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corrections of this thesis. My thanks also belong to Dr. Vladimı́r Plicka, Dr. Vojtech
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Abstrakt: Deformace a změna gravitačńıho potenciálu předpjatých selfgravituj́ıćıch
elastických těles jsou popsány momentovou a Poissonovou rovnićı a reologickým
vztahem. V př́ıpadě sféricky symetrických těles převád́ıme tyto parciálńı diferen-
ciálńı rovnice a okrajové podmı́nky pomoćı sférické harmonické dekompozice na
obyčejné diferenciálńı rovnice druhého řádu, pro jejichž diskretizaci použ́ıváme pseu-
dospektrálńı diferenčńı schémata na śıt́ıch čebyševovského typu. Dosṕıváme tak
k soustavě maticových úloh pro vlastńı frekvence a vlastńı funkce kmit̊u. Protože
elastické parametry jsou frekvenčně závislé, řeš́ıme problém pro několik výchoźıch
frekvenćı modelu a výsledky interpolujeme. Źıskané vlastńı frekvence a vlastńı
funkce porovnáváme s výsledky programu Mineos, který je založen na př́ımé nume-
rické integraci. Pomoćı naš́ı metody poč́ıtáme ńızkofrekvenčńı syntetické akcelero-
gramy nedávných velkých zemětřeseńı, které porovnáváme s daty ze supravodivých
gravimetr̊u. Z těchto záznamů po zemětřeseńıch Maule 2010 a Tohoku 2011 určujeme
faktory kvality nejdeľśıch radiálńıch mód̊u, které použijeme pro vymezeńı velikost́ı
složky Mrr momentového tenzoru. Mód 0S0 poskytuje relativně úzký interval hodnot
Mrr, zat́ımco mód 1S0 je v́ıce citlivý na hloubku centroidu. V následné inverzi pak
společně určujeme faktory kvality nejdeľśıch sféroidálńıch mód̊u a tři ńızkofrekvenčńı
složky momentového tenzoru, který pozorovaný signál generuje. Abychom dosáhli
lepš́ıho rozlǐseńı vlivu faktor̊u kvality a složek momentového tenzoru, použ́ıváme
nejdř́ıve několikadenńı záznamy a źıskané faktory kvality potom využ́ıváme při in-
verzi složek momentového tenzoru z kratš́ıch záznamů. Vzájemný rozd́ıl obou inverźı
je přitom menš́ı než rozd́ıly složek momentových tenzor̊u rutinně poskytovaných
r̊uznými seismickými agenturami.

Kĺıčová slova: vlastńı kmity, pseudospektrálńı diferenčńı schémata, data ze supra-
vodivých gravimetr̊u, faktory kvality, inverze momentového tenzoru
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Department: Department of Geophysics

Supervisor: Doc. RNDr. Ctirad Matyska, DrSc.

Abstract: Deformations and changes of the gravitational potential of prestressed
selfgravitating elastic bodies caused by free oscillations are described by means of
the momentum and Poisson equations and the constitutive relation. For spheri-
cally symmetric bodies we transform the equations and boundary conditions into
ordinary differential equations of the second order by the spherical harmonic de-
composition and further discretize the equations by highly accurate pseudospectral
difference schemes on Chebyshev grids. We thus receive a series of matrix eigenvalue
problems for eigenfrequencies and eigenfunctions of the free oscillations. Since elas-
tic parameters are frequency dependent, we solve the problem for several fiducial
frequencies and interpolate the results. Both the mode frequencies and the eigen-
functions are benchmarked against the output from the Mineos software package
based on Runge-Kutta integration techniques. Subsequently, we use our method
to calculate low-frequency synthetic accelerograms of the recent megathrust events
and compare them with the observed superconducting-gravimeter (SG) data. We
estimate the quality factors of the longest radial modes directly from the SG records
of the 2010 Maule and 2011 Tohoku earthquakes and then constrain the Mrr com-
ponent of the centroid moment tensors. The 0S0-mode amplitude enables one to
obtain a relatively narrow interval of Mrr values, whereas the 1S0-mode amplitude
is more sensitive to the centroid depth. We also invert the SG data to jointly de-
termine quality factors of the gravest spheroidal modes and the three low-frequency
centroid-moment-tensor (CMT) components that generate the observed signal. We
employ several-day records to better resolve both the quality factors and the CMT
components and, with the already inverted quality factors and substantially shorter
records, we obtain new estimates of the CMT components. The differences in CMT
components calculated from the long and short records are smaller than those rou-
tinely produced by different seismic agencies.
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Introduction

Normal modes or free oscillations are components of standing waves with an infinite
number of degrees of freedom that are created from the constructive interference
of body and surface waves circling the Earth multiple times. For the commonly
used spherically symmetric, non-rotating, perfectly elastic and isotropic (SNREI)
Earth model the oscillations are composed of two distinct types of modes. The
spheroidal modes nSl correspond to standing Rayleigh waves and change the external
shape and internal density of the body, and the toroidal modes nTl correspond to
standing Love waves with purely tangential displacements and leave the shape and
the radial density distribution unaffected. The modes are labelled by the angular
degree l = 0, . . . ,∞ of spherical harmonic decomposition and the prefix overtone
number n = 0, . . . ,∞ since there is an infinite number of spheroidal and toroidal
modes with angular frequencies nω

S
l and nω

T
l for a given value of l. In the case of

a SNREI model, each of the nSl and nTl modes represents a multiplet containing
2l+ 1 oscillations of the same frequency. This 2l+ 1 degeneracy is a mathematical
consequence of the model spherical symmetry. When a slightly anelastic model
is considered, each multiplet is attenuated with time; the exponential decrease of
modal amplitudes is described by quality factors.

Free oscillations provide information about both the internal structure of the
Earth and the mechanism of a source event (earthquake, impact etc.) since the pe-
riods of the modes are given by model parameters and the amplitudes depend on the
source event. Gilbert and Dziewonski (1975) employed 1064 measured eigenfrequen-
cies of normal modes and mass and moment of inertia to derive two models of Earth
parameters, 1066A and 1066B. Afterwards, the periods of about one thousand nor-
mal modes and about one hundred normal-mode quality-factor values were used in
addition to travel time observations in constructing the Preliminary Reference Earth
Model (Dziewonski and Anderson, 1981) that still represents the fundamental spher-
ically symmetric seismic model of the Earth. The study of free oscillations brought
the ultimate evidence of the inner-core being solid (Dziewonski and Gilbert, 1971)
and anisotropic (Woodhouse et al., 1986; Tromp, 1993; Romanowicz and Bréger,
2000), and contributed to our appreciation of the large-scale lateral variations of
the Earth structure (e.g., Jobert et al., 1978; Masters et al., 1982; Romanowicz and
Roult, 1986).

The diversity of normal-mode periods enables us to study the Earth parameters
in broad frequency and spatial ranges. The gravest modes with periods over 15 min-
utes are largely unaffected by local structures, so they provide information about the
distribution of seismic velocities, density and attenuation with depth, averaged over
the Earth, while the shorter modes bring information about lateral heterogeneities
and anisotropy.
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Free oscillations also become important in constraining the seismic-source prop-
erties of very large earthquakes where the frequency content of the source processes
shifts to lower frequencies and determination of seismic moment using high-frequency
data becomes problematic. The 2004 Sumatra-Andaman earthquake is a recent ex-
ample where the standard seismological routines based on the body and surface
waves (with periods of several hundred seconds) undervalued the energy released
during the rupture process. On the basis of the free-oscillations analysis Park et
al. (2005) showed that the seismic scalar moment M0 was at least 1.5 times higher
than the value inferred from the Global Centroid Moment Tensor (GCMT) solution
based on routine procedures.

The normal modes were for the first time observed without any doubt in the
seismic records following the 1960 Chilean earthquake with moment magnitude of
9.5. However, the idea of normal modes was not new as the theoretical description
of this phenomenon appeared more than a century ago. The normal modes of a self-
gravitating homogeneous solid sphere were discussed for example by Love (1911),
who included a historical perspectives:

The theory of the free vibrations of a homogeneous isotropic elastic solid
sphere was studied very completely by H. Lamb in 1882. At that time
very little was known about the propagation of seismic waves, but, as
observations concerning these were accumulated, it became increasingly
desirable to discover the modifications that should be made in the theory
in order to take into account the effects that might be due to the mutual
gravitation of the parts of the sphere and those that might be due to the
compressibility of its substance. The effects due to mutual gravitation
were first investigated by T. J. I’A. Bromwich, but his investigation was
incomplete in the sense that he took the material to be incompressible.
Apart from their importance in connexion with the propagation of earth-
quake shocks, the free vibrations of the earth, considered as a deformable
body, have a bearing on the theory of earth tides.

Pekeris and Jarosch (1958) obtained the equations that are still used today. The
complete theory for the Earth with arbitrary parameters and with an initial static
stress field was published by Dahlen (1972), who derived linearized equations of
motion and linearized boundary and continuity conditions governing small elastic-
gravitational disturbances away from an equilibrium state of an arbitrary, uniformly
rotating, self-gravitating, perfectly elastic Earth model with an arbitrary initial
static stress field.

The traditional approach of computing eigenfrequencies and eigenfunctions of
the SNREI model is based on the Runge-Kutta numerical integration of six (two)
ordinary differential equations of the first order in the case of spheroidal (toroidal)
oscillations. A computer program to solve these equations was written by J. F.
Gilbert around the year 1966. Two successive programs arose from Gilbert’s code:
John Woodhouse’s Obani and Guy Masters’ Mineos. In order to compare our results,
we use the Mineos software package available online at http://geodynamics.org/cig/

software/mineos/.
Instead of the Runge-Kutta numerical integration, we have developed a differ-

ent approach where the direct numerical discretization of the ordinary differential
equations by high-accuracy pseudospectral schemes (Fornberg, 1996) leads to a se-
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ries of matrix eigenvalue problems for evaluating eigenfrequencies and eigenfunctions
(Zábranová et al., 2009). Our method is a modification of Hanyk et al. (2002) where
similar ordinary differential equations are solved for postglacial rebound. Note that,
according to their statement, our approach was adopted by the geodetic group from
the Institute of Seismological Research, Department of Science & Technology Gov-
ernment of Gujarat (Annual report 2011-12, pp. 89–90).

Development of the new numerical method for normal-mode calculations repre-
sents only one part of this thesis. The other part is devoted to data analysis of the
gravest normal modes. In the 1970s the worldwide network of the LaCoste-Romberg
gravimeters (International Deployment of Accelerometers, IDA) was launched to
monitor very-long-period phenomena (Agnew et al., 1976), especially Earth tides
and free oscillations. This network was subsequently enriched by long-period seis-
mometers (> 60s) with better parameters than spring gravimeters. Analyses of the
IDA data allowed seismologists to study source effects and Earth structure at long
periods, led to better models of anelasticity of the Earth and brought information
about mode splitting (Buland et al., 1979; Agnew et al., 1986). Successively the
network of superconducting gravimeters (SG) was created to observe seismic nor-
mal modes, the Slichter triplet, tidal gravity, ocean tidal loading, core nutations and
core modes within the framework of the Global Geodynamics Project (GGP), an
international program of observations of temporal variations in the Earth gravity
field (Crossley et al., 1999).

While older studies have shown that the SGs were not as good as the STS-1
seismometers in the seismic band (Freybourger et al., 1997; Van Camp, 1999), the
new generation of SG instruments achieved lower noise levels than any other sensor
at frequencies below 0.8 mHz (Widmer-Schnidrig, 2003). Nevertheless, the longest
Slichter oscillations with periods about five hours, first highlighted by Slichter (1961),
have not yet been discovered with certainty in the records, in spite of the fact that
the SG precision is lower than 1 nGal. The SGs are thus the most suitable instru-
ments to detect small signals expected for the Slichter triplet 1S1 (Hinderer et al.,
1995; Rosat et al., 2003; Rosat et al., 2004). Since the 1S1 period directly relates to
the density jump at the inner-core boundary, the hunt for convincing proofs of the
existence of this fundamental mode still continues (e.g., Smylie, 1992; Smylie et al.,
1992; Ding and Shen, 2013a), as do debates about its excitation (e.g., Rosat, 2007;
Rosat and Rogister, 2012), computation of the periods (e.g., Rogister, 2003; Grin-
feld and Wisdom, 2010), influence of viscosity in the outer core (e.g., Smylie and
McMillan, 2000; Rieutord, 2002) and other topics (e.g., Crossley, 1992; Rochester
and Peng, 1993).

Nevertheless, observations of fundamental low-frequency modes other than the
Slichter triplet are of excellent quality and new SG data enable us to solve a variety
of other problems. In this thesis we chose the SG records of the 2010 Maule, 2011
Tohoku and 2012 Sumatra earthquakes in the frequency range below 1 mHz. Since
source durations of these earthquakes are shorter than 200 s and the characteris-
tic rupture lengths are smaller than 500 km, we can securely use the point-source
approximation in this frequency range.

As we know from the normal-mode perturbation theory (e.g., Backus and Gilbert,
1961; Dahlen, 1968; Dziewonski and Sailor, 1976; Woodhouse and Dahlen, 1978),
the free oscillations of the Earth are split by rotation, ellipticity and lateral het-
erogeneity. In applications to source-mechanism problems we follow the study by
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Dahlen and Sailor (1979). Splitting of the low-frequency modes is almost insensible
to the 3-D structure of the Earth (e.g., He and Tromp, 1996). The new observations
of the gravest spheroidal modes by SGs can thus be modelled straightforwardly by
taking into account multiplet splitting due to only rotation and ellipticity. These
observations yield constraints that can be used to obtain low-frequency limits of the
source mechanism together with new estimates of the quality factors of these modes,
which we discuss in detail in the second part of this thesis. We also focused on the
radial modes 0S0 and 1S0. Since they are not degenerated, their quality factors can
be directly determined from records and the moment tensor inversion can be per-
formed separately. Our results have already been cited by Mitsui and Heki (2012),
Ding and Shen (2013b) and Bogiatzis and Ishii (2014).

Part I provides theoretical background for normal-mode computations and SG
data processing of three megathrust earthquakes from the last decade. In Chap-
ter 1 we introduce the matrix eigenvalue approach that enables us to calculate the
normal-mode frequencies and eigenfunctions. The adopted formulas that describe
the response of an (an)elastic, (a)spherical and (non)rotating Earth to seismic events
are listed in Chapter 2. In Chapter 3 we present the SG data processing, specify the
three studied events and use the SG data to constrain the low-frequency moment
tensors and quality factors.

Part II consists of the three articles (Zábranová et al., 2012a; Zábranová et al.,
2012b; Zábranová and Matyska, 2014) published in international scientific journals
(these articles contain their separate reference lists). In Chapter 4 we deal with
the seismic and gravity records from the Geodetic Observatory Pecný after the
2011 Tohoku earthquake and compare them with the synthetic records for several
point- and finite-source agency solutions. Chapter 5 is devoted to the radial modes
generated by the 2010 Maule and 2011 Tohoku earthquakes. We found the quality
factors of the three longest radial modes using the GGP data and subsequently
constrained the moment tensors of both earthquakes. In Chapter 6 we introduce
the joint inversion of the quality factors of four fundamental spheroidal modes and
the moment-tensors components of the 2010 Maule and 2011 Tohoku earthquakes
again using GGP data.
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Part I

Computational methods and SG
data
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Chapter 1

Matrix eigenvalue approach

1.1 Governing partial differential equations

In this section we formulate the partial differential equations (PDEs) and the bound-
ary conditions, which describe the response of a prestressed selfgravitating elastic
body to a seismic source or external gravitational force, i.e., the temporal behavior
of the displacement and the incremental gravitational potential in the entire body.
The reference unperturbed state of our model—the hydrostatic equilibrium—is de-
scribed by the momentum equation,

∇ · τ0 + f0 = 0, (1.1)

where τ0 represents the Cauchy stress tensor, the forcing term satisfies f0 = −ρ0∇ϕ0

and ρ0 is the reference density. The hydrostatic gravitational potential ϕ0 satisfies
the Poisson equation,

∆ϕ0 = 4πGρ0, (1.2)

where G is the Newton gravitational constant. The boundary conditions in the
reference state, required at the surface and all internal boundaries, are the continuity
of the normal traction, the gravitational potential and the normal component of its
gradient; moreover, the tangential traction vanishes at the free surface and liquid
boundaries.

The complete system of PDEs for the Lagrangian displacement u, the Eulerian
incremental gravitational potential ϕ and the incremental stress tensor τ consists
of the momentum equation, the Poisson equation and the constitutive relation,

∇ · τ − ρ0∇ϕ+∇ · (ρ0u)∇ϕ0 −∇(ρ0∇ϕ0 · u) = ρ0
∂2u

∂t2
, (1.3)

∇ · (∇ϕ+ 4πGρ0u) = 0, (1.4)

λ∇ · uI + µ
[
∇u+ (∇u)T

]
= τ , (1.5)

where λ and µ are the elastic Lamé parameters, the latter also referred to as the
shear modulus. This Lagrangian-Eulerian system of equations can be found in, e.g.,
Martinec (1984) or Dahlen and Tromp (1998).

Lagrangian boundary conditions have to be added to the PDEs (1.3)–(1.5) on
the surface of the model and on the internal boundaries. On a boundary of two solid
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layers (called ”solid boundary” from now on) the displacement and the incremental
traction are continuous,

[u]+− = 0, (1.6)

[τ · n]+− = 0, (1.7)

where n is the unit vector normal to the boundaries. On a boundary of the solid
and liquid layers (called ”liquid boundary” from now on) the normal component of
both the displacement and incremental traction are continuous and the tangential
components of the traction vanish,

[u · n]+− = 0, (1.8)

[τ · n · n]+− = 0, (1.9)

τ − (τ · n)n = 0. (1.10)

Let us emphasize that the relation (1.10) represents four independent equations
since it holds on each side of the boundary. On the free surface both the normal
and tangential components of the incremental traction vanish,

τ · n = 0. (1.11)

As this is a Neumann boundary condition, we must also exclude total translation
and rotation of the body. The incremental gravitational potential tends to zero in
infinity,

ϕ(r →∞) = 0. (1.12)

On all boundaries the Eulerian incremental potential is continuous, whereas the
normal component of its gradient can be discontinuous because the boundary un-
dulations are replaced by apparent surface mass densities,

[ϕ]+− = 0, (1.13)

[∇ϕ · n+ 4πGρ0u · n]+− = 0. (1.14)

This way the geometry of the body remains unchanged during deformations also
in the description of the gravitational potential, which is treated by means of an
Eulerian formalism. The geometry of the domain, where the momentum equation
(1.3) is solved, is fixed implicitly since a Lagrangian formalism is employed here.

1.2 Spherical harmonic decomposition

We consider spherically symmetric models in this chapter. In order to employ the
spherical symmetry, we use a formalism of spherical harmonic functions for indi-
vidual quantities. Let (er, eϑ, eφ) be the unit spherical vector basis with the radius
r, the colatitude ϑ ∈ 〈0, π〉 and the longitude φ ∈ 〈0, 2π〉. On the unit sphere
a quadratically integrable scalar function f(r, ϑ, φ) can be decomposed by means of
the complete orthonormal basis of scalar spherical harmonic functions Ylm(ϑ, φ),

f(r, ϑ, φ) =
∞∑
l=0

l∑
m=−l

flm(r)Ylm(ϑ, φ), (1.15)
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where l is the angular degree, m the azimuthal order and flm(r) are coefficients of
the expansion. The scalar spherical harmonic functions are defined by the relation

Ylm(ϑ, φ) = (−1)mNlmP
m
l (cosϑ)e(imφ), (1.16)

where Nlm are the norm factors according to Martinec (1984),

Nlm =

√√√√(2l + 1)(l −m)!

4π(l +m)!
(1.17)

and Pm
l (cosϑ) are the associated Legendre functions. Such a decomposition can be

applied directly to the scalar incremental gravitational potential ϕ(r). Similarly, we
can decompose the displacement vector to express the remaining unknowns,

u(r) = ur(r)er + uϑ(r)eϑ + uφ(r)eφ, (1.18)

ur(r) =
∑
lm

Ulm(r)Ylm(ϑ, φ), (1.19)

uϑ(r) =
∑
lm

Vlm(r)
∂Ylm
∂ϑ

(ϑ, φ)−Wlm(r)
1

sinϑ

∂Ylm
∂φ

(ϑ, φ), (1.20)

uφ(r) =
∑
lm

Vlm(r)
1

sinϑ

∂Ylm
∂φ

(ϑ, φ) +Wlm(r)
∂Ylm
∂ϑ

(ϑ, φ), (1.21)

ϕ(r) =
∑
lm

Flm(r)Ylm(ϑ, φ). (1.22)

This formalism agrees also with Hanyk (1999) and Hanyk et al. (2002), where the
problem of postglacial rebound is studied. We introduce the vector spherical har-
monic functions S

(−1)
lm , S

(1)
lm ≡ ∇ΩYlm and S

(0)
lm ≡ er ×∇ΩYlm,

S
(−1)
lm (ϑ, φ) = Ylmer, (1.23)

S
(1)
lm(ϑ, φ) =

∂Ylm
∂ϑ

eϑ +
1

sinϑ

∂Ylm
∂φ

eφ, (1.24)

S
(0)
lm(ϑ, φ) = − 1

sinϑ

∂Ylm
∂φ

eϑ +
∂Ylm
∂ϑ

eφ. (1.25)

Functions S
(0)
lm create the toroidal basis and S

(−1)
lm , S

(1)
lm form the spheroidal basis.

The displacement vector u and traction T r can be written in the form

u(r) =
∑
lm

[
Ulm(r)S

(−1)
lm + Vlm(r)S

(1)
lm +Wlm(r)S

(0)
lm

]
, (1.26)

er · τ ≡ T r =
∑
lm

[
Trr,lm(r)S

(−1)
lm + Trϑ,lm(r)S

(1)
lm + Trφ,lm(r)S

(0)
lm

]
. (1.27)

Let us denote the derivative in the direction of the radial coordinate f ′ ≡ df/dr.
After the substitution of (1.5), (1.22) and (1.26) into the momentum equation (1.3)
we obtain

∇ · τ =
∑
lm

[(
T ′rr,lm −

4γ

r2
Ulm +

2Nγ

r2
Vlm +

4µ

rβ
Trr,lm −

N

r
Trϑ,lm

)
S

(−1)
lm

+

(
T ′rϑ,lm +

2γ

r2
Ulm −

Nγ + (N − 2)µ

r2
Vlm +

λ

rβ
Trr,lm +

3

r
Trϑ,lm

)
S

(1)
lm

+

(
T ′rφ,lm −

(N − 2)µ

r2
Wlm +

3

r
Trφ,lm

)
S

(0)
lm

]
, (1.28)
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f =
∑
lm

[(
4ρ0g0

r
Ulm −

Nρ0g0

r
Vlm +

(n+ 1)ρ0

r
Flm − ρ0Qlm

)
S

(−1)
lm

−
(
ρ0g0

r
Ulm +

ρ0

r
Flm

)
S

(1)
lm

]
, (1.29)

where f = −ρ0∇ϕ+∇ · (ρ0u)∇ϕ0 −∇(ρ0∇ϕ0 ·u), β = λ+ 2µ, γ = µ(3λ+ 2µ)/β,
N = l(l + 1), ∇ϕ0 = g0er (with g0 > 0) and the components of the traction Trr,lm,
Trϑ,lm a Trφ,lm and the auxiliary coefficients Qlm are given by

Trr,lm = βU ′lm +
λ

r
(2Ulm −NVlm) , (1.30)

Trϑ,lm = µ
(
V ′lm +

Ulm − Vlm
r

)
, (1.31)

Trφ,lm = µ
(
W ′
lm −

Wlm

r

)
, (1.32)

Qlm = F ′lm +
l + 1

r
Flm + 4πGρ0Ulm. (1.33)

By substituting (1.22) and (1.26) into the Poisson equation (1.4) we obtain

∇ · (∇ϕ+ 4πGρ0u) =
∑
lm

[
Q′lm + 4πG

(l + 1)ρ0

r
Ulm

− 4πG
Nρ0

r
Vlm −

l − 1

r
Qlm

]
Ylm. (1.34)

We transform (1.3) into the Fourier spectral domain. In other words, we formally
replace ∂

∂t
by iω and ∂2

∂t2
by −ω2, where ω is the angular frequency of an individual

free oscillation or tidal wave, to obtain −ρ0ω
2u on the right-hand side of (1.3). The

azimuthal order m does not play a role in the case of a spherical symmetric model
due to the 2l + 1 degeneracy.

1.3 Ordinary differential equations

1.3.1 Toroidal oscillations

Toroidal free oscillations create neither volume variations (the radial component of
the displacement is equal to zero), nor changes of the gravitational field, i.e.,

∇ · u = 0, u · er = 0 and ϕ = 0. (1.35)

The toroidal displacement vector formulated by means of the vector spherical har-
monic functions is expressed in terms of the functions W ≡ Wlm in (1.26) and the
equation (1.3) assumes the form of an ordinary differential equation of the second
order (cf. Martinec, 1984 (4.37); Dahlen, 1998 (8.45)):

µW ′′ +
(

2µ

r
+ µ′

)
W ′ −

(
Nµ

r
+ µ′

)
W

r
= −ρ0ω

2W. (1.36)

The inner boundary conditions, requiring the continuity of the displacement and
the incremental traction, attain the form,

[W]+− = 0,

[Trφ]+− ≡
[
µ
(
W ′ − W

r

)]+

−
= 0, (1.37)
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for the case of solid boundaries. Toroidal oscillations do not exist in liquid layers,
hence the same equation holds on liquid boundaries and at the free surface,

Trφ ≡ µ
(
W ′ − W

r

)
= 0. (1.38)

If the model does not contain a liquid layer, toroidal displacements exist in the
entire volume and vanish at the center of the model for all modes with l ≥ 1 (see
Appendix). We adopted the normalization of the free-oscillation eigenfunctions from
Dahlen and Tromp (1998) where the kinetic energy T is equal to one,

T = N
∫ R

0
ρ0W

2r2dr = 1, (1.39)

and R denotes the radius of the model.

1.3.2 Spheroidal oscillations

The spheroidal part of the displacement vector satisfies the equation,

(∇× u) · er = 0. (1.40)

Spheroidal oscillations cause volume variations; as a consequence the incremental
gravitational potential ϕ is non-zero. Equations (1.3)–(1.5) rewritten with the terms
of (1.22) and (1.26) yield a set of three ordinary differential equations of the second
order for the unknowns U ≡ Ulm, V ≡ Vlm and F ≡ Flm (cf. Martinec, 1984
(4.54)–(4.56); Dahlen, 1998 (8.43)–(8.44), (8.53)),

βU ′′ +

(
2β

r
+ β′

)
U ′ +

(
4ρ0g0

r
− 4πGρ2

0 −
2β + µN

r2
+

2λ′

r

)
U − (1.41)

− (λ+ µ)
NV ′

r
+

(
λ+ 3µ

r
− ρ0g0 − λ′

)
NV

r
− ρ0F

′ = −ρ0ω
2U,

µV ′′ +
(

2µ

r
+ µ′

)
V ′ −

(
β

r
+ µ′

)
N

r
V + (1.42)

+
λ+ µ

r
U ′ +

(
2β

r
− ρ0g0 + µ′

)
U

r
− ρ0

r
F = −ρ0ω

2V,

F ′′ +
2

r
F ′ − N

r2
F + 4πGρ0

[
U ′ +

(
2

r
+
ρ′0
ρ0

)
U − N

r
V

]
= 0. (1.43)

The conditions on the inner boundaries and free surface for the displacement, incre-
mental traction and incremental potential take the form

solid boundary [U]+− = 0,

[V]+− = 0,

[Trr]
+
− ≡

[
βU ′ +

λ

r
(2U −NV)

]+

−
= 0,

[Trϑ]+− ≡
[
µ
(
V ′ − V

r
+
U

r

)]+

−
= 0,

[F]+− = 0,
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[F ′ + 4πGρ0U]
+
− = 0, (1.44)

liquid boundary [U]+− = 0,

[Trr]
+
− ≡

[
βU ′ +

λ

r
(2U −NV)

]+

−
= 0,

Trϑ ≡ µ
(
V ′ − V

r
+
U

r

)
= 0,

[F]+− = 0,

[F ′ + 4πGρ0U]
+
− = 0, (1.45)

free surface Trr ≡ βU ′ +
λ

r
(2U −NV) = 0,

Trϑ ≡ µ
(
V ′ − V

r
+
U

r

)
= 0,

Q ≡ F ′ +
l + 1

r
F + 4πGρ0U = 0. (1.46)

The boundary conditions at the center of the model are (see Appendix),

U(0) = V (0) = 0, F (0) = 0 for l > 1, (1.47)

and

U ′(0) = V ′(0) = 0, F (0) = 0 for l = 1. (1.48)

We again adopted the normalization from Dahlen and Tromp (1998) where the
kinetic energy T is equal to one,

T =
∫ R

0
ρ0(U2 +NV 2)r2dr = 1, (1.49)

and R denotes the radius of the model.

1.3.3 Radial oscillations

If the angular degree of the spheroidal modes equals zero, l = 0, the motion proceeds
only in the radial direction and the horizontal displacement vanishes. F ≡ F00

satisfies (1.43), that arrives at a special form,

F ′′ +
2

r
F ′ + 4πGρ0

[
U ′ +

(
2

r
+
ρ′0
ρ0

)
U

]
=

=
1

r2

(
r2F ′

)′
+

4πG

r2

(
r2ρ0U

)′
= 0 (1.50)

and because the integration constant is clearly zero (Martinec, 1984),

F ′ + 4πGρ0U = 0. (1.51)

By substitution of (1.51) into (1.41) we obtain the ordinary differential equation of
the second order for the unknown U ≡ U00,

βU ′′ +

(
2β

r
+ β′

)
U ′ +

(
4ρ0g0 −

2β

r
+ 2λ′

)
U

r
= −ρ0ω

2U. (1.52)
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Since the horizontal components of the displacement vector are zero, both the solid
and liquid boundaries behave in the same way. The normal components of the
displacement and traction have the form,

all internal boundaries [U ]+− = 0,

[Trr]
+
− ≡

[
βU ′ +

2λ

r
U

]+

−
= 0, (1.53)

free surface Trr ≡ βU ′ +
2λ

r
U = 0, (1.54)

the center (see Appendix) U(0) = 0. (1.55)

In contrast to spheroidal oscillations with l > 0, computation of displacement is not
coupled to computation of the incremental gravitational potential.

1.4 Elastic tides

The tidal deformation is caused by an external gravitational force. The incremental
gravitational potential ϕ can be expressed as a sum of the gravitational potential
ϕd caused by the deformation and the tidal potential ϕt,

ϕ = ϕd + ϕt =
∞∑
l=0

(F d
l + F t

l )Yl , (1.56)

where F d
l and F t

l are the coefficients of expansions and Yl is abbreviation for any
Ylm. The boundary condition (1.14) between the internal and external incremental
gravitational potential at the surface (r = R) reduces to[

∂ϕ

∂r

]+

−
= 4πGρ0u. (1.57)

Outside the body, the coefficients F d
l are proportional to 1/rl+1 (Jekeli, 1989) and

F t
l are proportional to rl (Agnew, 2007). The right-hand side of (1.56) can thus be

decomposed as follows,

F d
l

′
+ F t

l
′
= − l + 1

r
F d
l +

l

r
F t
l = − l + 1

r
Fl +

2l + 1

r
F t
l , (1.58)

that forms together with the left-hand side F ′l +4πGρ0U the condition on the surface,

Ql = F ′l +
l + 1

r
Fl + 4πGρ0Ul =

2l + 1

R
F t
l . (1.59)

As usual (e.g., Wahr 1989), the lth-degree contribution to u and ϕ on the surface
can be related to the lth-degree contribution ϕt,l = F t

l Yl of the tidal potential ϕt by
the definitions

ur,l(ϑ, φ) = −hl
g0

ϕt,l(ϑ, φ), (1.60)

uϑ,l(ϑ, φ) = − ll
g0

∂ϕt,l(ϑ, φ)

∂ϑ
, (1.61)

uφ,l(ϑ, φ) = − ll
g0 sinϑ

∂ϕt,l(ϑ, φ)

∂φ
, (1.62)

ϕl = ϕd,l(ϑ, φ) + ϕt,l(ϑ, φ) = (kl + 1)ϕt,l(ϑ, φ), (1.63)
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where g0 is the surface acceleration. The dimensionless numbers hl, ll and kl are
called the tidal Love numbers. The tidal displacement vector is spheroidal, thus the
differential equations (1.41)–(1.43) and the boundary conditions (1.44)–(1.46) are
the same as for the spheroidal oscillations with the exception of the last relation in
(1.46) which must be replaced by (1.59); ωl is now the tidal frequency, which is the
same for all l, i.e. we set ωl = ω. For ω = 0 we obtain static tides.

Carrying out the spherical decomposition of (1.60)–(1.63), we arrive at the simple
expressions

hl =
Ul
R

(
−Rg0

F t
l

)
, (1.64)

ll =
Vl
R

(
−Rg0

F t
l

)
, (1.65)

1 + kl = − Fl
Rg0

(
−Rg0

F t
l

)
. (1.66)

The dimensionless factor −Rg0/F
t
l can be used as a normalization constant for Ul,

Vl and Fl. The last boundary condition of (1.46), multiplied by this factor, can be
rewritten for the normalized unknowns into the final form,

F̄ ′l +
l + 1

r
F̄l + 4πGρ0Ūl = −(2l + 1)g0, (1.67)

that we use in numerical calculations of tides. We employ the normalized unknowns
Ūl = −UlRg0/F

t
l and V̄l = −VlRg0/F

t
l . Relations (1.64)–(1.66) and boundary con-

dition (1.67) are in accord with Fang (1998), where this normalization was implicitly
made.

1.5 Matrix representation

Our goal is to derive a matrix eigenvalue problem for the free oscillations and a set
of algebraic equations for the tides. First, we arrange the unknowns U ≡ Ulm(r),
V ≡ Vlm(r), F ≡ Flm(r) and W ≡ Wlm(r) into the vector

y(r) = (U, V, F,W )T . (1.68)

Then the equations (1.36), (1.41)–(1.43) can be rewritten into the matrix form,

A(r) · y′′ + B(r) · y′ + C(r) · y = −ω2D(r) · y, (1.69)

where the coefficient matrices A–D are

A(r) =


β 0 0 0
0 µ 0 0
0 0 1 0
0 0 0 µ

 , (1.70)

B(r) =


2β
r

+ β′ − (λ+µ)N
r

−ρ0 0
λ+µ
r

2µ
r

+ µ′ 0 0
4πGρ0 0 2

r
0

0 0 0 2µ
r

+ µ′

 , (1.71)
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C(r) =


4ρ0g0
r
− 4πGρ20 −

2β+µN
r2

+ 2λ′

r

(
λ+3µ
r
− ρ0g0 − λ′

)
NV
r

0 0
2β
r2
− ρ0g0

r
+ µ′

r
−
(
β
r

+ µ′
)
N
r

− ρ0
r

0

4πG( 2ρ0
r

+ ρ′) −4πGρ0
N
r

− N
r2

0

0 0 0 −
(
Nµ
r

+ µ′
)

1
r

, (1.72)

D(r) =


ρ0 0 0 0
0 ρ0 0 0
0 0 0 0
0 0 0 ρ0

 . (1.73)

In order to discretize (1.68)–(1.69) with a pseudospectral accuracy, we follow
the high-order pseudospectral approach described by, e.g., Fornberg (1996). The
discretization grid comes out from the local extrema of the Chebyshev polynomials

TM−1(x) = cos[(M − 1) arccos x] (1.74)

on the interval 〈−1, 1〉,

xi = cos

(
π(i− 1)

M − 1

)
, i = 1, . . . ,M. (1.75)

The Chebyshev grid rmin = r1 < . . . < rM = rmax thus consists of the points

rM−i+1 = rmin +
rmax − rmin

2

[
cos

(
π(i− 1)

M − 1

)
+ 1

]
, i = 1, . . . ,M. (1.76)

The values of y and its derivatives at ri can be expressed using the weighted sum
of values y on the whole grid,

y(ri) =
M∑
j=1

αijy(rj), (1.77)

y′(ri) =
M∑
j=1

βijy(rj), (1.78)

y′′(ri) =
M∑
j=1

γijy(rj). (1.79)

The elements of weight matrices αij, βij and γij can be evaluated by means of the
algorithm developed by Fornberg (1996). Note that here, where both ri and rj are
the grid points, the αij elements are simply: αii = 1 and αij = 0 for i 6= j. With
the weight matrices the equation (1.69) can be expressed in the form,

M∑
j=1

[A(ri)γij + B(ri)βij + C(ri)αij] · y(rj) = −ω2
M∑
j=1

D(ri)αij · y(rj), (1.80)

i = 2, . . . ,M − 1.

It is necessary to explain the meaning of the product, e.g., Aγij in (1.80). The size
of the matrix A is 4×4, whereas γij are elements of a matrix of the size M×M . By
multiplying each element of the matrix A by γij we obtain a (4M−8)× 4M matrix.
The equation (1.80) is solved in the internal grid points. The boundary conditions
have to be satisfied at the boundary points, r1 and rM , as follows.
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As is summarized in Appendix, the boundary conditions in the center of the
model, rmin = 0, satisfy

l > 1 : (U, V, F,W )T (0) = 0,

l = 1 : (U ′, V ′, F,W )
T

(0) = 0, (1.81)

and in the matrix form

Fβ · y′ + Fα · y = 0, (1.82)

where

l > 1 : Fα =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , Fβ =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , (1.83)

l = 1 : Fα =


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

 , Fβ =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 . (1.84)

With the weight matrices the boundary conditions (1.81) are

M∑
j=1

[Fββ0j + Fαα0j] · y(rj) = 0. (1.85)

The free-surface boundary conditions (1.38) and (1.46) have the matrix form

(Trr, Trϑ, Q, Trϕ)T = A · y′ + E · y = 0, (1.86)

where the coefficient matrix E is

E(r) =


2λ
r

−Nλ
r

0 0
µ
r

−µ
r

0 0
4πGρ0 0 l+1

r
0

0 0 0 −µ
r

 , r = rM , (1.87)

and with the weight matrices it can be rewritten as

M∑
j=1

[A(rM)βMj + E(rM)αMj] · y(rj) = 0. (1.88)

In the case of tides, the vector q = (0, 0,−(2l + 1)g0, 0)T appears on the right-
hand side of (1.67); we will discuss this case separately.

For a one-layer model, the whole problem is described by the equations (1.85),
(1.80) and (1.88) in the form of a generalized eigenvalue problem,

P · Y = −ω2R · Y , (1.89)

where the vector Y = (U1 . . . UM , V1 . . . VM , F1 . . . FM ,W1 . . .WM)T has the size 4M
and the matrices P and R are 4M × 4M ,

P =


Fββ0j + Fαα0j

Aγij + Bβij + Cαij

AβMj + EαMj

 , R =


0

Dαij

0

 , (1.90)
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where i = 2, . . . ,M − 1 and j = 1, . . . ,M .
The extension to K layers is quite simple. We start with the models composed of

solid layers only, models with liquid layers will be discussed later. We mark vector
Y as Y (k) in the kth layer, k = 1, . . . , K. On the solid boundary the continuity
conditions for the displacement, the gravitational potential, the traction and Q are
described by (1.37) and (1.44). Using the expansions (1.77) and (1.78) we get

M(k)∑
j=1

Iα
(k)

M(k)j
Y (k)(r

(k)
j )−

M(k+1)∑
j=1

Iα
(k+1)
1j Y (k+1)(r

(k+1)
j ) = 0 (1.91)

and, for brevity with layer superscripts denoting only the unknown vectors,

M∑
j=1

[
AβMj + ÊαMj

]
Y (k)(rj)−

M∑
j=1

[
Aβ1j + Êα1j

]
Y (k+1)(rj) = 0, (1.92)

where I is the 4× 4 identity matrix. The components of the coefficient matrix Ê,

Ê(r) =


2λ
r

−Nλ
r

0 0
µ
r

−µ
r

0 0
4πGρ0 0 0 0

0 0 0 −µ
r

 , (1.93)

come out from the boundary conditions (1.44) and (1.37). In fact, because of con-
tinuity of F in (1.44), we can use E(r) instead of Ê(r).

We introduce the vector Ỹ composed from the unknowns Y (k) in all layers,

Ỹ =
(
Y (1), . . . ,Y (k), . . . ,Y (K)

)T
. (1.94)

The total number of grid points, and the size of Ỹ , is M̃ =
∑K
k=1 M

(k). The matrix
equation (1.89) generalized for K layers takes the form

P̃ · Ỹ = −ω2R̃ · Ỹ . (1.95)

The matrices P̃ and R̃ have the size 4M̃ × 4M̃ and are given explicitly in the next
sections. As the matrix P̃ is regular and can be inverted, we arrive at the form of
the standard eigenvalue problem,(

P̃−1 · R̃
)
· Ỹ = − 1

ω2
Ỹ . (1.96)

The equations for toroidal and spheroidal motions are independent and we decouple
the both parts in what follows.

1.5.1 Toroidal oscillations

The unknown subvector y for toroidal modes contains only one toroidal component
of the displacement, y = (W )T. Also, the submatrices AT–FT have one element
each, corresponding to the 4th row and the 4th column of the matrices A–F. If
the model contains liquid layers, where the toroidal oscillations do not exist, r

(1)
min

is the radius of the first liquid boundary from the surface towards the center and
the free-surface condition (1.88) applies also on this boundary. If there is no liquid
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layer, a condition at the center following from (1.85) is required instead. The M̃×M̃
matrix P̃T for K layers and a model with liquid layers takes the form,

P̃T =



ATβ1j + ETα1j

ATγij + BTβij + CTαij

ATβMj + ETαMj −ATβ1j −ETα1j

IαMj −Iα1j

. . .

. . .

ATγij + BTβij + CTαij

ATβMj + ETαMj



,

where blocks with zero elements are left blank. The omitted layer superscript k
increases along the diagonal. The matrix has a nearly block-diagonal structure and,
moreover, can be inverted. Similarly, the M̃ × M̃ matrix R̃T is

R̃T =



0
1xM

DTαij
(M−2)xM

0
1xM

0
1xM

0
1xM

0
1xM

. . .

. . .

DTαij
(M−2)xM

0
1xM


.

1.5.2 Spheroidal oscillations

The subvector y contains three unknown components, y = (U, V, F )T. The 3× 3
submatrices AS–FS are the upper left blocks of the matrices A–F. Spheroidal os-
cillations do exist in liquid layers and the point of origin, r

(1)
min = 0, is always the

center of the model, where conditions (1.85) have to be satisfied. The free-surface
conditions (1.88) are required on the surface. The matrices P̃S and R̃S are created
from (1.85), (1.80), (1.88), (1.91) and (1.92),

P̃S =



FβSβ0j + FαSα0j

ASγij + BSβij + CSαij

ASβMj + ESαMj −ASβ1j −ESα1j

IαMj −Iα1j

. . .

. . .

ASγij + BSβij + CSαij

ASβMj + ESαMj



,
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R̃S =



0
3x3M

DSαij
(3M−6)x3M

0
3x3M

0
3x3M

0
3x3M

0
3x3M

. . .

. . .

DSαij
(3M−6)x3M

0
3x3M


.

The size 3M̃ × 3M̃ of the matrices P̃S and R̃S can be reduced by separation of
the equations with zero right-hand sides in (1.95), i.e. those corresponding to the
Poisson equation and the boundary conditions. Thus, (1.95) can be arranged into
the form(

P1 P2

P3 P4

)(
Y1

Y2

)
= −ω2

(
R1 0
0 0

)(
Y1

Y2

)
. (1.97)

P1, P2 and R1 correspond to the equations (1.41)–(1.42), whereas P3 and P4 match
the equation (1.43) and boundary conditions (1.44)–(1.46). Vector Y1 is chosen to
collect the displacement components in the internal points of the layers and vector
Y2 consists of the components of the displacement in the boundary points and the
incremental gravitational potential. Since

Y2 = −P−1
4 P3Y1, (1.98)

the final eigenvalue problem with the matrix of the size (2M̃−4K)× (2M̃−4K) has
the form(

P1 −P2P
−1
4 P3

)−1
R1Y1 = − 1

ω2
Y1. (1.99)

1.5.3 Radial oscillations

The subvector y contains only the radial component of the displacement, y = (U).
The coefficient submatrices have one element each easily obtained from (1.52)–(1.55),
i.e.,

AR → β, (1.100)

BR → 2β

r
+ β′, (1.101)

CR →
(

4ρ0g0 −
2β

r
+ 2λ′

)
1

r
, (1.102)

DR → ρ0, (1.103)

ER → 2λ

r
, (1.104)

Fα
R → 1, Fβ

R → 0. (1.105)

The point of origin is the center of the model, r
(1)
min = 0, where U(0) = 0, and the

free-surface condition (1.54) is required on the surface. The M̃ × M̃ matrices P̃R
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and R̃R take the forms

P̃R =



FαRα0j

ARγij + BRβij + CRαij

ARβMj + ERαMj −ARβ1j −ERα1j

IαMj −Iα1j

. . .

. . .

ARγij + BRβij + CRαij

ARβMj + ERαMj



,

R̃R =



0
1xM

DRαij
(M−2)xM

0
1xM

0
1xM

0
1xM

0
1xM

. . .

. . .

DRαij
(M−2)xM

0
1xM


.

1.5.4 Tides

The vector of unknowns is the same as for the spheroidal modes, y = (U, V, F )T, and
the same equations and boundary conditions are valid in all grid points except for
the surface where the tidal potential changes the right-hand side of the free-surface
boundary condition (1.67). Since the coefficient matrices AS–FS are the same as for
the spheroidal modes, the matrix equation has the form(

P̃S + ω2R̃S

)
· Ỹ = Q̃tide (1.106)

where the last term of the vector Q̃tide = [0, . . . , 0,−(2l + 1)g0]T of the size 3M̃
contains the surface condition and ω is the frequency of the external tidal potential.
Since ω is known, (1.106) represents the set of linear equations to be solved in order
to get the tidal deformation and the incremental potential.

1.6 Quality factors

Anelastic dissipation of the compressional and shear energy causes the attenuation
of the free oscillations. The modal amplitude decreases with time proportionally to
exp

(
− ωt

2Q

)
, where Q is the quality factor of a mode. When Q is large, the mode is

attenuated slowly. In the Earth, the quality factors vary from 90 to 5500. However,
only the first few radial modes achieve the values higher than 1000, whereas Q of
other modes are lower.

The value of Q can be determined by the equation (Dahlen and Tromp, 1998,
eq. 9.54)

Q−1 = 2ω−1
∫ R

0

(
κKκQ

−1
κ + µKµQ

−1
µ

)
dr, (1.107)
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where κ = λ + 2
3
µ is the incompressibility modulus, Qκ(r) and Qµ(r) are the bulk

and shear quality factors of the model and the Fréchet kernels Kκ and Kµ depend
on the modal frequencies and eigenfunctions by the formulas

2ωKµ = (2rU ′ − 2U +NV )2/3 +N(rV ′ − V + U)2 +

+N(rW ′ −W )2 +N(N − 2)(V 2 +W 2), (1.108)

2ωKκ = (rU ′ + 2U −NV )2. (1.109)

In our calculations we use Qκ and Qµ from the PREM (Dziewonski and Anderson,
1981) but there is a series of other models (e.g., Sailor and Dziewonski, 1978; Durek
and Ekström, 1996; Widmer et al., 1991; Lawrence and Wysession, 2005) because
the knowledge of anelasticity is much poorer than that of elasticity and density
(Masters and Gilbert, 1983). This is the reason why we reevaluate the quality
factors of several gravest modes from the attenuation of superconducting-gravimeter
signals, where they play a key role.

The seismic velocities vp =
√
κ/ρ and vs =

√
µ/ρ are thus frequency dependent.

The PREM velocities are given at the reference frequency of ωref/(2π) = 1 Hz and
have to be modified according to dispersion relations by Kanamori and Anderson
(1977),

vs(ω) = vs(ωref)

(
1 +

ln ω
ωref

πQµ

)
, (1.110)

vp(ω) = vp(ωref)

[
1 +

ln ω
ωref

π

(
1− E
Qκ

+
E

Qµ

)]
, (1.111)

where E = 4
3
(vs/vp)

2. Frequency-dependent values of λ(ω) and µ(ω) stem from
these relations easily.

1.7 Interpolations

When we compute modes for a chosen fiducial frequency ω0 of the model, the ques-
tion arises how to correct the modal frequencies different from the fiducial one.
Dahlen and Tromp (1998) derived the explicit formula for the first-order perturba-
tion δωd of the eigenfrequency ω,

δωd = ω
ln ω

ω0

πQ
. (1.112)

However, some spheroidal eigenfunctions are very sensitive to the fiducial frequency
ω0 (see Fig. 1.1). This is the reason why we solved the whole matrix-eigenvalue
problems for several fiducial frequencies and interpolated them to obtain better
approximation of both the modal eigenfunctions and eigenfrequencies and, subse-
quently, the quality factors. If T1 and T2 are the modal periods corresponding to
the fiducial periods T1, and T2, T1 < T2, we can write approximative relation for
the corrected modal period

T = T1 +
log(T1 + T2)/2− log T1

log T2− log T1
(T2 − T1). (1.113)

The analogous relations can be written for the eigenfunctions U , V and F ,

U = U1 +
log T − log T1

log T2− log T1
(U2 − U1), . . . (1.114)
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and for the quality factors Q

Q = Q1 +
log T − log T1

log T2− log T1
(Q2 −Q1). (1.115)
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Figure 1.1: The radial eigenfunctions U of selected overtones nS2 for several fiducial
periods.
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Figure 1.2: Dependence of the quality factors on the fiducial period.
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If a modal quality factor Q is low (about 80–90), the correction δωd can be so high
that the sequence of the overtones is disarranged. For this reason we compute the
”distance integral”

∫ R
0 [(U1−U2)2 + (V1− V2)2]ρr2dr to evaluate the correspondence

of the overtones. If Q obtained from (1.115) agrees well with the value yielded by
(1.107), we consider these modes to be corresponding1.

Fig. 1.1 shows the frequency dependence of eigenfunctions U for several overtones
of the angular degree l = 2. The eigenfrequencies and eigenfunctions were computed
for four fiducial periods of the PREM (1024 s, 256 s, 64 s, 16 s). Whereas the
eigenfunctions of the fundamental mode 0S2 are almost independent of the choice of
the fiducial period, the eigenfunctions of the modes 9S2 and 10S2 are quite sensitive.
Since Q depends on the eigenfunctions, its values vary between 510.4 and 509.3 for
mode 0S2, 523.4 and 313.6 for mode 9S2, 112.6 and 535.8 for mode 10S2. The former
values correspond to the fiducial period of 1024 s and the latter to that of 16 s. The
dependence is shown in Fig. 1.2.

1.8 Numerical tests

In order to benchmark our software, we compare our eigenfrequencies and eigen-
functions with those computed by the Mineos software package2. The number of
radial grid points in our calculations was 2019 for spheroidal modes and 1065 for
toroidal modes. The Mineos software was configured to neglect the gravitational
terms for frequencies above 40 mHz and the parameter controlling the accuracy of
the Runge-Kutta integration scheme eps was set to 10−9–10−12. Fig. 1.3 shows the
relative differences of the eigenfrequencies and Fig. 1.4 yields the relative differences
of the quality factors for both toroidal and spheroidal modes. All modes with angu-
lar degrees up to 500 and overtones with n ≤ 300 for spheroidal modes and n ≤ 210
for toroidal modes are included. The chosen span of the angular degrees and over-
tone numbers guaranties that all modes up to 50 mHz are included into this test;
however, most of the frequencies are higher (but all below 250 mHz). Both the Mi-
neos and our code computed the eigenfrequencies and eigenfunctions of the isotropic
PREM with the fiducial frequency ω0/(2π) = 100 mHz in the toroidal case and with
several fiducial frequencies with subsequent interpolations in the spheroidal case.

We achieved excellent agreement for all toroidal modes since the choice of the
fiducial frequency plays a minor role in this case. As to the frequencies, we obtained
relative differences less than 10−5 for most of the modes and less than 10−7 for
the modes with frequencies near 100 mHz. Toroidal quality-factor uncertainties can
increase up to 1% in the worst scenario. As to the spheroidal frequencies, the relative
differences are less than 10−4 for most of the modes and the worst relative difference
is about 10−3. We received significant differences in quality factors of the spheroidal
modes when the Mineos did not converge, otherwise the agreement was better than
95%.

1There are exceptional cases (less then 0.1% of the total number of the modes up to the frequency
250 mHz) when we are not able to find the corresponding mode rising from neighbouring fiducial
periods. In such cases we do not interpolate and take the modal periods and eigenfunctions from
the solution on the closer fiducial frequency.

2http://geodynamics.org/cig/software/mineos/
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Figure 1.3: Relative differences between the normal-mode frequencies obtained by the
Mineos and our matrix-eigenvalue software for the angular degrees up to 500. The upper
panel show the toroidal modes and the lower panel show the spheroidal modes.
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Chapter 2

Synthetic accelerograms

In the previous chapter, we described the matrix eigenvalue approach that allows
us to calculate the normal-mode frequencies and eigenfunctions. In this chapter,
we show how to calculate the response of an (an)elastic and (a)spherical Earth
to seismic events. We start with the general equations that describe the splitting
of an isolated multiplet as a consequence of the effects of the Earth rotation and
hydrostatic ellipticity. Then we describe the response of a spherical non-rotating
Earth. All the relations that we have used to calculate synthetic seismograms are
presented in this chapter, so that one may follow all the numerical steps. The
formulas are adopted from Dahlen and Tromp (1998) and Dahlen and Sailor (1979)
and reproduced here without derivation.

2.1 Splitting of an isolated multiplet

The splitting of free oscillations due to the rotation and associated ellipticity sig-
nificantly affects the spectra of the gravest modes; however, splitting due to other
perturbations such as lateral heterogeneity and anisotropy can also be important.
The multiplets of free oscillations are non-degenerated, and there are 2l + 1 sin-
glets of close frequencies for every angular degree l. We use the azimuthal order
m = −l, . . . , l to denote individual singlets.

Let x(r, ϑ, φ) be the position vector of the receiver and xs(rs, ϑs, φs) the position
vector of the seismic point source. The unit basis of mutually perpendicular vectors
er, eϑ and eφ is defined in the direction of increasing radius r, colatitude ϑ and
longitude φ at the location of a receiver x, and the basis esr, esϑ and esφ is defined in
the direction of increasing radius rs, colatitude ϑs and longitude φs at the location
of a source xs. We consider a seismic point source described by the moment tensor
M and an elliptical Earth model rotating with the sidereal angular velocity Ω. The
acceleration response at the receiver position x in time t for an isolated multiplet is

a(x, t) = Re
∑
m

[
1 +mχ(Ωω−1

0 )− τ(1− 3m2N−1)
]
r∗msm ×

× exp
[
iω0

(
1 + a+ bm+ cm2 + i(2Q)−1

)
t
]
, (2.1)

where N = l(l+ 1), ω0 is the frequency and Q the quality factor of the degenerated
multiplet, χ is the Coriolis splitting parameter, see (2.7) below, a, b and c are
splitting parameters (2.10)–(2.12) and τ is the auxiliary variable (2.13). Complex
scalars rm and sm are related to the displacement evaluated in the receiver and
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source positions, respectively, for each singlet denoted by m. An asterisk stands for
complex conjugation. The scalar rm represents the component of the displacement
in the direction ν in the receiver position (e.g., polarization of the accelerometer),

rm(x) = ν · u∗m(x) = νru
∗
r + νϑu

∗
ϑ + νφu

∗
φ, |ν| = 1, (2.2)

where the spherical components of the displacement u are

ur = er · um = UYlm,

uϑ = eϑ · um = V ∂ϑYlm + imW (sinϑ)−1Ylm,

uφ = eφ · um = imV (sinϑ)−1Ylm −W∂ϑYlm. (2.3)

The scalar sm is defined by

sm(xs) = M : ε∗m(xs) (2.4)

= Mrrε
∗
rrs +Mϑϑε

∗
ϑϑs +Mφφε

∗
φφs + 2(Mrϑε

∗
rϑs +Mrφε

∗
rφs +Mϑφε

∗
ϑφs),

where εm is the strain tensor, εm = 1
2

[
∇um + (∇um)T

]
, and the subscript s denotes

evaluation at the source position xs. The spherical components of εm are

εrr = U ′Ylm,

εϑϑ = r−1UYlm − r−1V
[
cotϑ∂ϑYlm −m2(sinϑ)−2Ylm +NYlm

]
+

+ imr−1W (sinϑ)−1 (∂ϑYlm − cotϑYlm) ,

εφφ = r−1UYlm + r−1V
[
cotϑ∂ϑYlm −m2(sinϑ)−2Ylm

]
−

− imr−1W (sinϑ)−1 (∂ϑYlm − cotϑYlm) ,

εrϑ = 1
2

[
x∂ϑYlm + imz(sinϑ)−1Ylm

]
,

εrφ = 1
2

[
imx(sinϑ)−1Ylm − z∂ϑYlm

]
,

εϑφ = imr−1V (sinϑ)−1 (∂ϑYlm − cotϑYlm) +

+ r−1W
[
cotϑ∂ϑYlm −m2(sinϑ)−2Ylm + 1

2
NYlm

]
, (2.5)

where two auxiliary variables x and z are defined as

x = V ′ − r−1V + r−1U,

z = W ′ − r−1W. (2.6)

The Coriolis splitting parameter, first introduced by Backus and Gilbert (1961),

χ =
∫ R

0
ρ(V 2 + 2UV +W 2)r2dr, (2.7)

describes the first-order effect of the Earth rotation, while the centrifugal potential
and the associated ellipticity perturbation are ignored. The eigenfrequency pertur-
bations are then linear,

δωm = mχΩ, −l ≤ m ≤ l. (2.8)

The radial modes nS0 are not affected by this first-order effect of rotation since they
are non-degenerate. The normalization condition (1.39) of the toroidal modes nTl

implies that

χ = N−1. (2.9)
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The rotational and elliptical splitting parameters a, b and c have the form,

a = 1
3
(1−Nχ)(Ω/ω0)2 + 1

2
(υω−2

0 − τ) + α2(Ω/ω0)2, (2.10)

b = χ(Ω/ω0), (2.11)

c = −3
2
N(υω−2

0 − τ) + γ2(Ω/ω0)2. (2.12)

The first term in (2.10) represents the effect of the spherical part of the centrifugal
potential and the second term is caused by the combined effects of the degree-two
perturbations of the centrifugal potential and ellipticity. The rotational splitting
parameter b arises from the first-order effect of the Coriolis force, whereas the cor-
rection parameters α2 and γ2 are related to the second-order effect of the Coriolis
force. The auxiliary variables τ and υ in (2.1), (2.10) and (2.12), as well as α2 and
γ2, are expressed in the next section.

2.2 Splitting parameters

This section contains relations necessary to determine splitting parameters of a free-
oscillation isolated multiplet. We use R, RCMB and RICB to denote, respectively, the
radius of the Earth, outer core and inner core, and ρ, µ and κ are the density, shear
modulus and incompressibility modulus, respectively. Auxiliary variables τ and υ
that occur in (2.1) and (2.10)–(2.12) are defined as

τ =
N

4N − 3

∫ R

0

2
3
ερ
[
T̄ρ − (η + 3)Ťρ

]
r2dr, (2.13)

υ =
N

4N − 3

∫ R

0

2
3
ε
(
κ
[
V̄κ − (η + 1)V̌κ

]
+

+ µ
[
V̄µ − (η + 1)V̌µ

]
+ ρ

[
V̄ρ − (η + 3)V̌ρ

])
r2dr, (2.14)

where the ellipticity ε(r) is given by

ε(r) ≈ εR exp

(
−
∫ R

r
η̃r̃−1dr̃

)
(2.15)

and the auxiliary variable η(r) defined as η = rε′/ε can be approximately written as

η(r) ≈ 25

4

1−

∫ r

0
ρ̃r̃4dr̃

r2

∫ r

0
ρ̃r̃2dr̃


2

− 1. (2.16)

The approximate relation of the hydrostatic surface ellipticity εR is

εR ≈
10Ω2a3/(GM)

4 + 25[1− 3
2
I/(Ma2)]2

, (2.17)

where G is the gravitational constant, M the mass of the Earth model and the
moment of inertia I is related to ρ by

I =
8

3
π
∫ R

0
ρr4dr. (2.18)
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The density, incompressibility and rigidity kernels T̄ρ, Ťρ, V̄ρ, V̌ρ, V̄µ, V̌µ, V̄κ, V̌κ in
equations (2.13) and (2.14) have the form,

T̄ρ = −6UV, (2.19)

Ťρ = U2 + (N − 3)(V 2 +W 2), (2.20)

V̄ρ = 2f(rF ′ + 4πGρrU + gU)− 6r−1gUV +

+6r−1gU2 + 2r−1[(N − 3)V −NU ]F, (2.21)

V̌ρ = 2(N − 3)r−1FV + U(2F ′ + 8πGρU − 6gr−1V ), (2.22)

V̄µ = 2
3
(2U ′ − f)(2U ′ + 9V ′ − 12r−1V ) + 2x[3U ′ − (N − 3)V ′ − 3r−1NV ] +

+18(N − 2)r−1(V V ′ +WW ′)− 2(N − 3)zW ′, (2.23)

V̄µ = (N − 12)(N − 2)r−2(V 2 +W 2) + (N − 3)(x2 + z2 − 2xV ′ − 2zW ′)−
−2

3
(2U ′ − f)(U ′ + 1

2
f − 6r−1V ), (2.24)

V̄κ = −2(U ′ + f)(U ′ + 3r−1V ), (2.25)

V̌κ = −(U ′ + f)(U ′ − f − 6r−1V ). (2.26)

where the auxiliary variable f is defined as

f = r−1(2U −NV ). (2.27)

The second-order Coriolis correction parameters α2 and γ2 for spheroidal modes
given by Dahlen and Sailor (1979) have the form

α2 =
2l2(l − 1)2

(2l + 1)(2l − 1)
A+

2(l + 2)2(l + 1)2

(2l + 3)(2l + 1)
B, (2.28)

γ2 = 1
2
χ2 − 2(l − 1)2

(2l + 1)(2l − 1)
A− 2(l + 2)2

(2l + 3)(2l + 1)
B + 2C. (2.29)

The quantity A represents the contribution of all toroidal modes of degree l − 1,

A =
1

l(l − 1)

∫ RCMB

RICB

ρ0 [U + (l + 1)V ]2 r2dr +

+
∑
ñTl−1

(
ω2

0

ω2
0 − ω̃2

0

)(∫ RICB

0
ρ0 [U + (l + 1)V ] W̃ r2dr

)2

+

+
∑
ñTl−1

(
ω2

0

ω2
0 − ω̃2

0

)(∫ R

RCMB

ρ0 [U + (l + 1)V ] W̃ r2dr

)2

, (2.30)

B represents the contribution of all toroidal modes of degree l + 1,

B =
1

(l + 1)(l + 2)

∫ RCMB

RICB

ρ0 [U − lV ]2 r2dr +

+
∑
ñTl+1

(
ω2

0

ω2
0 − ω̃2

0

)(∫ RICB

0
ρ0 [U − lV ] W̃ r2dr

)2

+

+
∑
ñTl+1

(
ω2

0

ω2
0 − ω̃2

0

)(∫ R

RCMB

ρ0 [U − lV ] W̃ r2dr

)2

(2.31)

and C represents the contribution of all spheroidal modes of degree l,

C =
∑
ñSl
ñ 6=n

(
ω2

0

ω2
0 − ω̃2

0

)(∫ R

0
ρ0

[
UṼ + ŨV + V Ṽ

]
r2dr

)2

. (2.32)
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In both equations (2.30) and (2.31), the first term represents the contribution from
the secular toroidal modes of the fluid outer core with ω0 = 0, and W = 0 in the
inner core and mantle; in the fluid W may be selected arbitrarily. These degenerate
solutions exist thanks to the inability of the fluid core to resist any shear force.
The second term in equations (2.30) and (2.31) is the contribution from the inner-
core toroidal modes. These modes are completely decoupled from the rest of the
Earth, while the spheroidal inner-core modes generate a weak signal at the surface.
The third term arises from the usual toroidal mode of the mantle. The sum in the
equation (2.32) contains the usual spheroidal modes and gravitational spheroidal
modes confined largely to the fluid core.

We have to treat the cases l = 0, 1 and 2 separately to keep the equations (2.28)
and (2.29) valid,

l = 0 :

A → 0,

B → B +


(∫ RICB

0
ρ0r

3Udr

)2

2
∫ RICB

0
ρ0r4dr

+

(∫ R

RCMB

ρ0r
3Udr

)2

2
∫ R

RCMB

ρ0r4dr

 (2.33)

l = 1 :

A → 0 (2.34)

l = 2 :

A → A+


(∫ RICB

0
ρ0r

3[U + 3V ]dr

)2

2
∫ RICB

0
ρ0r4dr

+

(∫ R

RCMB

ρ0r
3[U + 3V ]dr

)2

2
∫ R

RCMB

ρ0r4dr

 . (2.35)

The additional terms represent the contribution of the inner-core and mantle rigid
rotational modes. The rigid translational mode 0S1 makes no additional contribution
to C for l = 1 because of orthogonality.

The second-order Coriolis correction parameters α2 and γ2 for mantle toroidal
modes given by Dahlen and Sailor (1979) have the form

α2 =
2N2

(2l + 1)(2l − 1)
A+

2N2

(2l + 3)(2l + 1)
B, (2.36)

γ2 =
1

2N
− 2(l + 1)2

(2l + 1)(2l − 1)
A− 2l2

(2l + 3)(2l + 1)
B, (2.37)

where the quantity A represents the contribution of all the spheroidal modes of
degree l − 1,

A =
∑
ñSl−1

(
ω2

0

ω2
0 − ω̃2

0

)(∫ R

RCMB

ρ0W
[
Ũ − (l − 1)Ṽ

]
r2dr

)2

(2.38)

and B represents the contribution of all spheroidal modes of degree l + 1,

B =
∑
ñSl+1

(
ω2

0

ω2
0 − ω̃2

0

)(∫ R

RCMB

ρ0W
[
Ũ + (l + 2)Ṽ

]
r2dr

)2

. (2.39)
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As in the spheroidal case, the gravitational modes as well as the usual spheroidal
modes must be included in the sums A and B. The rigid translation mode 0S1

makes no additional contribution to A for l = 2 because of the fact that U = V .

2.3 Synthetic accelerograms on a non-rotating sphere

The angular epicentral distance Θ between the source and receiver positions is given
by

cos Θ = er · esr = cosϑ cosϑs + sinϑ sinϑs cos(φ− φs). (2.40)

The azimuth to the receiver Φ, measured in a counterclockwise sense from due south
at the source, is defined as

cos Φ =
− cos θ sin θs + sin θ cos θs cos(φ− φs)

sin Θ
. (2.41)

The acceleration response of a non-rotating anelastic Earth to a step-function moment-
tensor source M situated at xs is given at the location of receiver x by equation

a(x, t) =
∞∑
n=0

∞∑
l=0

nAl(x) cos(nωlt) exp

(
− ωt

2Q

)
, (2.42)

where the amplitude of excitation has the form

nAl(x) =

(
2l + 1

4π

)
D (r,Θ,Φ) nAl (Θ,Φ) . (2.43)

The displacement operator D of the receiver in the epicentral representation is

D (r,Θ,Φ) =
(
U,
[
V ∂Θ +W (sin Θ)−1∂Φ

]
,
[
V (sin Θ)−1∂Φ −W∂Θ

])T
(2.44)

and the scalar function nAl evaluated at the source xs has the form

nAl (Θ,Φ) =
2∑

m=0

Plm(cos Θ)(Am cosmΦ +Bm sinmΦ), (2.45)

A0 = MrrU̇s + (Mθθ +Mφφ)r−1
s (Us −

1

2
NVs), (2.46)

B0 = 0, (2.47)

A1 = Mrθ(V̇s − r−1
s Vs + r−1

s Us)−Mrφ(Ẇs − r−1
s Ws), (2.48)

B1 = Mrφ(V̇s − r−1
s Vs + r−1

s Us) +Mrθ(Ẇs − r−1
s Ws), (2.49)

A2 = r−1
s

[
1

2
(Mθθ −Mφφ)Vs −MθφWs

]
, (2.50)

B2 = r−1
s

[
MθφVs +

1

2
(Mθθ −Mφφ)Ws

]
. (2.51)

Fig. 2.1 shows the three-component records of the synthetic acceleration following
the 2010 Maule earthquake calculated for the station Pecný (PE: 49.92N, 14.79E),
Czech Republic. The Global CMT Project Moment Tensor Solution (GCMT) with
M0 = 1.84 × 1022 Nm (Mrr = 1.04, Mθθ = −0.03, Mφφ = −1.01, Mrθ = 0.227,
Mrφ = −1.51 and Mθφ = −0.12) is used as the seismic source; the centroid location
is 35.95S and 73.15W and depth of 24.1 km. The synthetic signals up to 40 mHz are
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Figure 2.1: Three components (vertical Z,radial R, transverse T) of synthetic accelero-
grams for the spheroidal and toroidal modes up to 40 mHz generated by the Maule 2010
earthquake at the station PE. The GCMT source solution was chosen to represent the
earthquake. Our accelerograms are plotted in red, those calculated using Mineos in blue.
Note that the (Z, R)-components (dominated by the Rayleigh waves) are the sums of the
spheroidal modes, whereas the T-component (dominated by the Love waves) is formed of
toroidal modes. The zero of the time axis corresponds to the origin time of the earthquake.
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computed by our code (red) and the Mineos (blue). The vertical component Z as well
as the radial component R are generated by the spheroidal modes with insignificant
toroidal signal, whereas the transverse component T is formed of toroidal modes.

In the high-Q approximation, the displacement response is

s(x, t) ≈
∞∑
n=0

∞∑
l=0

nω
−2
l nAl(x)

[
1− cos(nωlt) exp

(
− ωt

2Q

)]
. (2.52)

The final static displacement of the spherically symmetric Earth can thus be written
as

sf (x) ≈
∞∑
n=0

∞∑
l=0

nω
−2
l nAl(x). (2.53)

If the receiver is situated upon the surface of the Earth and we use the fact that g′ =
−2a−1g, the eigenfunctions in the displacement operator (2.44) must be corrected
for the effects of the free-air change in gravity due to the radial displacement Ufree,
ground tilt and horizontal acceleration Vtilt,

Ufree = 2nω
−2
l ga−1U, Vtilt = −nω−2

l ga−1U, (2.54)

and for the effect of the perturbation F in the gravitational potential due to the
redistribution of the Earth mass,

Upot = (l + 1)nω
−2
l a−1F, Vpot = −nω−2

l a−1F. (2.55)

The spheroidal eigenfunctions in the displacement operator D (2.44) have to be
replaced by U → U + Ufree + Upot and V → V + Vtilt + Vpot.
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Chapter 3

SG records mining

In the previous chapter we have provided the reader with the theoretical background
needed for computation of the synthetic seismograms generated by point sources.
In this chapter we present its application to low-frequency seismology. We focus
on the radial and spheroidal modes in the frequency range up to 1 mHz that af-
fords several advantages by employing the superconducting-gravimeter (SG) data.
The SG data following the 2004 Sumatra-Andaman, 2010 Maule, 2011 Tohoku-Oki
and 2012 Sumatra earthquakes were assembled within the framework of the GGP
(http://www.eas.slu.edu/GGP/ggphome.html; Crossley et al., 1999). The geograph-

AP
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ME

DJ

OS 

CI

LH

NY

TC

WU
KA

PE

CO

H3−5

W3−4
ST

MC 

Figure 3.1: Superconducting gravimeter stations providing free data following the
megathrust earthquakes within the Global Geodynamics Project.

ical distribution of the Global Geodynamics Project (GGP) stations is shown in
Fig. 3.1 and their specifications are listed in Table 3.1. The noise-level analysis of
these stations was provided by Rosat and Hinderer (2011).

We demonstrate the determination of the quality factors of individual modes as
well as the centroid-moment tensor (CMT) of the events from the SG records. We
focus mainly on the 2010 Maule, 2011 Tohoku-Oki and 2012 Sumatra earthquakes
in the following text, since the 2004 Sumatra-Andaman earthquake source process
is complicated by an extreme fault-plane length of about 1200 km (e.g., Park et
al., 2005; Vigny et al., 2005; Ishii et al., 2005; Banerjee et al., 2005; Braitenberg
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and Zadro, 2007; de Groot-Hedlin, 2005), and its relatively slow rupture velocity
confirmed by many independent studies using various techniques (Krüger and Ohrn-
berger, 2005; Tolstoy and Bohnenstiehl, 2005; Guilbert et al., 2005; Okal and Stein,
2009; Gahalaut et al., 2010).

acronym station latitude longitude instrument

AP Apache Point 32.78N 105.82W OSG-046
CA Cantley 45.58N 75.81W T012 TT70
CB Canberra 35.32S 149.01E C031
CI Cibinong 6.49S 106.85E C022
CO Conrad Observatory 47.93N 15.86E C025
DJ Djougou 9.74N 1.61E OSG-060
H3 Bad Homburg 50.23N 8.61E SG-044
H4 Bad Homburg 50.23N 8.61E CD029 L
H5 Bad Homburg 50.23N 8.61E CD029 U
KA Kamioka 36.43N 137.31E T016
LH Lhasa 29.65N 91.04E SG-057
MC Medicina 44.52N 11.65E C023
ME Metsahovi 60.22N 24.40E T020
NY Ny-Alesund 78.93N 11.87E C039
OS Onsala 57.39N 11.93E 054
PE Pecný 49.92N 14.79E OSG-050
ST Strasbourg 48.62N 7.68E C026
TC TIGO Concepcion 36.84S 73.03W RT038
W3 Wettzell 49.14N 12.88E CD030 L
W4 Wettzell 49.14N 12.88E CD030 U
WU Wuhan 30.52N 114.49E T004 TT70

Table 3.1: Specification of the SG stations. More details about the SG sites can be found
in Crossley and Hinderer (2009).

3.1 SG data

It is opportune to use the superconducting-gravimeter data for analyzing the ultra-
long normal-mode amplitude spectra. Fig. 3.2 shows the range of the observable
periods covering eight orders of magnitude from 1 second to several years. The
periods of free oscillations are visible both in the broadband seismometer and SG
spectra. The SG data are less noisy than seismometer data in the frequency range
up to 1 mHz (e.g., Rosat et al., 2002; Widmer-Schnidrig, 2003; Ferreira et al., 2006;
Rosat et. al., 2015), but they provide only the vertical component of oscillations.

Table 3.2 shows the header of the data file from the Pecný station in the stan-
dard PRETERNA format that is part of the ETERNA Earth tide analysis program
(Wenzel, 1996b). The gravity and atmospheric-pressure data are sampled per 1 sec-
ond and uncorrected to disturbances such as spikes, offsets, and other problems.
Provided data files contain monthly data.

38



Antarctica by Japanese colleagues, in South Africa by

GFZ Potsdam (Germany), and very recently in

South America by BKG (Germany) – the TIGO

project. Phase I of GGP was the period 1997–2003

and we are currently in phase II (2003–07).
The scientific objectives of the GGP cover geophy-

sical phenomena throughout the wide period range of

the instruments (from 1 s to several years), covering

topics such as normal modes, mantle rheology, tides,

solid Earth–oceans–atmosphere interactions, hydrol-

ogy, and Earth rotation. Figure 15 represents

schematically the gravity spectrum that is observable by

SGs ranging from seconds (ocean noise) to several

years (secular changes). We refer the reader to

the EOS article by Crossley et al. (1999), where a full

description is provided. Other review papers on

SGs have also appeared (e.g., Goodkind, 1999;

Hinderer and Crossley, 2000; Meurers, 2001a;

Hinderer and Crossley, 2004). We will show below

some of the most interesting results which owe their

existence to the collection of the worldwide GGP data

of high quality.
The wide spectrum of geophysical phenomena

that are observable with SGs is evident in

Figure 15. Basically the range of observable periods

(or characteristic time constants) covers 8 orders of

magnitude from 1 s to several years. The highest

frequency detectable by SGs is �1 s, because of the
feedback system limitation, and on the left the figure

shows background noise mainly caused by ocean
noise with two dominant peaks at 5–6 s and 10–15 s.

At slightly longer periods we have the seismology

region including the normal modes generated by
earthquakes – periods up to 54 min which is the

gravest period of the Earth elastic normal modes.

Between 150 and 500 s (2–7 mHz), these modes
form the incessant oscillations (‘hum’) unrelated to

earthquakes but rather of atmospheric and/or ocea-

nic origin. At periods longer than about 6 h
(depending on the core stability profile), another

class of eigenmodes are the gravity-inertial modes

(also called core modes) predominantly confined to
the liquid core. A particularly interesting and isolated

long-period oscillation is the Slichter mode (actually
a triplet due to rotation and ellipticity) arising from

translation of the solid inner core. Its period, between

4 and 8 h, depends primarily on the density jump of
the inner-core boundary (ICB).

From 4 h up to 18.6 years, there are many spectral
lines due to lunisolar tides, the most important of

which are semi-diurnal and diurnal. The study of
diurnal gravity tides includes a resonance effect due
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Figure 15 Characteristics of geophysical phenomena observable by SGs.

98 Superconducting Gravity Meters

Figure 3.2: Surface gravity effects of geophysical phenomena observable by
superconducting-gravimeters after Hinderer et al. (2007). FCN - the free core nuta-
tion; wobble modes for an Earth model with a fluid outer core, FCIN - free inner core
nutation, CW - Chandler wobble.

Filename : PE110300.GGS
Station : Pecny, Czech Republic
Instrument : GWR OSG-050
Time Delay (sec) : 8.8600 0.0200 measured
N. Latitude (deg) : 49.9137 0.0001 measured
E. Longitude (deg) : 14.7856 0.0001 measured
Elevation MSL (m) : 534.5800 0.0500 measured
Gravity Cal (µGal/V) : -73.3500 0.0200 measured
Pressure Cal (hPa/V) : 1.0000 0.0060 measured
Author : vojtech.palinkas@pecny.cz
yyyymmdd hhmmss gravity(V) pressure(V)
C******************************************************
77777777 0.0 0.0
20110301 000000 0.313755 962.6310
20110301 000001 0.303011 962.6290
20110301 000002 0.297373 962.6270
20110301 000003 0.303552 962.6220

Table 3.2: Gravity and atmospheric-pressure data from the station Pecný sampled at 1 s
in a standard PRETERNA format (Wenzel, 1996a).

The amplitude spectra of gravity are strongly affected by the solid-Earth tides.
The effect of the atmospheric pressure is the second largest; the groundwater-
variation influence is an order of magnitude lesser. The standard procedure to
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remove tides from the recorded data is to subtract the theoretical tidal accelera-
tion from the measured gravity. The most accurate tidal-potential catalogue for
high-precision work is, according to Wenzel (1996a), HW95 described in Hartmann
and Wenzel (1995a and 1995b). However, it is sufficient for our purpose to apply
a high-pass Butterworth filter with a threshold of 0.1 mHz to remove local tides
from the raw gravity data. In this way we also remove most of the tide-joined hy-
drological effects. The mean value or linear trend were removed and the data were
undersampled from 1 s to 1 min by standard MATLAB procedures. Fig. 3.3 shows
the three-week records, both raw and post-processed, of the gravity containing the
2011 Tohoku earthquake on the station Pecný. Although the tidal frequencies are
out of our range of interest, it is advisable to remove them from the records when we
compare the free-oscillation synthetic and observed SG signals in the time domain.

Figure 3.3: Three-week record from station Pecný observed after the 2011 Tohoku earth-
quake. Raw data are shown on the upper panel, whereas a high-pass Butterworth filter
with 0.1 mHz threshold is applied to the data on the lower panel.

According to Hinderer et al. (2007): The atmosphere provides a significant grav-
ity effect (up to 10% of the tidal signal) with a transfer function (or admittance
factor) that approximates -0.3 mGal hPa−1 for a typical continental station. The
effect is a combination of gravitational attraction by atmospheric density anomalies
with a loading that vertically deforms the crust and mantle. For a positive atmo-
spheric density anomaly, simple theory gives about -0.4 mGal hPa−1 for the upward
attraction and +0.1 mGal hPa−1 for the loading. A number of well-studied empirical
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Figure 3.4: Reduction of the noise level due to atmospheric correction on stations Stras-
bourg (upper panel) and Apache Point (lower panel). Green lines are data without atmo-
spheric correction, and red lines denote the data corrected for the effect of atmospheric
pressure where the nominal admittance factor is -3 nm/s2/hPa. A Hann filter, high-pass
Butterworth filter with 0.1 mHz threshold and the Fourier transform were applied to
200-hour time series following the 2011 Tohoku earthquake; the amplitude spectra were
averaged over the time window.
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and physical methods exist for making a pressure correction to the gravity data, but
even with the most sophisticated treatments it is not possible to completely remove
the atmospheric pressure effect.

The effect of the atmospheric pressure is demonstrated in Figs. 3.4 and 3.5 where
the amplitude spectra of 200-hour signals after the 2011 Tohoku earthquake are
shown for the stations Strasbourg and Apache Point. These atmospheric corrections
are relevant in the used frequency range only for the stations with high signal-to-
noise ratio up to 0.6 mHz, whereas there is no improvement for the stations with
higher noise level, regardless of the choice of the admittance factor; in this case the
noise is not of atmospheric origin. However, one can clearly see from Fig. 3.5 that
the atmospheric corrections do not influence the spectra of the modes 0S3, 0S4 or

0S5, and play only the minor role in the spectrum of the mode 0S2.
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Figure 3.5: Detail of Fig. 3.4 (see caption) for the four longest fundamental spheroidal
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3.2 The 2010 Maule and 2011 Tohoku earthquakes

The 1952 Kamchatka, 1960 Valdivia (Great Chilean earthquake), 1964 Alaska and
2004 Sumatra-Andaman earthquakes were the strongest earthquakes in the instru-
mental era before the full development of the GGP network of superconducting
gravimeters. The GGP subsequently registered the following three megaevents: the
2010 Maule, 2011 Tohoku and 2012 Sumatra earthquakes. In this section, we will
describe the agency solutions of the 2010 Maule and 2011 Tohoku earthquakes and
show the amplitude spectra of the Tohoku SG records as an example. The de-
tailed analysis of these two earthquakes is then the topic of Chapters 4–6; the 2012
Sumatra double event is studied in Section 3.4.

The Global Centroid-Moment-Tensor (GCMT) Project was founded by Adam
Dziewonski at Harvard University, and now it is continued by Göran Ekström at
the Lamont-Doherty Earth Observatory of Columbia University. We denote the
GCMT solutions for the 2010 Maule and 2011 Tohoku earthquakes as PS11,2 the
U.S. Geological Survey (USGS) solution as PS23,4 and the W-phase source solution
also provided by USGS as PS35,6. The agency solutions of both earthquakes are
summarized in Fig. 3.6 and Tables 3.3 and 3.4.
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Figure 3.6: Locations and focal mechanisms determined by the different agencies. The
exact locations and the moment tensors for both earthquakes are summarized in Tables
3.3 and 3.4.

The GCMTs are calculated by summation of Earth normal modes from long-
period data provided by the Global Seismographic Network retrieved in a near-
real-time network. The USGS uses principally the same method as the GCMT
group. The W-phase source inversion algorithm was specifically developed to handle
very large earthquakes like the 2010 Maule and 2011 Tohoku earthquakes. This

1http://earthquake.usgs.gov/earthquakes/eqinthenews/2010/us2010tfan/neic tfan gcmt.php
2http://earthquake.usgs.gov/earthquakes/eqinthenews/2011/usc0001xgp/neic c0001xgp gcmt.

php
3http://earthquake.usgs.gov/earthquakes/eqinthenews/2010/us2010tfan/neic tfan cmt.php
4http://earthquake.usgs.gov/earthquakes/eqinthenews/2011/usc0001xgp/neic c0001xgp cmt.php
5http://earthquake.usgs.gov/earthquakes/eqinthenews/2010/us2010tfan/neic tfan wmt.php
6http://earthquake.usgs.gov/earthquakes/eqinthenews/2011/usc0001xgp/neic c0001xgp wmt.php
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latitude longitude depth [km] orig. time M0 [1022 Nm]

PS1 37.52N 143.05E 20.0 05:47:32.8 5.31
PS2 38.49N 142.60E 10.0 05:47:47.2 4.50
PS3 38.32N 142.97E 24.0 05:46:23.0 3.90

[1022 Nm] Mrr Mθθ Mφφ Mrθ Mrφ Mθφ

PS1 1.730 -0.281 -1.450 2.120 4.550 -0.657
PS2 2.03 -0.16 -1.87 2.06 3.49 -0.60
PS3 1.82 -0.13 -1.69 1.34 3.17 -0.56

Table 3.3: The March 11, 2011 Tohoku earthquake agency solutions; Global CMT solu-
tion (Nettles et al., 2011) - (PS1), USGS CMT solution (Polet and Thio, 2011) - (PS2),
USGS Wphase solution (Duputel et al., 2011) - (PS3).

latitude longitude depth [km] orig. time M0 [1022 Nm]

PS1 35.95S 73.15W 24.1 06:35:15.4 1.84
PS2 35.77S 72.47W 30.0 06:35:27.5 1.80
PS3 35.83S 72.67W 35.0 06:34:17.0 2.00

[1022 Nm] Mrr Mθθ Mφφ Mrθ Mrφ Mθφ

PS1 1.040 -0.030 -1.010 0.227 -1.510 -0.120
PS2 1.13 -0.06 -1.07 0.09 -1.43 -0.12
PS3 0.93 0.01 -0.94 -0.01 -1.72 -0.15

Table 3.4: The February 27, 2010 Maule earthquake agency solutions; Global CMT
solution (Ekström and Nettles, 2010) - (PS1), USGS CMT solution (PS2), USGS Wphase
solution (PS3).

method exploits the long period content (200–1000 s) of the broadband seismic
record preceding the arrival of the surface waves.

Vertical acceleration amplitude spectra of SG records from stations listed in
Table 3.1 are shown in Fig. 3.7 where the Hann filter, high-pass Butterworth filter
with 0.1 mHz threshold and the Fourier transform were applied to 50-hour time
series following the 2011 Tohoku earthquake. Fig. 3.8 corresponds to the 250-hour
time series following the same earthquake. We can clearly see that the amplitude
spectra from 50-hour time series have a good quality for most of the stations, except
for the station KA, where the record is over-excited because of strong aftershocks;
the station CI does not provide good quality record. If the amplitude spectra are
calculated from 250-hour record, the signal/noise ratio gets worse for more stations
and good quality 450-hour record are provided by only few stations, see Fig 3.9.
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Figure 3.7: Vertical acceleration amplitude spectra of SG records from the stations listed
in Table 3.1 after the 2011 Tohoku earthquake. The Hann filter, high-pass Butterworth
filter with 0.1 mHz threshold and the Fourier transform were applied to 50-hour time series
following the 2011 Tohoku earthquake; the spectra were averaged over the time window.
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Figure 3.8: Vertical acceleration amplitude spectra of SG records from the stations listed
in Table 3.1 after the 2011 Tohoku earthquake. The Hann filter, high-pass Butterworth
filter with 0.1 mHz threshold and the Fourier transform were applied to 250-hour time
series following the 2011 Tohoku earthquake; the spectra were averaged over the time
window. The radial mode 0S0 with the frequency 0.815 mHz has the amplitude of about
21.4 nGal.
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Figure 3.9: Vertical acceleration amplitude spectra of SG records from the stations listed
in Table 3.1 after the 2011 Tohoku earthquake. The Hann filter, high-pass Butterworth
filter with 0.1 mHz threshold and the Fourier transform were applied to 450-hour time
series following the 2011 Tohoku earthquake; the spectra were averaged over the time
window. The radial mode 0S0 with the frequency 0.815 mHz has the amplitude of about
18.0 nGal.
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3.3 Quality factors: data and synthetics

In principal, the modal quality factor Q can be estimated from decrease of the
amplitude spectra employing the formula,

Q =
πf∆t

ln(A1/A2)
, (3.1)

where f is the ”central” (unperturbed) modal frequency and ∆t is the time shift
between two time windows of the same length used to calculate spectral amplitudes
A1 and A2. We define A1 as

A1 =
∫
δf
A(f)df, (3.2)

where A(f) is the amplitude spectrum of the signal and δf is a narrow frequency
range covering all modal singlets. We can determine the quality factors of the radial
modes directly from the data since they are not split. The estimates of Q calculated
from the equation (3.1) for fixed ∆t = 2 hours after the 2010 Maule and 2011
Tohoku earthquakes in the case of radial modes is displayed in Figs. 3.10 and 3.11.
Horizontal axes correspond to the shift of the first time window after the origin
time. Table 3.5 summarizes the lengths of employed time windows, the number
of employed station and resulting quality factors. The standard deviations were
calculated from the amplitudes obtained from individual station records.

mode record length [h] number of records Q

0S0 700/450 11/9 5500± 140

1S0 250 9/16 2000± 80

2S0 120 11/17 1120± 270

Table 3.5: The lengths of employed time windows (2010 Maule/2011 Tohoku), number
of records and found quality factors for three radial modes.

Figs. 3.12–3.14 demonstrate the application of formula (3.1) to (tricky) determi-
nation of the quality factors from the amplitude decrease for the modes 0S2, 0S3,

0S4, 0S5 and 1S2 using synthetic records of different lengths. Since the modal mul-
tiplets consist of several singlets with slightly different frequencies, the descent of
the spectral amplitudes is very complicated. For this reason the spectral amplitude
A2 was calculated for varying ∆t with a 2-hour step and the slope of ln(A1/A2) was
estimated by linear regression. The quality factors used for computation of synthetic
signals as well as the lengths of the time windows are summarized in Table 3.6.

Note that the line shapes in Figs. 3.12–3.14 depend on the choice of the stations.
The simple formula (3.1) is thus, in principle, applicable also to multiplets. However,
shifts ∆t between the time windows used to calculate the spectral amplitudes A1

and A2 have to be very high and problems arise with affecting A2 by noise. This is
the reason why we use (3.1) only for radial modes and estimate the quality factors
of the studied spheroidal modes by direct inversion procedure (Chapter 6).
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Figure 3.10: Quality factors of the radial modes estimated from the records after the
2010 Maule earthquake from the Fourier amplitude-spectra decrease by means of (3.1).
Time difference between the windows ∆t = 2 hours was fixed. Horizontal axis shows time
shift of the first window after the origin. Red lines denote Q of the radial modes, whereas
black lines represent their standard deviations.
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Figure 3.11: Quality factors of the radial modes estimated from the records after the
2011 Tohoku earthquake from the Fourier amplitude-spectra decrease by means of (3.1).
Time difference between the windows ∆t = 2 hours was fixed. Horizontal axis shows time
shift of the first window after the origin. Red lines denote Q of the radial modes, whereas
black lines represent their standard deviations.
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Figure 3.12: The quality factors of the fundamental spheroidal modes 0S2 and 0S3

derived from the slope of ln(A1/A2). The source was the GCMT solution for the 2011
Tohoku earthquake and synthetics were calculated for 14 stations from Table 3.1. Upper
panels show the quality factors derived from the amplitude decrease over all stations; line
colors correspond to the length of the synthetic records (red–Q0T/2, blue–Q0T , green–
2QT ) listed in Table 3.6. Lower panels show the quality factors derived from the amplitude
decrease of individual stations for the 2QT length of the synthetic records; line colors
correspond to stations.
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Figure 3.13: Same as Fig. 3.12 but for the modes 0S4 and 0S5.
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mode record lengths [h] number of records Q0

0S2 230/460/920 14 510.35

0S3 124/248/500 14 419

0S4 80/160/320 14 374

0S5 59/118/236 14 356

1S2 63/126/252 14 310

Table 3.6: Lengths of employed time windows (Q0T/2, Q0T , 2Q0T ), number of the
synthetic records and reference quality factors for five spheroidal modes. The source was
GCMT solution of the 2011 Tohoku earthquake.

150

200

250

300

350

Q

100 200 300 400 500 600
150

200

250

300

350

Q

100 200 300 400 500 600
150

200

250

300

350

Q

100 200 300 400 500 600

1S2

300

310

320

Q

200 300 400 500 600
300

310

320

Q

200 300 400 500 600
300

310

320

Q

200 300 400 500 600

150

200

250

300

350

Q

100 200 300 400 500 600

∆t (hrs)

150

200

250

300

350

Q

100 200 300 400 500 600

∆t (hrs)

150

200

250

300

350

Q

100 200 300 400 500 600

∆t (hrs)

150

200

250

300

350

Q

100 200 300 400 500 600

∆t (hrs)

150

200

250

300

350

Q

100 200 300 400 500 600

∆t (hrs)

150

200

250

300

350

Q

100 200 300 400 500 600

∆t (hrs)

150

200

250

300

350

Q

100 200 300 400 500 600

∆t (hrs)

300

310

320

Q

200 300 400 500 600
300

310

320

Q

200 300 400 500 600
300

310

320

Q

200 300 400 500 600
300

310

320

Q

200 300 400 500 600
300

310

320

Q

200 300 400 500 600
300

310

320

Q

200 300 400 500 600
300

310

320

Q

200 300 400 500 600

Figure 3.14: The quality factors of the mode 1S2 derived from the slope of ln(A1/A2).
The source was the GCMT solution for the 2011 Tohoku earthquake and synthetics were
calculated for 14 stations from Table 3.1. Upper panels show the quality factors derived
from the amplitude decrease over all stations; line colors correspond to the length of the
synthetic records (red–Q0T/2, blue–Q0T , green–2QT ) listed in Table 3.6. Lower panels
show the quality factors derived from the amplitude decrease of individual stations for the
2QT length of the synthetic records; line colors correspond to the stations.
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3.4 The 2012 Sumatra double earthquake

The two strike-slip earthquakes with moment magnitudes higher than 8 occurred
off the west coast of northern Sumatra on a fault within the oceanic lithosphere of
the Indo-Australia plate on April 11, 2012. Fig. 3.15 shows the seismicity in the
Sumatra-Andaman region in years 1900–2012. Focal mechanisms plotted in this
map are the W-phase source solution PS3 provided by USGS. The three standard
agency solutions of both earthquakes are summarized in Tables 3.7 (the first event)
and 3.8 (the second event), respectively.

latitude longitude depth [km] orig. time M0 [1021 Nm]

PS1 2.24N 92.78E 40.0 08:39:29.8 8.96
PS2 2.24N 93.10E 40.0 08:39:32.6 8.50
PS3 2.25N 92.87E 25.0 08:38:38.0 9.00

[1022 Nm] Mrr Mθθ Mφφ Mrθ Mrφ Mθφ

PS1 1.36 -5.91 4.55 -3.96 0.46 -6.15
PS2 0.40 -5.39 4.98 1.74 -1.57 -6.31
PS3 1.25 -5.99 4.74 1.34 -0.63 -7.03

Table 3.7: M8.6: April 11, 2012 Sumatra earthquake agency solutions; Global CMT
solution (PS1), USGS CMT solution (PS2), USGS Wphase solution (PS3).

latitude longitude depth [km] orig. time M0 [1021 Nm]

PS1* 0.76N 92.25E 53.7 10:43:37.4 2.53
PS2* 0.92N 92.49E 43.0 10:43:50.3 2.20
PS3* 0.77N 92.45E 16.0 10:43:09.0 3.90

[1022 Nm] Mrr Mθθ Mφφ Mrθ Mrφ Mθφ

PS1* 0.59 -1.67 1.08 -1.08 -0.46 -1.89
PS2* 0.45 -1.30 0.85 0.21 -0.84 -1.63
PS3* -1.18 0.18 1.00 -0.92 -1.33 -3.38

Table 3.8: M8.2: April 11, 2012 Sumatra earthquake agency solutions; Global CMT
solution (PS1*), USGS CMT solution (PS2*), USGS Wphase solution (PS3*).

Since the fundamental radial mode 0S0 has its period of about 20.5 minutes and
the second event followed 124 minutes after the main shock, there is approximately
a zero phase shift between the fundamental radial oscillations generated by these
two events. The same applies for the first radial overtone with the period of about
10.22 minutes. The radial modes are generated only by the moment tensor com-
ponent Mrr and depend on the depth of the centroid. We averaged three records
from Pecný and Wettzell (two sensors) stations to compare observed and synthetic
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Figure 3.15: Seismicity from USGS Earthquake Summary Map, ftp://hazards.cr.usgs.
gov/maps/sigeqs/20120411/20120411.pdf. Focal mechanisms of two main events and one
aftershock are the W-phase source solutions provided by USGS.
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signals generated by point-source solutions (PS1, PS2 and PS3). Fig. 3.16 shows the
vertical acceleration amplitude spectra of these two radial modes. The PS3+PS3*
solution generates a too weak signal because Mrr components of both events are of
opposite sign. The PS2+PS2* solution generates weak signal as well; Mrr compo-
nents are of the same sign, but the Mrr value of the main shock is too small. We
can thus conclude that only The PS1+PS1* solution yields satisfactory fit with the
data. These strike-slip earthquakes generated strong horizontal motions; the Mrr

components generate approximately 10% of the scalar moment tensor M0. So, the
Mrr components are less sensitive than others if the body and surface waves are
inverted. However, radial modes are created only by the Mrr component and thus
they can be used to constrain the Mrr components.
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Figure 3.16: Vertical acceleration amplitude spectra of the modes 0S0 and 1S0 from the
SG data (red - average of three records from Pecný and Wettzell stations) and the three
synthetics for the agency point-source solutions. A Hann filter and Fourier transform were
applied to 450- and 170-hour time series.

The intervals of admissible Mrr values for both events are shown in Fig. 3.17. We
fixed the origin times and locations on the values given by PS1 for both earthquakes;
in principle, we can use any locations or origin times from Tables 3.7 and 3.8 since
there is no fundamental influence on our results. We used the quality factors of radial
modes determined from data after the 2010 Maule and 2011 Tohoku earthquakes
that are presented in Table 3.5 (see Section 3.3) and inverted the averaged records
to find Mrr components. We may conclude that M∗

rr of the second event cannot be
negative and Mrr of the main event is smaller than 2× 1021Nm. Dependence of the
constraints on the studied centroid depths is very weak, as expected. We assume
the possible interval of the centroid depths 15–50 km (Duputel et al., 2012). The
calculations are presented for the depths of 20 and 30 km. This choice represents
the optimal variation of amplitudes, since the amplitudes of the radial modes are
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sensitive on the shear modulus µ at the centroid depth and our model contains
discontinuity at the depth of 22 km (see Figs. 5.2 and 5.3).
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Figure 3.17: Constraints on the Mrr components of the 2012 Sumatra double-event
(for several depths of the centroids) obtained from the mode 0S0 (solid line) and 1S0

(dashed line). For each depth, the interval corresponding to ± one standard deviation
of amplitude spectra obtained from the used records and quality factors is drawn. Stars
denote published point-source solutions (PS1, PS2 and PS3).
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Chapter 4

Tests of the 2011 Tohoku
earthquake source models using
free-oscillation data from GOPE
Published in Studia Geophysica et Geodaetica,
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sity in Prague, V Holešovičkách 2, CZ-18000, Prague, Czech Republic
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lic

Abstract
Data from a superconducting gravimeter were obtained from the Geodetic Obser-

vatory Pecný (GOPE), Czech Republic, and compared with acceleration data from
a broadband seismometer at the same location. We calculated synthetic seismograms
for several point- and finite-source fast solutions of the 2011 Tohoku earthquake ob-
tained from surface waves and tested them only against the observed gravity data
because of high-noise levels in the low-frequency seismic data. We have obtained
a good fit of the synthetic amplitude spectrum with the data up to 1.7 mHz without
an additional increase of the moment magnitude. In this aspect, the 2011 Tohoku
earthquake was similar to the 2010 Maule earthquake and not to the 2004 Sumatra-
Andaman earthquake, where the free-oscillations studies resulted in an increase of
the early Mw values. The degree-one mode 3S1 dominates the 3S1-2S2-1S3 triplet at
the GOPE station.

Keywords: Free oscillations of the 2011 Tohoku earthquake, superconducting-
gravimeter data, source solutions
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4.1 Motivation

The March 11, 2011, Tohoku earthquake together with the 2004 Sumatra-Andaman
and the 2010 Maule are the three largest earthquakes recorded during the last
decade. Such extraordinary events generate clear signals with a broad frequency
content that are strong enough for both detailed structural studies associated with
the eigenfrequencies of the Earth and source studies based on modal amplitude
analysis (Park et al., 2005; Okal and Stein, 2009 ). Because of the complexity of
the source region of such events (Ammon et al., 2005 ) their moment magnitude Mw

estimates are subject to substantial uncertainty (e.g., Kanamori, 2006 ). The aim
of this study is to test several published fast source solutions of the 2011 Tohoku
earthquake in the low-frequency range up to 1.7 mHz using data from a supercon-
ducting gravimeter at the Geodetic Observatory Pecný (GOPE) (49.9◦ N, 14.8◦ E)
in the epicentral distance of 81◦.

4.2 Gravity and seismic data

The superconducting gravimeter (SG) OSG-050 with the sampling frequency of 1 Hz
was installed at the GOPE station in February 2007. The new instrumentation al-
lows the study of a number of geodynamic phenomena towards both the higher
frequencies (i.e., free oscillations, long-period seismic waves) and the lower frequen-
cies (e.g., environmental effects, long-period tides). In May 2009 the broadband
seismometer (BB) CMG-3TD was installed in a new steel-cased, 60-m deep bore-
hole in the immediate vicinity of the gravimeter. The main characteristics of the BB
include 360 s to 50 Hz flat frequency response and the high-stability variant with
low self-noise up to 400 s. We have used this collocation of two modern instruments
to calculate and compare amplitude spectra of the records from both instruments.
Data from the SG were corrected for tides and pressure variations (Hinderer et al.,
2007 ). Furthermore, the mean value and linear trend have been removed to elim-
inate the instrumental drift and residual tidal and air pressure signals. The mass
channel of the BB, that directly yields vertical acceleration of the instrument, was
used, and the same detrend procedure was applied to the seismic data.

Fig. 4.1 shows the amplitude spectra of the Tohoku earthquake for 68-hour long
records (two upper panels) and 137-hour long records (two bottom panels), respec-
tively, at the GOPE station from both the SG (red line) and the vertical acceleration
of the BB (blue line) obtained from the time window starting at March 11, 9:00 UTC.
The first panel shows the Fourier amplitude spectrum averaged by the length of the
time window, whereas the second panel exhibits the same quantity after applying
the Hann filter in the time domain; the same Fourier amplitude spectra obtained
for the longer time series are demonstrated in the third and the fourth panels. The
application of the Hann filter focuses spectral peaks but, on the other hand, it en-
hances a relative level of the low-frequency BB noise, because the BB signal of the
longest free oscillations is above the noise level only at the beginning of the time
series. A substantial increase of the BB noise is thus clearly visible, if the longer
time series is employed for spectral analysis. To avoid the problems with the noise
at the studied frequency range, we will compare synthetic calculations with the SG
signal only, and the data from the BB are shown just to demonstrate a very good
mutual agreement of spectral peaks measured by both instruments. The situation
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Figure 4.1: Vertical acceleration amplitude spectra of the superconducting gravimeter
(red line) and the broadband seismometer (blue line) after the March 11, 2011, Tohoku
earthquake. The Fourier transform was applied to 68- and 137-hour time series (upper
two and bottom two panels, respectively) and the spectrum was averaged over the time
window. In the second and the fourth panels the Hann filter was applied before the Fourier
transform.

at the GOPE station is a good example of the fact that present low-frequency seis-
mology needs supplementary instruments to broadband seismometers; more detailed
discussion is in, e.g., Ferreira et al. (2006).

4.3 Synthetic calculations

When spherical harmonic analysis is employed, the equations describing the free
oscillations can be written as a system of boundary-value problems for second-
order ordinary differential equations. The standard methodology developed for these
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eigenvalue problems is based on numerical integration of a characteristic equation.
The solution of this equation can be numerically problematic, especially when close
frequencies need to be separated and/or the skin effect of the eigenfunctions is sig-
nificant. Our research team has been developing a novel numerical approach, where
high-accuracy pseudospectral schemes (Fornberg, 1996 ) are applied to discretize the
equations in radial direction. In such a way, either a matrix eigenvalue problem (in
the case of free oscillations) or a system of linear equations (in the case of tidal de-
formations) is obtained; the main idea of this approach is explained in the Appendix
and details can be found in Zábranová et al. (2009 ). Using numerical libraries for
matrix spectral analysis, the eigenfunctions and eigenfrequencies of the fundamental
modes are obtained simultaneously. Our calculations of the eigenproblem were per-
formed for the 1-D PREM parameters (Dziewonski and Anderson, 1981 ) evaluated
at the fixed frequency of 1.25 mHz. We also evaluated first-order frequency pertur-
bations of individual modes using Rayleigh’s principle and considering a complex
perturbation of the isotropic elastic parameters (e.g., Dahlen and Tromp, 1998 ) to
obtain the results for the frequency-dependent PREM model.

Moreover, multiplet splitting due to the Coriolis and centrifugal forces and hy-
drostatic ellipticity were also included following the approach by Woodhouse and
Dahlen (1978) and Dahlen and Sailor (1979). Note that 1-D structural approxima-
tions are still standard tools in low-frequency sources studies (e.g., Kanamori and
Rivera, 2008 ). The source and the attenuation have been incorporated into our
calculations by means of the formulas of Dahlen and Tromp (1998).

4.4 Results

Fig. 4.2 demonstrates the comparisons of the three point-source (PS) and two finite-
source (FS) solutions with the SG data. The first source PS1 (Mw = 9.09, depth
20 km) is by Ekström [1], see also Nettles et al. (2011 ), the second solution PS2
(Mw = 9.04, depth 10 km) is the USGS Centroid Moment Tensor Solution [2] and
the third model PS3 (Mw = 9.00, depth 24 km) is the USGS WPhase Moment
Solution [3]. The source model FS1, constructed by Wei and Sladen [4], consists of
252 point sub-sources and its total seismic scalar moment is M0 = 5.39× 1022 Nm,
which corresponds to Mw = 9.09. The last model FS2 is by Shao et al. [5]. It
consists of 37050 sub-sources with M0 = 5.75 × 1022 Nm, which corresponds to
slightly higher Mw = 9.11.

It is of interest that the PS2 source model clearly yields the strongest synthetic
signal for the most of the modes although the moment magnitude Mw of all the
source models except PS3 are higher. The reason is that its rake (slip) of 68◦

is rather anomalous in comparison with the other models. A detailed analysis of
individual mode spectra is in Fig. 4.3, where the data and five synthetic calculations
are shown. Moreover, the frequencies of the degenerate multiplets calculated by
our code as well as by the Mineos software package (Masters, 2010 ) for the PREM
model are written in the panels; the agreement between these two approaches is very
good. Individual modes 0S0, 0S2, 0S3, 0S4, 0S5, 0S6, 0S7 and 0S9, that are clearly
separated in the spectrum, are captured by synthetic calculations very well.

The frequencies close to 0.95 mHz, where the mode triplet 3S1-2S2-1S3 occurs,
require a special attention, see Fig. 4.4. The coupling of the modes slightly influences
the frequencies (Zürn et al., 2000 ) but we have not incorporated this effect into this
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Figure 4.2: Vertical acceleration amplitude spectra after the March 11, 2011, Tohoku
earthquake. Red lines - superconducting gravimeter, green lines - synthetic calculations
for the five fast source solutions [1]–[5]. The Hann filter and the Fourier transform were
applied to 137-hour time series.
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Figure 4.3: Vertical acceleration amplitude spectra of fundamental modes after the
March 11, 2011, Tohoku earthquake calculated for the three point sources PS1, PS2,
PS3 and two finite sources FS1 and FS2 and compared to the observed SG signal. The
symbols fFD and fMS denote the unperturbed eigenfrequencies of the spherical PREM
model calculated by means of our finite-difference approach and by the MINEOS software
package (Masters, 2010 ), respectively. The Hann filter and the Fourier transform were
applied to 137-hour time series.

study. Further details about the mode coupling can be found in, e.g., Dahlen and
Tromp (1998) and Widmer-Schnidrig and Laske (2007). The mode 2S2 is very weak
and can be ignored, similarly to the oscillations studied in Okal and Stein (2009).
This is the reason why it is not shown in Fig. 4.4. The calculated amplitude spectrum
of the mode 1S3 fits well the data peak at 0.935 mHz, which is caused by the splitting
of this mode. However, it strongly underestimates the observed main peak of data
at 0.945 mHz. Such a difference can easily be explained by a signal from the mode

3S1, that clearly plays a dominant role in this triplet.
In order to evaluate quantitatively the fit of particular modes, we integrated their

amplitude spectra over the frequency bands, where synthetic signals of individual
modes are effectively non-zero. A relative fit to the data is summarized in Table 4.1.
No source model can be preferred for all the modes but the total power of the studied
modes is best fit by the point-source models PS1 and PS3, the geometries of which
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Figure 4.4: Vertical acceleration amplitude spectrum of the triplet 3S1-2S2-1S3 after
the March 11, 2011, Tohoku earthquake calculated for the three point sources PS1, PS2,
PS3 and the finite source FS1 and compared to the observed SG signal. The synthetic
spectrum of the mode 2S2 is two orders of magnitude smaller and, therefore, not shown
here. The Hann filter and the Fourier transform were applied to 137-hour time series.

source model 0S0 0S2 0S3 0S4 0S5 0S6 0S7 0S9 total

PS1 0.987 0.951 0.952 0.962 0.839 0.920 0.993 0.923 0.988
PS2 0.729 0.683 0.662 0.792 0.597 0.668 0.882 0.908 0.767
PS3 0.945 0.893 0.879 0.984 0.815 0.889 0.945 0.897 0.969
FS1 0.885 0.933 0.932 0.845 0.999 0.936 0.814 0.755 0.867
FS2 0.911 0.857 0.852 0.960 0.769 0.847 0.991 0.940 0.929

Table 4.1: The relative agreement between the synthetic calculations and the data for

the fundamental clearly isolated modes defined by 1−
∣∣∣∫δf Agdf − ∫δf Amdf

∣∣∣ / ∫δf Agdf ,

where Am is the amplitude spectrum of models, Ag is the amplitude spectrum of the
gravity data and δf is the frequency width of the mode. The last column shows the
relative fit after integration over all eight chosen modes.

are very similar but whose magnitudes slightly differ. Nevertheless, the finite source
FS1 yields a satisfactory fit for the modes 0S2, 0S3, 0S5, 0S6 and the finite source
FS2 produces a good fit to the modes 0S4, 0S7 and 0S9. Therefore, one can hardly
prefer any of the two solution groups.

4.5 Concluding remark

Employing the data from the superconducting gravimeter installed at the GOPE
station, we have demonstrated that, in general, the studied 2011 Tohoku earth-
quake source models obtained from surface waves generate synthetic signals that
are in a good agreement with the observed data. Whereas analysis of longest-period
normal-mode data of the 2004 Sumatra-Andaman earthquake resulted in an increase
of the early Mw values (Okal and Stein, 2009 ), now the Mw estimates seem to be
satisfactory. In this aspect, the 2011 Tohoku earthquake is similar to the 2010 Maule
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earthquake (Okal, EGU General Assembly, Vienna 2011 ). Note that a strong signal
of the degree-one mode 3S1 is clearly observed in the 3S1-2S2-1S3 triplet.
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Appendix

Spherical harmonic decomposition is commonly used to evaluate eigenfrequencies
and eigenfunctions of spherical models. In such a case the momentum and Poisson
partial differential equations that describe the spheroidal displacement and changes
of the gravity field of a prestressed self-gravitating elastic medium are rewritten into
the system of the three second-order ordinary differential equations,

βU ′′n +
2β

r
U ′n +

(
4ρ0g0

r
− 4πGρ2 − 2β + µN

r2

)
Un −

−N
r

(λ+ µ)V ′n +

(
3µ+ λ

r2
− ρ0g0

r

)
NVn − ρ0F

′
n = −ρ0ω

2
nUn,

(4.1)

µV ′′n +
2µ

r
V ′n −

βN

r2
Vn +

µ+ λ

r
U ′n +

(
2β

r2
− ρ0g0

r

)
Un −

ρ0

r
Fn = −ρ0ω

2
nVn,

(4.2)

F ′′n +
2

r
F ′n −

N

r2
Fn + 4πGρ0

(
U ′n +

2

r
Un −

N

r
Vn

)
= 0, (4.3)

where r is the radius, ρ0 is the reference density, G is the Newton gravitational
constant, λ and µ are the elastic Lamé parameters, β = λ + 2µ, n is the degree of
the spherical harmonic decomposition, N = n(n+1) and the derivative in the radial
direction is denoted by f ′ ≡ df/dr. Un, Vn and Fn are the coefficients of spherical
harmonic expansions representing the spheroidal displacement vector and incremen-
tal gravitational potential, and ωn are the angular frequencies of free oscillations for
a fixed n.

We follow the finite-difference approach designed by Fornberg (1996), where
a pseudospectral accuracy of finite differences is reached by evaluating the unknowns
at the extrema of the Chebyshev polynomials. Note that in layered models, such
as the PREM, an independent Chebyshev grid is applied to each layer. Equations
(4.1)–(4.3), including boundary conditions, can then be rewritten into the unified
matrix form,(

P−1 ·R
)
· Y = − 1

ω2
Y , (4.4)

where P and R are the matrices of coefficients depending on model parameters and
discretization, Y are eigenfunctions composed of the discrete values Un, Vn and Fn
and − 1

ω2 are the eigennumbers. The discrete forms of the matrices P , R and the
vector Y are derived in Zábranová et al. (2009 ).

The PREM model is frequency dependent and its parameters that appear in
the formulas above are evaluated for a fiducial frequency ω̄. Following Dahlen and
Tromp (1998), the slight shift of an individual mode frequency ω0 caused by isotropic
anelasticity can be incorporated by the formula

ω = ω0 +
1

π
ω0Q

−1 ln (ω0/ω̄) , (4.5)

where Q−1 is the inverse quality factor.
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Splitting frequency perturbations of an isolated multiplet due to the effects of
the Earth’s rotation and hydrostatic ellipticity can be expressed as

δωm = ω(a+ bm+ cm2), (4.6)

where m, −n ≤ m ≤ n, is the order. The term b arises from the first-order effect
of the Coriolis force and the terms a and c arise from ellipticity and second-order
effects of rotation.

The vertical acceleration of an instrument can be written in the form

a(x, t) =
∑
nlm

Anlm(x) exp
[
ilωn

(
1 + a+ bm+ cm2

)
t− lγnt

]
, (4.7)

where the sum is over all multiplets defined by degrees n and overtone numbers l.
The coefficients Anlm are given by the moment tensor, a source-receiver geometry
and the eigenfunctions, and lγn is the decay rate of each multiplet.
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Chapter 5

Constraints on the centroid
moment tensors of the 2010 Maule
and 2011 Tohoku earthquakes
from radial modes
Published in Geophysical Research Letters,
Volume 39, Issue 18, September 2012, doi:10.1029/2012GL052850
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1Department of Geophysics, Faculty of Mathematics and Physics, Charles Univer-
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Abstract
Surface acceleration caused by the radial modes depends only on the Mrr com-

ponent of the centroid moment tensor and on its depth assuming the isotropic com-
ponent to be negligible. The 0S0-mode amplitude enables one to obtain a rela-
tively narrow interval of Mrr values, whereas 1S0-mode amplitude is more sensitive
to centroid depth. We have used these facts to analyze the 2010 Maule (Chile)
Mw = 8.8 and 2011 Tohoku (Japan) Mw = 9.1 earthquakes using PREM. Supercon-
ducting gravimeter data available within the framework of the Global Geodynamic
Project reveal that the Mrr components of these earthquakes should be in the inter-
val 0.95–1.15 × 1022 Nm (Maule) and 1.50–1.75 × 1022 Nm (Tohoku), respectively.
Re-evaluation of the modal quality factors Q is needed to obtain constraints on
Mrr self-consistently. The joint analysis of gravity data from both events yields
Q = 5500 ± 140 for the 0S0-mode and Q = 2000 ± 80 for the 1S0-mode. We were
not able to determine the quality factor of the 2S0 mode with an accuracy sufficient
to allow meaningful constraints (Q = 1120± 270).
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5.1 Introduction

The source mechanism of the 2011 Tohoku Mw = 9.1 earthquake was first shown
by rapid solutions published a few minutes and hours after the event [Nettles et
al., 2011 (abbreviated as PS1 in Fig. 5.2); Polet and Thio, 2011 (PS2); Duputel et
al., 2011 (PS3); Hayes et al., 2011; Shao et al., 2011] and then studied in detail by
means of various seismic datasets: teleseismic and regional body and surface waves
[Koper et al., 2011; Yokota et al., 2011; Zhang et al. 2011] and strong motions
[Honda et al., 2011; Kurahashi and Irikura, 2011; Suzuki et al., 2011; Yoshida et al.,
2011]. Similarly, there are rapid solutions available for the 2010 Maule Mw = 8.8
earthquake [Ekström and Nettles, 2010 (abbreviated as PS1 in Fig. 5.3); USGS,
2010a (PS2); USGS, 2010b (PS3)] followed by further source-mechanism studies
[Delouis et al., 2010; Lay et al., 2010; Koper et al., 2012; Okal et al., 2012].

Moreover, a network of superconducting gravimeters publishes data within the
framework of the Global Geodynamic Project (GGP)1. These earthquakes (together
with the 2004 Sumatra earthquake) are thus the best instrumentally recorded giant
events in the history of seismology. We have used gravity data from superconducting
gravimeters to obtain radial mode amplitudes and to demonstrate how they con-
strain the Mrr components of the moment tensor and centroid depths of the Maule
and Tohoku earthquakes.

5.2 Method

The acceleration of a spherically symmetric, non-rotating, anelastic Earth at a re-
ceiver located at xr(rr, ϑr, ϕr), that is excited by a moment-tensor source M situated
at xs(rs, ϑs, ϕs), is given by a superposition of spheroidal and toroidal modes,

a(xr,xs, t) =
∑
k

Ak(xr,xs) cos(ωkt) exp

(
− ωkt

2Qk

)
. (5.1)

The coefficients Ak(xr,xs) are linearly proportional to the moment-tensor compo-
nents, and they depend on a source-receiver geometry and the mode eigenfunctions;
ωk are angular frequencies and Qk quality factors of the modes.

If we consider a part of the response caused by a radial (degree-zero) mode,
we can directly determine the coefficients Ak(xr,xs) that are independent of the
horizontal coordinates [Dahlen and Tromp, 1998, Section 10.3],

A0(rr, rs) =
Ur
4π

[
MrrU

′
s + (Mθθ +Mφφ)

Us
rs

]
er , (5.2)

where the eigenfunction U and its derivative U ′ are only radially dependent, Ur =
U(rr), Us = U(rs), and Mrr, Mθθ and Mφφ are diagonal spherical polar components
of the centroid moment tensor M.

If we take into account that the isotropic component of the source is negligible
[Kikuchi and Kanamori, 1994; Okal, 1996], i.e., Mrr = −(Mθθ + Mφφ), the sur-
face acceleration of a device caused by the radial modes depends on only the one
component of the moment tensor Mrr and on the depth of the centroid,

A0(a, rs) =
Ua
4π

(
1 +

2g

ω2a

)
Mrr

(
U ′s −

Us
rs

)
er , (5.3)

1http://www.eas.slu.edu/GGP/ggphome.html
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where Ua = U(a) and the free-air change in gravity due to the radial displacement
of the device is included, e.g. [Dahlen and Tromp, 1998]. Therefore, simultaneous
employment of several radial modes enables, in principle, one to determine not only
the Mrr component of the moment tensor but also the centroid depth [Lundgren
and Okal, 1988]. The centroid represents a point source in space and time but
megathrust events are represented by finite-source solutions in many applications
where, e.g., dimension and/or directivity of the source play a role. We calculated
spheroidal modes up to 1.7 mHz also for the finite-source solution by Hayes et al.
[2011] and found that there are no significant effects if this finite source is replaced
by a suitable point source; see also [Zábranová et al., 2012], where finite-source
representations of the Tohoku event are taken into account. On the other hand, the
calculated modal amplitudes—and, subsequently, the constraints on the moment
tensor—depend on local values of elastic coefficients at the source, that is the clear
shortcoming of a point-source representation.

We calculate the eigenfrequencies and the eigenfunctions of the spherical equi-
valent-rock PREM [Dziewonski and Anderson, 1981], where the upper 3-km layer
of water is replaced by a 1.2-km-thick rock-layer with the same mass, by means
of our pseudospectral finite-difference matrix-eigenvalue approach [Zábranová et al.,
2009]. The frequencies and eigenfunctions of the degenerate multiplets evaluated by
our code for the PREM were tested by the Mineos software package.

If non-spherical corrections due to the rotation and ellipticity are considered in
this degree-zero case, only the frequencies of modes are slightly shifted, so formulas
(5.1)–(5.3) can again be used because each radial mode consists just of one singlet
[Dahlen and Tromp, 1998], and coupling with other modes is negligible [Davis et
al., 2005]. Moreover, Rosat et al. [2007] showed that for a three-dimensional ro-
tating elliptic Earth model, the difference between theoretically predicted minimum
and maximum amplitudes of the 0S0 mode reaches only 2%; therefore, we assume
that excitation is almost independent of source-station horizontal geometry, and we
averaged observed signals from different stations to suppress the noise.

5.3 Data analysis and results

The data for the Maule (32 days) and Tohoku (20 days) earthquakes are freely
available on the GGP web pages. Only the stations shown in Fig. 5.1 were employed
because the time series available from other stations were either too short or affected
by gaps and/or steps. A high-pass Butterworth filter (above 0.1 mHz) was used to
remove local tides from raw gravity data (sampled at 1 s) corrected for atmospheric
effects using locally recorded atmospheric pressure data and a nominal admittance
factor of −3 nm/s2/hPa.

Figs. 5.2 and 5.3 demonstrate the constraints on the Mrr component of the
moment tensor and the depth of the Maule Mw = 8.8 and Tohoku Mw = 9.1
earthquakes obtained from the amplitudes of 0S0 and 1S0. They are clearly isolated
in the spectrum, and the level of observed noise is low (see the mode amplitudes in
Figs. 5.4 and 5.5). A Hann taper and Fourier transform were applied to averaged
data signal and synthetic calculations. The synthetic solutions were found by a grid
search in depth with 1-km step, using the fact that dependence of amplitude on the
Mrr parameter is linear for a fixed depth.
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The quality factor Q is a key parameter, and its value used in synthetic calcu-
lations can substantially influence the results. For example, Riedesel et al. [1980]
found that Q is between 5600 and 5833 for the 0S0 mode and between 1850 and
1960 for the 1S0 mode. Lower values for the 0S0 mode were reported by Roult et
al. [2006] (5489), Xu et al. [2008] (5400) and Okal and Stein [2009] (5579), who,
on the other hand, obtained a higher value (2017) for the 1S0 mode. We analyzed
gravity data from the Maule and Tohoku earthquakes (32- and 20-days long records,
respectively, for 0S0, 13-days long records for 1S0 and 5-days long records for 2S0)

using several shifted time windows and the fact that Q−1 = T/(π∆t) ln
Aref
A

for each

0.7

0.8

0.9

1.0

1.1

1.2

M
rr
 [
1
0

2
2
 N

m
]

10 20 30 40 50 60 70

depth [km]

1S0

0S0

Maule 2010

PS1

PS2

PS3

Figure 5.2: Dependence of the Mrr

component of the centroid moment tensor
on the centroid depth from the 0S0 and

1S0 amplitudes for the 2010 Maule earth-
quake. For each mode, the interval cor-
responding to ± one standard deviation
of amplitude-spectra and quality factors is
drawn. Stars denote published point-source
solutions (PS1, PS2 and PS3).

1.2

1.4

1.6

1.8

2.0

2.2

M
rr
 [
1
0

2
2
 N

m
]

10 20 30 40 50 60 70

depth [km]

1S0

0S0

Tohoku 2011

PS1

PS2

PS3

Figure 5.3: Dependence of the Mrr com-
ponent of the centroid moment tensor on
the centroid depth from the 0S0 and 1S0

amplitudes for the 2011 Tohoku earth-
quake. For each mode, the interval cor-
responding to ± one standard deviation
of amplitude-spectra and quality factors is
drawn. Stars denote published point-source
solutions (PS1, PS2 and PS3).

76



0S0 1S0

760h 450h 350h 190h 170h 150h

Maule 1.5 1.7 1.7 3.3 3.5 3.7
Tohoku x 1.3 1.5 3.0 2.9 2.9

Table 5.1: The lengths of employed time windows and corresponding amplitude-spectra
standard deviations (percents) for the two radial modes.

record, where T is period of a mode and ∆t is time shift between time windows
used to calculate spectral amplitudes Aref and A. We found Q = 5500± 140 for the

0S0-mode, Q = 2000 ± 80 for the 1S0-mode and Q = 1120 ± 270 for the 2S0-mode.

2S0 would confine the depth even more than the 1S0 mode if the Q factor were
determined with a similar accuracy. However, the relative error is so high that we
have not been able to use this mode as another meaningful constraint.

In the case of Maule, we have employed three time series lasting up to 32 days
for 0S0 and three time series up to 8 days for 1S0 to determine mode amplitudes as
specified in Table 5.1. In the case of Tohoku, such long data sets are not available,
and we were left with 20-day records. For each time window the standard deviation
expressed in percents about averaged amplitude was calculated from the amplitudes
obtained from individual station records.

The depth-dependence of Mrr obtained from the 0S0-mode-amplitude calcula-
tions is weak (jumps at depths of 13 and 22 km are caused by jumps in the radial
derivatives of the mode displacement on the corresponding structural interfaces of
the equivalent-rock PREM) and this mode thus confines the Mrr magnitudes into
relatively narrow bands of 0.95–1.15× 1022 Nm for the Maule earthquake and 1.50–
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1.75 × 1022 Nm for the Tohoku earthquake. On the other hand, the solution band
produced by the 1S0 mode is more depth-dependent, and it demonstrates that cen-
troid depths should be located in the lower crust or just below the Moho for the
Tohoku event but might be deeper for Maule.

Figs. 5.4 and 5.5 demonstrate an agreement in the amplitude spectra between
the averaged SG data and the synthetics. We use 450-hour (0S0) and 170-hour
(1S0) time series. Fig. 5.4 shows two solutions (M1 and M2) at the depths 21 km
(Mrr = 1.055 × 1022 Nm) and 44 km (1.025 × 1022 Nm) for the Maule earthquake.
Fig. 5.5 shows three solutions (T1, T2 and T3) at the depths 13 km (1.60×1022 Nm),
18 km (1.69× 1022 Nm) and 29 km (1.60× 1022 Nm) for the Tohoku earthquake.

5.4 Conclusions

We have re-evaluated the quality factor Q of the 0S0-mode (Q = 5500 ± 140) and
the 1S0-mode (Q = 2000 ± 80) and demonstrated that Mrr of the 2010 Maule
and 2011 Tohoku earthquakes should fall within the intervals 0.95–1.15 × 1022 Nm
and 1.50–1.75 × 1022 Nm, respectively, to yield the observed 0S0-mode amplitude.
Moreover, the 1S0 mode provides constraints on the centroid depth. From the three
rapid centroid solutions shown in Figs. 5.2 and 5.3, only the PS1 Mrr component
lies in the intervals mentioned above. The PS2 value is close to the upper limit for
the Maule earthquake and clearly overestimates the Tohoku event. On the other
hand, the PS3 value slightly underestimates the first event and overestimates the
second earthquake. That these constraints on theMrr component are not, in general,
satisfactorily fulfilled, can be explained by the fact that radial modes are rather weak,
as the non-diagonal moment-tensor terms dominate in the corresponding source
solutions. Therefore, the weights of Mrr in full moment-tensor-waveform inversions
are relatively small.
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Zábranová, E., C. Matyska, and L. Hanyk (2012), Tests of the 2011 Tohoku
earthquake source models using free-oscillation data from GOPE, Studia Geoph.
Geod., 56, 585–594, doi:10.1007/s11200-011-9033-5.

Zhang, H., Z. Ge, and L. Ding (2011), Three sub-events composing the 2011 off
the Pacific coast of Tohoku earthquake (Mw 9.0) inferred from rupture imaging by
back-projecting teleseismic P waves, Earth Planets Space, 63, 595–598.

80

http://earthquake.usgs.gov/earthquakes/eqinthenews/2010/us2010tfan/neic_tfan_cmt.php
http://earthquake.usgs.gov/earthquakes/eqinthenews/2010/us2010tfan/neic_tfan_wmt.php


Chapter 6

Low-frequency
centroid-moment-tensor inversion
from superconducting-gravimeter
data: the effect of seismic
attenuation
Published in Physics of the Earth and Planetary Interiors,
Volume 235, October 2014, 25–32, doi:10.1016/j.pepi.2014.06.013
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Abstract
After the 2010 Maule and 2011 Tohoku earthquakes the spheroidal modes up to

1 mHz were clearly registered by the Global Geodynamic Project (GGP) network
of superconducting gravimeters (SG). Fundamental parameters in synthetic calcu-
lations of the signals are the quality factors of the modes. We study the role of
their uncertainties in the centroid-moment-tensor (CMT) inversions. First, we have
inverted the SG data from selected GGP stations to jointly determine the quality
factors of these normal modes and the three low-frequency CMT components, Mrr,
(Mϑϑ − Mϕϕ)/2 and Mϑϕ, that generate the observed SG signal. We have used
several-days-long records to minimize the trade-off between the quality factors and
the CMT but it was not eliminated completely. We have also inverted each record
separately to get error estimates of the obtained parameters. Consequently, we have
employed the GGP records of 60-hrs lengths for several published modal-quality-
factor sets and inverted only the same three CMT components. The obtained CMT
tensors are close to the solution from the joint Q-CMT inversion of longer records
and resulting variability of the CMT components is smaller than differences among
routine agency solutions. Reliable low-frequency CMT components can thus be
obtained for any quality factors from the studied sets.

Keywords: Normal modes, superconducting-gravimeter data, quality factors, CMT
inversion

81



6.1 Introduction

CMT inversions of giant earthquakes in the frequency range below 1 mHz are based
on normal-mode calculations where fundamental parameters are the quality factors
of the modes. Although free oscillations of the Earth have been observed for decades,
precise determination of the ultralong-period-mode quality factors is still discussed
(e.g., Roult et al., 2006; Okal and Stein, 2009; Tanimoto et al., 2012; Deuss et
al., 2013; Ding and Shen, 2013). The modal quality factors can be estimated di-
rectly from the observed signal attenuations. Very long high-quality records are
needed because multiplet splitting into singlets of near frequencies causes compli-
cated decrease of signal amplitudes with time, but continuous non-disrupted SG
records lasting several weeks are rather rare. Determination of ultra-long-period-
mode-singlet attenuations from SG and seismic data yields relatively broad ranges
of values (Ding and Shen, 2013), probably due to the noise in available signals.
However, in quasi-spherical approximation, when only splitting due to the Earth ro-
tation and ellipticity is considered, the quality factors of individual singlets should
be very close (e.g., Dahlen and Tromp, 1998).

The other way how to obtain the modal quality factors is, therefore, based on
an inversion procedure when calculated synthetic signals are compared with the ob-
served data provided one quality factor for all singlets of a mode is to be determined.
Synthetic calculations cannot be performed without a model of earthquake source
which should thus be simultaneously added into the inversion procedure to obtain
self-consistent results.

Here we first deal with the problem of joint determination of both the modal
quality factors and the CMT components from the spheroidal-mode observations up
to 1 mHz. Since they are isolated in the spectrum, influence of mode couplings and
3-D structures to amplitude spectrum is not substantial (e.g., He and Tromp 1996),
it is sufficient to calculate multiplets splitting due to the rotation and ellipticity. The
observations after the 2010 Maule and 2011 Tohoku earthquakes within the GGP
framework provide high-quality data that exhibit lower noise level in submilihertz
frequency range than broadband seismometer data; detailed discussion can be found
in, e.g., Ferreira et al. (2006).

Ultralong-period-normal modes were employed in several earthquake-source stud-
ies (e.g., Okal and Stein, 2009; Okal et al., 2012; Okal, 2013; Tanimoto and Ji, 2010;
Tanimoto et al., 2012) to reveal potential ultraslow components to the seismic source
of giant earthquakes by evaluating low-frequency estimates of the scalar moment
M0 when the strike, dip and rake were fixed in agreement with the Global CMT
double-couple-focal mechanisms. The one parameter was thus inverted using a pri-
ori estimates of the remaining source parameters (and quality factors). It is clear
that such an approach stabilizes inversion of M0 but the question arises whether
the influence of errors in determination of the strike, dip and rake (Duputel et al.,
2012; Tanimoto et al., 2012; Valentine and Trampert, 2012) is negligible. Moreover,
potential usage of very long records (up to several weeks) require precise knowledge
of the modal quality factors.

Zábranová et al. (2012) obtained the Mrr component of the moment tensor by
inverting the amplitudes of radial modes observed after the 2010 Maule and 2011
Tohoku earthquakes by the GGP stations. Again, they had to re-evaluate quality
factors of the employed modes to obtain self-consistent results. Since the radial
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modes are not split, their quality factors can be obtained directly from the records;
thus, this source inversion can be done independently and used as a benchmark
for the most influential Mrr component. For this reason we do not incorporate the
radial modes into this study.

Here we show that vertical acceleration of the studied spheroidal modes generated
by shallow earthquakes is sensitive to the three components of the CMT, assuming
the isotropic component of the source to be negligible: the diagonal terms of the
CMT,Mrr and (Mϑϑ−Mϕϕ)/2, and its ϑ-ϕ componentMϑϕ, see eqns. (6.1)-(6.3) and
Table 6.1 below. Quite recently, Bogiatzis and Ishii (2014) tried to invert the whole
CMT tensor from the analysis of 15 modes observed by the Global Seismograph
Network after the 2011 Tohoku earthquake but the Mrϑ and Mrϕ components were
not resolved. We demonstrate that the three resolvable CMT components can be,
in principle, obtained simultaneously with the quality factors of the modes in a joint
inversion procedure utilizing long SG records. However, there is still a trade-off
between the quality factors and the Mrr component of the CMT. Therefore, we deal
also with the CMT inversion from short SG records where influence of quality-factor
uncertainties is more suppressed.

6.2 Synthetic calculations of SG signals

The total ground acceleration at xr(rr, ϑr, ϕr), excited by a source situated at
xs(rs, ϑs, ϕs), is given by a superposition of spheroidal and toroidal modes,

a(xr,xs, t) = Re

[∑
k

Ak(xr,xs) exp

(
iωkt−

ωkt

2Qk

)]
, (6.1)

where index k contains all degrees (angular order), overtones (radial order) and
singlets (azimuthal order), ωk are angular frequencies and Qk are quality factors of
the modes.

The coefficients Ak(xr,xs) are linearly dependent on M : ek(xs)sk(xr), where

M is the source moment tensor, ek = 1
2

[
∇sk + (∇sk)

T
]

is the strain and sk(xs)

and sk(xr) are eigenfunctions evaluated in a source and a receiver location, respec-
tively. We included the potential-perturbation, free-air and tilt to model a realistic
device response (Dahlen and Tromp, 1998), as well as the Earth ellipticity and ro-
tation leading to multiplets splitting (Dahlen and Sailor, 1979), and calculated the
coefficients Ak(xr,xs) using the formulas that are given explicitly for splitting of
an isolated multiplet (Dahlen and Tromp, 1998; Chapter 14.2 and Appendix D1).
We calculate the eigenfrequencies and eigenfunctions by our pseudospectral finite-
difference matrix-eigenvalue approach (Zábranová et al., 2009) applied to the spheri-
cal equivalent-rock PREM (Dziewonski and Anderson, 1981), where the upper 3-km
layer of water is replaced by a 1.2-km-thick rock layer with the same mass. We
thus keep the mass of the Earth and avoid calculations in a thin water layer at the
surface.

Assuming negligible isotropic component of the source we decompose the moment
tensor M = (Mrr,Mϑϑ,Mϕϕ,Mrϑ,Mrϕ,Mϑϕ), where Mrr,...,Mϑϕ are its spherical
components, into five suitable base moment tensors,

M = MrrG1 +
Mϑϑ −Mϕϕ

2
G2 +MrϑG3 +MrϕG4 +MϑϕG5 , (6.2)

83



where

G1 = (1,−1/2,−1/2, 0, 0, 0) ,

G2 = (0, 1,−1, 0, 0, 0) ,

G3 = (0, 0, 0, 1, 0, 0) , (6.3)

G4 = (0, 0, 0, 0, 1, 0) ,

G5 = (0, 0, 0, 0, 0, 1) .

We use this representation of the CMT to distinguish between the CMT compo-
nents that are able to generate strong vertical acceleration and those of negligible
influence. Relative strengths of signals produced by the base moment tensors for the
centroid depth of 20 km are shown in Table 6.1. The Mrϑ and Mrϕ components do
not generate any significant vertical acceleration, i.e., tangential stress vanishes near
the surface (see also, e.g., Dziewonski et al., 1981; Ferreira and Woodhouse, 2006;
Bukchin et al., 2010; Bogiatzis and Ishii, 2014). The mode 0S2 is generated mainly
by Mrr, and its sensitivity to the remaining components is weak. Nevertheless, the
other modes are sensitive also to (Mϑϑ −Mϕϕ)/2 and Mϑϕ, and these two compo-
nents can thus be inverted together with Mrr. Note that the signal generated by
G3 and G4 raises with the source depth and, in principal, full CMT of the deepest
earthquakes could be achieved from the SG-data inversion.

relative strength of signals
G1 G2 G3 G4 G5

0S2 0.907 0.045 0.0015 0.0015 0.045

0S3 0.670 0.165 0.0000 0.0000 0.165

0S4 0.589 0.204 0.0010 0.0010 0.205

1S2 0.404 0.282 0.0159 0.0159 0.282

0S5 0.553 0.221 0.0024 0.0024 0.221

Table 6.1: The ratios between maximal |Ak| of vertical acceleration around the globe
for individual base moment tensors and maximal amplitude of a signal generated by the
sum of all 5 base moment tensors located at the 20-km depth.

6.3 Determination of quality factors from GGP

data and the CMT inversion

We have used GGP data sets registered at the stations AP, BH (averaged from three
sensors), CA, CB, CO, ME, PE, WE (averaged from two sensors) after the 2010
Maule earthquake and AP, BH (averaged from three sensors), CA, CB, CO, ME,
OS, PE, ST, after the 2011 Tohoku earthquake having neither gaps nor steps in the
recordings and with only weak signals from aftershocks (Fig. 6.1). We have averaged
the signals from several sensors located at one station to suppress the noise level
and not to increase the weight of such a station in the inversion. After correcting
raw gravity data (sampled at 1 s) for atmospheric effects using locally recorded
atmospheric pressure data and a standard barometric admittance of −3 nm/s2/hPa
(Hinderer et al., 2007), we apply a high-pass Butterworth filter (above 0.1 mHz) to
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Figure 6.1: GGP stations used in this study.

remove local tides. In the studied frequency band, superconducting gravity data are
less noisy than seismometer data (e.g., Ferreira et al., 2006), but they provide only
the vertical component of oscillations.

The quality factors Q of individual modal multiplets are key parameters, and
their values used in synthetic calculations can substantially influence the results.
We determined the Qs by their simultaneous inversion together with the three CMT
components Mrr, (Mϑϑ −Mϕϕ)/2 and Mϑϕ. In all calculations two “low-sensitive”
remaining components of M were fixed on the Global CMT solution, i.e. Mrϑ =
0.23× 1022 Nm, Mrϕ = −1.51× 1022 Nm for the 2010 Maule earthquake (Ekström
and Nettles, 2010) and Mrϑ = 2.12 × 1022 Nm, Mrϕ = 4.55 × 1022 Nm for the
2011 Tohoku earthquake (Nettles et al., 2011). It is clear from Table 6.1 that such
a choice of Mrϑ and Mrϕ influences amplitudes of all studied fundamental modes
negligibly when the remaining components of the CMT are of the same order. The
overtone 1S2 is the only exception but still these two components generate much
weaker 1S2 signal than the remaining considered components of the CMT. Since the
total amplitude of this overtone is about one order of magnitude smaller than the
amplitudes of the other modes, its role in the CMT inversion is very small.

T [s] Q0 Q1 Q2 Q3 Q0 T/2 [h]

0S2 3234 510 496 ± 16 525 477 ± 177 230

0S3 2135 417 409 ± 11 380 405 ± 14 124

0S4 1546 373 394 ± 27 365 373 ± 9 80

0S5 1190 356 350 ± 16 350 364 ± 5 59

Table 6.2: Periods T of the modes, their quality factors Q used in this study and optimal
lengths of the signals according to Dahlen (1982). Q0 was calculated from the PREM, Q1

is our estimate contained by averaging over 4 inversion results: inversions started from
the Q-values of the PREM and were performed for the centroid depth of 10 and 20 km
for the 2010 Maule (20 and 30 km for the 2011 Tohoku) earthquake, Q2 was estimated by
Tanimoto et al. (2012) and Q3 by Deuss et al. (2013).
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We define the misfit function calculated for each station s and each mode m
as the square of the difference between the data and synthetic-signal-amplitude
spectra averaged over a narrow frequency range δfsm covering all singlets, where the
amplitudes are above noise level, i.e. we minimize the functional

∑
sm

1

δfsm

∫
δfsm

(
A(d)
s (f)− A(c)

s (f)
)2
df ,

where A(d) (A(c)) is the amplitude spectrum of the data (calculated synthetic signal).
We do not employ the phase spectra since they are sensitive to the source finiteness
and duration, noise and aftershocks (Lambotte et al., 2007; Bogiatzis and Ishii,
2014). We calculated the misfit from the optimal record lengths according to Dahlen
(1982), see the last column in Table 6.2, derived for the case when amplitudes for
the retrieval of source mechanism and the Hann taper for spectra calculations are
utilized. All records started two hours after the origin time of the earthquakes and
the synthetic calculations were performed for the two centroid depths, see Table 6.3.

We have used two-step iterative inversion procedure starting from the Q-values
of the PREM: in the first step all quality factors are fixed and the three CMT
components are inverted, in the second step the obtained CMT is fixed and the
quality factors are inverted. The first step is then repeated with the new quality
factors, then we continue with the second step etc. The convergence is very fast and
only several loops (up to ten) of both steps are needed to reach misfit minimum.
Note that we use grid-search in both steps with higher accuracy than 1020 Nm in
the first step and 1 in the second step. Since the studied modes are isolated in the
spectrum, the quality factor of each mode can be inverted separately in the second
step. The first step could be solved as an linear inverse problem but the direct linear
problem is extremely fast and thus this straightforward minimization method can
be easily implemented.

Obtained quality factors in our inversion procedure are almost independent of
changes in the source depth and the choice of the earthquake. Fig. 6.2 shows the
amplitude spectra of synthetic and measured signals averaged by the time-window
lengths to demonstrate data fitting reached in our inversion procedure. We obtained
excellent fit for the modes 0S2, 0S3 and 0S5 but worse results for the mode 0S4.

centroid depth Mrr (Mϑϑ −Mϕϕ)/2 Mϑϕ

[km] [1022 Nm] [1022 Nm] [1022 Nm]

2010 Maule
20 1.10 ± 0.01 0.55 ± 0.19 −0.09 ± 0.09
30 1.05 ± 0.01 0.54 ± 0.20 −0.10 ± 0.09

2011 Tohoku
10 1.61 ± 0.02 0.63 ± 0.16 −0.52 ± 0.10
20 1.70 ± 0.02 0.60 ± 0.17 −0.56 ± 0.10

Table 6.3: The CMT components obtained from the joint inversion with the quality
factors of the records from the stations AP, BH, CA, CB, CO, ME, PE, WE (2010 Maule)
and AP, BH, CA, CB, CO, ME, OS, PE, ST (2011 Tohoku), see Fig. 6.1 and Q1 in
Table 6.2.
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Figure 6.2: Vertical acceleration amplitude spectra of the studied modes from the SG
data (red) and synthetics (green) after the 2010 Maule (left panel) and 2011 Tohoku (right
panel) earthquakes. The synthetic signal was calculated for the solution of joint inversion
at the depth 20 km (10 km) for the Maule (Tohoku) earthquake. A Hann filter and
Fourier transform were applied to the time series of the length shown in the last column
of Table 6.2 starting 2 hrs after the origin times and averaged by the length of the time
windows.

In order to estimate the errors of our inversion procedure, we performed single-
record inversions and then calculated the standard deviations of inverted parameters
from the resultant set of these individual inversions. We first determined the quality
factors from the records separately for each station (fixing the CMT components on
all-station inversion values) and then obtained the CMT independently for each
station (fixing the quality factors on all-station inversion values).

In Table 6.2 we compare our Q values of fundamental modes averaged over per-
formed inversions for both earthquakes with the results obtained by Tanimoto et al.
(2012) from cross-correlations in the time domain, by Deuss et al. (2013) performing
splitting function inversions, as well as with those from the PREM (Dziewonski and
Anderson, 1981). The fundamental-mode-quality factors of the PREM and almost
all of Deus et al. (2013) lie within the obtained confidence interval but the results
of Tanimoto et al. (2012) differ more. The highest standard deviation was obtained
for the mode 0S4 which corresponds to the problems with its fit as demonstrated
in Fig. 6.2. We also tried to determine the quality factor of the mode 1S2 and
attained its reasonable value of Q ' 310 for the 2010 Maule earthquake but most
of individual-station inversions of this quality factor were unstable; therefore, we
were not able to obtain standard deviations. Moreover, the data for the Tohoku
2011 earthquake exhibit much higher values (Q ≥ 340). These two analyses are not
consistent, and we decided not to deal with this mode.

The review of the obtained CMT components is in Table 6.3; we used Global
CMT source location. Our Mrr component for the 2011 Tohoku earthquake is in
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good agreement with the recently published low-frequency-normal-mode inversion
based on Global Seismographic Network data, see Table 6.2 in Bogiatzis and Ishii
(2014), but the remaining components are in better agreement with the Global
CMT solution (Nettles et al., 2011), the USGS CMT solution (Polet and Thio,
2011) as well as the USGS Wphase solution (Duputel et al., 2011). Note that the
dependence on a source depth (mainly that of the component Mrr) is primarily
due to the changes of the model elastic parameters. On the other hand, inversions
of individual records yield almost identical values of the Mrr component for fixed
depths that are, moreover, in a very good agreement with the Mrr estimates obtained
from the radial mode 0S0 inversion, see Zábranová et al. (2012).

1.00

1.05

1.10

1.15

1.20

M
rr
 [
1
0

2
2
 N

m
]

480 490 500 510

Q

0.0085 0.0090

0
S
20
S
2

390 400 410 420

Q

0.0030 0.0032

0
S
30

S
3

380 390 400 410

Q

0.023 0.024

0
S
40

S
4

340 350 360 370

Q

0.0080 0.0085

0
S
50

S
5

1.60

1.65

1.70

1.75

1.80

M
rr
 [
1
0

2
2
 N

m
]

480 490 500 510

Q

0.0082 0.0084

0
S
20
S
2

390 400 410 420

Q

0.0028 0.0030

0
S
30

S
3

380 390 400 410

Q

0.0028 0.0030

0
S
40

S
4

340 350 360 370

Q

0.0056 0.0058 0.0060

0
S
50

S
5

Figure 6.3: Relative misfits of individual modes for the 2010 Maule (upper panel) and
2011 Tohoku (lower panel) earthquakes for the centroid depth of 20 km showing the
trade-off between the Mrr component and quality factors of the modes. The components
(Mϑϑ −Mϕϕ)/2 and Mϑϕ were fixed on their values from Table 6.3 and the stars denote
our solutions presented in Tables 6.2 and 6.3. The contour intervals are the same in all
panels of a row but the colour scales are different.

In order to study potential trade-off between the CMT components and the
quality factors, we chose the quality factors by Tanimoto et al. (2012) and Deuss et
al. (2013) in the role of starting models and repeated the simultaneous inversion of
all records. The results obtained from the joint inversions starting from the different
quality factors lie within the confidence intervals obtained in the inversion starting
from the PREM quality-factor set Q0. Then we computed the CMT components
for the fixed quality-factor sets (Q0–Q3) for both the 2010 Maule and 2011 Tohoku
earthquakes assuming the depth of 20 km. The lowest values correspond to the Q0

quality factors (Mrr = 1.06 × 1022 Nm for 2010 Maule; Mrr = 1.70 × 1022 Nm for
2011 Tohoku) and the highest values correspond to the Q2 quality factors (Mrr =
1.11× 1022 for 2010 Maule; Mrr = 1.77× 1022 for 2011 Tohoku). The spans of the
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remaining two CMT components are within the confidence intervals. The trade-off
between the quality factors and Mrr is demonstrated in Fig. 6.3. One can clearly
recognize that an increase of the Mrr component is connected with decreases of the
quality factors and the “minima valleys” are shallow. Since the trade-off between the
CMT and quality factors complicated the joint Q-CMT inversion although relatively
long records were utilized, we will continue with the CMT inversion of short records
fixing the quality factors.

6.4 CMT inversion from short time series for fixed

quality factor sets

We will demonstrate now that relatively short SG records can be employed to obtain
reasonable low-frequency CMT parameters provided the quality factor set is fixed
on ”reasonable” values. From the point of view of mode-amplitude attenuation
with time, the optimal length of a signal to determine the amplitude of a mode is
given by its Q multiplied by half of the period (Dahlen, 1982). Therefore, when all
studied modes are used in the inversions together, it is important to employ signals
where neither of the modes is too much attenuated. This is the reason why we used
only 60 hr-long signals; the Hann taper and Fourier transform were applied to the
time series starting again two hours after the earthquake-origin time. In principle,
even shorter records could be employed but too short time series would not lead to
narrow spectral peaks and an approach in the time domain would have to be applied
(Tanimoto et al., 2012).

We have inverted three “sensitive” components of the moment tensorMrr, (Mϑϑ−
Mϕϕ) and Mϑϕ again from the L2-inversion with variable source depth. A depth-grid
search with 1-km stepping has been applied. The results of inversion are shown in
Fig. 6.4. For the 2011 Tohoku earthquake all inversions yield better misfit than the
reference Global CMT solution with the PREM Q-values, i.e., the re-evaluation of
the CMT components plays a substantial role in the misfit reduction. Moreover, our
new re-evaluation of the modal quality factors results in further misfit improvement.

Mrr (Mϑϑ −Mϕϕ)/2 Mϑϕ

[1022 Nm] [1022 Nm] [1022 Nm]

2010 Maule
Q0 1.09 0.50 -0.11
Q1 1.10 0.50 -0.11
Q2 1.13 0.53 -0.13
Q3 1.11 0.54 -0.15
2011 Tohoku
Q0 1.73 0.74 -0.54
Q1 1.73 0.72 -0.53
Q2 1.78 0.78 -0.53
Q3 1.75 0.79 -0.51

Table 6.4: Components of the inverted CMT located in 20-km depth from 60-hrs-long
records.
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Figure 6.4: Dependence of the Mrr, (Mϑϑ−Mϕϕ)/2 and Mϑϕ components of the centroid
moment tensor on the centroid depth obtained from the inversion of vertical acceleration
of the spheroidal modes up to 1 mHz for four sets of Q (red Q0, green Q1, blue Q2,
orange Q3). The left (right) panel is for the 2010 Maule (2011 Tohoku) earthquake. Stars
denote published point-source solutions: Global CMT solutions (Ekström and Nettles,
2010; Nettles et al., 2011) (PS1), USGS CMT solutions (Maule1; Tohoku: Polet and Thio,
2011) (PS2), USGS Wphase solutions (Maule2; Tohoku: Duputel et al., 2011) (PS3). The
last panel shows the relative misfits of inversions as functions of depth normalized by the
misfits of the solution PS1 calculated for the PREM quality factors.

However, the misfits for the 2010 Maule earthquake were not improved. The prob-
able reason is that the fit of the mode 0S4 in the case of the 2010 Maule earthquake
is poor for any choice of the quality factors and most of the misfit is thus created
by this mode as shown in Fig. 6.5. The source of this misfit remains unclear but
comparing Figs. 6.2 and 6.5 one can see that the mode 0S4 misfit is lower for shorter
time windows. The dependence of the misfit on source depth is rather weak up to
30 km and it gets worse for higher depths for both earthquakes. In principle, it con-
firms the already published results showing that the centroid was located at shallow
depths. The values for the centroid depth 20 km are summarized in Table 6.4; they
are in good agreement with the values in Table 6.3.

The inversion of Mrr from the rather short 60-hr signal is only slightly influenced
by considered choices of quality factors, and the resultant differences are smaller than
differences of the published CMT solutions that are used here for comparison. The
Global CMT solution PS1 yields the Mrr component in very good agreement with
our inversion. This agreement confirms the analyses of frequency dependence of
the scalar moment showing that there were no slow components of the two studied
earthquake sources (Tanimoto et al., 2012; Okal, 2013). Moreover, there is a good
agreement with the independent results of Zábranová et al. (2012) where the value
of Mrr was obtained directly from the radial modes. Note that Mrr is clearly depth-
dependent since it is influenced mainly by the shear-modulus profile. The moment-
tensor-diagonal term (Mϑϑ−Mϕϕ)/2 as well as the Mϑϕ component are determined
well for all the studied quality factor sets. It is of interest that the results of inversions
of these two components are almost independent of the choice of the quality factors,
and they exhibit sensitivity to the centroid depth for the 2011 Tohoku earthquake.

1http://earthquake.usgs.gov/earthquakes/eqinthenews/2010/us2010tfan/neic tfan cmt.php
2http://earthquake.usgs.gov/earthquakes/eqinthenews/2010/us2010tfan/neic tfan wmt.php
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Figure 6.5: Vertical acceleration amplitude spectra of the studied modes from the SG
data (red) and synthetics (green) after the 2010 Maule (left panel) and the 2011 Tohoku
(right panel) earthquakes. The synthetic signal was calculated for the optimal CMT
solution at the depth 20 km (10 km) for the Maule (Tohoku) earthquake when the quality
factors were fixed at the Q1 values from Table 6.2. A Hann filter and Fourier transform
were applied to the time series of 60-hrs length starting 2 hrs after the origin times and
averaged by the length of the time window.

Fig. 6.6 shows modal-amplitude attenuations with shifts ∆t of different time
windows (last column in Table 6.3) applied to the superconducting-gravimeter and
synthetic data after the 2011 Tohoku earthquake for mechanisms shown in Table 6.4.
Deviations of the real data from the synthetic curves appear at “critical-time shifts”
when modal amplitudes are so small that the role of noise in the signal becomes sub-
stantial. Combining these “critical-time shifts” for data from fifteen records with
the used lengths of time windows, one can clearly see that maximal length of the
signal undisturbed by the noise is only about 200 hrs for the modes 0S4 and 0S5

and 280 hrs for the modes 0S3 and 0S2. These numbers are only illustrative for
this particular earthquake as signal/noise ratio depends on earthquake parameters
and the station quality. Nevertheless, we think that they represent typical maxi-
mal lengths of the signals from the GGP network that can be used for individual
modes after megathrust events. Naturally, one can omit “more noisy” stations to
obtain an agreement between data and the synthetics for longer times. This figure
clearly demonstrates that applications of very long records, used to determine qual-
ity factors of individual singlets, can be affected by noise. On the other hand, if
we do not deal with clear separation of multiplets into singlets, e.g., when only the
low-frequency components of the CMT are determined, relatively short records are
sufficient and they have excellent signal/noise ratio.
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Figure 6.6: Decadic logarithm of the powers (DLP) of the studied modes (integral
over narrow frequency range covering all singlets for each mode) with time shifts of time
windows applied to the data (black lines) and synthetic signals after the 2011 Tohoku
earthquake calculated for the four sets of quality factors (red Q0, green Q1, blue Q2,
orange Q3) and for the CMT values from Table 6.4. All powers are normalized by the
powers of data for the time shifts ∆t = 0, i.e. time windows starting 2 hrs after the origin
time. Lengths of time windows are written in the last column of Table 6.2. The slope of
the curves for synthetic data corresponds to the values of the quality factors. Since the
modal multiplets consist of several singlets with slightly different frequencies, the curves
are oscillating.

6.5 Conclusions

In several studies (e.g., Okal and Stein, 2009; Okal et al., 2012; Okal, 2013; Tanimoto
and Ji, 2010; Tanimoto et al., 2012) ultralong-period normal modes were employed
to determine only one low-frequency source parameter of giant earthquakes—the
scalar moment M0—assuming double-couple focal mechanism and fixing the three
remaining parameters (dip, strike and rake) by means of values chosen a priori from
independent studies. It is well known that there is a trade-off between these pa-
rameters; the choice of the dip, strike and rake thus also influences the obtained
value of the scalar moment M0. We demonstrated here the three low-frequency
components—Mrr, (Mϑϑ − Mϕϕ)/2 and Mϑϕ—can be obtained from SG records
after the 2010 Maule and 2011 Tohoku earthquakes assuming that the isotropic
component of the CMT is negligible, and dealt with their trade-off with the quality
factors of the modes. For shallow earthquakes sensitivity of data to the two remain-
ing components—Mrϑ and Mrϕ—is very weak, these components cannot thus be
inverted from the used data, and the results are independent on their choice made
a priori (cf. Dziewonski et al., 1981; Ferreira and Woodhouse, 2006; Bukchin et al.,
2010; Bogiatzis and Ishii, 2014).
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We first performed inversion of quality factors jointly with the three studied
CMT components from long records of optimal lengths to obtain amplitudes for
each mode (last column in Table 6.2). The resulted modal quality factors are in
good agreement with the PREM values and the results published by Deuss et al.
(2013), however, they differ more from the results by Tanimoto et al. (2012). We
then inverted the CMT components fixing the quality factors on these published
values. The resultant span of the CMT values is smaller than mutual differencies of
the Global CMT, USGS CMT and USGS Wphase solutions.

The question thus arises whether it is necessary to use such long records. We thus
finally employed only 60-hrs long records and performed again the CMT inversions
for the fixed four quality factor sets shown in Table 6.2. The best solutions for
each quality-factor set are summarized in Table 6.4. They can be considered as the
low-frequency estimates of the CMT components independent of previous results
obtained in higher frequency ranges. The optimal centroid depth were located into
shallow depths and the differences of the obtained inversion results are again smaller
than the mutual differences of the published aganecy CMT solutions. Problem of
proper determination of the modal quality factors in inversion procedures of the
low-frequency CMT of giant earthquakes utilizing relatively short records can thus
be omitted and the inversion can be, in principle, routinely performed for any of the
studied quality-factor sets.
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Conclusions and perspectives

In the methodological part of this thesis we have demonstrated that the system of
partial differential equations that describes the free oscillations of the Earth can be
decomposed into the ordinary differential equations by spherical harmonic analysis
and directly discretized by means of finite-difference schemes with pseudospectral
accuracy. The original problem can thus be transformed to a series of matrix eigen-
value problems that can be solved by standard numerical routines. Using nume-
rical libraries for matrix spectral analysis, the eigenfunctions and eigenfrequencies
of the fundamental mode and corresponding overtones are simultaneously obtained
and a high accuracy up to a discretization limit is achieved. Eigenfrequencies and
eigenfunctions calculated from these discretized systems perfectly agree with those
obtained from the classical method, as represented by the Mineos software package
based on Runge-Kutta integration techniques.

In this decade, three megathrust events occurred (2010 Maule, 2011 Tohoku, 2012
Sumatra double event) that were also recorded by the network of superconducting
gravimeters within the Global Geodynamic Project. We have analyzed their records
and showed that the level of noise is sufficiently low for the gravest spheroidal and
radial modes. We employed these data to source mechanism inversions to address the
question, whether the methods routinely used to estimate centroid-moment-tensor
solutions are suitable to get low-frequency limits of the moment tensor.

Since the data are compared with synthetic accelerograms, the knowledge of
quality factors is crucial. Surprisingly, there is still rather high uncertainty in the
published quality factors. Their direct estimates for the spheroidal modes are com-
plicated due to multiplet splitting which causes rather complex amplitude decrease.
For this reason we have decided to perform source inversions simultaneously with
quality-factors determination. Although the joint structural and source inversion
is, in general, a complicated non-linear problem, the advantage of the inversion in
sub-mHz frequency range is a small number of inverted parameters. We have intro-
duced an iterative procedure, where in the first step the quality factors are fixed and
the source parameters are determined, whereas in the next step the source mecha-
nism is fixed and quality factors are re-evaluated. This method converges quite fast
and yields both the quality factors of the individual modes and the low-frequency
estimates of the three moment-tensor components. However, very long records to
obtain stable solutions of these joint inversions are needed.

We compared our results with those provided by the three agency solutions. The
GCMT Project preferred solution was obtained using 8.5-hr-long seismograms from
about a hundred of stations of the GSN filtered between 300 and 500 s (Nettles et
al., 2011). In the GCMT Project approach, the moment tensor and source centroid
are estimated by matching observed long-period three-component seismograms to
synthetic waveforms calculated by summation of the Earth normal modes. The
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USGS method used to compute the CMTs is based on the formulas by Dziewonski
et al. (1981), and they are also used by the GCMT group, but input waveforms
are filtered from 130 to 330 s (Polet and Thio, 2011). The third agency solution
is based on the real-time W-phase inversions that exploit the long-period content
of the broadband seismic record (200–1000 s) preceding the arrival of the surface
waves (Duputel et al., 2011). The best agreement of our results is with the Harvard
GCMT solution, probably due to the applied lower frequency range. However, the
differences between our results and GCMT solutions are not negligible, which points
to the problem of source-solutions robustness in the low-frequency range that was
mentioned above.

Special attention was paid to the radial modes, where the inversion is quite simple
as these modes are generated by only the Mrr-component of the moment tensor and
the quality factors of these modes can be directly determined from changes of modal
amplitudes with time since there is no splitting. Moreover, dependence of radial-
mode amplitudes on geographic position of an observer is very weak and thus the
data from different stations can be averaged, which yields robust results obtained
from the observations of the 0S0 and 1S0 modes.

We believe that our approach is applicable to various problems that could be
solved in future. Let us mention three of them:

1. If we consider the quality factors of the modes to be known with sufficient
accuracy, the source inversions can be performed from rather short records as
demonstrated in this thesis. This fact opens a space for creating routine pro-
cedures based on superconducting-gravimeter data that could be an additional
product of the GGP.

2. The upper limit of modal summations is limited only by a resolution of the
Chebyshev grids and, consequently, by dimensions of the obtained matrices
that enter into the numerical eigenanalyses. The potential frequency range of
our numerical method can thus continuously increase with increasing software
and hardware power. Moreover, further development of our method should
enable us to perform co-seismic modeling by means of modal summations up to
high degrees and orders as a complement to common analytical formulas for the
homogenous half-space by Okada (1992). Geodetic GNSS data employment
could thus help to discriminate between finite-source models.

3. The structural models of the planets and moons in the Solar System are still
poorly constrained by available data. Our numerical approach is very efficient
in the studies when frequency dependence of the structural parameters plays
a minor role and may be neglected. Therefore, it is suitable, e.g., for a fast
evaluation of the dependencies of eigenfrequencies on structural parameters
like depths of major interfaces (core boundaries etc.) of these bodies.
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Appendix

Analytical solution at the center

In order to obtain the boundary conditions at the center of the Earth model, r = 0,
we analyze solutions of the ordinary differential equations derived in the previous
text by means of power series of the second order and study the behavior of coef-
ficients of these series at the neighborhood of the center. For some cases, several
boundary conditions can be derived from the solution at the center of the models.
In the previous text we chose a required number of them; the remained unused con-
ditions are then naturally satisfied. Note that this approach is different from the
classical treatment where a solution for the homogeneous small sphere surrounding
the center is employed (e.g. Crossley, 1975; Martinec, 1984; Dahlen and Tromp,
1998).

Toroidal oscillations

The eigenfunctions Wn decomposed into the power series get the form for r → 0,

Wl = a0 + a1r + a2r
2 +O(r3). (A.1)

By substitution of this expression into (1.36), we obtain the relation

(6−N) a2 +
2−N
r

a1 −
Na0

r2
= −ρ0ω

2

µ
a0, (A.2)

which has three different branches dependent on the angular degree l. We abbreviate
N = l(l + 1).

• l = 1 and N = 2
Expansion coefficients a0 and a2 must be equal to zero to satisfy (A.2). Thus, we
have conditions for the zero and second derivatives of toroidal displacement,

W1(0) = W ′′
1 (0) = 0. (A.3)

• l = 2 and N = 6
We obtain conditions for the zero and first derivatives of W2, since a0 = a1 = 0,

W2(0) = W ′
2(0) = 0. (A.4)

• l > 2 and N > 6
Since a0 = a1 = a2 = 0, all derivatives have to vanish in the center,

Wl(0) = W ′
l (0) = W ′′

l (0) = 0. (A.5)
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Radial oscillations

The expansions of the displacement and incremental gravitational potential in the
case of l = 0 have the form for r → 0,

U0 = a0 + a1r + a2r
2 +O(r3), (A.6)

F0 = c0 + c1r +O(r2). (A.7)

By substitution of these expressions into (1.51)–(1.52) and using g0(r) = 4
3
πGρ0r,

we obtain the system of equations

4βa2 +

(
16

3
πGρ2

0 −
2β

r2

)
a0 = −ρ0ω

2a0, (A.8)

c1 + 4πGρ0a0 = 0, (A.9)

which yields a0 = 0, c1 = 0, a2 = 0, and results in the conditions

U0(0) = U ′′0 (0) = F ′0(0) = 0. (A.10)

Spheroidal oscillations

In the case of spheroidal oscillations, l > 0, we have three eigenfunctions represented
by the power-series expansions,

Ul = a0 + a1r + a2r
2 +O(r3), (A.11)

Vl = b0 + b1r + b2r
2 +O(r3), (A.12)

Fl = c0 + c1r + c2r
2 +O(r3). (A.13)

By substitution into the (1.41)–(1.43) and using g0(r) = 4
3
πGρ0r, we obtain the

system of equations for r → 0,

(4β −Nµ) a2 −
Nµ

r
a1 +

(
4

3
πGρ2

0 −
2β +Nµ

r2

)
a0 + N (µ+ λ) b2 +

+
2Nµ

r
b1 +N

(
3µ+ λ

r2
− 4

3
πGρ2

0

)
b0 − ρ0c1 = −ρ0ω

2a0, (A.14)

(4λ+ 6µ) a2 +
3λ+ 5µ

r
a1 +

(
2β

r2
− 4

3
πGρ2

0

)
a0 +

+ (6µ−Nβ) b2 +
2µ−Nβ

r
b1 −

βN

r2
b0 − ρ0c1 −

ρ0

r
c0 = −ρ0ω

2b0, (A.15)

4πGρ0

(
3a1 +

2

r
a0 −Nb1 −

N

r
b0

)
+

+ (6−N) c2 +
2−N
r

c1 −
N

r2
c0 = 0. (A.16)

Similarly as in the case of the toroidal oscillations, we have three different branches.
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• l = 1 and N = 2

From (A.14) we obtain

(2β + 2µ)a0 = 2(λ+ 3µ)b0

⇒ a0 = b0

−2µa1 + 4µb1 = 0

⇒ a1 = 2b1

(4λ+ 6µ)a2 −
4

3
πGρ2

0a0 − (2λ− 2µ)b2 − ρ0c1 = −ρ0ω
2a0

From (A.14)–(A.15) it follows that

2βa0 − 2βb0 = 0

⇒ a0 = b0

2(3λ+ 5µ)b1 + (2µ− 2β)b1 − ρ0c0 = 0

⇒ b1 =
ρ0

4β
c0

(4λ+ 6µ)a2 −
4

3
πGρ2

0a0 − (2λ− 2µ)b2 − ρ0c1 = −ρ0ω
2a0

From (A.16) we get

2c0 = 0

⇒ c0 = 0

4πGρ0(2a0 − 2b0) = 0

⇒ a0 = b0

4πGρ0(3a1 − 2b1) + 4c2 = 0

⇒ a1 = − c2

2πGρ0

It follows that c0 = 0⇒ b1 = 0⇒ a1 = 0⇒ c2 = 0, and

U ′1(0) = V ′1(0) = F1(0) = F ′′1 (0) = 0, U1(0) = V1(0). (A.17)

For l = 1, (A.14) and (A.15) are identical. Thus, we have only one equation con-
straining the remaining coefficients,

ρ0

(
ω2 − 4

3
πGρ0

)
a0 + (4λ+ 6µ)a2 − (2λ− 2µ)b2 − ρ0c1 = 0.

• l = 2 and N = 6

From (A.14) we obtain

(−2λ− 10µ)a0 + (6λ+ 18µ)b0 = 0

⇒ a0 = b0 = 0

−6µa1 + 12µb1 = 0

⇒ a1 = 2b1

(4λ+ 2µ)a2 + 6(µ+ λ)b2 − ρ0c1 = 0
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From (A.14)–(A.15) it follows that

a0 = b0 = 0

(3λ+ 5µ)2b1 + (2µ− 6β)b1 − ρ0c0 = 0

⇒ c0 = 0

(4λ+ 6µ)a2 − 6(µ+ λ)b2 − ρ0c1 = 0

From (A.16) we get

c0 = 0

c1 = 0

a1 = 2b1

We get a0 = b0 = c0 = c1 = 0, b1 and c2 can be arbitrary and a1 = 2b1, consequently
a2 = b2 = 0, and, finally,

U2(0) = U ′′2 (0) = V2(0) = V ′′2 (0) = F2(0) = F ′′2 (0) = 0, U ′2(0) = 2V ′2(0). (A.18)

• l > 2 and N > 6

From (A.14) we obtain

− (2β + µN)a0 + (3µ+ λ)Nb0 = 0

b0= 2
N
a0

=⇒ a0 = b0 = 0, if µ > 0

−µNa1 + 2µNb1 = 0

=⇒ a1 = 2b1, if µ > 0

(4β − µN)a2 +
4

3
πGρ2

0(a0 −Nb0)− (λ− µ)Nb2 − ρ0c1 = −ρ0ω
2a0 (A.19)

From (A.14)–(A.15) it follows that

− βNb0 + 2βa0 = 0

=⇒ a0 =
N

2
b0

(2µ− βN)b1 + (3λ+ 5µ)a1 − ρ0c0 = 0
c0=0, a1=2b1=⇒ a1 = b1 = 0

(6µ− βN)b2 + (4λ+ 6µ)a2 −
4

3
πGρ2

0a0 − ρ0c1 = −ρ0ω
2b0 (A.20)

From (A.16) we get

c0 = 0

(2−N)c1 + (2a0 −Nb0)4πGρ0 = 0

a0=N
2
b0

=⇒ c1 = 0, if µ > 0

(6−N)c2 + (3a1 −Nb1)4πGρ0 = 0
a1=b1=0

=⇒ (c2 + 4πGρ0b1) = 0, if µ > 0

We get a0 = a1 = b0 = b1 = c0 = c1 = c2 = 0 and from (A.19)–(A.20) we obtain
a2 = b2 = 0. Thus, finally,

Un(0) = U ′n(0) = U ′′n(0) = Vn(0) = V ′n(0) = V ′′n (0) = Fn(0) = F ′n(0) = F ′′n (0) = 0. (A.21)
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Y , Ỹ vectors of unknowns (1.89) and (1.94)
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ϕd gravitational potential caused by deformation
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Φ azimuth to the receiver
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Θ angular epicentral distance
χ Coriolis splitting parameter
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nω
S
l , nω

T
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δω, δωm frequency perturbation
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