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Abstrakt: Ćılem této práce bylo prozkoumat r̊uzné mechanismy kompenzace pozorované
planetárńı topografie – izostázi v k̊uře, elastickou podporu v litosféře a dynamickou pod-
poru p̊usobenou tečeńım v plášti. Tyto zkoumané modely byly následně použity na tři
r̊uzné planetárńı problémy. Nejprve jsme aplikovali model dynamické podpory k vysvětleńı
velkoškálových gravitačńıch a topografických útvar̊u na Venuši a zjistili možná rozložeńı
viskozity v jej́ım plášti. Výsledky modelováńı ukazuj́ı, že k vysvětleńı pozorovaných dat lze
použ́ıt nejen isoviskózńı model pláště, ale i model s tuhou litosférou a pozvolným nár̊ustem
viskozity směrem k jádru. V druhém článku jsme se pomoćı kombinace r̊uzných model̊u kom-
penzace k̊ury pokusili odhadnout hustotu k̊ury v oblasti marťanských jižńıch vysočin. Dı́ky
tomu, že r̊uzné metody modelováńı maj́ı na vstupńı hustotě odlǐsnou závislost, podařilo
se nám źıskat maximálńı odhad hustoty k̊ury ve studované oblasti. Ve třet́ı práci jsme
studovali intenzitu gravitačńıho signálu možných topografických útvar̊u na dně Jupiterova
měśıce Europy. Ukazuje se, že pokud budou mı́t dlouhovlnné topografické útvary výšku
aspoň ve stovkách metr̊u, je dost pravděpodobné, že budeme se současnou technikou schopni
jejich gravitačńı signál zachytit.
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Abstract: The aim of this work was to investigate various mechanisms compensating
the observed planetary topography – crustal isostasy, elastic support and dynamic support
caused by mantle flow. The investigated models were applied to three different planetary
problems. Firstly we applied dynamic compensation model to explain today large-scale
gravity and topography fields of Venus and investigate its mantle viscosity structure. The
results seem to support not only models with constant viscosity structure but also a model
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Chapter 1

Introduction

The 20th century saw a rapid development in all branches of physics, including geophysics.
Moreover, upon humanity’s venturing into space in the late 1950’s, a new field of nature
became accessible – the planets and moons of the Solar System. Until that time, the study of
these objects was confined largely to the domain of astronomy, but after the first planetary
space missions with their continuously developing instrumentation for remote sensing, this
topic evolved to the new interdisciplinary field of Planetary Science.

Today, more than 50 years after Sputnik 1, vast amounts of data from various missions
have been send back to the Earth. However, with the exception of the ALSEP (Apollo
Lunar Surface Experiments Package) [e.g., Wieczorek et al., 2006] the interior of the planets
has been studied only by indirect methods: e.g., lunar laser ranging or determination of
the tidal response by satellite flybies. One of the methods that allow the investigation of
the inner structure is a join analysis of the gravity and topography fields; a method well
established for the study of various geophysical problems [e.g., Hager and Clayton, 1989;
Peltier, 1989; Mitrovica and Peltier, 1992; Forte et al., 1994; Čadek and Fleitout, 2003]. Due
to its nature, it cannot be used to investigate a planet’s radial density structure, but instead
it provides information about, for instance, the lateral variations in crustal thickness [e.g.,
Wieczorek and Phillips, 1998; Neumann et al., 2004; Chenet et al., 2006; Wieczorek, 2007]
or the rheological structure of the mantle [e.g., Kiefer et al., 1986; Moore and Schubert,
1997; Vezolainen et al., 2004].

As planetary science is a relatively new field of research, the employed models are often
very simple. This can, however, result in a substantial error in the derived parameter values
(e.g., in the crustal or elastic thickness) [e.g., Wieczorek and Zuber, 2004; Belleguic et al.,
2005]. Therefore, there exists a need for more advanced models to better constrain the
parameters of interest. Of great importance in particular is the development of models that
incorporate more than one of the processes usually studied separately [e.g., Zhong, 2002;
Choblet et al., 2007].

This thesis is organized as follows: Chapter 2 describes our current knowledge of plan-
etary gravitational and topographic fields and sets the theoretical basis for the study of
gravity associated with processes connected to the compensation of surface structures. In
Chapter 3 the models and equations required for studying those processes in detail are de-
rived, with a focus on the behavior of the elastic lithosphere. This model is then applied
to the problem of predicting dynamic gravity and topography. In Chapter 4 methods and

11



CHAPTER 1. INTRODUCTION 12

concepts such as the geoid-topography ratio, admittance analysis and Bouguer inversion are
described, as these are the most commonly used tools in planetary science for the inverse
modeling of the gravity field. In addition, the basics of parameterized convection model-
ing connecting thermal evolution of a planet with the compensation parameters evolution
are given.

Most of the tools described in detail in the above mentioned three chapters were used
for preparation of three original manuscripts which are attached in Appendix C. First of
them is Pauer et al. [2006] which uses gravity and topography fields of Venus to make
an estimate of its mantle viscosity structure. It investigates a possibility that a current
Venusian mantle can contain a high-viscosity lithosphere and a gradual increase of viscosity
through the mantle. The second [Pauer and Breuer, 2008] focuses on a study of Martian
crust and places constraints on a maximum density for the southern hemisphere. It further
discusses possible implications for the global structure and the planet’s evolution. The third
manuscript [Pauer et al., 2010] is devoted to forward and inverse modeling of a possible
gravity field originating from ocean floor structures of Jupiter’s moon Europa. The aim of
this paper is to study whether, and under what conditions, a signal from Europa’s ocean
floor can be detected in future mission.

The last part, Chapter 5, discusses the results presented in this work with an outlook
presented for future studies.



Chapter 2

Planetary Gravity and Topography

Many aspects of the thermal and chemical evolution of a planet’s interior are connected
with the reshaping of planetary surfaces and changes in the internal mass distribution.
Therefore, a viable way to study the planets of our Solar System (especially in the case
when direct measurements from seismometers are not available, or are not providing the
desired coverage and resolution of data) is an inversion of the measured gravity field and the
observed surface topography (for a review, see Wieczorek [2007]). This chapter therefore
lays down the necessary theoretical basis connecting both observed quantities with regards
to the assumed physical processes that have generated them.

2.1 Gravity field

The term gravity specifically describes the force attracting one mass object to another
mass objects as fully described by Newton’s theory1 (whereas gravitation refers to a general
tendency of this attractive influence, in other theories it could be explained by different
causes other than gravity, e.g. in Einstein’s general theory of relativity2 it is the time-space
deformation). In the Earth and planetary sciences, the term gravity (and also gravitation) is,
however, often used rather to describe the attraction experienced on the surface of a rotating
planet i.e. including the additional factor of the centrifugal force. Since this work aims to
deal with the processes occurring at such rotating planets, this factor must also be taken
into account. On the other hand, gravity attraction can be divided into the hydrostatic part
(which reflects the gravity attraction of a rotating spherically symmetric body in hydrostatic
equilibrium) and non-hydrostatic part (which reflects the deviations caused by internal
density perturbations). As this work is focused on the signal connected to a nonuniform
distribution of topography on the surface and the density perturbations below the surface,
only this later part of the gravity field will be examined here.

1Named after Sir Isaac Newton (4th January 1643–31st March 1727), English mathematician, physicist,
astronomer, alchemist and Master of the Mint, who quantitatively described the gravity attraction in his
famous PhilosophiæNaturalis Principia Mathematica (1687).

2Named after Albert Einstein (14th March 1879–18th April 1955), German born theoretical physicist,
who developed the special (1905) and general (1915) theories of relativity.

13



CHAPTER 2. PLANETARY GRAVITY AND TOPOGRAPHY 14

First, it is necessary to obtain a description of the non-hydrostatic gravity field which
will later allow for its modeling and study. As the gravity field is conservative and therefore
could be expressed as a gradient of the scalar potential U(r) [e.g., Turcotte and Schubert,
2002], where r is a position vector, we start with writing Newton’s gravity law for the
gravitational acceleration g(r) = −g(r) er induced by an object of mass M :

g(r) = −GM

r2
er, (2.1)

g(r) = ∇U(r), (2.2)

U(r ) =
GM

r
, (2.3)

where G = 6.6742×10−11 m3 kg−1 s−2 [Mohr and Taylor, 2005] is the gravitational constant.
However, equations (2.1)–(2.3) are only valid for a spherically symmetric body. If the shape
of the body is not spherical, or if its density varies laterally, more general relationships must
be considered, namely Poisson’s equation3

∇2U(r ) = −4πGρ(r ), (2.4)

for a region of density ρ, and Laplace’s equation4

∇2U(r ) = 0. (2.5)

for regions of ρ = 0. [Burša and Pěč, 1993] This invariant form could be written in spherical
coordinates (for r = r(r, ϑ, ϕ)) in the following way:

1

r2
∂

∂r

(

r2
∂U

∂r

)

+
1

r2 sinϑ

∂

∂ϑ

(

sinϑ
∂U

∂ϑ

)

+
1

r2 sin2 ϑ

(

∂2U

∂ϕ2

)

= 0, (2.6)

whose solution for the unit sphere could be found [e.g., Varshalovich et al., 1988] taking
advantage of the method of separation of variables (U(r ) = R(r)S(ϑ)T (ϕ)) in two forms:

U(r ) =
∞
∑

ℓ=0

ℓ
∑

m=0

rℓ[Cℓm cosmϕ+ Sℓm sinmϕ]Pℓm(cosϑ), for r < 1, (2.7)

U(r ) =

∞
∑

ℓ=0

ℓ
∑

m=0

1

rℓ+1
[Cℓm cosmϕ+ Sℓm sinmϕ]Pℓm(cos ϑ), r ≥ 1, (2.8)

where Pℓm(cosϑ) stands for the associated Legendre function5 of first kind (for the definition
see the equation (A.5), ℓ is the harmonic degree, m the harmonic order and Cℓm and Sℓm are

3Named after Siméon Denis Poisson (21st June 1781–25th April 1840), Franch mathematician, geometer
and physicist, who contributed to electricity, magnetism, celestial mechanics and potential theory.

4Named after Pierre-Simon Laplace (23rd March 1749–5th March 1827), French mathematician and
astronomer, who first derived spherical harmonic expansion or the theory of potential.

5Named after Adrien-Marie Legendre (18th September 1752–10th January 1833), French matematician,
who contributed to many field of mathematics (e.g., statistics, algebra and mathematical analysis.
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the unknown coefficients. Furthermore, equations (2.7) and (2.8) could be rewritten using
a complex notation and the Kronecker delta6 (δkm = 1 if k = m and 0 otherwise):

Ûℓm =
Cℓ|m| − iSℓ|m|

2− δ0m
|m| ≤ ℓ, (2.9)

Ŷℓm(ϑ, ϕ) = (cos |m|ϕ+ i sin |m|ϕ)Pℓ|m|(cosϑ) = Pℓ|m|(cosϑ) exp(i|m|ϕ), (2.10)

U(r ) = ℜ
∞
∑

ℓ=0

ℓ
∑

m=−ℓ

rℓÛℓmŶℓm(ϑ, ϕ) for r < 1, (2.11)

U(r ) = ℜ
∞
∑

ℓ=0

ℓ
∑

m=−ℓ

1

rℓ+1
ÛℓmŶℓm(ϑ, ϕ) r ≥ 1, (2.12)

which is (omitting the factors rℓ and 1/rℓ+1, different normalization of the spherical harmonic
functions Yℓm and the fact that we use only the real part ℜ) the same expansion as for the
scalar spherical harmonics (see formula (A.1) and Appendix A). Equal formulation could
be obtained [e.g., Wieczorek, 2007] using an alternative notation:

ˆ̂
Uℓm = Cℓm

ˆ̂
Yℓm(ϑ, ϕ) = cosmϕPℓm(ϑ, ϕ) for m ≥ 0, (2.13)

ˆ̂
Uℓm = Sℓm

ˆ̂
Yℓm(ϑ, ϕ) = sinmϕPℓ|m|(ϑ, ϕ) m < 0, (2.14)

U(r ) =

∞
∑

ℓ=0

ℓ
∑

m=−ℓ

rℓ
ˆ̂
Uℓm

ˆ̂
Yℓm(ϑ, ϕ) for r < 1, (2.15)

U(r ) =
∞
∑

ℓ=0

ℓ
∑

m=−ℓ

1

rℓ+1

ˆ̂
Uℓm

ˆ̂
Yℓm(ϑ, ϕ) r ≥ 1. (2.16)

Throughout this thesis spherical harmonic expansions based on equation (A.1) will be used,
but taking into account only the real part which corresponds to the equations stated above.
For an overview of the coefficients normalization problematics, see appendix Section A.3.

Using this complex notation, for a given location r = r(r, ϑ, ϕ) referenced to the same
origin as a sphere of radius R0, the gravitational potential U(r) defined by a finite set
(ℓ ≤ ℓmax) of coefficients Uℓm(R0) – i.e. coefficients defining the potential field on the
surface of a sphere – could be evaluated as:

U(r ) =

ℓmax
∑

ℓ=2

ℓ
∑

m=−ℓ

(

r

R0

)ℓ

UℓmYℓm(ϑ, ϕ) for r < R0, (2.17)

U(r ) =
ℓmax
∑

ℓ=2

ℓ
∑

m=−ℓ

(

R0

r

)ℓ+1

UℓmYℓm(ϑ, ϕ) r ≥ R0. (2.18)

Note that in both the equations (2.17) and (2.18) the summation starts with degree ℓ = 2.
This is because in the coordinate system originating in the center-of-mass (CoM) the gravity

6Named after Leopold Kronecker (7th December 1823–29th December 1891), German mathematician
and logician, who believed that mathematical analysis must be founded on ”whole numbers”.
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coefficients U1m ≡ 0 (i.e. there is no displacement of the gravity field from CoM), while the
coefficient U00 describes only the mean value of gravitational potential.

As mentioned in the beginning of this chapter, the measured gravitational attraction on
the surface of any planet includes also the influence of rotation. Since this force is responsible
for the flattening of the planetary figure, the whole geopotential must be taken into account
when dealing with the global planetary topography and gravity [e.g., Wieczorek, 2007]. If,
moreover, one is interested in the study of a planet with a massive moon (or vice versa)
an additional term describing the permanent tidal deformation of geopotential has to be
included [e.g., Dermott, 1979; Zharkov et al., 1985]. Contrary to this is if the gravity field
of a slowly rotating body without a massive natural satellite is being considered or if we
are not interested in the degree 2 terms then the basic features of the gravitational field
can be lumped into the so-called normal potential (for exact definition see e.g., Novotný
[1998]) and we can work then with a residual, or disturbing potential which is obtained by
subtracting the normal potential from the observed gravitational signal. This disturbing
gravitational potential can then be converted into height anomalies of the equipotential
surface undulations relative to the surface mean radius/local ellipsoidal radius – i.e. into
the geoid anomalies (while this is a usual name for the equipotential surface of the Earth,
this term will be also used for equipotential surfaces of other planets). The relationship
between gravitational disturbing potential U and geoid height anomalies h is given to a first
approximation by the Bruns formula7 [e.g., Novotný, 1998; Wieczorek, 2007]:

h(ϑ, ϕ) ≈ U(ϑ, ϕ)

g0
, (2.19)

where g0 = GM/R2
0 is the mean planetary gravitational acceleration. The dimension of the

geoid height anomalies is [h] = m.
Instead of the geoid we often use the gravity variations (variations of the gravitational

acceleration), which are only another expression of the same physical field. The gravity
anomaly gr(r, ϑ, ϕ) could be obtained by evaluating the first radial derivative of the potential
U (similarly to the equation (2.2)) starting with the equation (2.18) and employing the
convention that the positive gravity anomaly directs downwards:

gr(r, ϑ, ϕ) =
ℓmax
∑

ℓ=2

ℓ
∑

m=−ℓ

ℓ+ 1

R0

(

R0

r

)ℓ+2

UℓmYℓm(ϑ, ϕ) r ≥ R0. (2.20)

The dimension of the gravity anomaly is [gr] = ms−2 but the more commonly used unit is
galileo8 (1 Gal = 1 cm s−2 in CGS units, 10−2 m s−2 in SI units).

For the Earth, it is usual to evaluate the gravity acceleration anomaly instead of on
the reference ellipsoid/sphere (which is the case of equation (2.20)) on the geoid level [e.g.,
Forte et al., 1994]. This could be for a reference sphere achieved by correcting the above
shown formula for the radial gravity anomaly by the change in the mean gravity acceleration

7Named after Ernst Heinrich Bruns (4th September 1848–23rd September 1919), German mathematician,
physicist and astronomer, who contributed to the development of theoretical geodesy.

8Named after Galileo Galilei (15th February 1564–8th Janury 1642), Italian physicist, astronomer and
philosopher, who made the first measurements of the acceleration due to gravity.
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from the mean planetary radius to the geoid level, which can be approximated as a radial
gradient of g = GM/r2 evaluated at the mean planetary radius R0 multiplied by the local
geoid height h(ϑ, ϕ):

ḡr(R0, ϑ, ϕ) ≈ gr(ϑ, ϕ) + h(ϑ, ϕ)
d

dr

GM

r2

∣

∣

∣

∣

∣

R0

, (2.21)

ḡr(R0, ϑ, ϕ) ≈ gr(ϑ, ϕ)− h(ϑ, ϕ)
2

R0

GM

R2
0

, (2.22)

ḡr(R0, ϑ, ϕ) ≈ gr(ϑ, ϕ)−
2

R0
h(ϑ, ϕ)g0, (2.23)

and using equations (2.18) and (2.19) we obtain:

ḡr(ϑ, ϕ) =
ℓmax
∑

ℓ=2

ℓ
∑

m=−ℓ

ℓ+ 1

R0

UℓmYℓm(ϑ, ϕ)−
2

R0

ℓmax
∑

ℓ=2

ℓ
∑

m=−ℓ

UℓmYℓm(ϑ, ϕ), (2.24)

ḡr(ϑ, ϕ) =

ℓmax
∑

ℓ=2

ℓ
∑

m=−ℓ

ℓ− 1

R0
UℓmYℓm(ϑ, ϕ). (2.25)

New measurement techniques (see the Subsection 2.1.1) make use of the gradient of the
gravity field (∇g). This third expression of gravitation (again equivalent to the previous
two) describes the spatial changes in the gravity anomaly, and its radial-radial component
(∇g is a tensor variable) could be obtained from the radial derivation of the equation (2.20):

grr(r, ϑ, ϕ) =

ℓmax
∑

ℓ=2

ℓ
∑

m=−ℓ

(ℓ+ 1)(ℓ+ 2)

R2
0

(

R0

r

)ℓ+3

UℓmYℓm(ϑ, ϕ) r ≥ R0. (2.26)

This form is the most sensitive to the small scale gravity features but also the most atten-
uated with height (see Figure 2.1). The dimension of the gravity gradient is [grr] = s−2 but
more commonly used unit is eotvos9 (1E=10−7 Galm−1 in CGS units, 10−9 s−2 in SI units).

The connection between the density distribution ρ(r ′) (e.g., a density anomaly in an
otherwise homogenous planetary mantle) and the resulting gravity potential U(r ) can be
drawn using the Newton integral which is a solution of the Laplace-Poisson equation:

U(r ) = G

∫

V ′

ρ(r ′)

|r − r ′|dV
′(r ′). (2.27)

where the integration is carried out over the whole volume V ′ of a body under consideration.
As a next step we transform equation (2.27) into the spectral domain by expanding the terms
ρ(r ′) and 1/|r − r ′| using the additional theorem [e.g., Burša and Pěč, 1993]:

9Named after Loránd Eötvös (27th July 1848–8th April 1919), Hungarian physicist who studied the
Earth’s gravity field.
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Uℓm(R0)
ℓ+1
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∂rUℓm(R0)
ℓ+2
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∂rrUℓm(R0) at surface
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)ℓ+1 (
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r
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Figure 2.1: Meissl’s spectral scheme for the conversion of the geoid anomaly, gravity anomaly
and gravity gradient anomaly evaluated either at the surface (with radius R0) or at an altitude
r −R0 (r ≥ R0) (after Rummel and van Gelderen [1995]).

ρ(r ′) =
∑

ℓ,m

ρℓm(r
′)Yℓm(ϑ

′, ϕ′), (2.28)

1

|r − r ′| =
4π

r

∑

j

1

2j + 1

(

r

r ′

)j+1
∑

k

Y ∗
jk(ϑ

′, ϕ′)Yjk(ϑ, ϕ) r < r′, (2.29)

1

|r − r ′| =
4π

r

∑

j

1

2j + 1

(

r ′

r

)j
∑

k

Y ∗
jk(ϑ

′, ϕ′)Yjk(ϑ, ϕ) r ≥ r′. (2.30)

where asterisk denotes complex conjugation. Together with the relation of orthonormality
(A.7) and assuming a spherical body with external radius R0, we obtain the following
equations:

Uint(r) =
∑

ℓ,m

[

4πGr

2ℓ+ 1

R0
∫

min(r,R0)

(

r

r′

)ℓ−1

ρℓm(r
′) dr′

]

Yℓm(ϑ, ϕ) r < r′, (2.31)

Uext(r) =
∑

ℓ,m

[

4πGr

2ℓ+ 1

min(r,R0)
∫

0

(

r′

r

)ℓ+2

ρℓm(r
′) dr′

]

Yℓm(ϑ, ϕ) r ≥ r′, (2.32)

U(r ) = Uint(r) + Uext(r), (2.33)

which define the resulting spherical harmonic coefficients of the geopotential Uℓm(r).
A common case in geophysics is the consideration of a deformed boundary associated

with a density change ∆ρ that could be described by a set of topographic coefficients tℓm
referenced to a radius D, e.g., surface or crust/mantle interface. In the linear approximation
(for details see Section 3.1) we can substitute the real density distribution using the Dirac10

10Named after Paul Adrien Maurice Dirac (8th August 1902–20th October 1984), English theoretical
physicist who contributed to the development of quantum mechanics and quantum electrodynamics.
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delta function and the product of the density change and the undulations height ρℓm(r
′) =

δ(r′−D)∆ρtℓm. Then, the resulting geopotential coefficients induced by topographic masses
are given by:

Uℓm(r) =
4πGr

2ℓ+ 1

(

r

D

)ℓ−1

∆ρtℓm r < D, (2.34)

Uℓm(r) =
4πGr

2ℓ+ 1

(

D

r

)ℓ+2

∆ρtℓm r ≥ D, (2.35)

Uℓm(R0) =
4πGR0

2ℓ+ 1
∆ρtℓm, for the surface topography (D = R0). (2.36)

This approximation is valid for any topographic feature of degree ℓ for which the vertical
dimension is smaller than the given wavelength i.e. t ≪ 2πR0/ℓ [e.g., Martinec, 1991],
otherwise a substantial amount of the topography induced gravity signal could be neglected
[e.g., Belleguic et al., 2005]. In such a case, a number of alternative approaches exist
[e.g., Martinec and Pěč, 1989; Balmino, 1994; Wieczorek and Phillips, 1998] of which the
formulation of Wieczorek and Phillips [1998] is very similar to the equations (2.34)–(2.35):

Uℓm(r) =
4πGr

2ℓ+ 1

(

r

D

)ℓ−1

D∆ρ

ℓ+3
∑

n=1

ntℓm
Dn n!

∏n
j=1(ℓ+ 4− j)

ℓ+ 3
r < D, (2.37)

Uℓm(r) =
4πGr

2ℓ+ 1

(

D

r

)ℓ+2

D∆ρ
ℓ+3
∑

n=1

ntℓm
Dn n!

∏n
j=1(ℓ− 3 + j)

ℓ− 2
r ≥ D, (2.38)

where ntℓm are the spherical harmonic coefficients of the n-th power of topography (for n = 1
these equations transform to (2.34) and (2.35)). The sum

∑

n makes the computations very
time consuming and therefore in practise it is truncated after the first n = 5 terms [e.g.,
Wieczorek, 2007].

Some authors [e.g., Yuan et al., 2001; McGovern et al., 2002, 2004; Wieczorek, 2007]
employ a normalization using the factor GM/R0 (i.e. the mean value of the geopotential)
which then makes e.g. the formula (2.36):

Ũℓm(R0) =
4πR2

0

M(2ℓ+ 1)
∆ρtℓm, (2.39)

which than implies changes in the equations (2.17) and (2.18) and all others:

U(r ) =
GM

r

ℓmax
∑

ℓ=2

ℓ
∑

m=−ℓ

(

r

D

)ℓ+1

ŨℓmYℓm(ϑ, ϕ) r < D, (2.40)

U(r ) =
GM

r

ℓmax
∑

ℓ=2

ℓ
∑

m=−ℓ

(

D

r

)ℓ

ŨℓmYℓm(ϑ, ϕ) r ≥ D. (2.41)

2.1.1 Measurement techniques

As an artificial satellite orbits around the planet of interest, its path, which is determined
by the orbital (so-called Kepler’s) elements and a number of external forces, is modified by
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the lateral variations in the planet’s gravity field. Of the highest influence is the planetary
flattening [e.g., Novotný, 1998] but also other, higher terms, play a role. In this section, a
brief overview of the methods used in planetary science to determine the gravity field of a
planet is given.

However, before any gravity reconstruction can be undertaken, a precise determination
of the satellite’s position, taking into account all possible factors, must be done first. Aside
from its own dynamic propulsion, there is also the gravitational influence of other planets,
tidal forces, the solar wind pressure, atmospheric drag etc. that all must be modeled ap-
propriately. Then, in principle, the radial error δr (referenced to the Earth observatory)
is very small (typically < 1 m) as the distance can be read directly from the 2-way ra-
dio communication with the satellite, while today also the along/across-track (δϑ/δϕ) error
decreases significantly (being typically < 10 m) [e.g., Neumann et al., 2001]. Moreover, em-
ploying the technique of altimetery crossovers (i.e. doing the altimetry measurements over
one spot multiple-times during different crossing orbits) can improve the orbit geometry
determination even more.

Once the position of the satellite in orbit around the planet is known with a sufficient
accuracy, we can evaluate the local accelerations of spacecraft (read from the radio sig-
nal Doppler tracking) due to the influence of lateral changes in planetary gravity. This
along-track varying factor can be studied by the line-of-sight (LOS) accelerations which
take advantage of the short-wavelength information content, but suffers from the unknown
possible error and only regional coverage [cf. Barnett et al., 2002; McKenzie et al., 2002].
Another and more widely used technique is to stack the information obtained during the
Doppler tracking of the spacecraft and invert them later by means of least-square inversion
for a global gravity field described by a set of spherical harmonic coefficients and their asso-
ciated errors [e.g., Konopliv et al., 1999, 2001; Yuan et al., 2001]. This method has several
advantages, but on the other hand it suffers from the unequal coverage of the planet, es-
pecially in the short-wavelength part of model. This problem is usually solved by applying
some a priory constraint for the solution above a certain degree ℓcrit – usually a modified
Kaula’s rule of thumb [Kaula, 1966] is employed. Additional improvement in the gravity
field solution can be achieved using micro-accelerometers on board the spacecraft which
provide us with a direct reading of the non-gravitational forces acting on the satellite [e.g.
Iess and Boscagli, 2001].

Recently a new method for the investigation of planet’s gravity field emerged with the
use of the micro-gradiometer [e.g., Koop et al., 2006]. This device, due to its construction (it
can be approximated by a pair of accelerometers placed along a desired measurement axis),
can sample directly changes in the gravity acceleration which can then be transformed to
gravitational potential (see the equation (2.26)). This leads to a progressive improvement
of the obtained gravity field, especially over the medium and short-wavelengths, with the
maximum possible degree of model even twice or three-times higher than from the use of the
Doppler tracking method (for the same orbit height). However, this concept is technically
very demanding to implement. Alternatively, such a concept can be realized using two
spaceprobes flying apart on the same track with a continuous tracking of their separation
by radio ranging (such as the GRACE mission – see e.g., Klokočńık et al. [2008]).
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Figure 2.2: Clementine lidar lunar topography measurements [Smith et al., 1997]
(freely available at http://pds-geosciences.wustl.edu/missions/clementine/gravtopo.html) su-
perposed on the albedo map of the Moon produced by the Naval Research Laboratory from
photographic images obtained by the same spaceprobe.

2.2 Topography

The second important quantity that can be used to constrain the structure of the planetary
subsurface is the surface topography. The most precise way in the terms of the global radius
measurements is the radar/lidar (RAdio/LIght Detection And Ranging) altimetry (with the
second one achieving much better results) [e.g., Smith et al., 1997; Rappaport et al., 1999;
Smith et al., 1999]. The basic principle is simple and is based on a high number of signal shots
directed from the spaceprobe towards the planetary surface and measurements of the return-
signal arrival time. The resulting digital elevation model (DEM) has a very good coverage
along the track, however due to the rotation of the planet and the inclination of the orbit
in respect to the planetary polar axis, the longitudinal coverage is irregular and sometimes
insufficient (see Figure 2.2 for the a case of lunar topography model). Despite that fact, after
a sufficiently long campaign the resulting coverage is usually 1◦×1◦ or better (e.g., for Mars
the final model based on laser altimetry data has a resolution of 1/128◦ × 1/128◦ globally –
available at http://pds-geosciences.wustl.edu/missions/mgs/megdr.html) with measurement
accuracy ∼1–10 m [cf. Neumann et al., 2001].

To improve the longitudinal resolution of the DEM models, a 3D stereo-camera can
be employed, a concept pioneered by the Mars Express mission. This instrument uses (at
least) two cameras pointing forward and backward along the track which obtain images of
the surface from different angles, allowing for a precise – although local – DEM model. It
provides a relatively uniform resolution ∼10’s meters per pixel depending on the observation
height, and vertical determination accuracy ∼1 pixel (i.e. also ∼10’s meters). Apart from
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Planet R0 [m] M [kg] g0 [ms−2] ρ̄ [kgm−3] T [days] 1/α

Mercury 2439.7× 103 3.302× 1023 3.7 5427 58.646 0

Venus 6051.8× 103 48.685× 1023 8.9 5204 243.018 0

Earth 6371.0× 103 59.736× 1023 9.8 5515 0.997 298.256

Moon 1737.1× 103 0.735× 1023 1.6 3346 27.321 > 825

Mars 3389.5× 103 6.419× 1023 3.7 3934 1.025 169.779

Io 1821.6× 103 0.893× 1023 1.8 3528 1.769 –

Europa 1560.8× 103 0.480× 1023 1.3 2989 3.551 –

Ganymede 2631.2× 103 1.482× 1023 1.4 1942 7.155 –

Callisto 2410.3× 103 1.076× 1023 1.2 1834 16.689 –

Titan 2576.0× 103 1.345× 1023 1.4 1880 15.945 > 5000

Table 2.1: Compilation of physical characteristics for the terrestrial planets and big moons
of the Solar system (based on data published by Anderson et al. [1987]; Sohl et al. [1995];
Konopliv et al. [1999]; Smith et al. [1999]; Rappaport et al. [1999]; Konopliv et al. [2001];
Spohn et al. [2001b]; Schubert et al. [2003]; Jacobson et al. [2006]; Wieczorek et al. [2006];
Seidelmann et al. [2007]; Nimmo et al. [2007]; Zebker et al. [2009]).

the fact that with such a high resolution the global coverage of a planet’s surface is very
time demanding, if not impossible because of the typical life-span of a spaceprobe, the main
disadvantage comes from the fact that the elevation model is only relative, allowing no
radius measurements. Therefore, a combination of the stereo-camera method with the lidar
measurements is highly desired [e.g., Blanc et al., 2007]. Various other techniques employing
visual observations for the DEM reconstruction exist (e.g., using multiple observations of
the same region from different angles and the above mentioned principle or employing the
information about the sun-elevation angle and the length of the observed shadows), however,
with much lower resolving power and accuracy.

Once a global DEM of the planetary topography (in reality of the planetary shape, since
the term topography usually refers to the shape corrected to the geoid) is available, it can
be converted into the spectral domain using the formula (A.8) or some other suitable com-
putational approach [cf. Neumann et al., 2004]. Then, with or without the mean planetary
radius R0 normalization, the equation for the spherical harmonic synthesis takes the form:

t(ϑ, ϕ) =

∞
∑

ℓ=0

ℓ
∑

m=−ℓ

tℓm Yℓm(ϑ, ϕ), (2.42)

t(ϑ, ϕ) = R0

∞
∑

ℓ=0

ℓ
∑

m=−ℓ

t̃ℓm Yℓm(ϑ, ϕ), (2.43)

Whether or not the supplied data set is normalized by the mean planetary radius can be
judged based on the value of ℓ = 0 coefficient, since t̃00 ≡ 1. The mean planetary radii for
most important terrestrial objects of the Solar System are listed in Table 2.1.
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2.3 Observed planetary gravity and topography

In this section the gravity and topography data obtained for Venus and Mars [Konopliv et al.,
1999; Rappaport et al., 1999; Smith et al., 1999; Konopliv et al., 2006] will be presented,
together with a short description of their most prominent features and general characteris-
tics. In the following chapters these two objects are often referred to as being typical big
and small terrestrial planets. However, first information about the gravity and topography
data of other terrestrial objects of the Solar System are shortly reviewed, as they are not
the topic of this work and/or we do not have the adequate data for them.

2.3.1 Mercury, Moon and other terrestrial objects

The closest planet to the Sun is Mercury which remains one of the least explored planets
of our planetary system. Due to the fact that interplanetary flight in such proximity of
the Sun is very fuel consuming, only one spacecraft has explored this planet, Mariner 10,
which in the 1970’s made three successive flybies. Unfortunately, it was not equipped with
any altimetric device and therefore only limited topographic information was obtained using
the photometric methods [Cook and Robinson, 2000; André et al., 2005]. Gravity informa-
tion from the flybies was limited to coefficients C20 and C22 with quite high uncertainty.
However, in the beginning of 2008, the spaceprobe MESSENGER made its first successful
flyby around Mercury, which will be followed by an orbital mission starting in 2011. Un-
fortunately, the chosen orbit is a very eccentric one, which means that only one hemisphere
will be investigated in terms of gravity and topography data. Another spaceprobe called
BepiColombo is already planned to arrive at Mercury in 2019, promising global topography
coverage and a complete spherical harmonic model of gravity field up to degree ℓ ∼ 25
[Milani et al., 2001].

On the other hand, the proximity of our Moon makes it one of the best explored terrestrial
objects. Unfortunately its coverage in terms of gravity and topography data is strongly
unequal. While the topography of the polar regions is well known thanks to ground-based
photometric observation from the Earth, the lidar coverage between the polar regions is
quite sparse (see Figure 2.2) [Wieczorek, 2007]. Even more pronounced is the inequality
in the gravity data. Despite the fact that radio tracking of both manned and unmanned
spacecrafts started already in the 1960’s, due to the Moon’s tidally locked rotation almost
no data were collected directly over the far-side. Therefore, the available data today have
very good accuracy on the near-side (information up to degree ℓ ∼ 150) but the far-side
data have a large associated error [Konopliv et al., 2001; Hikida and Wieczorek, 2007].
Over the majority of the mare regions were nevertheless already in the first observations
found strong positive anomalies caused probably by mass-concentrations (mascons) at or
beneath the surface [Muller and Sjogren, 1968; Wieczorek and Phillips, 1998; Konopliv et al.,
2001]. The prominent topographic feature is a dichotomy between the near-side mares (big
impacts infilled by lava) and the far-side highlands, whose origin is still unclear [Wieczorek
et al., 2006]. In recent years an advancement in the knowledge of both lunar gravity and
topography was done as three well-equipped spacecraft, Kaguya, Lunar Reconnaissance
Orbiter and Grail made very detailed observations of the Moon.
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For the other terrestrial objects listed in Table 2.1, we have no data except for those
obtained from (numerous) flybies. These are usually sufficient for the derivation of ba-
sic structural models but the coverage is not sufficient for the construction of a spherical
harmonic model covering the lateral variations in the gravity field [Schubert et al., 2003].
Single point mass anomalies were, however, observed [e.g., Palguta et al., 2006], promising
some interesting results once orbital missions are send for continuous observational cam-
paigns. Indeed, with an increasing interest in the exploration of Europa and Titan, there is
a promising outlook for orbital missions to those two exceptional moons [e.g., Blanc et al.,
2007; Clarke, 2007]. Concerning the topography of the big natural satellites, some infor-
mation derived using the photometric methods were obtained mainly during the Galileo
mission to Jupiter and the Cassini mission to Saturn [e.g., Nimmo et al., 2007], however,
for global coverage an orbital mission is still required [Blanc et al., 2007].

2.3.2 Venus

The planet Venus’ surface is hidden below a very dense atmosphere which for a long time
disabled its observation. The first maps of the planet’s topography were made in the 1970’s
and these effort culminated with the Magellan spaceprobe radar mapping mission in the
beginning of 1990’s [cf. Wieczorek, 2007]. The obtained topographic map has a resolution
1/20◦ × 1/20◦ per pixel and was used to produce a spherical harmonic model GTDR3.2
complete up to degree and order 360 [Rappaport et al., 1999], shown in Figure 2.3. The
majority of the surface is covered with shallow lowlands but several features stand above
them. First are two elevated highland regions, Ishtar Terra (close to the north pole) and
Aphrodite Terra (close to the equator), with the first exhibiting the highest elevation (∼11
km) above the reference radius in the region of the Maxwell mountains. There are also
several large volcanic constructs of which the most prominent are in Atla and Beta Regiones
(0◦ N, 200◦ E and 25◦ N, 280◦ E, respectively), that reach heights of several kilometers. The
overall characteristic of the Venus’ topography is, however, unimodal [e.g., Schubert et al.,
2001], suggesting that the elevated landforms are not a consequence of continental crust
production processes as in the case of the Earth [e.g., Herrick and Phillips, 1992].

The best today available gravitational field of Venus is a combination of the tracking data
from various missions, with the major contribution coming from the Magellan mission. The
MGNP180U spherical harmonic model is complete up to degree and order 180 [Konopliv
et al., 1999] possessing, however, a substantial error for degrees ℓ > 60. The uncertainties
in the spatially expanded gravity field vary laterally with the lowest error in the equatorial
region (see Fig. 3 in Konopliv et al. [1999]). Its representations in the form of first approx-
imation geoid anomalies h and gravity anomalies gr are also depicted in Figure 2.3. The
striking feature is a very good correlation with topography, even at the longest wavelengths,
which is the opposite of the situation on the Earth [e.g., Wieczorek, 2007]. One of the
possible explanations for this phenomena is that at long wavelength the majority of surface
topography is connected to the dynamic processes in the mantle [e.g., Kiefer et al., 1986;
Pauer et al., 2006]. The highest geoid/gravity anomalies (> 100 m and > 200 mGals, re-
spectively) are associated with the volcanic constructs but the Terra regions also have quite
a strong gravity signal. Noticeable also is a small scale signal connected to several ridges
with the most prominent one being Artemis Chasma, visible south of Aphrodite Terra.
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Figure 2.3: Venus geoid, gravity disturbance anomaly and topography, together with their
power spectra computed using eq. (A.10) (ℓmax=90 in all cases). The map images are plotted
in Mollweide projection centered at 30 ◦E meridian and the geoid and gravity anomaly are
underlaid by the topography gradient image. The depicted topography is referenced to the
spherical radius of 6051.8 km.
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2.3.3 Mars

The topography of Mars is known to an unprecedent level thanks to the measurements of
MOLA lidar onboard the Mars Global Surveyor spacecraft [Smith et al., 1999]. The result-
ing data set has attained a uniform coverage of 1/128◦×1/128◦ and an accuracy of ∼1 meter
using the crossover technique [Neumann et al., 2001]. Its gridded version with a resolution
of 0.25◦, named MEG025T, is shown in Figure 2.4. What is not shown here is that the
planetary shape has quite a substantial polar flattening (∼20 km difference between the
equatorial and polar radii) which is a consequence of relatively fast planetary rotation. The
most obvious feature is the north-south dichotomy, in the elevation which remains unex-
plained, although various models have been proposed e.g., a degree-1 convection [e.g. Zhong
and Zuber, 2001] or an enormous impact in the northern hemisphere [e.g., Andrews-Hanna
et al., 2008]. In addition, Mars’ topography is dominated by a giant volcanic construct
Tharsis, which occupies most of the western hemisphere with several prominent volcanoes
of which the highest one, Olympus Mons, rises ∼22 km above the zero-elevation reference
level. Volcanic activity was also present in the eastern hemisphere in the region surrounding
Elysium Mons volcano (25◦ N, 145◦ E). Other noticeable topographic features are the giant
impact basins Hellas, Isidis and Argyre and the vast rift system Valles Marineris, east of
the Tharsis region.

The Martian gravity field was also notably improved by the Mars Global Surveyor mis-
sion, however, it is still being improved by the fleet of spacecrafts currently orbiting Mars
[e.g. Wieczorek, 2007]. The most recent spherical harmonic gravity model field, JGM95J01,
is complete up to degree and order 95, with the error reaching the signal strength around
degree ℓ ∼ 70 [Konopliv et al., 2006]. The geoid derived from this model is shown in Figure
2.4. After removing the rotation flattening contribution (about 95% of U20 coefficient), it
is clearly dominated by U22 structure connected to the enormous load of Tharsis [Phillips
et al., 2001]. Other observable features are geoid heights associated with the biggest volca-
noes (with the peak almost 2 km in the region of Olympus Mons) and large impact basins
Hellas and Utopia. The radial gravity anomaly shows a little more detail e.g., the negative
anomaly connected to Valles Marineris (almost −700 meters) and the mascon signal con-
nected to the Isidis and Argyre impact basins. The short wavelength oscillations, especially
in the northern lowlands, can be attributed to a number of subsurface loads connected to
the resurfaced impact craters discovered in high-resolution topography data [Frey et al.,
2002].
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Figure 2.4: Mars geoid, gravity disturbance anomaly and topography, together with their
power spectra computed using eq. (A.10) (ℓmax=90 in all cases). The map images are
plotted in Mollweide projection centered at 0 ◦ meridian and the geoid and gravity anomaly
are underlaid by the topography gradient image. The depicted topography is referenced to
the second-order precision geoid, including the rotational term.
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Chapter 3

Forward Modeling of the
Gravitational Signal

Any deviation of a planetary surface from its hydrostatic shape in form of positive (or
negative) topography causes a mass excess (or deficit), and alters the equilibrium in the
lithostatic pressure. Because the crust and underlaying lithosphere are not infinitely rigid,
they both deform in a way to achieve again some level of equilibrium. Studying this defor-
mation both quantitatively and qualitatively can provide useful information not only about
the loading processes (which emplaced the studied topography on the surface) but also on
the properties of the crust and underlaying mantle and eventually even the deeper parts of
the planetary interior.

In the case of the Earth, a seismic sounding e.g. in the oceanic volcanic regions, can
display the deformation of the crust directly [e.g., Watts, 2001]. However, for the other
planets, this observation is not available (though planned in future, cf. Lognonné [2005])
and even for the Earth the deep interior is not well examined due to an insufficient coverage
[e.g., Běhounková et al., 2007]. However, we can take advantage of the fact that all density
inhomogeneities induced by or supporting the observed topographic features also generate
a gravity field that can be observed exterior to the planet (see Section 2.1.1). Joint analysis
of both gravity and topography can then provide the desired information if some a priori
assumptions are made concerning the mechanism of the observed topography compensation
[e.g., Mitrovica and Peltier, 1992; Wieczorek and Phillips, 1997; Simons et al., 1997; Čadek
and Fleitout, 2003; Vezolainen et al., 2004; Andrews-Hanna et al., 2008].

In this chapter these compensation processes will be studied in detail and, using the
theoretical background defined in the previous text, the corresponding gravity signal will be
modeled. Throughout this work, several simplifications are adopted, of them the most often
used being the assumption of homogeneous crust. This is in contradiction to the observation
made on the Earth where the crust is seen to be heterogenous depending on its local origin
[e.g., Čadek and Martinec, 1991; Watts, 2001]. However, as a first approximation in the
absence of detailed geological and seismological information, this assumption is widely used
in planetary science [e.g., Turcotte et al., 1981; McNutt et al., 1988; Smrekar and Phillips,
1991; Neumann et al., 1996; Phillips et al., 2001].

29
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3.1 Crustal isostasy

In the 18th century, a debate arose about whether the shape of the Earth was flatted at the
poles or the equator. To solve this questions, two expeditions were send to different latitudes
to make the required measurements [e.g., Novotný, 1998]. Among the methods they used
was also the determination of the elevation angle of the Polaris star from the horizon,
determined using level-bubble tools. One of the participants of the Peru expedition, Pierre
Bouguer1, noted that the deflection of the plumb close to the Andes mountains was not
severely influenced by their mass, a result contrary to his expectation based on Newton’s
gravitational law [e.g., Watts, 2001]. A century later during the geodetic survey in India,
a local deflection of the vertical was observed and also quantified. John Henry Pratt2

computed the attraction due to the Himalayas [Pratt, 1855] but arrived at a result three
times greater than the observed value. He accounted for this by the large uncertainty in
his knowledge of the mountains’ shape, whereas George Biddell Airy3 proposed that this
discrepancy came from neglecting the underground mass deficit compensating the mass
excess of mountains [Airy, 1855].

Airy had suggested using the analog of an iceberg, where the material underlaying the
crust is denser and therefore to compensate the surface mountains additional crustal volume
should substitute the mantle material. Today, the physical formulation of his concept is
called Airy (sometimes Airy/Heiskanen) isostasy and it assumes that at a certain depth
d below the surface with radius R0, the lithostatic forces are constant (d is chosen such
that the local deviation w(ϑ, ϕ) of the crust-mantle interface (CMI) from the mean crustal
thickness Dc always satisfy Dc + w(ϑ, ϕ) < d). Using a planar approximation (see Figure
3.1a) this concept can be generally formulated as:

R0+t(ϑ,ϕ)
∫

R0−d

ρ(r, ϑ, ϕ)g0 dr = const., (3.1)

where t(ϑ, ϕ) is the topography height referenced to zero level at R0 and g0 is a constant
approximating gravitational acceleration g(r). In a case of Airy isostasy, i.e. laterally ho-
mogeneous crust (ρ|r>R0−Dc−w = ρc) and mantle (ρ|r<R0−Dc−w = ρm) it can be substantially
simplified [e.g., Turcotte and Schubert, 2002] to:

ρct = (ρm − ρc)w (3.2)

w =
ρc

ρm − ρc
t. (3.3)

This approximation holds for the case of the Earth where the convergence of the verticals
from the surface down to the compensation depth is not an important factor i.e. R0 + t ≈
R0 − d. However, for other planets and moons in the Solar System, this assumption is no

1Pierre Bouguer (16th February 1698–15th August 1758), French mathematician and astronomer, who
improved significantly naval navigation and architecture.

2John Henry Pratt (4th June 1809–28th December 1871), English cleric and mathematician, who first
arrived at the principle of crustal balance during his stay in India.

3George Biddell Airy (27th July 1801–2nd January 1892), English mathematician and Astronomer Royal
(1835–1881), who, among other achievements, established the today used Greenwich meridian.



CHAPTER 3. FORWARD MODELING OF THE GRAVITATIONAL SIGNAL 31
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Figure 3.1: a) Conceptual drawing of Airy (left) and Pratt (right) crustal isostasy in a
planar geometry and b) in the spherical geometry (for a description of the parameters, see
the text).

longer valid due to their relatively small radius compared to the Earth (and Venus). Then,
each shell of a different radius r has a different surface area and therefore a spherical version
of equation (3.1) must be evaluated instead (see Figure 3.1b):

R0+t(ϑ,ϕ)
∫

R0−d

ρ(r, ϑ, ϕ)g0r
2 dr = const. (3.4)

Because the load is proportional to the shell radius as r2, it is not possible to transform
equation (3.4) into a form similar to (3.2). To obtain a linear dependency on t, a linear
approximation (from equation (3.6) to (3.7)) must be made [e.g., Lambeck, 1988]:

∫ R0+t

R0

ρcr
2 dr =

∫ R0−Dc

R0−Dc−w

(ρm − ρc)r
2 dr (3.5)

ρc

[

(R0 + t)3 −R3
0

]

= (ρm − ρc)
[

(R0 −Dc)
3 − (R0 −Dc − w)3

]

(3.6)

ρc

[

R3
0 + 3R2

0t−R3
0

]

= (ρm − ρc)
[

(R0 −Dc)
3 − (R0 −Dc)

3 + 3(R0 −Dc)
2w
]

(3.7)

ρctR
2
0 = (ρm − ρc)w(R0 −Dc)

2 (3.8)

w =
ρc

ρm − ρc

(

R0

R0 −Dc

)2

t. (3.9)

Today, number of models exists which take into account not only vertical movements in the
crust to achieve a state of isostasy but also lateral flow in the lower crust [e.g., Bott, 1999;
Nimmo and Stevenson, 2001]. This effect is important particulary in the case of thick crust
with comparatively high temperatures at its base. Nevertheless, the vertical adjustment
is much faster than this lower crustal flow [Nimmo and Stevenson, 2001] and therefore
considered as the primary mechanism to reach isostasy [e.g., Turcotte and Schubert, 2002].
To model the time evolution of crustal compensation, a viscoelastic model with two layers
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of distinct viscosities representing the crust and the mantle can be used. The isostatic state
is then reached when the degree of compensation cℓ (for its definition see equation (3.34))
approaches 1 [Zhong, 1997].

Historically, the second attempt to apply an idea of isostasy to crustal compensation
processes comes from Pratt four years later [Pratt, 1859] as a response to Airy’s concept. It
assumes a different means of topographic mass compensation, where instead of variations in
the thickness of the crust it considered variations in the crustal density. Then, the elevation
of the column Dc + t depends on its density ρ. The relationship between topography t and
density ρ can be evaluated in a planar approximation (see Fig. 3.1a) using equation (3.1)
and assuming constant crustal thickness i.e. w = 0 and variable crustal density ρ = ρc + δρ
[e.g. Lambeck, 1988; Turcotte and Schubert, 2002]:

ρcDc = (ρc + δρ)(Dc + t) (3.10)

(ρc + δρ) =
Dc

Dc + t
ρc (3.11)

δρ = − t

Dc + t
ρc. (3.12)

In the spherical geometry when the convergence of verticals is taken into account, we have
to use again equation (3.4) which, using the linear approximation and the above mentioned
assumptions (see Fig. 3.1b), gives [e.g., Tsoulis, 1999]:

(ρc + δρ) =
Dc

Dc + t

(

R0

R0 −Dc

)2

ρc (3.13)

δρ = − t

Dc + t
ρc −

D2
c(2R0 −Dc)

(Dc + t)(R0 −Dc)2
ρc. (3.14)

Pratt (sometimes called Pratt/Hayford) isostasy is not used as much in planetary science
as the Airy one, mainly because of the fact that planetary crust is for the highest possible
simplicity considered to be homogeneous [e.g., Smrekar and Phillips, 1991; Wieczorek and
Phillips, 1998; McGovern et al., 2002; Chenet et al., 2006]. However, on some terrestrial
object (Moon, Mars) we can observe whole-planet dichotomy in elevation and in its chemi-
cal/geological structure [Smith et al., 1999; Wieczorek et al., 2006]. For those cases, a Pratt
isostasy has been advocated as one of the possible mechanism to explain those dichotomies
[Wieczorek and Phillips, 1997; Spohn et al., 2001a; Belleguic et al., 2005], however, the
majority of the authors do not consider this effect in their works. This can, however, raise
some questions about their results when they implicitly assume a different chemical com-
position or origin. E.g. in the case of the Martian northern lowlands formation via a huge
impact that melted the crust and upper mantle, producing new crust in the impact area
[Andrews-Hanna et al., 2008]. Employing the Pratt isostasy concept (together with the Airy
one which shows itself widely applicable in the planetary research) could therefore improve
the quality of future planetary crust models.

The derivation of the gravitational signal of the compensated topography will now follow.
Here, only the Airy isostasy, which is simpler and much wider used, will be discussed. For
the case of Pratt isostasy, an integration of the signal induced by the density anomalies δρ in
the crust is needed, otherwise the procedure is quite similar (for details see Tsoulis [1999]).
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Figure 3.2: a) Degree attenuation factor for the gravity signal generated by topography
compensated by the Airy isostasy mechanism derived using a planar geometry Acart

ℓ =
1− (R−D

R
)ℓ+2 (dashed line) and spherical geometry Asph

ℓ = 1− (R−D
R

)ℓ (solid line) for planets
Venus and Mars with the same fixed crustal thickness Dc = 50 km. b) For comparison the
absolute error (multiplied by 10) between both attenuation factors δ = 10 × |Acart

ℓ − Asph
ℓ |

for Venus and Mars and the ”correctness” factor of the planar approximation factor
1− |Acart

ℓ − Asph
ℓ |/Asph

ℓ , which is typical for both studied cases, is shown.

The spherical harmonic formalism is used throughout the rest of this chapter. Starting with
equation (2.36) for the signal of the surface topography and (2.35) for the one induced by
CMI undulations wℓ, which is in the case of Airy isostasy evaluated using equation (3.9),
we obtain:

Uℓm =
4πGR0

2ℓ+ 1

[

ρctℓm − (ρm − ρc)wℓm

(

R0 −Dc

R0

)ℓ+2
]

(3.15)

wℓm =
ρc

ρm − ρc

(

R0

R0 −Dc

)2

tℓm (3.16)

Uℓm =
4πGR0

2ℓ+ 1

[

1−
(

R−Dc

R

)ℓ]

tℓm. (3.17)

In the case where the spherical correction is not applied (i.e. instead of equation (3.9),
equation (3.3) is used) the resulting exponent in equation (3.17) is ℓ + 2 instead of ℓ.
This influences in particular the lowermost degree signal below ℓ ∼ 20, as can be seen in
Figure 3.2. In both panels, it is obvious that the absolute difference in the attenuation
factors increases with decreasing planetary radius, which was already mentioned above,
since the convergence of verticals is faster. The interesting point is that the ”correctness” of
the planar approximation formula given by 1−δ/Asph

ℓ (for the definition of δ, see the caption
of Figure 3.2) is for both large and small planets the same, with a value of about 1% for
degree ℓ = 2 and approaching 100% for the short degrees (with 90% around degree ∼ 20).
The same derivation can be done taking into account the finite relief of both topography
and CMI using equation (2.38) instead of (2.35) (for details see e.g., Tsoulis [1999]).
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3.2 Concept of the elastic lithosphere

When the gravity signal above topographic features on the Earth and other planets is
examined, it shows that only some portion of it is generated by the mechanism of Airy
isostatic compensation [e.g., Frey et al., 1996; Wieczorek and Phillips, 1997; Watts, 2001;
McGovern et al., 2002]. The signal is in fact in the majority of cases stronger than predicted
using equation (3.17) which (if we assume that the deflection of the CMI is still caused only
by surface loading) means that the lithosphere has some resistance to the deformation.
This resistance is attributed to the elasticity of the crust and/or the uppermost part of the
mantle – the appropriate model therefore appears to be to an elastic plate/shell deflecting
beneath the exerted load [cf. Watts, 2001]. When the rheological parameters are known,
then the amount of elastic support given by the thickness of such a plate/shell, usually
called elastic (lithosphere) thickness De, can be determined. For very small values of De,
the compensation state approaches the Airy isostasy and for large ones there is almost no
compensation (see Figure 3.3).

ρc

ρm

t

Dc

wiso

De ∼ 0
∼ Airy isostasy

cℓ ∼ 1

w

0 < De < ∞
elastic flexure

0 < cℓ < 1

De → ∞
∼ no compensation

cℓ ∼ 0

Figure 3.3: Conceptual sketch of different crustal compensation states depending on the
elastic thickness De for the same surface load t. If De > 0 then the CMI deflection w < wiso

and the compensation coefficient (see equation (3.34)) cℓ < 1. Note that the load here has
the same density as the crust. If these two densities differ then one should take into account
the mechanism of loading to adequately estimate the mass of the load.

Using the compensation models derived later in this chapter, it was found that the
deflection of the crust (which depends on the thickness of the supporting elastic layer)
varies depending on the age of the loading feature [e.g., Simons et al., 1997; Watts, 2001;
McGovern et al., 2002, 2004]. Visco-elasto-plastic models indeed confirmed that the elastic
plate ”freezes in” its elastic thickness at the time of loading [Albert and Phillips, 2000] which
can then be observed by analyzing the gravitational signal of the examined feature. This
”formal elastic thickness” depends on the temperature profile across the lithosphere and the
rheological parameters of both crust and mantle at the time of loading. Given them and
using the yield stress envelope formalism [e.g., McNutt et al., 1988; Watts, 2001] we can
compute the stress which can be sustained by the lithosphere before it yields, either by brittle
deformation (frictional sliding) or by ductile creep. If the actual stress (here to estimate the
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Rheology B [Pa−n s−1] n Q [kJmol−1] T (σy) [K]

diabase crust (dry) 1.1× 10−26 4.7 488 1029

olivine mantle (dry) 2.4× 10−16 3.5 540 1065

Table 3.1: Rheological parameters used for yield stress envelope calculation of Mercury’s
elastic lithosphere thickness evolution (see Fig. 3.4) [Karato et al., 1986; Mackwell et al.,
1998]. For the wet alternatives are (material contains some faction of water) all the param-
eters different as the water ”soften” the material [cf. Grott and Breuer, 2008].

upper bound the lithostatic pressure σlith is used instead) exceeds any of the critical values
of yield brittle stress σB or ductile stress σD, the lithosphere beneath this depth does not
exhibit elastic behavior anymore. Brittle deformation is considered to be independent of
rock type [Byerlee, 1978] and occurs if any of the compressional or extensional stress exceeds
the following [e.g., Mueller and Phillips, 1995; Grott and Breuer, 2008]:

σext
B = 0.786σlith σlith ≤ 529.9MPa (3.18)

σext
B = 56.7MPa + 0.679σlith σlith > 529.9MPa (3.19)

σcomp
B = −3.68σlith σlith ≤ 113.2MPa (3.20)

σcomp
B = −176.6MPa− 2.12σlith σlith > 113.2MPa. (3.21)

One can see that with increasing lithostatic pressure, the lithosphere becomes more
resistant to brittle failure. Contrary to this mechanism, ductile flow depends on the actual
rheological parameters of crust/mantle and with increasing temperature (i.e. with the depth
below the planetary surface) the strength of the lithosphere σD exponentially decreases
according to [e.g., Grott and Breuer, 2008]:

σD(T ) =

(

ε̇

B

)1/n

exp

(

Q

nRT

)

, (3.22)

where T is temperature, R is the universal gas constant, B, n and Q are the rheological
parameters describing behavior of the crust/mantle and ε̇ is the strain rate. Since we do
not know the strain rate for the active deformation mechanisms in planetary lithospheres,
a typical value of ε̇ = 10−17 s−1 is assumed [e.g., McGovern et al., 2004; Grott and Breuer,
2008]. To determine the bottom of elastically behaving layer a bounding yield stress must
be prescribed, typically taken to be σy = 15 MPa [e.g. Burov and Diament, 1995]. Having
these parameters for the assumed planetary crust and mantle rheologies (Table 3.1) the
critical temperature Ty for which σy = σD can be computed using equation (3.22) [Grott
and Breuer, 2008]:

Ty(σy) =
Q

R

[

ln

(

σn
yB

ε̇

)]−1

. (3.23)

In Figure 3.4a the yield stress envelopes for three different times are computed, based
on the heat flow qs from a parameterized thermal evolution model of Mercury (see Section
4.3) and the rheological parameters listed in Table 3.1. The thermal gradient was assumed
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Figure 3.4: a) Yield stress envelopes for Mercury’s lithosphere at times 300 My, 2 Gy and
4.5 Gy, constructed using the heat flow qs from the parameterized themal evolution model
presented in Section 4.3 and the rheological parameters listed in Table 3.1. The thick solid
line denotes the brittle yield stress σB and the thin lines denote the ductile yield stress σD.
b) Growth of the elastic thickness De based on the yield stress envelope calculations. The
crustal elastic thickness De,c is coincident with De until the moment it reaches the whole
50 km around 900 My. The associated jump in De is a consequence of the non-zero mantle
elastic thickness De,m at that time (see text for details).

to be constant with depth, depending only on the thermal conductivity for the crust kc =
3 Wm−1K−1 and mantle km = 4 Wm−1K−1. We can see the growth of the elastic lithosphere
(i.e. the region bounded by the smaller of the brittle and ductile yield stresses) with time
as the planet cools down. As can be seen for the case of 2 Gy, during a certain period of
time, the uppermost mantle can withstand higher stresses than the lowermost crust. There
is actually a short period of time when the lowermost crust does not behave elastically and
the uppermost mantle does [Grott and Breuer, 2008]. This incompetent crust then separates
two elastic layers of thicknesses De,c (for crust) and De,m (for mantle). The elastic thickness
of the whole system can then be computed as [Burov and Diament, 1995]:

De = (D3
e,c +D3

e,m)
1/3. (3.24)

This means that for a situation when De,m ≪ De,c, the resulting elastic thickness De ∼ De,c

as can be seen for the first 950 My in Figure 3.4b. Then, both separated layers merge into
one whose thickness is then the simple sum of the mantle elastic thickness De,m and the
crustal thickness Dc (because the whole crust now behaves elastically):

De = Dc +De,m. (3.25)

The difference between equation (3.24) and (3.25) causes a jump in the elastic thickness
at around 950 My for the given rheological parameters and thermal evolution scenario (for
others, this period of rapid elastic thickness growth can differ substantially or not be present
at all). Such a rapid increase in the observed elastic thicknesses with time was indeed found
for the case of Mars, and its fitting by models based on thermal evolution models provides
useful constraints on the rheology of the Martian crust [Grott and Breuer, 2008].
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3.3 Elastic shell models

To quantitatively describe the behavior of the elastic lithosphere in the presence of an applied
load the basic equations describing the behavior of elastic continuum must be used. For the
description of the rheology, in accord with the majority of works, Hooke’s law4 neglecting
the thermal dependency is used [Horský et al., 2001]:

σ = λ(∇ · u)I+ µ(∇u +∇Tu), (3.26)

where σ is a stress tensor induced by the displacement vector u, I is the identity tensor and
λ and µ are Lamé coefficients5 describing the rheology of a given material. An alternative
formulation of equation (3.26) employing the bulk modulus (incompressibility coefficient)
K is often used:

K = λ+
2

3
µ, (3.27)

σ = K(∇ · u)I+ µ

(

∇u +∇Tu − 2

3
(∇ · u)I

)

, (3.28)

Equation (3.28) must be combined with the continuity equation [e.g., Horský et al., 2001]:

∇ · u +
p

K
= 0, (3.29)

where p is the deviation from the pressure p0 of the radially symmetric body. The last of
the governing equations is the equation of motion which relates the changes in the stress to
the body forces vector f [e.g., Horský et al., 2001]:

∇ · σ + f = 0. (3.30)

For the incompressible case which is sometimes considered as an approximation for the
elastic lithospheres in planetary sciences [e.g., Zhong, 2002] the equations (3.28)–(3.30) can
be rewritten in the following form:

−pI + µ(∇u +∇Tu) = σ, (3.31)

∇ · u = 0, (3.32)

∇ · σ + f = 0. (3.33)

Equations (3.31)–(3.33) have to be considered together with the boundary conditions
(BC) applicable to the studied situation (e.g., top load consisting of the surface topography
or bottom load by stress generated dynamically in the planetary interior). Additionally,
if applicable, self-gravitation can be considered, which describes the change of the elastic
shell response caused by the gravity associated with mass heterogeneities induced by this
response [e.g. Zhong, 2002].

4Named after Robert Hooke (18th July 1635–3rd March 1703), English physicist, biologist (first obser-
vation of a cell), chemist, architect and Surveyor to the City of London.

5Named after Gabriel Lamé (22th July 1795–1st May 1870), French mathematician, who also worked on
many engineering problems (e.g. work on the design of bridges brought him to the study of elasticity).



CHAPTER 3. FORWARD MODELING OF THE GRAVITATIONAL SIGNAL 38

3.3.1 Thin elastic shell approximation

In most applications of elastic lithosphere modeling [e.g., Simons et al., 1997; McGovern
et al., 2002, 2004; Belleguic et al., 2005] it is sufficient to consider a thin elastic shell
approximation. This model has a great advantage compared to other approaches since
it allows the evaluation of the response of an elastic shell of constant thickness to an exerted
load using relatively simple analytical formula [cf. Turcotte et al., 1981]. It starts with the
governing equations for elastic continuum (3.28)–(3.30) and adopts several assumptions that
later allows the integration of the load-generated stress across the thickness of the assumed
elastic layer and approximate it with an infinitely thin layer of corresponding rigidity (for
details see Kraus [1967] and Beuthe [2008]). The resulting formula can then be transformed
to the spectral domain using the spherical harmonic formalism in the form of only the degree
dependent compensation coefficient cℓ [Turcotte et al., 1981]:

cℓ =
wℓm

wiso
ℓm

where wiso
ℓ is the isostatic deflection – see (3.9) (3.34)

cℓ =
1− fself

(σf1 + τf2)/f3 + 1− fself
, (3.35)

where the self-gravitational term fself and terms f1, f2, f3 are defined as follows:

fself =
3ρm

(2ℓ+ 1)ρ̄
, (3.36)

f1 = ℓ3(ℓ+ 1)3 − 4ℓ2(ℓ+ 1)2, (3.37)

f2 = ℓ(ℓ+ 1)− 2, (3.38)

f3 = ℓ(ℓ+ 1)− (1− ν), (3.39)

with ρm denoting the mantle density and ρ̄ the mean planetary density. The dimensionless
parameters τ (the shell rigidity) and σ (the bending rigidity) could be calculated from the
following expressions:

τ =
EDe

R2
0g0(ρm − ρc)

, (3.40)

σ =
τ

12(1− ν2)

(

De

R0

)2

, (3.41)

where R0 stands for mean radius of the planetary surface, g0 is the mean gravitational
acceleration, ρc the crustal thickness and De the elastic thickness. Young’s modulus6 E and
Poisson’s ratio ν of the modeled elastic lithosphere relates to the Lamé coefficient µ (shear
modulus) and incompressibility K in the following way [e.g., Horský et al., 2001; Turcotte
and Schubert, 2002]:

E =
9Kµ

3K + µ
ν =

3K − 2µ

2(3K + µ)
, (3.42)

µ =
E

2(1 + ν)
K =

E

3(1− 2ν)
. (3.43)

6Named after Thomas Young (13th June 1773 –10th May 1829), English physicist, physiologist (devel-
oped the theory of physiological optics) and one of the first decipherers of the Egyptian hieroglyphs.
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Figure 3.5: a) Degree compensation coefficient cℓ as defined by equation (3.35) for Venus
and three elastic thicknesses De = 25, 50, 100 km. b) The same but for Mars.

One should note, however, that the self-gravitation term in the equation (3.35) is just
a first approximation of this factor. In handling the self-gravitation influence on the amount
of exerted load correctly, one arrives at the following equation for applied pressure p caused
by the surface load of height t (for the case where the load density is equal to the crustal
density ρc) [Belleguic et al., 2005]:

p = −ρcU
∣

∣

∣

R0+t
− (ρm − ρc)U

∣

∣

∣

R0−Dc−w
(3.44)

Using a linear approximation to evaluate the geopotential relative to the values correspond-
ing to the mean surface radius Us and bottom of the crust Uc gives [Belleguic et al., 2005]:

p = −ρc

(

Us + t
dU

dr

)

− (ρm − ρc)

(

Uc − w
dU

dr

)

, (3.45)

p = −ρc(h
sg0 − tg0)− (ρm − ρc)(h

cg0 − wg0), (3.46)

p = g0[ρc(t− hs)− (ρm − ρc)(w + hc)], (3.47)

p
.
= g0[ρct− ρmh

s − (ρm − ρc)w], (3.48)

where the Bruns formula (2.19) was used with the gravitational acceleration g0 through the
whole lithosphere considered to be constant (i.e. Us = hsg0 and Uc = hcg0), assuming also
dU/dr through the whole lithosphere to be equivalent to −g0 and in the last step (which
is equal to equation (3) in Turcotte et al. [1981]) the geoid undulations at the level of CMI
were approximated by the value of the surface geoid anomaly hc .

= hs.
In Figure 3.5 the compensation coefficient cℓ for different elastic thicknesses De is com-

puted for Venus (a) and Mars (b), the parameters used in equations (3.35)–(3.41) being
listed in Table 3.2. The most obvious feature is that the compensation level for the same
harmonic degree ℓ and same elastic thickness differs substantially for each planet. Whereas
for Venus even 100 km thick elastic lithosphere does not influence the compensation for
ℓ < 10 by more than 10%, for Mars a 50 km thick elastic lithosphere at this spectral range
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Parameter Symbol Value Unit

Young’s modulus E 1× 1011 Pas

Poisson’s ratio ν 0.25 –

surface density ρs 2900 kgm−3

mantle density of Venus ρVm 3300 kgm−3

mantle density of Mars ρMm 3500 kgm−3

mean density of Venus ρ̄V 5245 kgm−3

mean density of Mars ρ̄M 3933 kgm−3

surface radius of Venus RV 6051.9× 103 m

surface radius of Mars RM 3389.5× 103 m

Table 3.2: Parameters used for the modeling of the compensation coefficient cℓ for Venus
and Mars using the thin elastic shell approximation (equation 3.35).

supports about 20% of the load by its own rigidity. Moreover, for Mars the compensation
coefficients for thick elastic lithosphere De > 50 km approach 0 (i.e. almost no crustal
compensation of the surface topography features) already for degrees ℓ ∼ 40 and lower, as
compared to Venus where the elastic thickness should be ∼ 100 km for cℓ to reach a value
around 0 before degree 100.

The resulting gravitational signal induced by the surface topography, represented by the
spherical harmonic coefficients tℓm, which is compensated by the local crustal variations in
the presence of the elastic lithosphere of thickness De, can be modeled using the equations
(3.15), (3.34) and (3.9):

wℓm = cℓ(De)
ρc

ρm − ρc

(

R0

R0 −Dc

)2

tℓm, (3.49)

Uℓm =
4πGR0

2ℓ+ 1

[

1− cℓ(De)

(

R −Dc

R

)ℓ]

tℓm. (3.50)

which is a result formally very similar to equation (3.17) for the signal associated with the
Airy compensated topography. And indeed, if De = 0, then both σ and τ are zero as well
and equation (3.50) transforms to equation (3.17).

In some works the thin elastic shell model (or some other one adapted to the spherical
geometry) is not used, but instead a planar model of an elastic plate is employed [cf. Watts,
2001; Turcotte and Schubert, 2002]. However, such a model has a substantial limitation
since it cannot address the membrane stress which is a generic property of the spherical
shell. Therefore, it is suitable mainly for the investigation of regions with a relatively thin
elastic lithosphere in the case of large planets (Venus, Earth) [Turcotte et al., 1981]. On
the other hand, in such a situation, it can be adapted to a variety of more complicated
cases that cannot be addressed by the thin elastic shell model, such as a broken elastic plate
or subducting tectonic plate, which due to the bending, changes its characteristic elastic
behavior [e.g., Watts, 2001].
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3.3.2 Thick elastic shell model

The thin elastic shell approximation described above has, however, several disadvantages.
Firstly, the results are not sensitive to the crustal thickness Dc which determines the refer-
ence radius of the second load on which the associated membrane stress depends. Secondly,
it does not take into account the internal density inhomogeneities in the lithosphere caused
by the compression (for ν < 0.5) in computing the applied load and therefore it does not
allow this factor to be included for the gravity computation (for this, the problems of sub-
surface loading [e.g., Forsyth, 1985; Belleguic et al., 2005] are related). Furthermore, it
cannot accommodate tangential force resulting from mantle flow. Therefore, the more ap-
propriate model of a thick elastic shell is needed [e.g., Janes and Melosh, 1990; Reindler and
Arkani-Hamed, 2003].

To do this, the set of equations (3.28)–(3.30) (or the equations (3.31)–(3.33) for the
incompressible case) must be supplied with the appropriate BC. For the top loaded elastic
lithosphere (topography loading) we require the traction vector s = σ · er to be zero at the
bottom of the lithosphere (stresses from the exerted load are on this boundary already fully
relaxed):

σ · e r = 0 (3.51)

and at the surface the tangential component of s to be also zero (because of no applied
tangential loads) and the radial component of s to be equal to the lithostatic pressure
induced by the topography t:

σ · er − [(σ · e r) · er] er = 0, (3.52)

(σ · e r) · e r = −tρcg0. (3.53)

Note, that in the equation (3.53) the load has implicitly the density equal to the crustal
density ρc. If this was not the case, and the load density ρl differs, then another version
of this equation must be used since the subsided load infills the surface deflection of the
original crust (see Figure 3.6) [e.g., Belleguic et al., 2005]. Therefore, we obtain:

[(σ · e r) · e r] er = [tρl − u · e r(ρl − ρc)]g . (3.54)

ρl = ρc

ρc

ρc

ρm − ρcρm

ρl

ρc

ρm

ρl 6= ρc

ρl

ρc ρl − ρc

ρm − ρcρm

Figure 3.6: Conceptual sketch of elastic compensation for features with a load density ρl
equal and different to the crustal density ρc – the load consists of the product of deflection
amplitude and density anomaly.
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This brings us to the evaluation of the body forces vector f (which again expresses
only the deviations from the spherically symmetric state). In the case of an incompressible
lithosphere and when no subsurface loads are considered, then the only contribution to f

consists of the CMI deflection located at the radius rcmi and the associated buoyancy given
by the density contrast between the mantle and crust ρm − ρc:

f cmi = g(ρm − ρc)u · e rδ(r − rcmi). (3.55)

If, on the other hand, the elastic lithosphere is considered compressible, an additional con-
tribution describing the effect of the crustal/mantle density inhomogeneities δρ = ρ− ρc/m
caused by the compression must be added to the internal forces vector f = f cmi + f K:

f K = δρ g =
p

K
ρc/mg , (3.56)

where p is the pressure deviation. In addition to this density change, a subsurface loading
that acts in a similar manner can be considered. Such a load can e.g., come from a magmatic
intrusion in the crust below the surface or consists of extinct magma chamber beneath the
crust. In such a case, when we approximate this load by a constant density deviation δρss,
then the equation (3.56) has to be changed in the following manner:

f K =

[

p

K
ρc/m + δρss

]

g . (3.57)

If the self-gravitation effect is not taken into account, then the gravitational acceleration
is assumed to be constant through the whole elastic lithosphere g = −g0e r. If, on the other
hand, we do consider this effect, then the appropriate changes should be applied to all the
equations containing this term i.e. to BC and the definition of f . In that case, the surface
topography has to be referenced to the geoid height hs (see equation (2.19)) instead to the
reference radius R0. More details on a solution with self-gravitation terms included could
be found in e.g. Turcotte et al. [1981]. In following text we will deal the body forces vector
as f = f cmi + f K.

The above listed equations describing the behavior of the elastic continuum must now
be solved. Since they should describe the behavior of an elastic spherical shell, this will
be done in a full spherical geometry using the spherical harmonic expansion approach (see
Section A.1). The parameters K, µ and ρ0 are considered to be only radially dependent.
The equation of continuity then reads as [e.g., Čadek, 1989; Matas, 1995]:

√

ℓ

2ℓ+ 1

(

d

dr
− ℓ + 1

r

)

uℓ−1
ℓm (r)−

√

ℓ+ 1

2ℓ+ 1

(

d

dr
+

ℓ+ 2

r

)

uℓ+1
ℓm (r)+

1

K(r)

σℓ0
ℓm(r)√
3

= 0. (3.58)

Next, the constitutive relation is considered. Since there are no lateral variations in the
rheological parameters in our model, only the symmetric part of the stress tensor deviator
(described by terms σℓ,0, σℓ,2, σℓ−2,2 and σℓ+2,2) is nonzero [e.g., Matas, 1995]. The same is
true for the spheroidal part of the displacement vector described by terms uℓ−1

ℓm and uℓ−1
ℓm ,

whereas the toroidal part is zero. Therefore, the rheological equation can be rewritten as
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the following three equations:

σℓ−2,2
ℓm (r)− 2µ

√

ℓ− 1

2ℓ− 1

(

d

dr
+

ℓ

r

)

uℓ−1
ℓm (r) = 0, (3.59)

σℓ2
ℓm(r) + 2µ

√

(ℓ+ 1)(2ℓ+ 3)

6(2ℓ− 1)(2ℓ+ 1)

(

d

dr
− ℓ− 1

r

)

uℓ−1
ℓm (r) −

−2µ

√

ℓ(2ℓ− 1)

6(2ℓ+ 3)(2ℓ+ 1)

(

d

dr
+

ℓ + 2

r

)

uℓ+1
ℓm (r) = 0, (3.60)

σℓ+2,2
ℓm (r) + 2µ

√

ℓ+ 2

2ℓ+ 3

(

d

dr
− ℓ + 1

r

)

uℓ+1
ℓm (r) = 0. (3.61)

The equation of motion can now be written as the following two equations:

−
√

ℓ

3(2ℓ+ 1)

(

d

dr
+

ℓ+ 1

r

)

σℓ,0
ℓm(r) +

√

ℓ− 1

2ℓ− 1

(

d

dr
− ℓ− 2

r

)

σℓ−2,2
ℓ,m (r) − (3.62)

−
√

(ℓ+ 1)(2ℓ+ 3)

6(2ℓ− 1)(2ℓ+ 1)

(

d

dr
+

ℓ+ 1

r

)

σℓ,2
ℓm(r) = −f ℓ−1

ℓm (r),

√

ℓ+ 1

3(2ℓ+ 1)

(

d

dr
− ℓ

r

)

σℓ,0
ℓm(r) +

√

ℓ(2ℓ− 1)

6(2ℓ+ 3)(2ℓ+ 1)

(

d

dr
− ℓ

r

)

σℓ,2
ℓm(r) − (3.63)

−
√

ℓ+ 2

2ℓ+ 3

(

d

dr
+

ℓ+ 3

r

)

σℓ+2,2
ℓ,m (r) = −f ℓ+1

ℓm (r).

The body forces vector f components for the compressible shell with no subsurface loads,
but with the crust-mantle interface at radius rcmi, are given by:

f ℓ−1
ℓm (r) = δ(r − rcmi)(ρm − ρc)g0

(

− ℓ

2ℓ+ 1
uℓ−1
ℓm (r) +

√

ℓ(ℓ+ 1)

2ℓ+ 1
uℓ+1
ℓm (r)

)

− (3.64)

− ρc/m(r)

K(r)
g0

√

ℓ

3(2ℓ+ 1)
σℓ0
ℓm −

√

ℓ

2ℓ+ 1
ρℓmg0,

f ℓ+1
ℓm (r) = δ(r − rcmi)(ρm − ρc)g0

(

√

ℓ(ℓ+ 1)

2ℓ+ 1
uℓ−1
ℓm (r)− ℓ+ 1

2ℓ+ 1
uℓ+1
ℓm (r)

)

+ (3.65)

+
ρc/m(r)

K(r)
g0

√

ℓ+ 1

3(2ℓ+ 1)
σℓ0
ℓm +

√

ℓ+ 1

2ℓ+ 1
ρℓmg0.

Finally, we rewrite the BC equations (3.52) and (3.53) – for details please see Appendix A).
We start with the top boundary, as it is somewhat more complicated to describe. Equation
(A.34) consists of two terms for Y ℓ−1 and Y ℓ+1, however to handle only one of them is
sufficient because the spheroidal problem is described by only one tangential component of
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Figure 3.7: Computational scheme for the thick elastic shell model. The shell, defined by the
outer (R0) and inner (R0−De) radii, is divided into n layers. For each layer the components
of the stress tensor σ and displacement vector u are evaluated (at its boundaries and in
its middle, respectively). This is done using the rheological equation (RE), constitutional
equation (CE), equation of motion (EM) and at the upper and lower boundary the boundary
conditions (BC).

traction. Since we are considering a vector field σ · er which is defined by two components,
only one additional equation is needed. This can be taken from (A.31):

√

ℓ− 1

2ℓ− 1
σℓ−2,2
ℓm −

√

(ℓ+ 1)(2ℓ+ 3)

6(2ℓ+ 1)(2ℓ− 1)
σℓ,2
ℓm −

√

ℓ

3(2ℓ+ 1)
σℓ,0
ℓm = tℓmρcg0

√

ℓ

2ℓ+ 1
(3.66)

ℓ + 1

2ℓ+ 1

√

ℓ− 1

2ℓ− 1
σℓ−2,2
ℓm (r)− 1

2ℓ+ 1

√

ℓ(ℓ+ 1)(ℓ+ 2)

2ℓ+ 3
σℓ+2,2
ℓm (r) −

−
√

3(ℓ+ 1)

2(2ℓ− 1)(2ℓ+ 1)(2ℓ+ 3)
σℓ,2
ℓm(r) = 0. (3.67)

Considering the lower boundary we can apply the same equations since the constraints are
placed on the stress as well, hence only equation (3.66) has to equal to zero.

The last step is to employ the discretization in radius. For that, a finite difference method
(see Appendix B) can be used, together with the alternating scheme to increase the stability
of the solution [e.g., Kývalová, 1994]. The shell is therefore divided into n layers with a
thickness d (bounded by n+1 boundaries) in which the governing equations are evaluated.
At the boundaries of the layers with radii ri, the stress tensor σ components are defined and
in the middle of each layer with radius si, the displacement vector u components are defined.
The density ρ and rheological parameters K and µ are prescribed for each layer. The BC
must also be evaluated at the upper and lower boundary, which means that the displacement
vector must also be defined here. The organization of the computational scheme is shown in
Figure 3.7. Finally, we have 6n + 8 unknowns and the same number of equations. As they
are all m independent, they can be solved for only degree ℓ and this solution can be applied
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to all coefficients of the given degree. Therefore, we can write using the matrix notation:

A(ℓ) · x (ℓ) = y(ℓ) (3.68)

where x is the matrix of unknowns (σℓ,0
i , σℓ,2

i , σℓ−2,2
i , σℓ+2,2

i , uℓ−1
i and uℓ+1

i ), A is a set of
coefficients forming the LHS parts of the equations, together with the unknowns, and y is
the vector of the RHS consisting of the internal force vector components and the surface
topography load. Arranging the elements of matrix A appropriately, we arrive at the band
matrix which is easy and fast to invert, thus by the product with y obtaining the solution
of x .

3.4 Dynamic compensation with a viscous shell

In the case of a viscous shell, the governing equations are of the same kind as for the previ-
ous case of the thick elastic shell: equation of motion, continuity equation and rheological
equation [e.g., Hager and Clayton, 1989; Čadek and Fleitout, 1999; Matyska, 2005]. Their
incompressible forms will be here employed as an approximation for the mantle convecting
material. It has been shown that such a simplification can have an impact on predicted
quantities such as dynamically generated gravity or surface topography [e.g., Forte and
Peltier, 1991; Defraigne et al., 1996], however the influence of compressibility is even for
the Earth (which is of the terrestrial planets the biggest one) rather minor, thus this as-
sumption is widely used [e.g. Richards and Hager, 1984; Čadek and Fleitout, 2003; Hüttig
and Stemmer, 2008]. For other planets where there are still large uncertainties about their
exact internal structure, such a simplification is acceptable [e.g., Spohn et al., 2001a; Zhong,
2002]. The rheology thus simplifies and can be described only by the dynamic viscosity η:

∇ · σ + f = 0, (3.69)

∇ · v = 0, (3.70)

−pI + η(∇v +∇Tv ) = σ, (3.71)

where σ is the stress tensor, f is the buoyancy force vector driving the mantle flow, v is
the velocity of flow and p is the pressure deviation.

As the boundary conditions (BC) at both the upper and lower shell’s surfaces are usually
prescribed a zero vertical velocity (i.e. no mass flux through these boundaries) and a free
slip (i.e. zero tangential stresses) [e.g., Č́ıžková, 1996; Tosi, 2008]:

v · e r = 0, (3.72)

σ · e r − [(σ · e r) · e r] e r = 0. (3.73)

Equation (3.73) can be rewritten using the traction vector s = σ · e r. Its radial component
is then not forced to be zero and can be interpreted in terms of dynamically generated
topography t associated with the density change ∆ρ, whose pressure balances the dynami-
cally generated stress (formally the same situation as in the case presented in the previous
section, where surface topography generates the stress exerted on the elastic shell, however
in reverse sense):

t =
s · e r

g∆ρ
. (3.74)
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This relationship is valid for both the upper boundary (i.e. the surface with the density
contrast ∆ρ = ρm since the thickness of the crust is negligible compared to the thickness of
the mantle) and the lower one (i.e. the CMB with the density contrast ∆ρ = ρcore − ρm).
The internal force f in the absence of phase transitions (which are important in the Earth’s
mantle dynamics [e.g., Čadek and Fleitout, 1999] and could also have some importance
for the lower mantle of Mars dynamics [e.g., Weinstein, 1995; Breuer et al., 1998]) can be
expressed as only the buoyant force caused by the local density deviation δρ:

f = δρ g . (3.75)

Using the spherical harmonic formalism, the above stated equations can be again rewrit-
ten. The results for the case of only radially changing viscosity η = η(r), which is considered
here, are however very similar to the ones obtained in the previous section, only writing in-
stead of the displacement vector u the velocity vector v . In addition, the equation of
continuity (3.58) in the viscous case does not have the compressibility term and the rheo-
logical equation (3.59)–(3.61) uses instead of the shear modulus µ the dynamic viscosity η.
The components of the internal force vector f are therefore:

f ℓ−1
ℓm (r) = −ρℓmg0

√

ℓ

2ℓ+ 1
, (3.76)

f ℓ+1
ℓm (r) = ρℓmg0

√

ℓ+ 1

2ℓ+ 1
. (3.77)

The equations of BC (3.72) and (3.73) can then be rewritten as:

√
ℓvℓ−1

ℓm (r)−
√
ℓ+ 1vℓ+1

ℓm (r) = 0, (3.78)

ℓ+ 1

2ℓ+ 1

√

ℓ− 1

2ℓ− 1
σℓ−2,2
ℓm (r)− 1

2ℓ+ 1

√

ℓ(ℓ+ 1)(ℓ+ 2)

2ℓ+ 3
σℓ+2,2
ℓm (r) −

−
√

3(ℓ+ 1)

2(2ℓ− 1)(2ℓ+ 1)(2ℓ+ 3)
σℓ,2
ℓm(r) = 0. (3.79)

The dynamic topography at the surface ts and CMB tcmb can now be evaluated as:

tsℓm = − 1

ρmg0

(

1√
3
σℓ,0
ℓm −

√

ℓ(ℓ− 1)

(2ℓ+ 1)(2ℓ− 1)
σℓ−2,2
ℓm − (3.80)

−
√

(ℓ+ 1)(ℓ+ 2)

(2ℓ+ 1)(2ℓ+ 3)
σℓ+2,2
ℓm +

√

2ℓ(ℓ+ 1)

3(2ℓ− 1)(2ℓ+ 3)
σℓ,2
ℓm

)

,

tcmb
ℓm = − 1

(ρcore − ρm)g0

(

1√
3
σℓ,0
ℓm −

√

ℓ(ℓ− 1)

(2ℓ+ 1)(2ℓ− 1)
σℓ−2,2
ℓm − (3.81)

−
√

(ℓ+ 1)(ℓ+ 2)

(2ℓ+ 1)(2ℓ+ 3)
σℓ+2,2
ℓm +

√

2ℓ(ℓ+ 1)

3(2ℓ− 1)(2ℓ+ 3)
σℓ,2
ℓm

)

.
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Finally, the radial discretization is done again in the same way as for the thick elastic shell
model (see Subsection 3.3 and Figure 3.7). Also, the solution of the unknown parameters
is obtained as in the previous case.

In Figure 3.8 the dynamic contributions to geoid, surface and CMB topography of Venus
from loads at different depths across the mantle in the form of the response functions hℓ(r),
tsℓ(r) and tcmb

ℓ (r) for various degrees are shown. The actual amplitudes depend on the
thickness of the discretization layer dr, however, the curves’ characteristics remain the
same. In the left column the isoviscous case is investigated. The results do not depend on
the viscosity η absolute value, but it can be shown that it is sensitive to its relative change
with depth. The geoid contributions show behavior similar to the skin-effect, when with
decreasing wavelength it is less sensitive to the deep perturbations and also the resulting
amplitude is smaller. Both the surface and CMB topography contributions increase as the
distance of perturbation is getting closer to the respective boundary. However, because all
the other planets, except the Earth, are most probably in a so-called stagnant lid regime,
when the uppermost part of the mantle is not participating in the thermal convection (c.f.
Breuer and Moore [2007]), it is appropriate to consider the stagnant lid viscosity to be
several orders of magnitude higher [e.g., Pauer et al., 2006]. The corresponding changes are
depicted in the right column of Figure 3.8. The dynamic surface topography contributions
remain similar but the CMB topography response for the longest wavelengths decreases
throughout most of the mantle. Therefore, the resulting geoid response function hℓ(r) (to
which the signal of CMB undulations also contributes) has somewhat larger amplitudes.

In planetary science we lack the information about the mantle temperature/density
structure which is available in case of the Earth [e.g., Čadek and Fleitout, 2003; Běhounková
et al., 2007]. Therefore the full 3D density structure must be approximated with some
simpler one. For that purpose, laterally changing but radially constant structures can be
used, which well approximate the radially averaged density variations. Such a model was
shown to allow for the mantle viscosity inversion with acceptable errors by Pauer et al.
[2006]. If we accept this approximation, we can stack the response functions into a depth-
independent form hℓ, t

s
ℓ and tcmb

ℓ , that depend on the viscosity profile η(r) and the stagnant
lid thickness Dstag. However, as a shell surface is smaller with decreasing radius r, the density
anomaly δρ has to increase as (R0/r)

2 in order to keep the mass anomaly δm constant with
depth [Pauer et al., 2006]. In Figure 3.9 a comparison is made of two different cases for
Venus and Mars in terms of these stacked response functions. Similarities between the two
planets in terms of general trends are obvious, however, the amplitudes of the dynamic
topography for Mars are roughly only 1/2 of those for Venus. This seems to be a direct
consequence of the much thinner mantle of Mars (1700 km compared to 3000 km of Venus).
Nevertheless, the geoid amplitudes remain similar, which gives rise to a higher admittance
ratio gℓ/t

s
ℓ in comparison to Venus. Such an admittance ratio can be in principle used to

derive the viscosity profile in a planet’s mantle [e.g., Richards and Hager, 1984; Kiefer et al.,
1986; Forte et al., 1994; Čadek and Fleitout, 2003; Pauer et al., 2006].
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Figure 3.8: Left column from top to bottom: Dynamically generated geoid, surface topography
and CMB topography of Venus for the case of an isoviscous mantle in the form of the response
functions hℓ(r), t

s
ℓ(r) and tcmb

ℓ (r) (ℓ = 2, 4, 8, 16, 32), respectively. Right column: The same
but for the case when a highly viscous stagnant lid ηstag/ηm = 1010 extending to 1/10 of the
mantle depth is present (indicated by the shaded regions). The applied load corresponds
to the thickness of each discretization layer (see Fig. 3.7) which in this case was 25 km.
Since the entire loading shell was considered to possess a unit load across its thickness,
the dynamic topography can be evaluated as dr/∆ρ, where the ∆ρ is the density contrast
corresponding to each boundary. For physical dimensions see Table 3.1, Rcore=3050 km and
∆ρcmb=5500 kgm−3.
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Figure 3.9: Stacked response functions for dynamic geoid, surface topography and admittance
for Venus and Mars. Two investigated cases here were the isoviscous mantle and mantle
with a high viscosity stagnant lid with no loading in it.
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Chapter 4

Inverse Modeling

In the previous chapter the methods for deriving the gravity field for given a surface/internal
loading and interior structure (i.e. knowing the properties of the crust, lithosphere and
mantle) were given. However, our effort in exploring the planets of the Solar System is
often exactly opposite to that, in that we have data of the observed gravity and topography
fields and we want to derive the past or current internal structure parameters like crustal
and elastic thicknesses [e.g., Simons et al., 1997; Wieczorek and Phillips, 1997; Barnett et al.,
2002; McGovern et al., 2002, 2004; Belleguic et al., 2005] or mantle viscosity and density
structure [e.g., Kiefer et al., 1986; Herrick and Phillips, 1992; Zhong, 2002; Vezolainen et al.,
2004; Pauer et al., 2006]. In the following, the most common methods for gravity and
topography data inversion are reviewed and also a connection between parameters derived
by these methods and thermochemical evolution models of planets is introduced.

4.1 Inversion of gravity and topography data

The resulting value of an unknown parameter vector x which gives the optimum prediction
of a modeled quantity directly depends upon the utilized procedure for the inverse mod-
eling. This is often realized by constructing a specific misfit function that is a measure
of the discrepancy between the original observed physical quantity and the predicted one.
In gravimetric inversions, the quantity which is fitted is usually the geoid h (or gravity
anomalies, see Section 2.1), either for the whole power spectrum or for a single degree ℓ:

M(x ) =
∑

ℓ,m

|hobs
ℓm − hpred

ℓm (x )|2, (4.1)

Mℓ(x ) =
∑

m

|hobs
ℓm − hpred

ℓm (x )|2. (4.2)

In equation (4.1) the employed norm is L2 which is the most common one in geophysi-
cal problems. However, in special cases, other norms could be used [cf. Matas, 1995]. If,
however, gravity is not the only modeled field, then the misfit function should be modified
accordingly. For instance, in the case of Venus both geoid and topography at long wave-
lengths seem to be of a dynamic origin, therefore if we try to model dynamic geoid the misfit
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function should also include the topography misfit [Pauer et al., 2006]:

Mdyn(x ) =
∑

ℓ,m

[

|hobs
ℓm − hpred

ℓm (x )|2 + λℓ|tobsℓm − tpredℓm (x )|2
]

, (4.3)

λℓ =
∑

m

|hobs
ℓm |2/

∑

m

|tobsℓm |2. (4.4)

where λℓ is a weighting function that makes the misfit from gravity and topography equally
important. On the other hand, in some models the modeled gravity field depends only
on degree ℓ and for all orders m the relation between input and output is constant. In
that case we can speed up the inverse modeling procedure by modifying the misfit function
accordingly. For example, if we assume that both the observed and the predicted gravity
field depend on the observed topography tℓm and some transfer function Zℓ (see Section
4.1.1), then equation (4.1) can be rewritten as:

M(x ) =
∑

ℓ

|Zobs
ℓ − Zpred

ℓ (x )|2. (4.5)

Equation 4.5 can be replaced by the variance reduction (or percentage of the fitted data)
[e.g., Čadek and Fleitout, 2003]:

P (x ) =

[

1−
∑

ℓ,m |hobs
ℓm − hpred

ℓm (x )|2
∑

ℓ,m |hobs
ℓm |2

]

× 100%, (4.6)

which gives a value between 0% (for a prediction equal to zero) and 100% (for a perfect fit
to the observed data). In principle, the variance reduction function for a single degree Pℓ(x )
can be constructed in the same way as the degree misfit (4.2) from the misfit function (4.1).

All of the above shown examples are constructed for the physical fields represented in
the spectral domain by a finite set of spherical harmonic coefficients. Nevertheless, the same
can be done in the spatial domain. For instance, the geoid-topography ratio (see Section
4.1.2) one can compute the misfit function simply as a summation of the local misfit over
the whole examined region of interest:

M(x ) =
∑

i

|hobs
i − hpred

i (x )|2. (4.7)

Among the other approaches to inverse modeling, one that is particulary suitable for es-
timating the most probable value of a single parameter xi from the unknown vector x is
a marginal probability study [e.g., Belleguic et al., 2005], which integrates the misfit between
observed and predicted fields over all the other parameters [Tarantola, 1987]. However, for
this method a modelization error σpred must be evaluated. This can be done for some models
(e.g. for the top loading where gravity depends only on the observed topography and its
crustal compensation) whereas for others this can be very difficult to estimate.

4.1.1 Global methods – admittance study

As shown in Chapter 3, the surface topography generates a contribution to the observed
gravity field according to its compensation state. Using again a spectral representation of
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both fields, we can determine an admittance factor representing the ratio between the geoid
and topography. However, since the real crustal and subcrustal structure is more compli-
cated than our simplified compensation models (meaning there are other contributions to
the gravity field that are not taken into account in our models) in practice we determine
instead of the ratio for each degree ℓ and order m, an order-averaged ratio Zℓ [e.g., Kiefer
et al., 1986; Simons et al., 1997; Schubert et al., 2001]. This then defines the gravity signal
degree-correlated and degree-uncorrelated (Iℓm) to the observed topography tℓm:

Zℓ =

∑

m hℓmt
∗
ℓm

∑

m tℓmt∗ℓm
, (4.8)

hℓm = Zℓtℓm + Iℓm. (4.9)

where asterisk means complex conjugation and hℓm again the observed geoid h.
The value of this admittance coefficient Zℓ depends not only on the values of the geoid

and topography coefficients, but also on how well these two fields are correlated for each
degree. To quantify that, a degree of correlation Cℓ can be defined and equation (4.8) can
then be rewritten as a product of this correlation coefficient and the ratio between the geoid
(both correlated and uncorrelated parts) and topography power (defined by the equation
(A.10)) for a given degree ℓ [e.g., Schubert et al., 2001; Pauer et al., 2006]:

Cℓ =

∑

m hℓmt
∗
ℓm

√
∑

m hℓmh∗
ℓm

∑

m tℓmt∗ℓm
, (4.10)

Zℓ = Cℓ

√

Sℓ(h)

Sℓ(t)
. (4.11)

From equation (4.10) one can see that the value of the correlation coefficient does not depend
on whether the coefficients of geoid or geopotential/gravity anomaly/gravity gradient are
taken into account (contrary to this, the admittance (4.8) does depend on which form of
the gravity field is employed). Because for each harmonic degree there is ℓ independent
spherical harmonic coefficients hℓm and tℓm, a statistical measure of the numerical value
of Cℓ must be taken. A so-called confidence level Gℓ can defined for any desired level of
correlation q ∈ 〈0, 1〉 and degree ℓ [Eckhardt, 1984; Pauer et al., 2006]:

G1(q) = q, (4.12)

Gℓ(q) = Gℓ−1(q) + q(1− q2)ℓ−1
ℓ−1
∏

i=1

2i− 1

2i
. (4.13)

In Figure 4.1a the degree correlation coefficients Cℓ for the gravity and topography of
Venus and Mars (see Chapter 2 for details) are displayed, together with the 95% correlation
confidence level computed using equations (4.10) and (4.12)–(4.13). In both cases, the
correlation starts below the chosen confidence level, however, then for higher degrees it
increases well above, until a certain critical degree where it falls below again (ℓ ∼150 and
70, respectively). This is probably caused by an increasing error present in the gravity field
solution which becomes for high degrees an important factor [Wieczorek, 2007]. In Figure
4.1b the corresponding admittances Zℓ for geoid and topography are shown, where they both
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Figure 4.1: a) Degree correlation between the gravity and topography of Venus and Mars,
together with the 95% level of confidence. b) Degree averaged admittance between the geoid
and topography of Venus and Mars.

exhibit anomalous lowermost degree(s) and then relatively uniform behavior. However, for
the interpretation of this quantity in terms of compensation mechanisms and appropriate
compensation parameter values, an inverse model is needed. For that purpose we use the
degree misfit function Mℓ(De, Dc) defined by equation (4.2) in the simplified form derived
using the admittance coefficients Zℓ as in equation (4.5). These are defined according to
equations (3.50) and (4.9), assuming the degree-uncorrelated part Iℓm = 0. Values of all the
other needed parameters are listed in Table 3.2 at page 40.

In Figure 4.2a the value of the crustal thickness Dc best fitting the observed Venus’
gravity field for a given mean elastic thickness De and observed topography is shown. The
first point to note is the fact that the optimum crustal thickness beyond degree ℓ ∼ 40
stays well below 50 km, independent of the elastic lithosphere thickness. The minimum
misfit (denoted with the diamond markers) evaluated separately for each degree moreover
shows that at these wavelengths, the optimum elastic thickness De is in the range 0–30 km
which (see Figure 3.5a), means very little elastic support. Assuming therefore effectively no
elastic support (i.e. Airy isostasy – see Section 3.1) and then using a simplified inversion
calculating the misfit function M(Dc) for degrees ℓ = 40 − 90, we arrive to the optimum
mean crustal thickness for Venus Dc = 35 km [Pauer et al., 2006]. For degrees ℓ < 40 on
the other hand, we see that the optimum crustal thickness is much higher, reaching values
> 100 km for the lowermost degrees. This seems to be an evidence that at this spectral
interval another compensation mechanism is employed. Using the dynamic compensation
model (see Section 3.4) this part of gravity signal can be explained as being generated by the
flow in the mantle of Venus giving moreover constraints on the mantle viscosity structure
[Pauer et al., 2006].
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Figure 4.2: a) An optimum crustal thickness Dc as a function of a degree and elastic litho-
sphere thickness De dermined by the inversion of geoid and topography of Venus. Diamonds
mark for each degree ℓ the elastic thickness value that gives (with the appropriate optimum
crustal thickness) the minimum value of the misfit Mℓ(De, Dc). b) The same but for the
case of Mars. The values of the optimum crustal thickness above 100 and 200 km for Venus
and Mars, respectively, are not shown (in both panels covered with white color).

The same misfit function Mℓ(De, Dc) is used in Figure 4.2b to analyze the gravity and
topography of Mars. The most obvious difference to Figure 4.2a is a shift in the optimum
values of the crustal thickness to higher values (Dc > 200 km) over the spectral interval
ℓ = 10− 50. Above this spectral range there is an interval of roughly 15 degrees where the
optimum crustal thickness is more-or-less constant for a fixed elastic thickness De. However,
for smaller elastic thicknesses, the values of this optimum crustal thickness reaches far above
100 km which is presumably the upper limit of the mean crustal thickness of Mars [Nimmo
and Stevenson, 2001; Wieczorek and Zuber, 2004]. Results beyond degree ℓ = 65 are not
a subject of our interpretation since the rapid decrease in correlation (Fig. 4.1a) suggest
that at these wavelengths the gravity field solution (see Section 2.1.1) is already strongly
biased by non-gravitational effects and various sources of error [cf. Konopliv et al., 2006].
These rather confusing results are most probably caused by the fact that in the degree
admittance Zℓ value are included contributions not only from the uniformly compensated
top-loaded features, for which accounts the employed admittance function, but also contains
signal from regions containing a substantial portion of the bottom loading [e.g., McGovern
et al., 2002, 2004; Belleguic et al., 2005], mascon-style loading [e.g., Neumann et al., 2004;
Searls et al., 2006] and top loading which occurs over a large range of elastic thicknesses
(i.e. different elastic thicknesses at the time of loading) [e.g. Grott and Breuer, 2008].
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4.1.2 Local methods – GTR and localization study

To overcome the problem connected to the global character of the admittance function’s
definition (4.8) a local geoid-topography ratio GTR can be studied instead by employing
the spatial representation of both of the above mentioned fields [e.g., Herrick and Phillips,
1992; Moore and Schubert, 1997; Wieczorek and Phillips, 1997]:

GTR(ϑ, ϕ) =
h(ϑ, ϕ)

t(ϑ, ϕ)
=

∑

ℓ,m

hℓmYℓm(ϑ, ϕ)

∑

ℓ,m

tℓmYℓm(ϑ, ϕ)
. (4.14)

The choice of a spectral interval ℓ ∈ 〈ℓmin, ℓmax〉 in such a case influences the resulting value
of both the geoid and topography in a nonlinear way and hence the GTR. Therefore, for the
purpose of the inverse modeling, the same spectral range as for the analyzed data should
be adopted. Because of those contributions to the gravity signal that are not included in
our compensation model (compare to the degree averaging for obtaining the admittance
coefficient) the widest possible spectral interval satisfying the assumption of the common
compensation mechanism should be employed [cf. Wieczorek and Zuber, 2004] to average
out the non-correlated parts of the gravity signal.

In order to allow an interpretation of the observed GTR, a theoretical model connecting
geoid with the inducing topography depending on a defined compensation state has to be
developed. One can use the forward models described in a Chapter 3 together with the
observed topography. However, to fully explore the necessary parameter space, this can be
quite time consuming. Instead of that, an appropriate analytical formula can be found. In
the case of the Earth, it has been shown that for many applications, a simple relationship
derived in planar geometry with the assumption of Airy isostasy can be used [Turcotte and
Schubert, 2002]. Assuming a crust with a uniform density ρc and mean thickness Dc with
the emplaced surface feature of topographic hight t(ϑ, ϕ), the resulting geoid h(ϑ, ϕ) is then:

h(ϑ, ϕ) =
πGρc
g0

[

2Dc t(ϑ, ϕ) +
ρm

ρm − ρc
t2(ϑ, ϕ)

]

. (4.15)

As the resulting geoid depends on the topography in a nonlinear way, a common practise is
to omit the second term in brackets (which is acceptable if Dc ≫ t(ϑ, ϕ)) which then results
in a simple ”dipole moment” expression for GTR [Ockendon and Turcotte, 1977; Haxby and
Turcotte, 1978]:

GTR =
2πGρc
g0

Dc. (4.16)

Similar consideration can be done for Pratt isostasy or for cases when the crust is overlayed
by water [Turcotte and Schubert, 2002]. A common premise for all these models, however,
is that the ”column” of the load has a constant width. That is, the surface element is
approximately the same at the surface and crust-mantle interface radii (see Fig. 3.1).

This condition is assumed to be satisfied for the large terrestrial planets i.e. for the Earth
and Venus [e.g., Moore and Schubert, 1997; Turcotte and Schubert, 2002], however, for
planets with smaller radii the influence of sphericity becomes more important and equation
(4.16) must be modified accordingly. This modification was first presented by Wieczorek
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Figure 4.3: Comparison of GTR for different mean crustal thicknesses Dc computed for
a) the Moon (ρc = 2700 kgm−3) and b) Mars (ρc = 2900 kgm−3) employing the Airy
isostasy concept calculated using the dipole moment (equation (4.16), thick line) and spec-
trally weighted GTR (equation (4.18), thin line) methods. Note that for the latter one,
degree 2 was not included since this is connected to fossil bulge resp. rotational flattening
[Wieczorek and Phillips, 1997; Wieczorek and Zuber, 2004].

and Phillips [1997]. Starting with equation (4.14) and assuming that the uncorrelated part
of geoid Iℓm = 0 (i.e. hℓm = Zℓtℓm), it can be rewritten in the following way, employing
a weighting function Wℓ that describes the fraction of topography at degree ℓ to overall
topography at a location (ϑ, ϕ):

GTR(ϑ, ϕ) =

∑

ℓ,m

ZℓtℓmYℓm(ϑ, ϕ)

∑

ℓ,m

tℓmYℓm(ϑ, ϕ)
=
∑

ℓ

ZℓWℓ(ϑ, ϕ). (4.17)

Furthermore, assuming that the GTR is independent of position (ϑ, ϕ), i.e. for the fixed
value of the crustal thickness and compensation mechanism the GTR value is the same,
equation (4.17) implies that the weighting function Wℓ(ϑ, ϕ) also does not depend on the
position. The resulting GTR can then be modeled as the sum of the products of the degree
admittance Zℓ with the degree weighting function Wℓ:

GTR =
∑

ℓ

WℓZℓ, (4.18)

Wℓ =
∑

m

t2ℓm/
∑

ℓ,m

t2ℓm. (4.19)

Then, for any observed GTR, a mean crustal thickness Dc can be derived. Advantages
and disadvantages of this approach are discussed in detail by Wieczorek and Phillips [1997]
who first introduced it. The difference between dipole moment GTR and the spectrally
weighted one for the Moon and Mars is shown in Figure 4.3 (the employed spectral interval
is ℓ = 3 − 60, since for both planets the degree 2 contains non-hydrostatic contributions).
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From the results in Figure 4.3, one can see that the dipole moment formula always tends
to underestimate the resulting value of the mean crustal thickness. For the representative
values of GTR for the Moon ∼ 25 mkm−1, the corresponding value of Dc determined by
the spectrally weighted method is ∼ 45 km, while the dipole moment formula gives a value
almost 10 km smaller. Similarly for Mars, with the typical value of GTR ∼ 15 mkm−1 the
derived mean crustal thickness is ∼ 55 km and again this is a value around 10 km higher
than the one obtained by equation (4.16).

Having the forward model connecting the mean crustal thickness Dc (in fact a product
of this and the crustal density ρc) with the predicted GTR, an inverse model minimizing
the difference between the observed and predicted value of this quantity is needed. To
remove the influence of regional inhomogeneities in the crust, an averaging within a fixed
radius L0 can be applied [cf. Wieczorek and Zuber, 2004] and such an averaged GTR is
then interpreted in terms of the optimum value of the mean crustal thickness. However,
as the regionally averaged topography is not referenced to the mean global reference level
but to some regional average tavg, a correction for this effect is needed. For Airy isostasy
with a simple single layer crustal structure, the admittance function and the corresponding
correction from the regional mean crustal thickness Davg

c to the global one are given by:

Zℓ =
4πGRρc
g0(2ℓ+ 1)

[

1−
(

R−Dc

R

)ℓ]

, (4.20)

Davg
c = Dc + tavg

[

1 +
ρc

ρm − ρc

(

R

R−Dc

)2]

. (4.21)

Using the above described approach the mean crustal thickness of the Moon was determined
to be Dc = 49 ± 16 km [Wieczorek et al., 2006], which correlates well with the seismically
constrained model giving the thickness 40±5 km [Chenet et al., 2006]), and for Mars where
there is a higher uncertainty about the crustal density to be Dc = 57 ± 24 km [Wieczorek
and Zuber, 2004]. For details on modeling more complicated crustal structures (two-layer
crust with an upper or lower crust of constant thickness but distinct density) see Wieczorek
and Phillips [1997] and Pauer and Breuer [2008] (Section C.2).

Another powerful method to derive local/regional values of the compensation parame-
ters is the spatial-spectral localization of gravity and topography. This method somehow
resemble the wavelet analysis [Vescey et al., 2003; Kido et al., 2003], nevertheless it has
better defined properties with respect to the spherical harmonic representation of the pro-
cessed data. This method was already successfully used for the Earth [Simons and Hager,
1995; Simons et al., 2000], Venus [Simons et al., 1997] and Mars [McGovern et al., 2002,
2004; Belleguic et al., 2005], however, using a variety of different approaches. Today, the
best developed one is that of Wieczorek and Simons [2005] which supplies the analysis with
the full theoretical background needed to estimate the reliability of this method. Using
filtering windows well localized both in spatial and spectral domain, Belleguic et al. [2005]
used this approach in combination with the admittance function modeling to derive local
values of elastic thickness, crustal and load densities and the subsurface loading ratio for
major Martian volcanoes. Since this method was not used in this work, the interested reader
is referred to Wieczorek and Simons [2005] and Belleguic et al. [2005].
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4.2 Bouguer inversion

The previous section was devoted to the derivation of the parameters of a planet’s topogra-
phy compensation state i.e. crustal thickness and density, elastic thickness and/or subsurface
loading ratio from the observed gravity and topography under some predefined assumptions,
e.g., Airy crustal isostasy or elastic lithosphere flexure. The two above mentioned datasets
can also be used without such an a priori assumption, but then one must assume that the
total gravity field (or almost total, with well defined exceptions) is only due to the sur-
face and crust-mantle interface (CMI) undulations. Then, the Bouguer anomaly, defined as
the difference of observed and surface topography generated gravity [e.g., Novotný, 1998;
Turcotte and Schubert, 2002] can be expressed by means of geopotential as:

UBA(ρ) = Uobs − U s(ρ), (4.22)

and depends on the density structure of the crust and the topographic loads. As discussed in
Chapter 3, the assumption of a homogeneous crust is quite unrealistic, however, because of a
lack of other data describing crustal structure, it is usually accepted as a first approximation
[e.g., Neumann et al., 1996; Wieczorek and Phillips, 1998; Neumann et al., 2004; Wieczorek,
2007]. Nevertheless, for well studied regions like the lunar mares which contain a substantial
mascon loading caused by the lava infill [Muller and Sjogren, 1968; Solomon and Head, 1980;
Konopliv et al., 2001] or the Martian polar caps which, while being part of the observed
topography, consists of much lighter water and CO2 ice and dust [Phillips et al., 2008] it
is appropriate to model that extra/missing load in the form of regional density anomalies
[Wieczorek and Phillips, 1998; Neumann et al., 2004].

Assuming that the density structure is properly modeled, we can evaluate the Bouguer
anomaly UBA using equation (2.36). Then, assuming a given value of the mean crustal
thickness Dc, an inversion for the shape of the CMI can be made easily with the following
expression using equation (2.35):

wℓm =
2ℓ+ 1

4πGR0∆ρ

(

R0

R0 −Dc

)ℓ+2

UBA
ℓm , (4.23)

where ∆ρ = ρm − ρc is the density contrast at the CMI and R0 is the mean radius of the
planet. The problem appearing in the case of planets is that the high degree signal (which
is, according to the equation (4.23), strongly amplified) is often very noisy and leads to
a physically unrealistic oscillation in the CMI undulations [Wieczorek and Phillips, 1998;
Neumann et al., 2004]. This problem can be avoided either by removing the higher degrees
from the solution of the Bouguer inversion (which means lower resolution) or by applying
some kind of smoothing filter. This is often done by using a degree-dependent filter λℓ

which is for long wavelength 1 but for shorter wavelengths approaches 0. This can be done
by either forcing the CMI power spectrum to obey some a priori chosen rule [Neumann
et al., 2004] or regularizing the obtain solution in some sense (e.g., minimum amplitude or
minimum curvature) [Wieczorek and Phillips, 1998].

In Figure 4.4a the surface topography of Venus is depicted together with the names of
major regions of interest. Using this topography and the observed geoid (Fig. 2.3) the asso-
ciated Bouguer anomaly is shown in Figure 4.4b. As expected, the major negative anoma-
lies are connected to the prominent positive topographic structures (Istar Terra, Aphrodite
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Terra) whereas the positive anomalies could be observed above the major lowland regions
(Atalanta Planitia). Using equation (4.23) to explain this anomaly solely by the signal of
the CMI with a density contrast ∆ρ = 400 kgm−3, the crustal thickness variations displayed
in Figure 4.4c can be obtained [Wieczorek, 2007]. The crustal thickness at lowland regions
then approaches 20 km, while at the highland and volcanic sites it exceeds 70 km. However,
if we assume that a substantial contribution to both gravity and topography at the long
wavelengths comes from the dynamic flow in Venus’ mantle [Kiefer et al., 1986; Pauer et al.,
2006] and employ for the inversion only that part of the data not explained by this dynamic
model, the resulting crustal thickness variations differ substantially (Fig. 4.4d). While the
local thickened crust Dloc

c > 50 km beneath the highland regions remains, the rest of the
planet has a more-or-less constant crustal thickness of 35±5 km (which is the a priori chosen
value of Dc). Another point of interest is the thinning of the crust beneath

Bouguer geoidsurface topography

crustal thickness variations

Figure 4.4: a) Surface topography of Venus with major regions of interest. b) Associated
Bouguer anomaly expressed as a geoid height computed by assuming a constant crust density
ρc = 2900 kgm−3 and the spectral interval ℓ = 2− 60. c) Crustal thickness lateral variations
for the given mean crustal thickness Dc = 35 km and density contrast ∆ρ = 400 kgm−3.
The entire Bouguer geoid is explained in terms of the signal of the crust-mantle interface.
d) The same as in panel c) but for an inversion that employed only parts of gravity and
topography fields not explained by the dynamic model of Pauer et al. [2006].
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Figure 4.5: Rotationally averaged crustal structure of two major lunar basins, Mare Orien-
tale and Mare Humorum, obtained by the polyhedral shape model inversion method (solid
line) and spherical harmonic inversion (dashed line). Black represents the mare lava infill
(redrawn after Hikida and Wieczorek [2007]).

the major volcanic constructs (Atla and Beta Regiones) which is possibly a consequence
of too successful dynamic prediction in these regions [cf. Pauer et al., 2006]. Since the
dynamic model does not account for crustal thickness variations, it cannot properly model
the thickening of the crust due to extensive volcanism. Another more appropriate approach
is therefore needed that takes into account both top and internal loading to model the
resulting gravity and topography.

In the case of Venus the conditions for the use of the first approximation formula (2.36)
are satisfied except for the region of Ishtar Terra, where it introduces an error of a few km
[Wieczorek, 2007]. However, for the Moon and Mars, the amplitudes of topography and
predicted CMI shape no longer satisfy these conditions. Therefore, a finite relief method
to compute the gravity field is needed [e.g., Neumann et al., 1996; Wieczorek and Phillips,
1998]. An inversion using an appropriate equation derived from equation (2.38) is, how-
ever, not so straightforward as in the previous case since here the gravity field depends on
topography in a nonlinear manner. Therefore, the resulting CMI relief must be modeled
iteratively until it satisfies the Bouguer anomaly within an acceptable error. For more on
this technique, see Wieczorek and Phillips [1998] or Pauer and Breuer [2008] (Section C.2).

Another approach to Bouguer inversion is modeling the gravity field associated with
the observed topography and modeled CMI relief in the spatial domain. For this purpose,
a polyhedral model can be employed [e.g., Hikida and Wieczorek, 2007] which profits from
the possibility of a denser grid in the regions of interest (which provides more precise results).
Such an approach has a clear advantage for the case of laterally varying quality of gravity
and/or topography data which is e.g. the case of the Moon [Konopliv et al., 2001]. In such a
situation, a polyhedral model can improve the quality of the local crustal thickness models as
is demonstrated for two prominent lunar impact basins, Mare Orientale and Mare Humorum,
in Figure 4.5. These new predictions of the local crustal variations can then improve the
constraints on various planetary processes, e.g. the initial excavation depth/radius ratio of
the impact basins [Wieczorek and Phillips, 1999; Hikida and Wieczorek, 2007].
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4.3 Thermal evolution of planet

The study of planetary gravity and topography data using the inverse modeling procedures
described in the previous sections can provide constraints on the mean crustal thickness
and the elastic thickness at the time of loading [cf. Wieczorek, 2007]. These parame-
ters are important for understanding the local compensation processes (and for the case
of a large scale load on planets with a small radius, also the global compensation state
[Phillips et al., 2001]) as well as for constraining the thermochemical evolution of terrestrial
planets [e.g., McGovern et al., 2002, 2004; Breuer and Spohn, 2003; Schumacher and Breuer,
2006; O’Neill et al., 2007; Grott and Breuer, 2008].

There are in general two methods of calculating the thermochemical evolution of a planet
using either complex 2D and 3D or parameterized convection models. In the case of 2D and
3D convection models, investigating the full range of possible parameters can be computa-
tionally very demanding, both in the sense of the required CPU power and time. Therefore,
an alternative approach, the so-called ”parameterized convection”, is often used [e.g., Steven-
son et al., 1983; Schubert et al., 1986; Spohn, 1991; Breuer and Spohn, 2003; Hauck et al.,
2004]. This approach uses the results of numerical and laboratory experiments and bound-
ary layer theories [e.g., Turcotte and Oxburgh, 1967; Davaille and Jaupart, 1993; Solomatov,
1995; Grasset and Parmentier, 1998] and is based on simple scaling laws that relate the vigor
of convection with the heat loss of a convecting system. For instance, the scaling law for
an isovisous convecting mantle is Nu = aRaβ [e.g., Turcotte and Oxburgh, 1967; Richter,
1978] where Nu is the Nusselt number, i.e., the ratio of the heat transported by convection
and the heat transported by conduction, Ra is the Rayleigh number describing the vigor of
thermal convection [e.g., Schubert et al., 2001], a is a constant and β is a nondimensional
parameter between 1/4 and 1/3, depending on the boundary conditions and geometry of
the convecting shell [e.g., Jarvis, 1984; Zebib et al., 1985]. For a temperature dependent
viscosity, which is more suitable for a terrestrial mantle [e.g., Weertman and Weertman,
1975], the scaling law is more complicated and depends further on viscosity [cf. Moresi and
Solomatov, 1995] since a stagnant lid forms on top of the convecting mantle.

In the following, the general equations describing the thermal evolution of a terrestrial
mantle [cf. Breuer and Spohn, 2003; Schumacher and Breuer, 2006; Grott and Breuer, 2008]
are presented. This approach separates the stagnant lid and the convecting mantle (see
Figure 4.6) and is based on the parameterization of Grasset and Parmentier [1998]. It has
the advantage of the possibility to include effects such as the thermal insulation of the crust
and the redistribution of radioactive elements from the mantle into the crust. The feedback
of these effects on the convecting system cannot be considered if the mantle, including the
crust, is treated with one Nu-Ra relationship for the entire system [Breuer and Moore,
2007]. The evolution of the stagnant lid layer can then be determined using the energy
balance equation of a growing lithosphere [e.g., Schubert et al., 1979; Spohn, 1991]:

ρmcm(Tm − Tl)
dDl

dt
= qm − ql = qm − km

∂T

∂r

∣

∣

∣

∣

r=Rl

, (4.24)

where ρm is the mantle density, cm is the specific heat capacity of the mantle, Tm and Tl

are the temperature in the upper mantle and the base of the lithosphere, respectively, Dl is
the stagnant lid thickness and qm and ql are heat flows out of the mantle and through the
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Figure 4.6: Schematic thermal profile T as a function of radius R with the stagnant lid,
convecting mantle and core distinguished by different colors. The mantle is further divided
into an upper and lower boundary layer δu and δc marked by dashed lines.

lithosphere, respectively. The latter is a product of the mantle thermal conductivity km and
thermal gradient at the base of the lithosphere.

The temperature at the base of the stagnant lid Tl depends on the temperature of the
underlaying upper mantle Tm and the rate of change of viscosity η with temperature T
[Davaille and Jaupart, 1993; Grasset and Parmentier, 1998]:

Tl = Tm − 2.21

(

d ln η

dT

)−1

. (4.25)

For a strongly temperature dependent viscosity described by:

η = η0 exp

(

A

RTm

)

(4.26)

where η0 is a reference viscosity, R is the universal gas constant and A is the activation
energy for creep [e.g., Weertman and Weertman, 1975], the temperature at the base of the
stagnant lid is:

Tl = Tm − 2.21

(

RT 2
m

A

)

. (4.27)

The thermal gradient at the bottom of lithosphere (see equation (4.24)) is calculated by
solving the steady state heat conduction equation in the stagnant lid:

1

r2
∂

∂r

(

r2kl
∂T

∂r

)

+Ql = 0, (4.28)

where kl is the thermal conductivity of the stagnant lid and Ql is the heat production rate of
the radioactive elements in the lithosphere. The boundary conditions are the temperature at
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the surface Ts and at the lithospheric base Tl, the latter is computed using equation (4.27).
Solving equation (4.28) with depth dependent parameters also allows the consideration of
the thermal insulation of the crust due to its lower thermal conductivity, kcr, in comparison
to the thermal conductivity of the mantle [cf. Schumacher and Breuer, 2006]. Furthermore,
it is possible to consider the enrichment of radioactive elements in the crust due to crustal
formation processes.

The thermal evolution of the underlying convecting mantle and the core is given by the
following energy balance equations:

ρmcmVmεm
dTm

dt
= −qmAm + qcAc +QmVm, (4.29)

ρcccVcεc
dTc

dt
= −qcAc + (L+ Eg)

dm

dt
, (4.30)

where ρm and ρc are the densities of the mantle and the core, respectively, cm and cc are the
specific heat capacities of the mantle and the core, respectively, Vm and Vc are the volumes
of the mantle and core, respectively, Am and Ac are the surface areas of the mantle and
the core, respectively, εm is the ratio of the mean mantle temperature to the upper mantle
temperature and εc is the ratio of the mean core temperature to the CMB temperature.
L stands for the latent heat and Eg for the gravitational energy both released by the growth
of an inner core. The term dm/dt describes the growth rate of the inner core, which can
be determined by the intersection of the core adiabat and the core liquidus; for details see
Stevenson et al. [1983] and Breuer et al. [2007].

The heat production rate in the mantle Qm is given by:

Qm(t) =
∑

i

Qi exp(−λit)

(

1 +
Vcr

Vm
(1− Λ)

)

, (4.31)

whereQi and λi are the heat production rate and the half-life time of i-th radioactive element,
respectively, Vcr is the crustal volume and Λ is the crustal enrichment factor with respect
to the primitive mantle. Equation (4.31) considers the depletion of radioactive elements in
the mantle due to the formation of the crust.

The heat flow out of the mantle qm and out of the core qc are given by:

qm = km
∆Tsm

δu
, (4.32)

qc = km
∆Tmc

δc
. (4.33)

where ∆Tsm is the temperature contrast across the upper boundary layer and ∆Tmc across
the lower boundary layer, δu and δc are the thicknesses of the upper and the lower boundary
layers, respectively. To derive the thicknesses of the upper and lower mantle boundary layers
δu and δc, the local stability criterion [Choblet and Sotin, 2000] is used:

δu =

(

κηmRaδu
αρmg0∆Tsm

)1/3

, (4.34)

δc =

(

κηcRaδc
αρmg0∆Tmc

)1/3

, (4.35)
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where κ is the thermal diffusivity of the mantle and α is the thermal expansivity of the
mantle. The viscosity in the boundary layers ηm and ηc are given by [Richter, 1978]:

ηm = η0 exp

[

A

R(Tm −∆Tsm/2)

]

, (4.36)

ηc = η0 exp

[

A

R(Tc −∆Tmc/2)

]

. (4.37)

Parameter Symbol Value Unit

surface radius R0 2400× 103 m

core radius Rc 1840× 103 m

surface temperature Ts 440 K

initial temperature at mid-depth Tinit 1900 K

initial temperature contrast ∆T 1660 K

initial core temperature TCMB 2100 K

initial internal heating rate Q0 5.2373× 10−8 Wm−3

crustal enrichment factor Λ 4 –

radioactive decay rate λ 0.04951 Gy

gravity acceleration g0 3.7 ms−2

density of mantle ρm 3400 kgm−3

density of core ρc 8000 kgm−3

heat capacity of mantle cm 1297 Jkg−1K−1

heat capacity of core cc 750 Jkg−1K−1

mantle thermal expansivity α 2×10−5 K−1

mantle thermal diffusivity κ 10−6 m2s−1

mantle thermal conductivity km 4 Wm−1K−1

crustal thermal conductivity kcr 2 Wm−1K−1

crustal thickness Dc 50× 103 m

universal gas constant R 8.3144 Jmol−1K−1

activation energy for creep A 466.07 kJmol−1

reference viscosity η0 8.7×1022 Pas

exponent of Nu-Ra relation β 1/3 –

latent heat L 250× 103 Jkg−1

gravitational energy Eg 250× 103 Jkg−1

Table 4.1: Parameters used for the thermal evolution modeling of Mercury as described in
the Section 4.3 (after Breuer et al. [2007]).
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Raδu and Raδc are the critical Rayleigh numbers of the respective boundary layer, which
can be computed using the internal Rayleigh number Rai [Deschamps and Sotin, 2000]:

Rai =
αρmg0∆T (R0 − Rc)

3

κηm
, (4.38)

Raδu = 2.28Ra0.319i , (4.39)

Raδc = 0.28Ra0.21i , (4.40)

with ∆T = Tm−Ts+∆Tmc. Finally, the temperature at the base of the mantle Tb, which is
needed to compute the temperature increase ∆Tmc across the lower boundary layer, is given
by the adiabatic increase of temperature in the mantle Tm [cf. Matyska, 2005]:

Tb = Tm +
αg0Tm

cm
∆R (4.41)

with ∆R = Rl − Rc − δu − δc, where Rl is the radius of the bottom of the stagnant lid and
Rc is the radius of the core (see Figure 4.6).

The elastic lithosphere thickness De can be derived in each time step of the parameterized
convection computation using the strength envelope formalism [McNutt et al., 1988; Grott
and Breuer, 2008] (see Section 3.3.2) or, for simplicity, one can define the depth of the elastic
lithosphere using a fixed isotherm. The value of the isotherm depends on the rheology of the
material, the strain rate and the bounding stress. For a dry olivine rich mantle the isotherm
is about 1070 K, assuming a strain rate of 10−17 s−1 and bounding stress of 15 MPa. This
latter approximation further assumes that the whole crust is elastic or that the crustal
material has a similar rheology as the mantle material (such as for the case of a crust
consisting of a dry diabase and a mantle consisting mainly of dry olivine). Thermochemical
evolution models also allow the calculation of the crustal thickness evolution (i.e., evaluating
the crustal production rate) – more details on this topic can be found for instance in Breuer
and Spohn [2003].

As for the initial conditions of the thermochemical evolution models, an appropriate
temperature profile must be adopted. Usually, a profile consistent with the temperature
distribution after core formation is chosen. This profile is the consequence of both the
planetary accretion, when after a strong meteoritic bombardment the uppermost part of
a planet is partially or entirely molten [Elkins-Tanton et al., 2005], and of the core differen-
tiation process [Stevenson, 1990]. It is interesting to note is that the thermal profile during
and just after accretion may be stable against thermal convection because the temperature
increases toward the surface. It is generally assumed that this temperature profile is in-
verted by the core formation process due to the release of gravitational energy, hence even
a superheated core with respect to the mantle is possible [Stevenson, 1990]. For equations
describing temperature profiles after accretion and core differentiation, see e.g., Schubert
et al. [1986].

Figure 4.7 shows the results of a typical thermal evolution model of Mercury for a)
the mantle temperature, b) the surface heat flow, c) the elastic lithosphere thickness and
d) the stagnant lid thickness. These results have been calculated with the parameterized
convection model developed by D. Breuer, using the parameter values listed in Table 4.1.
The evolution of the mantle temperature Tm (Fig. 4.7a) shows a short period of temperature
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Figure 4.7: Results for a parameterized model of the thermal evolution of Mercury for the
past 4.5 Gy. In panel a) is depicted the evolution of the mantle temperature Tm, b) shows
the surface heat flux qs, c) the elastic thickness De and d) the stagnant lid thickness Dl.

increase (∼ 300 My) connected mainly to the re-adjustment of the system and the heating
caused by the radioactive decay in the mantle. After this phase of heating, the mantle cools
by about 150 K to a present-day value of about 1850 K. Similarly, the surface heat flow qs
decreases during the entire evolution of the planet (Fig. 4.7b) and the elastic lithosphere
thickness increases over time to a present-day value of ∼ 125 km (Fig. 4.7c). For the latter, a
light kink in the curve can be seen at around 2 Gy. This is the result of the elastic lithosphere
thickness becoming greater than the crustal thickness and is a consequence of the different
thermal conductivities in the crust and mantle. For this model, an enriched primordial
crustal thickness of 50 km is assumed, whereas secondary crust formation is neglected. It
is, however, expected that secondary crustal formation is minor for Mercury [Breuer et al.,
2007]. The stagnant lid thickness grows to a value of about 300 km (Fig. 4.7d), thus, the
present active convection zone is very thin, with a thickness of only 250 km, consistent with
2D and 3D convection models [Spohn et al., 2001a; Breuer et al., 2007]. Note, however, that
this is just one possible scenario of Mercury’s thermal evolution and it depends strongly
on the parameter values chosen, such as the mantle viscosity, the content of radioactive



CHAPTER 4. INVERSE MODELING 68

heat sources in the mantle, and the crustal thermal conductivity (Table 4.1). Only a full
exploration of the parameter range can give us sufficient insight into the various possible
evolution scenarios of the planet [e.g., Breuer and Spohn, 2003; Hauck et al., 2004; Grott
and Breuer, 2008].



Chapter 5

Discussion and Conclusions

In planetary science, a number of concepts taken from the geophysical studies of the Earth
are employed to investigate the observed gravity field in relation to the surface topography
and its subsurface compensation mechanisms. Sometimes, this has been done without con-
sidering the reliability of those methods for the different conditions of use, i.e. for planets
with a considerably smaller radius, higher topography, smaller gravitational acceleration
or different rheological structure than the Earth. As a consequence, the obtained results
in terms of compensation parameters may have large errors. For instance, using only the
first approximation method to evaluate the gravitational signal of Martian volcanoes, up to
30% of the real gravity signal can be neglected. This, on the other hand, leads to higher
estimates of the thickness of the elastic lithosphere, which supports the volcanic construct
[Belleguic et al., 2005].

The aim of this work was to investigate various mechanisms compensating the observed
surface topography, i.e. crustal isostasy, elastic support and dynamic support caused by
mantle flow. In earlier models, the response of the elastic lithosphere was usually poorly
modeled since this complicated mechanism was in most cases handled only by the use of the
thin shell approximation [Turcotte et al., 1981]. Therefore, the focus of this work was the
derivation of a thick elastic shell model, which would allow for an appropriate implemen-
tation of compressibility, subsurface loading and dynamic deformation from the planetary
interior. This model decreases the error in the predicted gravity field and, therefore, also of
the compensation parameters derived from the inverse models. However, in some cases, if
the uncertainty in the observed data to which the predictions are compared is much larger
than the modeling error (e.g., see [Pauer and Breuer, 2008]), then the use of the thin elastic
shell approximation is still appropriate.

The investigated compensation models were applied to three different planetary prob-
lems. Firstly we applied dynamic compensation model to explain today large-scale gravity
and topography fields of Venus and investigate for its mantle viscosity structure [Pauer
et al., 2006] (Appendix C). Based on investigation of different models with varying number
of viscous layers, a whole mantle flow seems to well explain those today observed global
fields not only for viscosity structure which is constant but also for a mantle model with
a stiff lithosphere and a gradual increase of viscosity toward a core. Exact viscosity struc-
ture however was not possible to determine – while three layer models favorite only a week
increase in viscosity over the whole mantle (by a factor of 10), four and five layers models
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suggest a viscosity structure similar to the one of Earth. An existence of a low viscosity
channel beneath a lithosphere cannot be confirmed despite a fact that such a feature has
appeared in some more complicated models. Furthermore we have identified regions on the
surface which seem to be well fit by means of dynamic compensation model and those where
such a fit is poor – i.e. regions which are supported by other mechanisms presumably some
kind of crustal/elastic lithospere compensation.

In the second paper the Airy isostasy mechanism, combined with an inverse model
based on the spatial geoid-topography ratio, and the Bouguer inversion were employed to
estimate the crustal density of the Martian southern highlands [Pauer and Breuer, 2008]
(Appendix C). Since the two inverse methods have opposite trends with respect to changes in
the crustal density, satisfying both simultaneously may provide constraints on the maximum
density of the southern highlands crust, with an estimate of 3020 ± 70 kgm−3 obtained
for a single-layer crustal model. Using models with a two-layer crust for which one layer
has a constant thickness, a maximum density of ∼ 3000 kgm−3 is also obtained for the
compensating crustal layer. These findings, together with the estimates made by other
authors on the composition/density of various Martian regions, seem to confirm that the
crustal dichotomy is not only in elevation and surface age, but also in the origin of the crustal
material. The results indicate either a change in the crustal density with time or two distinct
geochemical reservoirs in the mantle, that formed in the early evolution of Mars and are the
source regions of the different crustal materials. Furthermore, it is possible that because of
this compositional distinctiveness of the Martian crust between the northern and southern
hemisphere, Pratt isostasy could be partly responsible for the dichotomy in elevation.

In the third application, the strength of a possible ocean floor gravity signal of Jupiter’s
moon Europa was studied [Pauer et al., 2010] (Appendix C). This problem – if measured by
future missions – will, however, be quite atypical compared to other planetary science prob-
lems, since we will have no data on the actual topography of this particular interface. For
the forward modeling we must therefore employ a synthetic topography model to estimate
the magnitude of its gravity signal. Because of such an approach, using the thin elastic shell
model will not introduce a substantial error to the predicted gravity. The magnitude of the
predicted signal, depending on the compensation parameters, can be up to 10’s of mGals
expected at the orbital height. Thus, if the long wavelength topography reaches at least a
few hundred meters, we will be able to detect it with the planned measurement precision
of 1 mGal. The inversion of the data will be very challenging due to the lack of any topo-
graphic measurements of this subsurface interface. Therefore, we invert for the topography
amplitudes instead of the compensation parameters. This is possible within c. 25% error
due to the substantial elastic support even for relatively thin elastic lithospheres. The con-
tribution to the gravity field of the ice crust overlaying the subsurface ocean is only of the
order of ∼1 mGal and thus smaller than the ocean floor’s gravity field.

In all the above listed applications of the topography compensation modeling under-
taken in this work, there exist large uncertainties concerning most of the employed values
of the interior structure parameters. This fact, and the non-availability of measurements
improving their knowledge today or in the near future, make geophysical modeling in plan-
etary sciences highly uncertain. The major uncertainty in the case of gravity field modeling
connected to the compensated surface topography is a very poor knowledge of a planet’s
crustal composition and structure. We have also only indirect constraints on the crustal
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and elastic thicknesses, for instance from thermo-chemical evolution models, which results
in additional uncertainties in the compensation models. On the other hand, the continuous
iteration of ideas and results, even based on poor knowledge today, leads to a relatively rapid
development in terms of the employed models’ accuracy improvement and the rejection of
contradictory conclusions. Nevertheless, it is generally valid that conclusions drawn in plan-
etary sciences have to be widely discussed (see discussion in all three attached manuscripts
in Appendix C) and their implications are weaker than for the case of the Earth, where
more data and constraints are available.

Evaluating the benefits of the models presented in this work, one can see that in some
cases, the isostatic compensation, thin elastic shell and purely viscous dynamic flow models
are adequate for predicting the gravity signal resulting from the compensated topography.
However, for a compressible lithosphere or large crustal thickness, the difference between the
thick elastic layer model and even those thin elastic layer models handling the loading and
the self-gravitation effect appropriately is not negligible because of the basic simplifications
used in the thin elastic shell theory. Moreover, our model offers additional possibilities for
future enhancements, including a simultaneous inversion for top- and bottom-loading or the
introduction of lateral variations in the rheological parameters. For models employing the
time evolution of the crustal system, even the thick elastic shell model is insufficient; instead
visco-elastic or visco-elasto-plastic rheologies should be adopted. Further improvements in
the modeling of the planetary topography compensation and its associated gravity signal
can be, in principle, achieved by the careful evaluation of the local compensation properties,
instead of employing some globally averaged ones.
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Burša, M. and Pěč, K. (1993). Gravity Field and Dynamics of the Earth. Springer.
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Appendix A

Spherical Harmonics

A.1 Scalar, vector and tensor spherical harmonics

In many mathematical and physical problems, it is useful to study the analyzed signal not
only in the spatial domain, but also its spectral transformation. This allows the examination
of its properties connected not to some specific region/interval of time, but rather to certain
characteristic wavelengths/periods [e.g., Brokešová, 2007]. In the case of data sets referenced
to a plane, the Fourier series can be used for this purpose. For the case of data in the
spherical geometry, the common choice is a spectral transformation using spherical harmonic
functions . Using this approach, a scalar function f(r, ϑ, ϕ) can be expressed as the sum of
spherical harmonic coefficients fℓm(r) and scalar spherical harmonic functions Yℓm(ϑ, ϕ):

f(r, ϑ, ϕ) =

∞
∑

ℓ=0

ℓ
∑

m=−ℓ

fℓm(r)Yℓm(ϑ, ϕ), (A.1)

where r is radius, ϑ ∈ 〈0◦, 180◦〉 is colatitude, ϕ ∈ 〈0◦, 360◦〉 is longitude, ℓ is the degree
(which determines the characteristic wavelength) and m is the order. The scalar spherical
harmonics Yℓm(ϑ, ϕ) that represent a complete set of basis functions for the spherical surface
geometry are defined as a normalized product of the associated Legendre functions Pℓm

(dependent on ϑ) and exponential function (dependent on ϕ):

Yℓm(ϑ, ϕ) = (−1)mNℓmPℓm(cos ϑ)e
imϕ ℓ ≥ 0 m ≥ 0, (A.2)

Yℓm(ϑ, ϕ) = (−1)mY ∗
ℓ|m|(ϑ, ϕ) ℓ ≥ 0 m < 0, (A.3)

where asterisk means complex conjugation and the normalization factor Nℓm is given by:

Nℓm =

[

(2ℓ+ 1)

4π

(ℓ−m)!

(ℓ+m)!

]
1
2

. (A.4)

The associated Legendre functions are the solution of the associated Legendre differential
equation and can be expressed by the means of Legendre functions Pℓ(x) (which are the
solution of the Legendre differential equation):

Pℓm(cosϑ) = (1− cos2 ϑ)
m

2
dmPℓ(cos ϑ)

d(cosϑ)m
= sinm ϑ

dmPℓ(cosϑ)

d(cosϑ)m
, (A.5)

Pℓ(x) =
1

2ℓℓ!

dℓ

dxℓ
(x2 − 1)ℓ. (A.6)
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Figure A.1: Real part of scalar spherical harmonics for degrees ℓ =1, 2, and 3, normalized
to the global maximum value 1. Degree ℓ = 0 (which is not depicted here) represents the
global average value i.e. it is constant over the whole sphere. Degree ℓ = 1 represents the
offset from the geometrical center and degree ℓ = 2 gives the flattening of the sphere. Zonal
harmonics (m = 0) are always latitudinally symmetric, with ℓ crossings of 0.

The normalization coefficient Nℓm ensures that the set of basis functions {Yℓm} is
orthonormal with respect to the integration over the whole sphere (δ stands for the Kronecker
function defined as δij = 1 for i = j and 0 otherwise):

2π
∫

0

π
∫

0

Yℓm(ϑ, ϕ)Y
∗
jk(ϑ, ϕ) sinϑ dϑdϕ = δjℓδmk, (A.7)

otherwise it will be only orthogonal (a property that is ensured by definition (A.2)) and addi-
tional problem with the normalization of spherical harmonic coefficients appears (see Section
A.3). The coefficients fℓm(r) can be obtained by integrating the product of the function
f(r, ϑ, ϕ) and the corresponding spherical harmonic Yℓm(ϑ, ϕ) over the whole sphere:
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fℓm(r) =

2π
∫

0

π
∫

0

f(r, ϑ, ϕ)Y ∗
ℓm(ϑ, ϕ) sinϑ dϑ dϕ. (A.8)

If the integrated function f is real, then one can evaluate the coefficients fℓm for m < 0
using the symmetry from the equation (A.3):

fℓ,−m(r) = (−1)mf ∗
ℓm(r) (A.9)

To examine how important the contribution of each harmonic degree is to the overall signal,
the power spectrum of the analyzed function f can be constructed. The power spectrum Sℓ

for any degree ℓ is defined as:

Sℓ(f) =

ℓ
∑

m=−ℓ

fℓmf
∗
ℓm (A.10)

For a similar case, but this time considering a vector function f (r, ϑ, ϕ), a series analogous
to the equation (A.1) can be employed:

f (r, ϑ, ϕ) =
∞
∑

ℓ=0

ℓ
∑

m=−ℓ

ℓ+1
∑

j=|ℓ−1|
f j
ℓm(r)Y

j
ℓm(ϑ, ϕ), (A.11)

where Y
j
ℓm are the vector spherical harmonic functions, defined using the so-called cyclic

unit vector basis eµ (µ = −1, 0, 1). These vectors are constructed in the following way:

e1 = − 1√
2
(ex + iey), (A.12)

e0 = ez, (A.13)

e−1 =
1√
2
(ex − iey), (A.14)

where ex, ey, ez are the Cartesian basis vectors. The vectors eµ have following properties:

e∗
µ = (−1)µe−µ (A.15)

e∗
µ · eµ′ = (−1)µe−µ · eµ′ = δµµ′ . (A.16)

Employing these basis functions, the vector spherical harmonics Y j
ℓm can be defined in

the following way (see e.g., Jones [1985]) to satisfy the condition of orthonormality:

Y
j
ℓm(ϑ, ϕ) =

1
∑

µ=−1

j
∑

ν=−j

Cℓm
jν1µYjν(ϑ, ϕ)eµ, (A.17)

∫ π

0

∫ 2π

0

Y
j1
ℓ1m1

(ϑ, ϕ) ·Y j2 ∗
ℓ2m2

(ϑ, ϕ) sinϑ dϑdϕ = δℓ1ℓ2δm1m2δj1j2, (A.18)

where Cℓm
jνkµ are the Clebsh-Gordan coefficients (for their definition see e.g., Varshalovich

et al. [1988]). The spherical harmonic coefficients f j
ℓm(r) used in the equation (A.11) can

then be derived using relationship similar to equation (A.8):
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f j
ℓm =

∫ π

0

∫ 2π

0

f (ϑ, ϕ) ·Y j ∗
ℓm (ϑ, ϕ) sinϑ dϑdϕ. (A.19)

If the considered vector function f (r, ϑ, ϕ) is real, then taking advantage of the Clebsh-
Gordan coefficients’ symmetries, we can again evaluate Y ℓ

ℓ,−m and therefore also f j
ℓ,−m

using the corresponding terms with m ≥ 0:

Y
j
ℓ,−m = (−1)ℓ+m+j+1Y

j ∗
ℓm f j

ℓ,−m = (−1)ℓ+m+j+1f j ∗
ℓm (A.20)

If the function f describes a non-divergent field (i.e. ∇. f = 0) then it could be divided
into toroidal (for which it holds f T · e r = 0) and poloidal (for which (∇ × f P) · e r =
0) components. The coefficients f ℓ

ℓm then describe the toroidal part of the field and the
coefficients f ℓ±1

ℓm describe the poloidal part. If the field becomes divergent, then the toroidal
field still satisfies ∇· f T = 0, but the remaining part of the field (called spheroidal) satisfies
only (∇ × f S) · e r = 0 [e.g., Matyska, 2005]. These two parts of the vector field can be
nevertheless still described by the coefficients f ℓ

ℓm and f ℓ±1
ℓm , respectively [e.g., Jones, 1985].

Finally, the tensor spherical field F (r, ϑ, ϕ) can also be described by a series similar to
the equations (A.1) and (A.11) employing the set of coefficients F jk

ℓm:

F (r, ϑ, ϕ) =
∞
∑

ℓ=0

ℓ
∑

m=−ℓ

2
∑

k=0

ℓ+k
∑

j=|ℓ−k|
F jk
ℓm(r)Y

jk
ℓm(ϑ, ϕ) (A.21)

where Y jk
ℓm are the tensor spherical harmonic functions defined using the tensor orthogonal

basis E kλ (which employs again the cyclic unit basis eµ):

Ekλ =

1
∑

µ=−1

1
∑

ν=−1

Ckλ
1µ1νeµeν . (A.22)

Having defined this set of basis functions, the tensor spherical harmonic functions Y jk
ℓm are

defined by [e.g., Jones, 1985]:

Y
jk
ℓm(ϑ, ϕ) =

∑

µ

∑

ν

Cℓm
jνkµYjν(ϑ, ϕ)E kµ, (A.23)

which definition satisfies the orthogonality relation:

∫ π

0

∫ 2π

0

Y
j1k1
ℓ1m1

(ϑ, ϕ) : Y j2k2 ∗
ℓ2m2

(ϑ, ϕ) sinϑ dϑdϕ = δℓ1ℓ2δm1m2δj1j2δk1k2 , (A.24)

where the : operator denotes the double-dot product (for second order tensors with com-
ponents Aij and Bij it is defined as A : B =

∑

i

∑

j AijBij). The coefficients F jk
ℓm used in

equation (A.21) can be obtained in a similar manner as in the previous two cases (A.8) and
(A.19):

F jk
ℓm(r) =

∫ π

0

∫ 2π

0

F (r, ϑ, ϕ) : Y jk ∗
ℓm (ϑ, ϕ) sinϑ dϑdϕ. (A.25)
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If we compare the definition of vector spherical harmonics Y j
ℓm (A.17) and tensor spherical

harmonics Y jk
ℓm (A.23) then we see that the former one are special cases of the latter with

k = 1 (see also discussion in Jones [1985]). The above described system of orthonormal
spherical harmonic functions have moreover an advantage that the coefficients F j0

ℓm represent
the trace of the tensor function, while F j1

ℓm stands for the antisymmetric and F j2
ℓm for the

deviatoric part of the tensor function F .

A.2 Operations with spherical harmonics

Here some useful formulae for the operations with spherical harmonic functions Yℓm, Y
j
ℓm

and Y
jk
ℓm are listed, which come from Edmonds [1960], Varshalovich et al. [1988] and Čadek

[priv. comm.]. First, the products of a unit radial vector and different spherical harmonic
basis functions are (the term {ℓ1 ℓ2 ℓ

j1 j2 j} stands for 6-j Wigner symbol1):

e rYℓm =
1√

2ℓ+ 1
(
√
ℓ δj,ℓ−1 −

√
ℓ+ 1δj,ℓ+1)Y

j
ℓm

er ·Y j
ℓm =

1√
2ℓ+ 1

(
√
ℓδj,ℓ−1 −

√
ℓ+ 1δj,ℓ+1)Yℓm

e r ·Y jk
ℓm = (−1)ℓ+j

√
2k + 1

[

√

j + 1

{

j k ℓ

1 j + 1 1

}

Y
j+1
ℓm −

√

j

{

j k ℓ

1 j − 1 1

}

Y
j−1
ℓm

]

e r ·Y ℓ,0
ℓm =

1
√

3(2ℓ+ 1)
(
√
ℓ+ 1Y ℓ+1

ℓm −
√
ℓY ℓ−1

ℓm )

e r ·Y ℓ−2,2
ℓm =

√

ℓ− 1

2ℓ− 1
Y ℓ−1

ℓm

er ·Y ℓ−1,2
ℓm =

√

ℓ− 1

2(2ℓ+ 1)
Y ℓ

ℓm

e r ·Y ℓ,2
ℓm =

√

ℓ(2ℓ− 1)

2 · 3 · (2ℓ+ 1)(2ℓ+ 3)
Y ℓ+1

ℓm −
√

(ℓ+ 1)(2ℓ+ 3)

2 · 3 · (2ℓ+ 1)(2ℓ− 1)
Y ℓ−1

ℓm

er ·Y ℓ+1,2
ℓm = −

√

ℓ+ 2

2(2ℓ+ 1)
Y ℓ

ℓm

e r ·Y ℓ+2,2
ℓm = −

√

ℓ+ 2

2ℓ+ 3
Y ℓ+1

ℓm

1Named after Jenö Pál Wigner (17th November 1902–1st January 1995), Hungarian born physicist and
mathematician, who received the Nobel Prize in Physics (1963) for his contributions to nuclear physics.
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(f · er)er =
∑

ℓm

1

2ℓ+ 1
×

×
{[

ℓf ℓ−1
ℓm −

√

ℓ(ℓ+ 1)f ℓ+1
ℓm

]

Y ℓ−1
ℓm −

[

√

ℓ(ℓ+ 1)f ℓ−1
ℓm − (ℓ+ 1)f ℓ+1

ℓm

]

Y ℓ+1
ℓm

}

f − (f · er)e r =
∑

ℓm

f ℓ
ℓmY

ℓ
ℓm+

+
∑

ℓm

1

2ℓ+ 1

{[

(ℓ+ 1)f ℓ−1
ℓm +

√

ℓ(ℓ+ 1)f ℓ+1
ℓm

]

Y ℓ−1
ℓm +

[

√

ℓ(ℓ+ 1)f ℓ−1
ℓm + ℓf ℓ+1

ℓm

]

Y ℓ+1
ℓm

}

Next, some formulae evaluating the results of differential operators acting on the spherical
harmonic functions Yℓm, Y

j
ℓm and Y

jk
ℓm are presented:

∆ [f(r)Yℓm] =

[

d2f(r)

dr2
+

2

r

df(r)

dr
− ℓ(ℓ+ 1)f(r)

r2

]

Yℓm

∇ [f(r)Yℓm] =
1√

2ℓ+ 1

[√
ℓ

(

d

dr
+

ℓ + 1

r

)

f(r)Y ℓ−1
ℓm −

√
ℓ+ 1

(

d

dr
− ℓ

r

)

f(r)Y ℓ+1
ℓm

]

∇
[

f(r)Y j
ℓm

]

= (−1)ℓ+j+1
∑

k

√
2k + 1

√

j

{

1 1 k

ℓ j − 1 j

}

(

d

dr
+

j + 1

r

)

f(r)Y j−1,k
ℓm +

+ (−1)ℓ+j
∑

k

√
2k + 1

√

j + 1

{

1 1 k

ℓ j + 1 j

}

(

d

dr
− j

r

)

f(r)Y j+1,k
ℓm

∇ · f(r)Y j
ℓm =

1√
2ℓ+ 1

[√
ℓ

(

d

dr
− ℓ− 1

r

)

δj,ℓ−1 −
√
ℓ+ 1

(

d

dr
+

ℓ+ 2

r

)

δj,ℓ+1

]

f(r)Yℓm

∇× f(r)Y j
ℓm = − i

√
6(−1)ℓ+j

√

j + 1

{

j ℓ 1

1 1 j + 1

}

(

j

r
− d

dr

)

f(r)Y j+1
ℓm −

− i
√
6(−1)ℓ+j

√

j

{

j ℓ 1

1 1 j − 1

}

(

j + 1

r
+

d

dr

)

f(r)Y j−1
ℓm

∆
[

f(r)Y j
ℓm

]

=

[

d2f(r)

dr2
+

2

r

df(r)

dr
− j(j + 1)f(r)

r2

]

Y
j
ℓm

∆
[

f(r)Y jk
ℓm

]

=

[

d2f(r)

dr2
+

2

r

df(r)

dr
− j(j + 1)f(r)

r2

]

Y
jk
ℓm

∇ ·
[

f(r)Y jk
ℓm

]

= (−1)ℓ+j
√
2k + 1×

×
[

√

j + 1

{

1 j j + 1

ℓ 1 k

}

(

d

dr
− j

r

)

f(r)Y j+1
ℓm −

√

j

{

1 j j − 1

ℓ 1 k

}

(

d

dr
+

j + 1

r

)

f(r)Y j−1
ℓm

]
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A.3 Normalization of the scalar spherical harmonic co-

efficients

Various works using spherical harmonic formalism make use of different normalization for
spherical harmonic functions Yℓm(ϑ, ϕ) [e.g., Wieczorek, 2007]. For planetary research pur-
poses, there are two main systems: geophysical (described in Section A.1) and geodetic (also
called ”4π normalization”). The latter one uses a normalization factor different to (A.4):

N̄ℓm =

[

(2− δ0m)(2ℓ+ 1)
(ℓ−m)!

(ℓ+m)!

]
1
2

, (A.27)

which makes the spherical harmonic functions Ȳℓm(ϑ, ϕ) only orthogonal, i.e.:

2π
∫

0

π
∫

0

Ȳℓm(ϑ, ϕ)Ȳ
∗
jk(ϑ, ϕ) sinϑ dϑ dϕ = 4πδℓjδmk, (A.28)

and subsequently also changes the spherical harmonic analysis formula (A.8) to:

f̄ℓm(r) =
1

4π

2π
∫

0

π
∫

0

f(r, ϑ, ϕ)Ȳ ∗
ℓm(ϑ, ϕ) sinϑ dϑ dϕ. (A.29)

When we then compare formulae (A.29) and (A.8), it is easy to arrive at a relationship
between coefficients fℓm and f̄ℓm. This conversion is needed when geodetic normalized coeffi-
cients (e.g., data from Planetary Data System available on http://pds-geosciences.wustl.edu/ )
are used with geophysically normalized spherical harmonic functions:

fℓm =

√

4π

2− δ0m
f̄ℓm. (A.30)

Another normalization that could be used when working with publicly available data sets is
a physical one, where each coefficient is divided by the average value of the studied physical
field. For the applications of this approach on the geopotential and shape/topography
planetary fields, see the equations (2.41) and (2.43).

A.4 Stress components in spherical harmonic notation

Omitting the toroidal component of the stress tensor σ (see Section A.1) we arrive at
an expression for stress acting on plane perpendicular to the radial direction (er is a nor-
mal vector):

σ · er =
∑

ℓ,m

(

σℓ−2,2
ℓm

√

ℓ− 1

2ℓ− 1
− σℓ,2

ℓm

√

(ℓ+ 1)(2ℓ+ 3)

6(2ℓ+ 1)(2ℓ− 1)
− σℓ,0

ℓm

√

ℓ

3(2ℓ+ 1)

)

Y ℓ−1
ℓm +

+

(

σℓ,2
ℓm

√

ℓ(2ℓ− 1)

6(2ℓ+ 1)(2ℓ+ 3)
+ σℓ,0

ℓm

√

ℓ+ 1

3(2ℓ+ 1)
− σℓ+2,2

ℓm

√

ℓ+ 2

2ℓ+ 3

)

Y ℓ+1
ℓm , (A.31)
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which gives directly the coefficients of the corresponding traction vector sℓ−1
ℓm and sℓ+1

ℓm . If
we are interested in the radial component of this vector (σ · er) · er, it could be evaluated
as:

(σ · e r) · e r = −
∑

ℓ,m

(

1√
3
σℓ,0
ℓm −

√

ℓ(ℓ− 1)

(2ℓ+ 1)(2ℓ− 1)
σℓ−2,2
ℓm − (A.32)

−
√

(ℓ+ 1)(ℓ+ 2)

(2ℓ+ 1)(2ℓ+ 3)
σℓ+2,2
ℓm +

√

2ℓ(ℓ+ 1)

3(2ℓ− 1)(2ℓ+ 3)
σℓ,2
ℓm

)

Yℓm

which gives directly the radial traction coefficients rsℓm (this can be used for the com-
putation of dynamic topography) and also formula for computing the pressure variations
p =

∑

ℓ,m

1√
3
σℓ,0
ℓmYℓm (since σℓ,0

ℓm represents the trace of tensor σ). The following term:

((σ · er) · er)er = −
∑

ℓ,m

(
√

ℓ

3(2ℓ+ 1)
σℓ,0
ℓm + ℓ

√

2(ℓ+ 1)

3(2ℓ− 1)(2ℓ+ 1)(2ℓ+ 3)
σℓ,2
ℓm − (A.33)

− ℓ

2ℓ+ 1

√

ℓ− 1

2ℓ− 1
σℓ−2,2
ℓm − 1

2ℓ+ 1

√

ℓ(ℓ+ 1)(ℓ+ 2)

2ℓ+ 3
σℓ+2,2
ℓm

)

Y ℓ−1
ℓm −

−
(
√

ℓ + 1

3(2ℓ+ 1)
σℓ,0
ℓm + (ℓ+ 1)

√

2ℓ

3(2ℓ− 1)(2ℓ+ 1)(2ℓ+ 3)
σℓ,2
ℓm −

− 1

2ℓ+ 1

√

ℓ(ℓ− 1)(ℓ+ 1)

2ℓ− 1
σℓ−2,2
ℓm − ℓ+ 1

2ℓ+ 1

√

ℓ+ 2

2ℓ+ 3
σℓ+2,2
ℓm

)

Y ℓ+1
ℓm

represents the radial component of the traction vector acting on the spherical surface and
the tangential component could be evaluated as:

σ · er − ((σ · er) · er)er =
∑

ℓ,m

(

ℓ+ 1

2ℓ+ 1

√

ℓ− 1

2ℓ− 1
σℓ−2,2
ℓm − 1

2ℓ+ 1

√

ℓ(ℓ+ 1)(ℓ+ 2)

2ℓ+ 3
σℓ+2,2
ℓm −

−
√

3(ℓ+ 1)

2(2ℓ− 1)(2ℓ+ 1)(2ℓ+ 3)
σℓ,2
ℓm

)

Y ℓ−1
ℓm − (A.34)

−
(

1

2ℓ+ 1

√

ℓ(ℓ− 1)(ℓ+ 1)

2ℓ− 1
σℓ,2
ℓm − ℓ

2ℓ+ 1

√

ℓ+ 2

2ℓ+ 3
σℓ−2,2
ℓm −

−
√

3ℓ

2(2ℓ− 1)(2ℓ+ 1)(2ℓ+ 3)
σℓ+2,2
ℓm

)

Y ℓ+1
ℓm .



Appendix B

Finite Difference Approach

If one is interested in solving a set of ordinary differential equations, the way how to ap-
proximate derivatives from these equations must be found. One common way to do this is
the use of the finite difference method. This method evaluates the derivative of an evenly
sampled quantity (with step h) to the desired degree of error (O(hn)). We can make use of
three different kinds of differences: forward, backward and central one. These are defined
respectively in the following way:

△+f(r) = f(r + h)− f(r), (B.1)

△−f(r) = f(r)− f(r − h), (B.2)

δf(r) = f(r + h/2)− f(r − h/2). (B.3)

The first two could be related to the derivation by quite simply using a derivation operator

D and Taylor series expansion1 f(x− a) =
∑∞

n=0
f(n)(a)

n!
(x− a)n:

∆+ = hD +
1

2
h2D2 +

1

3!
h3D3 + · · · = ehD − 1, (B.4)

∆− = hD − 1

2
h2D2 +

1

3!
h3D3 − · · · = 1− e−hD, (B.5)

which could be formally inverted and using again Taylor’s expansion we obtain:

hD = log(1 + ∆+) = ∆+ − 1

2
∆2

+ +
1

3
∆3

+ − · · · , (B.6)

hD = − log(1−∆−) = ∆− +
1

2
∆2

− +
1

3
∆3

− + · · · . (B.7)

This relationships allows us to approximate a first forward/backward derivation to any
desired order of error, e.g., the finite difference approximations of the second order are:

D+f(r)=
∆+f(r)− 1

2
∆2

+f(r) +O(h3)

h
= −f(r + 2h)− 4f(r + h) + 3f(r)

2h
+O(h2), (B.8)

D−f(r)=
∆−f(r) +

1
2
∆2

−f(r) +O(h3)

h
=

f(r − 2h)− 4f(r − h) + 3f(r)

2h
+O(h2). (B.9)

1Named after Brook Taylor (18th August 1685–30th November 1731), English mathematician.
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If we need to evaluate a second (or any higher) forward/backward derivation, an analo-
gous approach based on (B.6) and (B.7) could be used:

h2D2 = ∆2
+ −∆3

+ +
11

12
∆4

+ − · · · , (B.10)

h2D2 = ∆2
− +∆3

− +
11

12
∆4

+ + · · · , (B.11)

which gives in the finite difference approximation of the first order the following expressions
for the second derivative:

D2
+f(r)=

∆2
+f(r) +O(h3)

h2
=

f(r + 2h)− 2f(r + h) + f(r)

h2
+O(h), (B.12)

D2
−f(r)=

∆2
−f(r) +O(h3)

h2
=

f(r − 2h)− 2f(r − h) + f(r)

h2
+O(h). (B.13)

Returning back to the last of the above mentioned differences, the central one, the
following properties could be used for its evaluation in a similar way as for the other cases:

∆+ +∆− = exp(hD)− exp(−hD) = 2 sinh(hD), (B.14)

δ = 2 sinh

(

hD

2

)

for step h → h

2
, (B.15)

hD = 2 arcsinh

(

δ

2

)

= δ − 1

24
δ3 − 3

640
δ5 − · · · , (B.16)

Df(r) =
δf(r) +O(h3)

h

∣

∣

∣

h

2
→h

=
f(r + h)− f(r − h)

2h
+O(h2), (B.17)

D2f(r) =
δ2f(r) +O(h4)

h2
=

f(r + h)− 2f(r) + f(r − h)

h2
+O(h2). (B.18)



Appendix C

Published Papers

This chapter contains texts of three papers prepared during the work on this dissertation.
These papers include analysis of long-wavelength gravity and topography of Venus [Pauer et
al., 2006], inverse modeling of Martian gravity and topography [Pauer and Breuer, 2008] and
forward models simulating a possible gravity field of Europa with prospects for its inversion
[Pauer et al., 2010].

C.1 Modeling the dynamic component of the geoid

and topography of Venus

C.1.1 Abstract

We analyze the Venusian geoid and topography to determine the relative importance of
isostatic, elastic and dynamic compensation mechanisms over different degree ranges. The
geoid power spectrum plotted on a log-log scale shows a significant change in its slope
at about degree 40, suggesting a transition from a predominantly dynamic compensation
mechanism at lower degrees to an isostatic and/or elastic mechanism at higher degrees. We
focus on the dynamic compensation in the lower-degree interval. We assume that (1) the
flow is whole mantle in style, (2) the long-wavelength geoid and topography are of purely
dynamic origin, and (3) the density structure of Venus’ mantle can be approximated by
a model in which the mass anomaly distribution does not vary with depth. Solving the
inverse problem for viscosity within the framework of internal loading theory, we determine
the families of viscosity models that are consistent with the observed geoid and topography
between degrees 2 and 40. We find that a good fit to the data can be obtained not only for an
isoviscous mantle without a pronounced lithosphere, as suggested in some previous studies,
but also for models with a high-viscosity lithosphere and a gradual increase in viscosity with
depth in the mantle. The overall viscosity increase across the mantle found for the latter
group of models is only partially resolved, but profiles with a ∼100-km-thick lithosphere
and a viscosity increasing with depth by a factor of 10–80, hence similar to viscosity profiles
expected in the Earth’s mantle, are among the best fitting models.1

1published as: Pauer, M., K. Fleming, and O. Čadek (2006), Modeling the dynamic component of the
geoid and topography of Venus, J. Geophys. Res., 111, E11012, doi:10.1029/2005JE002511.

107



APPENDIX C. PUBLISHED PAPERS 108

C.1.2 Introduction

Two potentially important sources of information about the internal structure and dynamics
of planetary bodies are the geoid and topography. A number of efforts have been made to
explain the relationship between these datasets for Venus, either using the concept of isostasy
[e.g., Bowin, 1983; Smrekar and Phillips, 1991; Kucinskas and Turcotte, 1994; Arkani-
Hamed, 1996], elasticity [e.g., Sandwell and Schubert, 1992; Johnson and Sandwell, 1994;
Barnett et al., 2002], or within the framework of internal-loading theory [e.g., Kiefer et al.,
1986; Herrick and Phillips, 1992; Simons et al., 1994] and thermal-convection modeling [e.g.,
Kiefer and Hager, 1991a,1992; Moresi and Parsons, 1995; Ratcliff et al., 1995; Solomatov
and Moresi, 1996; Kiefer and Kellogg, 1998; Dubuffet et al., 2000]. Such studies have been
carried out both regionally [Herrick et al., 1989; Smrekar and Phillips, 1991; Grimm and
Phillips, 1991, 1992; Phillips, 1994; Moore and Schubert, 1995] and globally [Kiefer et al.,
1986; Simons et al., 1994; McKenzie, 1994; Smrekar, 1994; Arkani-Hamed, 1996; Simons et
al., 1997], with the aim of determining which topographic features are maintained by forces
within the lithosphere, and which require dynamic support from the deeper mantle. Some
of the above studies have also provided estimates of the average thickness of the thermal-
boundary layer on Venus, with values ranging between a few tens of kilometers up to 300
km.

In the present paper, we analyze the relationship between the geoid and topography
on Venus over a global scale, examining the relative importance of three end-member com-
pensation mechanisms: Airy isostasy, elasticity and mantle flow driven by internal loads.
As demonstrated in previous studies [e.g., Simons et al., 1997], there is a high correlation
between the geoid and topography of Venus, with a large admittance at low degrees that
decays rapidly with increasing degree. Such behavior cannot be explained by a simple Airy
model with a single depth of compensation [Kiefer et al., 1986; Arkani-Hamed, 1996; Simons
et al., 1997]. Elastic flexure is potentially important on a regional scale [e.g., Barnett et al.,
2002], but its role at long wavelengths is probably limited. In the present paper, we first
reexamine the applicability of the Airy isostatic and elastic mechanisms on a global scale,
and compare our results with previously published studies. Our focus will then turn to the
importance of dynamic mantle processes for lower-degree observations. This will allow us
to place some constraints on the mantle viscosity structure of Venus, one of the planet’s
least-known characteristics.

Our work is motivated by similar efforts that have been carried out for the Earth [e.g.,
Hager and Clayton, 1989; Ricard et al., 1993; Forte et al., 1994; King, 1995a; Čadek and
Fleitout, 1999]. It has been shown that the Earth’s geoid at low degrees is dynamic in origin
[Ricard et al., 1984; Richards and Hager, 1984]. Our understanding of the relatiornship
between the long-wavelength non-hydrostatic geoid and the dynamic processes in the mantle
has been facilitated by seismic tomographic imaging that provides important information
about the internal structure of the Earth [e.g.,van der Hilst et al. 1997; Bijwaard et al.,
1998; Montelli et al., 2004]. The analysis of the observed geoid in conjunction with seismic
tomographic information allows constraints to be placed on the viscosity variations in the
Earth’s mantle, and the style of mantle convection in general [e.g., Ricard et al., 1993; Le
Stunff and Ricard, 1997; Čadek and Fleitout, 2003]. The mantle flow also deforms the surface
of the Earth and thus contributes to its long-wavelength surface topography. However, the
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interpretation of the observed topography is difficult since most of it is related to the isostatic
compensation of continental lithosphere (for further discussion of the dynamic topography
on the Earth, see e.g., Colin and Fleitout [1990], Gurnis [1990], Forte et al. [1993b], Le
Stunff and Ricard [1995], Čadek and Fleitout [1999,2003], Panasyuk and Hager [2000]).

Unfortunately, there is no seismological information about the internal structure of
Venus. To overcome the lack of such data, we must adopt several simplifications. First,
we will assume that the observed long-wavelength geoid and topography are of a purely
dynamic origin at low degrees. In other words, we will assume that the long-wavelength
geoid on Venus has a similar nature to the Earth. In contrast to the Earth, however, we
will also assume that the long-wavelength surface topography is maintained dynamically.
This assumption is motivated by the high values of admittance at low degrees and justified
by the presumed absence of plate tectonics, and the probable lack of Earth-like continents
on Venus. Second, we assume that the lateral distribution of mass anomalies in Venus’
mantle does not change with depth. In other words, we will use a density model averaged
between the surface and the core-mantle boundary. This is clearly an oversimplification,
but we should remember that the order of this simplification is similar to that for the case
of Airy isostasy where all density anomalies within the lithosphere are approximated by a
surface mass located at a single depth. Moreover, if plumes play an important role in the
mantle dynamics of Venus, as has been suggested by some authors [e.g., Phillips et al., 1991;
Bindschadler et al., 1992; Kiefer and Hager, 1992; Phillips and Hansen, 1998; Vezolainen et
al., 2004], then the effect this assumption has on our final results may not be too significant.

In contrast to previous works [e.g. Kiefer et al., 1986], we will also test models with
a stiff lithosphere, and in addition will examine the effect of two prominent topographic
features, Ishtar Terra and Aphrodite Terra, on the solution of the inverse problem. Based
on these analyses, we will (i) determine whether a dynamic model can explain the observed
geoid and topography at lower degrees and (ii) infer a family of viscosity profiles that are
compatible with the long-wavelength geoid and topography on Venus.

We proceed as follows. In section 2, we compare and contrast the geoid and topography
fields of Venus with those of the Earth. Then in section 3, we reexamine the applicability
of simple Airy isostatic and elasticity models to explain the relationship between the geoid
and topography. In section 4, we present a dynamic model of the long-wavelength geoid and
topography of Venus, and attempt to infer feasible mantle viscosity profiles. The plausibility
of the dynamic model and the inferred viscosity profiles is discussed in section 5 where we
also give a summary of our findings. The formulas required for the spectral analysis and an
assessment of the consequence of our assumption of depth-independent density anomalies
are provided in the appendices.

C.1.3 Geoid and Topography of Venus

The input data of this study are spherical harmonic models of the Venusian geoid and
topography, namely the geoid model MGNP180U [Konopliv et al., 1999] and the topography
model shtjv360.a02 [Rappaport et al., 1999] (available at http://pds-geosciences.wustl.edu).
These models were originally provided up to spherical harmonic degree 180 (geoid) and 360
(topography). In the present study, we will only employ them up to degree 90 because of
potentially large uncertainties in determining the geoid coefficients at higher degrees (see
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Figure C.1.1: a) Comparing the geoid power spectra of Venus and the Earth. For the
normalization of the spectra, see Appendix A. The vertical dashed line marks the upper bound
of the spectral interval considered in the present paper (ℓmax = 90). b) Power spectrum of
Venus’ geoid. The decay of the spectrum can be approximated by three linear segments of
different slopes β (equation 1). c) The same as b) but for the Earth’s non-hydrostatic geoid.

Fig. 6 in Konopliv et al. [1999]). Over this spectral interval (ℓ = 2−90), the new models do
not differ significantly from earlier models of the Venusian topography and geoid [Konopliv
and Sjogren, 1994; Rappaport and Plaut, 1994], whose properties, including their relationship
to Venus’ surface tectonics, have been extensively discussed in the literature [e.g. Simons
et al., 1997].

The power spectra of the geoid of Venus and the Earth are compared in Figure 1 (for the
definition of the spectra, see Appendix A). The decay of the power of the Venusian geoid
with increasing degree is similar to that observed for the Earth (Figure 1a). However, in
contrast to the Earth, the Venusian geoid shows a smaller amplitude at degree 2 and higher
amplitudes in the intermediate-degree range (ℓ = 8 − 30). To a first approximation, the
power spectrum, Sℓ, decays with degree ℓ in a power-law manner,

Sℓ ∼ ℓβ (1)

where β = −3.03 over the degree range 2 − 90. However, a more detailed analysis shows
that the decay is not uniform, but can be divided into three intervals (Figure 1b) with
logarithmic slopes of -1.81 (ℓ = 2−9), -3.80 (10−40) and -1.82 (41−90). The change in the
slope around degree 10 remains significant even if the anomalous degree 2 is excluded from
the analysis, resulting in the slopes for the first two intervals being now -2.48 for ℓ = 3− 11
and -3.89 for ℓ = 12 − 40. The changes in the slope may be an indication that different
mechanisms are responsible for the generation of the geoid at different wavelengths. For the
case of the Earth (Figure 1c), the slope of the spectrum changes at around degrees 10 and
30 [Čı́̌zková et al., 1996]. It has been shown that the Earth’s geoid at the lowermost degrees
is predominantly generated by flows in the deep mantle [Ricard et al., 1984; Richards and
Hager, 1984]. Lithospheric contributions dominate the geoid signal above degree 30, while
for ℓ between 10 and 30, both dynamic and lithospheric contributions may be important
[LeStunff and Ricard, 1995; Kido and Čadek, 1997]. The question therefore arises as to
whether the changes in slope found in the Venusian geoid spectrum can be interpreted in a
similar manner. It is tempting to speculate that the Venusian geoid is of a purely dynamic
origin at low degrees and of a predominantly lithospheric origin above degree ∼ 40. One
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Figure C.1.2: a) Comparing the power spectra of the topography of Venus and the equivalent-
rock topography of the Earth. b) The admittance ratios (equation A9) for Venus and the
Earth. c) Degree-by-degree correlation (equation A6) between the geoid and topography for
Venus and the Earth. The dotted line marks the 95% confidence level (equation A7).

must, however, keep in mind that the slope of the spectrum may be influenced by the
damping applied during the construction of the spherical harmonic model. The shape of
the power spectrum and other spectral characteristics (see Figure 2, discussed below) indeed
indicate that the regularization and data uncertainties may have influenced the spherical
harmonic coefficients at degrees higher than ∼ 90. It is not fully clear, however, how much
the lower-degree coefficients are affected.

The topography of Venus is significantly smaller than that of the Earth. As illustrated in
Figure 2a, the total power of topography is approximately three times smaller on Venus than
on the Earth. Since the geoid anomalies on both planets are comparable in magnitude, the
admittance ratio (equation A9) is significantly higher for Venus than for the Earth (Figure
2b). Note that the slope of the admittance curve changes sharply at degrees 40 and 90.
While the change around degree 90 may be an artifact associated with the construction of
the spherical harmonic models, the change of slope at degree 40 probably reflects a transition
between two different mechanisms generating the gravity field of Venus. The topography on
Venus is well correlated with the geoid (Figure 2c) up to degree ∼ 100, after which the slope
of the correlation curve changes, such that by degree 150 it falls below the 95% confidence
level. Unlike for the Earth, the correlation is also significant at lower degrees (ℓ ≥ 3). The
low correlation between the geoid and topography at low degrees for the Earth is usually
attributed to the continents, which contribute the most to the long-wavelength topographic
signal, but induce negligible undulations in the low-degree geoid since they are very close
to isostatic equilibrium. The long-wavelength geoid is thus mostly related to the dynamic
processes driven by density anomalies in the deep mantle [Ricard et al., 1984; Richards and
Hager, 1984]. For Venus, the significant correlation between the geoid and topography at
low degrees, together with a relatively high admittance ratio, may indicate that a significant
portion of the long-wavelength topography has a dynamic origin.

C.1.4 Airy Isostasy and Elastic Flexure

The concept of isostasy is based on the assumption that the lithostatic pressure at some
depth, usually called the depth of compensation, is laterally homogeneous. In other words,
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at any point (θ, φ) it holds that,

∫ a+t(θ,φ)

a−d

ρ(r, θ, φ)r2dr = const. (2)

where a is the mean radius of the planet, d is the depth of compensation, t is the topographic
height at a point (θ, φ) relative to the mean radius of the planet and ρ is the density. Since the
density structure of Venus is poorly known, equation (2) is usually written in the simplified
form corresponding to the standard Airy isostatic model [Lambeck, 1988]. For any degree
ℓ > 0, equation (2) can be rewritten in the following form:

ρstℓma
2 +∆ρwℓm(a− dADC)

2 = 0 (3)

where ρs is the density of surface rocks, tℓm is the spherical harmonic coefficient of the surface
topography, wℓm is the spherical harmonic coefficient of the topography of a density interface
located at a depth dADC, also often termed the apparent depth of compensation (ADC), and
∆ρ is the density contrast across this interface. The value of dADC is usually interpreted
as the crustal thickness. In equation (3), the depth-dependent density ρ in the integrand
of equation (2) has been replaced by the masses ρstℓm and wℓm∆ρ, approximating the real
topographic anomalies. The geoid anomalies h induced by such an isostatically compensated
system only depend upon the density ρs and the apparent depth of compensation dADC

[Lambeck, 1988],

hℓm =
4πaGρs

g0(2ℓ+ 1)

[

1−
(

a− dADC

a

)ℓ
]

tℓm (4)

where G is the gravitational constant and g0 is the mean value of gravitational acceleration
on the surface. The simple relationship between the geoid and the depth of compensation
has been used in a number of studies that aimed to determine whether a single value of
dADC can explain the observed geoid over the whole degree range available [Kiefer et al.,
1986; Arkani-Hamed, 1996; Simons et al., 1997]. We will repeat this inversion for the most
recent models of Venus’ geoid and topography now available. We assume that ρs = 2900
kg m−3, and determine the value of dADC that best predicts the observed geoid for each
degree. The inverse problem is formulated as a degree-by-degree minimization of the misfit

M iso
ℓ (dADC) =

ℓ
∑

m=−ℓ

|hobs
ℓm − hpred

ℓm (dADC)|2 (5)

where hobs
ℓm and hpred

ℓm are the spherical harmonic coefficients of the observed geoid and the
geoid predicted for the apparent depth of compensation dADC, respectively. To determine
hpred
ℓm , we use equation (4). This equation does not include the viscous adjustment due to

selfgravitation that was considered by Kiefer et al., [1986]. We note, however, that the
results of this inversion do not differ significantly from those that would be obtained if the
effect of selfgravitation were taken into account.

The optimum values of ADC as a function of degree ℓ obtained by the minimization
of equation (5) are presented in Figure 3a. These results are generally in agreement with
similar, previously published analyses [Kiefer et al., 1986; Arkani-Hamed, 1996; Simons
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Figure C.1.3: a) The apparent depth of compensation dADC of the surface topography on
Venus as a function of spherical harmonic degree ℓ. b) The degree of compensation for an
elastic lithosphere of various thicknesses. c) The optimum elastic lithosphere thickness as a
function of spherical harmonic degree ℓ computed for three values of crustal thickness Tc.

et al., 1997]. We therefore conclude that the geoid and topographic data in the spectral
interval under consideration are inconsistent with a single ADC. This is most apparent
between degrees 2 and 40, where a gradual decrease in the ADC is observed, from a value
greater than 200 km at degree 3 to less than 50 km for ℓ > 35. From degree ∼ 40, the
ADC values stabilize and more or less randomly vary between 25 and 50 km. The geoid
spectrum can therefore be divided into two parts. The first corresponds to degrees 2-40,
where the geoid signal cannot be explained by an Airy isostasy model with a single ADC.
The second part (ℓ > 40) suggests that an Airy isostatic model with dADC = 35 km is
a feasible explanation for a significant part of the geoid signal at higher degrees.

As mentioned in the introduction, a number of studies have attempted to explain the
relationship between the geoid and topography using the concept of an elastic lithosphere
[e.g., Sandwell and Schubert, 1992; Johnson and Sandwell, 1994]. Barnett et al. [2002]
estimated the elastic lithosphere thickness for profiles across various locations on Venus
corresponding to different geological features, and found that a value of 25 km fits almost
all observed profiles within uncertainty for a crustal thickness of 16 km. They also found
that this result was only weakly dependent upon crustal thickness, with elastic thickness
varying by only 5 km when crustal thickness was increased to 25-30 km. We will now
consider the effect of elasticity on the relationship between the geoid and topography over
a global scale, using a similar spectral technique as applied to the isostatic case. We use
the formula for the deformation of a thin spherical shell derived by Turcotte et al. [1981].
First, we rewrite equation (3) for the Airy isostasy in the more general form:

Cℓρstℓma
2 +∆ρwℓm(a− dADC)

2 = 0 (6)

where Cℓ is the degree of compensation at degree ℓ (0 ≤ Cℓ ≤ 1). If the lithosphere is rigid,
the deflection w due to the surface topographic loading is zero and C = 0. In contrast, if the
lithosphere has no strength, C = 1, and equation (6) reduces to simple Airy isostasy. For
the case where the lithosphere is elastic, we can calculate Cℓ using formula (27) in Turcotte
et al. [1981]. This formula takes into account both flexural and membrane stresses and is
especially useful for bodies with a smaller radius, such as Mars, where the role of membrane
stress is larger [Turcotte et al. 1981, 2002]. For Venus on the other hand, due to its larger
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radius, membrane stresses are not so important, and we find that Cℓ is greater than 0.9
between degrees 2–40 for the elastic lithosphere thickness of 25 km found by Barnett et al.
[2002] (Figure 3b). This means that at low degrees, the effect of an elastic lithosphere of
this thickness would not differ much from pure Airy isostasy.

Using equation (6) instead of (3) and replacing dADC by a crustal thickness Tc, we
can modify equation (4) to obtain the formula for the geoid heights induced by surface
topography t for the case of an elastic lithosphere thickness Te [cf. Turcotte et al., 1981]:

hℓm =
4πaGρs

g0(2ℓ+ 1)

[

1− Cℓ(Te)

(

a− Tc

a

)ℓ
]

tℓm (7)

Applying equation (7) and following a similar inverse procedure as for isostasy, we determine
the optimum thickness of the elastic lithosphere degree by degree. We use the same elastic
parameters as Barnett et al. [2002], and consider three different values of Tc: 15 km (close
to the 16 km used by Barnett et al. [2002]), 30 km and 50 km. The results of this inversion
are shown in Figure 3c, where we find that, as with the isostatic results, no single value of
Te is optimal between degrees ℓ = 2 and 40, with values becoming more or less consistent
for ℓ > 40. The most consistent solution for degrees ℓ > 40 is found for Tc = 15 km, with
Te ranging between 10 and 30 km, which is close to the result of Barnett et al. [2002].
We therefore conclude that the purely isostatic and elasticity end-member compensation
mechanisms cannot explain the observed geoid and topography at low degrees (ℓ < 40). This
now leads us to the next section where we apply a dynamic mechanism of compensation.

C.1.5 Dynamic Model of Venus’ Geoid and Topography

In our analysis of the forces maintaining surface topography, we have so far neglected the
stresses due to viscous flow in the mantle. We have seen, however, that such simple models
cannot account for the observed geoid and topography at degrees lower than ∼ 40. In this
section, we propose an alternative interpretation of the low- and intermediate-degree geoid
and topography on Venus, based on mantle flow modeling.

In a viscous mantle, density heterogeneities induce flow. The stresses arising from this
flow deform all density interfaces, most importantly the surface and the core-mantle bound-
ary. The gravitational signal due to mantle heterogeneities is therefore a superposition of the
contributions from the density anomalies themselves and from the deformation of bound-
aries, or dynamic topographies, associated with the induced flow [Richards and Hager, 1984;
Ricard et al., 1984]. The deformation of the density interfaces, that is the shapes and am-
plitudes of the dynamic topographies, strongly depend upon how the viscosity varies with
depth. Predicting the geoid of a dynamic planet therefore requires knowledge of the density
and viscosity structure of its mantle. Vice versa, if the geoid is known and an a priori
density model is available, variations of viscosity with depth can be estimated from inverse
modeling [e.g., Hager and Clayton, 1989; Ricard et al., 1993; Forte et al., 1994; King, 1995a;
Čadek and Fleitout, 1999].

The major problem in interpreting the Venusian data in terms of a mantle flow model
is the absence of information about the planet’s internal density structure. To avoid this
problem, some authors have studied the relationship between the topography and geoid of
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Venus in a selfconsistent manner, using numerical simulations of thermal convection [e.g.,
Kiefer and Hager, 1991a,1992; Moresi and Parsons, 1995; Ratcliff et al., 1995; Solomatov
and Moresi, 1996; Kiefer and Kellogg, 1998; Dubuffet et al., 2000], while others have consid-
ered simplified (depth-independent) or synthetic (random) density distributions [Kiefer et
al., 1986; Herrick and Phillips, 1992; Simons et al., 1994] and analyzed the geoid and topog-
raphy within the framework of internal-loading theory. In this work, we will use the latter
approach and will attempt to infer a simple model of the density and viscosity structure of
Venus’ mantle that can explain the observed geoid and topography at low and intermediate
(ℓ < 40) degrees. We will assume that (i) the geoid and topography in this degree range are
of a purely dynamic origin, and (ii) the distribution of the mass anomalies does not vary
with depth. We will furthermore assume that (iii) the mantle material is incompressible,
(iv) obeys the Newtonian constitutive law, (v) viscosity is only radially dependent, and
(vi) both the surface and the core-mantle boundary can be treated as free-slip boundaries.
As discussed in the introduction, the assumption of depth-independent mass anomalies is
clearly an oversimplification, although it may not be too far from reality. As has been shown
for the Earth, the most significant up- and downwellings, namely plumes and slabs, pene-
trate the mantle more or less vertically [e.g., Grand, 1994; Bijwaard et al., 1998; Montelli
et al., 2004], suggesting that our depth-independent density model may be a reasonable
first approximation. Moreover, if plumes play an important role in the mantle dynamics of
Venus, as suggested by some authors [ie.g., Phillips et al., 1991; Bindschadler et al., 1992;
Kiefer and Hager, 1992; Phillips and Hansen, 1998; Vezolainen et al., 2004], the effect such
an assumption has on our final results may not be too significant. A test of the validity of
this assumption employing tomographic information about the Earth’s mantle is given in
Appendix B.

We formulate the inverse problem as a minimization of the misfit function Mdyn, defined
as,

Mdyn(η, δm) =
40
∑

ℓ=2

Mdyn
ℓ (η, δm) (8)

where

Mdyn
ℓ (η, δm) =

ℓ
∑

m=−ℓ

[

|hobs
ℓm − hpred

ℓm (η, δm)|2 + λℓ|tobsℓm − tpredℓm (η, δm)|2
]

(9)

In equation (9), hpred
ℓm and tpredℓm denote the spherical harmonic coefficients of the geoid and

topography predicted for a viscosity structure η and mass anomalies δm. The weighting
factor λℓ is chosen such that both terms on the right-hand side of equation (9) are equally
important and is expressed as:

λℓ =
ℓ
∑

m=−ℓ

|hobs
ℓm |2/

ℓ
∑

m=−ℓ

|tobsℓm |2 (10)

In other words, we search for a density and viscosity structure that satisfies the assumptions
described above and predicts the geoid and topography that are as close as possible to the
observed ones in the sense of the norm given by equations (8)-(10). The summation in
equation (8) is considered up to degree 40. This value is chosen to be roughly in agreement
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Figure C.1.4: a) The geoid response function Hℓ (equation 12) as a function of degree ℓ for
different viscosity profiles. b) The same as a) but for the topography response function Tℓ

(equation 13). c) The ratio of the geoid and topography response functions as a function
of degree ℓ. The viscosity models tested are an isoviscous model and three models with
ηUM = 0.01ηlith and ηLM = 30ηUM (UM – upper mantle, LM – lower mantle) differing in
the thickness of the lithosphere and the depth of the upper/lower mantle boundary (for the
values of these parameters in km, see the legend in the top panel).

with the results presented in sections 2 and 3 (see Figures 1b, 2b and 3a). We note that
the exact value of the cut-off degree is not important, since the same results are essentially
obtained for any cut-off degree close to 40.

Since the power of the geoid decays with increasing degree, the minimization of Mdyn

will mainly take into account the behavior of the geoid and topography at lower degrees.
To examine the impact of higher-degree terms on the inversion solution, we will also use
a misfit function in which the geoid is replaced by the free-air gravity [Forte et al., 1994].
This function can easily be derived from equation (8) by multiplying Mdyn

ℓ by a factor
(g0/a)

2(ℓ− 1)2:

Mdyn
gr (η, δm) = (g0/a)

2
40
∑

ℓ=2

(ℓ− 1)2Mdyn
ℓ (η, δm) (11)

Although the predicted geoid and topography are nonlinear functions of η, their dependence
on δm is linear, which implies that they can be expressed in terms of response functions
[e.g., Ricard et al., 1984; Hager and Clayton, 1989]. Since δm does not depend on radius
and η = η(r), we can write

hpred
ℓm = δmℓmHℓ(η(r)) (12)

tpredℓm = δmℓmTℓ(η(r)) (13)

where the response functions Hℓ and Tℓ only depend on η, and can be determined by solving
the Stokes equation together with the Poisson equation degree by degree for fixed δmℓ0 = 1
and an appropriate viscosity profile. For details of the internal loading theory, the reader is
referred to the extensive literature [e.g., Ricard et al., 1984; Hager and Clayton, 1989; King,
1995b].

The sensitivity of the geoid and topography predictions to the defined viscosity profile is
illustrated in Figure 4, where Hℓ, Tℓ and the ratio Hℓ/Tℓ are plotted as functions of degree
ℓ for four different viscosity profiles. Note that the sensitivity of the response functions
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to viscosity structure decreases with increasing degree. This means that the geoid and
topographic data in the transitional degree range (ℓ greater than ∼ 30), which may partly
be of a non-dynamic origin, play only a minor role in searching for the viscosity profile that
minimizes Mdyn and Mdyn

gr . At the same time, one can see that our dynamic model cannot
properly explain the admittance observed in this degree range (compare Figures 2b and 4c).
While the observed admittance at the transitional degrees is about 5 m km−1, our dynamic
models converge to a value of Hℓ/Tℓ, which is approximately twice as large.

Using equations (9), (12) and (13), equation (8) can be rewritten in the form,

Mdyn(η, δm) =

40
∑

ℓ=2

ℓ
∑

m=−ℓ

[

|hobs
ℓm − δmℓmHℓ(η)|2 + λℓ|tobsℓm − δmℓmTℓ(η)|2

]

(14)

If the viscosity profile, η, is fixed, we can easily find the mass anomaly coefficients that yield
the minimum misfits Mdyn. By solving the equation ∂Mdyn/∂(δmℓm) = 0, we obtain,

δmℓm =
Hℓh

obs
ℓm + λℓTℓt

obs
ℓm

H2
ℓ + λℓT 2

ℓ

(15)

Substituting equation (15) into (14) results in Mdyn being a function of only viscosity:

Mdyn(η) =

40
∑

ℓ=2

λℓ

H2
ℓ + λℓT 2

ℓ

ℓ
∑

m=−ℓ

|hobs
ℓmTℓ(η)− tobsℓmHℓ(η)|2 (16)

and analogously for the free-air gravity:

Mdyn
gr (η) = (g0/a)

2
40
∑

ℓ=2

(l − 1)2λℓ

H2
ℓ + λℓT 2

ℓ

ℓ
∑

m=−ℓ

|hobs
ℓmTℓ(η)− tobsℓmHℓ(η)|2 (17)

Although Mdyn and Mdyn
gr depend on viscosity in a nonlinear way, finding their minimum is

straightforward, especially if the number of parameters characterizing the viscosity model is
relatively small. In this study, the viscosity structure is parameterized in terms of n layers
of constant viscosity. Since the geoid and topography are only sensitive to relative changes
of viscosity [Hager and Clayton, 1989], the total number of parameters characterizing the
viscosity model is 2n−2, where n−1 parameters describe the relative viscosity and the same
number of parameters is needed to specify the positions of interfaces between the layers. To
find the minimum of Mdyn(η) and Mdyn

gr (η), we have applied the technique of a systematic
exploration of the model space for n ≤ 4 and a Monte-Carlo method for n ≥ 5. These global
techniques have allowed us to map the whole model space and to estimate the sensitivity of
the solution to individual parameters.

C.1.6 Viscosity Structure of Venus’ Mantle

The misfit functions, Mdyn and Mdyn
gr , obtained for a two-layer model, are presented in

Figure 5 as a function of the viscosity contrast and the depth of the interface between the
layers. The misfit is expressed in m2 for the geoid and in mgal2 for the free-air gravity. To
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Figure C.1.5: Left: The misfit function Mdyn (equation 16), obtained for a two-layer model
of Venus. The misfit (in m2) is shown as a function of the depth of the interface and the
viscosity contrast between the layers. Right: The same, but for the misfit function Mdyn

gr

(equation 17) in mgals2.

obtain an estimate of the mean accuracy of the geoid or free-air gravity predictions, we can
replace the misfit M by an average value

√

M/8π (note that, according to equations 8-10,
the gravitational signal represents only one half of the misfit). For example, a misfit of 2500
m2 means that the average difference between the observed and predicted geoids is 10 m.
In spite of some differences, both the geoid and gravity data prefer models with a weak
decrease in viscosity with depth (ηLM/ηUM ∼ 0.3). However, such a viscosity profile would
be unrealistic, since the effect of increasing pressure with depth should cause an increase,
not a decrease, in viscosity. The other possible interpretation of this result is that the
more viscous top layer corresponds in reality to a very thick thermal boundary layer [e.g.,
Parmentier and Hess, 1992; Turcotte, 1995; Moresi and Solomatov, 1998; Vezolainen et al.,
2004]. We note that the results shown in Figure 5 are in agreement with the first inferences
of viscosity from the Venusian geoid [Kiefer et al., 1986] that suggested only small changes
in viscosity with depth in the mantle of Venus.

The main drawback of the two-layer model is the absence of a lithosphere, a highly vis-
cous thermal boundary layer common to convecting systems with a temperature-dependent
viscosity. As the next step, we investigate viscosity models with a highly viscous upper
layer and another two layers that correspond approximately to the upper and lower man-
tles. The relative viscosity, ηlith, of the first layer is fixed at a value of 1. The upper- and
lower-mantle viscosities, ηUM and ηLM, respectively, are assumed to be smaller than ηlith.
The values of ηUM and ηLM are set to vary by five orders of magnitude, i.e. from 10−5 to 1,
and both increasing (ηUM ≤ ηLM) and decreasing (ηUM > ηLM) viscosity-with-depth options
are considered. The base of the lithosphere is expected to be located within a depth interval
of 20-500 km, while the depth of the interface between layers 2 and 3 is varied from 500 to
2500 km depth. The results of the inversion, again obtained by a systematic exploration of
the parameter space, are illustrated for three lithosphere thicknesses in Figures 6 and 7.
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Figure C.1.6: The misfit functions Mdyn (left panels) and Mdyn
gr (right panels) computed for a

three-layer model of Venus’ mantle assuming that ηUM = 0.01ηlith. The misfits are presented
as functions of the viscosity contrast ηLM/ηUM between the upper and lower mantle and the
position of the upper/lower mantle interface. Three different lithosphere thicknesses are
considered: 100 km (top), 200 km (middle) and 300 km (bottom).
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Figure 6 shows the misfit functions Mdyn and Mdyn
gr obtained for ηUM = 0.01ηlith as

a function of the depth of interface between the upper and lower mantle and the viscosity
contrast ηLM/ηUM. Since no minimum is found for ηLM/ηUM < 1, only results from models
with increasing viscosity with depth are presented. The top, middle and bottom panels
correspond to lithosphere thicknesses of 100, 200 and 300 km, respectively. Figure 7 is the
same as Figure 6, but for ηUM = 0.001ηlith. Although the minimum values of Mdyn andMdyn

gr

in Figures 6 and 7 do not differ much from those shown in Figure 5, the best predictions of
the geoid and topography are obtained for viscosity profiles that are significantly different
from those inferred using a two-layer model. That is, the optimum 3-layer viscosity models
show increasing viscosity with depth, not decreasing. The minimum misfit values correspond
to viscosity increases ranging from 10 to 40, with the larger values obtained for models with
a thicker lithosphere. It is obvious from Figures 6 and 7 that the inversion solution is
nonunique, and that some of the model parameters, namely lithosphere thickness and the
depth of the interface between the upper and lower mantle, are not well resolved.

Typical families of the best-fitting viscosity profiles obtained for models with four and
five layers are shown in Figure 8. The presented models are those whose misfit does not
exceed the absolute minimum by more than 1% (Mdyn < 2270 m2 and Mdyn

gr < 1040 mgal2).
Again, we assume that the lithosphere viscosity is higher than for the rest of the mantle.
The viscosity of the lithosphere is fixed at a value of 1, while the relative viscosities in the
underlying layers are varied between 10−3 and 1. The resulting best-fitting models show
certain common features, the most significant of which is a gradual increase in viscosity with
depth which is comparable in magnitude to that expected in the Earth’s mantle [e.g., Ricard
et al., 1993; Peltier and Jiang, 1996; Kaufmann and Lambeck, 2000; Čadek and Fleitout,
2003; Karato, 2003; Mitrovica and Forte, 2004]. Again, the thickness of the lithosphere is
not well resolved and any value between 20 and 200 km is feasible. A narrow ( 100-km thick)
low-viscosity channel beneath the lithosphere is found only for some five-layer models when
considering the free-air gravity misfit function. While the data can be equally well fitted
without such a feature, it is still interesting to see that such models are feasible, although
they are rejected in most studies [e.g., Smrekar and Phillips, 1991; Nimmo and McKenzie,
1998]. It should be mentioned, however, that the low-viscosity channel obtained here for
Venus is less pronounced than the asthenosphere beneath oceanic plates on the Earth [e.g.,
Dumoulin et al., 1999; Čadek and Fleitout, 2003].

For the case of models with five layers and more, a good fit to the data was also obtained
for viscosity profiles strongly oscillating with depth. These profiles are usually characterized
by two viscosity minima, one beneath the lithosphere and the other in the mid-mantle.
Similar oscillating profiles have been obtained for the Earth’s mantle when carrying out
inversions using higher numbers of layers [King, 1995b; Čadek et al., 1997]. Since they are
likely to be an artifact of over-parameterization, we have excluded them from this discussion.
We note, however, that the concept of a low-viscosity zone above or below the upper/lower
mantle interface cannot, in general, be rejected [e.g., Forte et al., 1993a; Kido and Čadek,
1997].

The absolute minimum of the misfit attained by the viscosity models that incorporate
a pronounced lithosphere and increasing viscosity with depth (Figures 6-8, see also the
discussion above) are only slightly smaller than the misfit values obtained for the best-
fitting two-layer model (Figure 5) that exhibits a weak decrease in viscosity with depth.
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Figure C.1.7: The same as in Figure 6, but for ηUM = 0.001ηlith.
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The question therefore arises as to whether such a small difference in the misfit is sufficient
for the two-layer viscosity models to be excluded from further discussion of Venus’ mantle
structure. To answer this question, we have investigated general three- and four-layer models
with no a priori constraint imposed on ηlith. Solving the inverse problem for these cases, we
indeed find two prominent families of best-fitting models. The first family corresponds to
the models discussed above, where the viscosity profiles are characterized by a lithosphere
of relatively high viscosity, underlaid by a mantle that exhibits an increase in viscosity with
depth. The other family includes models with an indistinct lithosphere and usually only
small changes in viscosity with depth. The minimum values of the misfit obtained for the
two families of the models are almost identical, with both groups of models equally probable.
From a formal statistical point of view, the latter family of models thus cannot be excluded.
Nevertheless, the authors of this paper prefer the models with a pronounced lithosphere,
since a high-viscosity thermal boundary layer is a common feature of all models of thermal
convection that include a realistic rheology.
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Figure C.1.8: Viscosity profiles obtained from the inversion of gravitational and topography
data for four- (top panels) and five- (bottom panels) layer models of Venus. The results
shown on the left are based on the misfit function Mdyn, while the profiles on the right are
based on the misfit function Mdyn

gr .

The quality of the dynamic predictions of the geoid and topography for spherical har-
monic degrees 2-40 is illustrated in Figure 9. For the geoid, the differences between the
observed and predicted values locally exceed 35 m, but are usually less than 10 m. A good
agreement between the observed and predicted geoid is obtained for the highland rises (e.g.
Atla Regio and Beta Regio), while relatively large differences are found for Ishtar Terra and
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Figure C.1.9: Top: Observed geoid and topography truncated at harmonic degree 40. Mid-
dle: Geoid and topography predicted for the same degree range from an optimum five-layer
dynamic model of Venus. Bottom: The difference between the observed and the predicted
quantities. The projection is a Mollweide centered at the 60◦E meridian.

western Aphrodite Terra. To estimate the effect the latter regions have on the resultant
viscosity profiles, we have repeated the inversion for viscosity described above but using
geoid and topography data where the signal associated with the above mentioned terrae is
filtered out. The viscosity profiles found for the new data set (not shown here) are similar
to those described above. The best-fitting 3-layer model shows an increase in viscosity by
a factor of ∼ 10, while inferred models with four and five layers show a gradual increase in
viscosity with depth similar to that illustrated in Figure 8.

The distribution of mass anomalies (Figure 10), obtained as a by-product of our in-
version for viscosity, shows negative density anomalies beneath all surface structures with
a pronounced positive topography [cf. Herrick and Phillips, 1992]. The existence of such
plume-like upwellings beneath the equatorial highlands was proposed byMorgan and Phillips
[1983] and is generally accepted today [e.g., Vezolainen et al., 2004], although the opposite
view, relating Alpha, Ovda and Thetis Regio with mantle downwelling, has also been pre-
sented [Bindschadler et al., 1992].

Our density model also gives a negative density anomaly beneath the Ishtar Terra re-
gion. Scenarios of the tectonic evolution of this region, based on the observed gravity and
topography fields, include regional compression, local mantle downwelling as well as local
mantle upwelling [Roberts and Head, 1990; Bindschadler and Parmentier, 1990; Grimm



APPENDIX C. PUBLISHED PAPERS 124

-20  -10 10 0

-120˚180˚120˚60˚0˚-60˚

60˚

-60˚

PREDICTED DENSITY [kg/m3]

Figure C.1.10: Density anomalies at a depth of 100 km obtained from the inversion of the
geoid and topography data. Since we assume that the mass anomaly δm does not change
with depth, the amplitude of the density anomaly increases with decreasing radius as r−2.
The projection is a Mollweide centered at the 60◦E meridian.

and Phillips, 1991]. The structure of Ishtar Terra is obviously very complex, and shows
similarities to continental structures on Earth, and so it could hardly be explained by a
single evolutionary mechanism [Kiefer and Hager, 1991b; Kaula et al., 1997; Schubert et
al., 2001]. Figure 11 presents the predicted and observed geoid of this region, divided into
the contributions from ℓ = 2-40, and 41-90. As discussed above, in this region our dynami-
cally predicted geoid differs the most from the observations (Figure 11a,b). In contrast, an
isostatic model with Tc = 35 km gives a very good fit to the data for spherical harmonic
degrees 41-90 (Figure 11c,d). The quality of the isostatic predictions for Ishtar Terra stands

out in contrast with the same predictions for regions such as Atla and Beta Regio. This
is shown by Figure 12, where we again compare observations and predictions of the geoid
arising from ℓ = 2-40 and 41-90. We note that the dynamic predictions at degrees 2-40
work very well in this region, while the signal at degrees 41-90 is strongly underestimated
relative to the observations if an isostatic model is used.

Besides the models described in this section, we also tested dynamic models that mimic
a stagnant-lid regime of mantle convection on Venus, as suggested by some authors [e.g.,
Moore and Schubert, 1997]. We have assumed that ηlith/ηUM → ∞ and we have omitted the
mass heterogeneities inside the lithosphere. The results obtained for this model do not differ
much from those illustrated in Figures 6-8, and hence we can conclude that considering a
stiff lithosphere without mass anomalies has only a minor effect on the inversion solution.

C.1.7 Discussion and Conclusions

In previous works, the large admittance ratios on Venus have mostly been interpreted as
a consequence of the dynamic support of topographic structures and relatively constant
viscosity [Kiefer et al., 1986; Smrekar and Phillips, 1991; Simons et al., 1994]. However,
this interpretation does not appear to be unique. From a study of two highland regions,
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Figure C.1.11: Distribution of the observed and predicted geoid anomalies in the Ishtar Terra
region. The top panels show the observed geoid for the degree range ℓ = 2 − 40 (left) and
41− 90 (right). The bottom panels show the dynamic (left) and isostatic (right) predictions
for the same degree ranges. The dynamic prediction has been obtained for an optimum five-
layer viscosity profile of Venus’ mantle while an apparent depth of compensation of 35 km
has been considered in the case of the isostatic compensation model. The isoline interval is
25 meters for the long-wavelength maps and 2 meters for the short-wavelength maps. The
projection is orthographic with the projection center at the north pole.

Atla Regio and Beta Regio, Kiefer and Hager [1991a] showed that cylindrical axisymmetric
convection plume models may fit the observed data not only for a constant viscosity and
a Rayleigh number of ∼ 106, but also for a significantly higher Rayleigh number (107)
and a viscosity contrast of 10 between the upper and lower mantle. The latter view has
been supported by numerical simulations of thermal convection in a 3d Cartesian geometry
[Dubuffet et al. 2000] that suggests that the tectonic pattern on Venus is better predicted
for models with a stepwise increase in viscosity by a factor of 10 or 100 between the upper
and lower mantle, rather than for isoviscous models. In the present study, we find that
both classes of viscosity profiles explain well the geoid and topography between degrees
2-40. While an isoviscous mantle is the only acceptable solution of the inverse problem for
the case of a two-layer parameterization, an increase in viscosity with depth is obtained for
models with three or more layers. The four- and five-layer models usually prefer a viscosity
increase across the mantle which is similar to or somewhat smaller than that expected for
the Earth. These models are consistent with the concept of strongly pressure-dependent
creep and, as shown by Dubuffet et al. [2000], they are also acceptable from the viewpoint
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Figure C.1.12: The same as in Figure 13 but for an equatorial projection. Letters A and B
denote the locations of Atla Regio and Beta Regio, respectively.

of thermal convection modeling.
The results obtained in this paper for the spherical harmonic models of Venus’ geoid and

topography truncated at degree 90 are summarized as follows:

1. The slope of the geoid log-log spectrum significantly changes around degree 10 and
40 (Figure 1). These changes can also be recognized by the degree dependence of the
admittance ratio (Figure 2). The change in the geoid-spectrum behavior at degree
40 may suggest a change in the mechanism responsible for maintaining the surface
topography. This view is supported by a degree-by-degree analysis of the apparent
depth of compensation and elastic lithosphere thickness (Figure 3).

2. The geoid and topography spectra between degrees 2-40 can be well explained by
whole-mantle flow models. A good fit to data is obtained not only for the isoviscous
model without a pronounced lithosphere, as suggested, e.g., by Kiefer et al. [1986],
but also for models including a highly viscous and relatively thin (∼100-km thick)
lithosphere and a significant increase of viscosity with depth across the mantle. While
the best-fitting 3-layer model shows only a weak (by a factor of ∼10) increase in
viscosity, an increase of viscosity similar to that expected in the Earth mantle is
obtained for the best-fitting 4- and 5-layer models (see Figure 8). The existence of
a thin low-viscosity channel mechanically decoupling the lithosphere from the rest of
the mantle cannot be excluded on the basis of our modeling. Howevever, a narrow
(less than 200-km thick) low-viscosity zone beneath the lithosphere is found only for
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some of the best fitting 5-layer models when analysing the free-air gravity (see right
bottom panel of Figure 8).

3. The dynamic models predict well the long-wavelength (ℓ ≤ 40) geoid and topography
in regions of highland rises, such as Atla Regio and Beta Regio (figure 12). A somewhat
worse prediction is obtained for highland plateaus, such as Ishtar Terra, where the
isostatic component may be significant (Figure 11).

4. The removal from the geoid and topographic data of the signal from two major topo-
graphic features, Ishtar Terra and Aphrodite Terra, was found to have little effect on
the inferred viscosities. The inversion is also rather robust with respect to physical
conditions expected close to the upper surface. We find that models with a stiff litho-
sphere without mass anomalies give a similar viscosity increase across the mantle as
the models with a lithosphere of finite viscosity including mass anomalies.

Finally, we again mention that the inferred viscosity models presented in this paper
may be influenced by the assumptions adopted in solving the inverse problem. The most
important of these is the assumption of the pattern of mass anomalies remaining constant
with depth. Such a condition is suggested by the numerical modeling of the geoid and
topography due to mantle plumes on Venus [e.g., Kiefer and Hager, 1991a; Vezolainen et
al., 2004], and tomographic studies on Earth that have indicated the predominantly vertical
penetration of plumes and slabs through the Earth’s mantle [Bijwaard et al., 1998; Montelli
et al., 2004]. Therefore, this assumption is believed to be not very significant, a statement
supported by the test results presented in Appendix B.

C.1.8 Appendix A

In the present paper, we use a complex spherical harmonic basis {Yℓm(θ, φ)} normalized so
that

∫ 2π

0

∫ π

0

Yℓ1m1Y
∗
ℓ2m2

sin θdθdφ = δℓ1ℓ2δm1m2 (A1)

where θ is the co-latitude, φ is the longitude and the asterisk denotes complex conjugation.
Any sufficiently smooth function f defined on a sphere may then be expressed in terms of
the following spherical harmonic expansion

f(θ, φ) =
∞
∑

ℓ=0

ℓ
∑

m=−ℓ

fℓmYℓm(θ, φ) (A2)

where

fℓm =

∫ 2π

0

∫ π

0

f(θ, φ)Y ∗
ℓm(θ, φ) sin θdθdφ (A3)

(for more details, see, e.g., Jones [1985] or Varshalovich et al. [1989]). The power Sℓ of
the function f at degree ℓ is defined in terms of the L2-norm of the function at a given
wavelength,

Sℓ(f) = |fℓ|2L2
=

∫ 2π

0

∫ π

0

fℓf
∗
ℓ sin θdθdφ =

ℓ
∑

m=−ℓ

fℓmf
∗
ℓm (A4)



APPENDIX C. PUBLISHED PAPERS 128

where

fℓ(θ, φ) =

ℓ
∑

m=−ℓ

fℓmYℓm(θ, φ) (A5)

Let hℓm and tℓm be the complex spherical harmonic coefficients of the geoid, h, and topogra-
phy, t, respectively. The correlation between functions h and t at degree ℓ can be evaluated
as a scalar product of the normalized functions fℓ and gℓ,

cℓ =
1

√

Sℓ(h)Sℓ(t)

∫ 2π

0

∫ π

0

hℓt
∗
ℓ sin θdθdφ =

∑ℓ
m=−ℓ hℓmt

∗
ℓm

√

∑ℓ
m=−ℓ hℓmh

∗
ℓm

√

∑ℓ
m=−ℓ tℓmt

∗
ℓm

(A6)

where we used equation (A4) to express the powers Sℓ(h) and Sℓ(t) of functions h and
t at degree ℓ. The statistical meaning of the correlation depends on the number of free
parameters, i.e. the number of spherical harmonic coefficients at a given degree, and is
usually expressed in terms of a confidence level. The confidence level Gℓ(q) at degree ℓ
corresponding to a correlation coefficient of value q can be evaluated using the following
recurrent formula [Eckhardt, 1984, Weisstein, 2006]:

G1(q) = q

Gℓ(q) = Gℓ−1(q) + q(1− q2)ℓ−1

ℓ−1
∏

i=1

(2i− 1)/2i (A7)

The relationship between the geoid and topography is often characterized by the admittance
Aℓ [Kiefer et al., 1986; Simons et al., 1997; Schubert et al., 2001].

hℓm = Aℓtℓm + uℓm (A8)

where

Aℓ =

∑ℓ
m=−ℓ hℓmt

∗
ℓm

∑ℓ
m=−ℓ tℓmt

∗
ℓm

= cℓ

√

Sℓ(h)

Sℓ(t)
(A9)

and uℓm is the part of the geoid that is not correlated with topography.

C.1.9 Appendix B

An assumption made in our dynamic modeling is that the mass anomaly pattern does not
vary with depth. This condition, together with the assumption of a dynamic origin of the
geoid and topography at low degrees, plays a crucial role in our inversion for viscosity. Using
tomographic information available for the Earth, we will now test whether the application
of this simplified density structure can still lead to realistic viscosity profiles. Our procedure
consists of the following three steps.

First, we use the S-wave seismic tomographic model of the mantle ”smean” [Becker and
Boschi, 2002] and translate it into a global 3d density model. We assume that the seismic
velocity anomalies reflect temperature variations in the mantle and we compute the relative
density anomalies δρ/ρ in the mantle using a simple linear relationship:

δρ

ρ
= C

δV

V
(B1)
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Figure C.1.13: The misfit functions for the geoid (M1, M2 and M3, left panels) and free-air
gravity (Mgr,1, Mgr,2 and Mgr,3, right panels) defined by equations B2, B3 and B4 (Appendix
B). The minima of these curves indicate the values of model parameters inferred from syn-
thetic data under the assumption of depth-independent mass anomalies. The vertical lines
indicate the values used to generate the synthetic data.
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where C is the seismic velocity-to-density scaling factor (C = ∂lnρ/∂ lnV ) and δV/V is the
relative S-wave seismic velocity anomaly. We choose C = 0.2 for most of the mantle [cf.
Karato, 1993], except for the top 300 km where C is set to zero. Neglecting the density
anomaly in the uppermost mantle is justified by the fact that most of the seismic anomalies
in this part of the mantle are associated with petrological rather than thermal variations.
The lateral resolution of the density model is given by the cut-off degree of the ”smean”
model, which is 31, thus not too different from the degree range considered in our analysis
presented in section 4.

In the second step, we use this density model to generate synthetic dynamic geoid and
topography data for low and intermediate degrees (2 ≤ ℓ ≤ 31). We consider the case of a
three-layer viscosity model with a stiff lithosphere (ηlith/ηUM = 1010) and a viscosity increase
of a factor of 50 at a depth of 650 km. Such a viscosity model is a reasonable first-order
approximation of the Earth’s mantle-viscosity structure [Ricard et al., 1993] which ensures
that our predictions of the geoid are not far from the observations.

For the third step, we use the synthetic data generated in the previous step as input for
the inversion described in section 4. We emphasize that no seismic tomographic information
is used in this step and the lack of information about the mantle is only compensated by
the assumption of mass anomalies being constant with depth as described in section 4. The
inversion is then solved by minimizing the misfit Mdyn (equation 16), and Mdyn

gr (equation
17), which is a function of three free parameters: the thickness of the lithosphere, dlith, the
depth of interface between the upper and lower mantle, dint, and the viscosity increase at
this interface, ηLM/ηUM. For simplicity, we assume that the lithosphere is perfectly stiff and
we omit density anomalies inside it.

Comparing the values of the model parameters obtained from the inversion (i.e. those
that minimize Mdyn and Mdyn

gr ) with those used to generate the synthetic data provides
information about the behavior of the inversion process and, especially, the plausibility
of our assumption of depth-independent mass anomalies. This comparison is shown in
Figure B1 where we depict the minimum values of Mdyn and Mdyn

gr as functions of the free
parameters. The functions M1, M2 and M3 plotted in Figure B1 are defined as follows:

M1(ηLM/ηUM) = min
dlith,dint

Mdyn(dlith, dint, ηLM/ηUM) (B2)

M2(dint) = min
ηLM/ηUM,dlith

Mdyn(dlith, dint, ηLM/ηUM) (B3)

M3(dlith) = min
ηLM/ηUM,dint

Mdyn(dlith, dint, ηLM/ηUM) (B4)

and analogously for the free-air gravity misfit functions Mgr,1, Mgr,2 and Mgr,3. The values
used to generate the synthetic data are marked by the vertical lines.

An inspection of Figure B1 indicates that the inverse procedure used in section 4, along
with the assumption of depth-independent mass anomalies, can give reasonable estimates
of the parameters describing the Earth’s viscosity structure. We see that the minima of the
functions depicted in Figure B1 are very close to the correct values. However, the resolution
of the inversion is limited. We can reject all viscosity profiles where ηLM/ηUM < 10, but any
increase of viscosity at 650 km greater than ∼ 30 is acceptable. The depth of the interface
between the upper and lower mantle is rather well resolved if free-air gravity is used, but
the minimum is rather flat for the case of the geoid misfit function. The thickness of the
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lithosphere is poorly resolved from both geoid and free-air gravity data, although in both
cases the positions of the minima of M3 and Mgr,3 do not differ from the correct value by
more than 25 km.
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C.2 Constraints on the maximum crustal density from

gravity-topography modeling: Applications to the

southern highlands of Mars

C.2.1 Abstract

Gravimetric methods commonly used to constrain crustal parameters such as the mean
crustal thickness and density are ambiguous with a noted trade-off between these parame-
ters. However, combining two different methods, the geoid-topography ratio and Bouguer
inversion, in regions that are homogeneous with respect to lateral density variations and
compensation state can help to constrain a maximum density of the crust. For the Martian
Noachian southern highlands a combination of these methods gives us a maximum crustal
density of 3020± 70 kg m−3, assuming a single-layer crustal structure. We also test various
two-layer crustal structures to check how they influence the results. We find a possibility
to fit the observed data with a crust having a dense uniformly thick lower crust, but in
these models the upper crustal density was also limited to ∼ 3000 kg m−3. The obtained
results together with the findings on crustal densities (and composition) of other regions on
Mars are consistent with various scenarios of crustal evolution: a temporal increase in the
crustal density or a large scale density variation that has been already manifested in the
early evolution during the formation of the crustal dichotomy.2

2published as: Pauer, M., Breuer, D., 2008. Constraints on the maximum crustal density from gravity-
topography modeling: Applications to the southern highlands of Mars. Earth Planet. Sci. Lett. 276,
253–261. doi:10.1016/j.epsl.2008.09.014.
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C.2.2 Introduction

The mean thickness and the bulk density of the crust are important parameters for con-
straining the inner structure and thermo-chemical evolution of a planet [e.g., Spohn et al.,
2001; Breuer and Spohn, 2003; Elkins-Tanton et al., 2005a; Nimmo, 2005; Sohl et al., 2005;
Schumacher and Breuer, 2006]. Without samples of crustal material or seismic data that
are suitable to derive these parameters directly [e.g., Lognonné, 2005], estimates of these
quantities can be still gained by gravity-topography analysis [e.g., Wieczorek and Phillips,
1997; Neumann et al., 2004; Belleguic et al., 2005]. The solution of the gravimetric methods,
however, is non-unique as the results show a trade-off between the crustal density and the
mean crustal thickness. Thus, with none of these quantities known, the observed data can
be fitted with a wide range of parameter values.

Two important methods of studying gravity and topography data are the Bouguer in-
version and the analysis of the geoid-topography ratio (GTR). For the case of the Bouguer
inversion, one assumes that the observed gravity signal is simply caused by the topography
and the undulations of the crust-mantle interface (CMI). Using an assumed mean crustal
thickness, the variations in crustal thickness can then be modeled with a high accuracy [e.g.,
Wieczorek and Phillips, 1998; Neumann et al., 2004; Chenet et al., 2006]. Such an approach
is,however, not possible where the long-wavelength part of the observed geoid is generated
dynamically in the mantle as in the case of the Earth [e.g., Hager and Clayton, 1989; adek
and Fleitout, 1999] or as suggested for Venus [e.g., Kiefer et al.,1986; Pauer et al., 2006].
The Bouguer inversion also allows an estimate of the minimum mean (or zero-elevation)
crustal thickness if deep impacts are present and the crust-mantle interface is everywhere
below the surface, i.e. mantle material is not exposed at the surface [e.g., Zuber et al., 2000;
Neumann et al., 2004]. The analysis of the GTR by either a spatial or spectral comparison
of the observed and predicted admittance function [e.g., Simons et al., 1997; Wieczorek and
Phillips, 1997; Wieczorek and Zuber, 2004] allows an estimation of the mean crustal thick-
ness if a certain type of compensation mechanism like Airy isostasy can be applied globally,
or to a sufficiently large surface unit. However, both methods, i.e., the Bouguer inversion
and the GTR analysis, depend strongly on the assumed crustal density.

In the present paper, we show that applying both methods to the same region provides a
constraint on the upper bound of the crustal density. This is possible because the minimum
mean crustal thickness increases with increasing crustal density for the Bouguer inversion
[e.g., Neumann et al., 2004] whereas the mean crustal thickness decreases with increasing
crustal density for the GTR analysis [e.g., Wieczorek and Zuber, 2004]. The application
of both methods, however, requires some specific conditions for the considered region: a
homogeneous unit with respect to lateral density variations and compensation state (Airy
isostasy) as well as no, or only minor, influence on the gravity signal from internal dynamic
processes or sub-crustal density interfaces.

We apply this method to the Martian southern highlands, which, in contrast to the
northern lowlands, seem to fulfill the above mentioned requirements [Frey et al., 1996;
McGovern et al., 2002; Wieczorek and Zuber, 2004]. The most prominent feature of the
highland region is the Hellas basin, which serves in our study as an anchoring-point to
determine the minimum mean crustal thickness. To test the influence of the crustal structure
on the results, we consider in addition to a simple single-layer crustal structure also two-layer



APPENDIX C. PUBLISHED PAPERS 137

rc

rm

R

R-Tc

rm

R

R-Tc
Tl{

ru

rl

ru

rm

R

R-Tc

rl

Tu
{

R-Tu

R-Tu

a) c)b)

Figure C.2.1: Sketch of the crustal models considered in this study: a) single-layer crust of a
mean thickness Tc and a homogeneous density ρc, b) two-layer crust with a lower crust of a
constant thickness Tl and a density ρl (the upper crust has a density ρu and mean thickness
Tu) and c) two-layer crust with an upper crust of constant thickness Tu and density ρu (lower
crust has a density ρl and mean thickness Tl).

structures (Fig. 1). It will be demonstrated that the maximum density of the compensating
crustal layer (i.e. the layer in which lateral variations of thickness occur) in the southern
highlands can be constrained to 3020± 70 kg m−3.

C.2.3 Methods

In the following section, the methods of the GTR analyses and the Bouguer inversion are
described. The relevant equations are derived for three different crustal structures:

1. A simple single-layer crustal structure (Fig. 1a).

2. A two-layer crustal structure with a lower crust of constant thickness and an upper
crust of variable thickness (Fig. 1b). A possible formation scenario for this crustal
structure may be due to the redistribution of surface material (i.e. only the upper
crust) caused by large impacts such as the Hellas impact in the considered region
of the southern highlands. This scenario implies that the crust was already layered
before the large impact happened.

3. A two-layer crustal structure with an upper crust of constant thickness and a lower
crust of variable thickness (Fig. 1c). This type of crustal structure may be a con-
sequence of laterally homogeneous fracturing of the upper crust by impacting and
thereby decreasing its density due to the increase in porosity. Another mechanism
can be related to endogenic processes in which the lower crust thickness varies due to
crustal underplating, and/or erosion and the redistribution of lower-crustal material
by vigorous mantle convection [e.g., Wise et al., 1979; Zhong and Zuber, 2001].

In the GTR analysis both the surface topography and the CMI relief are modeled to a first
approximation, i.e. the mass anomalies connected to volcanoes or impacts are approximated
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by the density anomalies at a given radius. Therefore, the resulting values of a mean global
crustal thickness Tc for the observed data can be any positive value dependent on the
input crustal density. However, the existence of deep impact structures and their CMI
anti-roots posses a problem to this concept. That is, the sum of these two ”depths” gives a
global minimum crustal thickness Tmin

c , which must be always smaller than the mean crustal
thickness Tc. To model the shape of the CMI relief and to obtain the global minimum
crustal thickness, we use the Bouguer inversion method [Neumann et al., 2004] with a fixed
minimum local thickness (i.e. thickness of crust between the bottom of the impact basin
and the top of its anti-root).

GTR analysis

To infer the optimum global mean crustal thickness Tc we use the method of the spatial
geoid-topography ratio which has been adapted the spherical geometry by Wieczorek and
Phillips [1997]. The Cartesian version of this method, which is often applied to Earth [e.g.,
Turcotte and Schubert, 2002] and Venus [e.g., Smrekar and Phillips, 1991], is not valid for
smaller objects like the Moon or Mars [Wieczorek and Phillips, 1997; Wieczorek and Zuber,
2004].

The derivation of a spherical form of GTR is straightforward and in detail described by
Wieczorek and Phillips [1997], therefore we list only the key relationships used in our study.
Both the gravitational potential U (which can be easily converted to the geoid height H
using the Bruns theorem H = U/g0 where g0 stands for the mean gravity acceleration, see
e.g., Lambeck, 1988) and the topography T of the planet are employed in the form of their
spherical harmonic representation. These two fields are used not only in a form of harmonic
coefficients (Cℓm and tℓm for potential and topography coefficients respectively – ℓ denotes
the harmonic degree and m the harmonic order) but also as spatial expansions referenced
to the planetary radius R:

U(θ, φ) =
GM

R

∑

ℓ,m

UℓmYℓm(θ, φ)

T (θ, φ) =
∑

ℓ,m

tℓmYℓm(θ, φ),

where G is the gravitational constant, M is the planetary mass and Yℓm(θ, φ) is the spherical
harmonic function for a given colatitude θ and longitude φ (for the definition of spherical
harmonic formalism see e.g., Wieczorek, 2007).

A regional observed value of GTR averaged over a circle of radius L0 can be fitted by a
combination of the appropriate admittance model Zℓ, where the density and the thickness
of the crust are input parameters, and a weighting factor Wℓ which reflects the considered
spherical harmonic interval ℓmin–ℓmax:

GTR = R
ℓmax
∑

ℓ=ℓmin

WℓZℓ (1)
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Wℓ =
Stt
ℓ

ℓmax
∑

j=ℓmin

Stt
j

, (2)

where Stt
ℓ is the power spectrum of the topography for the degree ℓ.

For the single-layer crust with the global zero-elevation thickness Tc and a constant
crustal density ρc, the admittance function between the potential and topography is [e.g.,
Lambeck, 1988]:

Zℓ =
Cℓm

tℓm
=

4πρcR
2

M(2ℓ+ 1)

[

1−
(

R− Tc

R

)ℓ]

(3)

This spectral relationship is valid for the entire planet as it employs the global zero-
elevation crustal thickness. In practice, however, we deal with some regional-average elevation-
based topography tavg. The correction to obtain the global mean crustal thickness Tc from
the regional mean crustal thickness T avg

c for the single-layer model depends on both the
density of the crust ρc and the mantle ρm (e.g., Wieczorek and Phillips, 1997):

T avg
c = Tc + tavg

[

1 +
ρc

ρm − ρc

(

R

R− Tc

)2]

. (4)

For the two-layer crust cases with either the upper or the lower crust of a uniform
thickness, Eqs. (14)–(17) from Wieczorek and Phillips (1997) provide the admittance and
the correction functions, but mistakenly they were switched. The correct equations for
the case of a two-layer crustal structure with an upper crust of constant thickness Tu and
constant density ρu and a lower crust with variable thickness and constant density ρl (Fig. 1c)
are:

Zℓ =
4πρuR

2

M(2ℓ + 1)

{

1 +
ρl − ρu
ρu

(

R− Tu

R

)ℓ+2

−
(

R− Tc

R

)ℓ[

1 +
ρl − ρu
ρu

(

R− Tu

R

)2]}

(5)

T avg
c = Tc + tavg

[

1 +
ρu + (ρl − ρu)

(

R−Tu

R

)2

(ρm − ρl)
(

R−Tc

R

)2

]

(6)

while for a two-layer crustal structure with a lower crust of a constant thickness Tl and a
variable upper crust with an average thickness Tu = Tc − Tl (Fig. 1b) these equations are:

Zℓ =
4πρuR

2

M(2ℓ+ 1)

{

1−
(

R − Tu

R

)ℓ[

1 +
ρm − ρl
ρl − ρu

(

R− Tc

R− Tu

)2]−1

−

−
(

R− Tc

R

)ℓ[

1 +
ρl − ρu
ρm − ρl

(

R− Tu

R− Tc

)2]−1}

(7)

T avg
c = Tc + tavg

[

1 +
ρu + (ρl − ρu)

(

R−Tu

R

)2

(ρm − ρl)
(

R−Tc

R

)2

]

(8)

To obtain an appropriate value of Tc, a global non-isostatic signature needs to be removed
from the analyzed data prior to the analysis itself [Turcotte et al., 2002; Wieczorek and
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Zuber, 2004]. For objects like the Moon or Mars, the degree 2 distortion must be removed
[e.g., Wieczorek and Phillips, 1997] and for the case of some global-scale lithospheric-loading
deformation, such as the Tharsis load for Mars, some other low degree terms should be
removed [e.g., Zuber and Smith,1997]. Concerning the error analysis, we consider the 1σ
error-bar for the GTR analysis following previous studies [Wieczorek and Phillips, 1997;
Wieczorek and Zuber, 2004].

Bouguer inversion

We use the Bouguer inversion to obtain the minimum mean crustal thickness. The approach
is based on the assumption that the observed gravity signal (and not only the correlated
part as in the case of GTR analysis [e.g., Smrekar and Phillips, 1991; Turcotte et al., 2002;
Wieczorek and Zuber, 2004]) is explained only by the contributions from the surface topog-
raphy masses and the subsurface crustal interface(s) [e.g., Neumann et al., 1996; Wieczorek
and Phillips, 1998; Zuber et al., 2000; Neumann et al., 2004]. Technically, the Bouguer
anomaly, i.e. the observed gravity signal minus the surface topography signal [e.g., Tur-
cotte and Schubert, 2002] is fitted by the gravity signal of the iteratively adjusted CMI
[Wieczorek and Phillips, 1998] or the CMI and intra-crustal interface (ICI) for the case of
a two-layer crustal structure. Depending on the input densities and crustal thickness(es),
we obtain the lateral variation of the crustal thickness which corresponds to the observed
gravity signal. The minimum mean (or zero elevation) crustal thickness is then obtained
using the assumption that the local crustal thickness is always non-negative, i.e., the CMI
relief is everywhere below the surface [e.g., Zuber et al., 2000; Neumann et al., 2004]. Here,
we set the minimum local thickness in accord with other studies [e.g., Neumann et al., 2004]
to be 5 km. Using this constraint as an input for the Bouguer inversion we can calculate
the appropriate minimum mean crustal thickness Tc min. For two-layer crustal structures
this assumption is implemented by keeping the minimum local thickness of the non-constant
layer also at a value of 5 km.

The approach used in this study for evaluating the gravity signal of the density inter-
face(s) with a fixed shape as well as of the iteratively adjusted CMI relief uses the higher
order approximation formalism based on the work of Wieczorek and Phillips [1998]. The
potential signal of an interface with the undulations represented by coefficients hℓm, with
a constant density contrast ∆ρ, referenced to a spherical radius D and evaluated at the
planetary radius R can be for the case R ≥ D written as:

Cℓm =
4π∆ρD3

M(2ℓ + 1)

(

D

R

)ℓ ℓ+3
∑

n=1

nhℓm

Dnn!

∏n
j=1(ℓ+ 4− j)

ℓ+ 3
(9)

where nhℓm is the spherical harmonic coefficient of the n-th power of the interface undulations
h. The calculation of the term

∑ℓ+3
n=1 is very demanding with respect to computational power

for higher degrees ℓ. In practice, the term is therefore replaced by
∑5

n=1 which has been
shown to represent the potential signal sufficiently [McKenzie et al., 2002; Wieczorek, 2007].

The resulting Bouguer anomaly CBA
ℓm for a single-layer crustal model (and also for the

two-layer crust model with a lower crust of constant thickness) is computed as the difference
between the observed potential Cobs

ℓm and the surface relief potential signal Cs
ℓm which is
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obtained by using Eq. (9) with ∆ρ = ρc (or ρu), D = R and hℓm = tℓm (topography spherical
harmonic coefficients referenced to a spherical datum of the mean planetary radius):

CBA
ℓm = Cobs

ℓm − Cs
ℓm (10)

For the two-layer crustal model with an upper crust of constant thickness (where the ICI
shape and amplitudes are identical to the topography) this should be modified by subtracting
also the potential contribution of ICI, CICI

ℓm , (using Eq. 9) with ∆ρ = ρl − ρu, D = R − Tu

and hℓm = tℓm):

CBA
ℓm = Cobs

ℓm − Cs
ℓm − CICI

ℓm (11)

For the cases of the single-layer crust and two-layer crust with constant upper layer
thickness, the CMI relief hℓm with ∆ρ = ρm − ρc (or ρm − ρl) and referenced to the radius
D = R − Tc can be derived iteratively using the following relationship [Wieczorek and
Phillips, 1998]:

hℓm = wℓ

[

CBA
ℓm M(2ℓ + 1)

4π∆ρCMID2

(

R

D

)ℓ

−D

ℓ+3
∑

n=2

nhℓm

Dnn!

∏n
j=1(ℓ+ 4− j)

ℓ+ 3

]

. (12)

The first solution of hℓm for the iterative process is derived analytically from the first
approximation (using the above formula, but omitting completely the second term).

In the case of the two-layer crust with a constant lower crust thickness, the relief of
the ICI (referenced to the radius Di = D + Tl with D = R − Tc) is iteratively determined
together with the shape of CMI since the Bouguer anomaly CBA

ℓm must be fitted by the sum
of the potential signals from both interfaces. Therefore, we arrive at the more complicated
relationship:

hℓm =
wℓ

γℓ

[

CBA
ℓm M(2ℓ+ 1)Rℓ

4π
−∆ρICID

ℓ+3
i

ℓ+3
∑

n=2

nhℓm

Dn
i n!

∏n
j=1(ℓ+ 4− j)

ℓ+ 3
−

−∆ρCMID
ℓ+3

ℓ+3
∑

n=2

nhℓm

Dnn!

∏n
j=1(ℓ+ 4− j)

ℓ+ 3

]

(13)

with

γℓ = ∆ρICID
ℓ+2
i +∆ρCMID

ℓ+2 (14)

For the limiting case when Tl = 0 i.e. ∆ρICI = 0, Eq. (13) is equal to Eq. (12).
In both Eqs. (12) and (13) a weighting factor wℓ is introduced to stabilize the downward

continuation process [Wieczorek and Phillips, 1998]. The inversion of the gravity data causes
an amplification of the short-wavelength noise and the density inhomogeneities signal which
is increasing with depth (i.e. with decreasing CMI reference radius D), thus this part of
the data can significantly influence the solution. The wℓ filter compensates this effect by
continuous decreasing from unity for long wavelengths to zero for a given short wavelength.
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C.2.4 Results for Martian highlands

We analyze the southern highland region of Mars, which is a sufficiently large area [Wiec-
zorek and Zuber, 2004], displaying homogeneity with respect to stratigraphy and geochem-
istry [Nimmo and Tanaka, 2005] and presumably mostly in Airy isostasy [Frey et al., 1996;
McGovernet al., 2002]. In addition, it contains the Hellas basin which is the deepest impact
structure on the planet [Smith et al., 1999] with an elevation of the floor of −6.81 km [Wiec-
zorek and Zuber, 2004]. Gravity analysis of the Hellas basin also suggest that no significant
mascon loading, mantle exposure nor remnants of dense impactor material influences the
gravimetric inversion [Frey et al., 1996; McGovern et al., 2002; Neumann et al., 2004]. The
exact definition of the examined highland area follows closely the region selected by Wiec-
zorek and Zuber [2004] and excludes in the same way all inappropriate parts of the surface
(for details see their Fig. 5 and the corresponding discussion in Section 4). We also use an
averaging radius L0 of 2000 km for the GTR analysis, which has been shown to resolve Tc

correctly for Mars [Wieczorek and Zuber, 2004].
We use the spherical harmonic model Mars2000.shape (referenced to the IAU2000 stan-

dard) for the Martian topography and the recent gravity field model jgm95j01 (downloaded
from Geosciences node of Planetary Data Archive). However, some modifications of the
data are required for both methods. For the Bouguer inversion, a subtraction of 2% of the
degree 2 zonal harmonic potential due to the flattening of the core is needed, in accord with
a setup of Neumann et al. (2004). Since our study is not aimed of dealing with subtle local
variations in the crustal distribution, we choose as a stabilization filter wℓ for simplicity
a step-like function equivalent to cutting out degrees higher than ℓ=30. We have checked
that for our application the use of this filter will not significantly flaw the obtained results.
On the contrary, it decreases the minimum crustal thickness value by a few km which gives
a slightly higher and thus more conservative estimate on ρc max. For the GTR analysis,
we remove the global non-isostatic signature of Tharsis, following the method of Wieczorek
and Zuber (2004), which involved removing the lowermost degrees of both the gravity and
topography signal. However, the resulting estimate of a mean global crustal thickness Tc

depends on the exact cut-off degree. We have chosen to study the signal between ℓ=11–60,
which gives among several other cut-off degrees the highest estimate for the value of Tc

[Wieczorek and Zuber, 2004] and therefore a conservative value for the maximum crustal
density. The maximum spherical harmonic degree was chosen to be ℓ=60 in accord with
Wieczorek and Zuber [2004] because of increasing uncertainty of the gravity model at the
short wavelengths.

The only free parameters in the current study are the densities of the mantle and the
crustal layers. For the mantle we use a density of 3500 kg m−3; a value obtained from
geochemical and interior structure models [e.g., Bertka and Fei, 1997; Sohl and Spohn,
1997]. The crust densities have been varied between 2400 and 3200 kg m−3 (3000–3200
kg m−3 for the lower crust) to study all possible cases and also the general trends.

The results for the single-layered crustal model are shown in Fig. 2. The mean crustal
thickness derived by the GTR analysis (depicted with 1σ error-bar) decreases almost lin-
early with increasing crustal density as indicated by Wieczorek and Zuber [2004]. On the
other hand, the minimum crustal thickness derived by the Bouguer inversion increases with
increasing density, with a stronger increase for crustal densities higher than 2900 kg m−3.
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Figure C.2.2: Results of the joint gravity-topography analysis for the Martian southern high-
land using a single-layer crustal model. For various crustal densities ρc the mean crustal
thickness Tc is obtained by the GTR analysis (dots with error-bars) and the minimum mean
crustal thickness Tmin

c by the Bouguer inversion (solid line). The maximum crustal density
ρmax
c is determined by the crossing of these two trends.

To satisfy the constraint that the mean crustal thickness should be larger or equal to the
minimum crustal thickness, a maximum crustal density of 3020±70 kg m−3 is obtained.
The admissible mean crustal thickness in this case ranges between 50 and 100 km consistent
with previous studies [e.g., Nimmo and Stevenson, 2001; McGovern et al., 2002; Wieczorek
and Zuber, 2004].

For the two-layer crustal model with a lower crust of constant thickness, we test two
different cases with Tl equal to 10 and 20 km. The results for both the GTR analysis and
the Bouguer inversion are sensitive to the density of the upper crust ρu, but not as much to
variations in the lower crust density ρl (Fig. 3). The mean crustal thickness derived by the
GTR analysis decreases with increasing surface crustal density and the minimum crustal
thickness derived by the Bouguer inversion increases with increasing surface crustal density,
similar to single-layer crustal model. The maximum crustal density of the compensating
(upper crustal) layer ρu is about 3000 kg m−3, as for the single-layer structure, but decreases
slightly for increasing upper crustal layer thickness.

For the second two-layer crustal model with a constant thickness of the upper crust, we
vary Tu between 10 and 20 km. Similar to the previous model, results for both the GTR
analysis and the Bouguer inversion depend mainly on the density of the compensating layer,
which is in this case the lower-crustal density ρl and not much on the upper crust density ρu.
The joint analysis of both methods shows that for the structural parameters considered, the
observed gravity and topography data cannot be explained with lower crust (compensating
layer) densities larger than 3000 kg m−3 (Fig. 4). As the results are insensitive to the
upper crust density ρu, we find for ρl < 3000 kg m−3 a wide range of acceptable models
with an upper crust density higher than the lower crust density. Note, however, that with
decreasing thickness of the upper crust, the results again become similar to the single-layer
crustal structure with a maximum lower crust density of about 3000 kg m−3.
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Figure C.2.3: As for Fig. 2 but using a two-layer crust model with a lower crust of constant
thickness Tl.

C.2.5 Conclusions and discussion

The combination of the GTR analysis and the Bouguer inversion allows to constrain the
maximum crustal density for a homogeneously compensated region with a significantly deep
impact structure. In comparison to the studies of Wieczorek and Phillips [1997] and Wiec-
zorek and Phillips [1998], we have rederived Eqs. (5)–(8) and modified the equations for
the CMI relief inversion for the case of a two layer crustal structure (Eqs. (13) and (14)).
Applying both methods simultaneously to the gravity and topography data of the Martian
southern highlands, a maximum crustal density 3020±70 kg m−3 is obtained. For layered
crustal structures, the admissible maximum density of the compensating layer (i.e. the layer
with lateral variations in thickness) is also about 3000 kg m−3, but decreases with increasing
thickness of the layer of constant thickness.

Assuming that in general the density of the upper layer cannot be higher than the density
of the lower-crustal layer, the current results suggest that the upper crustal density ρu is
less than about 3000 kg m−3, whereas the lower-crustal density can be up to 3200 kg m−3 or
higher for the models with the compensation in the upper crust. Without such a restriction
on the density stratification, models with a constant upper crust thickness could also fit the
observed data,with the upper crustal density of ∼3200 kg m−3 or higher being denser than
the lower crust with a density ρl < 3000 kg m−3. However, we believe that this structure
is unlikely for the southern crust for the following reason: the old southern crust has been
fractured due to impacts during the last 4 Ga. That process resulted in a decrease in the
surface density due to the increase in porosity. At a certain depth the pores are closed
and the density is consistent with compact material due to lithostatic pressure. Although
there is evidence by high-resolution images that part of the fractures are cemented due to
fluids [Okubo and McEwan, 2007] and by data from the OMEGA spectrometer for pervasive
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Figure C.2.4: Fig. 4. As for Fig. 2 but using a two-layer crust model with an upper crust
of constant thickness Tu.

sulfates and phyllosilicates throughout the southern highlands [Poulet et al., 2005; Bibring
et al., 2006], the density of this cemented crust might still be slightly lower than that of
compact basaltic material. The consequence is that the density of the lower crust should
be in general higher than the surface density. One possible scenario for a denser upper
crust in comparison to the lower crust is e.g. observed at the Moon in mascons. Here,
secondary (extrusive) volcanism transported dense material towards the surface. While,
such a structure might be possible locally, a homogeneous distribution of dense volcanic
material on lighter older crust seems unlikely. In fact, it is likely that the crustal structure
is formed by a combination of various processes. In that case the structures may not be
described simply by a constant thickness of one crustal layer. In any case, as long as we
have no additional constraints on crustal structure, the present results provide an upper
limit on the compensating crustal layer density of about 3000 kg m−3.

The results of the Bouguer inversion are sensitive to variations in mantle density. A
mantle density of 3500 kg m−3 has been used throughout our study. This value has been
derived from interior structure models [e.g., Sohl and Spohn,1997; Fei et al.,1995, Sohl et
al., 2005] and is also in agreement with other gravity and topography studies [e.g., Nimmo
and Stevenson, 2001; McKenzie et al., 2002; McGovern et al., 2002; Neumann et al., 2004].
Only the study by Wieczorek and Zuber [2004] uses a slightly higher upper bound for ρm
of 3550 kg m−3 but the influence on the results is negligible. On the contrary, it has been
suggested that the mantle may be layered with a depleted upper mantle layer (harzburgite
layer) as a consequence of partial melting [Schott et al., 2001]. This depleted layer could
have a density of about 3300 kg m−3. Assuming an upper mantle of this density will result
in an increase of Tmin

c for the Bouguer inversion. As the influence of ρm on the results for
the GTR analysis is minor, the maximum density of the crust decreases to 2870±70 kg m−3.
Another factor which influences the results of Bouguer inversion is the minimum assumed
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crustal thickness, which was considered in our work to be 5 km in accord with Neumann et
al. [2004] – however changing this value to 1 km would result in an increase of the maximum
crustal density only by ∼30 kg m−3.

The present results correspond to the findings of the maximum pore-free rock density of
3060 kg m−3 derived by Neumann et al. [2004] based on Mars Pathfinder Alpha Proton X-
ray Spectrometer measurements [Brückner et al., 2003]. The landing site of Mars Pathfinder
was located in an outflow channel that originates within the highlands and therefore rocks
found at this site may have an origin from the ancient highlands of Mars. Considering
that the upper crustal layer is in general fractured by impacting over the last 4 Ga, the
surface density should be even lower (see above). Estimates by gravitational considerations
suggest a decrease from a typical surface porosity of about 35% to about 1% at a depth of
10 km [e.g., Clifford and Parker, 2001]. This can be approximated by an average column
porosity of about 10 vol.%, suggesting a reduction of the mean surface layer density of
about 300 kg m−3. However, if the pore space is filled with liquid water or ice, the bulk
density would only be reduced by about 200 kg m−3. Thus, a mega-regolith layer 10 km
in thickness consisting entirely of rock measured by Mars Pathfinder may have an average
density between 2760 and 2860 kg m−3. However, the situation can be different if a large
part of the pore space is cemented due to fluids or by sulfates and phyllosilicates. In that
case, the density of the megaregolith layer is only minor reduced in comparison to solid
material. Low densities for the southern crust have been suggested by Nimmo [2002] who
examined an area at the dichotomy boundary region and suggested a best fitting surface
density of 2500 kg m−3. This result is, however, somehow questionable since the employed
compensation model was not shown to match the observed coherence and the assumption
that both the highland and the lowland regions in the selected area have common properties
is also problematic.

Volcanoes such as Elysium, Olympus, Pavonis, Arsia and Ascraeus Mons that have
been studied with gravity/topography analysis show load densities of 3200±100 kg m−3

[Mc Govern et al., 2004; Belleguic et al., 2005] – much higher than the maximum density
obtained for the southern crust. The recent activity of these volcanoes is of Amazonian age
[Werner, 2005]. It should be noted, however, that the bulk of the volcanic constructs have
been formed earlier, i.e. at least since the Early Hesperian [Werner, 2005]. This in fact
would indicate on high density volcanism since that time. High density volcanism is also
supported by the SNC meteorites. The latter show pore-free densities between 3220 and
3390 kg m−3 and are believed to have a crystallization age of less than 1.3 Ga [Papanastassiou
and Wasserburg, 1974]. Even if one considers a porosity of about 5%, a value typical for the
Martian meteorites [Britt and Consolmagno, 2003], the density of the meteorites are reduced
by about 100 to 150 kg m−3 depending whether the pore space is filled with water or air,
respectively. Comparing the high densities of the volcanic structures with the comparatively
lower density of the ancient southern hemispheric crust suggests an increase of the density.
The ’temporal’ increase probably results from different formation mechanisms or possibly
from a change in composition of the basaltic magmas over time. The increase in density
is supported by the observation of the Fe concentration from Mars Odyssey Gamma Ray
Spectrometer, with higher Fe abundances in the superficial younger northern lowlands and
lower Fe abundances in the ancient southern lowlands [Boynton et al., 2007]. In general, an
increase in Fe concentration of 12% between the Noachian and Hesperian has been observed
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Figure C.2.5: Schematic sketch of different models of the hemispheric crustal dichotomy
(see Section 4): a) with uniform density ρc of both hemispheres underlain by a mantle with
density ρm. The crustal dichotomy is compensated by Airy isostasy. The superficial young
northern hemisphere consists of a thin layer of altered crust and volcanic constructs with
density ρv. b) The same as in a) but the crustal dichotomy is reflected also in a crustal
density variation with the density of southern highland crust ρSc lower than the density of
northern lowland crust ρNc . The compensation mechanism in this case is Pratt isostasy.
c) The same as in b) but with ρSc > ρNc – in that case the compensation mechanism is a
combination of Airy and Pratt isostasy. The grayscale of the crustal material reflects its
density; the lighter the color is the lower is the density.
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[Hahn et al., 2007]. However, the cause of this dichotomy in Fe concentration cannot be
uniquely interpreted as igneous origin, surface alteration process, or a combination of both.
A change in primary igneous magma compositions could lead to an increase of iron and thus
an increase in the density, thus supporting the temporal change in density. Alternatively, Fe
could have been leached out of the southern highlands and been deposited onto the Northern
lowlands through significant long-term circulation of water [e.g., Scott et al.,1995; Fairén
et al., 2003; Tanaka et al., 2003]. Given the early Noachian age of the Martian lowlands
below the superficial younger surface [Frey et al., 2002], the density of the lower crust of the
Northern lowlands should have a similar density as the crust of the early Noachian southern
hemisphere (Fig. 5a). As a consequence, the bulk of the crust has the same density. For that
assumption, a Bouguer inversion of the gravity data can be applied to obtain crust thickness
variations. The results suggest the generally accepted dichotomy in the crustal thickness
with a thick crust of about 70 km underneath the southern hemisphere and a thinner crust
of about 30 km below the northern hemisphere [Zuber et al., 2000; Neumann et al., 2004].

The variation in the crustal density, however, can also be associated with a hemispheric
dichotomy, although the implications for such a scenario are less well constrained. For the
Elysium region it is suggested that even the surrounding crustal density is similar to the
load density with a value of 3270±150 kg m−3 [Belleguic et al., 2005]. Assuming the finding
of the Elysium crust is representative for the entire Northern lowlands, then this implies
that the density and composition of the northern hemisphere crust is different than that
of the southern highlands. Such an assumption is highly speculative as the formation of
the volcanic Elysium region can be completely different to the formation of the Martian
lowlands. However, a high density of the entire northern lowlands can not completely be
excluded; therefore, the possibility for a Pratt mechanism appears as an explanation for the
elevation difference between north and south as already suggested by Spohn et al. [2001]
and Belleguic et al. [2005]. With Pratt isostasy the density variation ∆ρ to support a given
topography variation ∆t is ρ′(z′/∆t + 1)−1 where z′ and ρ′ are the average crust thickness
and density, respectively. Assuming z′=50 km, ρ′=3100 kg m−3 and taking the topography
variations to be ±3 km thereby ignoring the largest variations associated with large impact
basins and volcanoes, we require a ∆ρ of ±175 kg m−3. This would bring the density of
lowland crust close to the densities of the northern crust of 3270±150 kg m−3 [Belleguic et
al., 2005] and would require a density in the highland crust of 2925 kg m−3. As a further
consequence, the crustal thickness variations would be small, about equal to the topography
variations and thus crust-mantle interface undulations negligible (Fig. 5b).

A compositional dichotomy is supported by the findings of the Thermal Emission Spec-
trometer (TES) of Mars Global Surveyor. TES mapped two distinct spectral signatures on
the Martin surface dividing the northern and southern hemisphere [Christensen et al., 2000;
Bandfield et al., 2000]. The surface type 1 on the southern hemisphere has been interpreted
as basalt [Christensen et al., 2000; Bandfield et al., 2000]. There are, however, several
competing mineralogical models for surface type 2, which is found primarily in the north-
ern lowlands. The spectra indicate that the surface type 2 is either basalt plus weathering
products or andesite [McSween et al., 2003] or a material originating from a composition-
ally distinct mantle source than surface type 1 [Karunatillake et al., 2006]. In the former
case, the crust of both hemispheres would most likely be produced by a similar mechanism
and later modified by aqueous processesthis is consistent with the scenario described above
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assuming a temporal evolution of the density manifested in the high density of the Ama-
zonian volcanic regions (Fig. 5a). In the two latter cases, the origin of the andesites is by
igneous processes and given the early Noachian age of the Martian lowlands [Frey et al.,
2002], this compositional difference that is most likely associated with a density difference
must have been formed during the early evolution of Mars. Possible scenarios are either
early plate tectonics operating in the Northern lowlands (i.e., the northern crust represents
’oceanic’ basaltic crust and the southern crust represents ’continental’ andesitic crust) or a
fundamental asymmetry in the primary differentiation of this planet as suggested e.g. by a
large scale instability of the differentiated magma ocean [Elkins-Tanton et al., 2005a,b] or
by a large impact, a theory recently rejuvenated by Andrews-Hanna et al. [2008], Nimmo
et al. [2008] and Marinova et al. [2008]. Both two latter cases support the assumption that
the surface type 2 may originate from a compositional distinct mantle source [Karunatillake
et al., 2006].

Although the TES data support a compositional dichotomy and, therefore, also a density
dichotomy, the characteristics of the two surface types are not compatible with the assump-
tion of a low crustal density of the southern hemisphere in comparison to a higher crustal
density of the northern hemisphere. Basalt has in general a higher density than andesite,
therefore, the spectral data suggest a density distribution vice versa. Accepting the observed
compositional distribution from TES being the result of igneous processes, the high densities
of volcanic material of Amazonian age and the present results of a maximal density of the
southern crust of about 3000 kg m−3, the general density variation of the Martian crust can
be even threefold: a density dichotomy that separates the Noachian crust of the southern
and northern hemisphere with a higher density of the southern basaltic crust and a compar-
atively lower density of the northern crust. In the subsequent evolution, basaltic volcanism
is formed that is enriched in iron and has a higher density than the Noachian crust of the
southern highlands. The consequence is even larger crust-mantle interface undulations as
compared to the model with Bouguer inversion assuming a constant crust density (Fig. 5c).

C.2.6 Summary

The combination of the GTR analysis and the Bouguer inversion allows to constrain the
maximum surface crustal density for the Martian southern highlands to be about 3020±70
kg m−3. The comparison of this maximum crustal density of the southern highlands with
crustal densities (and composition) of other regions on Mars, can help to better under-
stand the planetary evolution and results in the following three different evolution scenarios
(Fig. 5): 1) A temporal evolution in the densities with low densities of the ancient crust
and comparatively higher densities of the young (Amazonianera) volcanic material. 2) The
density variation is already manifested in the early evolution during the formation of the
crustal dichotomy, i.e. the Noachian crust of the northern lowlands has a different density
than the Noachian southern highland crust. The ancient northern hemisphere might have a
higher density than the crust of the ancient southern hemisphere, assuming the high density
crust of the Elysium region being representative for the entire Northern lowlands. If correct,
this also suggests a much lower crust-mantle undulation as generally assumed [Zuber et al.,
2000; Neumann et al., 2004]. 3) As in case 2, the density variation is already manifested in
the early evolution during the formation of the crustal dichotomy. However, in contrast to
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case 2, the ancient northern hemisphere has a lower density than the crust of the ancient
southern hemisphere as suggested by TES data. The spectra can be interpreted as basalt in
the southern hemisphere and andesite in the northern hemisphere. A consequence of that
density variation is a stronger crust-mantle undulation than assumed by Bouguer inversion
with constant crust density [Zuber et al., 2000; Neumann et al., 2004]. In the subsequent
evolution of dichotomy formation and bulk crust formation, the volcanism in Elysium and
Tharsis becomes more enriched in iron and therefore shows an increasing density.
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Chenet, H., Lognonné, P., Wieczorek, M., Mizutani, H., 2006. Lateral variations of lunar
crustal thickness from the Apollo seismic data set. Earth Planet. Sci. Lett. 243, 1–14.
doi:10.1016/j.epsl.2005.12.017.
Christensen, P.R., Bandfield, J.L., Clark, R.N., Edgett, K.S., Hamilton, V.E., Hoefen, T.,
Kieffer, H.H., Kuzmin, R.O., Lane, M.D., Malin, M.C., Morris, R.V., Pearl, J.C., Pear-
son, R., Roush, T.L., Ruff, S.W., Smith, M.D., 2000. Detection of crystalline hematite
mineralization on Mars by the Thermal Emission Spectrometer: evidence for near surface
water. J. Geophys. Res. 105 (E4), 9623–9642. doi:10.1029/1999JE001093.
Elkins-Tanton, L.T., Hess, P.C., Parmentier, E.M., 2005a. Possible formation of an-
cient crust on Mars through magma ocean processes. J. Geophys. Res. 110, E12S01.
doi:10.1029/2005JE002480.
Elkins-Tanton, L.T., Zaranek, S.E., Parmentier, E.M., Hess, P.C., 2005b. Early magnetic
field and magmatic activity on Mars from magma ocean cumulate overturn. Earth Planet.
Sci. Lett. 236, 1–12. doi:10.1016/j.epsl.2005.04.044.
Fairén, A.G., Dohm, J.M., Baker, V.R., de Pablo, M.A., Ruiz, J., Ferris, J.C., Anderson,
R.C., 2003. Episodic flood inundations of the northern plains of Mars. Icarus 165, 53–67.
doi:10.1016/S0019-1035(03)00144-1.
Fei, Y., Prewitt, C.T., Mao, H., Bertka, C.M., 1995. Structure and density of FeS at high
pressure and high temperature and the internal structure of Mars. Science 268, 1892–1894.
Frey, H.V., Bills, B.G., Nerem, R.S., Roark, J.H., 1996. The isostatic state of Martian
topography revisited. Geophys. Res. Lett. 23, 721–724.
Frey, H.V., Roark, J.H., Shockey, K.M., Frey, E.L., Sakimoto, S.E.H., 2002. Ancient low-
lands on Mars. Geophys. Res. Lett. 29, 1384. doi:10.1029/2001GL013832.
Hager, B.H., Clayton, R.W., 1989. Constraints on the structure of mantle convection using
seismic observations, flow models, and the geoid. In: Peltier, W.R. (Ed.), Mantle Con-
vection: Plate Tectonics and Global Dynamics. Gordon & Breach, New York, NY, pp.
675–763.
Hahn, B.C., McLennan, S.M., Taylor, G.J., Boynton, W.V., Dohm, J.M., Finch, M.J.,
Hamara, D.K., Janes, D.M., Karunatillake, S., Keller, J.M., Kerry, K.E., Metzger, A.E.,
Williams, R.M.S., 2007. Mars Odyssey Gamma Ray Spectrometer elemental abundances
and apparent relative surface age: implications for Martian crustal evolution. J. Geophys.
Res. 112 (E3), E03S11. doi:10.1029/2006JE002821.
Karunatillake, S., Squyres, S.W., Taylor, G.J., Keller, J.M., Gasnault, O., Evans, L.G.,
Reedy, R.C., Starr, R., Boynton, W., Janes, D.M., Kerry, K.E., Dohm, J.M., Sprague,
A.L., Hahn, B.C., Hamara, D., 2006. Composition of northern low-albedo regions of Mars:
insights from the Mars Odyssey Gamma Ray Spectrometer. J. Geophys. Res. 111(E3),
E03S05. doi:10.1029/2006JE002675.
Kiefer, W.S., Richards, M.A., Hager, B.H., Bills, B.G., 1986. A dynamic model of Venus’



APPENDIX C. PUBLISHED PAPERS 152

gravity field. Geophys. Res. Lett. 13, 14–17.
Lambeck, K., 1988. Geophysical Geodesy. Oxford Univ. Press, New York, NY.
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C.3 Detectability of the ocean floor topography in the

gravity field of Europa.

C.3.1 Abstract

Future missions to Jupiter’s moon Europa will attempt to measure the gravity field of this
planetary body. Here, we study the detectability of silicate shell density variations in the
gravity field. The first step in the gravity processing will be to remove the gravity signal of
the ice shell. The detection of the ice shell signal, however, can be technologically challenging
depending on its thickness and compensation state since the predicted anomalies are only
a few mGals or even smaller. For long-wavelength topography below degree 40, the signal
of the silicate shell will likely dominate the gravity field. Assuming that the anomalies of
the silicate shell are only caused by the ocean floor topography, thus neglecting possible
density anomalies in the mantle, we should be able to detect the ocean floor signal even if
its topographic variations are only a few hundred meters. When studying the gravity signal
of isolated midsize topographic features like volcanoes, we find a good chance of detecting
objects with a size of 75–200 km with measurement accuracy of 1 mGal. Owing to the large
number of unknown parameters for the gravity inversion, the reconstruction of a global
ice-water/silicate interface shape is uncertain, in particular, as possible contributions to the
gravity field from a low-degree convecting mantle cannot be distinguished. The comparison
between the standard measurement technique of Doppler tracking (detecting the gravity
anomalies) and a microgradiometer (measuring gravity gradients) shows that the latter will
not improve the detectability of the ocean floor structures.3

C.3.2 Introduction

The Galileo mission dedicated to the exploration of Jupiter and its satellites observed Eu-
ropa, one of the four Galilean moons, during numerous flybys between 1996 and 2003. Data
from the gravity measurements suggest the presence of an iron-rich core, a silicate mantle,
and an outer ice/water layer. Owing to the ambiguity of gravity data, however, the thick-
nesses of the layers are not unequivocally determined. The water/ice layer, for instance,
varies between 120 and 170 km depending on the assumed densities of the core and the

3published as: Pauer, M., S. Musiol, and D. Breuer (2010), Gravity signals on Europa from silicate shell
density variations, J. Geophys. Res., 115, E12005, doi:10.1029/2010JE003595.



APPENDIX C. PUBLISHED PAPERS 155

mantle [Sohl et al., 2002]. Gravimetric, geologic, and magnetometric data [e.g., Anderson
et al., 1998; Pappalardo et al., 1999; Kivelson et al., 2000] as well as thermal modeling [e.g.,
Spohn and Schubert, 2003] suggest that a substantial part of this outer layer consists of a
subsurface ocean hidden underneath the observed ice shell. This icy surface with its various
tectonic and resurfacing features is geologically young [Pappalardo et al., 1999], presumably
as a consequence of intense tidal deformation in the ice shell [e.g., Hussmann et al., 2002].
The geological activity of the silicate mantle, e.g., tectonism and volcanism, is basically
unknown as direct observations of the ocean floor underneath the outer ice-water envelope
are not possible. It is suggested from geophysical modeling that radiogenic heat sources in
the silicate mantle could produce sufficient heat to run tectonic and volcanic processes, in
particular during the early evolution of Europa [Hussmann and Breuer, 2007]. In the case
that sufficient tidal energy is also dissipated in the silicate mantle [Thomson and Delaney,
2001; Tobie et al., 2005], the volcanic activity may even have existed until recent times
[Hussmann and Breuer, 2007]. Thus any information about the ocean floor, such as the
possible existence of volcanic and tectonic structures, could give us constraints on the in-
ternal dynamics of Europa. Without landing on the surface, one of possible ways to obtain
this information is to measure and interpret the gravity field of Europa.

Gravity inversion is a procedure commonly used for the Earth and in planetary research
to infer the subsurface distribution of the crust [e.g., Neumann et al., 1996; Wieczorek, 2007],
to study variations in the effective elastic thickness [e.g., Simons et al., 1997; Belleguic et
al., 2005] and to derive dynamic mantle properties [e.g., Richards and Hager, 1984; Pauer
et al., 2006]. The input data for such studies consists of the surface topography and the
global gravity field of a planetary body that have been measured to a certain maximum
degree (in spherical harmonic representation). For future space probes orbiting Europa
[e.g., Clarke, 2007; Blanc et al., 2007] it is anticipated both types of data will be collected
to an adequate accuracy to allow not only for a study of the radial density structure [e.g.,
Anderson et al., 1998] but also to estimate lateral mass variations. However, the fact that
the gravity field usually contains contributions from more than one source, together with
the well known ambiguity of gravity field interpretation, i.e., the tradeoff between density
and radial position [e.g., Wieczorek, 2007], makes any interpretation difficult. The main
contribution to gravity anomalies usually comes from crustal thickness or density variations
[e.g., Neumann et al., 1996, 2004] because of their vicinity to the surface. Other important
sources can be underlying density inhomogeneities such as density variations connected with
thermal convection in the silicate mantle [e.g., Richards and Hager, 1984] or in the case of
icy satellites like Europa the ice/ocean floor topography and density anomalies in the ocean.

In the present paper we examine the strength of the gravity signal coming from synthetic
topographic structures at the bottom of the ice-water layer to estimate their detectability.
For simplicity, we assume an end-member model where a convecting silicate mantle does not
contribute to the gravity signal. We combine these results with a modeled gravity signal
of the overlying ice shell to see how that influences the detectability of the ocean floor
features. We address questions concerning the size of the structures that can be resolved, to
what degree do we need to measure the gravity and topography fields, and what should be
the required sensitivity of future gravity experiments. An important input for the gravity
interpretation is the topography of individual interfaces. However, the only topography
that we will be able to quantify by means of either stereo-camera or/and laser altimeter
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measurements [Blanc et al., 2007] will be the shape of the ice shell that is, at present,
known only regionally [Greenberg et al., 2003; Moore et al., 2001; Nimmo et al., 2003a,
2003b; Pappalardo and Barr, 2004]. Thus, aside from a synthetic topography of the ocean
floor, we create for our analysis also a global synthetic model of Europa’s surface topography
based on available information on local structures. The procedure of preparing synthetic
topographies will be described first and based on those models the gravity field observable
at different orbit heights will be examined. Finally, we examine the reduction of the ice shell
signal and the properties of the gravity data inversion also with respect to the uncertainty
in ocean floor depth.

C.3.3 Modeling Synthetic Topography and the Corresponding
Gravity Field

To study the influence of the ocean floor on the gravity field, we first construct synthetic
models of the topography at the ice-water/silicate interface and the ice surface that are then
used for forward modeling of the gravity field. As a first order approximation, we generate
a random ocean-floor topography represented by a set of spherical harmonic coefficients tℓm
(ℓ is harmonic degree and m harmonic order):

t(θ, φ) =
∑

ℓ,m

tℓmYℓm(θ, φ) (1)

where Yℓm(θ, φ) is spherical harmonic function (for details on spherical harmonic formalism
see e.g., Wieczorek [2007]) for which the power spectrum

Stt
ℓ =

ℓ
∑

m=−ℓ

t2ℓm (2)

follows the power law (also known as Kaula’s law [e.g., Kaula, 1966]) common for the
silicate surface topography of terrestrial planets [Turcotte, 1997] with the single slope β of
the power-law decay between −1.6 and −2.0 (the latter is a theoretical value emerging from
a Brownian walk characteristics of topography distribution [Turcotte, 1997]). To create the
synthetic model of the ice-water/silicate interface (Fig. 1a) we choose a representative value
of β equal to −1.8. In this particular model, we use an amplitude range of the topography
of less than ±1250 m. For the study of the detected gravity signal, the available topographic
information will be however limited to a certain maximum harmonic degree – Fig. 1b shows
the reduction of details (and also amplitudes – by more than 20%) of this topographic model
for a maximum degree ℓmax = 20.

The topography of the ice surface is unknown with respect to its large scale structure but
known locally within small regions [Greenberg et al., 2003; Moore et al. 2001; Nimmo et al.,
2003a,b; Pappalardo and Bar, 2004]. To derive a global ice surface synthetic topography, we
first construct a global model of small-scale features (including bands, craters, domes etc.)
[Musiol, 2007] using available regional topographic information and a global geological map
[Doggett et al., 2007]. In the second step we generate a synthetic topography (Fig. 1c) – as
for the ocean floor shape by generating spherical harmonic coefficients obeying a single power
spectrum decay slope – which has for degrees ℓ ∼75–125 (i.e., a half-wavelength ∼40–65 km
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Figure C.3.1: Synthetic topography of (a) the ocean floor and (c) the ice shell. Both were
generated as a set of spherical harmonic coefficients complete to degree ℓ

max
= 150 using a

topography power law with a fixed decay constant β. (b) Ocean floor topography but expanded
only to degree ℓ

max
= 20 to demonstrate the possible resolution of the gravity inversion

procedure. (d) An upper estimate of the ice shell topography induced by geoid undulations
(for ocean floor topography where R

s
= 1450 km, ρ

s
= 3100 kg m−3, ds

c
= ds

e
= 50 km, a

combination of parameters which gives the strongest gravity signal). In all cases, degree 1
is not included since it does not influence gravity field models (those always originate in the
center of mass; hence the signal at degree 1 is by definition zero).

at the surface of Europa) similar values of the power spectrum as the observed small-scale
global model derived by Musiol [2007]. Since the aim of our effort is to extrapolate for a
global topography model we use a different approach than Blankenship et al. [1999], who
constructed a local power spectrum for only one surface feature in order to extrapolate for a
meter-scale surface topography. For our model, we use again peak amplitudes of ±1250 m,
which is a factor of 3 higher than the observed small-scale geological features but roughly
corresponds to the deviation of observed limb profiles from the hydrostatic ellipsoid (see
Fig. 2 in Nimmo et al. [2007]). For both the topography of the ice shell and the ocean floor,
we also test variations in the amplitude range to examine which topography is detectable
depending on the particular compensation state. The latter depends on the crustal and
elastic thicknesses, radial position, and density contrasts.

In addition to the global topography models, we also examine the detectability of iso-
lated features at the ocean floor. As an example, we simulate the gravity signal of shield
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Parameter Symbol Value Unit

density of ice ρi 900 kg m−3

density of water ocean ρo 1000 kg m−3

density of silicate crust ρs 2700− 3100 kg m−3

density of mantle ρm 3500 kg m−3

mean density of Europa ρ̄avg 3000 kg m−3

thickness of ice crust dic 5− 30 km

thickness of silicate crust dic 5− 50 km

Poisson’s ratio for ice νi 0.3 –

Poisson’s ratio for silicate crust νi 0.25 –

Young’s modulus for ice Ei 109 Pa s

Young’s modulus for silicate crust Es 1011 Pa s

mean planetary radius Ri 1561 km

ocean floor radius Rs 1400− 1450 km

mean gravitational acceleration g0 1.3 m s−2

Table C.3.1: Values of the parameters used for the gravity modeling.

volcanoes, which are common features representing the volcanic activity as observed on
Venus, Earth, Mars, and Io [e.g., Herrick et al., 2005; Schenk et al., 2004] and can have no-
ticeable dimensions (diameter of tens of kilometers and more). To adequately approximate
such a feature by a synthetic topography model, the important parameters are diameter,
shape (both influence the wavelengths carrying the signal power), and height (determines
the amplitude of a signal). To maintain a similarity to observed shield volcanoes we assume
a shape similar to the volcano Ascraeus Mons on Mars and a conservative height/diameter
ratio 1:25.

After generating the synthetic topography models, we calculate the corresponding geoid
anomaly gℓm (in meters), gravity anomaly grℓm (in mGal units – 1 Gal = 10−2 m s−2), and
gravity gradient signal grrℓm (in mE units – 1 E=10−7 Gal m−1 = 10−9 s−2). All of them are an
expression of the same physical quantity but can be measured with different techniques [e.g.,
Rio and Hernandez, 2004; Blanc et al., 2007; J. Bouman and R. Koop, Gravity gradients
and spherical harmonics – A need for different GOCE products?, paper presented at 2nd
International GOCE User Workshop, Eur. Space Agency, Paris, 2004]. We use a first
approximation formula that relates an elastically supported topography to lateral gravity
variations by means of a simple analytical admittance function Zℓ [e.g., Lambeck, 1988]
resulting in a set of coefficients gℓm, g

r
ℓm, and grrℓm [Wieczorek, 2007; Bouman and Koop,

presented paper, 2004]. In case of a simple noncompressible boundary with topography t
the resulting geoid coefficients are [e.g., Lambeck, 1988]
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gℓm(r) =

(

R0

r

)ℓ+1

Zℓtℓm =

(

R0

r

)ℓ+1
4πG∆ρR0

g0(2ℓ+ 1)

[

1− cℓ

(

R0 − dc
R0

)ℓ]

tℓm (3)

where r = Rorb is the evaluation radius (i.e., radius of the orbit), R0 is the reference radius
of the topography (radius of the moon Ri or of the ocean floor Rs), G is the gravitational
constant, ∆ρ is the density change associated with the topography of the respective interface
(density difference between ice and vacuum or between silicate crust and water), and dc is the
thickness of the ice or the silicate crust. The factor cℓ is an elastic compensation coefficient
given by Turcotte et al. [1981]:

cℓ =
1− fself

σ[ℓ3(ℓ+1)3−4ℓ2(ℓ+12)]+τ [ℓ(ℓ+1)−2]
ℓ(ℓ+1)−(1−ν)

+ 1− fself
(4)

with

fself =
3ρm

(2ℓ+ 1)ρavg
(5)

τ =
Ede

R2
0g0(ρm − ρc)

(6)

σ =
τ

12(1− ν2)

(

de
R0

)2

(7)

where fself is the self-gravitational term, τ is the shell rigidity, σ is the bending rigidity, E
is the Young’s modulus, ν is the Poisson’s ratio, ρavg is the mean density of planet, ρm is
the mantle density, ρc is the crustal density, g0 is the mean gravitational acceleration, and
de is the elastic thickness. For small values of de and low harmonic degrees, cℓ approaches
1 (pure Airy compensation) and for the large values of de and high degrees, it approaches 0
(no compensation).

If used for calculation of an ocean floor gravity signal, the equation (3) neglects that
the gravity anomaly caused by a seafloor edifice will generate topography at the ice-lwater
interface and the surface, thus resulting in additional topography and gravity anomalies.
To introduce this effect, equation (3) needs to be modified according to

gℓm(r) =
1

γℓ

(

R0

r

)ℓ+1
4πG∆ρR0

g0(2ℓ+ 1)

[

1− cℓ

(

R0 − dc
R0

)ℓ]

tℓm (8)

where γℓ = 1− 4πGρoRi

g0(2ℓ+ 1)
for ocean floor and

γℓ = 1 for ice shell topography signal. (9)

Consider that this equation assumes instantaneous deformation of the ice shell as it is given
for a pure water interface. The ice shell deformation is in fact time dependent. However,
due to the expected thin thickness of the shell this will not introduce a significant error.

The factor 1/γℓ is a function of degree ℓ and causes in particular amplification of the low
degrees signal. For degrees 2–5 the deformation of the ice shell induced by equipotential
surface undulations increases the geoid amplitudes to 125-110%. Beyond degree 10 the
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deformation of the ice shell by equipotential surface undulations and thus its influence on
the geoid becomes negligible. To compare this induced ice topography with the ”real” one
(model depicted in Figure 1c), we show the geoid undulations (i.e., fluid body surface) at
the reference level of Europa’s surface (i.e., r = Ri) in Figure 1d induced by ”the best
possible combination” of parameters (i.e., parameters that give the strongest gravity signal
with dsc = dse = 50 km, R0 = 1450 km, and rsc = 3100 kg m−3). The resulting shape of the ice
shell is clearly dominated by the long wavelength structure and reaches amplitudes slightly
smaller than ±200 m. For ”the worst possible combination” of parameters (i.e., parameters
that give the weakest gravity signal with dsc = dse = 5 km, R0 = 1400 km, and rsc = 2700
kg m−3), we obtain undulations by an order of magnitude smaller (±50 m); it is obvious that
in either case such an effect cannot be neglected and should be included in the gravitational
anomaly computation. The same amplifying effect should be taken into account if one aims
to consider also the gravity signal of a convecting mantle that is neglected in the present
paper. For the above discussed models we have used formula (8) and parameters range from
Table 1.

The equations for gravity anomaly grℓm and gravity gradient signal grrℓm, respectively,
modified in a same way as the equation (8), are

grℓm(r) =
1

γℓ

(

R0

r

)ℓ+2

Zr
ℓtℓm =

1

γℓ

(

R0

r

)ℓ+2
ℓ + 1

2ℓ+ 1
4πG∆ρ

[

1− cℓ

(

R0 − dc
R0

)ℓ]

tℓm (10)

grrℓm(r) =
1

γℓ

(

R0

r

)ℓ+3

Zrr
ℓ tℓm =

1

γℓ

(

R0

r

)ℓ+3
(ℓ+ 1)(ℓ+ 2)

2ℓ+ 1

4πG∆ρ

R0

[

1− cℓ

(

R0 − dc
R0

)ℓ]

tℓm

(11)
We note that, while for modeling the gravity field of Moon and Mars finite relief mod-

eling instead of first approximation approach is more appropriate [Wieczorek, 2007], in our
case it gives no additional improvement in the modeled gravity signal since the synthetic to-
pography of either the ice shell or the ocean floor satisfy the first approximation assumption
t ≪ 2πR0/ℓ [e.g., Martinec, 1991]. For the case of high volcanic constructs this assump-
tion no longer holds [Belleguic et al., 2005]; however, the difference in using the finite relief
method in comparison to the used method (equations (8), (10), and (11)) is particularly pro-
nounced for middle and high degrees, which are already strongly attenuated by the expected
orbit heights 100-200 km above Europa’s surface.

Equations (8), (10), and (11) show that the gravity signal depends not only on topogra-
phy but also on input parameters like crustal thickness, (lithospheric) elastic thickness, and
density contrast of the corresponding interface (see Table 1). Some parameters in the above
mentioned equations are well known, whereas others are only educated estimates. Thus we
examine, instead of single parameter value, a parameter range allowing to investigate both
”the best” and ”the worst” scenarios, i.e., the expected strongest and the weakest signal.
It should be noted that some of the parameters (like ice shell thickness or rigidity) will be
better constrained in the future with measurements that are complementary to gravity field
detection, e.g., by laser altimeter crossovers [Wahr et al., 2006] or local tectonics analysis
[e.g., Nimmo et al., 2003a]. For the ice layer, we can also decrease the number of free pa-
rameters by using a simple relation between the shell thickness dic and the elastic thickness
die. The elastic thickness is always smaller than the shell thickness because the water ocean
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is below the surface ice layer. Moreover the ice layer exhibits elastic behavior only up to
temperature Telastic ≈ 0.6Tmelting [Garofalo, 1965; Ellsworth and Schubert, 1983; Hussmann
et al., 2002]. If one further assumes that the melting temperature is given by hydrostatic
pressure at the base of the ice shell [Chizhov, 1993; Hussmann et al., 2002]

Tmelting = 273.16K
9

√

1− ρicd
i
cg0

395.2MPa
(12)

and that the temperature gradient toward the surface (with surface temperature Ts = 100
K [e.g., Spencer et al., 1999]) is constant, then the elastic thickness for each shell thickness
is given by

die ≈
Telastic − Ts

Tmelting − Ts

dic. (13)

This consideration is only valid for a conductive ice shell, which can accommodate a com-
pensation process for the surface topography, and is not valid if part of the ice shell is
convecting [Hussmann et al., 2002]. A convecting ice layer will influence the signal induced
by the ice shell topography hence making the ocean floor topography signal either more or
less pronounced. This point is discussed in more detail in section 4.

For the calculations throughout this paper, we confine the spherical harmonic analysis
of the topography up to harmonic degree ℓ = 150. This seems to be a maximum grav-
ity field degree which will be possible to be obtained from a microgradiometer device on
board a future Europa orbiting probe (R. Koop et al., Prospects for a gradiometry mis-
sion for high-resolution mapping of the Martian gravity field, paper presented at European
Planetary Science Congress, Eur. Space Agency, Berlin, 2006). For geophysical interpreta-
tions, the radial-radial component of the gravity gradient measurements can then be easily
converted to more commonly used gravity anomalies. If, however, a traditional Doppler
tracking gravity recovery system will be used instead the maximum harmonic degree will
be lower [Blanc et al., 2007; Koop et al., presented paper, 2006] with the maximum har-
monic degree depending on the mission duration, e.g., for a 90 day mission this could be
only ℓmax ∼ 20 (R. Greeley and T. V. Johnson, Jupiter Icy Moons Orbiter (JIMO) science
forum compiled objectives, investigations and measurements, paper presented at Forum on
Concepts and Approaches for Jupiter Icy Moons Orbiter, Lunar and Planet. Inst., Houston,
Tex., 2003). This can have, in particular, an important influence on the recovery of the ice
shell parameters from the admittance function analysis (see section 3 and Figure 5).

C.3.4 Results of the Synthetic Gravity Field Analysis

We first examine the strength of the gravity signal originating from the surface ice layer.
A fundamental question for a future mission to Europa is whether we would be able to
detect its signal with the anticipated detection sensitivity of 1 mGal or 100 mE [Blanc et
al., 2007; Koop et al., presented paper, 2006] and how to reduce it from the measured gravity
field. We calculate the gravity anomaly and the gravity gradient of an ice shell at an orbital
height of 100 and 200 km (alternatives considered by Clarke [2007] and Blanc et al. [2007])
assuming the synthetic topography described in section 2. The used ice shell thicknesses
are 5 and
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Figure C.3.2: (ab) Simulated gravity anomalies and (cd) gravity gradients of the ice shell
topography (Figure 1a) for two different compensation models (dic = 5 km, die = 2 km and
dic = 30 km, die = 11 km) and for two different orbital heights (100 km and 200 km). (eh)
The same is depicted for the ocean floor topography signal based on model depicted in Figure
1c with compensation parameters dsc = 5 km, dse = 5 km and dsc = 50 km, dse = 50 km
(Rs = 1400 km, ρs = 2700 kg m−3 and Rs = 1450 km, ρs = 3100 kg m−3, respectively).
Results for thin and thick ice shell/silicate crust differ apart from the scale also by small
lateral differences (because of factor (R0 − dc)

ℓ in equation (8)), which are for our purpose
negligible. Hence we show them both in one panel.
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30 km and the corresponding elastic lithosphere thicknesses calculated using equations (12)
and (13) are 2 and 11 km, respectively. The results in Figures 2a–2d show that for the thin ice
model, irrespective of the orbit height, the gravity signal is below the anticipated detection
sensitivity. The thick ice model on the other hand generates a sufficiently strong signal for
detection. This is caused by two factors which appear in the equation (3): first, the thicker
the elastic layer is the smaller is the level of compensation of the surface features, e.g., for
a characteristic wavelength ∼ 100 km the factor cℓ(d

i
c = 5 km) = 0.988 and cℓ(d

i
c = 30 km)

= 0.484 and second, the deeper the subsurface interface of the ice shell is the more of its
signal is attenuated. Thus the stronger is the surface signal, e.g., for the same characteristic
wavelength of ∼ 100 km is (Ri − 5 km/Ri)

ℓ = 0.851 and (Ri − 30 km/Ri)
ℓ = 0.379.

Studying the power spectra of the modeled gravity signal (Figures 3a and 3b), one
can also see that with sufficient sensitivity the microgradiometer readings are in principle
more suitable for detailed examination of the ice shell signal compared to standard Doppler
technique. The microgradiometry method is obviously more sensitive to higher wavelengths
for which the contribution over a certain harmonic interval (ℓ ∼10–40 for 100 km and ℓ ∼10–
20 for 200 km orbit) is approximately of the same power. Beyond this harmonic interval the
power spectra decay rapidly which indicate possible problems in obtaining data for these
wavelengths.

There is, however, a tradeoff between topography amplitudes and ice shell thickness
(see equations (10) and (11)). This tradeoff, calculated for both examined orbital heights,
suggests that with maximum amplitude of ice shell topography at least ±1000 m, we would
be able to detect its gravity signal with the Doppler tracking method if the ice shell is
thicker than 10–15 km (Figures 4a and 4b). If, however, the amplitudes of the ice shell
topography are only ∼ ±500 m, then we will be able to measure a signal only for a shell
thicker than 20–30 km given the anticipated sensitivity of the gravity experiments. Figures
4a and 4b show that with a measurement accuracy increased by a factor of 3 (achievable
by current technical means [e.g., Iess and Boscagli, 2001]) the ±500 m peak topography is
even detectable for a shell thickness of 5–10 km depending on the actual orbit height.

Assuming a sufficiently strong signal from the ice shell that could be detected from orbit,
it needs to be isolated from the overall measured gravity signal. The importance of this is
twofold: first, it minimizes the error in the ocean floor gravimetric inversion and second it
can give us some information about the ice shell, e.g., its thickness and elasticity. Figure
5a shows that with the assumed maximal ocean floor topography of ±1250 m and a strong
gravity signal from the ocean floor (the signal is in particular strong for a shallow ocean and
topography supported by a thick elastic lithosphere) measurements beyond degree ∼ 40 are
needed to receive the signal only from the ice layer. For lower degrees, the gravity signal
is influenced by the ocean floor contribution. Note that the signal beyond degree 40 (as
discussed above) could already be too weak to be detected. The crossover, i.e., the degree
above which the gravity signal is mostly influenced by the ice layer, depends strongly on
the used synthetic topography model. If the real ocean floor has a substantially stronger
signal at all wavelengths, then the gravity signal beyond degree 40 could also be influenced.
To demonstrate how to separate the two signals, we compute the admittance Zcombine

ℓ (for
details on the method, see, e.g., Simons et al. [1997], Schubert et al. [2001], or Pauer et al.
[2006]) between the ”observed” gravity field (combining the field from ice shell and ocean
floor) and the ice shell topography (Figure 5b, thick line). This admittance function can
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Figure C.3.3: Power spectra of (a) gravity anomalies and (b) gravity gradients for the ice
shell (dic = 5 km case corresponds to die = 2 km and dic = 30 km to die = 11 km) demonstrate
that, especially for the lower orbit, the gradiometric method is out of these two in principle
more sensitive at higher degrees (power decrease by less than one order of magnitude for
degrees ℓ < 40 and ℓ < 20). To demonstrate an influence of both the compensation process
and gravity signal attenuation with height, we plot also a power spectrum of uncompen-
sated topography gravity at a zero height (dot-dashed line). The power spectra of (c) gravity
anomalies and (d) gravity gradients for the ocean floor (dsc = 5 km case corresponds to dse =
5 km and dsc = 50 km to dse = 50 km from Figure 2) show that in this case the difference in
measurements sensitivity is not so pronounced because of already strong height attenuation
in both studied quantities.

then be fitted for degrees higher than 40 by one of the theoretical admittance Zℓ(d
i
c) curves

(see equation (10)) constructed for various ice shell thicknesses dic (Figure 5b). As can be
seen in Figure 5b, the lowermost degrees cannot be fitted by the ice topography admittance
function since they are dominated by the gravity signal of the ocean floor. The results
shown here demonstrate that for the combination of a weak ocean floor signal and a strong
ice shell signal, the gravity experiment on board a future Europa orbiter might be able to
recover the mean values of ice shell and its elastic thickness. If this is, however, not possible,
we should take advantage of the results from other methods and experiments [e.g., Moore
and Schubert, 2000; Nimmo et al., 2003a; Wahr et al., 2006] and remove the ”probable” ice
shell gravity field based on the observed topography and derived shell (elastic) thickness to
minimize the error for the ocean floor gravimetric inversion. In the worst case, we simply
reduce the signal of the ice topography and neglect any compensation of the ice shell. Such
a procedure assumes a maximal signal reduction and underestimates the signal from the
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Figure C.3.4: (a) Tradeoff between ice shell thickness dc i and minimum needed topography
amplitudes range tmax to detect the gravity anomaly and gravity gradient signal due to the
ice shell topography at 100 km above the Europa’s surface. (b) The same but for orbit height
200 km. In both cases measurement accuracies of 0.3 and 1 mGal were investigated for the
gravity anomaly and 30 and 100 mE were investigated for the gravity gradient. (cd) Similar
study for the ocean floor topography showing the dependency of gravity anomaly/ gravity
gradient detectability for orbital heights 100 km (Figure 4c) and 200 km (Figure 4d) and
two different cases: ”the worst case” WC (Rs = 1400 km and ρs = 2700 kg m−3) and ”the
best case” BC (Rs = 1450 km and ρs = 3100 kg m−3). In both cases, the crustal thickness
was fixed to dsc = 20 km.

silicate shell.
After reduction of the ice shell signal, the remaining signal is assumed to be caused

by the ocean floor topography (the potential influence of other effects is discussed later).
Figures 2e–2h shows the gravity field generated by our synthetic ocean floor model for two
different sets of parameters. The first combination is chosen to give the presumably strongest
gravity signal with dsc = dse = 50 km, R0 = 1450 km, and ρsc = 3100 kgm−3. The second
combination gives the weakest gravity signal with dsc = dse = 5 km, R0 = 1400 km, and
ρsc = 2700 kgm−3. The results show that the gravity signal for both extreme cases is well
above the anticipated measurement accuracy at the assumed orbit heights. The tradeoff
between a range of topography amplitude and an elastic thickness (Figure 4c) demonstrates
that the likelihood of detecting gravity anomalies from the ocean floor is good even for
unfavorable conditions, i.e., a thin elastic lithosphere and a small topography of only a few
hundred meters. It is interesting to note that for any case of the ocean floor gravity signal
there is no advantage in gradiometric measurements compared to gravity measurements due
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Figure C.3.5: (a) Comparison of gravity anomaly power spectra for the ice shell signal (best
dic = 30 km and worst dic = 5 km scenarios) and ocean floor topography (best case dsc =
50 km, dse = 50 km, Rs = 1450 km, ρs = 3100 kg m−3 and worst case dsc = 5 km, dse =
5 km, Rs = 1400 km, ρs = 2700 kg m−3 scenarios) using the same topographic models as
for Figure 2, i.e., with maximum amplitudes ± 1250 m. Thick solid line shows an example
of the combined signal (an intermediate ice shell model dic = 15 km and ocean floor model
dsc = 10 km, dse = 10 km, Rs = 1425 km and ρs = 2900 kg m−3). Note that the single
contributions to the combined signal are not shown here. All the power spectra are evaluated
at an orbit of 100 km. (b) Set of theoretical admittance curves for an ice shell with various
shell thicknesses dic; the elastic thickness is then computed using equation (13) (light lines).
The curves are compared to a simulated admittance of the combined gravity signal (thick
solid line). For this chosen model the fit beyond degree 30 constrains the crustal and elastic
thickness of the simulated ice shell.

to the stronger height attenuation of the gravity gradient (compare the attenuation factors
in equations (10) and (11)), as one can see also from Figures 3c and 3d where there is no
significant difference in characteristic decay of gravity anomaly and gravity gradient power
spectra.

An admittance analysis as shown for the ice shell is not possible for the ocean floor since
there will be no ”observed” topography. Thus a gravimetric inversion of that interface is
even more challenging as we have more unknown parameters in equations (10) and (11):
topography, crustal and elastic lithosphere thickness, the crustal and mantle density, and
the depth of the ocean. For the interpretation of the ocean floor signal we can, however,
profit from the small radius of Europa. A small planetary radius makes the elastic support
important even for relatively small values of the elastic thickness [Turcotte et al., 1981]. It
is important to note that this is only true for the silicate shell and not for the ice shell, as
the Young’s modulus for silicate is 1–2 orders of magnitude larger than that for ice. Fig-
ure 6a shows that for expected values of E and ν, the gravity signal for elastic thicknesses
of dse > 20 km is already very close to the gravity signal of an uncompensated topography.
Thus we can use for the inversion of the ocean floor gravity signal an uncompensated crustal
structure model (i.e., we assume that the signal is coming solely from the topography undu-
lations with no contribution from the crust-mantle interface), as a valid end member model.
This model produces a minimum estimate of topography amplitudes since any compensated
model requires higher topography. The other end member model for gravity signal inversion
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Figure C.3.6: (a) Gravity anomaly power spectra caused by ocean floor topography for crustal
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dependant factor modifying the result of recovered topography for radially misplaced gravity
inversion, i.e., Rinv

s 6= Rorig
s (original topography is referenced to radius 1450 km) while all

other parameters are fixed to ”real” values.

would be an ocean floor topography solely supported by dynamic processes in the mantle,
i.e., by mantle convection.

Another unknown parameter is, however, the depth of the ocean floor. This value has
been fixed for the model calculations described above. In Figure 6b it is demonstrated that
the unknown radial position influences not only the amplitude of the inverted topography
but also the relative weight of each degree. Misplacement of the reference radius by 50 km
causes then a relative artificial degree-dependent power decrease; the signal of degree 20
compared to the signal of degree 2 is reduced relatively by almost 50%. It should be noted
that we will not be able to constrain the ocean depth with the gravimetric inversion method.
If, however, the radial position can be determined with other methods, e.g., analysis of the
moment of inertia [cf. Anderson et al., 1998], with a relatively small error of about ±10 lkm
then the elastic thickness is the main factor influencing the uncertainty of the recovered
topography.

In addition to global topographic variations, we test the possibility of detecting single
volcanic/tectonic features like submarine volcanoes. The signal of the structure is again
evaluated both in the form of gravity anomalies (Figure 7a) and gravity gradients (Figure
7b) in the two proposed orbit heights of 100 and 200 km. Additionally, the geoid anomaly
above such features is studied (Figure 7c), which in case of a perfectly fluid body would
create measurable deformation at the surface (this deformation could be recovered by a
laser altimeter experiment with high accuracy [Wahr et al., 2006]). For all three cases
again two end member states, the ”best case” where the signal is strongest assuming deep
compensation and a shallow ocean and the ”worst case” where the signal is weakest assuming
a shallow compensation and a deep ocean, are modeled to allow for an estimate on the range
of the possible gravity signal strength. The results show that for the ”best case” scenario,
a volcano with a diameter of 75 km could be detected from a 100 km orbit whereas for the
”worst case” scenario it should have a diameter of 200 km or more to allow detection at
a 200 km orbit. Similar results are also obtained for synthetic submarine trenches where
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the scaling parameter is the width. One should note, however, that because of a good
localization in the spatial domain the signal of such an isolated feature is wide spread in the
spectral domain [e.g., Wieczorek and Simons, 2005]. Therefore the detection limit up to a
degree ℓ ∼ 20 will result in a strong underestimation of the feature’s height, as demonstrated
in Figure 7d. For instance, if we detect a volcano with diameter 200 km, we will obtain only
about 20% of its peak signal. However, the larger the structure, the smaller the detection
”error” caused by neglecting the intermediate and short wavelengths.

C.3.5 Summary and Discussion

The main aim of the present study is to determine the detectability of density anomalies in
the silicate part of Europa for future missions. For simplicity, we assume that the anomalies
of the ice/water shell are represented purely by ice surface topography and the density
anomalies in the silicate shell by ocean floor structures. The following questions have been
addressed: What minimum topography and size of structures at the ice surface and the
ocean floor are we able to recover? Can we separate the gravity signal of the ice shell?
What is the maximum degree to which we need to measure the gravity field? What can we
learn from the remaining gravity signal and how important are other contributions to the
gravity field?

Detectability of the Ice Shell and the Ocean Floor

The detection of the signal of the ice shell depends strongly on its thickness and the orbital
height. For a thick ice shell of 20 to 30 km and an instrument accuracy of 1 mGal/ 100
mE, the maximum amplitude of the ice shell topography needs to be at least ∼ ±500 m.
With this instrument accuracy we will, however, not be able to detect gravity anomalies of
a thin ice shell with a thickness of e.g., 5 km and any realistic topography. To detect gravity
anomalies of a thin ice shell at all, we require a factor of 3 improvement in measurement
precision. At present, the amplitudes of the ice surface topography, in particular for longer
wavelengths, are unknown. From models of global ice shell thickness variations due to tidal
dissipation and the assumption of isostatic compensation, Nimmo et al. [2007] suggested
maximal 700m variations (i.e., approximately a topography of±350 m). If the ”real” ice shell
topography is indeed in that range, its signal will not be detected unless the measurement
precision is again better than anticipated 1 mGal/100 mE. Gravity signal coming from the
ocean floor topography should be relatively strong due to the large elastic support even
for small elastic thicknesses (see Figure 6a). Thus the long wavelengths of the ocean floor
undulations will be easier to detect and a topographic range of a few 100s meters should be
sufficient even with an elastic thickness of ∼10–20 km. Small scale features like volcanoes
or ocean trenches can be detected if they exceed a horizontal size of 75–200 km. Owing to
the fact that most of the signal of the small features is not in the detectable spectral range
(short wavelength gravity from ocean floor is strongly attenuated) the resulting topographic
reconstruction will highly underestimate the original topography, depending on the actual
size of the feature, more than 80% of its height may not be recovered from the observation.
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Figure C.3.7: Detectability of a synthetic volcano’s gravity signal: (a) peak gravity anomaly
above the volcano’s summit in mGals evaluated at 100 and 200 km above Europa’s surface
(best case scenario ”BC”: Rs = 1450 km, ρsc = 3100 kg m−3, dsc = dse = 50 km and worst case
scenario ”WC”: Rs = 1400 km, ρsc = 2700 kg m−3, dsc = dse = 5 km). (b) The same but for
gravity gradient changes in mE. (c) Equipotential surface deformation in meters evaluated at
the outer radius of Europa. In all three cases the technological threshold for signal detection
(1 mGal, 100 mE, 5 m) is depicted by a shaded area. (d) Percentage of theoretically possible
recovered topography with spectral information complete only up to degree ℓ = 20 (all the
inversion parameters are adjusted to ”true” values).

Separation of the Gravity Signal of the Ice Shell From the Measured Data and
Required Maximum Harmonic Degree

The present analysis shows that up to degree 40 the gravity signal can be influenced by
both the ice layer and the ocean floor. For higher degrees, the signal of the ocean floor is
strongly attenuated and consequently not measurable. Thus the separation of the signals
would benefit if we measure the gravity field beyond degree 40. The technique of using a
gravity microgradiometer (direct sampling of gravity gradient in orbit around Europa) would
provide such a spectral resolution, especially for the ice shell gravity signal [Blanc et al.,
2007; Koop et al., presented paper, 2006]. Measuring the higher degrees of the gravity field
may allow an admittance study of the ice shell. Such a study permits a direct separation
of the signal and in addition confirms/improves estimates of the global average thickness
of the ice shell and its elastic thickness. If we only measure to about degree 20 with the
standard method of Doppler radio tracking (e.g., Greeley and Johnson, presented paper,
2003), we may overestimate the signal from the ice shell by reducing only the measured
surface topography and thereby neglecting the possible reduction of the signal by isostatic (or



APPENDIX C. PUBLISHED PAPERS 170

partly isostatic) compensation. However, we may also use the results from other experiments
(e.g., laser altimeter or subsurface radar) to estimate the shell/elastic thickness of the ice and
thus the compensation state for a better separation of the signal of the shell. Furthermore,
it is likely that the influence of an ice shell on the gravity signal in particular with a low
topography and/or a thin shell is negligible (see previous paragraph) and thus not critical for
interpreting the remaining signal. It is also important to note, that for the on-orbit strength
of signal coming from the ocean floor the gravity microgradiometer (i.e., the possibility of
obtaining a gravity signal beyond degree ∼ 20) cannot improve the measurements because
of the strong height attenuation for the 100/200 km orbit, which diminishes the middle and
short wavelength signal.

Interpretation of the Remaining Gravity Signal

As discussed above, it is likely that we will be able to detect gravity signals from the density
variations in the silicate part of Europa with a future orbiter mission. The interpretation
of the gravity signal, however, will be difficult due to the ambiguity in the data inversion
and the large number of unknown parameters. Assuming that the density anomalies in the
silicate part are represented purely by ocean floor structures, the recovery of actual ocean
floor topography shape from the gravity signal requires knowledge of the crustal and elastic
lithosphere thickness, the crustal and mantle density, and the depth of the ocean. Any
uncertainty in these parameters will introduce an error in the inversion of the topography.
However, since it has been shown that even a relatively thin elastic lithosphere gives a strong
compensation support to the topographic load, we can use as a ”realistic” end member
model an uncompensated topography model for the gravimetric inversion. Such a model
gives the minimum estimate of topography amplitudes. The uncertainty in the depth of the
ocean (larger than ±10 km) can introduce an additional error in the recovered topography,
however mainly at shorter wavelengths which are not so important for the global shape
determination.

Other Contributions to the Gravity Field

The present study is based on the simplification that our modeled synthetic gravity signal has
contributions only from the gravity anomalies originating from the ice layer and the silicate
crust at the ocean floor, with other contributions neglected. Other possible contributions
of the outer ice and water layer to the signal could be warm ice convection [e.g., Hussmann
et al., 2002; Tobie et al., 2003; Han and Showman, 2005], density anomalies in the ice
shell [cf. Nimmo and Manga, 2009] and hydrothermal plumes in the subsurface ocean [e.g.,
Thomson and Delaney, 2001; Goodman et al., 2004; Vance and Brown, 2005]. Estimates
of horizontal scales in all the above mentioned cases range up to about 50 km. At this
scale, the gravity signal will be influenced mainly at higher degrees ℓ > 100. Thus such
contributions will not be detected and is not of relevance for the analysis. More problematic
are signals at low degrees. Lateral surface temperature and tidal heating variations are
assumed to lead to large scale shell thickness and topography variations [Ojakangas and
Stevenson, 1989; Nimmo et al., 2007]. The gravity signal from the topography variations
can be reduced from the signal. The contribution from the associated thermal anomalies in
the convecting ice is not that easy to constrain and remove. Neglecting these contributions
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will lead to an incorrect estimate of the remaining signal from the silicate shell. However,
no such variations in the shell thickness and topography have been detected in existing
limb profile data [Nimmo et al., 2007]. Two other effects connected to the existence of a
subsurface ocean on Europa which may contribute to the gravity field are compositional
(density) variations in the ocean and ocean currents-induced topography at the ice-water
interface. The wavelengths of both these effects are expected to be small [e.g., Nimmo and
Manga, 2009] and thus their influence on the gravity field interpretation is negligible since
there will be no or very poor recovered gravity data at short wavelength (see discussion
at the end of section 2) and moreover there is a strong attenuation at these degrees (e.g.,
equation (3)). It should be noted, however, that it has been also suggested that strong tidal
dissipation in the liquid oceans may excite large-scale convection currents due to obliquity
[Tyler, 2008].

Contributions to gravity anomalies of the silicate shell could be also related to the
convecting silicate mantle in the same way as for the Earth [e.g., Richards and Hager, 1984]
or as hypothesized for Venus [e.g., Pauer et al., 2006], i.e., directly to density anomalies in
the mantle or indirectly through dynamically induced topography. Most likely there will
be no way of distinguishing between the gravity signal coming from this source and the
ocean floor topography. A first-order estimate of the gravity anomaly amplitudes caused
by mantle convection that is not dominated by the lowermost degrees gives a peak gravity
anomaly of only a few mGal at 100 km orbit, i.e., one order of magnitude smaller than our
simulated gravity anomaly in Figure 2e. For this estimate we use internal structure models
of Europa by Sohl et al. [2002] and the hybrid numerical method introduced by Zhong
[2002] combining a viscous mantle flow with an elastic lithosphere. It has been shown,
however, that tidal heating strongly influences the convection pattern and can result in
low degree convection [e.g., Czechowski and Leliwa-Kopystynski, 2005]. Such a large-scale
thermal (density) anomalies can induce in principle a stronger gravity signal. Although
tidal effects in Europa most likely dominate in the ice shell, they might be also active in the
silicate mantle [Hussmann et al., 2010]. Thus it will not be possible to distinguish between
the gravity signal coming from the ocean floor topography and the convecting mantle.
Any contribution from the silicate shell to the measured gravity field will most likely be
a combination of both. To disentangle these contributions, it is necessary to study the
characteristics of Europa’s silicate mantle convection with 2-D and 3-D mantle convection
codes including tidal effects, which is beyond the scope of the present paper. Furthermore,
if tidal heating is important in the silicates, then the long-wavelength topography of the
ice shell and the silicate mantle will likely be strongly correlated and any separation of the
different interfaces will be even more challenging.

For completion, in addition to the internal sources, we must also separate the contri-
butions from tides, i.e., dynamic gravitational tides, from the measured gravity field. The
amplitudes of dynamic gravitational tides are expected to be several mGals at the 100/200
km orbital height depending on the moon’s actual structure [Moore and Schubert, 2000].
This contribution is in fact comparable to the strongest expected signal of the ice shell.
However, their periodical nature (one revolution of Europa around Jupiter takes only 3.55
days) permits their successful separation from the rest of the signal after 30 (Earth) days
nominal mission [Wahr et al., 2006]. The dynamic gravitational tides can also be used to
investigate the radial structure of Europa (amplitudes and phase lag of these tides depend
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gradient signal is evaluated at orbits 100200 km above the surface.

on the thicknesses of the ice and water layers, rheological properties of ice etc.) [e.g., Moore
and Schubert, 2000; Tobie et al., 2003] especially when combined with the surface tidal
deformation observations [Wahr et al., 2006].

To model the synthetic topography of the ice surface, we assumed that the topography
is supported by lateral variations of the ice shell thickness, including elastic support. This
assumption neglects the influence on the ice/water compensation undulations by warm ice
convection and/or the flow of the lower ice shell. Both processes tend to reduce the shell
thickness variations and strongly depend on the shell thickness and the wavelength of the
topography. In an ice shell of thickness 15–50 km, warm ice convection most likely occurs
[e.g., McKinnon, 1998; Pappalardo et al., 1998; Tobie et al., 2003], which will effectively
erase ice/water compensation undulations and results in topographic relaxation at long
wavelengths. Even if there is no warm ice convection, lateral variations in the ice thickness
can cause pressure gradients which drive the flow of ductile ice near the base of the shell
[Stevenson, 2000]. Variations in the global ice shell thickness, such as those due to spatial
variations in tidal heating [Ojakangas and Stevenson, 1989], cannot survive the observed
surface age of Europa if the shell thickness is larger than 10 to 20 km, depending on the
grain size of the ice. This is also valid for small-scale shell thickness variations. In fact, they
are removed even more rapidly than longer wavelength topography [Nimmo, 2004]. It should
be noted, however, that short-wavelength topography can be supported by the rigidity of the
ice shell (such support is less effective at longer wavelength) and only the ice-water interface
undulations are removed for small scale shell thickness variations. Considering the above,
the assumptions used in our model are appropriate for an ice shell thinner than about 10
km. For an ice shell thicker than about 10–20 km, our results overestimate the influence
of the ice shell on the measured gravity field for global topography. Here, only a small
surface topography is expected for long-wavelengths and thus contributes only minimally
to the gravity field. For small-scale topography that can be supported by the rigidity of
the ice shell, however, we may have underestimated the influence of the ice shell because
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the ice/water undulations are reduced for all wavelengths. This, on the other hand, would
suggest a stronger gravity signal for these small-scale features. In Figure 8 the minimum
degree topography height tℓ is studied for the case of an uncompensated ice shell topography.
This, however, shows that unless the height of small-scale structures is ∼ 1000 m their signal
is still below the detection level.
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