodynamical model

3.1 Description of DEBOT
By purely hydrodynamical models we consider those tidal models whose so-
lution is not constrained by any measurements of sea level, whether satellite
altimetry or tide gauges data. Therefore, the model solution is given by equa-
tions of fluid motion, usually the shallow-water equation. DEBOT-h is such a
model and this section is dedicated to it. DEBOT is based on the shallow water
equations

∂ζ

∂t
+∇Ω · (h~v) = 0, (4)

∂(h~v)
∂t

+∇Ω · (h~v⊗~v) = −gεh∇Ωζ + f h~v×~ez −~τBF + AH∇Ω · σ −~τITD + ~T.
(5)

An attentive reader notices differences between equations (5) and (3) from
the end of Section 1. First, the gravitational constant g is replaced by the “re-
duced gravity” gε due to a parametrization of the self-attraction and loading of
the water. Second, the internal tide drag ~τITD, an additional dissipative term,
is added. Third, equation (5) contains the tidal forcing ~T.

The self-attraction and loading (SAL) of the water is an essential part of
ocean tide modelling since its omission can change computed tidal amplitudes
by 10 % or more and phases by 30◦ or more (Ray, 1998). The effect of SAL can
be included as an additional forcing gh∇ΩζSAL where ζSAL is the equilibrium-
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like tide. A simple scalar approximation of the SAL, proposed by Accad and
Pekeris (1978), is adopted in DEBOT

ζSAL = εζ, (6)

where ε is the scalar factor or SAL coefficient. This eventually leads to a
replacement of the gravitational constant g by the “reduced gravity” gε =
(1− ε)g in equation (5).

Energy conversion of barotropic tidal currents into baroclinic (internal)
waves is accounted for by the internal tide drag (ITD) which is formulated
as the vector

~τITD = κ
π

L
ĥ2Nb, (7)

where ĥ is the bottom roughness, which is estimated by a standard deviation
of bathymetric data, Nb is the observed buoyancy frequency at the seabed and
L is a wave or topography length scale which is a tunable parameter. In this
study, for practical reasons, we keep L = 10 000 m as suggested by Jayne and
St. Laurent (2001); Green and Nycander (2013) and introduce an independent
tunable factor κ which is of the order O(1).

The tidal forcing ~T is generated by the full lunisolar tidal potential of the
second and third degree V2 and V3, respectively (e.g., Doodson, 1921; Melchior,
1983; Smith, 1999; Fok, 2012)

V2 =
3
4

GMa2

d3

[
cos2 φ cos2 δ cos(2τ)+

sin(2φ) sin(2δ) cos τ+

3
(

sin2 φ− 1
3

)(
sin2 δ− 1

3

)]
, (8)

V3 =
1
4

GMa3

d4

[(
5 sin2 φ− 3

) (
5 sin2 δ− 3

)
sin φ sin δ+

3
2

(
5 sin2 φ− 1

) (
5 sin2 δ− 1

)
cos φ cos δ cos τ+

15
4

sin(2φ) cos φ sin(2δ) cos δ cos(2τ)+

5
2

cos3 φ cos3 δ cos(3τ)

]
, (9)

where G is the gravitational constant, M the mass of a celestial body, d and δ are
the geocentric distance and the declination of the celestial body, respectively
and τ the local hour angle, which is related to the right ascension α by

τ = ΩTGr + λ− α, (10)

where TGr is the Greenwich sidereal time and λ is the longitude.
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Table 1: The M2 RMS differences (in cm) of DEBOT-h and other purely hydrodynam-
ical models against the deep ocean and shelf seas tidal stations (RMSTS) and against
TPXO8 (RMSalt).

Deep ocean Shelf seas

Model RMSTS RMSalt RMSTS RMSalt

DEBOT-h 9.92 10.38 31.3 22.5
HIM 8.75 5.25 33.7 22.3
OTIS-GN 7.54 6.76 25.3 18.6
STORMTIDE 8.33 7.76 48.2 27.9
OTIS 5.63 4.65 23.6 24.0
STM-1B 12.69 7.74 30.5 25.8
HYCOM 7.82 7.00 49.0 26.2

3.2 Results of simulations
The DEBOT-h solution is dependant on several parameters: the ITD factor κ,
SAL coefficient ε, eddy viscosity coefficient AH, bottom friction coefficient cBF,
bathymetric dataset and spatial resolution. Hundreds of DEBOT-h simulations
have been carried out and compared to “ground truth” data from deep-ocean
bottom pressure recorders, shelf seas tidal stations and tide gauges along coast-
lines. Statistical methods are used to assess the accuracy of DEBOT: root mean
squares (RMS) differences, root sum squares (RSS), median absolute differ-
ences (MAD) and absolute vector differences (AVD).

After performing hundreds of simulations, we concluded that the best
DEBOT-h setting in terms of the RMS statistic is as follows: the GEBCO ba-
thymetry, κ = 1.4, ε = 0.1, AH = 104 m2

s and cBF = 0.003. This setting is
picked up as a compromise between the deep ocean and shelf seas. Table 1
shows the M2 RMS differences of this model setting against the testing tidal
stations (RMSTS) and also against TPXO8, an independent data-assimilative
model, over the entire ocean domain (RMSalt). The RMS differences of state-
of-the-art purely hydrodynamical models are also shown for references. The
other models are HIM (Arbic et al., 2008), OTIS-GN (Green and Nycander,
2013), STORMTIDE (Müller et al., 2012), OTIS (Egbert et al., 2004), STM-1B
(Hill et al., 2011) and HYCOM (Arbic et al., 2010). The RMS values are taken
from Stammer et al. (2014). We can say that DEBOT-h is comparable in accu-
racy with the other models in the shelf seas, however it is still a little bit worse
in the deep ocean. This may be caused by several reasons. First, different
bathymetry and resolution of the other models (DEBOT-h has the resolution
of 15′ while the others 7.5′ or finer). However, since the RMS differences of
DEBOT-h on the continental shelves are relatively good, we rather think that
the problem may be in the parameterization of the ITD and the scalar approx-
imation of the SAL. Future works should be focused on an implementation of
more rigorous parameterization of the ITD and SAL.

Besides statistical methods, model errors might be also evaluated by a vi-
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Figure 2: Comparison of DEBOT-h (left) and DEBOT-a (right): M2 amplitudes and
Greenwich phase lags of the surface elevations (two top panels), zonal transports (two
middle panels) and meridional transports (two bottom panels).
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Figure 3: Absolute vector differences between DEBOT-h and DEBOT-a (left) and
DEBOT-a and TPXO (right) for the M2 surface elevations (top), zonal transports (mid-
dle) and meridional transports (bottom).

sual inspection of global charts. Figure 2 shows the M2 amplitudes and Green-
wich phase lags of the surface elevations and zonal and meridional transports
(h~v) for DEBOT-h and DEBOT-a (Section 4). Moreover, Figure 3 shows the ab-
solute vector differences of all three variables between DEBOT-h and DEBOT-a
and also between DEBOT-a and TPXO8 for reference. As can be seen, general
patterns of both DEBOT-h and DEBOT-a are same, however there are some
problematic spots. Especially two large areas in the Pacific ocean with the sur-
face elevations AVD up to 40 cm which are probably the main reason of large
RMSalt in the deep ocean. Another problematic areas are a belt along the west
coast of North America and the Southern Ocean, especially in the Weddel and
Ross seas which are mostly covered by ice shelves. The ice-covered area of
the Weddel and Ross seas are not included in our solution and obviously, their
omission produces large errors. On the other hand, DEBOT-h seems to be gen-
erally good in the Atlantic and Indian oceans and the northwest part of the
Pacific ocean (except some smaller areas, e.g., Hudson bay, the Mozambique
channel, the Patagonian shelf, the Irish sea, etc.).
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4 DEBOT-a: an assimilative model
In this section, our attention is focused on the assimilative version of the DE-
BOT model — DEBOT-a. DEBOT-a is constructed as an extension of DEBOT-h,
which means that it is also a non-linear, time-domain model with the full lu-
nisolar tidal forcing. This is an alternative model compared to the state-of-the-
art assimilative models TPXO (Egbert et al., 1994; Egbert and Erofeeva, 2002),
FES (Lyard et al., 2006; Carrère et al., 2012) or HAMTIDE (Zahel, 1995; Taguchi
et al., 2014) which are all based on linearised, spectral-domain momentum and
continuity equations and a general inversion scheme is applied for the assimi-
lation of satellite altimetry data.

4.1 The assimilation scheme
The assimilation scheme used in DEBOT-a is based on a periodical “upgrade”
of the surface elevation. It means that the model solution is given by the hy-
drodynamical model and at regular intervals ∆T, an assimilation process is
applied and the model solution is constrained by data information. As data
constraints, we use the DTU10 model (Cheng and Andersen, 2012) which is
a freely available, state-of-the-art empirical model comparable in accuracy to
other empirical models such as GOT4.8 (Ray, 1999, 2013), EOT11a (Savcenko
and Bosch, 2012), OSU12 (Fok, 2012) or the assimilative models mentioned
above, see Stammer et al. (2014) for their intercomparison. DTU10 provides the
surface elevation amplitudes and Greenwich phase lags of 9 tidal constituents
(Q1, O1, P1, K1, N2, M2, S2, K2 and M4) on a 7.5′ grid. Signals of other tidal
constituents are given by the hydrodynamical solution only and are not con-
strained by any data. The assimilation process is a weighted summation of the
surface elevations given by the hydrodynamical model, ζD, and the data, ζE,
ζ = wζE + (1− w)ζD, where w ∈ (0,1) is the weight given to the data and ζ
the “upgraded” surface elevation.

The assimilation process is dependent on two parameters, the assimilation
interval ∆T and the weight w. These parameters are examined through series
of tests against the tidal stations. Figures 4 and 5 show the relative RMS differ-
ences between DEBOT-a and the testing data for various values of ∆T and w,
respectively. The assimilation process has a great impact on resulted elevations
even for relatively large intervals ∆T = 1− 2 h and relatively small weights
w < 0.5. However, better RMS differences are generally achieved with smaller
intervals and larger weights.

4.2 Results of realistic simulations
We compare our results with other state-of-the-art empirical and assimilative
models for the eight major tidal constituents which is summarized in Tables 2,
3 and 4. The empirical models are DTU10, GOT4.8, OSU12 and EOT11a. The
assimilative models are HAMTIDE, FES2012 and TPXO8. The appropriate val-
ues are taken from Stammer et al. (2014). For the comparison we use the results
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Figure 4: The relative RMS differences between DEBOT-a and the tidal stations for
various values of the assimilation interval ∆T. Note that ∞ denotes results of non-
assimilative DEBOT-h.
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Figure 5: The relative RMS differences between DEBOT-a and the tidal stations for
various values of the assimilation weight w. Note that 0 denotes results of non-
assimilative DEBOT-h.
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of the simulation with ∆T = 10 min and w = 1.0. In these tables, the RSS are
computed from the RMS values of the eight major tides only.

In the deep ocean (Table 2), DEBOT-a is quite comparable to the other mod-
els although some improvements are still required as O1, K1 and K2 are a little
bit worse than other models. This may be caused by errors of the prior hy-
drodynamical model and we believe that better accuracy of DEBOT-a can be
achieved by future improvements of hydrodynamical DEBOT-h.

It is interesting that on the northwest European shelf (Table 3), DEBOT-
a is very good for diurnal constituents, approaching the best numbers, but
relatively poor for semi-diurnal constituents, especially for the M2 tide where
DEBOT-a drops behind the other model by about 0.5–3 cm. This suggest that
the RMS statistic of the European shelf datasets, which consists of only 76 tidal
stations, is affected by some outliers. For the NW European shelf, the median
of the M2 AVD is 2.85 cm but the mean value is 5.56 cm. Hence, while the
M2 model errors are less than 3 cm at most locations on the NW European
shelf, there are still some problematic spots with much larger errors, namely
the station on Jersey island in the English channel and some stations in the
Irish sea close to a land. On the other hand, the RMS statistic of the other shelf
seas seems to be less affected by outliers and more reliable. The median of the
M2 AVD is 2.22 cm in these shelf seas and the mean value is 3.92 cm. The RMS
differences of DEBOT-a in the “shelf seas elsewhere” are comparable to other
models results without extremal values, as you can see in Table 3.

Finally, DEBOT-a is also comparable with the other models along continen-
tal coastlines, see Table 4. Some tidal station locations are deemed by DEBOT
to be land and these stations are not included in the RMS and MAD statis-
tics. This is a little inconsistent with the RMS and median values from other
models which were computed from all coastal stations using some extrapola-
tion where it was necessary (Stammer et al., 2014). Hence, the median statis-
tic is probably more meaningful than the RMS in this case. Nevertheless, the
DEBOT-a results are good when compared to the other models, regardless of
the used method.

5 Modelling of minor tidal constituents
So far, our attention has been focused on the eight major tides only. However,
as DEBOT is a non-linear ocean model forced by the full lunisolar potential of
the second and third degree, it allows us to model all tidal constituents simul-
taneously including non-linear compound tides. Although signals of minor
constituents are generally very small compared to the major constituents (es-
pecially to M2), reaching amplitudes usually several millimeters in the deep
ocean and several centimeters in the shallow shelf seas, knowledge of them
might still be useful in some applications. We should note that long-term
tides of greater periods than diurnal (e.g., fortnightly M f , monthly Mm, semi-
annual Ssa, etc.) are not addressed here due to lack of high-quality testing
data. Minor tidal constituents are usually not included in global ocean mod-
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Table 2: Tidal signals and RMS differences of DEBOT-a and state-of-the-art empirical
and assimilative models against the deep ocean BPR stations (in cm).

Q1 O1 P1 K1 N2 M2 S2 K2 RSS

Signal 1.79 8.75 3.99 12.51 6.36 30.22 11.21 3.12 36.62
DEBOT-a 0.214 0.363 0.288 0.498 0.264 0.573 0.406 0.389 1.106
DTU10 0.226 0.277 0.292 0.449 0.274 0.613 0.415 0.383 1.088
GOT4.8 0.165 0.296 0.234 0.423 0.252 0.510 0.369 0.209 0.923
OSU12 0.304 0.369 0.194 0.430 0.441 0.578 0.940 0.287 1.395
EOT11a 0.232 0.317 0.224 0.404 0.335 0.564 0.428 0.365 1.056
HAMTIDE 0.160 0.317 0.199 0.373 0.245 0.513 0.397 0.176 0.904
FES2012 0.216 0.309 0.355 0.471 0.342 0.658 0.407 0.223 1.120
TPXO8 0.153 0.310 0.181 0.442 0.201 0.523 0.338 0.151 0.894

Table 3: Tidal signals and RMS differences of DEBOT-a and state-of-the-art empirical
and assimilative models against the shelf seas tidal stations (in cm).

Q1 O1 P1 K1 N2 M2 S2 K2 RSS

NW European shelf
Signal 2.1 5.6 1.5 5.5 17.0 87.7 30.0 7.3 94.9
DEBOT-a 0.84 0.79 0.41 1.21 2.32 6.25 2.72 1.19 7.50
DTU10 0.83 0.81 0.51 1.27 2.17 3.50 2.38 0.92 5.17
GOT4.8 0.93 0.92 0.55 1.30 1.97 5.87 2.51 1.09 7.04
OSU12 1.11 1.24 0.69 1.53 1.77 5.04 4.04 1.29 7.22
EOT11a 0.85 0.83 0.50 1.24 2.13 5.53 3.43 1.13 7.17
HAMTIDE 0.92 1.96 0.47 1.14 1.65 3.11 2.64 0.92 5.14
FES2012 0.88 0.82 0.71 1.19 1.39 3.71 1.94 0.63 4.82
TPXO8 0.88 0.72 0.46 1.21 1.58 3.85 1.70 0.74 4.87

Shelf seas elsewhere
Signal 2.7 10.9 5.9 17.1 12.5 54.0 21.7 7.1 63.6
DEBOT-a 0.82 1.12 1.00 1.68 1.81 4.01 2.51 1.65 5.84
DTU10 0.82 1.11 1.06 1.70 1.80 3.44 2.39 1.57 5.40
GOT4.8 0.69 1.05 0.92 1.68 1.97 4.14 2.93 1.59 6.11
OSU12 1.00 1.17 0.84 1.75 1.87 4.61 3.00 1.15 6.42
EOT11a 0.73 1.07 0.78 1.64 1.86 5.05 3.39 1.31 6.87
HAMTIDE 0.97 1.16 0.80 2.02 2.01 3.89 2.52 1.44 5.88
FES2012 0.80 1.00 0.89 1.51 1.58 3.33 2.30 1.02 4.96
TPXO8 0.82 1.00 0.82 1.47 2.00 3.50 1.93 1.12 5.07
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Table 4: Tidal signals, RMS differences and median absolute differences of DEBOT-a
and state-of-the-art empirical and assimilative models against the coastal tide gauges
(in cm).

Q1 O1 P1 K1 N2 M2 S2 K2 RSS

Signal 1.9 9.7 4.9 15.9 11.2 55.5 21.4 6.0 63.8

RMS differences
DEBOT-a 0.49 1.06 0.65 1.74 1.47 5.68 2.87 1.17 6.99
DTU10 0.62 1.29 0.73 2.08 1.72 5.24 2.68 1.40 6.82
GOT4.8 0.46 1.01 0.57 1.80 1.92 7.00 3.53 1.34 8.47
OSU12 1.14 1.68 1.20 3.20 2.15 9.01 5.31 1.41 11.48
EOT11a 0.54 1.32 0.85 2.38 1.78 4.50 2.84 1.49 6.49
HAMTIDE 0.29 1.42 0.71 2.65 2.27 14.63 5.41 1.80 16.17
FES2012 0.32 0.89 0.61 1.65 1.74 6.60 2.27 0.77 7.50
TPXO8 0.43 1.13 0.93 2.01 3.34 15.65 7.79 2.12 18.10

Median absolute differences
DEBOT-a 0.16 0.34 0.28 0.56 0.37 1.20 0.64 0.40 1.64
DTU10 0.21 0.37 0.37 0.67 0.42 1.28 0.77 0.42 1.83
GOT4.8 0.14 0.42 0.27 0.62 0.60 1.30 0.80 0.37 1.87
OSU12 0.35 0.46 0.26 0.62 0.59 1.19 1.58 0.34 2.27
EOT11a 0.18 0.36 0.30 0.61 0.41 1.06 0.65 0.32 1.56
HAMTIDE 0.12 0.46 0.27 0.68 0.40 1.02 0.66 0.28 1.57
FES2012 0.18 0.43 0.44 0.66 0.47 1.36 0.66 0.24 1.85
TPXO8 0.13 0.26 0.25 0.58 0.28 1.49 0.49 0.21 1.75

els except for M4 which is a part of six of the seven modern empirical and
assimilative models mentioned in the previous chapter (HAMTIDE is the ex-
ception). TPXO8 includes also the non-linear MN4 and MS4 tides, however
only FES2012 provides global atlases of larger number of tidal constituents, 33
tides in total.

Analogously to the previous chapters, we compute the RMS differences
and MAD for selected minor tidal constituents. The constituents was chosen
so that DEBOT can be compared to other models. Final results are summarized
in Tables 5 (deep ocean) and 6 (shelf seas) and graphically in Figure 6. DEBOT-
a is compared to FES2012, TPXO8 (for three compound tides) and in the deep
ocean also to GOT4.8 whose values were inferred from the tidal admittance
(Ray, 2013). In Figure 6, we also plot values from DEBOT-h to show that the
assimilation process does not affect minor tides. Of course, this is not a case of
M4 which is constrained by the DTU10 dataset.

The values inferred from GOT4.8 in the deep ocean are generally better
than the DEBOT-a ones except for 2N2 and µ2. This suggests that it could
be beneficial for DEBOT-a—at least in the deep ocean—to be constrained by
another data of harmonic constants of minor diurnal and semi-diurnal tides
deduced from an empirical model using the tidal admittance. The results
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Table 5: Selected minor tidal constituents, their tidal signals and RMS differences be-
tween the deep ocean BPR stations and the ocean models (in cm).

RMS differences

Signal DEBOT-a GOT4.8 FES2012 TPXO8

2Q1 0.25 0.093 0.085
J1 0.71 0.344 0.178 0.131
OO1 0.43 0.376 0.265
2N2 0.80 0.226 0.271 0.119
µ2 0.95 0.229 0.409 0.197
ν2 1.13 0.375 0.075 0.129
L2 0.75 0.393 0.250 0.235
T2 0.63 0.294 0.130 0.194
R2 0.12 0.102 0.101
M3 0.23 0.096 0.231
MN4 0.09 0.082 0.073 0.068
M4 0.22 0.092 0.089 0.115 0.075
MS4 0.12 0.113 0.104 0.134

of FES2012 are generally better than DEBOT-a for diurnal and semi-diurnal
tides but DEBOT-a is obviously better for third-diurnal M3 owing to the im-
plemented forcing term of the third degree. Regarding non-linear MN4, M4
and MS4, the results of all three models, DEBOT-a, FES2012 and TPXO8, seem
to be roughly equal except for the NW European shelf where TPXO8 predic-
tions are significantly better, probably due to a very high resolution of 2′ for
shelf areas. As mentioned, M4 is included also in DTU10, EOT11a and OSU12.
Their RMS differences and MAD against the tidal stations are not shown here
but they are roughly the same as in the case of DEBOT-a.

In the deep ocean, the relative RMS differences for minor diurnal and semi-
diurnal tides are about 10–30 % of the signal (except for very small R2) which
is the same as for the eight major tides. This suggests that possible future im-
provements of DEBOT-h discussed in Section 3 (finer resolution, more rigorous
treatment of the ITD and SAL) should also lead to more precise determination
of minor tidal constituents. In the shelf seas, the relative differences of minor
tides are much larger, however, we should emphasize that the RMS differences
and MAD for the minor tides in the shelf seas are computed from relatively
small number of stations and thus they can not provide a general description
of a global model and are rather indicative.

Conclusions
The DEBOT model, a time-domain global barotropic ocean model has been
developed and is presented. DEBOT is primarily designed for ocean flow gen-
erated by the tidal attraction of the Moon and the Sun, however, it can be used

15



 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

2Q1 J1 OO1 2N2 µ2 ν2 L2 T2 R2 M3 MN4 M4 MS4

R
M

S
 d

if
fe

re
n
ce

s 
[c

m
]

 

Deep ocean: RMS

DEBOT-h
DEBOT-a

GOT4.8
FES2012

TPXO8

 0

 0.05

 0.1

 0.15

 0.2

 0.25

2Q1 J1 OO1 2N2 µ2 ν2 L2 T2 R2 M3 MN4 M4 MS4

M
e
d

ia
n
 a

b
so

lu
te

 d
if
fe

re
n
ce

s 
[c

m
]

 

Deep ocean: MAD

DEBOT-h
DEBOT-a

GOT4.8
FES2012

TPXO8

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

J1 µ2 ν2 L2 T2 M3 MN4 M4 MS4

R
M

S
 d

if
fe

re
n
ce

s 
[c

m
]

 

European shelf: RMS

DEBOT-h
DEBOT-a
FES2012

TPXO8

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

J1 µ2 ν2 L2 T2 M3 MN4 M4 MS4

M
e
d

ia
n
 a

b
so

lu
te

 d
if
fe

re
n
ce

s 
[c

m
]

 

European shelf: MAD

DEBOT-h
DEBOT-a
FES2012

TPXO8

 0

 0.5

 1

 1.5

 2

 2.5

 3

J1 2N2 µ2 ν2 L2 T2 M3 MN4 M4 MS4

R
M

S
 d

if
fe

re
n
ce

s 
[c

m
]

 

Shallow elsewhere: RMS

DEBOT-h
DEBOT-a
FES2012

TPXO8

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

J1 2N2 µ2 ν2 L2 T2 M3 MN4 M4 MS4

M
e
d

ia
n
 a

b
so

lu
te

 d
if
fe

re
n
ce

s 
[c

m
]

 

Shallow elsewhere: MAD

DEBOT-h
DEBOT-a
FES2012

TPXO8

Figure 6: The RMS differences (left) and median absolute differences (right) between
the ocean models and the deep ocean (top) and shelf seas (middle and bottom) tidal
stations for selected minor tidal constituents.
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Table 6: Selected minor tidal constituents, their tidal signals, RMS differences and
median absolute differences between the shelf seas tidal stations and ocean models
(in cm).

RMS differences Median absolute differences

Signal DEBOT-a FES2012 TPXO8 DEBOT-a FES2012 TPXO8

NW European shelf
J1 0.92 0.938 0.872 0.307 0.210
µ2 4.44 3.947 1.104 0.835 0.586
ν2 3.24 2.195 1.034 0.516 0.729
L2 4.57 2.686 1.769 1.133 0.897
T2 1.99 1.650 0.712 0.733 0.535
M3 0.92 0.557 1.000 0.174 0.341
MN4 1.76 1.812 1.141 0.717 0.625 0.478 0.274
M4 4.68 2.772 2.270 1.183 0.707 0.770 0.420
MS4 2.91 3.024 1.847 1.157 0.806 0.716 0.451

Shelf seas elsewhere
J1 0.85 0.544 0.423 0.323 0.100
2N2 1.70 1.100 0.547 0.546 0.244
µ2 2.44 1.998 1.749 0.649 0.461
ν2 2.18 1.272 0.648 0.832 0.313
L2 3.13 2.543 1.911 0.872 0.632
T2 1.69 1.040 0.558 0.586 0.366
M3 1.18 0.544 1.027 0.171 0.508
MN4 1.45 1.067 0.914 0.597 0.306 0.306 0.163
M4 1.82 1.254 0.946 0.928 0.373 0.257 0.317
MS4 1.49 1.498 1.331 1.515 0.345 0.446 0.562

for other ocean applications where the shallow water approximation is conve-
nient, for instance, tsunami wave propagation.

In Section 1, the derivation of the shallow water equations from the com-
plete Navier-Stokes equations is generally described. The shallow water equa-
tions are a base for the numerical model (Section 2). The experiments, which
comprise a tsunami wave propagating through the global ocean with an arti-
ficial island, has tested the conservation of the total mass and the total energy
of the numerical model. The results of the tests are satisfactory, meaning that
the total mass is preserved in all experiments and the total energy is preserved
in the case of zero eddy viscosity and decreases with a non-zero viscosity (Fig-
ure 1). The eddy viscosity can effectively attenuate the energy, however, a too
large eddy viscosity coefficient makes the computations unstable and results
in an obviously unnatural increase in the energy.

As mentioned, DEBOT is designed for precise global ocean tides simula-
tions. The model can be launched in two modes: the purely hydrodynamical
mode, DEBOT-h, and assimilative mode, DEBOT-a.
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Purely hydrodynamical DEBOT-h is presented in Section 3. DEBOT-h pre-
dictions are tested against the datasets of the deep ocean BPR stations, shelf
seas tidal station and tide gauges along continental coastlines. A parametric
study has been performed to investigate effects of input parameters and to
find the best setting. DEBOT-h is comparable in accuracy with the state-of-
the-art purely hydrodynamical models (Table 1) in the shelf seas however it
is a bit worse in the deep ocean which may be caused by a coarser resolu-
tion, the scalar approximation of the SAL or the parameterization of the ITD.
A more rigorous treatment of the ITD and SAL and their possible implemen-
tation in DEBOT will be addressed in future works in order to reach generally
better accuracy. We also compares DEBOT-h with its data-assimilative ver-
sion, DEBOT-a to find possible problematic areas of purely hydrodynamical
modelling (Figures 2 and 3). Larger errors are produced in the Southern ocean
which is caused by the omission of the ice-covered Weddel and Ross seas from
the DEBOT model domain. These seas should be definitively included in fu-
ture version of DEBOT.

DEBOT-a, the assimilative version of DEBOT, is introduced in Section 4.
The author proposes a simply yet efficient assimilation scheme which can be
used in a time-domain model and it is an alternative to spectral-domain gen-
eral inversion schemes used in FES, TPXO and HAMTIDE. The surface ele-
vation are periodically constrained by the elevations of the empirical model
DTU10. The tests against the “ground truth” tidal data prove that DEBOT-a
is comparable in accuracy with the state-of-the-art empirical and assimilative
ocean tide models though there are still some locations where DEBOT-a does
not reach desired accuracy, e.g., for semi-diurnal tides on the northwest Eu-
ropean shelf. We believe that future improvements of prior hydrodynamical
model (DEBOT-h) will allow us to achieve better results with DEBOT-a, also in
the problematic locations.

Finally, minor tidal constituents and their model predictions are discussed
in Chapter 5. As DEBOT is a non-linear model with the full lunisolar forcing,
all tidal constituents can be modelled simultaneously. Selected minor tides
modelled by DEBOT-a are tested against the tidal stations and compared with
FES2012, TPXO8 and minor tides inferred from GOT4.8. Three conclusions can
be drawn: (1) Good results for M3 (in comparison with FES2012). (2) Roughly
equal predictions of the non-linear compound MN4, M4 and MS4 tides as FES
and TPXO8, except for the NW European shelf where TPXO8 is better. (3) Gen-
erally worse predictions of diurnal and semi-diurnal minor tides than FES and
GOT4.8. These tides are not constrained by data and are given by the purely
hydrodynamical solution. The future improvements of DEBOT-h, discussed
above, should lead to a better estimation of the minor tides too.

DEBOT can be useful for those applications where other ocean tide models
are not suitable. The primary goal and original motivation was to use DE-
BOT for the research conducted in related geophysical disciplines. The model
has already been used to study the magnetic field induced by ocean tides
(Velı́mský et al., 2016) and the influence of ocean tides on the Earth’s rotation

18



(Schindelegger et al., 2016). The source code of DEBOT is freely available at
http://geo.mff.cuni.cz/~einspigel/debot.html.
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