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Abstract: Observations indicate an existence of subsurface oceans for some of the
icy moons in the Solar System which are heated by the tidal forces. In order to
describe this anelastic deformation, the methods well-known from the continuum
mechanics were employed, and thus the dissipation was calculated for various
bodies. In the thesis, Maxwell and Kelvin-Voigt model were compared in their
ability to predict the heating power of the bodies. In contrast to the Maxwell
model, the Kelvin-Voigt model, which is generally not used in geophysics, repre-
sents reversible processes, and thus could explain the effects which are otherwise
explained only by the gravity. A program in Fortran was developed in order to
compare the models by modelling 3D anelastic deformation of planetary bodies
under the effect of tidal forces. The results indicate the predicted power can be
various for both models and Kelvin-Voigt model could be used e.g. to describe
short run deformation processes.
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Abstrakt: Pozorováńı naznačuj́ı, že některé ledové měśıce ve Slunečńı soustavě
maj́ı podpovrchové oceány zahř́ıvané p̊usobeńım slapových sil. Pro popis této
anelastické deformace je vhodné použ́ıt metody známé z mechaniky kontinua a
nalézt tak disipovanou energii pro jednotlivá tělesa. V této práci je porovnáván
Maxwell̊uv a Kelvin-Voigt̊uv deformačńı model a jejich schopnost určit tepelný
výkon těles. Narozd́ıl od Maxwellova modelu, obecně nepouž́ıvaný Kelvin-Voigt-
ův model popisuje vratnou deformaci, a tedy by mohl umožňovat popis jev̊u,
které mohou být jinak vysvětleny pouze pomoćı gravitačńıch účink̊u. Za účelem
porovnáńı obou model̊u pro r̊uzná tělesa byl vyvinut program ve Fortranu, který
modeluje 3D anelastickou deformaci planetárńıch těles za př́ıtomnosti slapové
śıly. Výsledky naznačuj́ı, že předpovězený výkon může být r̊uzný v závislosti na
použitém modelu a že Kelvin-Voigt̊uv model by mohl naj́ıt uplatněńı např́ıklad
v krátkodobých procesech.
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Introduction

It has been over 26 years since the launch of the unmanned spacecraft Galileo and
over 18 years since the launch of the unmanned spacecraft Cassini. Both were
named after famous astronomers and discoverers of the largest satellites of the
planets the spacecrafts were sent to. In case of Galileo the Jupiter’s orbit has been
entered, and thus many planetary bodies could have been studied more precisely
from the incoming data. Nonetheless, a similar mission to more distant Saturn
was scheduled for the Cassini spacecraft eight years later. Since that time, both
spacecrafts have discovered a wonderful and exciting world of icy moons such
as e.g. Jupiter’s moon Europa or Saturn’s moon Enceladus. The obtained data
suggested that some of these icy moons could have had vast subsurface oceans
comprised of liquid water as studied by Tobie et al. (2008). This indication raised
a question what was the origin of the energy which could make the heat in the
oceans sustainable.

The distance of the Sun, the Solar System’s biggest source of energy, is sub-
stantial from these satellites and the surface temperatures are very low (on av-
erage 102 K in case of Europa and 75 K in case of Enceladus) (Prockter &
Pappalardo 2007). The low temperatures point at the fact that there are no or
little radiogenic elements contained in the ice mantle whereas in case of terrestrial
planetary bodies it is considered to be a main source of energy.

It turns out the source of the heat, which is very important in case of some of
the icy moons, is the tidal heating as shown by Chen et al. (2014). Usually the
rotation of the satellites gradually slows down until they reach the synchronous
rotation with the body they orbit as a result of the effect which is called a tidal
braking. Even though Enceladus and Europa have synchronous rotation, they
do not have zero eccentricity of their elliptical trajectories which expose them to
the stronger deformation effects when they are nearby the planet they orbit and
weaker effects when they are further, hence making the tidal force an important
player in the source of heat question which was examined in case of Enceladus
by Tyler (2009).

However, the deformation of the planetary bodies is neither purely elastic nor
purely viscous, and thus there is an urge to use a model containing both of these
characteristics. In physics there is a long tradition of implementing the so called
Q-factor which measures the relative loss of energy in case of periodically damped
processes. That corresponds to the periodically influenced icy moon by the tidal
forces quite well, however, this approach does not allow to implement more de-
tailed characteristics about the structure of the planets and rather combine all
the characteristics in only one number.

Therefore, the approach has moved towards a more precise description of
the energy dissipation using the continuum mechanics. The problem with this
method is that it is difficult to measure the exact parameter values for the distant
astronomical bodies and the laboratory measurements can be imprecise because
the materials could behave differently on very large scales.

Geophysicists traditionally use the so called Maxwell rheology in order to
describe the relationship between the material parameters and its deformation.
This rheology quickly became very popular in the geophysical community as it

2



managed to satisfactorily explain the surface movements as a result of the post-
glacial rebound on Earth which can be seen e.g. in Peltier et al. (1986). However,
despite its massive use, it is valid approximation only in case of long term lasting
processes. Further limitation is that according to the Maxwell rheological model
the deformation process is irreversible and the model thus relies on the gravi-
tational effects to ensure the possible reversible processes which was studied by
Zhong & Zuber (2000).

It raises a question whether the model should be used also in case of the
icy moons where the processes might not necessarily be irreversible as they are
incomparably smaller than Earth. There are several other deformation models
used predominantly in material engineering and some of them are reversible.
In this thesis the aim is to compare the irreversible Maxwell model with the
reversible Kelvin-Voigt model in order to find out how useful this alternative
approach might be in the description of the dissipation as the source of the heat.

In order to do so, the computer program which uses the spectral methods in
three dimensions was developed and tested by the author. Consequently, a series
of calculations were made for different types of planetary bodies in order to show
the effect of their particular attributes on the usefulness of the two compared
models.

The structure of the paper is as follows: The first chapter is devoted to the
theoretical differences between the Maxwell and Kelvin-Voigt model and there are
some formulas derived for their applications in one-dimensional case. The second
chapter introduces the partial differential equations which describe the physical
intuition behind the three dimensional deformation model and the equations are
transformed in the spectral form. The second chapter further shows the numerical
discretization of the spectrally decomposed model and its algebraic solution valid
for purely elastic model. The elasticity is then replaced by the Maxwell and
Kelvin-Voigt model bringing thus the link to the tidal forces and tidal heating.
The last chapter comprises of the results followed by their discussion.
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1. Anelastic deformation

Some planets and moons within the Solar System have significantly solid struc-
tures, and hence they are able to record the history of individual geological events.
The bodies which are predominantly fluid such as the gas giants are incomparable
in their ability to preserve the history. However, no matter what the structure of
the planetary body is, from the long timescale view, the most of planetary bodies
behave similarly to fluids (it is only a matter of time), and thus effects such as
the flow of mass can be observed there.

As the bodies behave like the fluids, the mass inside may stir both horizontally
and vertically. During this stirring process there occurs a friction which can be
similarly as in the material engineering described by physical parameters such as
viscosity or shear modulus.

Whilst some of the materials, like honey or ketchup, behave in a viscous way
and thus do not return back to their initial position when the force acting upon
the object subsides, other materials, like rubber, may be almost entirely elastic
which means they are completely resistant to any distorting influences or stress
and they return to their original shape when the stress is removed.

Nevertheless, the two mentioned approaches (purely elastic or purely viscous
extremes) are actually only theoretical and the materials always exhibit both
elastic and viscous characteristics as we can see in many applications e.g. in
(Tobie et al. 2008). Hence, the planetary bodies behave in the same way, too,
and thus it is possible to apply classical viscoelastic deformation models such as
Maxwell or Kelvin-Voigt models which is especially done in this thesis.

1.1 Mechanical analogs

Let us introduce the concept of the mechanical analogs which is a simplified
scheme used in the material engineering in order to improve the notion of how
the viscoelasticity can be understood. The most simple mechanical analogs are
composed of only one element. In this thesis, there are only two kinds of elements
used, i.e. on the one hand purely elastic elements represented in diagrams by
springs, and on the other hand purely viscous elements represented in diagrams
by dashpots.

The studied process comprises three stages. The first one occurs when the
model is in its initial position without any forces acting upon the analogs. The
second stage describes what happens if some force strains the loose end of the
model and fixes it in a non-default position. The last stage shows what hap-
pens when the fixing is released, and thus demonstrates whether the process is
reversible or not. These three stages are depicted in the Fig. 1.1 for both elastic
component and viscous component.
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Figure 1.1: Mechanical analogs scheme showing the difference between the elas-
ticity and viscosity in terms of reversibility.

It is noticeable that in contrast to the elastic component, the main difference
lies in the irreversibility of the viscous process. This irreversibility is an important
concept in terms of dissipation and hence provides the link to the leak of energy
out of the system. However, as the realistic materials are neither purely elastic
nor purely viscous, the solution consists of combination of both as it is done e.g.
in Maxwell and Kelvin-Voigt model.

Interestingly, all these viscoelastic models are made up from the elastic and
viscous component by connecting them equivalently as it is done in case of elec-
trical circuits and thus creating an infinite number of possibilities how to connect
them (either in series or in parallel). In this thesis we focused on the two simplest
models each constituted by both elastic and viscous parts composed only of two
components once connected in series, for the second time in parallel.

In spite of the existence of a plenty of more complicated models such as SLS
(Standard Linear Solid) model or Generalized Maxwell model also known as the
Maxwell-Wiechert model, the purpose of this thesis is not to find the model which
suits the best but rather to show how other approach can lead to different results
and thus question the currently established using of Maxwell model used e.g.
by Ross & Schubert (1989) or Tobie et al. (2008). From this reason, only the
Maxwell model and the Kelvin-Voigt model are examined.

1.2 Maxwell model

Maxwell model consists of a spring and a dashpot connected in series, and there-
fore represents a combination of a reversible and an irreversible process. In terms
of mechanical analogs the whole model can be summarized by Fig. 1.2, which is
divided into three stages which are exactly the same as was discussed in the sec-
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tion 1.1 except for the fact that stage 2 is subdivided between the part 2a which
stands for an immediate change as the whole material is pulled on and fixed af-
terward and the part 2b which refers to what would happen if the material was
fixed in such a position for a very long time.

Figure 1.2: Mechanical analogs scheme showing the irreversibility in case of the
Maxwell model.

The pulling of the material is followed by an immediate reaction of the spring
whereas the dashpot stays at its initial position because it resists the force. How-
ever, all the energy stored in the spring will gradually transfer towards the dash-
pot resulting in the stage 2b. Finally, if the fixing is removed, the dashpot is
unable to return to its initial position, and thus the Maxwell model represents
the irreversible process which is caused by the occurrence of the dissipation on
the dashpot. Let us take a closer look at the whole model more mathematically.

The key aspect of the Maxwell model is the assumption that the stress σ mea-
surable on both components is equal to each other. (Roylance 2001) In contrast
to this property, the strain on the separate components sums up to the total
strain ε. Formally these two observations can be written as

σ = σE = σV , (1.1)

ε = εE + εV , (1.2)

where the subscript E stands for the variables referring to the elastic part of the
model (spring) and the subscript V stands for the variables referring to the viscous
part of the model (dashpot).

From the Hooke’s law it follows that there exists a relation between the stress
and the strain measured individually on each of the components of the model.
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The relation for the elastic parts (springs) can be summarized by the following
equation

σE = 2µεE, (1.3)

where µ is the shear modulus. It can be noticed that the stress produced on the
elastic component is proportionally dependent on the strain which is usually in
case of only elastic component occuring caused by acting of a force.

Similarly, there exists also a variant of Hooke’s law for the viscous component
and is described by the following equation

σV = 2ηε̇V , (1.4)

where η is the viscosity and the dot symbol stands for the time derivative.
If we take a time derivative of Eq.(1.2), we obtain

ε̇ = ε̇V + ε̇E. (1.5)

If Eqs.(1.3) and (1.4) are substituted into Eq.(1.5), taking into consideration that
the stress is the same on all components (from Eq.(1.1)), we obtain the following
differential equation

ε̇ =
σ

2η
+

σ̇

2µ
. (1.6)

From the model represented by mechanical analogs, it is obvious that the strain
ε is held constant in the stage 2a and 2b, which gives us formally the following
condition

ε̇ = 0. (1.7)

If the condition is substituted into Eq.(1.6), a solvable differential equation is
obtained

0 =
σ

2η
+

σ̇

2µ
, (1.8)

with a general solution

σ(t) = σ0 exp

(
− t
τ

)
, (1.9)

where σ0 is the constant denoting the initial stress, τ is the fraction of viscosity
over shear modulus (τ = η

µ
) sometimes denoted as relaxation time and t is the

time.
This equation describes an exponential decrease in the stress acting upon both

components in the Maxwell model. As the time elapsed since the fixing of the
material increases (t → ∞), the stress approaches so called hydrostatic limit,
where the stress on the both components fades away.

1.3 Kelvin-Voigt model

The Kelvin-Voigt model is made out of a spring and a dashpot too, but this time
they are connected in parallel. The most significant difference between the two
models is that the Kelvin-Voigt model is a reversible process, as the energy which
is dissipated by the dashpot cannot slip out of the model completely due to its
connection to the spring which will return the dashpot to its initial position. The
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situation with the mechanical analogs is depicted in the Fig.1.3 exactly in the
same way as was in the section 1.1.

Figure 1.3: Mechanical analogs scheme showing the reversibility in case of the
Kelvin-Voigt model.

It can be seen that as we keep the force acting upon the material constant,
both dashpot and spring pulls on (stage 2). When this force disappears, the
material returns gradually to its initial position (stage 3) where no force acts upon
the material. This time the model is not fixed as in the case of Maxwell model,
the model is only pulled on by a constant force, which results in a constant stress.
The mathematical model behind is thus quite different to the Maxwell model.

In Kelvin-Voigt model, both components must have exactly the same strain
ε whereas the stress acting upon the components will sum up to the total stress
σ. This means the key equations are formed exactly vice versa in comparison to
the equations introduced for Maxwell model. (Roylance 2001) Formally it can be
rewritten as

σ = σE + σV , (1.10)

ε = εE = εV , (1.11)

where the notation is the same as in the case of Maxwell model.
The equations for the relations between the stress and the strain derived in

the section of the Maxwell model (i.e. Eqs.(1.3) and (1.4)) continue to hold.
Analogously to the previous model, let us take a first derivative with respect to
time from the equation (1.10).

σ̇ = σ̇V + σ̇E. (1.12)

If Eqs.(1.3) and (1.4) (relations between the stress and the strain) are substi-
tuted into Eq.(1.10), taking into consideration that the strain the same is on all
components (from Eq.(1.11)), the following differential equation is obtained

σ = 2ηε̇+ 2µε. (1.13)
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If we take a time derivative of Eq.1.13 we obtain

σ̇ = 2ηε̈+ 2µε̇. (1.14)

As has been noted previously and also from the model represented by mechanical
analogs, we assume the force (and therefore stress) to have a constant value during
the pulling (stage 2), which gives us the following condition on the stress

σ̇ = 0. (1.15)

If the condition is substituted into Eq.(1.14), a solvable differential equation of
order two is obtained

0 = 2ηε̈+ 2µε̇, (1.16)

with a general solution assuming no initial strain (ε(0) = 0)

ε(t) = ε0

[
1− exp

(
− t
τ

)]
, (1.17)

where ε0 is the constant denoting the strain which would occur if the model was
elastic, τ is similarly as in the Maxwell model the fraction of viscosity over shear
modulus (τ = η

µ
) sometimes denoted as relaxation time and t is the time.

This equation shows us how the material gradually relaxes over the time
when the force is present. As the time elapsed increases (t → ∞), the strain ε
approaches so called elastic limit, where the strain on both components is equal
to the fixed value of ε0.

1.4 Dissipation

In the previous section, the Kelvin-Voigt model has been thoroughly examined.
Let us now take a closer look on the dissipative process which proceeds on the
viscous part.

The most simple model of an elastic Hookean spring can be put into motion
by adding a weight m on the spring of stiffness k. This causes an infinitely lasting
oscillating movement described by the equation of motion

mẍ = −kx, (1.18)

where x is the deviation of the spring. Consequently, this oscillating process can
be slowed by a friction or a damping process. In the viscoelastic models, the
component responsible for the damping is the viscous part represented by the
dashpot. As this damping process acts against the movement of the weight, the
damping term is added to Eq.(1.18) creating thus

mẍ = −kx− cẋ, (1.19)

where c is the viscous damping coefficient. This differential equation can be
rewritten in the form

ẍ+ 2ζωẋ+ ω2x = 0, (1.20)

where ω =
√

k
m

is called the undamped angular frequency of the oscillator, ζ =
c

2
√
mk

is the damping ratio. If ζ > 1 the oscillator is then overdamped which means
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it exponentially decays to steady state and is not oscillating at all. If ζ < 1 the
oscillator is said to be underdamped which makes it oscillate with decreasing
amplitude to zero. Last but not least, if ζ = 1 the oscillator is critically damped
which means it returns to the steady state as quickly as possible and does not
perform any oscillations.

If a weight is added on the Kelvin-Voigt material instead of a Hookean spring,
and thus causing the stress on both components, the material will start to oscillate
as a consequence with damping via the dashpot. The equation (1.10) for the total
stress in the material is stated in the previous section, and can be used in this
moment to analyze the dissipation. Let us rewrite the total stress according the
equation of motion

σ =
F

A
=
mε̈

A
= ρAε̈, (1.21)

where F is the force, A is the area where the force is acting and ρA is the area den-
sity defined as ρA = m

A
. If we substitute the Eqs.(1.3) and (1.4) in the Eq.(1.10)

using the Eq.(1.21), we obtain

ρAε̈+ 2µε+ 2ηε̇ = 0, (1.22)

which can be consequently rewritten as

ε̈+
2ηε̇

ρA
+

2µε

ρA
= 0, (1.23)

and finally transformed to the similar shape as in Eq.(1.20)

ε̈+ 2ζωε̇+ ω2ε = 0, (1.24)

where ω =
√

2µ
ρA

and ζ = η
√

2
µρA

this time. The amount of the dissipation can

be measured by the so called Q factor, which is defined as

Q = 2π × E

∆E
, (1.25)

where E is the total stored energy in the oscillator and ∆E is the energy lost
per one period of oscillation. In this case the Q factor can be computed from the
damping ratio according to formula

Q =
1

2ζ
. (1.26)

The total energy E stored in the model over time t can be computed via the
following equation which is analogous to the one specified in Tobie et al. (2008)

E =

∫ εmax

0

σdε =

∫ t

0

σε̇dt′, (1.27)

where εmax is the maximal strain during the dissipation process.
In the thesis we deal with two viscoelastic models, which modifies the preced-

ing equation to (in case of the time is an oscillation period T which eliminates
the elastic part)

EMaxwell
dis =

∫ T

0

σε̇V dt
′, (1.28)
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in case of the Maxwell model and

EKelvin
dis =

∫ T

0

σV ε̇dt
′, (1.29)

in case of the Kelvin-Voigt model. The intuition behind is that the dissipation
proceeds only on the viscous part and therefore the integral for the elastic com-
ponent is in both cases equal to zero.
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2. Mathematical model

In the thesis, the aim is to compare the two separate deformation models as it
was described in the previous chapter. This time, however, the application is,
at least for one of them, different than usual. Even though it is quite common
to use both Maxwell and Kelvin models (or more complex ones) in the material
engineering, the planetary deformation research is using predominantly Maxwell
model.

In order to numerically test these models and also due to the spherical sym-
metry of the most of planetary bodies (theoretical), the spectral method was
chosen as it effectively decomposes radial and toroidal properties of the bodies.
The goal of this chapter is both to describe how the spectral decomposition can
be made specifically for these two models and also how to test the two studied
models numerically against each other.

2.1 Governing equations

The most important for the numerical simulations of any physical model is its
mathematical counterpart described by equations which should be as general as
possible. For these reasons the following system of three partial differential equa-
tions outlining the physical relationships between the pressure (more precisely
the stress tensor) and the displacement of the mass is utilized and we thus follow
Tobie et al. (2008) in their numerical setup.

∇ · ~u = 0, (2.1)

D = µ((∇~u) + (∇~u)T ), (2.2)

∇ · τ + ~f = 0, (2.3)

where ~u is the displacement, D is the deviatoric part of the Cauchy stress tensor
τ , µ is the shear modulus and ~f is some external force.

The equation (2.1) stands for continuity equation, which describes the trans-
port of the mass and it intuitively means that the mass displacement cannot
emerge or disappear, there must always be balance between the mass that enters
in the chosen point and the mass that exits from it. The equation (2.2) gives us a
rheological relationship and is useful as it creates a link between the displacement
of the mass and the Cauchy stress tensor based on the material parameters of
the mass. The rheological relationship holds for purely elastic models in order to
make it more simple. Later, this relationship will be changed to anelastic Maxwell
or Kelvin-Voigt model. Last but not least, the equation (2.3) represents the equa-
tion of motion, which explains the dynamics of the mass when it is exposed to
some exogenous force.

The intuition behind the model that will be constructed consequently is that
it should describe a spherical shell of any planetary body with a specified material
parameters ρ and µ. It is thus composed not only of these three partial differential
equations but also of a boundary condition. It sets up a restriction on the traction

12



vector which is actually the radial component of the Cauchy stress tensor. This
restriction controls for unknown parameters outside the spherical shell and helps
thus make a proper discretization. We define this condition on the traction vector
both at the top and the bottom of the shell according to the same definition

τ · ~er + ρgur~er = ~T , (2.4)

where τ is the Cauchy stress tensor, ~er is the radial unit vector, g is the gravita-
tional acceleration, ur is the radial displacement, ρ is the density of the mantle in
case of top boundary condition and difference in densities of core and mantle in
case of bottom boundary condition and ~T is the force at the surface perpendicular
to the mantle. The force is in both cases oriented outside the spherical shell.

2.2 Spectral decomposition

2.2.1 Continuity equation

We apply spectral method on the equation (2.1)

~u =
∞∑
j=0

j∑
m=−j

j+1∑
l=|j−1|

uljm(r)~Y l
jm(θ, ϕ), (2.5)

which can be for j ≥ 1 rewritten in the following form

~u =
∞∑
j=0

j∑
m=−j

[uj−1jm
~Y j−1
jm + ujjm

~Y j
jm + uj+1

jm
~Y j+1
jm ]. (2.6)

Substituting for ~u into Eq.(2.1) gives us:

∞∑
j=0

j∑
m=−j

j+1∑
l=|j−1|

∇ · (uljm(r) ~Y l
jm) = 0, (2.7)

which is equivalent e.g. according to Matas (1995) to∑∞
j=0

∑j
m=−j

∑j+1
l=|j−1|

[√
j

2j+1

(
d
dr
− j−1

r

)
uj−1jm −

√
j+1
2j+1

(
d
dr
− j+2

r

)
uj+1
jm

]
Yjm = 0,

(2.8)
The useful property of the spectral decomposition lies in the fact that the previous
equation can be separated into many equations that are mutually independent
as for every combination of j and m the factor in the parenthesis must be equal
to zero. The former equation thus can be separated with respect to Yjm, and
therefore the following equation is obtained for every j and m√

j

2j + 1

[
duj−1jm

dr
− (j − 1)

uj−1jm

r

]
−

√
j + 1

2j + 1

[
duj+1

jm

dr
− (j + 2)

uj+1
jm

r

]
= 0. (2.9)

After the multiplication by factor
√

2j + 1 the equation can be rewritten in the
following form

A1

duj−1jm

dr
+ A2

uj−1

r
+ A3

duj+1

dr
+ A4

uj+1

r
, (2.10)

where A1 =
√
j, A2 = −

√
j(j − 1), A3 = −

√
j + 1, A4 = −

√
j + 1(j + 2).
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2.2.2 Rheological equation

In this subsection, the spectral form of Eq.(2.2) is derived slightly similarly to
the spectral decomposition of the continuity equation except for the first part.

The first step is to present the fact that every tensor of rank 2 can be decom-
posed into the following three parts, namely the isotropic part which is equivalent
to a tensor of rank 0, the antisymmetric part which is a tensor of rank 1 and the
traceless symmetric part, which is of rank 2. Any tensor T of rank 2 can thus be
formally decomposed into the three parts

T =
1

3
tr(T )I +

T − T T

2
+
T − T T + 2

3
tr(T )I

2
, (2.11)

where tr(T ) stands for the trace of the matrix T , T is the transposition of a
matrix and I is the identity matrix. Let us rewrite the terms in the previous
equation as (T )0, (T )1, (T )2, respectively, where the subscripts denote the rank of
the tensor as it was stated above. If we apply the same logic on ∇~u, we get the
following equation

∇~u = (∇~u)0 + (∇~u)1 + (∇~u)2. (2.12)

The second step is to decompose the variables used in the rheological relationship
(2.2), i.e. D and ∇~u into spectral forms. The decomposition of the tensor into
isotropic, antisymmetric and symmetric traceless components has a very useful
property in this context, i.e. the spectral decomposition also separates the used
tensor on three parts exactly according to the rank of the resulting tensor with
the second superscript representing the rank. Formally, it can be written as

∇~u =
∞∑
j=0

j∑
m=−j

[
(∇~u)j0jmYj0

jm +

j+1∑
l=j−1

(∇~u)l1jmYl1
jm +

j+2∑
l=j−2

(∇~u)l2jmYl2
jm

]
, (2.13)

(∇~u)T =
∞∑
j=0

j∑
m=−j

(∇~u)j0jmYj0
jm +

(
j+1∑
l=j−1

(∇~u)l1jmYl1
jm

)T

+

j+2∑
l=j−2

(∇~u)l2jmYl2
jm

,
(2.14)

D =
∞∑
j=0

j∑
m=−j

j+1∑
l=|j−1|

Dl2
jm(r)Yl2

jm(θ, ϕ). (2.15)

The isotropic part of the previous tensors ∇~u and (∇~u)T has to be in both
cases equal to zero, because the diagonal elements of the matrix ∇~u can be
expressed as (∇·~u)I, which equals to zero because of the Eq.(2.1). The antisym-
metrical parts in ∇~u and (∇~u)T eliminate each other as it can be seen from its
functional form in Eq.(2.11). Therefore, there remains only a symmetric traceless
part left in both ∇~u and (∇~u)T , which can be rewritten as

∇~u+ (∇~u)T = 2(∇~u)2. (2.16)

If the equation (2.16) is substituted into the rheological relationship (2.2) and
consequently decomposed into the spectral form, then e.g. according to Matas

14



(1995) the following equation holds

D =
∞∑
j=0

j∑
m=−j

j+2∑
l=|j−2|

Dl2
jm(r)Yl2

jm =

= 2µ
∞∑
j=0

j∑
m=−j√

j − 1

2j − 1

(
d

dr
+
j

r

)
uj−1jm Yj−2,2

jm

−

√
(j + 1)(2j + 3)

6(2j − 1)(2j + 1)

(
d

dr
− j − 1

r

)
uj−1jm Yj,2

jm

+

√
j − 1

2(2j − 1)

(
d

dr
+
j + 1

r

)
ujjmYj−1,2

jm

−

√
j + 2

2(2j + 1)

(
d

dr
− j

r

)
ujjmYj+1,2

jm

+

√
j(2j − 1)

6(2j + 1)(2j + 3)

(
d

dr
+
j + 2

r

)
uj+1
jm Yj,2

jm

−

√
j + 2

2j + 3

(
d

dr
− j + 1

r

)
uj+1
jm Y j+2,2

jm .

(2.17)

By comparing the right hand side of the equation with the left hand side and
separating it according to particular spectral parameters j and m, the following
five equations can be obtained ∀j,m

τ j−2,2jm = 2µ

√
j − 1

2j − 1

(
d

dr
+
j

r

)
uj−1jm , (2.18)

τ j−1,2jm = 2µ

√
j − 1

2(2j − 1)

(
d

dr
+
j + 1

r

)
ujjm, (2.19)

τ j,2jm = −2µ

√
(j + 1)(2j + 3)

6(2j − 1)(2j + 1)

(
d

dr
− j − 1

r

)
uj−1jm +

+ 2µ

√
j(2j − 1)

6(2j + 1)(2j + 3)

(
d

dr
+
j + 2

r

)
uj+1
jm ,

(2.20)

τ j+1,2
jm = −2µ

√
j + 2

2(2j + 1)

(
d

dr
− j

r

)
ujjm, (2.21)

τ j+2,2
jm = −

√
j + 2

2j + 3

(
d

dr
− j + 1

r

)
uj+1
jm . (2.22)

The previous equations can also be simplified into the form

τ j−2,2jm + A5

duj−1jm

dr
+ A6

uj−1jm

r
= 0, (2.23)
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τ j−1,2jm + A7

dujjm
dr

+ A8

ujjm
r

= 0, (2.24)

τ j,2jm + A9

duj−1jm

dr
+ A10

uj−1jm

r
+ A11

duj+1
jm

dr
+ A12

uj+1
jm

r
= 0, (2.25)

τ j+1,2
jm + A13

dujjm
dr

+ A14

ujjm
r

= 0, (2.26)

τ j+2,2
jm + A15

duj+1
jm

dr
+ A16

uj+1
jm

r
= 0, (2.27)

where the coefficients Ai are given in the table 2.1 on page 18 and they are
only dependent on the value of the parameter j, hence they are constant for every
individual value of j.

2.2.3 Equation of motion

In order to get the spectral form of the equation of motion 2.3, the divergence of
the Cauchy stress tensor is required

∇ · τ =
∞∑
j=0

j∑
m=−j

∇ · (τ j0jmYj0
jm) +

j+2∑
l=|j−2|

∇ · (τ l2jmYl2
jm)

 . (2.28)

Using the formula for the divergence of tensors stated e.g. in Golle et al. (2012),
this can be rewritten in the spectral form

∇ · τ =

∞∑
j=0

j∑
m=−j

−

√
j

3(2j + 1)

(
d

dr
+
j + 1

r

)
τ j0jm

~Y j−1
jm

+

√
j + 1

3(2j + 1)

(
d

dr
− j

r

)
τ j0jm

~Y j+1
jm

+

√
j − 1

3(2j − 1)

(
d

dr
− j − 2

r

)
τ j−2,2jm

~Y j−1
jm

−

√
j − 1

2(2j + 1)

(
d

dr
− j − 1

r

)
τ j−1,2jm

~Y j
jm

−

√
(j + 1)(2j + 3)

6(2j + 1)(2j − 1)

(
d

dr
+
j + 1

r

)
τ j2jm

~Y j−1
jm

+

√
j(2j − 1)

6(2j + 1)(2j + 3)

(
d

dr
− j

r

)
τ j2jm

~Y j+1
jm

−

√
j + 2

2(2j + 1)

(
d

dr
+
j + 2

r

)
τ j+1,2
jm

~Y j
jm

−

√
j + 2

2j + 3

(
d

dr
+
j + 3

r

)
τ j+2,2
jm

~Y j+1
jm .

(2.29)
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This gives us three equations

F j−1
jm +A17

dτ j0jm
dr

+A18

τ j0jm
r

+A19

dτ j−2,2jm

dr
+A20

τ j−2,2jm

r
+A21

dτ j2jm
dr

+A22

τ j2jm
r

= 0, (2.30)

F j
jm + A23

dτ j−1,2jm

dr
+ A24

τ j−1,2jm

r
+ A25

dτ j+1,2
jm

dr
+ A26

τ j+1,2
jm

r
= 0, (2.31)

F j+1
jm +A27

dτ j0jm
dr

+A28

τ j0jm
r

+A29

dτ j2jm
dr

+A30

τ j2jm
r

+A31

dτ j+2,2
jm

dr
+A32

τ j+2,2
jm

r
= 0, (2.32)

where the coefficients Ai are given in the table 2.1 on page 18. The equations 2.30
and 2.32 match the spheroidal part of the equation of motion whereas Eq.2.31
is its toroidal part. In the thesis, it will be sufficient to use only the spheroidal
parts as we are interested only in the radial component of motion.

2.2.4 Boundary condition

There is no external force ~T at the bottom of the shell in the most simple case.
The equation (2.4) can then be rewritten in the form for the top boundary of the
shell

τ · ~er + ρgur~er = 0. (2.33)

The product of the radial unit vector and the Cauchy stress tensor can be ex-
pressed in the spectral form, applying the formula from Matas (1995) as

τ · ~er = ~er
∑
jm

∑
lk

τ lkjmY
lk
jm =

= τ j0jm(A36Y
j+1
jm + A33Y

j−1
jm ) + τ j−2,2jm A34Y

j−1
jm + τ j−1,2jm A39Y

j
jm+

+ τ j2jm(A37Y
j+1
jm + A35Y

j−1
jm ) + τ j+1,2

jm A40Y
j
jm + τ j+2,2

jm A38Y
j+1
jm ,

(2.34)

where Ai coefficients are again in the table 2.1. If the whole expression is substi-
tuted into the Eq.(2.33) where ur is supposed zero at this time, we can separate
the vector equation according to the subscripts of the spherical harmonics

A33τ
j0
jm + A34τ

j−2,2
jm + A35τ

j2
jm = 0, (2.35)

A36τ
j0
jm + A37τ

j2
jm + A38τ

j+2,2
jm = 0, (2.36)

A39τ
j−1,2
jm + A40τ

j+1,2
jm = 0. (2.37)

If ur is non-zero it can be computed in spectral form using the formula from
Matas (1995)

ur = ~u · ~er =
∑
jm

(√
j

2j + 1
uj−1jm −

√
j + 1

2j + 1
uj+1
jm

)
Yjm. (2.38)
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where

ur~er =
∑
jm

(√
j

2j + 1
uj−1jm −

√
j + 1

2j + 1
uj+1
jm

)
Yjm~er =

=
∑
jm

(√
j

2j + 1
uj−1jm −

√
j + 1

2j + 1
uj+1
jm

)(√
j

2j + 1
Y j−1
jm −

√
j + 1

2j + 1
Y j+1
jm

)
=

=
∑
jm

j

2j + 1
uj−1jm Y j−1

jm −
√
j(j + 1)

2j + 1
(uj−1jm Y j+1

jm + uj+1
jm Y j−1

jm ) +
j + 1

2j + 1
uj+1
jm Y j+1

jm .

(2.39)
The last equation brings additional terms in the boundary equations decomposed
in the spectral form in Eqs.(2.35) and (2.36).

Ai Coefficient Ai Coefficient Ai Coefficient
A1

√
j A2 −(j − 1)

√
j A3 −

√
j + 1

A4 −(j + 2)
√
j + 1 A5 −2

√
j−1
2j−1 A6 −2j

√
j−1
2j−1

A7 −2
√

j−1
2(2j+1)

A8 −2(j + 1)
√

j−1
2(2j+1)

A9 2
√

(j+1)(2j+3)
6(2j−1)(2j+1)

A10 −2(j − 1)
√

(j+1)(2j+3)
6(2j−1)(2j+1)

A11 −2
√

j(2j−1)
6(2j+3)(2j+1)

A12 −2(j + 2)
√

j(2j−1)
6(2j+3)(2j+1)

A13 2
√

j+2
2(2j+1)

A14 −2j
√

j+2
2(2j+1)

A15 2
√

j+2
2j+3

A16 −2(j + 1)
√

j+2
2j+3

A17 −
√

j
3(2j+1)

A18 −(j + 1)
√

j
3(2j+1)

A19

√
j−1
2j−1 A20 −(j − 2)

√
j−1
2j−1 A21 −

√
(j+1)(2j+3)

6(2j−1)(2j+1)

A22 −(j + 1)
√

(j+1)(2j+3)
6(2j−1)(2j+1)

A23 −
√

j−1
2(2j+1)

A24 (j − 1)
√

j−1
2(2j+1)

A25 −
√

j+2
2(2j+1)

A26 −(j + 2)
√

j+2
2(2j+1)

A27

√
j+1

3(2j+1)

A28 −j
√

j+1
3(2j+1)

A29

√
j(2j−1)

6(2j+1)(2j+3)
A30 −j

√
j(2j−1)

6(2j+1)(2j+3)

A31 −
√

j+2
2j+3

A32 −(j + 3)
√

j+2
2j+3

A33 −
√

j
3(2j+1)

A34

√
j−1
2j−1 A35 −

√
(j+1)(2j+3)

6(2j+1)(2j−1) A36

√
j+1

3(2j+1)

A37

√
j(2j−1)

6(2j+1)(2j+3)
A38 −

√
j+2
2j+3

A39

√
j−1

2(2j+1)

A40 −
√

j+2
2(2j+1)

Table 2.1: Table of coefficients

2.3 Finite difference method

In order to achieve the numerical solution of the equations (2.1), (2.2), (2.3) and
boundary condition (2.4), we use the finite difference method. This method trans-
forms the differential equations in the spherical form (obtained in the previous
section) into the system of algebraic equations.
The main advantage of this method is quite intuitive discretization of continuous
variables. In this section we automatically suppose that each equation has its
spectral counterparts (in the previous chapter denoted by j and m subscripts).
From this point on, instead of subscripts j and m, another subscript i will be
written which represents the separate layers of the spherical shells (j and m are
still used but they are not as important for the discretization procedure). The
superscripts are left unchanged in comparison to the previous section.
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The indices are ordered in ascending order as the variables represent higher
depths measured from the top of the shell. However, some variables that we are
manipulating with are well defined only on the interfaces between every two layers
due to our discrete derivatives. These variables are scalar and tensor variables.
On the contrary, vector variables will be defined in the middle of the layers which
is schematically shown in the Fig. 2.1. It is assumed these layers have non-zero
thickness.

Figure 2.1: Scheme describing which variables are defined on the layers and which
are in contrast defined on their interfaces.

In the decomposed governing equations, there is a need to define discrete
derivatives. Note that in these equations there are only two kinds of terms. The
first one contains f

r
, the second one df

dr
, where f could be any continuous variable

used in the previous sections. Using the finite difference method we can discretize
these forms into the following forms

f

r
=
fi + fi+1

ri + ri+1

, (2.40)

df

dr
=
fi − fi−1
ri − ri−1

. (2.41)

The governing equations (2.1)-(2.4) can be discretized using first the spectral
decomposition and second the finite difference method as

A1

uj−1i − uj−1i−1

ri − ri−1
+ A2

uj−1i + uj−1i−1

ri + ri−1
+ A3

uj+1
i − uj+1

i−1

ri − ri−1
+ A4

uj+1
i + uj+1

i−1

ri + ri−1
= 0, (2.42)

τ j−2,2i + A5

uj−1i − uj−1i−1

ri − ri−1
+ A6

uj−1i − uj−1i−1

ri + ri−1
= 0, (2.43)

τ j,2i + A9

uj−1i − uj−1i−1

ri − ri−1
+ A10

uj−1i − uj−1i−1

ri + ri−1
+

+ A11

uj+1
i − uj+1

i−1

ri − ri−1
+ A12

uj+1
i − uj+1

i−1

ri + ri−1
= 0,

(2.44)

τ j+2,2
i + A15

uj+1
i − uj+1

i−1

ri − ri−1
+ A16

uj+1
i − uj+1

i−1

ri + ri−1
= 0, (2.45)

19



A17

τ j,0i+1 − τ
j,0
i

ri+1−ri−1

2

+ A18

τ j,0i+1 + τ j,0i
ri+1 + ri−1

+ A19

τ j−2,2i+1 − τ j−2,2i
ri+1−ri−1

2

+ A20

τ j−2,2i+1 + τ j−2,2i

ri+1 + ri−1
+

+ A21

τ j,2i+1 − τ
j,2
i

ri+1−ri−1

2

+ A22

τ j,2i+1 + τ j,2i
ri+1 + ri−1

= F j−1
i ,

(2.46)

A27

τ j,0i+1 − τ
j,0
i

ri+1−ri−1

2

+ A28

τ j,0i+1 + τ j,0i
ri+1 + ri−1

+ A29

τ j,2i+1 − τ
j,2
i

ri+1−ri−1

2

+ A30

τ j,2i+1 + τ j,2i
ri+1 + ri−1

+

+ A31

τ j+2,2
i+1 − τ j+2,2

i
ri+1−ri−1

2

+ A32

τ j+2,2
i+1 + τ j+2,2

i

ri+1 + ri−1
= F j+1

i ,

(2.47)

A33τ
j,0
i + A34τ

j−2,2
i + A35τ

j,2
i = 0, (2.48)

A36τ
j,0
i + A37τ

j,2
i + A38τ

j+2,2
i = 0, (2.49)

where Ak are the constant values given by the specified value of j for all k ∈
{1, ..., 40} available in the table 2.1 on page 18. In boundary conditions there
are omitted terms coming from the second term of 2.4 in order to simplify the
notation.

2.4 Linear algebraic equations solution

Let us rewrite the equations derived in the section 2.3 into the matrix form. For
the sake of making the computation simple, there is an urge to arrange them
with an emphasis to keep the matrix in a band form. We write the equations
in the following order: Equation of continuity, rheological equations, equations
of motion. The equations of motion are computed in the middle of the mantle’s
layers and thus there is one less pair of these equations. Instead of the equation
of motion we use, therefore, the boundary equations on the boundaries of the
spherical shell. These two pairs of the boundary conditions are represented by
the first and the second row of the matrix both from the top and from the bottom.
The matrix is therefore structured the following way

Aj =



(2 rows) Top boundary condition

(n− 1) times:


(1 row) Continuity equation

(3 rows) Rheological relationship

(2 rows) Equation of motion

(1 row) Continuity equation
(3 rows) Rheological relationship
(2 rows) Bottom boundary condition


, (2.50)

where n is the number of interfaces between the layers (n − 1 is the number of
layers). It makes altogether 6n + 2 equations. Nevertheless, if there are 6n + 2
equations in the scheme, we are able to solve them for 6n+ 2 variables.

Let us take a closer look on the variables we are interested in. We suppose the
force is exogenous, hence it will constitute the vector of the right hand side ~bjm,
and thus it is not involved in the solved matrix Aj. The remaining variables which
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can be obtained are variables τ and ~u. The total number of these variables, if we
reflect the spectral decomposition, is nine for every layer i (respectively interface
between the layers) which are namely uj−1i , uji , u

j+1
i , τ j0i , τ j−2,2i , τ j−1,2i , τ j2i , τ j+1,2

i ,
τ j+2,2
i .

However, three of these variables are toroidal (i.e. they influence only the
non-radial component of the displacement or the stress of the planet) and we
can exclude them. This exclusion leaves us with only six variables which are, on
the other hand, sferoidal (i.e. they influence the radial component of the studied
variables, and thus are important for the matrix solution). The three toroidal
variables excluded are uji , τ

j−1,2
i , τ j−1,2i .

Thereafter we have six variables for every set of the equations and thus match
the 6n in the matrix above. The remaining two equations handle the additional
two variables uj−1i and uj+1

i because there is an extra pair due to the fact that
the displacement is in the discretized model defined on the interfaces between the
layers (see Fig. 2.1 on page 19).

After the discretization done in section 2.3 we obtain exact forms of the equa-
tions which are put afterward in the matrix A. In order to make the notation
more simple we introduce r̂i = ri + ri−1, ˆ̂ri = ri + ri−2, r̃i = ri − ri−1, ˜̃ri = ri−ri−2

2

The matrix equation which is to be solved is a simple algebraic equation in a
form

Aj~xjm = ~bjm, (2.51)

where the vector of variables we are interested in is the vector ~xjm, Aj is the

matrix for the specified spectral parameter j and ~bjm is the vector of the right
hand side which is composed of the external forces and will be discussed later. In
the following matrix equation there is an indication of how the particular matrix
cells are filled in (after pluging in the equations derived in the section 2.3).



0 0 A34 A35 A32 0 0 0 . . .
0 0 0 A37 A36 A38 0 0 . . .

(−r̂1A1+r̃1A2)
r̃1r̂1

(−r̂1A3+r̃1A4)
r̃1r̂1

0 0 0 0 (r̂1A1+r̃1A2)
r̃1r̂1

(r̂1A3+r̃1A4)
r̃1r̂1

. . .
(−r̂1A5+r̃1A6)

r̃1r̂1
0 1 0 0 0 (r̂1A5+r̃1A6)

r̃1r̂1
0 . . .

(−r̂1A9+r̃1A10)
r̃1r̂1

(−r̂1A11+r̃1A12)
r̃1r̂1

0 1 0 0 (r̂1A9+r̃1A10)
r̃1r̂1

(r̂1A11+r̃1A12)
r̃1r̂1

. . .

0 (−r̂1A15+r̃1A16)
r̃1r̂1

0 0 0 1 (r̂1A15+r̃1A16)
r̃1r̂1

. . .

0 0 (−r̂2A19+r̃2A20)
˜̃r2 ˆ̂r2

(−r̂2A21+r̃2A22)
˜̃r2 ˆ̂r2

(−r̂2A17+r̃2A18)
˜̃r2 ˆ̂r2

0 0 0 . . .

0 0 0 (−r̂2A29+r̃2A30)
˜̃r2 ˆ̂r2

(−r̂2A27+r̃2A28)
˜̃r2 ˆ̂r2

(−r̂2A31+r̃2A32)
˜̃r2 ˆ̂r2

0 0 . . .
...

...
...

...
...

...
...

...
. . .





uj−10

uj+1
0

τ j−2,21

τ j21
τ j01
τ j+2,2
1

uj−11

uj+1
1
...


= ~bjm,

The Figure 2.2 shows the non-zero elements of the matrix Aj for n = 5.
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Figure 2.2: Scheme depicting non-zero elements and the band structure of the ma-
trix Aj for n = 5 with omitting the terms caused by non-zero ur in the boundary
condition.

2.5 Maxwell rheology implementation

Until this moment, all equations in this chapter were describing a purely elastic
model with no time dependency. Let us now adjust the elastic model presented on
the previous pages and implement the Maxwell rheology in the spherical model.
The most important change is in describing the functional form of the governing
equations.

The continuity equation stays unchanged therefore we only restate it (c.f.
Eq.(2.1))

∇ · ~u = 0.

The equation of motion stays unchanged, too (c.f. Eq.(2.3))

−∇p+∇ ·D + ρ~f = 0,

The only governing equation which changes is the rheological relationship. We
devote the following subsection to the derivation of the rheological relationship
for the Maxwell model.

2.5.1 Rheological relationship for the Maxwell model

We examined relatively thoroughly the Maxwell model in chapter 1. The key
equation which we need to implement is the Eq.(1.6) which we restate here

ε̇ =
σ

2η
+

σ̇

2µ
.

Since we assume that the shear modulus µ and the viscosity η are constant in
a time, and the stress σ can be replaced by the deviatoric part D of the stress
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tensor τ , we obtain the following equation

Ḋ

2µ
− ε̇ = −D

2η
, (2.52)

The strain ε can be replaced by the remaining part of the rheological relationship
known from the elastic model, namely

ε = ∇~u+ (∇~u)T . (2.53)

Taking the time derivative and substituting the Eq.(2.53) into the Eq.(1.6)

Ḋ− 2µ(∇~̇u+ (∇~̇u)T ) = −µ
η

D. (2.54)

It is important to state that the displacement u has to be relatively small in order
to obtain an assumption that there is no advection term in the time derivative
of the displacement. The advection term is the second term in the following
equation

~̇u =
∂~u

∂t
+ ~u · ∇~u. (2.55)

In order to keep the mathematical background derived for the elastic model as
similar to this as possible, we integrate Eq.(2.54) with respect to time and obtain

D− 2µ(∇~u+ (∇~u)T ) = −µ
η

∫ t

0

Ddt′. (2.56)

Let us now discretize this equation using ’the trapezoidal rule’ which transforms
continuous integrals to a discrete sums.

Dn+1 − 2µ(∇~un+1 + (∇~un+1)
T ) = −µ

η
∆t

n∑
i=0

Di+1 + Di

2
. (2.57)

From this equation it is notable we need to know all previous values of the de-
viatoric stress D in order to count another one. In order to do so, we have to
rearrange the term containing Dn+1 on the right-hand-side, and thus make clear
the pattern how to get the next Dn+1 when we know all Di where i < n+ 1. The
pattern is derived in the following equation simply by rearranging a term from
the sum in the Eq.(2.57).

Dn+1

(
1 +

µ

η

∆t

2

)
− 2µ(∇~un+1 + (∇~un+1)

T ) = −µ
η

∆t

(
D0

2
+

n∑
i=1

Di

)
. (2.58)

This is the final form of the rheological relationship for the Maxwell model dis-
cretized in time. If we would like to discretize it also in the spatial dimension
similarly as in the elastic case, the obtained equation is changed in comparison
to the elastic case only in two details. First, that there is some constant factor
multiplying the stress variables, which changes the matrix Aj to a new matrix
(similar though), say Bj. Second, that there exists a term which has to be put in
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the right-hand-side vector. The solution for this model by solving gradually the
following set of matrix equations

Bj~x
0
jm = ~b0jm,

Bj~x
1
jm = ~b1jm,

...

Bj~x
n
jm = ~bnjm,

(2.59)

where the superscripts denote the indices of a time discretization. ~bijm can be

obtained from the ~xi−1jm simply according to the right-hand-side in Eq.(2.58). The
important thing which makes the computation sustainable is the fact that the
matrix Bj does not depend on time, which means that it is sufficient to compute
it only once and then only change vectors of the right-hand-side. Numerical
solution of the large matrices we use will be discussed later.

2.6 Kelvin-Voigt rheology implementation

Similarly as in the Maxwell model, the continuity equation stays the same as in
the elastic model (c.f. Eq.(2.1))

∇ · ~u = 0, , (2.1)

as well as the equation of motion

∇ · τ + ~f = 0. (2.3)

The only difference in the model lies in the fact that the rheological relationship
is different which will be focused on in the following subsection.

2.6.1 Rheological relationship for the Kelvin-Voigt model

We examined relatively thoroughly the Kelvin-Voigt model in chapter 1 as well
as the Maxwell model. The key equation which we need to implement this time
is the Eq.(1.13) which we restate here

σ = 2ηε̇+ 2µε. (1.13)

Since we again assume that the shear modulus µ and the viscosity η are constant
in time, and the stress σ can be replaced by the deviatoric part D of the stress
tensor τ , we obtain the following equation, where bold ε symbolizes strain tensor

D− 2µε = 2ηε̇. (2.60)

This equation can be discretized using the discrete derivative according to the
following formula

dε

dt
=
εn+1 − εn

∆t
, (2.61)

resulting in

Dn+1 − 2µεn+1 = 2η
εn+1 − εn

∆t
, (2.62)
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where ∆t is a time discretization step. This equation can be rearranged

Dn+1 − 2
(
µ+

η

∆t

)
εn+1 = −2η

εn
∆t
, (2.63)

This is the final form of the rheological relationship for the Kelvin-Voigt model
discretized in time similarly as Eq.2.58 was for the Maxwell model. If we would
like to discretize it also in the spatial dimension, the obtained equation is in
comparison to the elastic case changed again in two details, but slightly different
than in the case of Maxwell model. First, there is a constant factor multiplying
the strain variables (in Maxwell model it was stress). This detail changes the
matrix Aj to a new matrix Cj (similar to both elastic Aj and Maxwell Bj).
Second detail is that there exists a term which has to be put in the right-hand-
side vector. This time, however, the right-hand-side depends only on the term
preceding the current step, not on all the terms as in case of the Maxwell model.
It means that it is sufficient to know variables from the previous step and the
solution for the current step can be found. The solution for this model is again
found by solving a set of matrix equations

Cj~x
0
jm = ~b0jm,

Cj~x
1
jm = ~b1jm,

...

Cj~x
n
jm = ~bnjm,

(2.64)

where the superscripts denote the indices of a time discretization. ~bijm can be

obtained from the ~xi−1jm similarly as in the case of Maxwell model according to the
right-hand-side in Eq.(2.63). The important thing which makes the computation
sustainable is the fact that the matrix Cj does not depend on the time in the
same way it does not depend in case of Maxwell. Therefore, the computation can
be done only once and only variable which changes is the vector bijm.

2.7 Tidal potential

The tidal deformations have long been studied by physicists and astronomists
as a way to describe the change in shape of the planetary and satellite surface,
especially atmospheres and oceans. Johannes Kepler suggested already in the
seventeenth century in his Astronomica Nova (1609) that the Moon causes tides
and ebbs. Followed by Galileo Galilei, Newton and Laplace the theory of tides
extended significantly.

Tidal heating, a process caused by the tidal deformations and frictions, is
regarded as one of the possible sources of the energy of some of the planetary
bodies in the Solar System. Thermal heating budget for various satellites in the
Solar System is shown by Chen et al. (2014) where they show that e.g. in case
of Jupiter’s satellite Europa or Saturn’s satellite Enceladus there is much higher
contribution of solid body eccentricity tidal heating than in case of other satellites
which heats are mostly generated by radiogenic heating caused by the fission of
radioactive materials.
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The motivation is therefore to adjust the models used in this thesis for the tidal
heating due to their eccentricity. The key how to implement it to the equations
that have been already derived is via the so called tidal potential.

The equation for the boundary condition introduced previously can be ex-
tended for the presence of the external force given by the tidal potential. The
functional form of the equation will then be

τ · ~er − ur∆ρg~er = −ρcore ϕ~er, (2.65)

where ∆ρ is the difference between the density of the shell ρshell and the density
of the core ρcore of the studied planetary body and ϕ is the tidal potential. The
tidal potential for a synchronous eccentric orbit with a time variation is given e.g.
by Kaula (1964) or Moore & Schubert (2000):

ϕ(r, θ, φ) = r2ω2e
{
−3

2
P 0
2 (cos θ) cosωt+ 1

4
P 2
2 (cos θ) [3 cosωt cos 2φ+ 4 sinωt sin 2φ]

}
,

(2.66)
where P 0

2 and P 2
2 are the associate Legendre functions, e is the eccentricity of

the planetary body, ω is the angular frequency and r, θ and ϕ are spherical co-
ordinates. In order to change this equation in the spherical form, we need to
transform the associate Legendre functions in the form of spherical harmonics.
The linking formula between these two mathematical functions is as follows

Yjm(θ, φ) = (−1)mNjmPjm(cos θ)eimφ, (2.67)

where

Njm =

[
(2j + 1)(j −m)!

4π(j +m)!

]
. (2.68)

In case of Legendre function P 0
2 (cos θ) as in the first term of Eq.(2.66), the Eq.2.67

transforms into

P 0
2 (cos θ) =

Y20(θ, φ)

N20

. (2.69)

For the rest Legendre functions Eq.(2.67) can be rewritten using the following
identities

cos 2φ =
e2iφ + e−2iφ

2
, (2.70)

sin 2φ =
e2iφ − e−2iφ

2i
, (2.71)

as
Y22 + Y2−2 = 2N22P

2
2 (cos θ) cos 2φ, (2.72)

Y22 − Y2−2 = 2N22P
2
2 (cos θ) sin 2φ, (2.73)

and by rearranging we obtain

cos 2φ =
Y22 + Y2−2

2N22P 2
2 (cos θ)

, (2.74)

sin 2φ =
Y22 + Y2−2

2iN22P 2
2 (cos θ)

. (2.75)
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After substitution of Eqs.(2.69), (2.74) and (2.75) into Eq.(2.66) we obtain

ϕ(r, θ, φ) = r2ω2e
{
−3

2
cosωt Y20

N20
+
(

3
4

cosωtY22+Y2−2

2N22

)
+
(

sinωtY22−Y2−2

2iN22

)}
,

(2.76)
where after plugging the constants in the formula (2.68) we get

N22 =

√
5

96π
, (2.77)

N20 =

√
5

4π
, (2.78)

N2−2 =

√
30

π
, (2.79)

and the Eq.(2.76) finally simplifies to

ϕ(r, θ, φ) =r2ω2e

(
−
√

9π

5
cosωtY20 +

√
27π

10
cosωtY22 −

√
24π

5
i sinωtY22+

+

√
27π

10
cosωtY2−2 +

√
24π

5
i sinωtY2−2

)
.

(2.80)

In order to find the form of the force ~f in the equation of motion (2.3), we will

need to derive also a gradient of the tidal potential. If we define this force ~f as
a tidal force, the formula for its computation is then

~f = ρ∇ϕ. (2.81)

Therefore, there is an urge to find a gradient of the tidal potential which can be
derived according formula in Matas (1995),

∇f(r) =
∑

m∈{−2,0,2}

[√
2
5

(
d
dr

+ 3
r

)
f2m(r)Y 1

2m −
√

3
5

(
d
dr
− 2

r

)
f2m(r)Y 3

2m

]
, (2.82)

where f(r) is any scalar function. If applied on the tidal potential the following
equation is obtained because the second term factors out

∇ϕ(r, θ, φ) =rω2e(−
√

18π cosωtY 1
20 +
√

27π cosωtY 1
22 −
√

48πi sinωtY 1
22+

+
√

27π cosωtY 1
2−2 +

√
48πi sinωtY 1

2−2).

(2.83)

The gradient of the tidal potential can be substituted into the equation (2.81)
and the following equation is obtained

~f = ρ r2ω2e
{
−3

2
cosωt Y20

N20
+
(

3
4

cosωtY22+Y2−2

2N22

)
+
(

sinωtY22−Y2−2

2iN22

)}
.

(2.84)
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3. Results

There is a number of planetary bodies in the Solar System which are interesting
in terms of the source of their heat. Amongst them there might be, as previously
stated, Saturn’s ice satellite Enceladus as well as Jupiter’s Europa. There might
also occur a tidal deformation in bodies of higher density such as various exoplan-
ets and specifically a silicate planet Mercury. All examined bodies are stated in
Table 3.1 together with their parameters used in this thesis. There are two possi-
ble widths of mantle of Enceladus investigated as can be noticed in the mentioned
table. In case of exoplanets there is in four cases the same setup as the exoplanet
is imaginary choosing the parameter to be similar to Earth differentiating only
in the orbital period which helps us identify the effect of the orbital period on
the quality of the models. The parameters in the table for Enceladus were taken
from Tobie et al. (2008), for Europa from Chen et al. (2014), and for Mercury
from Balogh & Giampieri (2002) and some of them were slightly changed.

Planetary body gsurface gcore ρcore ρmantle e T rtop rbottom µ
m · s−2 m · s−2 kg ·m−3 kg ·m−3 days km km GPa

Enceladus(26 km) 0.11 0.13 925 1007 0.0045 1.370 252.1 226.1 3.3
Enceladus(52 km) 0.11 0.13 925 1007 0.0045 1.370 252.1 200.1 3.3
Europa 1.31 1.31 925 1007 0.0090 3.551 1561.0 1531.0 3.3
Exoplanet(1 day) 9.73 10.74 4500 12000 0.1 1.000 6400.0 3200.0 70
Exoplanet(5 days) 9.73 10.74 4500 12000 0.1 5.000 6400.0 3200.0 70
Exoplanet(20 days) 9.73 10.74 4500 12000 0.1 20.000 6400.0 3200.0 70
Exoplanet(50 days) 9.73 10.74 4500 12000 0.1 50.000 6400.0 3200.0 70
Mercury 3.70 3.70 4000 7000 0.2 87.969 2450.0 2050.0 70

Table 3.1: Table of planetary bodies’ parameters

3.1 Numerical implementation

The numerical implementation has been done in Fortran exactly according the
mathematical model in the chapter 2. The correctness of the deformation was
tested against the similar program of O. Čadek in case of Maxwell rheology. In
case of the Kelvin-Voigt model the program was implemented similarly as for
Maxwell model but tested against the theoretical property that the limit value
for low viscosities goes to the elastic limit for all computed figures. For all results
the computations are done at spectral degree j = 2.

There are three figures for every planetary body examined and in every figure
there are depicted values modeled by Maxwell rheology and also by Kelvin-Voigt
rheology. The first of the figures shows an amplitude of the radial displacement
at the top of the mantle. The displacement is caused as was stated in chapter
2 by tidal and hydrostatic forces. The second depicts how the phase of the
displacement maxima changes in comparison to the reference elastic case (in
elastic case the phase offset is equal to zero). The third figure illustrates a heating
power of the planet as it releases a significant portion of tidal heating.

Mathematically speaking, the first figure is depicting the maximal amplitude
of radial displacement for given viscosity and is calculated exactly according
Eq.2.38. The values in the second figure are calculated by measuring the os-
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cillations phase offset of the maximal radial displacement amplitude. The last
figure is calculated according the discretized version of Eqs.1.28 and 1.29.

3.2 Icy moons

Both icy moons examined in the thesis are assumed to have the same density
parameters, i.e. their mantle and core are made of the same material as in case of
the other moon. The values of these and the rest of parameters used were stated
in Table 3.1 above. Even though the real bodies have also a rocky core under the
subsurface ocean, we assume there is only water everywhere beneath the mantle.

3.2.1 Enceladus

Saturn’s moon Enceladus is interesting due to its major source of energy via
tidal heating and only negligible fraction of energy from the radiogenic source
as stated in Chen et al. (2014). Therefore, the effect of tidal heating should
be really significant in this case. Practically in all following figures there is a
noticeable difference in the values for Maxwell and Kelvin-Voigt model. The first
three figures are referring to Enceladus characterized by 26 km width of mantle
whereas the second three figures shows Enceladus characterized by 52 km width
of mantle.

In the Fig. 3.1 there are two curves denoting the decadic logarithm of an
amplitude of the radial displacement on the surface of the mantle. It can be seen
that Maxwell curve is for all values of viscosity above the Kelvin-Voigt model and
thus generally predicts much higher displacement. The point where two models
are the most similar to each other is when the viscosity is about 1014 Pa s. Whilst
for low values of viscosity both models have finite non-zero limits, for the high
values of viscosity the Kelvin-Voigt model is approaching zero as viscosity grows.
If we limited the viscosity in Eqs.(2.58) and (2.63) from chapter 2, we would
obtain (in the low viscosity case) the equation not depending on the change of
the displacement in case of Maxwell and a reduction to a purely elastic case in
Kelvin-Voigt model, and thus approaching an elastic limit. On the other hand, if
the viscosity was high, the radial displacement amplitude would reach zero value
for Kelvin-Voigt model and an elastic limit for the Maxwell model as the terms
depending on viscosity are negligible in Eq.(2.58), which eliminates all the terms
except for those present in the elastic model.

Let us take a closer look on what is the phase offset of the radial displacement
in comparison to the purely elastic case. In the Fig. 3.2 the limits are consistent
with the previous figure, i.e. Maxwell curve does not depend on the change of the
displacement causing not changing the phase offset of the radial displacement for
low values of viscosity and similarly there is obvious transition to the elastic limit
in case of high viscosity. Interestingly, there is a peak around the viscosity 1013

Pa s, which is the value for which the other terms of Eq.(2.58) are not negligible,
and therefore it creates a link between the viscosity and the radial displacement
and its phase offset. Unlike the Maxwell model, according to Kelvin-Voigt model
there is no phase offset peak. It is noticeable that for the low values of viscosity
the curve reaches an elastic limit, i.e. zero phase offset. Curiously, the phase
offset for high values of viscosity is different than Maxwell and is exactly π

2
radians
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offset. The sharp increase in the phase offset occurs around the values of viscosity
between 1013 Pa s and 1015 Pa s.

In the figure 3.3, a heating power created by the tidal forces on Enceladus
is depicted. Although the peak power is above 10 GW around the viscosity
value 1012 Pa s for the Maxwell model, the power predicted by the Kelvin-Voigt
model is much less. In its maximum around the viscosity 1014 Pa s the power is
approximately 0.3 GW which is about 30 times smaller than in case of Maxwell
model. However, the values predicted by Maxwell are much higher only for lower
viscosities than 1014 Pa s. Elsewhere, both predictions are the same and the power
is gradually decreasing as the viscosity increases, which means the body is less
liquid and thus the effect of tidal forces diminishes.
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Figure 3.1: Enceladus - Radial displacement (26 km width)
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Figure 3.2: Enceladus - Phase offset (26 km width)
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Figure 3.3: Enceladus - Power (26 km width)

In the Figs. 3.4, 3.5 and 3.6, there is no difference in the input parameters
except for the width of the mantle and thus controlling for its specific effect. The
radial displacement as can be seen in Fig.3.4, has not changed dramatically, the
only difference is that there is a slight fall in the value representing the elastic
limit. The rest of characteristics remains the same as stated in case of 26 km
width of the mantle.
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The Figure 3.5 regarding the phase offset changed only a bit in comparison
to the smaller width of the mantle. The Kelvin-Voigt curve has not changed at
all, however, the Maxwell curve increased a bit for the lower viscosities and thus
shifting the maximum value of the peak slightly leftwards, nevertheless, keeping
the same envelope of values for the right side of the peak as in the 26 km width
of the mantle.

The last examined figure for Enceladus is the Fig. 3.6. There is no big differ-
ence in the graph in comparison to the case of 26 km width of mantle, nonetheless,
in case of Maxwell model, the whole curve has shifted a bit leftward towards the
lower viscosities with no change in the maximum value of viscosity and keeping
the shape of the curve the same. On the contrary, the Kelvin-Voigt curve shifts
only slightly downwards which decreases the overall heating power caused by the
tidal forces. The position of the peak has not changed in terms of viscosity and
keeps on being approximately 1014 Pa s.
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Figure 3.4: Enceladus - Radial displacement (52 km width)
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Figure 3.5: Enceladus - Phase offset (52 km width)
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Figure 3.6: Enceladus - Power (52 km width)

3.2.2 Europa

Similarly to Enceladus, Jupiter’s moon Europa is also an icy moon. The substan-
tial difference is in the size of the moon. Europa with its 1561 km radius makes
it almost 240 larger in terms of volume than Enceladus. All other parameters
are quite similar to the Enceladus but slightly adjusted to a larger body (e.g.
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gravitational force). Therefore, in the following figures, we are mainly looking for
the role of the planetary body size in determination of the computed parameters.

If we compare the Fig. 3.7 to Enceladus, there is an obvious shift of the elastic
limit upwards almost to the point where the limit was for the low viscosities in
case of Maxwell model. This causes the fact that the amplitude of the radial
displacement is in case of Maxwell model almost the same for all studied viscosi-
ties, reaching again the elastic limit for higher viscosities. In case of Kelvin-Voigt
model, the turning point where the radial displacement starts to decrease shifted
more towards higher viscosities between 1015 Pa s and 1016 Pa s.

The difference in the phase offset depicted by Fig. 3.8 is significant mainly
in case of Maxwell model. There is a huge change in the size of the peak which
was substantial in case of Enceladus but almost negligible in case of Europa.
The remnants of the peak changed its position rightwards to the point where the
phase offset predicted by Kelvin-Voigt model starts to grow. This increase has
also slightly shifted rightwards as it is growing between the 1014 Pa s and 1016

Pa s viscosities which is 10 times higher than in case of Enceladus.
The most surprising result is, however, depicted in the Fig. 3.9. The surprise

lies in the fact, that in case of Enceladus, the model which predicted higher
heating power was Maxwell model whereas now it is Kelvin-Voigt model. There
must be made a remark that in this case the viscosities for which the Kelvin-Voigt
model is higher are above 1014 Pa s whereas in case of Enceladus the power was
higher for lower values of viscosity (in case of Maxwell model). Therefore the
two cases differ significantly. They also vary in the amount of produced heat,
namely, Europa produces around 100 GW of heating power in its maximum at
viscosity about 1014 Pa s according to Maxwell model. Moreover, according to
Kelvin-Voigt model, the heating power is about 2000 GW when the viscosity is
between 1015 Pa s and 1016 Pa s.
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Figure 3.7: Europa - Radial displacement
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Figure 3.8: Europa - Phase offset
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Figure 3.9: Europa - Power

3.3 Silicate bodies

As there might be significant differences in predicting the generated heat also in
case of larger planetary bodies comprised mainly of silicates as shown by Henning
et al. (2009), we study also these. The first silicate planetary body studied is an

35



imaginary exoplanet with parameters similar to the Earth, which is studied for
four different orbital periods. The second is located in the Solar System and
it is Mercury which is characteristic by different tidal potential as it is tidally
locked with the Sun in a 3:2 resonance. The main difference in comparison to the
icy moons is that in case of silicate bodies, there is much higher shear modulus
(70 GPa), and also much higher density gradient at the bottom boundary of the
mantle.

3.3.1 Exoplanet

The exoplanet is assumed to have an extreme density gradient of 7500 kg m−3 at
the interface between the mantle and the core of the planet. Also the relative size
of the mantle is assumed much different from the icy moons which makes it in
this case exactly one half of its radius. Such a planet was examined for different
orbital periods in order to find out its effect on the studied parameters.

From the Fig. 3.10 it is apparent that the radial displacement results do not
vary much from the results obtained for the icy moons, especially in terms of
shape of the curves. The only difference lies in the scale which decreases with
increasing orbital period and obviously there is some kind of linear relationship
between the shift of the curves and the orbital period. The viscosities, where
a turning point for the Kelvin-Voigt model occurs and the amplitudes start to
decrease there dramatically, are higher than in case of icy moons. The values
especially depend on the orbital period and lie between 1015Pa · s and 1017Pa · s.

In terms of phase offset as can be seen in Fig. 3.11, there is relatively small
peak in case of Maxwell in comparison to Enceladus but relatively large peak if
compared to Europa, the shape is however very similar to icy moons with the
same limits as previously. An interesting effect of the orbital period can be seen
i.e. as it grows the whole curve shifts to the right towards higher viscosities. That
means when we increase the orbital period we have to increase also the viscosity
in order to keep the phase offset of the radial displacement still the same.

The Figure 3.12 depicts how the shrinking orbital period increases the tidal
deformations of the exoplanet reaching over 100 billion of GW if it has one day
lasting orbital period. As the orbital period increases the power rapidly decreases
and the maximum moves towards higher viscosities for both Maxwell and Kelvin-
Voigt models. The interesting observation is a different mutual position of the
particular Maxwell and Kelvin-Voigt curves because they do not merge at neither
high nor low viscosities and thus opposing the figures depicting power shown for
the icy moons. The discrepancy can be seen for all orbital periods, and therefore
this property is probably caused by high density gradient and overall massive
size.
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Figure 3.10: Exoplanet - Radial displacement
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Figure 3.11: Exoplanet - Phase offset
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Figure 3.12: Exoplanet - Power

3.3.2 Mercury

Mercury is the closest planet to the Sun which expose it to an enormous portion
of energy and radiation from the Sun. Apart from that, there is one more special
property which makes Mercury unique in the Solar System and very interesting
for us in comparison of the Maxwell and Kelvin model. The property is, as
was stated in the beginning of the silicate bodies section, the 3:2 asynchronous
rotation making the years on the Mercury shorter than days. Until this moment
we studied only planetary bodies which have synchronous rotation. However,
with the introduction of the asynchronous rotation, the tidal forces might have
different functional form i.e. something which can have a very significant impact
on studied variables and show more interesting differences between the Maxwell
and Kelvin model. The tidal forces are given by the tidal potential as stated in
chapter 2. The tidal potential for Mercury ϕMercury similarly as stated in Balogh
& Giampieri (2002) is given by

ϕMercury =−
√

9π

5
r2ω2e

(
cosωt+

3

2
e cos 2ωt

)
Y20

+

√
3π

10
r2ω2

(
(1 + 6e2) cosωt− 1

2
e cos 2ωt

)
(Y22 + Y2−2)

+

√
3π

10
r2ω2

(
(1− 11e2)i sinωt− 1

2
e i sin 2ωt

)
(Y22 + Y2−2).

(3.1)

In the Figure 3.13 there are two dramatical changes in comparison to the
previous bodies examined. The first change is that a limit for high viscosities in
case of Maxwell model and a limit for low viscosities in case of Kelvin-Voigt model
are no longer the same. The second change is that there is another unexpected
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increase of the amplitude between the relatively low viscosities for Mercury i.e.
around 1015Pa s which is probably a consequence of the different tidal potential
caused by the asynchronous rotation.

Next, the phase offset characterized by Fig. 3.14 has two peaks instead of the
only one which was described at all preceding bodies. The second peak is not so
large and can be found only on the Maxwell curve and it is located again around
the viscosity 1015Pa s with the similar explanation as in the previous figure. What
is also interesting is that Kelvin model, though it looks very similarly as in case of
different bodies, has different limit for high viscosities. The phase offset has been
measured by the relative offset of the maximum amplitude against the elastic
model and has, however, quite unusually skewed towards the elastic part and
thus changed the phase offset a bit downwards.

The last figure 3.15 shows us curves which we could be familiar with from
the exoplanet results. Relative positions of maxima between the Maxwell and
Kelvin-Voigt model are very similar to the ones that have been already examined
previously. Also their magnitude is consistent with the fact that Mercury is a
silicate body and thus there is a large density gradient between the mantle and
core. The magnitude is small in comparison to exoplanets because there is a long
orbital period lasting almost 88 days and resulting thus in similar tidal heating
as in case of Enceladus. There is however a bit different shape for Maxwell curve
than usually. There is an inflection point in power around the viscosities near
1015 Pa s, probably again as a a result of changed tidal potential.

1e+14 1e+16 1e+18 1e+20 1e+22 1e+24
log

10
(Viscosity [Pa s])

0.01

0.1

1

lo
g 10

(R
ad

ia
l d

is
pl

ac
em

en
t [

Pa
 s

]) Maxwell
Kelvin

Figure 3.13: Mercury - Radial displacement

39



1e+14 1e+16 1e+18 1e+20 1e+22 1e+24
log

10
(Viscosity [Pa s])

0

0.05

0.1

0.15

0.2

0.25

Ph
as

e 
of

fs
et

 [
ra

d/
2π

]

Maxwell
Kelvin

Figure 3.14: Mercury - Phase offset
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Figure 3.15: Mercury - Power

3.4 Discussion

A wide variety of planetary bodies was examined in the detail in order to find out
which model predicts the generated heat by tidal deformation better. Practically
for all the bodies, the Maxwell and Kelvin-Voigt models are very different both
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in terms of magnitude and in terms of shape of the curves. In the following
discussion we try to suggest some general conclusions about the models and their
parameters.

The parameter which we examined especially in case of Enceladus, namely,
the width of the mantle seems to not change the magnitude of the dissipated
energy caused by the tidal forces in case of Maxwell model whereas in case of
Kelvin the dissipated energy decreases with the increasing width of the mantle.
This shows that both models control for different effects. Maxwell model is a
valid approximation in case of the long term lasting processes and therefore there
might exist some effects in the mantle on much more detailed scale which could
be better described by the Kelvin-Voigt model in short run.

Maxwell model predicted generally higher power for Enceladus whereas Kel-
vin-Voigt model predicted it vice versa for Europa. Our suggestion is that the
power predicted by Kelvin-Voigt model might be not only a result of greater size of
the body, but also a far smaller relative size of the mantle in comparison with the
rest of the body and thus behaving like a thin mantle around the huge core. The
relative difference between the dissipated energy were shown also in case of silicate
bodies, where the magnitudes were similar for both models probably because of
high density gradient between the mantle and the core, however, Kelvin-Voigt
predicted them generally for higher values of viscosities.

The strong dependence has been shown in case of the orbital period which is
crucial in determination of the magnitude of the dissipated energy. The shorter
the period is, the more power it produces as the body is subject to much more
frequent deformations and thus it has less time to stabilize its shape. Due to
this fact, we suggest Kelvin-Voigt model might suit quite well for lower orbital
periods as there might exist some processes which are in their nature reversible.

Asynchronous rotation such as has Mercury, has shown the different rotation
can change the shape of all studied function in case of Maxwell model. Interest-
ingly, the shapes of the curves for Kelvin-Voigt model are very similar to the all
previously examined and thus it seems like the Kelvin-Voigt model can ignore
different timespans of Mercury’s own rotation and revolution about the sun. The
possible suggestion is the model behaves as if the rotation was so slow, that it
does not matter that the rotation is asynchronous.

However, all the suggestions we might have been firstly tested on larger va-
rieties of bodies which might be seen as an possible extension of this work. Far
more important is, however, the question, whether are we able to understand
different results the Kelvin-Voigt model offers. The viscosity as a parameter can
be interpreted differently in such a model than the well known viscosity used
in the Maxwell model. If we have a viscosity parameter for which the body is
completely solid if the viscosity is zero as in Kelvin-Voigt model, can we still use
the same viscosity and intuition for the materials we know?

There is a good chance the additional deformation model could explain some
effects, however it is important to better establish the intuition behind them which
might be the hardest part. From the models studied there it is obvious there
is not an easy e.g. reciprocal relationship between the two different viscosities
as someone might perhaps suggest. The relationship is more complicated and
it could help to try also more complicated models known from the mechanical
engineering in order to find out the true pros and cons of the models which could
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be also an extension of this work.
It is important to remark our model is a very simplified 3D model which

assumes the list of the following: The planetary bodies are perfect balls, there is
no lateral stirring, no temperature dependence, no changes in shear modulus as
the depth changes, and there is no dependence of the parameters stated in the
table 3.1 on the time, depth or anything else which might be important in their
determination. Furthermore, One of the hugest simplifications is an assumption
of global ocean under the mantle and also the restricted number of layers in the
mantle due to discretization. Last but not least, the computation might have
been more precise if we used also higher spectra with j > 2 which were not
calculated in this thesis.
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Conclusion

This thesis has introduced the topic of whether the Kelvin-Voigt anelastic model
can be used in some situations to describe the dissipation of planetary bodies.
The dominantly used Maxwell model is, namely, only one out of many possibil-
ities which can be used. On the other hand, other models do not have as clear
interpretation as the Maxwell model offers, and therefore it may be enticing to
use it.

In the thesis, the goal was to find the main differences between these two
models. In order to do so, a 3D mathematical model has been derived char-
acterizing quite comprehensively a planetary body with the shape of a ball. A
substantial part of the work is devoted to different points of view on the anelastic
deformation and thus the thesis introduced Maxwell and Kelvin-Voigt models,
which were implemented in the 3D model. Consequently a computer simulations
were made by independently developed Fortran program in order to compare the
differences predicted by the two models which was the aim of this thesis.

The models were applied to various planetary bodies, especially the icy moons
Enceladus and Europa where the alternative deformation models such as Kelvin-
Voigt could better explain the dissipative processes. Further extensions of the
application were done in case of Earth-like exoplanet and Mercury where an
asynchronous rotation occurs creating thus new space for differences of the two
models.

We showed that the models differ significantly for all planetary bodies ex-
amined and that both models predict another rate of dissipation in different
situations with no exact reason found why one model should describe the reality
better than another. The specific results were discussed throughout the results
chapter.

Future extensions of this work might add more deformation models or more
planetary bodies in order to compare better the properties of the particular mod-
els used. A lot of simplifications has been made, which were discussed especially
in the discussion section, and thus there is still a lot of improvements which could
extend the thesis in the future.
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