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Abstrakt: V této práci prezentujeme výsledky numerických model̊u termálńıho

vývoje Země a terestrických planet. Zaměřili jsme se zejména na dva problémy:

I) studium vnitřńı struktury Venuše a Merkuru s využit́ım měřených dat —

geoidu a povrchové topografie, a II) vliv post-perovskitu na chladnut́ı Země.

V části I jsme provedli simulace tečeńı v plášti Venuše v modelech s r̊uzným

reologickým popisem. Modelová spektra geoidu a topografie jsme porovnali

se spektry měřených dat. Nejlepš́ı shodu s daty dostáváme pro model s ra-

diálńım profilem viskozity charakterizovaným 200 km silnou litosférou, bez as-

tenosféry a s nárustem viskozity ve spodńım plášti. Naopak, žádný z našich

model̊u Merkuru nevystihoval pozorovaná data. To naznačuje, že geoid a to-

pografie na Merukuru maj́ı jiný než dynamický p̊uvod. V části II jsme se zabývali

otázkou, jak př́ıtomnost ńızkoviskozńıho post-perovskitu ovlivńı konvekci a chlad-

nut́ı Země. Ukázali jsme, že př́ıtomnost post-perovskitu výrazně zvýš́ı efektivi-

tu chladnut́ı jádra. Oproti tomu zahrnut́ı hloubkově závislých materiálových

parametr̊u (teplotńı roztažnost a vodivost) chladnut́ı zpomaluje.
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Abstract: In this thesis, we present results of a numerical modelling study fo-

cused on the thermal evolution of the Earth and terrestrial planets. We focus

particularly on two problems: I) constraining the internal structure of Venus

and Mercury using their geoid and surface topography data and II) evaluating

the effects of a rheologically distinct post-perovskite on the secular cooling of

the Earth. In part I, we performed simulations in a broad group of models of

the Venusian mantle, characterised by different rheological descriptions, and we

compared spectra of their geoid and their surface topography with the observed

quantities. Our analysis suggested that the geoid and the surface topography

of Venus are consistent with a radially symmetric viscosity model with a strong

200 km thick lithosphere, without an asthenosphere and with a gradual viscosity

increase in the underlying mantle. In the case of Mercury, none of our models

was able to predict observed data, thus suggesting other than a dynamic origin of

observed geoid and topography. In part II, we investigated style of Earth’s man-

tle convection and its long-term evolution in the models that take into account a

weak post-perovskite. We conclude that the presence of the weak post-perovskite

enhances the core cooling. This effect is comparable in magnitude to the effect of

a depth-dependent material parameters that, on the other hand, tends to delay

the secular cooling.
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Introduction

The terrestrial bodies have a similar composition and structure as our Earth.

They are assumed to have formed through the same processes of accretion and

differentiation. They have a solid surface, they are composed mainly of silicate

rocks and metals and they have the same structure of a metallic (mostly iron)

core inside a silicate mantle. Those bodies can be planets (including exoplanets)

or smaller bodies like satellites of the planets (e.g. the Moon). In the Solar

System, there are four terrestrial planets: Mercury, Venus, Earth and Mars.

Although those terrestrial planets are similar in some basic characteristics,

they differ in many ways. Among other things, Earth is the only planet where the

surface plate motion is currently observed. It has been widely accepted that the

primary mechanism that can explain its internal dynamics is mantle convection

as, on the geological time scale, the mantle material flows as a viscous fluid. The

energy driving the convection originates from primordial heat and from a decay

of radioactive elements. This energy is manifested on the surface by the plate

tectonics. Other planets do not reveal their internal dynamics in such a way and

we have only indirect information about their internal processes (like remains of a

volcanic activity on their surface). Therefore, it is difficult to determine whether

these planets experience thermal convection at present. It is assumed that these

planets must transfer heat from the core to the surface in a similar fashion as the

Earth, and that they experienced mantle convection at least in the past, although

its regime might have been different.

Various approaches can be used for constraining the structure and the internal

dynamics of the Earth and other planets. An inversion of the seismic data (travel

times, waveforms, free-oscillations) provides rather detailed information about

the structure of the Earth interior. However, it provides only a snapshot of the

present state, moreover, it is not available for other planets.

That is why numerical simulations of mantle convection are traditionally used

to investigate thermal evolution and dynamical processes in the mantle. Charac-

ter of the convection is determined by the parameters of the mantle material (vis-

cosity, thermal expansivity, thermal diffusivity, etc.). With increasing pressure

and temperature, the material undergoes mineralogical changes and its properties

can change considerably. The deformation of mantle rocks under the conditions of

the Earth’s deep interior can be studied by laboratory experiments and ab initio

calculations. Both approaches give crucial constraints on mantle material prop-

erties. However, they have large uncertainties and give only a range of possible
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values. Mantle convection models can be then used to put additional constraints

on those parameters. We can use numerical models to explore the parameter

space by running multiple calculations with varying input parameters. Then we

can compare the output with the observed quantities (e.g. heat flow, character

of thermal anomalies, gravity, topography, etc.) and thus we can identify the

admissible models satisfying the observations.

High demands on computational capacities is a restraining factor in using

numerical models. Since the field of computer technology is developing rapidly it

becomes more and more feasible to perform calculations in a realistic 3D spherical

geometry. Nevertheless, it is still computationally challenging to carry out the

simulations with realistic material characteristics and complex mantle processes.

This explains the common use of simplifying geometries like cylindrical, spherical

axisymmetric or Cartesian. Within the scope of this work, a convection code

was developed, which allows to carry out the calculations both in axisymmetric

spherical shell and in fully 3D spherical geometry with some additional simplifying

assumptions to reduce the computational costs. The code was applied to problems

related to Venus, Mercury and Earth mantle evolution.

From all the terrestrial planets, Venus most closely resembles the Earth and

it is sometimes called Earth’s sister planet. It has similar size, mass, surface

composition and distance to the Sun. On the other hand, it is markedly different

in other aspects. It has a dense atmosphere consisting mainly of carbon dioxide

that through the greenhouse effect makes Venus the hottest planet in the Solar

System (∼ 735 K at the surface). This thick atmosphere also prevented any visual

observations of Venus’ surface until the development of radar observations. The

surface is shaped by a volcanic activity and no evidences for the plate tectonics

were found. In the absence of global tectonics, Venus is often assumed to have a

stiff lithosphere that reduces the heat loss from the interior, causing the interior to

be relatively hot. This concept could be consistent with the fact that Venus lacks

internal magnetic field and it may imply that Venus’ heat budget and convective

regime are markedly different than the Earth’s ones.

Of the Solar System planets, Mercury is the smallest and the closest to the

Sun. It is probably the least understood one of the inner planets. Its proximity to

the Sun makes it difficult target for both ground-based observations and space-

craft missions. Our knowledge of the planet is based mainly on the measurements

made by two spacecraft. Mariner 10 in 1970s provided first close-up images of its

surface which revealed its old heavily cratered surface. Recently, our knowledge

about the planet was dramatically improved by measurements of MESSENGER
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mission. Among others, it provided images of the surface in much higher resolu-

tion, it was equipped with magnetometer that confirmed the existence of internal

magnetic field and its spectrometers provided an estimate of the surface element

abundances. Important piece of knowledge is the fact that Mercury has a relative-

ly large core and a thin mantle (in comparison with the other terrestrial planets).

This implies that its formation or its evolution may be significantly different from

the other planets. Important question arises, whether a viable mantle convection

can still occur in such a thin mantle (400 km at maximum).

In the lack of seismic data, an important source of information about internal

structure of a planet is its gravity and its topography. The gravitational field

of a planet can be constructed through an analysis of the tracking data of an

orbiter. The surface topography can be measured from the orbit using a radar

altimeter. That data is available for both Venus and Mercury, although their

limited resolution and accuracy should be kept in mind. In the case of Venus,

gravity and topography data are available with a relatively high resolution based

mainly on Pioneer Venus (late 1970s) and Magellan (1990s) measurements. In

recent years, these data have been already analysed to reveal some information

about the Venusian mantle structure mostly in the terms of steady-state models.

Here, we perform a broad parametric study: we vary the viscosity model and

the characteristic density distribution (as controlled by Rayleigh number) and we

perform time-dependent calculations of thermal convection. Then, we analyse

the spectra of the geoid and the topography generated by these models and we

compare them to the observed quantities with the aim to constrain the mantle

viscosity stratification. In the case of Mercury, MESSENGER measurements of

gravity and topography are very recent and only few analyses were published so

far. We focus here on the main question whether the data is consistent with

mantle convection still operating in Mercurian mantle and whether the dynamic

support is a possible mechanism that may explain topographic and geoid data.

The last question addressed in this thesis concerns the long-term evolution/

cooling of the Earth mantle. After its formation, ∼ 4.5 Ga ago, the Earth was

much hotter then nowadays. Since then, it is losing heat primarily by the process

of mantle convection. Although the radioactive decay acts as a contrary process

(it heats the planet), in total, Earth losses heat and thus cools in time. This

process of secular cooling is generally very complex and it depends on the initial

state of the Earth on the onset of mantle convection and on the Earth material

parameters. The question of Earth cooling has already been addressed in numer-

ous studies and effects of various mantle parameters were investigated. A decade
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ago a new high-pressure phase of perovskite (post-perovskite) was discovered in

the lowermost mantle. It was suggested it has different properties than perovskite

(e.g. lower viscosity). Such a distinct layer just above the core-mantle boundary

(in mantle convection thermal boundary layer) should exert a significant influ-

ence on the cooling process. We study this effect in mantle convection models in

combination with the effects of other material parameters.

The structure of the thesis is as follows. Chapter 1 gives an overview of the

mathematical description of mantle convection, solution methods and benchmark

tests. The results are then divided into two parts. Part I (Chapters 2 and 3) deals

with Venus and Mercury and it uses their gravity and topography to constrain

their structure and dynamics. Part II (Chapters 4 and 5) focuses on the effects

of post-perovskite on the long-term evolution of the Earth and on the possible

constraints on its spatial distribution. Appendix introduces the formalism of

spherical harmonic functions employed to solve the problem.
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1. Theory and Method

1.1 Formulation of the problem

Thermal convection in the mantle is described by the set of equations based on

general laws of conservation. Various simplifying approximations and assump-

tions are usually applied when solving the equations. The extended Boussinesq

approximation is used here, which is widely used when simulating mantle con-

vection (e.g. Ita and King, 1994; Matyska and Yuen, 2007; King et al., 2010).

The basic equations in the extended Boussinesq approximation are as follows:

∇ · v = 0, (1.1)

∇ · τ = −∆% g, (1.2)

%0cp
∂T

∂t
= ∇ · (k∇T )− %0cpv · ∇T − %0vrαTg + σ : ∇v +H + Lt. (1.3)

Eq. (1.1) is the equation of continuity under the assumption that the materi-

al is incompressible. Eq. (1.2) is the momentum equation assuming the infi-

nite Prandtl number (neglecting inertial forces) and omitting the self-gravitation.

Right-hand side (RHS) of this equation is a source term—buoyancy force caused

by density heterogeneities. Finally, (1.3) is the energy equation. Terms on the

RHS of the energy equation represent heat conduction, heat advection, adiabatic

cooling or heating, viscous dissipation, radioactive heat sources and latent heat

associated with phase transitions, respectively. The law of angular momentum

conservation further yields that stress tensor τ is a symmetric tensor. For a

summary of used symbols see Table 1.1.

Further, we need to specify the rheological description of the material in terms

of constitutive equation:

τ = −pI + σ. (1.4)

Under the assumption of Newtonian fluid, the deviatoric part σ of the stress

tensor is considered in the form:

σ = η
(
∇v + (∇v)T

)
. (1.5)

Here viscosity η can generally be a function of radius (pressure), temperature

and mineral phase parametrised by phase function Γk (see eq. (1.12) below)—

η = η(r, T,Γk). Detailed description of viscosity as a function of p, T and Γk differ
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for various applications and will be further specified in subsequent chapters. We

assume linearised equation of state with density anomalies depending linearly

on temperature variations through thermal expansivity. Equation of state also

includes density changes due to phase transitions:

∆% = −%0α(T − Tref ) +
∑
k

∆%kΓk. (1.6)

Reference density %0, gravity acceleration g and specific heat cp are assumed

constant. Expansivity α and thermal conductivity k may generally depend on

radius.

1.1.1 Boundary and initial conditions

The set of equations (1.1)-(1.6) has to be supplemented by the boundary condi-

tions. The equations are solved on the domain restricted by two spherical surfaces,

the planet’s surface and the core-mantle boundary (CMB). On both boundaries

impermeable free-slip conditions are prescribed—zero radial velocity:

v · er = 0 (1.7)

and zero tangential stress:

τ · er − ((τ · er) · er)er = 0. (1.8)

Further, we prescribe temperatures on both boundaries. Temperatures Ttop at the

surface and Tcmb at the core-mantle boundary are constant along the boundary,

but Tcmb may vary with time in some applications.

The initial condition differs for various problems and will be specified for each

model separately.

1.1.2 Phase transitions

The effect of major mantle phase transitions in convection codes is usually includ-

ed either by using effective thermal expansivity (Christensen and Yuen, 1985) or

by using phase function Γk (van Hunen, 2001). We use both approaches in this

thesis. In 3D models we apply effective thermal expansivity, while in 2D models,

where we need phase dependent rheology, we use phase function approach.
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Table 1.1: Used symbols

v velocity
r position vector
r radius
z depth
vr radial component of velocity
τ stress tensor
σ deviatoric part of the stress tensor
g vector of the gravity acceleration
g gravity acceleration
t time
cp specific heat at constant pressure
T temperature
k thermal conductivity
κ thermal diffusivity (κ = k/%0cp), κ0 denotes reference value
α coefficient of thermal expansivity, α0 denotes reference value
H volume heat sources
Lt latent heat due to phase changes
p dynamic pressure
I identity tensor
η dynamic viscosity, η0 denotes reference value
% density
%0 reference density at reference temperature Tref
∆% density anomalies
Γk phase function of the k-th phase transition
∆%k density change due to the k-th phase transition
dkph transition width of the k-th phase transition
γk Clapeyron slope for k-th phase transition
zk0 reference transition depth at a reference temperature T k0
zkph depth of the k-th phase transition
∆ηk viscosity jump due to the k-th phase transition
er unit radial vector
Ttop temperature at the surface (rtop)
Tcmb temperature at the core-mantle boundary (rcmb)
d thickness of the mantle
Ra Rayleigh number
Raq Rayleigh number for heat sources
Rak phase Rayleigh number
Nu Nusselt number
Di dissipation number
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1.1.2.1 Phase function approach (2D models)

Phase transitions are parametrised by harmonic phase functions. Phase function

of k-th transition is assumed in following form:

Γk =
1

2

[
1 + sin

(
π
z − zkph(T )

dkph

)]
. (1.9)

Function Γk ranging between 0 and 1 indicates what portion of material un-

derwent the transition. In eq. (1.9) dkph sets width of the transition and the

temperature dependence of transition depth zkph is described by:

zkph(T ) = zk0 +
1

%0g
γk(T − T k0 ), (1.10)

where zk0 is the reference depth of the transition at the reference temperature T k0

and γk is the Clapeyron slope of the transition. The buoyancy effect of the phase

change is included in RHS of eq. (1.2) according to eq. (1.6). The latent heat Lt

associated with phase changes (RHS of eq. (1.3)) due to all phase changes is as

follows (van Hunen, 2001):

Lt =
∑
k

γk∆%kT

%0

DΓk
Dt

. (1.11)

In some models we also assume phase dependent viscosity:

η(r, T,Γk) = (1− Γk)η(r, T ) + ∆ηkΓkη(r, T ), (1.12)

where ∆ηk is the viscosity jump due to k-th phase transition.

1.1.2.2 Effective thermal expansivity approach (3D models)

Both buoyancy and latent heat effects of phase transition can alternatively be

introduced by assuming effective thermal expansivity α′ (Christensen and Yuen,

1985; Matyska and Yuen, 2007). We parametrise the transition by Gaussian

function and effective thermal expansivity then yields:

α′ = α +
∆ρkγk

ρ20gd
k
ph

√
π

exp

(
−(z − zk0 )2

(dkph)
2

)
. (1.13)

Compared to the above mentioned approach using phase function Γk, here phase

transition occurs at a constant depth zk0 .
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1.1.3 Dimensionless formulation

Governing equations (1.1)-(1.3) can be simplified by introducing new dimension-

less variables (denoted by primes):

r = dr′, t =
d2

κ0
t′, v =

κ0
d
v′, p =

η0κ0
d2

p′, T = Ttop + (Tcmb − Ttop)T ′.
(1.14)

Here κ0 and η0 are reference values of thermal diffusivity and viscosity. Basic

equations (1.1)-(1.2) together with the rheology equation (1.5) of state (1.6) then

yield:

∇′ · v′ = 0, (1.15)

∇′p′ +∇′ · η
η0

(
∇′v′+(∇′v′)T

)
=

(
α

α0

Ra(T ′−T ′ref )−
∑
k

RakΓk

)
g

g
(1.16)

and energy equation yields:

∂T ′

∂t′
= ∇ · (k∇′T ′)− v′ · ∇T ′ −Di α

α0

(
T ′ +

Ttop
Tcmb − Ttop

)
v′r+ (1.17)

+
Di

Ra

η

η0

(
∇′v′ + (∇′v′)T

)
: ∇′v′ + Raq

Ra
+ (1.18)

+
∑
k

Rak
Ra

Di
(
T ′ +

Ttop
Tcmb − Ttop

)
γk

DΓ′k
Dt′

, (1.19)

where Ra, Di, Raq and Rak are dimensionless numbers.

The presence and the vigour of convection is controlled by Rayleigh number

Ra =
%0α0g(Tcmb − Ttop)d3

κ0η0
. (1.20)

When Ra is below the critical value for the fluid, temperature perturbations are

damped and convection does not begin. When Ra exceeds the critical value,

the convection is generated by temperature variations. The higher the Rayleigh

number is, the more vigorous is the convective flow. In the models with non-

constant material parameters, the style and the vigour of flow also reflects spatial

variability of parameters and it is necessary to define what reference values of

these parameters are to be used in the definition of Rayleigh number. In cases

where viscosity, thermal diffusivity and expansivity are depth-dependent, surface

values are often used for the Rayleigh number definition. This choice could,

however, be misleading especially in case of viscosity, as surface values of viscosity

can differ by orders of magnitude from the rest of the mantle. Therefore, we use
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the volume-averaged viscosity for Ra evaluation, unless stated otherwise.

Adiabatic and viscous heating scale with the dissipation number Di. It is

defined as follows:

Di =
α0gd

cp
. (1.21)

Internal heat sources are characterised by Rayleigh number for heat sources

Raq:

Raq =
%0α0gHd

5

κ0η0k0
, (1.22)

and Rak is the phase Rayleigh number and is defined as follows:

Rak =
∆%kgd

3

κ0η0
. (1.23)

The time variability of convective mixing may be characterised by Nusselt

number Nu. The Nusselt number represents ratio of the heat flux from the

convective solution to purely conductive heat flux solution at the surface (Nutop)

or CMB (Nucmb). Here we use Nu scaled by rtop
rcmb

ratio:

Nutop =
d

Tcmb − Ttop
rtop
rcmb

∂T

∂r

∣∣∣∣
r=rtop

, Nucmb =
d

Tcmb − Ttop
rcmb
rtop

∂T

∂r

∣∣∣∣
r=rcmb

(1.24)

It reflects the time behaviour of the solution. For an Earth-like convection system

with Ra ∼ 107–108, the statistically steady-state solution is obtained, charac-

terised by oscillating Nu with time independent mean.

1.2 Strategy of solution

The problem introduced above was solved in spherical geometry. We solved the

problem both in 2D axisymmetric and fully 3D geometry. In case of 3D geometry,

additional simplifying assumptions were applied, thus the strategy of the solution

slightly differs between 2D and 3D cases. First let us discuss common features

and then the differences will be discussed in subsequent paragraphs.

Solution of the convection problem starts from the initial temperature distri-

bution Tini(r, ϑ, ϕ). Density variations ∆%ini(r, ϑ, ϕ) corresponding to this initial

distribution are calculated using eq. (1.6). Then Stokes’ problem (eqs. (1.1),

(1.2), (1.4) and (1.5)) with boundary conditions (1.7) and (1.8) is solved. Ob-

tained velocity and stress are then used to evaluate RHS terms of eq. (1.3) and

the temperature distribution in the next time step is computed. This procedure

is then repeated for this new temperature distribution.
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Our solution method is based on spectral decomposition in angular coordi-

nates and finite differences in radial direction (Č́ıžková and Čadek, 1997). All

laterally dependent quantities are approximated by finite series of spherical har-

monic functions (see Appendix A). By substituting the expansions (A.1a)–(A.1c)

into governing equations a set of ordinary differential equations is obtained. The

expansions are in principle infinite series, therefore we need to truncate the ex-

pansions at some degree (cut-off degree jmax) to obtain finite number of equations

and unknowns. This cut-off degree determines the resolution in lateral direction.

The typical value of jmax in this work is 250, which gives lateral resolution of

about 80 km at the surface of the Earth. In radial direction the domain is di-

vided into n layers and radial derivatives are evaluated using second-order finite

difference method (Fornberg, 1988). Typical number of layers is 100, which gives

radial resolution of 30 km.

1.2.0.1 Solution of Stokes’ problem

After applying the formalism of spherical harmonic functions, the equations for

Stokes’ problem take the form of ordinary differential equations (A.16)–(A.23)

which becomes a set of algebraic equations after approximating radial derivatives

by finite differences (Zhang and Christensen, 1993). This can be written in the

matrix form as

Ax = b, (1.25)

where x is a vector of unknowns (harmonic coefficients of stress (τ j0jm, τ j−2jm , τ jjm,

τ j+2
jm ) and velocity (vj−1jm , vj+1

jm )) and b contains source term—coefficients of buoy-

ancy. If viscosity in eqs. (A.19)–(A.21) varies only with the radius, the equations

are linear, they are split according to degree j and order m, and matrix A is a

band matrix, formed by square submatrices for each degree. Consequently, the

problem can be solved for each submatrix separately, using efficient algorithms

for solving the band matrices. Solution of the problem in this case is both time

and memory efficient.

For general (laterally dependent) viscosity, the couplings between viscosity

and strain-rate tensor arise, matrix A is not split according to degree and order.

Although it is sparse, it is not band and the problem must be solved for all degrees

together.
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1.2.0.2 Thermal equation and time step

To integrate the thermal equation (1.3), Runge-Kutta scheme of second order is

applied. The criterion for optimising time step ∆t is Courant–Friedrichs–Lewy

condition that ensures, that the distance travelled by material within one time-

step does not exceed the grid spacing. For advection motion, the time step (∆tadv)

restriction is given by

∆tadv ≤
(

∆r

vmaxr

)
, (1.26)

where vmaxr is the maximum radial velocity, and ∆r is the corresponding discreti-

sation step. The conduction time step ∆tcond is:

∆tcond ≤
(

∆rmin
2κ

)
, (1.27)

where ∆rmin is the minimum discretisation step. The time step is then chosen as

the minimum of the advection and the conduction ones:

∆t = C min
(
∆tadv,∆tcond

)
. (1.28)

Coefficient C varies in the range (0,0.5] and adjusts the time step with respect

to the temperature changes in i-th time step, to ensure that those changes are as

follows:

0.005 <
max(|Ti+1 − Ti|)

max(Ti)
< 0.02, (1.29)

where Ti and Ti+1 are temperature distributions in two successive time steps.

1.2.0.3 Evaluation of non-linear terms

The most time-consuming part of the computations is the evaluation of the non-

linear terms—v · ∇T , vrT , σ : ∇v, η∇v and T v · ∇Γ. To evaluate the gradient

and the divergence of variables, the analytical formulas (A.7)–(A.9) can be used.

On the other hand, evaluating products of scalar, vector, and tensor harmonic

functions using analytical formulas (A.11)–(A.15) is computationally demanding.

It turns out that it is much faster to evaluate those products on the grid (Martinec,

1989). This process consists of three steps: (1) evaluation of scalar, vector or

tensor fields in a latitude-longitude grid , (2) enumeration of the product at each

grid point, (3) harmonic analysis to compute the harmonic coefficients of the

resulting product. The principle of this process is described in Martinec (1989).

All formulas needed to perform steps (1)-(3) are stated in Appendix.
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1.2.1 2D solution

Let us begin with the description of the 2D solution of the problem. If only

spherical harmonic coefficients of order 0 (m = 0, in eqs. (A.1a)–(A.1c)) are

considered, the solution is axisymmetric (depends only on r and ϑ). This great-

ly reduces the number of unknown harmonic coefficients and time costs of the

calculation. This spherical axisymmetric case is referenced as 2D in this work.

1.2.1.1 Solution of Stokes’ problem

As mentioned above, in the case of radially-dependent viscosity (η = η(r)) the

matrix A in eq. (1.25) is a band matrix, formed by submatrices for each de-

gree and order and thus the system can be efficiently solved for each degree and

order separately. On the other hand, in the case of general laterally-dependent

viscosity (η = η(r, ϑ, ϕ)), this separation is not possible and the whole system

has to be solved together. The number of equations depends on the required

resolution. For typical values of jmax = 250 and n = 100, the number of

equations is jmax[6(n + 1) + 2] ≈ 105, thus the direct inversion of matrix A

can be difficult. Therefore, we use the iterative approach, described in Klika

(1995). We apply Jacobi iterative method combined with successive overrelax-

ation. The idea is to formally transform the problem to a problem with radial

viscosity. We decompose the viscosity into spherically symmetric part η0(r) and

residue ηR(r, ϑ, ϕ) (spatial viscosity deviation from the mean radial profile), thus

η(r, ϑ, ϕ) = η0(r)+ηR(r, ϑ, ϕ). In the matrix formalism we decompose the matrix

A into “band-diagonal” component D, and residue R:

(D + R)x = b. (1.30)

The residue is then shifted to the right-hand side:

Dx = b−Rx. (1.31)

On the left-hand side (LHS) we now have the band matrix D. All couplings

arising from residual term ηR(r, ϑ, ϕ) are shifted to the RHS and iterative method

is used. The iterative scheme holds:

Dxi+1 = b−Rxi, (1.32)

where i = 0, 1, 2, . . . is the number of iterative step.

Finally, we need to specify the first iterative value x0 which is usually set
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to 0. The iterative loop continues until the normalised difference between the

two successive steps xi+1 and xi is less than a predefined precision ∆:

‖xi+1 − xi‖L2

‖xi+1‖L2

< ∆, (1.33)

Here we can take the advantage of the fact that we solve the system (1.32)

repeatedly in each time step. At the beginning of the calculation (t = 0), we

take x0
t=0 ≡ 0 but as a starting value for subsequent time steps (x0

t>0), the

solution vector from the previous time step is taken, which markedly speeds up

the convergence. Here ∆ is the relative difference between viscosities in last two

time steps. This convergence criterion should thus reflect the differences between

the solutions of the thermal equation in successive time steps.

The successive overrelaxation method is extrapolation of Jacobi method where

we take weighted average between the previous iterate x̄i+1 and the computed

iterate xi as a solution vector for next iterative step (Young, 1950):

xi+1 = ωx̄i+1 + (1− ω)xi, (1.34)

where ω is the relaxation factor. The choice of ω > 1 speeds up the convergence

of slow-converging process while ω < 1 helps establish convergence for diverging

process. Here, parameter ω ≤ 1 was chosen by trial-and-error for each model

calculation to optimize convergence.

1.2.2 3D solution

1.2.2.1 Solution of Stokes’ problem

While in the 2D case the number of unknown harmonic coefficients for stress

and velocity was ∼ 105, in 3D we have a full set of harmonic coefficients for

degree j = 0, 1, . . . jmax and order m = 0, 1, · · · j. For jmax = 250 and n = 100

the number of unknowns is [6(n + 1) + 2](jmax + 2)(jmax + 1)/2 ≈ 2 · 107. To

assure the time feasibility of the calculations, only the case with radially stratified

viscosity is considered in 3D.

If viscosity is depth-dependent and thus no couplings have to be evaluated,

problem is linear and we can apply the formalism of Green’s (response) functions.

System (1.25) is solved repeatedly, in each time step. Matrix A does not change

(as viscosity does not depend on temperature) and response functions can only

be evaluated once—at the beginning. Thus, using Green’s functions formalism

considerably speeds up calculations.
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1.2.2.2 Thermal equation

Two simplifications were made in thermal equation, which in 3D is considered in

the following form:

%0cp
∂T

∂t
= k∇2T − %0cpv · ∇T − %0vrαTg +H. (1.35)

Thermal conductivity k is assumed a constant now, which simplifies the first term

on the right hand side. Further simplification is achieved by omitting viscous dissi-

pation. Dissipation term σ : ∇v is the most time-consuming term in the thermal

equation to evaluate. We therefore drop this term to suppress computational

costs. We however do consider adiabatic heating (3rd term of RHS of (1.35)).

Adiabatic and viscous heating terms should in principle either both be consid-

ered (extended Boussinesq approximation) or both omitted (classical Boussinesq

approximation). Dropping viscous heating term while keeping adiabatic heating

term is not consistent and violates energy conservation. However, it is useful

to have adiabatic heating term included (Č́ıžková and Matyska, 2004)—it allows

for the development of realistic depth temperature gradient, and inclusion of la-

tent heat associated with phase transitions through effective thermal expansivity

(1.13).

1.3 Benchmarks

Several benchmarks were performed to verify the numerical implementation of

the method. Two sets of benchmarks are presented here. First set (denoted

Benchmarks 1) tests the 3D solution. Benchmarks 1a and 1b reproduce the pub-

lished results of other convection codes under classical Boussinesq approximation.

Benchmark 1c tests implementation of adiabatic heating against convection code

Antigona (Běhounková et al., 2010). Second set of benchmarks (denoted Bench-

marks 2) tests the 2D solution. In 2D case, viscosity can generally be both

radially and laterally dependent. In benchmarks 2 we thus test the solution of

Stokes problem with laterally dependent viscosity. Our code is benchmarked

against the spectral finite element code of Tosi (2007).
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1.3.1 Benchmark 1

1.3.1.1 Benchmark 1a

If we take model case with small but supercritical Ra, the thermal convection in

a spherical shell has two stable solutions found by perturbation analysis (Busse,

1975; Busse and Riahi, 1982). Those two stable modes have tetrahedral (dom-

inant spherical harmonic degree j = 3 and order m = 2), and cubic (dominant

harmonic degree j = 4 and orders m = 0, 4) symmetries. These cases are com-

monly used as standard benchmark test and the results are published in sev-

eral studies. To obtain these solutions, we performed simulations of isoviscous

convection in a spherical shell under Boussinesq approximation with a constant

boundary temperature, and impermeable free-slip boundary conditions with in-

ner to outer radius ratio (ri/o) equal to 0.55. To obtain two different solutions,

we applied two different initial conditions (Yoshida and Kageyama, 2004). As an

initial temperature field, the conductive profile is taken, and a perturbation is

added: T (r, θ, ϕ) = Tcond(r) +Tpert(r, θ, ϕ), where ∇2Tcond = 0. The perturbation

term for the tetrahedral symmetry is:

Tpert(r, θ, ϕ) = 0.1(Tcmb − Ttop) sin
π(r − rcmb)

d
Y32(θ, ϕ), (1.36)

and for the cubic symmetry is:

Tpert(r, θ, ϕ) = 0.1(Tcmb − Ttop) sin
π(r − rcmb)

d

[
Y40(θ, ϕ) +

5

7
Y44(θ, ϕ)

]
, (1.37)

where Yjm are spherical harmonic functions (see Appendix A). These tests were

performed for Ra in the range from 2000 to 14000. In higher Ra runs, the

temperature solution of the corresponding lower Ra run was used as the initial

condition.

We benchmarked our results against results of seven different codes: Bercovi-

ci et al. (1989), referenced here as Be89, where equations are solved with the

spectral method; Zhong et al. (2000, 2008) using finite element code CitcomS,

referenced as Zh00 and Zh08; Richards et al. (2001) (referenced Ri01) who em-

ployed finite element code TERRA; Yoshida and Kageyama (2004) published

benchmark of their finite difference code (ref. YK04), Choblet et al. (2007) used

finite volume code ŒDIPUS, referenced as Ch07, Běhounková et al. (2010) uses

code named Antigona which contains convection part from ŒDIPUS but us-

es different advection scheme (super-bee slope limiter), referenced as Be10 and

hybrid spectral code Wr10 (Wright et al., 2010). Our code is referenced here
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Figure 1.1: Isosurface of temperature 1800 K for tetrahedral and cubic symme-
try cases, Ra = 7000.

as Be14. Three quantities were compared between benchmark models: surface

and bottom Nusselt numbers (1.24) and dimensionless root mean square velocity

vrms = d
κ

√∫
V
v · v dV (V being the volume of the mantle).

Temperature isosurfaces of the solutions for both symmetries with Rayleigh

number 7000 are shown in Fig. 1.1. Results for all models considered are sum-

marised in Tables 1.2 and 1.3. To show the deviation from the benchmark models,

we use the relative error with respect to our model Be14. It can be concluded

that errors are within the range of a few per cent at maximum, not more than

the comparison models differ among each other.

1.3.1.2 Benchmark 1b

Comparing Nusselt numbers and root mean square velocity is a common way

to benchmark convection codes. Although it only compares the mean statistical

values, it is an easy way to compare codes that use different methods on entirely

different grids. Here we want to go a bit further and compare our code against

another spectral code in more detail. Bercovici et al. (1991) present values of

harmonic coefficients of temperature variance for both cubic and tetrahedral cases

and different Rayleigh numbers. Temperature variance is defined as

〈T 2〉jm =

rtop∫
rcmb

TjmT
∗
jmr

2dr, (1.38)

where ∗ denotes complex conjugation. This value is normalised by the dominant

value for each symmetry. For the tetrahedral pattern, the dominant mode is

〈T 2〉32, while for the cubic symmetry it is mode 〈T 2〉40. Results of our code
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Table 1.2: Benchmark 1a results, tetrahedral symmetry. Numbers in parenthe-
ses give relative differences between published benchmark models and our model
denoted with respect as Be14:

Ra = 2000, ri/o = 0.55
Ref. Nutop Nucmb vrms
Be89 2.2507 (2.0%) 2.2532 (2.1%) -
Zh00 2.218 (0.5%) 2.201 (0.2%) -
YK04 2.2025 (0.2%) - 12.1246 (4.0%)
Be10 2.2109 (0.2%) 2.2149 (0.4%) 12.65 (0.2%)
Be14 2.2067 2.2061 12.6176

Ra = 7000, ri/o = 0.55
Ref. Nutop Nucmb vrms
Be89 3.4657 (1.3%) 3.5293 (0.7%) -
Zh08 3.5126 (0.4%) 3.4919 (0.3%) 32.66 (0.0%)
Ri01 3.4160 (2.8%) - -
YK04 3.4430 (1.9%) - 32.0481 (1.9%)
Ch07 3.4814 (0.8%) 3.4717 (0.9%) 32.743 (0.3%)
Wr10 3.4962 (0.4%) 3.4962 (0.2%) 32.6424 (0.0%)
Be10 3.4889 (0.6%) 3.4953 (0.2%) 32.52 (0.4%)
Be14 3.5101 3.5040 32.6472

Ra = 14000, ri/o = 0.55
Ref. Nutop Nucmb vrms
Ri01 4.2250 (2.0%) - -
YK04 4.2395 (1.7%) - 50.0048 (1.0%)
Be10 4.2818 (0.7%) 4.2856 (0.2%) 50.13 (0.7%)
Be14 4.3108 4.2962 50.4992

20



Table 1.3: Benchmark 1a results, cubic symmetry. Same as Table 1.2

Ra = 3500, ri/o = 0.55
Ref. Nutop Nucmb vrms
Be89 2.7954 (2.2%) 2.7568 (3.5%) -
YK04 2.8830 (0.9%) - 18.4801 (2.9%)
Ch07 2.8640 (0.3%) 2.8948 (1.4%) 19.546 (2.7%)
Be10 2.8254 (1.1%) 2.8237 (1.0%) 18.86 (0.8%)
Be14 2.8561 2.8529 19.0140

Ra = 7000, ri/o = 0.55
Ref. Nutop Nucmb vrms
YK04 3.5554 (1.9%) - 30.5197 (1.9%)
Zh08 3.6254 (0.0%) 3.6016 (0.5%) 31.09 (0.0%)
Wr10 3.6096 (0.4%) 3.6096 (0.2%) 31.0820 (0.0%)
Be10 3.5854 (1.1%) 3.5739 (1.2%) 30.73 (1.2%)
Be14 3.6239 3.6184 31.0854

Ra = 14000, ri/o = 0.55
Ref. Nutop Nucmb vrms
YK04 4.4231 (1.7%) - 48.1082 (0.9%)
Be10 4.4236 (1.6%) 4.4198 (1.4%) 47.85 (1.5%)
Be14 4.4962 4.4820 48.5559
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Table 1.4: Benchmark 1b results, tetrahedral symmetry. Normalised tempera-
ture variance coefficients 〈T 2

jm〉 for tetrahedral cases.

j 4 4 6 7 7 9 10 10
m 0 4 4 2 6 6 4 8

Ra = 8000
Be91 12.360 8.709 2.547 2.233 1.867 4.092 1.387 1.924
Be14 12.227 8.734 2.408 2.185 1.849 4.155 1.383 1.960

Ra = 16000
Be91 12.560 8.978 3.238 3.522 2.981 8.041 2.539 3.599
Be14 12.539 8.957 3.094 3.448 2.918 8.047 2.507 3.551

Table 1.5: Benchmark 1b results, cubic symmetry. Same as Table 1.4

j 6 8 8 10 10 12 12 12
m 4 0 8 4 8 0 4 12

Ra = 7000
Be91 4.746 4.553 2.990 1.397 1.979 4.670 1.261 3.032
Be14 4.747 4.603 3.023 1.395 1.982 4.645 1.252 3.017

Ra = 14000
Be91 5.053 6.416 4.212 3.009 4.263 10.050 2.720 6.528
Be14 5.056 6.448 4.233 3.006 4.259 10.002 2.707 6.499

compared to Bercovici et al. (1991) are shown in Tables 1.4 and 1.5. Relative

errors between the two codes are up to 1% for most degrees and do not exceed 5%

for ant degree. The ratio of the two largest cubic pattern modes (〈T 2〉44/〈T 2〉40)
was theoretically predicted to be 5/7 (Busse, 1975), and numerically confirmed

(Bercovici et al., 1989). Our results agrees with this ratio with accuracy of tenths

per mille (not shown in Table 1.5).

1.3.1.3 Benchmark 1c

In previous two benchmarks, the 3D solution under classical Boussinesq approx-

imation was verified. In the third benchmark we test the solution of thermal eq.

(1.35) where adiabatic heating is included. For this purpose a simulation with

Ra = 10000 was carried out. The inner to outer radius ratio is 0.5, dissipation

number is 0.48 and the temperature ratio Ttop/(Tcmb − Ttop) is 0.12. Our results

were compared against the results of the code Antigona (Běhounková et al., 2010)
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Table 1.6: Benchmark 1c results, cubic symmetry

Ra = 10000, ri/o = 0.5, Di = 0.48, Ttop/(Tcmb − Ttop = 0.12)
Ref. Nutop Nucmb vrms
Be10 2.342 (1.3%) 3.321 (1.2%) 29.20 (1.1%)
Be14 2.373 3.361 29.51

and are summarised in Table 1.6. Relative differences between the two codes are

1.1–1.3%.

1.3.2 Benchmark 2

1.3.2.1 Benchmark 2a

Up to now we tested models with radially symmetric viscosity, now we will focus

on the 2D models with laterally variable viscosity. In this test case we compare

Green’s response functions of horizontal velocity divergence, dynamic topography

and geoid against spectral finite element code (Tosi (2007)—it will be referred to

as To07). We computed Green’s functions up to degree 10. For this test, a simple

viscosity distribution was chosen: η00 =
√

4π, η10 = 2, otherwise ηjm = 0. The

thickness of the mantle was d = 2891 km, the inner to outer radius ri/o = 0.55,

and the gravity acceleration was 9.8 m s−2. We assumed density load at degree

2 (jload = 2). The graphs of response functions are shown in Fig. 1.2. Grey line

shows response at degree 2 (note that the scale for this curve is on the right), black

lines are for response at higher degrees, that are non-zero due the lateral variations

of viscosity. Our results agree with To07 within the line thickness. The results

at three different depths (0.25d, 0.5d and 0.75d) for both codes are presented in

Table 1.7. Values are normalised in the following way: surface/CMB topography

is -1 at the surface/CMB, geoid have the maximum value -1, and horizontal flow

divergence is normalised by its highest value. Relative errors are mostly under

1% and do not exceed 1.3%.

1.3.2.2 Benchmark 2b

While the previous benchmark tested the Stokes’ problem solution for a very

simple viscosity distribution, and simple unit density load, benchmark 2b should

test the case with more complicated density and viscosity distribution. We again

compare the velocity field against Tosi (2007). This benchmark was carried out for

a model with cut-off degree 50, 145 layers, and temperature dependent viscosity

(two orders of magnitude). Input density and viscosity distribution is in Fig. 1.3.
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Figure 1.2: Green’s functions for jload = 2. Grey line is response at degree 2.
Scale on the left is for j > 2, for j = 2 scale on the right applies.
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Table 1.7: Becnhmark 2a. Comparison of Green’s functions for jload = 2 at
three depths. Column e contains relative errors between the two codes.

j surface topography CMB topography geoid horizontal flow div.
Be14 To07 e(%) Be14 To07 e(%) Be14 To07 e(%) Be14 To07 e(%)

depth = 0.25d
1 0.0000 0.0000 0.0 0.0000 0.0000 0.0 0.0000 0.0000 0.0 -0.2447 -0.2437 0.4
2 -0.7004 -0.7044 0.6 -0.4497 -0.4456 0.9 -0.8841 -0.8800 0.5 0.9261 0.9225 0.4
3 -0.0113 -0.0112 0.5 -0.0233 -0.0232 0.8 -0.0644 -0.0639 0.7 -0.7776 -0.7751 0.3
4 0.0090 0.0090 0.5 0.0175 0.0174 0.8 0.0382 0.0380 0.7 0.6191 0.6175 0.3
5 -0.0067 -0.0067 0.5 -0.0122 -0.0121 0.8 -0.0228 -0.0227 0.6 -0.4777 -0.4768 0.2
6 0.0049 0.0049 0.4 0.0081 0.0080 0.8 0.0140 0.0139 0.6 0.3590 0.3585 0.1
7 -0.0036 -0.0036 0.4 -0.0054 -0.0053 0.8 -0.0088 -0.0088 0.5 -0.2612 -0.2611 0.1
8 0.0027 0.0027 0.3 0.0036 0.0036 0.9 0.0058 0.0058 0.5 0.1804 0.1804 0.0
9 -0.0021 -0.0021 0.2 -0.0025 -0.0025 0.9 -0.0040 -0.0040 0.4 -0.1124 -0.1125 0.1

10 0.0017 0.0017 0.2 0.0018 0.0018 0.9 0.0029 0.0029 0.3 0.0534 0.0534 0.1

depth = 0.5d
1 0.0000 0.0000 0.0 0.0000 0.0000 0.0 0.0000 0.0000 0.0 -0.2441 -0.2449 0.3
2 -0.4203 -0.4235 0.8 -0.7771 -0.7742 0.4 -0.9568 -0.9588 0.2 0.9132 0.9161 0.3
3 -0.0141 -0.0141 0.3 -0.0332 -0.0332 0.1 -0.0814 -0.0815 0.1 -0.7278 -0.7304 0.4
4 0.0109 0.0110 0.3 0.0254 0.0254 0.1 0.0469 0.0469 0.1 0.5483 0.5506 0.4
5 -0.0079 -0.0079 0.3 -0.0180 -0.0179 0.1 -0.0269 -0.0270 0.2 -0.4001 -0.4020 0.5
6 0.0055 0.0056 0.4 0.0123 0.0123 0.2 0.0158 0.0158 0.2 0.2847 0.2862 0.5
7 -0.0039 -0.0039 0.4 -0.0084 -0.0084 0.2 -0.0095 -0.0095 0.3 -0.1966 -0.1978 0.6
8 0.0028 0.0028 0.5 0.0058 0.0058 0.2 0.0059 0.0059 0.3 0.1293 0.1301 0.6
9 -0.0020 -0.0020 0.6 -0.0041 -0.0041 0.2 -0.0038 -0.0039 0.4 -0.0769 -0.0774 0.7

10 0.0015 0.0015 0.6 0.0030 0.0030 0.3 0.0026 0.0027 0.5 0.0350 0.0352 0.7

depth = 0.75d
1 0.0000 0.0000 0.0 0.0000 0.0000 0.0 0.0000 0.0000 0.0 -0.1318 -0.1331 1.0
2 -0.1825 -0.1848 1.3 -0.9699 -0.9684 0.2 -0.5758 -0.5809 0.9 0.4884 0.4934 1.0
3 -0.0088 -0.0089 1.1 -0.0244 -0.0246 0.7 -0.0517 -0.0521 0.9 -0.3742 -0.3781 1.0
4 0.0066 0.0067 1.1 0.0192 0.0194 0.7 0.0289 0.0291 0.9 0.2704 0.2733 1.1
5 -0.0046 -0.0047 1.1 -0.0141 -0.0142 0.6 -0.0160 -0.0162 0.9 -0.1893 -0.1914 1.1
6 0.0031 0.0032 1.1 0.0101 0.0102 0.6 0.0090 0.0091 1.0 0.1295 0.1310 1.2
7 -0.0021 -0.0021 1.2 -0.0073 -0.0073 0.5 -0.0052 -0.0052 1.0 -0.0862 -0.0872 1.2
8 0.0014 0.0014 1.2 0.0053 0.0053 0.5 0.0031 0.0031 1.1 0.0548 0.0555 1.2
9 -0.0010 -0.0010 1.3 -0.0040 -0.0040 0.4 -0.0019 -0.0019 1.1 -0.0317 -0.0321 1.2

10 0.0007 0.0007 1.3 0.0031 0.0031 0.4 0.0012 0.0013 1.2 0.0140 0.0142 1.3
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Figure 1.3: Left: input distribution of density anomalies (kg m−3).
Right: input distribution of viscosity (Pa s)
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Figure 1.4: Relative differences between models Be14 and To07. Left: radial
velocity vr. Right: horizontal velocity vϑ. Arrows display the direction of flow.

Differences in the resulting velocity field are shown in Fig. 1.4. Our velocities

differ from To07 by less then 2%.

1.3.3 Time efficiency

Finally, we will describe tests we carried out to evaluate time efficiency of the

code. These tests were performed on processor Intel Core Q6600 (2.4 GHz).

1.3.3.1 3D solution

First, the influence of resolution was tested. Dependence on the number of layers

(resolution in r-direction) is linear which is transparent, and does not need to

be tested. Dependence on the lateral resolution (cut-off degree) was checked for

jmax = 16, 32, 64, 128, 256 and 300. Cut-off degree 300 means lateral resolution

67 km at the surface of Earth. Radial resolution was 45 km (64 layers). Wall-

clock time needed to evaluate one integration time-step was measured for this

purpose. Ascertained dependence is power-law and time for one time-step ranges

from 0.18 s for cut-off degree 16 to 487 s for jmax = 300, see Fig. 1.5, left panel.
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Figure 1.5: Time needed to evaluate 1 integration time step in the 3D mod-
el. Left: dependence on cut-off degree (log-log scale), serial calculation. Right:
dependence on number of cores, parallel calculation.
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Second test of aims to show the efficiency of parallelisation. The most consum-

ing part of the computation is the evaluation of the non-linear terms in momen-

tum and thermal equations. As the evaluation of these terms proceeds through all

layers independently, it can be easily parallelised. OpenMP library enabling par-

allelisation with shared memory was employed for this purpose. Here we present

a test that illustrates the time reduction when the parallelisation is used. Cut-off

degree for this test was chosen to be 128 and wall-clock time for one time-step

was measured again. Result is demonstrated in the Fig. 1.5, right panel. If

calculation on one core takes 100% of time then the same computation takes 67%

of time on two cores and 47% on four cores.
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1.3.3.2 2D solution

Dependence on the cut-off degree was again inspected in the range from 16 to

300 for 64 layers. Four model runs were tested: classical and extended Boussi-

nesq approximation with either radially, or radially-laterally dependent viscosity.

Lateral dependence in this test means temperature dependent viscosity varying

by two orders of magnitude. Naturally, the model with the lowest time demands

is the model with the radial profile of viscosity in classical Boussinesq approxima-

tion. The addition of adiabatic heating and viscous dissipation into the temper-

ature equation requires roughly double computing time. Approximately equally

demanding was a model run with temperature-dependent viscosity in classical

Boussinesq approximation. The same run but in extended Boussinesq approxi-

mation is, of course, the slowest one—one time-step for jmax = 256 took 35 s.

For comparison see Fig. 1.6, left panel.

As in the previous paragraph, above mentioned time efficiency graph (Fig.

1.6, left panel) shows results for calculations without parallelisation. Similarly to

3D case, parallelisation (case jmax = 128) reduces time costs to 65% on two cores

and to 47% on four cores (Fig. 1.6, right panel).
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Part I

Geoid, Topography and Mantle

Convection in Terrestrial Planets
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When we are interested in the interior structure of the Earth, crucial infor-

mation can be obtained from the analysis of seismic waves propagation—seismic

tomography. It is a powerful tool, which provides us with information about the

shape of major discontinuities in the interior and structural anomalies that reflect

convection pattern in the mantle. However, seismic tomography is only available

for the Earth. Therefore, for other terrestrial bodies, here Venus and Mercury, we

have to employ other methods to learn something about their internal structure

and dynamics. In that respect, gravitational and topographic data provide an

important source of information.

Since the gravitational field reflects the mass distribution inside the body, it

can be used to study its interior structure. Mantle density anomalies contribute to

the gravitational field in two ways. Static spatial distribution of density anomalies

affects the gravitational field directly. At the same time, it also induces a flow

that distorts the mantle boundaries associated with density contrast (either the

surface, core-mantle boundary or any other internal interface). These boundary

undulations (dynamic topography) cause additional mass excess or deficit that

also affects the observed gravitational field. The character of the mantle flow

depends on the mantle parameters where the viscosity plays the key role. If the

density distribution is known we can constrain the mantle viscosity structure by

solving the geodynamic inverse problem: for the known density distribution and

assumed viscosity profile we calculate velocity field and surface deformation by

solving Stokes’ problem. Geoid generated by known internal density structure

and calculated surface topography is then compared with observed data. For

the Earth, the distribution of density anomalies can be inferred from seismic

tomography and geodynamic inversions were performed by numerous authors to

obtain estimates of mantle viscosity structure (e.g. Hager and Clayton, 1989;

Ricard et al., 1989; King, 1995; Čadek and Fleitout, 2003).

In the absence of seismic data, a model of the interior density structure for

Venus (Mercury) is not available. To supplement this missing information one can

assume some simplified or synthetic density distributions while analysing observed

gravity and topography data. E.g. Pauer et al. (2006) assumed that the mass

anomaly distribution does not vary with depth. Another possible approach to

obtain the density distribution is to use numerical simulations of time-dependent

mantle convection (e.g. Ratcliff et al., 1995; Solomatov and Moresi, 1996; Kiefer

and Kellogg, 1998). Here we use the latter approach. We will try to constrain

Venusian and Mercurian viscosity structure by using time-dependent models of

their mantle evolution. We will select group of viscosity models that could be
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applicable to given planet and for each model in this group we generate group of

models. Each model is then simulated until it reaches a statistically steady-state.

From these simulations we obtain density distribution and dynamic topography,

and we compute the gravitational field. Next we compare them to the observed

data and thus we constrain viscosity and internal dynamics of the planet.

Geoid and topography

Geoid is defined as an equipotential surface of gravity potential that coincides

with mean ocean surface. In the Earth and planetary sciences, the term gravity

is usually related to the attraction of a rotating planet, i.e., the gravitational

potential includes the potential due to mass distribution and the centrifugal po-

tential due to the rotation of the planet. This potential can be divided into a

hydrostatic part (corresponding to the potential of a rotating spherically sym-

metric body in the hydrostatic equilibrium) and the non-hydrostatic part. The

equipotential surface of the hydrostatic potential is called reference ellipsoid and

deviations of the geoid from this reference ellipsoid are called the geoid anomaly

(or geoid undulations or non-hydrostatic geoid). From now on we will use the

term geoid for geoid anomaly, which is a common terminology. Although other

names are sometimes used for other bodies (e.g. venoid for Venus), the term

geoid will be used here for all planets.

Geoid height N(ϑ, ϕ) is given by Bruns’ theorem (e.g. Heiskanen and Moritz,

1967):

N(ϑ, ϕ) =
V (rtop, ϑ, ϕ)

g
, (I.1)

where V is non-hydrostatic potential evaluated at the mean surface radius and g

is the gravitational acceleration which is considered constant here.

To evaluate geoid heights from formula (I.1) we need to evaluate the poten-

tial V generated by density anomalies within the body. Let us denote the density

anomaly %(r′) as the deviation from the reference density located at r′. The

potential at position r can be computed using Newton’s law (Wieczorek, 2007):

V (r) = G

∫
V ′

%(r′)

|r − r′|
dV ′, (I.2)

where the integration is carried out over the whole volume V ′ of the body un-

der the consideration and G is the gravitational constant. We express density

anomalies %(r′) as a spherical harmonic series %(r′) =
∑

jm %jm(r′)Yjm(ϑ′, ϕ′) (cf.
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A.1a). Further, using addition theorem:

1

|r − r′|
=

4π

r

∑
lk

1

2l + 1

( r
r′

)j+1

Y ∗lk(ϑ
′, ϕ′)Ylk(ϑ, ϕ) for r < r′, (I.3)

1

|r − r′|
=

4π

r

∑
lk

1

2l + 1

(
r′

r

)j
Y ∗lk(ϑ

′, ϕ′)Ylk(ϑ, ϕ) for r ≥ r′, (I.4)

and expressing potential V as a harmonic series V (r) =
∑

jm Vjm(r)Yjm(ϑ, ϕ),

the coefficients Vjm are:

Vjm(r) =
4πGr

2j + 1

∫
r′

%jm(r′)
( r
r′

)j−1
dr′ for r < r′, (I.5)

Vjm(r) =
4πGr

2j + 1

∫
r′

%jm(r′)

(
r′

r

)j+2

dr′ for r ≥ r′. (I.6)

To account for the effect of undulated boundaries with (dynamic) topography

h(ϑ, ϕ) =
∑

jm hjm(r)Yjm(ϑ, ϕ) associated with density contrast ∆%bnd we intro-

duce additional density anomaly:

%bndjm (r′) = δ(r′ − rbnd)∆%bndhbndjm , (I.7)

where rbnd is the mean radius of this boundary. The potential at the surface then

yields:

Vjm(rtop) =
4πGrtop
2j + 1

 rtop∫
0

%jm(r′)

(
r′

rtop

)j+2

dr′ +
n∑

bnd=1

∆%bnd h
bnd
jm

(
rbnd
rtop

)j+2
 .
(I.8)

In all applications presented here we will assume only two boundaries—surface

and CMB. To evaluate potential V we need to know the dynamic topographies

hbnd of the boundaries. Our model however does not allow for a surface deforma-

tion as we prescribe impermeable free-slip conditions on a sphere with a constant

radius (eq. 1.7 and 1.8). In such models tangential component of stress is zero as

well as radial component of velocity. The vertical component of stress is however

not constrained, and this radial component of stress is interpreted as boundary

topography. At the surface, the balance of the radial stress component τ toprr and

the buoyancy force due to the displaced topography htop (mass excess or deficit)

yields:

htop(ϑ, ϕ)g∆%top = −(er · τ(rtop, ϑ, ϕ) · er). (I.9)

At the CMB, the effect of pressure in the Earth core must be taken into the
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account. The balance condition gives:

−%CVC(rcmb, ϑ, ϕ) + hcmb(ϑ, ϕ)g∆%cmb = (er · τ(rcmb, ϑ, ϕ) · er), (I.10)

where VC are potential perturbations induced in the core by mantle density het-

erogeneities and by the deformations of all boundaries and %C is the core density.

This potential can be evaluated using eq. (I.5) and (I.6). Similarly, dynamic to-

pography can be evaluated for any boundary associated with a density contrast.

Geoid and topography from convection models

Geoid and topography generated by convection flow are calculated in postprocess-

ing of stress and temperature fields resulting from our convection simulations.

Temperature anomalies are converted into density anomalies using state eq. (1.6).

Dynamic topographies are evaluated from stress field using (I.9) and (I.10). Geoid

is calculated using (I.1) and (I.8) afterwards. Of course our time-dependent sim-

ulations can not produce spatial distribution of density, geoid and topography

anomalies directly comparable with the observations. Successful model should

rather fit the observations in terms of its characteristics—such as power spectra,

average number of plumes etc.
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2. Venus 1

2.1 Introduction

Of all the terrestrial planets in the Solar system, Venus most resembles Earth.

It has a similar size, density, and surface basalt composition. As a sister planet

of Earth, whose dynamic processes should be controlled by the same physical

processes, Venus has received a lot of attention of geoscientists as understand-

ing Venus could help to better understand Earth. Information about this planet

comes from ground-based observations and space missions either orbiting (Pioneer

Venus, Magellan, Venus Express) or landing (Veneras and Vega program) probes.

We also have data from flybys of Mariner, Galileo, Cassini-Huygens and MES-

SENGER. Magellan mission in years 1990–1994 highly improved our knowledge

of the planet. Its main task was to map the surface using radar measurements

and to measure the gravity field. Magellan radar succeeded in imaging 98% of

the surface at resolution of 100 m.

Although there are some similarities between Earth and Venus, there are

also differences between the two planets. Contrary to our planet, there is no

evidence of plate tectonics on Venus. On Earth, plate tectonics is manifested

by the presence of oceanic rift system and ocean trenches that are not observed

on Venus (Kaula and Phillips, 1981), thus it is accepted that it is a one-plate

planet at present. The absence of global tectonics is the reason why Venus is

thought to be in sluggish-lid regime (lithosphere moves markedly slower than the

mantle below) or stagnant-lid regime (lithosphere is stiff and immobile), although

the small viscosity contrast regime cannot be rejected for certainty, and it was

hypothesised that Venus may have been in a plate-tectonic regime at least in the

past (O’Neill et al., 2007).

In the absence of plate tectonics the question arises how Venus looses its heat.

Since pure conduction through stagnant lithosphere is too inefficient (Reese et al.,

1998), it has been hypothesized that the present heat loss of the planet is not

in balance with the internal heat generation. Several models of thermal evo-

lution have been proposed based on important observation—Venus’ surface has

relatively few, randomly distributed, impact craters, indicating that the surface

is relatively young—approximately 300–800 million years (Breuer and Moore,

1The material contained in this chapter was published in BENEŠOVÁ, N. and ČÍŽKOVÁ,
H. Geoid and topography of Venus in various thermal convection models. Stud. Geophys. Geod.
2012, 56, 2, pp. 621–639.
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2007). Possible explanations usually involve different mechanisms of catastrophic

resurfacing, either through widespread magmatism (Reese et al., 2007) or episodic

events of subduction (Turcotte et al., 1999).

2.1.1 Gravitational and topography data

Both geoid and surface topography satellite data is freely available at http://

pds-geosciences.wustl.edu/missions/magellan/shadr_topo_grav. We use

here geoid by Konopliv et al. (1999) obtained from Magellan Doppler radiometric

tracking data together with Pioneer Venus Orbiter gravity data set that is avail-

able up to degree and order 180. The surface topography model by Rappaport

et al. (1999) is based on Magellan altimetry data and is available up to degree

and order 360. The geoid and the topography are displayed in Fig. 2.1 and 2.2.

The surface topography of Venus shows a broad variety of features. Some of

them are generally assumed to be connected with the underlying mantle plumes.

Coronae are crown shaped volcanic features of typical dimension of several hun-

dred kilometres. They are thought to be related to shallow upwellings due to

their relatively small size. Topographic rises are large areas (more than 1000 km

diameter and up to 2.5 km height), with an elevated dome-shaped topography,

comprising generally several shield volcanoes. Those rises are usually interpreted

as the surface expression of the deep mantle plume, possibly originating at the

core-mantle boundary. Besides the shape of their long-wave topography, other

supporting evidence for their plume origin are large positive gravity anomalies and

the connection to large volcanoes. Ten topographic rises were identified (Stofan

and Smrekar, 2005). On the basis of their morphology, they can be divided into

three types: rift-dominated (Atla and Beta Regiones), volcano-dominated (Bell,

Dione, Imdr, Laufey and West Eistla Regiones) and corona-dominated (Themis,

East Eistla and Central Eistla Regiones). The different types are hypothesised to

be manifestations of variations in the lithospheric structure, or different strength

or duration of the underlying plume activity.

Further, Venus Express mission (orbiting planet since 2005) provided data

from VIRTIS (Visible and Infrared Thermal Imaging Spectrometer), which mea-

sures the spectral emissivity of the surface. Smrekar et al. (2010) compared the

data against the topographic map, and inspected the areas off topographic rises.

Of the assumed plumes, three were recorded in the VIRTIS measurements (Im-

dr, Themis and Dione Regiones). All of them show anomalously high emissivity

values, which is interpreted as that the lava flows in the regiones being relative-

ly recent (certainly younger than 2.5 million years, and probably younger than
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Figure 2.1: Geoid for degrees 3-40.
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Figure 2.2: Topography for degrees 3-40.
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250 000 years). This indicates that the planet is still volcanically active.

2.1.2 Mantle dynamics and structure

Numerous studies have used the gravity and topography observations to con-

strain the mechanisms that maintain the topographic features. The possible

mechanisms include isostasy (Smrekar and Phillips, 1991), elastic flexure (Bar-

nett et al., 2002) and mantle flow induced by density inhomogeneities (Simons

et al., 1994; Pauer et al., 2006; Steinberger et al., 2010). Pauer et al. (2006) have

performed the geodynamic inversion of the geoid and topography data in order

to estimate the viscosity stratification of the Venus’ mantle. Using a rather sim-

plifying assumption, namely that the mass anomaly distribution does not vary

with depth, they concluded, that the geoid and topography spectra between the

degrees 2 and 40 can be well explained by the whole mantle flow model. One of

their best fitting five-layer viscosity profiles has a relatively high-viscosity litho-

sphere (about 2 orders of magnitude difference with respect to the upper mantle)

and shows a gradual increase of viscosity with depth by a factor of 40 in the

underlying mantle.

These results are consistent with findings of Steinberger et al. (2010) who

derived similar viscosity profile consistent with mineral physics. This profile has a

∼ 100 km-thick lithosphere, a 2.5-orders-lower viscosity upper mantle, a gradual

increase of about 2 orders, and then the viscosity decrease in the lowest 500

km of the mantle by 2.5 orders of magnitude. For this profile they computed

gravity and topography kernels, and then using these kernels, they computed the

expected geoid-to-topography ratio (GTR). They found a good agreement with

the observed ratio which indicates that long-wavelength topography is largely

dynamically supported from the mantle. Further, they combined the kernels

with the empirical power spectrum of density anomalies (inferred from the seismic

tomography of Earth’s mantle) to model the gravity power spectrum. A fit of

observed and modelled gravity power spectra was good except for 2 ≤ j ≤ 4,

suggesting possibly much less density anomalies in this degree range than inferred

from the Earth tomography.

Since the early nineties, the relationship between the topography and the geoid

has been studied in the framework of the numerical models of thermal convection.

The regional scale models of a single plume were used to put the first constraints

on the mantle viscosity distribution on Venus. Kiefer and Hager (1991) tried to

fit the geoid and topography of four selected plumes in a model with a depth-

dependent viscosity, and concluded that their preferred model shows a moderate
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increase of viscosity in the lower mantle. Furthermore, they reported a trade-off

between the viscosity increase and the Rayleigh number—the model with a lower

Ra and a viscosity increase gave the same fit as the model with a higher Ra and

constant viscosity beneath the lithosphere.

Smrekar and Parmentier (1996) studied the time evolution of the geoid and

the GTR in a similar model but with temperature dependent viscosity. They

concluded that both quantities change with time, and they used the GTR to

estimate the evolutionary stage of several plumes on Venus—Beta, Atla, Western

Eistla, and Imdr Regiones were estimated to overlie active or recently active

plume, while Bell, Dione, and Themis Regiones seem to overlie a very late (or

extinct) stage of plume. The effect of temperature dependent viscosity on the

plume evolution and the predicted GTR were also studied by Solomatov and

Moresi (1996) in a Cartesian model. They needed a rather thick lithosphere

(200–400 km) to predict an average observed GTR and, for some plume regions,

their stagnant lid was as thick as 500 km. Their preferred model was characterised

by the Ra of 3 · 107. A relatively thick highly viscous lithosphere (about 200 km)

is also consistent with the findings of Reese et al. (1999).

Though efficient, the Cartesian or cylindric models of a single plume may

suffer from an incorrect geometry. It has been pointed out by King (1997) that

the predicted geoid could vary by about 50% among the different model geome-

tries (cylindrical, Cartesian and spherical axisymmetric). Therefore the spher-

ical models—axisymmetric (Kiefer and Kellogg, 1998) or even fully 3D models

(Yoshida and Kageyama, 2006) are important in interpreting the geoid and to-

pography data. Another advantage of these global models is the interaction of

the plumes with the background mantle flow and a smaller dependence on the

initial conditions. On the basis of 3D calculations with temperature dependent

viscosity, Yoshida and Kageyama (2006) required a viscosity contrast of about

5 orders of magnitude over the mantle plus a step-wise increase in viscosity at

the upper-lower mantle boundary to produce a stagnant lid convection with a

realistic number of plumes. Their geoid spectra correspond to the observed ones

for a small viscosity jump at the upper—lower mantle boundary.

Armann and Tackley (2012) run several 2D numerical convection models

(in spherical annulus geometry) over 4.5 billions years to examine the thermo-

chemical magmatic and tectonic evolution of Venus. They presented models both

in stagnant lid and episodic overturn regime. They were able to produce Venus-

like amplitudes of topography and geoid in both modes, however, the fit was far

from perfect. Viscosity in their models was strongly temperature-dependent and
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resulting in Earth-like radial profiles with upper mantle viscosity 1019–1020 Pa s.

2.1.3 Inferring mantle viscosity stratification

Here we will use long and intermediate-wavelength spectra of geoid and topog-

raphy to constrain viscosity stratification of the Venusian mantle. Viscosity is

clearly the key parameter controlling the dynamic regime of the mantle, num-

ber of plumes etc., and is crucial for understanding the relationship between the

dynamic topography and the geoid. This relationship is studied systematically

here, in a large group of models with various viscosity profiles and varying several

other flow model parameters. Using 3D spherical simulations of thermal convec-

tion in a model with depth-dependent viscosity it is tested whether the spectra

of our predicted geoid and topography correspond to the observed ones. The

results obtained for convection runs with different viscosity profiles (profiles from

Pauer et al. (2006), isoviscous mantle, constant viscosity mantle with a highly

viscous lithosphere, linearly increasing viscosity) are compared here and the effect

of Rayleigh number is tested. Besides of the fit of the spectra, the characteris-

tic flow patterns (namely the number of plumes developed) are also compared.

Further, in a 2D spherical axisymmetric model, the effect of lateral viscosity vari-

ations and internal heating is studied. In the 2D models, we further evaluate the

evolution of the plumes and compare their geoid and topography signature with

the observations at selected upwelling structures on Venus.

When the time dependent convection models are considered, an important

question arises, how to compare the model results with the observations. The

observed geoid and topography represent one snapshot of the system evolution.

As the characteristics of the models may vary with time significantly, it is not

clear which snapshot of the model run should be used for the comparison with

the observed data. Kiefer and Kellogg (1998) have shown in a 2D model that

the time-dependent convection generates substantial variations of the geoid and

topography in time. It may thus be difficult to use these quantities to constrain

the parameters like Ra and acceptable profiles of mantle viscosity. Therefore,

rather than looking on the correspondence between the observed and predicted

data at one time instant, the time averages of the L2-norm differences are shown

for the models, where these quantities change with time substantially.
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Parameter Symbol Value Units
surface radius rtop 6050 km
core radius rcmb 3110 km
gravity acceleration g 8.6 m s−2

reference density ρ0 4200 kg m−3

coefficient of thermal expansion α 2.5 · 10−5 K−1

specific heat at constant pressure cp 1200 J kg−1 K−1

thermal diffusivity κ 5 · 10−7 m2s−1

density at the surface ∆ρtop 3200 kg m−3

density contrast at CMB ∆ρcmb 4300 kg m−3

density of the core ρC 12500 kg m−3

temperature on the surface Ttop 731 K
temperature on the core-mantle boundary Tcmb 3700 K
gravitational constant G 6.67·10−11 N m2 kg −2

rate of internal heating Qv 7.5 · 10−9 W m−3

Clapeyron slope γ730 −2.8 · 106 Pa K−1

density jump at 730 km ∆ρ730 390 kg m−3

width of the phase transition d730ph 40 km

Table 2.1: Model parameters for Venus (Schubert et al., 2001; Yoshida and
Kageyama, 2006)

2.2 Model Description

We use both 2D axisymmetric and 3D spherical models as described in paragraph

1.2. Parameters of the models are summarised in Table 2.1 and for the list of the

models see Table 2.2.

Both the radial and the lateral resolutions vary among individual models

depending on their Ra, viscosity stratification, and the presence of the lateral

variations of viscosity. Typically, the cut-off degree of the spherical harmonic

expansion is 170 for models with lower Ra (≈ 106) and 250 for models with

higher Ra (≈ 107). The radial resolution varies between 5 km (boundary layers)

and 30 km (middle mantle).

An initial temperature distribution was obtained by executing a run in a

model with a relatively low Ra of 105 and a uniform viscosity. After reaching

the statistically steady state, temperature distribution was used as an initial

condition of subsequent model runs with variable viscosity and varying Ra. All

results presented here are taken after the system reached a statistically steady

state.

Four basic radial profiles were used here. Besides the viscosity profile A based

on Pauer et al. (2006), there are three simple viscosity stratifications: constant

viscosity mantle (B), model C with linearly increasing viscosity, and model D
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η′ ηum [Pa s] Ra IH
3D models
3A8×1020

Pauer et al. (2006)

8 · 1020 7 · 106

no
3A2×1021 2 · 1021 2.8 · 106

3A6×1021 6 · 1021 9 · 105

3A3×1022 3 · 1022 2 · 105

3A5×1022 5 · 1022 1 · 105

3A2×1021IH Pauer et al. (2006) 2 · 1021 2.8 · 106 yes
3B5×1021

constant
5 · 1021 2.61 · 107

no3B4×1022 4 · 1022 3.3 · 106

3B1×1023 1 · 1023 1.3 · 106

3C1×1021

linear increase

1 · 1021 3 · 106

no
3C3×1021 3 · 1021 1 · 106

3C5×1021 5 · 1021 6 · 105

3C3×1022 3 · 1022 1 · 105

3D4×1021

lithosphere

4 · 1021 6.1 · 106

no
3D5×1021 5 · 1021 4.9 · 106

3D1×1022 1 · 1022 2.5 · 106

3D5×1022 5 · 1022 5 · 105

2D models
8 models

Pauer et al. (2006)
from 1 · 1020 from 1 · 104

no
varying Ra up to 5 · 1023 up to 5.48 · 107

2A2×1021

Pauer et al. (2006) 2 · 1021 2.8 · 106 no
2A2×1021IH yes
2B4×1022

constant 4 · 1022 3.3 · 106 no
2B4×1022IH yes
2C5×1021

linear 5 · 1021 6 · 105 no
2C5×1021IH yes
2D1×1022

lithosphere 1 · 1022 2.5 · 106 no
2D1×1022IH yes
2A2×1021LV0 Pauer et al. (2006) yes
2A2×1021LV1 Pauer et al. (2006) yes
2A2×1021LV2 Pauer et al. (2006) yes
2A2×1021LV3 Pauer et al. (2006) yes

Table 2.2: List of presented models. η′ denotes radial viscosity profile (see
Fig. 2.3), ηum is the upper mantle viscosity, Ra is Rayleigh number and IH denotes
whether internal heating is or is not included in the model.
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Figure 2.3: Four profiles of the radially dependent dimensionless viscosity η
′
(r)

(cf. eq. (2.1)).

with a high a viscosity lithosphere underlain by an isoviscous mantle (Fig. 2.3).

In 2D models lateral variations of viscosity were added on top of the depth vari-

ations of profiles A–D. These lateral variations of viscosity follow exponential

approximation of the temperature dependence (Reese et al., 1999):

η(r, T ) = ηumη
′(r) exp

[
− ln c

T − Tum
Tcmb − Ttop

]
. (2.1)

Here ηum is a constant (its choice controls Ra), η′ = η′(r) is a dimensionless

reference viscosity at radius r (profiles A–D), Tum is the temperature of the upper

mantle corresponding to ηum and c is a non-dimensional parameter that controls

temperature-dependent viscosity variations. For models with constant viscosity

c = 1, for models with temperature-dependent viscosity variations of 1, 2, and 3

orders, the parameter c = 10, 100 and 1000 respectively.

In the models where the effect of internal heating Qv is included, prescribed

rate ensures that the internal heating accounts for about 50% of the total surface

heat flux. An estimate of the total amount of radiogenic heat production on Venus

made on the base of scaling the Earth’s value would make 16 TW. The value used

here produce only 6 TW of internal heating, which may not be unrealistic, as it

has been suggested (Smrekar and Sotin, 2012) that total internal heat budget

may be even lower in case of Venus—as low as 3 TW.
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Figure 2.4: Spectra of the geoid (left) and topography (right) plotted in log-log
scale. Grey line in geoid plot shows uncertainty of the geoid data.

On Venus, phase transitions are expected to occur deeper in the mantle in

comparison to Earth (Schubert et al., 1997)—exothermic phase transition at 440

km and endothermic at 740 km. In some models effect of an endothermic spinel-

perovskite phase change was included with parameters given in Table 2.1.

2.3 Data

The power spectra of observed geoid and topography plotted in a log-log scale

(Fig. 2.4) show two changes of the slope: a more prominent one at about the

degree of 40 and a slightly less pronounced but still significant one around the

degree of 10. It has been hypothesised that the change of the slope at degree 40

is related to the change of the mechanism maintaining the geoid (topography)

anomalies—the geoid of Venus is probably of a predominantly dynamic origin

up to the degree 40 (Pauer et al., 2006; Steinberger et al., 2010). We will omit

here the anomalous degree 2—both the admittance (geoid-to-topography ratio in

spectral domain) and correlation for degree 2 are significantly smaller than for

higher degrees which may suggest different origin than for signal at higher degrees

(Wieczorek, 2007). In this work, we will therefore restrict observed and model

geoid and topography analysis to the spectral range 3-40. Geoid anomalies at

this spectral range are displayed in Fig. 2.1 and topography in Fig. 2.2.

In order to quantify the agreement between the observed and the predicted

data, the quantity L2d is introduced to evaluate the difference between the spectra

in L2-norm. Instead of comparing directly the power on individual degrees, we

rather look at the slope of the geoid spectrum (Č́ıžková et al., 1996). The slope

should be characteristic for a given dynamic model, and is less affected by the

errors of individual degrees. Since the observed log-log spectra change the slope
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at degree 10, each model can be characterised by two logarithmic slopes—one for

degree range 3–9 and the other one for degrees 10–40. We are interested not only

in the slopes but also in the amplitudes. Therefore, the decaying log-log spectra is

approximated by two linear regression lines (l3−9(j) for degrees 3–9 and l10−40(j)

for degrees 10–40) and then the difference between these linear functions of the

predicted and observed geoid is calculated. The L2-norm difference L2d is then

defined as:

L2d =

√√√√√ 9∑
j=3

(l3−9obs (j)− l3−9pred(j))
2 +

40∑
j=10

(l10−40obs (j)− l10−40pred (j))2

38
, (2.2)

where l∗obs(j) and l∗pred(j) are the linear approximations of the observed and pre-

dicted spectra.The L2d is normalised by the number of degrees, thus giving an

average difference (L2d equal to 1 means that the observed and predicted spectra

have one order of magnitude difference on average). Similarly, the L2d difference

is calculated for the topography.

Besides the power spectra, we also compare the shape of the geoid and the to-

pography anomaly above the plume developed on the pole in the 2D axisymmetric

model with several topographic rises on Venus. Four upwellings were chosen—

Atla (0.9◦N, 194.6◦E), Beta (22.7◦N, 281.0◦E), West Eistla (22.0◦N, 352.4◦E) and

Themis Regio (11.0◦N, 14.1◦E), thus covering all three types of topographic rises.

In order to compare the observed rises with the axially symmetric ones in 2D

models, the observed anomalies are averaged here to get an axisymmetric shape.

The degree range is chosen according to the diameter of the regiones (j=10–40)

in order to avoid a long-wavelength shift. The difference between the observed

and predicted data is evaluated using the following quantity:

Avd =

∫
ϑ
|oobs(ϑ)− opred(ϑ)|dϑ∫

ϑ
|oobs(ϑ)|dϑ

, (2.3)

where oobs(ϑ) and opred(ϑ) are observed, and predicted geoid and ϑ is the co-

latitude measured with respect to the centre of the plume. Integration range is

ϑ = [0, 10] degrees, respecting the diameter of the four regiones considered. The

Avd equal to 0.1 yield a 10% difference between the observed and predicted data,

Avd of 1 means that the observed and predicted data differ by 100%. Similarly,

Avd is defined for topography.
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Figure 2.5: The difference L2d (eq. (2.2)) between the observed and predicted
geoid (left) and topography (right) for four viscosity profiles as a function of the
Rayleigh number.

2.4 Results

2.4.1 3D models

For each 3D model, we have a time series of at least 1 Ga in a statistically

steady-state. Before analysing these results, we should check how much do the

spectra change with time, and whether one time snapshot can be representative

of a given model. In case of 3D models, we have found that although the flow

pattern changes with time, the character of the spectra—its slope on both long

and intermediate wavelengths—is stable, and the conclusions could be drawn on

the basis of one snapshot.

First, let us discuss the influence of upper mantle viscosity ηum (cf. eq. (2.1)).

Though the geoid undulations are only dependent on the relative variations of

viscosity with depth and not on its absolute value, the latter one defines the

Rayleigh number, and thus the convection vigour and the character of the density

anomalies. Therefore, it affects the geoid considerably. Fig. 2.5 demonstrates

the sensitivity of the geoid and topography to the (volume averaged) Rayleigh

number. The upper mantle viscosity ηum varies in the range 8 · 1020–1 · 1023 Pa s

while other parameters are fixed, so Rayleigh number changes in the range 9 ·104–

2.6·107. Clearly, the spectra are sensitive to the upper mantle viscosity—Rayleigh

number. For each viscosity profile (A–D) one model with best fit in the sense of

L2d is obtained. The preferred value of Rayleigh number is usually found around

106 (ηum varies between 1021 and 1022 Pa s). In case of the viscosity profile A, the

best fit is obtained for a model 3A2×1021 with the upper mantle viscosity ηum

= 2 · 1021 Pa s (average Ra = 3 · 106). The best fitting constant viscosity model
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Figure 2.6: Power spectra of the geoid (left) and topography (right) of Venus.
Top panels show results for four different viscosity profiles—each for its ideal
Ra. Bottom panels show again the model 3A2×1021 (without internal heating
and phase transition—red line) and model 3A2×1021IH with phase transition and
internal heating (green line). Black line shows the spectrum of the observed data.

3B4×1022 has ηum = 4 · 1022 Pa s (Ra = 3 · 106). Linearly increasing viscosity

(model 3C5×1021) produces the best fit for the ηum = 5 · 1021 Pa s (average

Ra = 6 · 105). Finally profile D with a stiff lithosphere prefers the upper mantle

viscosity of ηum = 1022 Pa s with average Ra = 106 (model 3D1×1022).

Fig. 2.6 shows the geoid (top left panel) and topography (top right panel)

spectra of best fitting models for each viscosity profile (A–D). Black lines give the

spectra of the observed quantities. Let’s look at the geoid first. Both models B

and D (green and yellow lines) overestimate the geoid by about the half an order

of magnitude. Model C (blue line) is successful at long-wavelengths (degrees 3

and 4) but then deviates from the observed spectrum and underestimates the

signal. Clearly, as for the geoid, the best fitting model is A that explains the

observed data at degrees 5–40 very well. Let’s now look at topography. Although

models B and D have slightly better fit for topography than geoid, they still

overestimate observed data. Both models A and C correspond with data quite

well up to degreee 20.

Bottom panels of Fig. 2.6 show the effects of phase transition and internal
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heating. Red lines show the model 3A2×1021 without a phase transition, and

internal heating, the green line is for the model that incorporates both effects.

Clearly, including the internal heating that suppresses the plume activity im-

proves the intermediate-wavelength topography fit but decreases the geoid fit.

The differences between the purely bottom heated case and the model partly

heated from within are however not strikingly high.

Above degree 40 the predicted spectral slopes do not correspond for any mod-

el. At about that degree, the slopes of the observed geoid and topography change,

thus indicating that possibly different mechanisms are responsible for the genera-

tion of the geoid and topography on the shorter wavelengths. That is in agreement

with the hypothesis, that the long and intermediate-wavelength part of the geoid

and topography have purely dynamic source, while above the degree of 40 they

are of a predominantly lithospheric origin (Pauer et al., 2006).

One representation of the convection planform for each of the four above

mentioned models is shown in Fig. 2.7 (each of them for the same time instant

as the spectra in Fig. 2.6). The model 3D1×1022 with the constant viscosity

under the stiff lithosphere (Fig. 2.6d) has a rather warm mantle, and thus is

characterised by a vigorous plume activity, with the total number of plumes of

about 30. That is probably too much—there should be about 10 major plumes

on Venus (Smrekar and Parmentier, 1996; Smrekar et al., 2010). Models A–C are

generally in agreement with that criterion.

Four 3D models show rather different convection patterns. The differences are

clear even in one snapshot (Fig. 2.8) but become even more apparent when look-

ing on the time evolution. This is illustrated in Fig. 2.8. It shows time evolution

of temperature (2000 K isosurface) at the depth of 1900 km (this spherical layer

is expanded into plane). Model 3A2×1021 (Fig. 2.8a) is dominated by sheet-like

upwellings with plumes at their intersection which tend to move slightly but are

persistent over long time period. Model 3B4×1022 (Fig. 2.8b) shows similar

behaviour but the plumes wander through the mantle and the convection looks

more vigorous. Case 3C5×1021 (Fig. 2.8c) is different from all other models.

There are 7 solitary plumes that remain fixed for whole 2 Ga period displayed.

Last model 3D1×1022 (Fig. 2.8d), on the contrary shows vigorous convection

with high number of relatively thin plumes, which change both their position and

shape rapidly.
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(a) 3A2×1021 (b) 3B4×1022

(c) 3C5×1021 (d) 3D1×1022

Figure 2.7: One snapshot of the temperature field in four convection models: a)
viscosity profile A (3A2×1021), b) profile B (3B4×1022), c) profile C (3C5×1021)
and d) profile D (3D1×1022) for their ideal Ra. Shown isosurface corresponds to
a temperature of 2500 K.
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(a) 3A2×1021 (b) 3B4×1022

(c) 3C5×1021 (d) 3D1×1022

Figure 2.8: Time evolution of plumes for four 3D models (same as in Fig. 2.7).
Each panel shows time evolution (vertical direction) of temperature isosurface of
2000 K at a depth of 1900 km. Time span is 2 Ga.
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and topography (right) in 2D models as a function of the Rayleigh number. The
depth viscosity profile A was used.

2.4.2 2D models

First, we should note, that the 2D spectra of the geoid and the topography have

different character than previously discussed spectra of the 3D models. Spectra

of the 2D models are much more oscillatory and contrary to the 3D models,

they vary with time considerably. Therefore rather than one value it is better to

show time average with standard deviation taken over the whole calculation (in

a statistically steady-state).

Fig. 2.9 (similarly to Fig. 2.5) shows the sensitivity of the geoid and the

topography to the Rayleigh number. It depicts the L2d difference between the

observed and predicted spectra for the viscosity profile A. Similarly to the 3D

models (cf. Fig. 2.5), the best fit is obtained for the (volume averaged) Rayleigh

number of about 3 ·106. Such correspondence between the 2D and 3D results may

suggest that the plumes indeed are the features controlling the style of the flow,

and therefore, a 2D approximation could be used to describe the basic character

of the flow.

Fig. 2.10 demonstrates the effect of internal heating. We have 10 models with

different parameters (viscosity profile, Rayleigh number) without internal heating,

and 10 corresponding models where internal heating was included. Fig. 2.10 gives

scatter plot of L2d of these models. Majority of the points is accumulated under

the black identity line which means that the addition of the internal heating

generally improves the L2d fit of our models. The effect is larger when looking

at the topography—almost all models (except one) have a better topography fit

when internal heating is included, while the effect on the geoid is not so obvious.

Some models have even worse fit with internal heating. That is in accordance
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Figure 2.10: Scatter plot shows the effect of internal heating. Each cross rep-
resents two models. Those two models have the same viscosity profile (A–D)
and the same Ra and one of them is without internal heating and one with in-
ternal heating. Position in scatter plot is given by L2d without internal heating
(horizontal axis) and by L2d with internal heating (vertical axis) of the model
pair.

with the results of 3D model runs (Fig. 2.6).

Further, the effects of the laterally variable viscosity were tested. For that

purpose, we use four models 2A2×1021LV0–3 with the depth viscosity stratification

of model A, but now the viscosity varies also laterally by 0-3 orders of magnitude

with temperature (see eq. (2.1)—parameter c =1, 10, 100, 1000). Results are

summarised in Fig. 2.11. Clearly, the moderate lateral variations of viscosity do

not improve the fit to the observed geoid and topography. Actually, the models

with lateral variations have slightly worse fits to observed quantities. We thus

conclude that mild lateral viscosity variations do not play a major role, though

we admit that a more detailed analysis of Ra dependence of L2d fit should be

performed for laterally variable cases in order to draw stronger conclusions.

Up until now, only the power spectra of the geoid and the topography were

examined as the only model output to be compared with the data. Let us now

look at another possible feature, that could be used to discriminate between the

successful and unsuccessful models, and that is the actual shape of the geoid

and topography above the assumed mantle plumes on Venus. Though there are

certain doubts about the origin of some uplifted areas of the Venus’ topography,

others are generally believed to be associated with the mantle plumes. Four

upwelling areas (Atla, Beta, West Eistla, and Themis) were chosen, and their

observed topography and geoid are compared to the topography and the geoid

52



0

0.2

0.4

0.6

0.8

1

2A2x10
21

LV0 2A2x10
21

LV1 2A2x10
21

LV2 2A2x10
21

LV3

L
2
d

geoid
topography
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predicted in the polar plume area in the 2D axisymmetric model. We have a time

evolution of 2 Ga for four models (the most successful for each viscosity profile

- 2A2×1021IH, 2B4×1022IH, 2C5×1021IH and 2D1×1022IH), and evaluate the

Avd error (eq. (2.3)) in each time instant. The Avd error is mostly high, thus

indicating a poor correspondence between the predicted and observed topography

and geoid over the plume. At certain moments, however, this error drops and a

quite good fit (Avd < 0.1, that means less than 10% difference) of the observed

and predicted geoid or topography is observed. The results are shown in Fig.

2.12, which shows the histograms of the Avd. When calculating the count, Avd

of both the geoid and topography were assumed. First let us look on the left

panel showing the histograms for four viscosity stratifications A (red), B (green),

C (blue) and D (yellow). Each histogram includes the Avd of all four regiones

(Atla, Beta, Western Eistla and Themis). The successful model characterised by

a low Avd should have a count maximum at low Avd. Clearly, it is difficult to

identify a really succesful model here as the moments with good fit are quite rare

in all models. Model A may be considered the best, the count maximum at low

Avd is however not very significant.

We should note here, that the correspondence between the observed and the

predicted topography and geoid differs among the considered Regia. Our models

are more successful in explaining these quantities in Atla and Beta Regia, while for

Western Eistla and Themis the fit is considerably lower. That is demonstrated

in Fig. 2.12, on the right panel, where the histograms of Avd are shown for

individual Regia and for the best fitting model 2A1×1021IH. Fig. 2.13 illustrates
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the characteristic temperature distribution in the best fitting 2D model (2A1×
1021IH) together with the observed geoid and topography in Atla Regio and the

predicted quantities above the polar plume. It may be interesting that the worst

fit is obtained for Themis Regio which has been suggested to overlay very late

stage (possibly extinct) plume (Smrekar and Parmentier, 1996).

2.5 Concluding remarks

On the basis of combined evidence coming from the spectral fit, number of plumes

developed in the mantle and the fit to the observed shape of the geoid and to-

pography in several regiones on Venus, we can generally conclude, that profile

A characterised by a 200 km thick lithosphere followed by a gradual increase

of viscosity with depth gives the best correspondence between the observed and

predicted quantities, though none of the models fits observed data perfectly. The

best fitting model has the upper mantle viscosity of 2·1021 Pa s, thus giving an av-

erage Rayleigh number of 2.8 · 106. For all viscosity profiles, the observed spectra

and the predicted spectra coincide only up to the degree of about 40. At higher

degrees the slopes of the predicted spectra differ from the observed ones consid-

erably thus indicating other then dynamic origin of the geoid and topography

anomalies.

While in 3D cases the spectra of the geoid and the topography are stable over

time (the slopes of the log-log spectrum vary only very weakly), in 2D models

the spectra themselves are much more oscillatory and their slopes oscillate quite

wildly over time. Despite these differences, both 2D and 3D model runs prefer the

same upper mantle viscosity. That may suggest that the plumes are indeed the

main dynamic features controlling the dynamic processes in the Venus’ mantle

and the 2D axisymmetric model provides its good approximation.

In present work, it is assumed that all topography is the result of convection

motion (dynamic topography). As recently suggested by Orth and Solomatov

(2011), Venusian topography could be alternatively explained in the terms of the

thermal isostasy of the laterally variable stagnant lithosphere. However, the am-

plitude of the stagnant lid thickness variations strongly depends on the convection

model (e.g. internal vs. bottom heating, Newtonian vs. non-Newtonian viscosity).

In some models the dynamic topography and the geoid contribution due to the

flow below the lid may be comparable or larger than the lithosphere contribution

(Solomatov and Moresi, 1997, 2000). Presented results could therefore be consid-

ered as an end-member case and the ratio of the stagnant lid thickness variations
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vs. convection induced topography should be subject to a further research. In

combination with these two mechanisms the effects of the ratio of the internal

and bottom heating should be tested in more detail.

The results of the presented 3D models are inevitably negatively influenced

by the absence of the lateral variations of viscosity. However, it has been shown

by Solomatov and Moresi (1996), that under the high viscosity stagnant lid the

temperature variations are rather small and therefore also the temperature in-

duced lateral variations of viscosity may not play a key role. That is in a good

agreement with the results of 2D models, where the moderate temperature re-

lated lateral variations of viscosity do not improve the fit to the data. Further,

Tackley (1996) pointed out, that the depth viscosity variations play primary role

in influencing the dynamic regime of the mantle. Thus, though the thermally

induced lateral variations of viscosity are potentially important in the 3D mod-

els due to the lithospheric thinning (Solomatov and Moresi, 1996; Moore et al.,

1999), 3D results for a model with a high viscosity lid should be able to describe

the basic features of the Venus mantle dynamics.

56



3. Mercury

Mercury is the smallest of the terrestrial planets and nearest to the Sun, orbiting

once every 87.969 Earth days. Its orbit has high eccentricity (0.2056), the average

distance from the Sun is 57,9 million km and it has a 3:2 spin-orbit resonance (it

spins 3 times per 2 orbits around Sun).

Although the Mercury is not too far from the Earth, it is the least explored

inner planet. Observations from the Earth are complicated due to Mercury’s

proximity to the Sun, which also eliminates Mercury as a target for Hubble tele-

scope. Any spacecraft launched from the Earth must deal with a very hostile

thermal environment. Moreover, as the planet is located deep in the gravity well

of the Sun, a considerable amount of energy is needed to reach it. Up to now,

only two spacecraft reached Mercury: Mariner 10 and MESSENGER.

Mariner 10 was NASA probe which started in November 1973 and its objec-

tive was to obtain information about the atmosphere, surface, and the physical

characteristics of Mercury and Venus. During the Venus flyby, Mariner 10 took

2400 photographs of Venus and accomplished some atmospheric research. Then

it continued on its way to Mercury. From March 1974 to March 1975 it realised

three flybys, then the mission was terminated. Mariner sent more then 2700 pho-

tographs of Mercury’s surface (resolution 100 m–4 km) but it was able to map

only about 45% of the surface. Measurements provided data for estimating the

degree 2 harmonic coefficients of the gravity field although the errors were quite

large (50% for C22). The mission did not involve surface composition measure-

ments, thus it provided little guidance for compositional or thermal models of the

interior.

However, the mission made an important and surprising discovery. The space-

craft passed nearly directly above the rotational north pole of the planet and

measured a dipolar magnetic field. The variation and magnitude of this field

along the spacecraft trajectory implied a planetary field of an internal origin.

Although the field is relatively weak it appears to be too strong to be generated

by remnant magnetism (Ness et al., 1976).

MESSENGER (MErcury Surface, Space ENvironment, GEochemistry and

Ranging) is a NASA probe as well. It was launched in August 2004 and after two

Venus flybys and three Mercury flybys it was put into the orbit in March 2011

and it started research. Its orbit is near-polar, period is 12 hours and the alti-

tude is between 200–15 000 km. The main objectives of the orbital phase of the

mission are determination of Mercury’s gravity field (which can improve our un-
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derstanding of the internal structure of the planet), state of the core, the thickness

of the crust, and the tectonic and thermal history. Science equipment includes:

two cameras that are able to observe the surface with a resolution up to 18 m;

spectrometers for examining chemical composition of the crust; magnetometer to

detect spatial distribution of the magnetic field; laser altimeter (resolution 30 m)

and radio science equipment to measure probes’ speed and the distance from the

Earth, which will be used for gravitational field measurement. MESSENGER

finished its one-year orbit mission in March 2012, then the mission was extended

twice and it ended in April 2015.

In the near future, the exploration of Mercury should continue through Bepi-

Colombo mission. BepiColombo is a joint project of European Space Agency and

Japanese Aerospace Exploration Agency. It is planned to be launched in 2017

and to reach the orbit in 2024 (it should orbit for 1 year). During its way to the

orbit it should accomplish 2 Venus and 5 Mercury flybys. It is designed to have

a complementary orbit to that of MESSENGER and it will extend geochemical,

spectral, and photometric mapping of the planet (McNutt et al., 2004). It should

be better adapted for estimating the gravity field than MESSENGER—up to

degree 20 with maximum error 10% and coefficients C20 and C22 will be known

with accuracy about 0.01%.

3.1 Structure and dynamics of Mercury

3.1.1 Surface

Mercury has extremely thin atmosphere (in principle vacuum; pressure about

10−12 bar) consisting mainly of helium, oxygen, sodium and hydrogen (Domingue

et al., 2007). As the planet has basically no atmosphere to hold stable tempera-

ture and due to its proximity to the Sun, the temperature of the surface differs

considerably between the sun-exposed and reversed side—from 90 K to 725 K

(Strom, 1997). Despite the high surface temperatures, convincing evidence for a

presence of water were found by Mariner 10 and on-ground radiotelescopic mea-

surements. Strong reflection of radar signal and the polarization ratios in the

polar region are interpreted as a presence of ice. Mercury’s rotational axis is

nearly perpendicular to its ecliptic plane, thus in the cratered polar area, there

are regions never enlightened by the Sun.

Surface of the Mercury is dominated by craters and it has a lunar-like character

with the average age of more than 4 Ga. Mercury’s unique feature, lobate scarps
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(great curved cliffs) are believed to be high-angle thrust faults. Their length

is from 20 to 500 km and heights from 100 m to about 3 km (Strom, 1997).

They are probably caused by contraction of the planet during its cooling process.

Recent estimates based on images of tectonic features yield value of the global

contraction as high as 4 km (Di Achille et al., 2012). Other remarkable formation

on the Mercury’s surface is Caloris Basin, a huge impact crater with 1550 km

diameter.

Images from MESSENGER provided evidence for a global volcanic activity in

the early history of the planet. Images confirm that volcanism was a widespread

process in the post-heavy bombardment epoch. On the other hand, there are

no major shield volcanoes and little evidence for mantle hot spots was found

(Head et al., 2009). Investigation of impact basins revealed that some of them

are as young as 1 Ga (or maybe even younger) (Prockter et al., 2010). Blewett

et al. (2011) described the Mercury’s unique surface features—hollows (irregularly

shaped depressions). They hypothesised that the hollows may be created by

processes involving volatile compounds that could still be active.

Nittler et al. (2011) used the data from MESSENGER X-ray spectrometer

(XRS) to constrain the major-element composition of the surface rocks. They

found higher Mg/Si ratio and lower Al/Si and Ca/Si ratios than observed in

the terrestrial and lunar crusts. This can provide a clue to what the precursor

materials were.

Peplowski et al. (2011) reported average surface amounts of radioactive ele-

ments (potassium 1150 ± 220 ppm, thorium 220 ± 60 ppb and uranium 90 ± 20

ppb). This observation supports the formation from a volatile-enriched material.

It also indicates that the internal heat production has declined significantly since

planet’s formation, supporting other evidence of a widespread volcanism at the

end of the heavy bombardment and only a limited volcanic activity since then.

This data is based on MESSENGER gamma-ray spectrometer (GRS) and it was

measured in the northern hemisphere, north of 20◦S latitude. Peplowski et al.

(2012) specified the previous data on the basis of measurements from wider area.

Potassium abundances vary from 300 to 2400 ppm over the surface. On the other

hand, thorium abundances do not vary significantly in the terms of GRS spatial

resolution (∼ 1000 km). The relationship of K abundances with the main geolog-

ical regions is not clear due to the poor resolution of GRS but, overall, the highest

K abundances are found in the northern volcanic regions while the Caloris basin

has low K abundances. They also found anti-correlation of K amounts with the

temperature hypothesising that K may be lost from hot regions to exosphere or
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redistributed to polar regions.

3.1.2 Internal structure

Mercury’s total mass of 3.302×1023 kg and mean radius of 2440 km implies that

it has extremely high mean density 5440 kg/m3 which is a value similar to the

Earth. Considering the uncompressed density (average density materials would

have at zero pressure) it is 5300 kg/m3 for Mercury (while it is only 4400 kg/m3

for the Earth). The radius of the core is 2030±37 km (Smith et al., 2012) which

implies a core radius of about 0.8 of the radius of the planet. This value is large

compared to the values for Venus, Earth and Mars, which are about 0.5. This is

a considerable constraint on the formation of the planet which may be unusual,

compared to other terrestrial bodies.

3.1.2.1 Formation scenarios

Several formation models have been proposed to explain this unusual observation,

and they can be basically divided into two categories. In the first category of

models, it is assumed that Mercury was formed in a similar way as other bodies

in the Solar System, so that it originally consisted of chondrites with the same

iron/silicate ratio as the other terrestrial planets. In these models early planet was

bigger than today but than lost large part of its silicate shell through some process

shortly after the formation. For example, the giant impact theory assumes that

the planet collided with a planetesimal and a great deal of mantle evaporated,

leaving the planet with the core as a dominant component (Benz et al., 1988). As

a hypothetical territory of this giant collision is sometimes considered the area of

Caloris Basin. Another possible process that may have lead to the reduction of

silicate mantle is Sun-Mercury interaction in the early stages of the Solar System

evolution, when silicate crust might have evaporated during enhanced energy

flow from the Sun (Fegley and Cameron, 1987). On the other hand, the second

category of models explains the anomalous composition as a result of anomalous

formation which was different from other planets from the beginning. E.g. the

model of equilibrium condensation of nebular material is based on the fact that the

condensation temperature of iron is slightly higher than for magnesium silicates

(Lewis, 1973). Weidenschilling (1978) hypothesised that iron and silicate particles

could have been aerodynamically sorted in the early solar nebula before accretion.

Recent measurements performed by MESSENGER GRS revealed relatively

high surface ratios of K/Th and K/U (Peplowski et al., 2011, 2012) which sug-
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gests that Mercury is a volatile-rich planet. The volatile depletion of a planet is

assumed to be correlated to high temperature during the formation process. The

volatile-rich Mercury seems to be inconsistent with formation scenarios requir-

ing extreme heating in the early stages of the planet evolution like vaporization,

condensation and probably also giant impact model (as it is associated with

widespread melting and vaporization). However, McCubbin et al. (2012) pointed

out that Mercury is in many ways an end-member planet and that knowledge of

geochemistry of other terrestrial planets may not be adequate to make inferences

about Mercury and argued that it is still uncertain if the Mercury’s mantle is

volatile-rich. Moreover Stewart et al. (2013) showed that at least the giant im-

pact theory can be viable even under consideration of volatile-rich planet. Thus

the formation scenario of the planet remains uncertain.

3.1.2.2 Magnetic field

Mariner 10 discovered that Mercury has an internal magnetic field. Later MES-

SENGER data provided more accurate measurements. The magnetic field has

a dipolar character, the axis is tilted by less than 3◦ with the respect to the

rotational axis, the intensity is 300 nT (Hiremath, 2012) and the field is highly

axisymmetric (Anderson et al., 2011). The existence of an internal field together

with the observation that the mantle is decoupled from the core which is at least

partially molten (Margot et al., 2007) suggest the dynamo origin of the magnetic

field, although other possibilities of the field generation, like remnant crustal field

(Aharonson et al., 2004), cannot be completely ruled out. Model calculations im-

ply that thermally driven dynamo for Mercury is unlikely. Thus, it is accepted

that the existence of magnetic field suggests a growing inner core (Breuer et al.,

2008). Since a pure iron core could not have remained molten due to the cooling

of the planet since its origin, a small amount of sulphur is often introduced to de-

press the freezing temperature of the core alloy (Schubert et al., 1988). However,

explaining surprisingly weak (in comparison with the Earth) Mercury’s field with

an Earth-like dynamo remains challenging .

3.1.2.3 Thickness of the mantle and crust

Density of the mantle is 3650±225 kg/m3 (Smith et al., 2012) which is large

compared to other terrestrial bodies. This is surprising because, based on mea-

surements, the average surface abundance of iron is only 4% (Nittler et al., 2011).

Volcanic rock abundances suggest that Mercury’s silicate mantle iron content is

also low, thus some deeper reservoir of dense material is needed to explain high
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average density of the mantle. It has been hypothesised that there may be a solid

layer of FeS on the top of the Mercury’s core (Smith et al., 2012). The radius

of the core is 2030±37 km (Smith et al., 2012) which yields only 400 km thick

mantle. Moreover, if the FeS layer is present it would further reduce the thickness

of the silicate shell to about 300 km. On the other hand, the mantle thickness

of 400 km was reported to be the most likely value by Tosi et al. (2013) who

performed several numerical simulations with varying parameters and identified

successful models that satisfied constraints from observations (e.g. presence of

volcanic activity, high-melt fractions, net global contracion of 3–4 km at maxi-

mum).

Different methods were used to estimate the crustal thickness. Based on

the faulting depth of lobate scarps (Nimmo and Watters, 2004), gravity and

topography measurements (Smith et al., 2012; Padovan et al., 2015) and models

of mantle thermal evolution (Grott et al., 2011; Tosi et al., 2013) it was estimated

to 10–50 km.

3.1.2.4 Gravitational and topography data

MESSENGER radio science observations provided data for gravity field analysis

(Smith et al., 2012). Spherical harmonic coefficients of the geoid are available at

http://pds-geosciences.wustl.edu/missions/messenger/rs.htm up to de-

gree 50. MESSENGER laser altimetry provides data for topography. Harmonic

coefficients (up to degree 120) for the shape of Mercury are also available at http:

//pds-geosciences.wustl.edu/missions/messenger/rs.htm. Due to MES-

SENGER eccentric orbit and high northern periapsis, the northern hemisphere

have considerably higher resolution (Zuber et al., 2012). For geoid and topogra-

phy see Fig. 3.1 and 3.2 and for their spectra Fig. 3.3.

3.1.2.5 Mantle convection

It is usually assumed that mantle convection was operating at Mercury at least

in the early stages of its evolution but an unanswered question is whether it

persists until present. Several papers addressed this question. Redmond and

King (2007) showed that weak convection can persist on Mercury with initial Ra

of 6·104 (Newtonian rheology) or 8·104 (non-Newtonian rheology) without internal

heating. King (2008) attempted to explain lobate scarps as a result of convective

stresses. He found that for all models convection planform was characterised

by long sheet upwellings. The distribution of resulting surface stresses was in
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Figure 3.1: Geoid for degrees 2–50
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Figure 3.2: Topography for degrees 0–120.
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Figure 3.3: Spectra of the geoid (left) and topography (right) plotted in log-log
scale. Grey line shows error spectrum.

agreement with the observed distribution of lobate scarps, thus this pattern can

be a record of past mantle convection.

From mantle convection point of view, one of the most important MESSEN-

GER findings is that the mantle is only 400 km thick (or even thinner). This is

considerably lower than “pre-MESSENGER” estimate of 600 km. The thickness

is one third thinner than previously thought. Keeping other parameters fixed,

this results in approximately 3 times lower Rayleigh number and thus the results

of previous models should be revisited under new MESSENGER constraints.

Grott et al. (2011) performed calculations in several 1D thermo-chemical evolu-

tion models. All considered cases convect up to the present and convecting layer

was 100–350 km thick. To identify models compatible with observations they

defined the criteria of crustal thickness (larger than 10 km) and global contrac-

tion. Admissible models were characterised by viscosity greater than 1020 Pa s

(global contraction not more than 3 km) or 1021 Pa s (global contraction 2 km at

maximum).

Michel et al. (2013) performed spherical axisymmetric simulations. They var-

ied several parameters like internal heat production (10–90% of the surface value),

core radii (1800–2100 km), surface temperature boundary condition (constant or

laterally varied) or mechanic boundary condition at the CMB (free-slip vs. no-

slip). They found that for the mantle thickness larger than 400 km, mantle

convection endures through the whole planet history. For thickness 366 km, the

convection sustains until the present day only in some models (with CMB tem-

peratures around 1700–1800 K) and for lower mantle thickness the duration of

convection is limited to the early evolution of only 1–2 Ga. Higher internal heat-

ing rate (> 30%) leads to a more vigorous and longer convection persistence.

Extreme value of 90% internal heating leads to very warm mantle with pervasive
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melting. In some models, the final temperature at the base of the mantle was

below the FeS solidus, thus allowing existence of an iron sulphide layer.

Tosi et al. (2013) ran a large set of Monte-Carlo 1D parametrized simulations

complemented with 2D and 3D calculations with varying mantle parameters.

They found a subset of admissible models that obey the criteria of less than 5

km global contraction, magmatic activity extending after the late heavy bom-

bardment and production of at least 5 km thick crust. Successful models were

characterised by mantle thickness of 400–500 km, crustal thickness of 80 km at

maximum (but 20 km or less for majority of models) and crustal enrichment

factors of radiogenic elements between 2.5 and 3.5, so the bulk silicate would

be similar to other terrestrial planets: 35–62 ppb for Th, 20–36 ppb for U and

290–515 ppm for K. In most models the convective heat transfer ceased after 3–4

Ga.

3.2 Geoid and topography from mantle convec-

tion models

Taking into account above discussed evidence, currently operational mantle con-

vection on Mercury can be neither confirmed nor completely rejected. Here we

will assume that Mercurian mantle is convecting and we will test the hypothesis

that its topography and geoid undulations are dynamically supported. We per-

form a similar analysis as in the previous chapter for Venus. We will assume three

viscosity models with temperature dependent viscosity and address the question

whether we can identify some characteristics of the modelled geoid and topog-

raphy spectra (amplitude or slope) that would be consistent with observed data

and thus allow a dynamic contribution.

3.2.1 Models

We use both 2D axisymmetric and 3D spherical models as described in paragraph

1.2 with parameters given in Table 3.1. Viscosity in our models follows the

formula:

η(T ) = η0 exp

[
− ln c

T − T0
Tcmb − Ttop

]
, (3.1)

where η0 is constant and it represents the mean mantle viscosity value, T0 =
Tcmb+Ttop

2
represents mean temperature and corresponds to η0. Non-dimensional

parameter c controls temperature-dependent viscosity variations. We have two
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Table 3.1: Model parameters

Parameter Symbol Value Units
radius of Mercury a rtop 2440 km
mantle thickness b rcmb 400 km
gravity acceleration c g 3.7 m s−2

reference density b ρ0 3500 kg m−3

coefficient of thermal expansion α 2 · 10−5 K−1

specific heat at constant pressure cp 1200 J kg−1 K−1

thermal diffusivity κ 9.5 · 10−7 m2s−1

reference viscosity c η0 1021 Pa s
density at the surface d ∆ρtop 2700 kg m−3

density at CMB d ∆ρcmb 7300 kg m−3

temperature at the surface c Ttop 440 K
temperature at the CMB Tcmb 1800 K
gravitational constant G 6.67·10−11 N m2 kg −2

rate of internal heating b Qv 5.3 · 10−12 W kg−1

a Zuber et al. (2012)
b Tosi et al. (2013)
c Grott et al. (2011)
d Rivoldini and van Hoolst (2013)

models with constant viscosity c = 1: model 3DLV0 (3D model), and mod-

el 2DLV0 (2D model), and two models with temperature-dependent viscosity:

2DLV2 (variations of viscosity by 2 orders of magnitude, c = 100) and 2DLV4

(4 orders of magnitude, c = 10000). Phase transitions are not expected to be

present in the mantle due to the small pressures (8 GPa at the CMB) (van Hoolst

et al., 2007). The distribution of heat-producing elements between the crust and

the mantle is not known, hence, the surface estimates (Peplowski et al., 2011)

could be taken as the maximum estimate. Here we used internal heating rate that

represents 30% of the surface value (Michel et al., 2013). Surface temperature of

Mercury is both time and spatially variable (90–725 K (Strom, 1997)). Because

it was shown (Michel et al., 2013) that the surface temperature condition influ-

ences the thermal evolution and the mantle regime only slightly, we assume the

constant value of 440 K. The value of 1800 K for CMB temperature corresponds

to case without FeS layer. Considering reference viscosity, Rayleigh number in

our models is 2 ·104. An initial temperature distribution for models with radially

dependent viscosity was obtained from conductive solution with perturbations.

Models with temperature dependent viscosity were started from final time instant

of model without temperature dependent viscosity.
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(a) 3DLV0 (b) 2DLV0

(c) 2DLV2 (d) 2DLV4

Figure 3.4: Temperature distribution in all models. Isosurface shown in 3D
model marks 1550 K isotherm.

3.2.2 Results

The temperature distribution for all models is plotted in Fig. 3.4. 3D temperature

field is characterised by several thin plumes, their distribution is not symmetric.

In the 2D cases, the models without lateral variations and with lateral variations

of 2 orders of viscosity result in a very similar flow pattern characterised by four

thin upwellings symmetrically distributed in the mantle. In case of model 2DLV2

with lateral variations by 2 orders of magnitude, we can see that upwellings are

thinner and moreover, additional small upwellings start to develop besides the

main four plumes. Stronger lateral variations lead to markedly different con-

vection pattern. It is characterised by numerous vigorous upwellings clustered

in two regions at northern and southern hemisphere. Fig. 3.5 shows the radial

profiles of horizontally averaged temperature and viscosity for all models. Corre-

sponding 2D and 3D models without lateral variations (2DLV0 and 3DLV0) are

characterised by almost identical geotherms. Including temperature variations of

viscosity in 2D models results into warmer mantle (c.f. Fig. 3.4).

Spectra of the geoid and topography for the 3D model are plotted in Fig. 3.6

(blue line) in comparison with observed data (black line) and 2D models without
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lateral variations (red line). 3D spectra do not change considerably during the

time evolution, thus we plot the last snapshot. Let us look at the geoid first. For

lower degrees (2–4), modelled spectra are highly underestimated by several orders

of magnitude. For degrees 5–18 the slope agrees with the observed data quite

well although the amplitude is still somewhat underestimated. For degrees 20–50

both slope and amplitude agree with the observed spectra very well. On the other

hand, looking at the topography, the fit is generally poor—neither amplitude nor

slope of the spectra fits the observed data. Moreover, the modelled spectra are

lower then uncertainties of measurements.

Now, let us look at the 2D model with constant viscosity. Similarly to the pre-

viously discussed results for Venus, in the axisymmetric case, spectra are varying

with time. Therefore, the spectra averaged over the last 500 mil. yr of evolution

in statistically steady-state are used in subsequent figures. In Fig. 3.6 model

2DLV0 with constant viscosity (red line) is compared to the 3D case and the

observed data. 2D spectra (both geoid and topography) are more oscillatory but

their slope is consistent with the spectra of the 3D model except of spectral range

7–13.

The spectra for 2D models with and without lateral variations are plotted in

Fig. 3.7. Introducing mild lateral variations of viscosity (model 2DLV2) does

not improve the fit to observed data. Especially for topography, the modelled

spectra are very similar to model 2DLV0, which corresponds to the fact that also

the temperature field is very similar. The fit of geoid is even worse than for model

2DLV0. Stronger lateral variations of viscosity (2DLV4—blue line) improve fit

at some harmonic degrees, however generally we can conclude, that none of the

models considered here is able to fit the observed spectra satisfactory.

3.2.3 Discussion and conclusions

Our brief and simple analysis shows that although our model is able to predict

reasonable power spectra of geoid for degrees j = 5–50, it fails to predict both the

slope and amplitudes for the topography spectra. This implies that either other

mechanisms than a dynamic flow are important or more complex model should

be employed in such an analysis.

Recently, the first interpretations of MESSENGER topography and gravity

data in terms of chemical and mechanical structure of the Mercury’s interior

were published. Tosi (2015) reported that observed GTR ratios at intermedi-

ate wavelengths can be well explained by isostatic compensation associated with

crustal thickness. Further, he found that the degree 2 and 4 of spectra can be

69



explained by a long-wavelength deformation of the lithosphere caused by deep

thermal anomalies associated with large temperature variations experienced by

Mercury’s surface.

James et al. (2015) explored the mechanisms of the support of surface to-

pography by means of admittances and correlations of topography and gravity.

They reported that long-wavelength (degree j < 15) topography is supported

by a combination of crustal thickness variations and deep mass anomalies which

may be similar in amplitude up to degree j = 11. The character of deep mantle

anomalies is not clear but compositional stratification in the Mercury’s mantle

could play important role. Crustal compensation is expected to be important for

all degrees less then j = 30.
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Part II

Post-Perovskite Transition and

Mantle Convection
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Post-perovskite, high-pressure phase of perovskite, has been discovered about

a decade ago in the D′′ layer of the lowermost mantle. Here we discuss some

implications this phase may have to the style of mantle convection and secular

cooling of the Earth.

D′′ layer

The D′′ layer is complex and possibly the least understood part of the Earth

mantle. It was named by Keith Bullen who (in 1942) labeled the Earth layers

with letters in alphabetical order (’A’–’G’), so that ’D’ denoted the lower mantle.

In 1950, Bullen found that the lower mantle is not a homogeneous layer, but

instead it consists of two layers. The upper one was renamed to D′, and the

lowest 200 km of the mantle received the name D′′.

Today, we consider the D′′ layer to be the hot, basal thermal boundary layer

of the convecting mantle. From the seismological point of view, it is known for its

anomalous characteristics compared to the rest of the lower mantle. In some re-

gions of the D′′ layer, a discontinuity of the shear wave velocity (vs) is observed on

its top: an increase of vs reaches 2.5–3.0% (Lay, 2007). A significant polarization

anisotropy is observed within the layer—horizontally polarised seismic velocity

vhs is 0.5–1.5% higher than the vertically polarised vvs (Lay, 2007). Seismic models

also show anticorrelation between shear and bulk sound velocities.

The lower mantle material consists predominantly of (Mg,Fe,Al)SiO3 with

perovskite (PV) structure (∼ 79%), calcium silicate perovskite CaSiO3 (∼ 5%)

and (Mg,Fe)O magnesiowüstite (∼ 16%) (Wood, 2000). Considering this miner-

alogy it was difficult for a long time to explain the observed sesmic anomalies in

the lowermost mantle (Wysession et al., 1998).

Discovery of post-perovskite phase

The discovery of a high-pressure phase of perovskite was published in 2004 by

two author groups independently within two months. Murakami et al. (2004)

performed x-ray diffraction measurements of MgSiO3 using laser-heated diamond

anvil cell (LHDAC) at pressure and temperature similar to the conditions at

the lower mantle, and demonstrated that MgSiO3 perovskite transforms to a

new high-pressure form (post-perovskite, PPV). It has the CaIrO3 structure and

consists of SiO3 layers interleaved by Mg ions. This transition occurs at pressure

above 125 GPa and temperature of 2500 K. As the pressure within the D′′ layer

varies between 120–136 GPa, this phase transition should happen in this layer.
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Figure 3.8: Schema of three geotherms (hot, warm and cold mantle), grey area
depicts the PPV stability area.

Oganov and Ono (2004) used a joint approach of quantum-mechanical com-

putations and LHDAC experiments. Ab initio simulations indicated that for

MgSiO3, the CaIrO3-structured phase becomes thermodynamically more stable

than perovskite within the range of lower-mantle pressures. After this theoreti-

cal prediction they found the transition experimentally. Their predicted density

discontinuity due to the transition is 1.1% (1.4% for pure MgSiO3), shear wave

velocity (vs) discontinuity 1.4% (1.9% for MgSiO3) and a very small discontinuity

for the compressional wave velocity vp—0.3% for pure MgSiO3. Obtained values

of Clapeyron slope are 8.0–9.6 MPaK−1.

Properties of the post-perovskite

Clapeyron slope and temperature intercept

The PV-PPV phase transition occurs at pressures and temperatures close to

CMB values. However, both theoretically and experimentally determined values

of Clapeyron slope and temperature intercept (Tint, the temperature of the PPV

transition at the CMB pressure) have rather high uncertainties. Experimental

studies (Hirose, 2006; Tateno et al., 2009) and ab initio calculations (Oganov and

Ono, 2004; Tsuchiya et al., 2004) give values for Clapeyron slope in a broad inter-

val from 7.5 MPaK−1 to 13.5 MPaK−1, and the range for temperature intercept

is from 3450 K to 4220 K.

The presence and the spatial distribution of the PPV phase depends on the

lower mantle temperature distribution, as well as on the values of Tint and Clapey-

ron slope. As we do not know either of them precisely, different possible scenar-

ios can occur in the lower mantle (Hernlund et al., 2005). If the mantle is cold
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(Tcmb < Tint), geotherm crosses the PPV stability field, PPV is present and forms

a continuous layer with varying thickness depending on the local geotherm (Fig.

3.8, “cold” geotherm). If Tcmb > Tint, two scenarios are possible. If the man-

tle is hot, the geotherm does not cross the PPV stability area and no PPV is

present (Fig. 3.8, “hot” geotherm). Considering the large Clapeyron slope and

large thermal gradients expected in the thermal boundary layer, another scenario

is possible: the PPV stability area is crossed by the geotherm twice. The first

transition occurs at the depth where the pressure converts the PV to the PPV

phase. The second transition occurs deeper, where a steep increase of the tem-

perature converts PPV back to PV (Fig. 3.8, “warm” geotherm). If that is the

case then laterally varying thermal structure in the D′′ layer results in isolated

lenses of PPV. It is present in cold regions where relatively cold subducted ma-

terial is deposited while in hot plumes it may not be present at all. This third

scenario seems to be in agreement with seismic observations which revealed a

pair of inversely polarised discontinuities in the lowermost mantle (van der Hilst

et al., 2007).

Density and seismic velocity

In an effort to obtain main characteristics of the newly-found phase of the mantle

material, both high-pressure experiments and ab initio calculations were used.

Both approaches agree in the results when the density increase associated with the

transition is concerned. It was found to be only 1.0–1.5% (Irifune and Tsuchiya,

2007).

The PPV presence in the lowermost mantle could be responsible for the ob-

served lattice preferred orientation. The distribution of the lowermost mantle

seismic anisotropy as reported by Panning and Romanowicz (2006) shows the

predominance of the horizontally polarized S-wave velocity over the vertically

polarized one in the circum-Pacific belt. It supports the idea, that the PPV

should be present only in the relatively cold areas connected to paleoslabs.

A successful explanation of some seismological observations near the core-

mantle boundary provides the convincing evidence that PPV phase transition

really occurs in the deep mantle. However, some features remain unexplained.

E.g. observed seismic velocity jump is too large in comparison with the PPV

predictions; the width of velocity transition is in the range of 50 to 70 km, while

PPV is expected to coexist with PV in a wider interval. Hence, the most likely

explanation of the deep mantle structure involves both PPV phase change and

compositional variations (Hirose et al., 2006; Nakagawa and Tackley, 2012).
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Viscosity and thermal diffusivity

The viscosity of the PPV is a subject of ongoing debate and this question was

addressed by numerous studies. Several of them (based on both mineralogical

experiments and first-principles calculations) indicate PPV to be by up to several

orders (3 – 6) of magnitude weaker than PV (Yoshino and Yamazaki, 2007; Carrez

et al., 2007; Hunt et al., 2009; Ammann et al., 2010). However, the viscosity of

PPV is highly anisotropic and it has been argued (Karato, 2010) that currently

available knowledge is insufficient to constraint the viscosity, and based on the

calculations, it can actually be comparable or even higher to that of the PV. On

the other hand, the presence of low viscosity material under the cold slabs in the

lowermost mantle is consistent with the observed geoid. Long-wavelength geoid

is highly sensitive to the presence of low viscosity areas located in the subducted

slabs at the base of the mantle (Tosi et al., 2009). It has been shown by Čadek

and Fleitout (2006) that the results of geoid inversion suggest low viscosity in the

paleoslab areas in D′′ layer, where PPV should be present thanks to relatively

low temperatures.

Other PPV parameter which can be constrained by measurements is thermal

diffusivity—experiments indicate at least 1.8 times higher value than that of PV

(Hunt et al., 2012).

Electrical conductivity

Several studies were published on the topic of electrical conductivity of PPV. They

consistently report that conductivity of PPV is up to 2 orders of magnitude higher

than that of PV. E.g. Ono et al. (2006) predicted conductivity of PPV on the

basis of measurements on CaIrO3-structure Al2O3. Ohta et al. (2008) performed

LHDAC measurements on (Mg0.9Fe0.1)SiO3 and reported PPV conductivity is

greater then 100 S/m and does not vary greatly with temperature.

Implications of PPV for mantle dynamics

The discovery of PPV motivated many studies that investigated its effects on

mantle convection. Density anomalies associated with the PPV phase change

tend to enhance convective vigour and increase the number of plumes (Naka-

gawa and Tackley, 2004; Matyska and Yuen, 2005; Nakagawa and Tackley, 2006;

Tackley et al., 2007) though this effect is not particularly strong due to a small

density contrast. The presence of PPV could however enhance the effects of other

parameters, such as strongly variable thermal conductivity (Matyska and Yuen,
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2006). PPV phase transition was further found to destabilize chemically-dense

material piling above the CMB and allow penetration of cold slabs into dense

material (Nakagawa and Tackley, 2005), though this destabilising effect is less if

the PPV transition depends on the composition, and occurs at lower pressure

in chemically-dense material. However, it has been shown that the destabilizing

effect of the PV-PPV transition can be overridden by introducing strongly depth-

dependent thermal conductivity which in concert with depth-dependent thermal

expansivity, stabilises plumes in the lower mantle for billions of years despite the

presence of PV-PPV transition (Tosi et al., 2010). Finally, PPV transition was

found to increase CMB heat flux (Nakagawa and Tackley, 2004, 2008).

Moderate effects of the lowermost mantle phase transition on convection may

be further enhanced if we take into account different transport properties of PPV,

especially its viscosity. Despite the fact that the rheology of PPV is still not

sufficiently well described, there are some indications that it may be (possibly

significantly) weaker than perovskite either through dislocation creep viscosity

(Carrez et al., 2007) or due to a considerably lower diffusion creep viscosity (Am-

mann et al., 2010). Another possible mechanism that could produce PPV weaker

than perovskite at the same pressure and temperature conditions could be the

grain size reduction associated with the phase transition (Karato et al., 2001;

Solomatov and Moresi, 2002). Rheologically weak PPV may considerably affect

dynamics of cold downwelling slabs, further enhance lowermost mantle convec-

tive velocities and CMB heat flux (Č́ıžková et al., 2010; Nakagawa and Tackley,

2011; Li et al., 2014) and increase mantle temperatures and mixing efficiency

(Tosi et al. (2010); Samuel and Tosi (2012)). It also produces seismic velocity

anomalies consistent with observations (van den Berg et al., 2010) and affects

geoid above slabs through enhancement of flow in the lowermost mantle (Tosi

et al., 2009). Furthermore, Amit and Choblet (2009) concluded that if the ef-

fect of PPV on enhancing CMB heat flux is taken into account, consistency of

geodynamo models with the observations is improved.

In following chapter we will concentrate on the effects of PPV on the long-term

evolution of the mantle and its secular cooling. We will be particularly interested

in the influence of rheologically weak PPV that may significantly enhance the

cooling process.
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4. Influence of the

Post-Perovskite Phase on the

Thermal Evolution of the Earth 1

In the early Earth, the mantle was probably too hot to allow for the PPV for-

mation. During the mantle cooling, the PPV appeared at a certain moment, and

may have exerted potentially strong effects on the mantle evolution by increasing

the core-mantle heat flux and thus enhancing the core cooling. Some of these ef-

fects have already been discussed in terms of long-term models. The model of the

mantle thermal evolution and the associated core cooling and inner-core growth

of Nakagawa and Tackley (2010) included the PPV phase transition, but did

not take into account the low viscosity of PPV. They report weak dependence

of the system on the initial CMB temperature, and strong dependence on the

chemical anomalies in the deep mantle. Dense piles accumulated at the CMB fa-

cilitate obtaining correct final inner core size and maintaining geodynamo. Weak

sensitivity to initial CMB temperature was further confirmed in Nakagawa and

Tackley (2012), where magmatism was identified as dominant mechanism of heat

loss in early stages of the Earth evolution. Finally, Nakagawa and Tackley (2011)

concentrated on the effect of weak PPV and concluded that it increases lateral

extent of chemical anomalies and reduces CMB topography by weakening the

slabs at the base of the mantle. As already pointed out before, it also increases

CMB heat flux and should therefore potentially influence the rate of core cooling.

Core cooling was however not included in their model.

Here we supplement these previous studies by investigating effects of rheolog-

ically distinct PPV on the mantle cooling in the model that includes decaying

heat sources and heat extraction from the core. The core is assumed to be an

isothermal heat reservoir with temperature controlled by heat flux through CMB.

We simulate the long-term evolution of the mantle from a hot initial state, and we

evaluate combined effects of the weak PPV and several other parameters (thermal

expansivity, diffusivity, initial core temperature).

1The material contained in this chapter was submitted for publication as BENEŠOVÁ, N.
and ČÍŽKOVÁ, H. Effect of post-perovskite rheology on thermal evolution of the Earth. Physics
of the Earth and Planetary Interiors
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Element τ i [Ga] H(4.5 Ga) H i
0 [W/m3]

Uranium 4.5 9.52 · 10−9 19.2 · 10−9

Thorium 14 8.92 · 10−9 11.2 · 10−9

Potassium 1.3 0.96 · 10−9 11.6 · 10−9

Table 4.1: Values of half-lives and heating rates for internal heating model MH1.

4.1 Model description

Calculations were done in the 2D model using extended Boussinesq approxima-

tion. Table 4.2 summarises model parameters. List of all presented models is in

Table 4.3.

Thermal coupling of the mantle and the core

When models of long-term secular cooling are considered CMB, temperature

should not be kept constant, but should decrease as the mantle is cooling and

heat is extracted from the core. Efficiency of mantle convection determines the

rate of heat loss from the core. In our model the core is considered to be an

isothermal heat reservoir and its temperature TC is controlled by the total heat

flux through core-mantle boundary Qcmb (van den Berg et al., 2005b):

dTC
dt

= − Qcmb(t)

%C cpC V
′
C

. (4.1)

Here %C is the density of the core, cpC is the specific heat at a constant pressure

of the core and V
′
C is the volume of the core. The term %CcpCV

′
C is the total

heat capacity of the core. This equation is solved together with the thermal

equation (1.3) and at each time step the new core temperature is evaluated and

the boundary condition is updated so that Tcmb = TC .

Internal heating

Internal heat production from radiogenic elements is an important source of en-

ergy for the mantle dynamics. Present-day internal heat production is about

20 TW (Korenaga, 2008). This value was of course larger in the early stages

of the Earth’s history. To be significant on Earth’s age time scale, radiogenic

elements need to have long enough half-life and be sufficiently abundant with

enough decay energy. Four isotopes are usually considered 238U, 235U, 232Th and
40K.

We use two models of internal heating rate and its time decay. Model MH1
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Figure 4.1: Comparison of two assumed models of internal heating. Model MH1
is based on Lowrie (2007), model MH2 is based on van Schmus (1995).

assumes equation

H(t) =
∑

i=U,Th,K

H i
0 exp

(
−t ln 2

τ i

)
, (4.2)

where initial productions of individual radioactive elements H i
0 are calculated

from their present-day values and half-lives τ i (Lowrie, 2007), see Table 4.1. As

the proportion of 235U in natural uranium is about 0.71% while that of 238U is

99.28%, the effect of 235U is omitted here. It may be potentially more important

in the early Earth due to its relatively short half-life (0.704 Ga) but still its

contribution to the total internal heating budget was about 5 TW and rapidly

decreasing.

The second model of internal heating MH2 follows relation

H(t) =
1

M

(
(10.26t+ 51.16) exp(−t)− 2.49t+ 26.78

)
, (4.3)

where M = 3.63216 · 1024 kg is the mass of the Earth. This formula was inter-

polated from van Schmus (1995). Time evolution of the internal heating rate in

both models is illustrated in Fig. 4.1.

Viscosity

Viscosity depends on pressure and temperature following formula

η(r, T ) = ∆η η0 exp

[
ln a

rtop − r
rtop − rcmb

− ln c
T − Ttop
Tcmb − Ttop

]
. (4.4)
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An arbitrarily chosen parameter η0 controls Rayleigh number. Parameter a con-

trols depth-dependence of viscosity. We use a = 100 that results in two orders of

magnitude viscosity increase with depth while c = 150 determines temperature

variations of viscosity of the order of 150. As this temperature dependence is rel-

atively weak we apply additional viscosity contrast ∆η which is depth dependent.

In uppermost 100 km of the model ∆η = 10 to produce stronger lithosphere. In

the rest of the mantle ∆η = 1. Additional viscosity variations are introduced due

to phase transitions (see below).

Phase transitions

All models include the spinel-perovskite endothermic phase transition which oc-

curs at 660 km depth. In some models, PV to PPV exothermic transition is

prescribed with moderate Clapeyron slope of 10 MPa/K and density contrast of

1 % (Irifune and Tsuchiya, 2007). Clapeyron slope and temperature intercept

are both uncertain, as discussed above, and their values were chosen to lie with-

in the range given by experimental and theoretical studies. Transition width of

660-km phase transition is 40 km, while for the PPV transition we assume rel-

atively broad transition width of 200 km to facilitate numerical stability of the

model runs. Such a wide transition is however supported by in situ experiments

of Catalli et al. (2009) and Andrault et al. (2010). The PPV phase is either

by one or two orders of magnitude weaker than the PV at the same pressure

and temperature conditions. In these model cases viscosity according to formula

(4.4) is multiplied by a factor ∆ηPPV = 0.1 or 0.01 within the PPV stability area.

Phase transition at 660-km depth is associated with a viscosity increase by factor

∆η660 = 10.

Thermal conductivity and thermal expansivity

Thermal conductivity is either constant k0 = 5.9 W m−1 K−1 or radially-dependent.

The model of radially dependent k(r) based on pressure and temperature depen-

dent model of Hofmeister (1999) is taken from van den Berg et al. (2005b). The

surface value of radially dependent conductivity is ktop = 4.8 W m−1 K−1.

Thermal expansivity is either constant α0 or radially stratified after Matyska

et al. (2011):

α
α0

= (1 + 0.78z)−5 if 0 ≤ z ≤ 0.23,
α
α0

= 0.44(1 + 0.35(z − 0.23))−7 if 0.23 ≤ z ≤ 1.
(4.5)
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where z is non-dimensional depth (Fig. 4.2).

Initial condition

Initial distribution of temperature should represent overheated early Earth. Fol-

lowing van den Berg et al. (2005b) we obtained this initial temperature from a sta-

tistical steady-state solution of a model run with extremely high internal heating

rate (approximately ten times higher then present day value: ∼ 4.7 ·10−11 W/kg)

with thermal bottom boundary condition constant in time Tcmb = 4300 K.

Rayleigh number of this initial run was Ra = 107 and viscosity was constant.

All other parameters were the same as in regular model runs (see Table 4.2).

Initial temperature distribution together with its geotherm is plotted in Fig. 4.3.
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Parameter Symbol Value Units
radius of the Earth rtop 6371 km
core radius rcmb 3471 km
gravity acceleration g 9.87 m s−2

reference density ρ0 4000 kg m−3

specific heat at constant pressure cp 1250 J kg−1 K−1

thermal expansivity α0 2.5 · 10−5 K−1

thermal conductivity k0 5.9 W m−1 K−1

density of the core %C 12500 kg m−3

specific heat of the core cpC 500 J kg−1 K−1

temperature on the surface Ttop 273 K
Clapeyron slope (660 km) γ660 −2.5 MPa K−1

density jump (660km) ∆ρ660 342 kg m−3

temperature of 660 km phase tr. T660 1800 K
width of the 660 km transition d660ph 40 km
relative viscosity change ∆η660 10
Clapeyron slope of PPV phase transition γPPV 10 MPa K−1

density jump at PPV phase transition ∆ρPPV 40 kg m−3

temperature intercept Tint 3800 K
width of PPV phase transition dPPVph 200 km
relative viscosity change ∆ηPPV 0, 0.1, 0.01

Table 4.2: Model parameters

4.1.1 Model characteristics

In order to be able to evaluate the PPV influence on the thermal history in

different models we have chosen a set of characteristics which we will observe in

time evolution. Those characteristics are: snapshots of temperature and viscosity

fields at five stages of evolution (0.5, 1.5, 2.5, 3.5 and 4.5 Ga); average geotherm

and radial profile of viscosity at the end of the calculation (t = 4.5 Ga) both

in comparison with initial state; time evolution of: volume average temperature;

core-mantle temperature, heat fluxes on both boundaries in comparison with

internal heating, Rayleigh number and thickness of PPV layer (it is defined as

the mean thickness of the PPV layer assuming it is distributed as continuous

layer above CMB).

4.2 Results

4.2.1 Models B-106

First let us discuss the results of models with lower initial Ra = 106 with constant

expansivity and diffusivity. We will consider the model B0-106 (without PPV)
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model name PPV Rat=0 H T t=0
cmb [K] k [W/mK] α [K−1]

B0-106 no

106

MH1

4300
5.9

2 · 10−5

B1-106 1
B2-106 2
B0-1064500 no

4500
B2-1064500 2
B0-106k no

4300

k(r)
B2-106k 2
B0-106schm no

MH2

5.9
B2-106schm 2
B0-106α no

α(r)

B2-106α 2
B0-106kα no

k(r)

B2-106kα 2
B0-106kα4500 no

4500
B2-106kα4500 2
B0-107 no

107

B2-107 2

Table 4.3: List of presented models. Column ’PPV’ indicates whether there is
a PPV phase transition or not—1(2) means PPV is 1(2) order(s) of magnitude
weaker than perovskite. H indicates the type of internal heating. Rat=0 and
T t=0
cmb are values at the beginning of the calculation, column k designates thermal

conductivity (k(r) denotes radial profile defined in the text), while α(r) in column
α indicates radially dependent thermal expansivity.
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to be a reference model. Cooling of the Earth in the reference model is shown

in Fig. 4.4a, together with model B1-106 (PPV 1 order weaker, Fig. 4.4b) and

model B2-106 (PPV 2 orders weaker, Fig. 4.4c). Five time snapshots of tempera-

ture and viscosity are shown. Time evolution of the corresponding characteristic

quantities is plotted in Fig. 4.5. For the first c. 500 millions years, all three cases

evolve similarly as no PPV is present (see Fig. 4.5, layer of PPV). After that

period the cold downwellings reach the bottom of the mantle and PPV starts to

appear in the models where PPV phase transition is included. First, let us look

at model B0-106 (without PPV, Fig. 4.4a). In the second snapshot, the mantle

is hot with four plumes rising from the CMB region. Some of the cold down-

wellings are hindered at the 660-km boundary due to the combined effects of the

endothermic phase transition and a viscosity increase. Both the mantle and the

core are cooling with time, tendency to layered flow is decreasing and in the final

snapshot, most downwellings reach the lower mantle, though some of them are

temporarily deflected at the 660-km interface. (The only exception is the polar

region where the plume-slab interaction occurs. This is however an anomalous

position where vertical cylindrical features are enforced by axisymmetric geome-

try.) The evolution of the core temperature is demonstrated in Fig. 4.5 (CMB

temperature, red curve). The core cooling is ineffective in the first 0.5 Ga, mainly

due to the 660-km phase transition. In the hot early mantle, this phase transi-

tion enforces layered flow and the overheated lower mantle is blanketing the core

and reducing the core cooling. Both the surface and the CMB heat fluxes are

decreasing (Fig. 4.5, heat flux) and very short periods of a negative heat flux

may even appear when the core is temporarily warming. After this initial period,

the phase transition effects are getting weaker, as the mantle is cooling and Ra

decreasing. The CMB heat flux increases and the core temperature is decreasing

steadily.

If PPV weaker by one order of magnitude is taken into account, we observe

some changes in character of flow (Fig. 4.4b). After about 0.5 Ga of evolu-

tion, PPV appears in the coldest material above CMB. In the second snapshot

(1.5 Ga) of Fig. 4.4e, reduced viscosity of PPV is visible in both massive polar

downwellings. Weakening of the cold foot of the slab results in an enhanced lat-

eral flow above the CMB, and consequently the downwellings are thinner than

in the case without bottom weakening. Higher mobility of cold material in the

bottom boundary layer increases the CMB heat flux (Fig.4.5, heat flux at CMB,

green curve) and makes the core cooling more efficient (Fig. 4.5, CMB temper-

ature, green curve). The resulting core temperature is thus 150 K lower than in
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the model without weak PPV. As a consequence also Rayleigh number is lower

(Fig. 4.5, Rayleigh number). There is no significant difference in the surface heat

flux.

Model B2-106 with even lower PPV viscosity (Figs. 4.4b and 4.4e) further

enhances phenomena observed in model B1-106. CMB heat flux is higher and

more oscillatory (Fig. 4.5, heat flux at CMB, blue curve), especially in the time

intervals when massive cold downwellings arrive at the CMB. The resulting CMB

temperature is thus about 30 K lower than in the case of intermediate PPV

viscosity (Fig. 4.5, CMB temperature). Both models B1-106 and B2-106 end up

with similar Rayleigh number, and also the amount of PPV is similar through

the calculation. Consequently, the thickness of PPV layer is about 250 km (Fig.

4.5, layer of PPV).

Rheologically weak PPV reduces the core temperature, however, this effect

seems to be localised in the lowermost parts of the mantle and does not strongly

affect the average mantle temperature (Fig. 4.5, average temperature). This is

also demonstrated in Fig. 4.6 (left panel), where the initial mantle geotherm

(black curve) is plotted together with the average geotherms of final snapshots

for all three models B0-106, B1-106 and B2-106. Geotherms only differ in the

bottom 1000 km. Even these relatively small differences can affect radially aver-

aged viscosity (right panel), and together with PPV viscosity reduction are thus

responsible for a different core cooling efficiency and mobility of the lowermost

mantle.
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(a) B0-1064500 (b) B0-106schm (c) B0-106k

Viscosity

(d) B0-1064500 (e) B0-106schm (f) B0-106k

Figure 4.4: Models B-106: evolution of temperature and viscosity (in log-scale)
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4.2.2 Models B-106P - effect of other material parameters

Except of PPV viscosity, there are apparently some other model parameters that

affect the cooling efficiency. In this section we tested several parameters and their

influence on the thermal evolution, namely the initial core temperature, the inter-

nal heating rate, the depth-dependent thermal conductivity, the depth-dependent

thermal expansivity and the combination of these. First let us compare the effect

of different parameters without PPV. Snapshots of temperature and viscosity

evolution are in Fig. 4.7 and 4.8, the time evolution of different quantities is in

Fig. 4.9, and radial profiles of temperature and viscosity in Fig. 4.10.

Model B0-1064500 with a higher initial CMB temperature (Fig. 4.7a, 4.7d)

results in a rather similar flow pattern as the reference model B0-106 (Fig. 4.4a,

4.4d), though the average mantle temperature and the final CMB temperature

is somewhat higher than in the reference case (Fig.4.9). The overall cooling rate

is higher in the case of a higher initial CMB temperature (as a consequence of

a higher CMB heat flux and also Rayleigh number). Model B0-106schm with

a higher initial internal heating rate produces also a similar flow pattern (Fig.

4.7b, 4.7e) as the reference model, although both the average mantle and the CMB

temperatures are slightly higher (about 50 K), thanks to the fact that the cooling

rate in the initial 1 Ga is much less efficient than in the reference case. A much

more pronounced effect on the mantle temperature is however observed in the

model with depth-dependent conductivity (Fig. 4.7c, 4.7f). Here relatively low

conductivity at shallow depths suppresses the heat extraction from the mantle,

and results in significantly higher mantle temperatures (of about 400 K, Fig. 4.9,

green curve). A warmer mantle is in turn less efficient in extracting heat from

the core, and the final CMB temperature is thus by about 100 K higher than

in the reference case. Finally, thermal expansivity decreasing with depth (model

B0-106α) results in long-wavelength lower-mantle downwellings (Fig.4.8a), and

sluggish convection that is significantly less efficient in removing heat from the

core. Both the average mantle temperature and the CMB temperatures are thus

higher than in the reference model. We can also see that model B0-106α yields

the highest surface heat flux ∼ 65 TW, considerably higher than the reference

model (∼ 40 TW).

A combination of depth-dependent expansivity and conductivity is further

studied in models B0-106kα (initial CMB temperature 4300 K) and B0-106kα4500

(initial CMB temperature 4500 K). Both parameters tend to stabilize the lower-

mantle circulation, and result in a relatively slow long-wavelength flow (Fig. 4.8b

and 4.8c) and consequently, in significantly higher temperatures of both the man-
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Figure 4.5: Models B-106: time evolution of selected quantities.
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Figure 4.6: Models B-106: radial profiles of the horizontally averaged tempera-
ture (left) and viscosity (right) at t = 0 and 4.5 Ga
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tle and the core. Endothermic phase transition at 660-km depth acts as a more

effective barrier in these models and we observe partially layered convection that

is so inefficient in removing heat from the lower mantle, that the average mantle

temperature is increasing within the first 1.5 Ga of the mantle evolution. Due

to a hot mantle we observe a negative CMB heat flux. Layering of the man-

tle can be observed also in geotherms (Fig. 4.10) in all models which include

depth-dependent expansivity, where 660-km phase transition prevents the mate-

rial exchange, and consequently, a thermal boundary layer is formed around this

depth.
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Figure 4.7: Models B-106P: evolution of temperature and viscosity (in log-scale)
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Figure 4.8: Models B0-106P: evolution of temperature and viscosity (in log-
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Figure 4.9: Models B0-106P: time evolution of selected quantities.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

 3500 4000 4500 5000 5500 6000

te
m

p
er

at
u

re
 [

K
]

radius [km]

B0-10
6
4500

B0-10
6
k

B0-10
6
schm

B0-10
6
α

B0-10
6
kα

B0-10
6
kα4500

B0-10
6

initial geotherms

10
21

10
22

10
23

10
24

 3500 4000 4500 5000 5500 6000

v
is

co
si

ty
 [

P
a 

s]

radius [km]

initial viscosity

Figure 4.10: Models B0-106P: radial profiles of the horizontally averaged tem-
perature (left) and viscosity (right) at t = 0 and 4.5 Ga

94



Now let us look at the same models but with weak PPV included. Snapshots

of the temperature and the viscosity evolutions are in Fig. 4.11 and 4.12. We can

observe similar behaviour as described for models B0-106 and B2-106. After about

500 mil. years, production of PPV starts (Fig. 4.13, layer of ppv), which highly

enhances the CMB heat flux. This effect is most remarkable in model B2-106α. In

the thermal evolution (Fig. 4.12a), we observe massive downwellings, which, after

reaching the bottom boundary expand along this boundary. Those regions of cold

material are associated with thick large PPV lenses. The thickness of PPV layer

in this model is the highest—about 450 km. Geotherm (Fig. 4.14, blue line) is

characterised by an untypical decreasing trend throughout the mantle—massive

heaps of cold material above CMB lower the average temperature considerably,

and cause the above mentioned high CMB heat flux. Also the cooling rate is the

highest here—CMB temperature falls from the initial 4300 K to 3500 K (Fig.

4.13, CMB temperature) at the end of the simulation in the model including

PPV. This is about 400 K lower then in the model without PPV (see Fig. 4.15,

where all models—with and without PPV phase change—are plotted together).

On the other hand model B2-106k (Fig. 4.11c) shows only minor differences

compared to its corresponding model B0-106k without PPV (Fig. 4.7c). Depth-

dependent conductivity suppresses the cooling, and thus the production of PPV

is only moderate. A considerable amount of PPV appears after ∼ 3.5 Ga of

evolution, and reaches 120 km thick layer at the maximum (Fig. 4.13, green line).

Consequently, the decrease in CMB temperature is only about 50 K compared

to model B0-106k without PPV (Fig. 4.15), which is too mild to affect the

average temperature or the surface heat flux, and also the final geotherm and

the average viscosity are the same (Fig. 4.16). As mentioned while discussing

the reference model, the introduction of PPV phase results in a slightly different

convection pattern. Looking at the temperature evolution of models B0-1064500

(Fig. 4.7a) and B2-1064500 (Fig. 4.11a), we can see that in the model without

PPV, downwellings are thicker and after reaching CMB spread there and form

a broad cold anomaly at the base of the mantle. This cold anomaly is large

enough to considerably affect volume average mantle temperature. This effect

is not as strong in the model with PPV and although the CMB temperature is

lower (about 100 K), the average temperature is about 50 K higher, compared

to model B0-1064500 (Fig. 4.15, red lines). Similar observation can be made for

models B-106schm, only the effect is weaker.
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Figure 4.13: Models B2-106P: time evolution of selected quantities.
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Figure 4.14: Models B2-106P: radial profiles of the horizontally averaged tem-
perature (left) and viscosity (right) at t = 0 and 4.5 Ga
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Figure 4.15: Models B-106P: time evolution of selected quantities. Solid line is
for models without PPV and dashed line with PPV transition.
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Figure 4.16: Models B-106P: radial profiles of the horizontally averaged tem-
perature (left) and viscosity (right) at t = 0 and 4.5 Ga. Solid line is for models
without PPV and dashed line with PPV transition.
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4.2.3 B-107

Finally, we will evaluate effects of higher initial Ra = 107. We will use the

model with combined effects of depth-dependent parameters k(r) and α(r) and

higher initial CMB temperature. This model is thus comparable to the model B-

106kα4500—the only difference is in Ra. The temperature and viscosity evolution

is displayed in Fig. 4.17, time evolution selected quantities are displayed in Fig.

4.18 (plotted together with the corresponding Ra = 106 model) and the resulting

profile of temperature and viscosity is in Fig. 4.19.

Weak PPV in combination with depth-dependent properties have much stronger

effect in this more vigorous convection model with depth-dependent parameters.

Endothermic phase transition at 660 km associated with viscosity increase now

enforces partially layered convection. Strong features penetrate the boundary and

therefore, we observe downwellings reaching CMB (Fig. 4.17a, 4.17b). However,

the boundary is blocking small-scale flow which results in substantial temperature

contrast between the upper and lower mantle (see also geotherm in Fig. 4.19).

PPV first appears in the model after 1 Ga evolution from the initial state in spo-

radic isolated patches (Fig. 4.18 layer of PPV)—earlier than in a corresponding

model with lower Ra. These patches are caused by an avalanche of cold upper

mantle material penetrating 660 km boundary and arriving at the CMB. Pres-

ence of weak PPV is reflected in increased CMB heat flux (Fig. 4.18 heat flux at

CMB) and somewhat enhanced core cooling (Fig. 4.18 CMB temperature). PPV

then temporarily disappears and until 2.5 Ga plays hardly any role. At 2.5 Ga

next massive avalanche of cold material cools lowermost mantle and since that

moment PPV lenses are present and core cooling is much more efficient. Final

core temperature is thus by more than 400 K lower than in the case without weak

PPV and average mantle temperature is by about 70 K higher (Fig. 4.18 average

temperature). Vigorous convection of higher Ra models is much more efficient in

removing heat from the lower mantle and therefore, we do not observe temporary

increase of mantle temperature.

Enhanced mobility of the lowermost mantle is further demonstrated in the

shift of the spectra of temperature anomalies (Fig. 4.20). While model without

PPV is characterised by longer wavelength anomalies in the lower half of the

mantle, including weak PPV shifts the spectral content towards higher degrees

thus indicating smaller-scale features.

100



Temperature

(a) B0-107 (b) B2-107

Viscosity

(c) B0-107 (d) B2-107

Figure 4.17: Models B-107: evolution of temperature and viscosity (in log-scale)
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Figure 4.18: Models B-107: time evolution of selected quantities.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

 3500 4000 4500 5000 5500 6000

te
m

p
er

at
u

re
 [

K
]

radius [km]

B0-10
7
α

B2-10
7
α

initial geotherm
10

20

10
21

10
22

10
23

 3500 4000 4500 5000 5500 6000

v
is

co
si

ty
 [

P
a 

s]

radius [km]

initial viscosity

Figure 4.19: Models B-107: radial profiles of the horizontally averaged temper-
ature (left) and viscosity (right) at t = 0 and 4.5 Ga.

102



B0-10
7

 0  100  200  300  400  500

degree

0

500

1000

1500

2000

2500

d
ep

th
 [

k
m

]

-6

-4

-2

 0

 2

 4

 6

B2-10
7

 0  100  200  300  400  500

degree

0

500

1000

1500

2000

2500

d
ep

th
 [

k
m

]

-6

-4

-2

 0

 2

 4

 6

Figure 4.20: Models B-107: averaged temperature spectra over last 0.5 Ga

4.3 Concluding remarks

The effects of variable material properties (thermal expansivity, diffusivity) on

mantle convection were already discussed in numerous studies. Decreasing ex-

pansivity and increasing diffusivity both suppress convective vigour in the deep

mantle and they result in larger scale structures. Increase of thermal conductiv-

ity in the lower mantle supports generation of broad lower mantle plumes (e.g.

Matyska et al., 1994; Dubuffet et al., 2002) and increases mantle temperature

(van den Berg and Yuen, 2002; Monnereau and Yuen, 2010). van den Berg et al.

(2005a) studied effects of thermal conductivity on mantle thermal evolution and

concentrated on contributions from both phonon and radiative components of

conductivity (Hofmeister (1999)). They report that temperature and pressure de-

pendent phonon conductivity delays cooling thanks to relatively low conductivity

at shallow depths, while radiative contribution that increases lowermost mantle

conductivity supports heat extraction from the core and enhances cooling. Here,

we also observe that including depth-dependent conductivity and expansivity in

the models with lower Ra and without weak PPV increases average mantle tem-

perature and delays secular cooling through the formation of a less conductive

layer in the uppermost mantle and through less vigorous flow in the lower mantle.

Weak PPV has only mild effects on the average mantle temperature, however, it

significantly affects resulting core temperature and heat flux.

In agreement with previous studies (e.g. Nakagawa and Tackley, 2011), we

show that weak PPV in the bottom thermal boundary layer tends to destabilize

flow and enhance convective vigour. Core-mantle temperature decreases faster in

the presence of PPV phase at the base of the mantle (resulting temperature may

be by more than 400 K lower). On the other hand, it seems that this effect is
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localised in the bottom mantle and effects of weak PPV on the average mantle

temperature are rather small (up to ∼ 100 K). This is also in accordance with

published results (Tackley et al., 2007). Weak PPV further enhances CMB heat

flux (Nakagawa and Tackley, 2011; Č́ıžková et al., 2010; Li et al., 2014). Heat flux

variations over time reflect episodes of massive cold downwellings arriving at the

CMB associated with PPV formation. Such episodic heat flux variations may be

required to induce changes in geodynamo reversal behaviour (Biggin et al., 2012).

The presented model is certainly oversimplified in several aspects. Among

them, the axisymmetric 2D approximation of a 3D process, the absence of compo-

sitional heterogeneity in the lowermost mantle and rheology yielding a mobile-lid

instead of plate tectonics are perhaps most limiting ones. Therefore, the model

cannot provide complex and fully realistic description of the cooling process. On

the other hand, our results demonstrate that rheologically weak PPV significant-

ly enhances core cooling and its effect on the core temperature is opposite and

comparable in amplitude with the effects of other key parameters such as ther-

mal conductivity or expansivity. Associated CMB heat flux variations, especially

during massive cold downwelling events, may affect core dynamo action.
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5. Detectability of 3D

Post-Perovskite Distribution by

Electromagnetic Induction

As discussed above, though the presence of PV-PPV change is now generally

accepted, the spatial distribution of PPV is still not well described. Despite

some evidence for possible PPV lens (e.g. Lay et al., 2006; van der Hilst et al.,

2007; Hutko et al., 2008), reliable seismic detection of PV-PPV transition is still

difficult. It is thus not clear whether PPV forms a continuous layer, a layer

interrupted in the areas of hot rising plumes or rather isolated lenses in the areas

of cold downwellings. An independent information constraining the PPV spatial

distribution would be extremely useful.

The electromagnetic (EM) induction can potentially provide such a source of

information. The electrical conductivity of PPV has been reported to be by up to

2 orders of magnitude higher than that of PV (Ono et al., 2006; Ohta et al., 2008,

2010). The conductivity anomaly of this order (though buried in the deepest

mantle) should be reflected in the geomagnetic data. The EM induction by

variations of external fields requires long-periodic or strong transient excitation in

order to detect deep mantle structures. Geomagnetic storms, excited by the Sun,

and manifested in the magnetosphere by energizing of the equatorial ring current,

represent such a signal. They are capable of inducing secondary electric currents

in the deepest regions of the Earth, including the core (Veĺımský and Finlay,

2011). The magnetic field generated by the ring current has dominantly dipolar

structure in the geomagnetic coordinate system defined by the Earth’s main field.

Although smaller non-axisymmetric contributions are also present (Balasis et al.,

2004). While numerical methods for global 3D inversion of geomagnetic data is

available and computationally feasible, so far, they have been applied only to

the upper parts of the mantle (Kelbert et al., 2009) down to the depth of 1600

km. Below that, available data allow to study only 1D conductivity. The 1D

conductivity profile obtained by Veĺımský (2010) in the inversion of CHAMP

satellite data did not show any significant increase in D′′ and thus did not agree

with the experimental data by Ono et al. (2006) and Ohta et al. (2008, 2010).

However, that does not necessarily mean that a highly conductive PPV is not

present there. If the PPV does not form a continuous layer, but rather isolated

patches, their high conductivity may not show up unless they are interconnected
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A B

Figure 5.1: 3D images of PPV distribution A (left) and B (right).

in the equatorial direction, that is in the direction of prevailing currents. Veĺımský

et al. (2012) tested this possibility by performing a synthetic EM data inversion.

His synthetic models of external field were constructed for 6 distributions of highly

conductive material in the lowermost mantle. Four of them were simple geometric

structures (continuous highly conductive PPV layer, circular conductive belt in

equatorial or meridional direction and model without PPV). We supplemented

this study by producing two lowermost mantle conductivity structure derived

from the 3D mantle convection simulation.

5.1 Construction of PPV distribution

These two PPV distributions should reflect two scenarios of PPV distribution:

A) global PPV layer interrupted only in the areas of hottest upwellings. B)

isolated PPV lenses present only in the areas where cold downwelling material is

deposited. Here we constructed the syntetic PPV distribution corresponding to

the above mentioned scenarios, by executing 3D convection model with varying

Tint. In order to obtain global layer of PPV (A) we used Tint = 3900 K while to

obtain isolated PPV patches (B) we used Tint = 3000 K. Other parameters were

fixed for both scenarios: Clapeyron slope is 9·106 Pa K−1, Rayleigh number is 106,

radial profile of viscosity is characterised by 100 km thick lithosphere (relative

viscosity 100), in the upper mantle viscosity is 1 and under 660 km viscosity is 50

and is constant in the rest of the mantle. Resolution of the model was 20 km in

radial direction and cut-off degree was 200. Resulting PPV distributions in both

cases are shown in Fig. 5.1.
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5.2 PPV detection

Both our PPV distribution models were used for synthetic EM inversion (Veĺımský

et al., 2012). Results show that geometry of this layer is crucial for PPV visibility

in 1D conductivity inversion. If there is a continuous layer of highly conductive

PPV, it is visible in 1D inversion results. On the other hand, if conductive PPV

is not interconnected in the equatorial direction (which is the direction of pre-

vailing induced currents) it is not detected by 1D inversion. Thus significant

amount of PPV can be present, even if it is not revealed in 1D results. This can

be the case of the real Earth, where the presence of hot plumes below central

Pacific and Africa probably interrupts PPV layer. As no highly conductive lay-

er was reported in the lowermost mantle in real EM data inversions, results of

(Veĺımský et al., 2012) suggest that discontinuous (lens) PPV distribution from

our convection model may reflect the real situation.
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Conclusions

In this thesis, we addressed several questions concerning mantle convection in the

terrestrial bodies. We developed and tested the code for numerical simulations

of mantle convection in 2D axisymmetric and 3D spherical geometry and applied

it to problems related to Earth, Venus and Mercury thermal evolution.

We concentrated on three main issues: i) constraining viscosity structure of

Venus using its gravity and topography data, ii) finding out whether Mercury

geoid and topography could be supported by mantle convection and iii) evaluating

the effects of rheologically distinct post-perovskite on secular cooling of the Earth.

In the first part, we tried to extend knowledge of the structure and dynamics

of the Venusian mantle. We performed a search for the viscosity and density

models that would most closely fit the spectra of observed geoid and dynamic

topography. We selected four possible radial viscosity profiles and for each of

them we generated a broad group of models with varying Rayleigh number (that

controls the character of thermally induced density anomalies) and with weaker

or stronger lateral variations of viscosity. Further, we monitored the topography

and the geoid developing above individual plumes and compared them with the

observed elevations of Venus’ geoid and topography in several Regii. We conclude

that the best fitting viscosity profile is characterised by the upper mantle viscosity

of 2·1021 Pa s, with a strong 200 km thick lithosphere, without an asthenosphere

and with a gradual viscosity increase in the underlying mantle. Lateral variations

of viscosity play only a minor role and do not significantly improve the fit. Our

models predict the observed spectra well only up to the degree of about 40 thus

indicating other then dynamic origin of the geoid and topography anomalies for

higher degrees.

Similar analysis applied to Mercury employed recent measurements of MES-

SENGER mission. We assumed that Mercurian mantle is currently still convect-

ing and we tried to predict the spectra of its geoid and topography in terms of

our convection models. Contrary to the above summarised results for Venus, we

were not able to predict the observed geoid and topography. This negative result

is in agreement with recently published analysis of geoid and topography data,

that suggests other mechanisms to be important, namely variations of crustal

thickness and (possibly compositional) deep mantle anomalies. It also provides

an indirect indication that perhaps Mercurian mantle convection already ceased

as suggested by several authors.

Last part of the thesis is focused on the effects of PPV in the Earth mantle

convection and on its spatial distribution. Simulations of a long-term evolution
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of the mantle take into account decaying radiogenic heat sources, variable ma-

terial properties and thermal coupling between the mantle and the core. We

conclude that weak PPV in the bottom thermal boundary layer tends to desta-

bilize flow, increase convective vigour and enhance CMB heat flux. This results

in a considerably lower CMB temperature, but the effect on the average mantle

temperature is small. On the other hand, while presence of weak PPV enhances

the secular cooling, depth-dependent material parameters (thermal expansivity

and diffusivity) tend to delay the secular cooling.

Finally, thermal structures produced in our numerical models were used in

the synthetic inversion of EM data that tried to determine possible detectability

of highly conductive PPV lenses. PPV distribution obtained in our 3D thermal

convection models was used as one possible synthetic input for EM inversion.

Results suggest that highly conductive PPV is only visible if its spatial distri-

bution is interconnected in the equatorial direction. Isolated conductive PPV

lenses resulting from our convection simulations could not be detected by 1D EM

inversion. The fact that 1D inversion of real data did not detect highly conduc-

tive layer at the base of the mantle thus indicates that PPV is probably indeed

present there in isolated patches rather than in a continuous layer.
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BĚHOUNKOVÁ, M. et al. Coupling mantle convection and tidal dissipation:
applications to Enceladus and Earth-like planets. J. Geophys. Res. 2010, 115,
pp. E09011.
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A. Definition of the Spherical

Harmonic Functions and Some

Selected Operations with Them

In this appendix, we summarize the basics of spherical harmonic function for-

malism: definitions, basic characteristics and common operations with harmonic

functions. After that, we present spherical harmonic expansion of the equations

that govern mantle convection. More detailed explanation of spherical harmonic

functions can be found in literature (e.g. Varšalovič et al., 1975).

A.1 Definitions

Scalar, vector or tensor functions can be expressed in terms of series of spherical

harmonic functions (respectively):

f(r, ϑ, ϕ) =
∞∑
j=0

j∑
m=−j

fjm(r)Yjm(ϑ, ϕ), (A.1a)

v(r, ϑ, ϕ) =
∞∑
j=0

j∑
m=−j

j+1∑
l=|j−1|

vljm(r)Yl
jm(ϑ, ϕ), (A.1b)

τ(r, ϑ, ϕ) =
∞∑
j=0

j∑
m=−j

2∑
k=0

j+k∑
l=|j−k|

τ lkjm(r)Y lk
jm(ϑ, ϕ), (A.1c)

where Yjm(ϑ, ϕ),Y l
jm(ϑ, ϕ) and Y lk

jm(ϑ, ϕ) are scalar, vector and tensor spherical

harmonic functions which are defined as follows:

Yjm(ϑ, ϕ) =

{
Pjm(cosϑ)eimϕ for m ≥ 0,

(−1)mY ∗j|m|(ϑ, ϕ) for m < 0,
(A.2a)

Y l
jm(ϑ, ϕ) =

1∑
µ=−1

l∑
ν=−l

Cjm
lν1µYlν(ϑ, ϕ)eµ, (A.2b)

Y lk
jm(ϑ, ϕ) =

l∑
µ=−l

k∑
ν=−k

Cjm
lµkνYlµ(ϑ, ϕ)ekν , (A.2c)

where Pjm(cosϑ) are associated Legendre polynomials, ∗ denotes complex conju-

gation and Cjm
j1m1j2m2

are Clebsch-Gordan coefficients and eµ in equation (A.2b)

125



are cyclic covariant base vectors

e1 = − 1√
2

(ex + iey) = − 1√
2

(er sinϑ+ eϑ cosϑ+ ieϕ)eiϕ,

e0 = ez = er cosϑ− eϑ sinϑ,

e−1 =
1√
2

(ex − iey) =
1√
2

(er sinϑ+ eϑ cosϑ− ieϕ)e−iϕ,

(A.3)

where ex, ey and ez are Cartesian unit vectors and er, eϑ and eϕ are unit vectors

in the spherical coordinate system.

Tensor base ekν is defined as

ekν =
1∑

ξ=−1

1∑
λ=−1

Ckν
1ξ1λeξeλ. (A.4)

Spherical harmonic functions (A.2a)–(A.2c) are orthonormal over the unit sphere.

Orthonormality implies following relations for spherical harmonic coefficients:

fjm(r) =

π∫
0

2π∫
0

f(r, ϑ, ϕ)Y ∗jm(ϑ, ϕ) sinϑ dϕ dϑ, (A.5a)

vljm(r) =

π∫
0

2π∫
0

v(r, ϑ, ϕ)Y l∗
jm(ϑ, ϕ) sinϑ dϕ dϑ, (A.5b)

τ lkjm(r) =

π∫
0

2π∫
0

τ(r, ϑ, ϕ)Y lk
jm

+
(ϑ, ϕ) sinϑ dϕ dϑ, (A.5c)

where + denotes complex conjugation and transposition.

Theoretically, equations (A.1a)-(A.1c) give exact representations of the func-

tions f(r, ϑ, ϕ), v(r, ϑ, ϕ), and τ(r, ϑ, ϕ). In real numerical applications, it is

unavoidable to set up a cut-off degree jmax instead of the infinite series. Index j

is called the degree of spherical harmonic function and index m is the order. Order

m ranges from −j to j and such coefficients can approximate a complex function,

while a real function can be described by a set of coefficients for m = 0, . . . , j.

Generally, harmonic coefficients are complex numbers. For an axisymmetric func-

tion, only the coefficients with m = 0 are non-zero. These harmonic coefficients

are real numbers. Vector harmonic coefficients with indices l = j ± 1 describe

poloidal part of the field, index l = j indicates toroidal part. For tensor harmonic

coefficients, those with l = j, j ± 2 describe poloidal part and l = j ± 1 is for

toroidal part. Moreover, meaning of the index k is that it is 0 for the tensor trace,
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k = 1 for the antisymmetric part and k = 2 denotes the deviatoric part of the

tensor. A symmetric stress tensor can be expressed only by harmonic coefficients

with k = 0 (pressure) and k = 2 (deviatoric part).

The power spectrum S is often used as a characteristic of function f and is

defined as a function of harmonic degree j:

S(j, r) =

j∑
m=−j

fjmf
∗
jm(r). (A.6)

A.2 Operations with spherical harmonic func-

tions

From now on, we will not explicitly specify spatial coordinates.

A.2.1 Differential operators acting on spherical tensors

∇fjmYjm =
1√

2j + 1

[√
j

(
d

dr
+
j + 1

r

)
fjmYj−1

jm −
√
j + 1

(
d

dr
− j

r

)
fjmY

j+1
jm

]
(A.7)

∇f ljmY l
jm = (−1)j+l+1

∑
k

√
2k + 1

√
l

{
1 1 k

j l − 1 l

}(
d

dr
+
l + 1

r

)
f ljmY

l−1,k
jm +

(A.8)

+ (−1)j+l
∑
k

√
2k + 1

√
l + 1

{
1 1 k

j l + 1 l

}(
d

dr
− l

r

)
f ljmY

l+1,k
jm

∇ · f ljmY l
jm =

1√
2j + 1

[√
j

(
d

dr
− j − 1

r

)
f j−1jm −

(
d

dr
+
j + 2

r

)
f j+1
jm

]
Yjm

(A.9)

∇ · f lkjmY lk
jm = (−1)j+l

√
2k + 1

[
√
l + 1

{
1 l l + 1

j 1 k

}(
d

dr
− l

r

)
f lkjmY

l+1
jm −

(A.10)

−
√
l

{
1 l l − 1

j 1 k

}(
d

dr
+
l + 1

r

)
f lkjmY

l−1
jm

]
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A.2.2 Products of spherical harmonic functions

Yj1m1Yj2m2 =
Πj1j2√

4π

∑
jm

1

Πj

Cj0
j10j20

Cjm
j1m1j2m2

Yjm (A.11)

Yj1m1Y
l2k2
j2m2

=
Πj1j2l2√

4π

∑
jml

(−1)k2+l+jC l0
j10l20

Cjm
j1m1j2m2

{
l2 k2 j2

j j1 l

}
Y lk2
jm

(A.12)

Y l1
j1m1
· Y l2

j2m2
= (−1)j2+l2

Πj1j2l1l2√
4π

∑
jm

1

Πj

Cj0
l10l20

Cjm
j1m1j2m2

{
j1 j2 j

l2 l1 1

}
Yjm

(A.13)

Y l1
j1m1
· Y l2k2

j2m2
= (−1)k2+1

∏
j1j2l1l2k2√

4π

∑
jml

C l0
l10l20

Cjm
j1m1j2m2


j j1 j2

l l1 l2

1 1 k2

Y l
jm

(A.14)

Y l1k1
j1m1

: Y l2k2
j2m2

= δk1k2(−1)j2+l2
Πj1j2l1l2√

4π

∑
jm

1

Πj

Cj0
l10l20

Cjm
j1m1j2m2

{
k1 l1 j1

j j2 l2

}
Yjm

(A.15)

where
∏

j1j2...
=
√

2j1 + 1
√

2j2 + 1 . . .,

{
a b c

d e f

}
is Wigner 6-j symbol and

a b c

d e f

g h i

 is Wigner’s 9-j symbol.

A.2.3 Clebsch-Gordan coefficients, 6-j and 9-j Wigner sym-

bols

While manipulating with structural harmonic expansions of governing equations

we need to use basic characteristics of Clebsch-Gordan coefficients and 6-j and

9-j Wigner symbols. Here, we give only brief overview. More (particularly the

exact values for special choices of indices) can be found in literature (Varšalovič

et al., 1975).

Symmetry of Clebsch-Gordan coefficients

Cjm
j1m1j2m2

= (−1)j+j1+j2 Cj−m
j1m1j2−m2

,

Cjm
j1m1j2m2

= (−1)j+j1+j2 Cjm
j2m2j1m1

.
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Indices of Clebsch-Gordan coefficients are bound together by two relations:

|j1 − j2| ≤ j ≤ j1 + j2 along with m1 +m2 = m.

Values for special choices of indices

Cj0
j10j20

= 0 if j1 + j2 + j3 is odd,

Cjm
jm00 = 1.

Symmetry of Wigner 6-j symbols: it is possible to switch any two columns:{
a b c

d e f

}
=

{
a c b

d f e

}
etc.

switch rows in two columns, while third remain fixed:{
a b c

d e f

}
=

{
a e f

d b c

}
etc.

Special value for f = 0 {
a b c

d e 0

}
=

(−1)a+b+c

Πab

δaeδbd

Symmetry of Wigner 9-j symbols, permute columns:
a b c

d e f

g h i

 =


b c a

e f d

h i g

 etc.

switch two columns and two rows:
a b c

d e f

g h i

 =


d f e

a c b

g i h

 etc.

Value of 9-j symbol for a special choice of indices:
0 a a

b c d

b e f

 =
(−1)a+b+d+e

Πab

{
f d a

c e b

}
.
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A.3 Stokes’ problem for radially symmetric vis-

cosity in spherical harmonic formalism

Using definitions (A.1a)–(A.1c) and some operations from the preceding para-

graph, the Stokes’ problem (eqs. (1.1), (1.2) and (1.5)) with boundary conditions

(1.7) and (1.8) can be written in the following form (Klika, 1995):

Equation of continuity:

√
j

(
d

dr
− j − 1

r

)
vj−1jm −

√
j + 1

(
d

dr
+
j + 2

r

)
vj+1
jm = 0, (A.16)

momentum equation (here f represents the buoyancy force ∆%g):

−f j−1jm =−

√
j

3(2j + 1)

(
d

dr
+
j + 1

r

)
τ j0jm +

√
j − 1

2j − 1

(
d

dr
− j − 2

r

)
τ j−2,2jm −

(A.17)

−

√
(j + 1)(2j + 3)

6(2j − 1)(2j + 1)

(
d

dr
+
j + 1

r

)
τ j2jm,

−f j+1
jm =−

√
j + 1

3(2j + 1)

(
d

dr
− j

r

)
τ j0jm −

√
j + 2

2j + 3

(
d

dr
+
j + 3

r

)
τ j+2,2
jm +

(A.18)

+

√
j(2j − 1)

6(2j + 3)(2j + 1)

(
d

dr
− j

r

)
τ j2jm

and rheology equation:

τ j+2,2
jm + 2η

√
j + 2

2j + 3

(
d

dr
− j + 1

r

)
vj+1
jm = 0, (A.19)

τ j−2,2jm − 2η

√
j − 1

2j − 1

(
d

dr
+
j

r

)
vj−1jm = 0, (A.20)

τ j2jm + 2η

√
(j + 1)(2j + 3)

6(2j − 1)(2j + 1)

(
d

dr
− j − 1

r

)
vj−1jm − (A.21)

− 2η

√
j(2j − 1)

6(2j + 3)(2j + 1)

(
d

dr
+
j + 2

r

)
vj+1
jm = 0.
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Boundary conditions yield:

√
j vj−1jm −

√
j + 1 vj+1

jm = 0, (A.22)

√
(j + 1)(j − 1)

(2j + 1)(2j − 1)
τ j−2,2jm −

√
j(j + 2)

(2j + 3)(2j + 1)
τ j+2,2
jm − (A.23)

−

√
3

2(2j − 1)(2j + 3)
τ j2jm = 0.

The equations above involve only coefficients τ j0jm, τ j2jm, τ j±2,2jm and vj±1jm and thus

describe only poloidal part of the flow. It can be shown that the toroidal part

of the flow induced by buoyancy forces in the case of material with spherically

symmetric rheology is zero (Ricard and Vigny, 1989). Moreover, it can be shown

that in the case of axisymmetric flow, the toroidal part of the solution is zero even

for laterally-dependent viscosity (Klika, 1995; Tosi, 2007). Thus, the coefficients

τ j±1jm and vjjm are zero in all cases assumed in this work.

A.4 Evaluation of non-linear terms on the grid

While solving governing equations (1.1)-(1.6) we need to treat several non-linear

terms. One arises from the rheology equation in the case of laterally dependent

viscosity (η∇v), others are present in the energy equation, namely in advection

(v · ∇T ), adiabatic heating (vrT ), viscous dissipation (σ : ∇v) and latent heat

(T v · ∇Γ) term. We need to evaluate different products of scalars, vectors and

tensors, where the result of such a product is either tensor (term η∇v) or scalar

(other terms). As discussed in section 1.2, the evaluation of those non-linear

terms in the spectral domain is inefficient, we thus evaluate these terms on the

spatial grid here. This process consists of three steps: 1. evaluation of func-

tions in the predefined grid points (evaluation of spherical components of vectors

and tensors), 2. evaluation of products on the grid, 3. harmonic analysis to ob-

tain spherical harmonic coefficients of the resulting products. Following sections

contain formulas needed to perform steps 1 and 3 and brief description of their

derivation (step 2 is trivial).
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A.4.1 Step 1 — evaluation of spherical components of vec-

tors and tensors

As a first step in a process of evaluation of spherical components of vectors and

tensors, we derive formulas for spherical unit vectors er, eϑ and eϕ. Then we use

these formulas to derive the spherical components of a vector and finally we give

formulas for the spherical components of a tensor.

A.4.1.1 Derivation of unit vectors er, eϑ and eϕ

To derive vectors er, eϑ and eϕ, we start from an alternative definition of spherical

harmonic functions based on spherical base vectors. The following relationship

applies:

Y
(λ)
jm =

[
Y

(λ)
jm

]
r
er +

[
Y

(λ)
jm

]
ϑ
eϑ +

[
Y

(λ)
jm

]
ϕ
eϕ. (A.24)

Functions Y
(λ)
jm are linear combinations of vector harmonic functions Y l

jm:

Y
(1)
jm =

√
j + 1

2j + 1
Y j−1
jm +

√
j

2j + 1
Y j+1
jm , (A.25a)

Y
(0)
jm = Y j

jm, (A.25b)

Y
(−1)
jm =

√
j

2j + 1
Y j−1
jm −

√
j + 1

2j + 1
Y j+1
jm . (A.25c)

Components
[
Y

(λ)
jm

]
r
,
[
Y

(λ)
jm

]
ϑ

and
[
Y

(λ)
jm

]
ϕ

are as follows:

[
Y

(λ)
jm

]
r

[
Y

(λ)
jm

]
ϑ

[
Y

(λ)
jm

]
ϕ

λ = 1 0 Ae−iϕYjm+1 −BeiϕYjm−1 iC 1
sinϑ

Yjm
λ = 0 0 −C 1

sinϑ
Yjm −iAe−iϕYjm+1 + iBeiϕYjm−1

λ = −1 Yjm 0 0

where A = 1
2

√
(j−m)(j+m+1)

j(j+1)
, B = 1

2

√
(j+m)(j−m+1)

j(j+1)
and C = m√

j(j+1)
.

The vector er can be obtained from eq. (A.24) for λ = −1, j = 0 and m = 0.

Using identity Y00 = 1√
4π

we will get:

er = −
√

4πY 1
00. (A.26)

Similarly vector eϑ was obtained from eq. (A.24) for λ = 1, j = 1 and m = 0,
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moreover replace Y11 = −1
2

√
3
2π

sinϑeiϕ and then

eϑ = − 2
√

2π

3 sinϑ
(
√

2Y 0
10 + Y 2

10). (A.27)

Finally, eϕ is obtained for λ = 0, j = 1 and m = 0, using the above identities

we get:

eϕ = − 2i
√

2π√
3 sinϑ

Y 1
10. (A.28)

A.4.1.2 Spherical components of vector

Here, we derive spherical components of a vector by multiplying a vector by unit

vector:

er · v = −
√

4π
∑
jml

vljmY
1
00 · Y l

jm,

eϑ · v = − 2
√

2π

3 sinϑ

∑
jml

vljm(
√

2Y 0
10 + Y 2

10) · Y l
jm,

eϕ · v = − 2i
√

2π√
3 sinϑ

∑
jml

vljmY
1
10 · Y l

jm,

Using the relation (A.13) for scalar product of two vector harmonics, we can

evaluate the spherical components of vector as:

vr =
∑
jml

√
2l + 1

2j + 1
Cj0
l010v

l
jmYjm,

vϑ =

√
2(2j + 1)

3 sinϑ

∑
jml

vljm

[√
2

2l + 1
C lm
jm10Ylm+

+
√

15(2l + 1)

j+1∑
J=j−1

CJ0
l020C

Jm
jm10

{
j 1 J

2 l 1

}
YJm

]

vϕ = −
∑
jml

vljm

√
6i

sinϑ

∏
jl

∑
J=l±1

1√
2J + 1

CJ0
l010C

Jm
jm10

{
j 1 J

1 l 1

}
YJm

A.4.1.3 Spherical components of a tensor

As the stress tensor is symmetric, it has only 6 independent components: τrr,

τrϑ, τrϕ, τϑϑ, τϑϕ and τϕϕ. We need to evaluate the spherical components of

stress deviator (τ =
∑

jml τ
l2
jmY

l2
jm) which has zero trace. This further reduces

the number of independent components (−τϕϕ = τrr + τϑϑ). Moreover, in the

133



axisymmetric case, the components τrϕ and τϑϕ are zero which leaves us with

three independent components τrr, τϑϑ, τrϑ.

To obtain a component of a tensor, it is necessary to multiply the tensor by

two unit vectors (e.g. τrϑ = er · τ · eϑ). First, let us evaluate products er · τ and

eϑ · τ . Combining the relation for dot product of a vector and a tensor (A.14)

with equations (A.26, A.27) and then using the properties of Clebsch-Gordan

coefficients, 6-j and 9-j symbols leads to expressions:

er · τ =
∑
jml

τ l2jm(−1)j+l
√

5(2l + 1)
∑
L=l±1

CL0
l010

{
1 L j

l 2 1

}
Y L
jm,

eϑ · τ = −
√

10

3 sinϑ

∑
jlm

√
2j + 1 τ l2jm

j+1∑
J=|j−1|

√2CJm
jm10

{
J 1 l

2 j 1

}
Y l
Jm +

+
√

15(2l + 1)
∑

L=|l−2|,l,l+2

CL0
l020C

Jm
jm10


J 1 j

L 2 l

1 1 2

Y L
Jm

 .

Then, by another multiplication of unit vectors and using the same procedure

as for the derivation of vector components, the following relations can be obtained:

τrr =
∑
jml

τ l2jm

√
5(2l + 1)

(2j + 1)

∑
L=l±1

CL0
l010

{
1 L j

l 2 1

}
√

2L+ 1Cj0
L010Yjm

τrϑ =
∑
jml

τ l2jm

√
10
∏

lj

3 sinϑ

∑
L=l±1

CL0
l010

{
L 1 j

2 l 1

}[√
2

2L+ 1
CLm
jm10YLm+

+
√

15(2L+ 1)

j+1∑
J=|j−1|

1√
2J + 1

CJ0
L020C

Jm
jm10

{
j 1 J

2 L 1

}
YJm


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τϑϑ =

√
20

9 sin2 ϑ

∑
jl

τ l2jm
√

2j + 1

 j+1∑
J=|j−1|

CJm
jm10

{
J 1 l

2 j 1

}
√

2J + 1

(√
2

2l + 1
C lm
Jm10Ylm+

+
√

15(2l + 1)
J+1∑

γ=|J−1|

1√
2γ + 1

Cγ0
l020C

γm
Jm10

{
J 1 γ

2 l 1

}
Yγm

+

+
√

15
∏
lJ

j+1∑
J=|j−1|

l+2∑
L=|l−2|

CL0
l020C

Jm
jm10


J 1 j

L 2 l

1 1 2


(√

2

2L+ 1
CLm
Jm10(−1)L+J+1YLm+

+
√

15(2L+ 1)
J+1∑

γ=|J−1|

1√
2γ + 1

Cγ0
L020C

γm
Jm10

{
J 1 γ

2 L 1

}
Yγm


A.4.2 Step 3 — Harmonic analysis

After evaluating the products on the grid we have to perform spherical harmonic

analysis of these products. In the case of the products arising from energy equa-

tion (v · ∇T , vrT , σ : ∇v and T v · ∇Γ), the result is scalar and its analysis is

a simple operation (A.5a). In the case of the rheology equation, the situation

is more complex. We evaluate a product η∇v which is a tensor. We start from

(A.5c), where tensor harmonic functions are given by (A.2c). For our axisym-

metric problem order m = 0 and k = 2 (deviatoric stress) the relation (A.2c) is

as follows:

Y l2
j0

+
=

l∑
µ=−l

2∑
ν=−2

Cj0
lµ2ν

(
Ylµe

T
2ν

)∗
. (A.31)

Base vector eT2ν is then expanded to a set of products of Clebsch-Gordan coeffi-

cients and cyclic covariant base vectors following equation (A.4). Using equations

(A.3) those products can be evaluated. Products are then substituted into (A.31).

Finally, coefficients of stress yield:
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τ l2j0 = 2π

π∫
0

{
Pl2C

j0
l22−2(τrr sin2 ϑ+ τrϑ sin 2ϑ+ τϑϑ cos2 ϑ− τϕϕ)+

+ 2Pl1C
j0
l12−1(τrr sinϑ cosϑ+ τrϑ cos 2ϑ− τϑϑ sinϑ cosϑ)+

+
1√
6
Pl0C

j0
l020

[
2(τrr cos2 ϑ− τrϑ sin 2ϑ+ τϑϑ sin2 ϑ)−

− (τrr sin2 ϑ+ τrϑ sin 2ϑ+ τϑϑ cos2 ϑ+ τϕϕ)
] }

sinϑ dϑ,

where l = j − 2, j, j + 2.
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