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Abstrakt: Český masiv byl konsolidován v d̊usledku kolize několika kontinentálńıch
mikrodesek v pr̊uběhu Variského vrásněńı (∼400–300 Ma). Centrálńı část Českého
masivu, Moldanubikum, obsahuje významné množstv́ı felsických vysoce metamor-
fovaných hornin. V této práci představujeme numerický model kontinentálńı kolize,
která vedla k výstupu těchto hornin. Důležitým předpokladem modelu je felsické
složeńı spodńı k̊ury jednoho z koliduj́ıćıch kontinentálńıch blok̊u, a z toho vyplývaj́ıćı
jej́ı ńızká hustota a viskozita a vysoký obsah radioaktivńıch prvk̊u zp̊usobuj́ıćıch
zahř́ıváńı materiálu. Zkoumali jsme vliv koncentrace tepelných zdroj̊u, rychlosti
kolize a povrchové eroze na deformaci k̊ury a na tlakově-teplotńı podmı́nky ve
spodněkorovém materiálu. Při časovém vývoji docháźı v modelu ke ztluštěńı k̊ury,
r̊ustu náhorńı plošiny a sedimentaci v předpolńı pánvi. Pokud je spodńı k̊ura
dostatečně změkčená v d̊usledku radioaktivńıho zahř́ıváńı, je ztluštěńı k̊ury do-
provázeno gravitačně indukovaným výstupem spodněkorových hornin a následně
subhorizontálńım tečeńım ve středńı k̊uře. Naproti tomu v chladněǰśıch a rychleǰśıch
modelech je hlavńım mechanismem ztluštěńı k̊ury vrásněńı. Tyto dva typy chováńı
vystihuj́ı pozorované rozd́ıly mezi felsickými vysoce metamorfovanými horninami
v moldanubické a v sudetské části Českého masivu.
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Abstract: The Bohemian Massif was consolidated during the Variscan orogeny
(∼400–300 Ma), which involved several oceanic subductions and collisions of con-
tinental micro-plates. The central part of the Bohemian Massif, the Moldanubian
domain, shows a large accumulation of felsic high-pressure metamorphs. We present
a numerical model of exhumation of these rocks due to continental collision and un-
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Introduction

The tectonics of the Earth’s crust and lithosphere are studied by means of geo-
logical and geophysical methods. Among the geophysical methods, the studies of
seismic-waves propagation are the most powerful tool for determination of mate-
rial distribution and discontinuities, which can be inferred from the distribution of
seismic velocities and seismic reflectors. Besides that, anisotropy and attenuation
of seismic waves are studied. The anisotropy corresponds to present or past pref-
erential direction of flow, or it can be related to layered character of the media.
The attenuation of waves can be a result of presence of fluids, such as melt or wa-
ter. These fluids can be also detected due to their high electric conductivity and
magnetic susceptibility. Additional information on material distribution comes from
measurements of gravity anomalies.

In contrast to the geophysical methods, which reveal the current state of the
lithosphere, the geological methods can help to reconstruct its past evolution. The
field of geological research is mostly limited to the rocks exposed at the surface,
but some of these rocks used to be deeply buried and record the processes that
took place in the crust or even in the lithospheric mantle. However, the geological
data do not fully constrain the evolution of a studied region. The reconstruction
is often complicated due to an overprint of different stages of evolution and associ-
ated metamorphism. In the reconstruction, geophysical data can provide important
constraints because they allow prolongation of surface features to deeper levels.

Numerical modeling is potentially an ideal tool for further improvement of un-
derstanding of tectonic processes and evolution of a particular region, but many
challenges arise in numerical implementation of crustal deformation. Unlike the
mantle, the crust is very heterogeneous. It consists of materials with distinct rhe-
ological properties that are subject to highly varied conditions: low pressure and
temperature near the surface of the Earth and relatively high pressure and temper-
ature at a depth of several tens of kilometers. Moreover, the deformation in the
upper crust is mostly brittle and the strain is localized into narrow shear zones and
thrusts. Another complexity arises from the fact that rock properties change due
to phase transitions. Among others, the (partial) melting of rocks largely influences
their rheology and plays an important role in the heat transport. A proper numerical
treatment of migration of melt and other fluids is a difficult task and its implemen-
tation in models of crustal deformation requires a multi-scale modeling approach.
In the dynamics of tectonic processes, an interplay between forces from below and
from a topography load modified by erosion and sedimentation is of particular im-
portance. For a proper implementation, a model of the surface processes coupled
with a climatic model is needed. Also the bottom boundary of the lithosphere is not
impermeable, and an interaction with deeper mantle levels is important. Material
from the crust and lithosphere can be dragged into the mantle in subduction zones
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or it may be detached in a process of delamination. Mantle convection gives rise to
hot plumes which may cause thinning and rifting of the lithosphere.

Despite these complexities, the current state of numerical modeling allows to
reproduce general characteristics of many types of tectonic processes. Models of
oceanic subduction commonly incorporate pressure-temperature-composition de-
pendent rheology including (de)hydration reactions (e.g. Gerya et al., 2008) and
several mechanisms of ductile deformation, such as dislocation and diffusion creep
(e.g. Č́ıžková et al., 2002). The importance of brittle-ductile character of deforma-
tion was examined e.g. in models of continental rifting (e.g. Huismans and Beaumont,
2003), and evolution of fold-and-thrust belts (Ruh et al., 2012). Phase transitions in
the solid state were shown to significantly influence exhumation of rocks within con-
tinental crust (e.g. Gerya et al., 2004). Melting and solidification at mid-ocean ridges
were self-consistently modeled yielding important implications for our understanding
of oceanic-crust generation (Katz et al., 2006; Katz, 2008). Three-dimensional mod-
els of tectonic deformation coupled with surface processes can reproduce complex
topographic structures within mountain belts (Braun and Yamato, 2010).

Although tectonic processes generally operate in three dimensions, a simplified
two-dimensional modeling approach is often used. Many characteristics of oceanic
subduction and continental collision have been reproduced in two-dimensional mod-
els (e.g. Gerya et al., 2008; Beaumont et al., 2001). The sideways motion during con-
tinental collision can be modeled in the thin-sheet approach, which approximates the
dynamics in a plan view (e.g. Jiménez-Munt and Platt, 2006; Lorinczi and House-
man, 2010). However, some processes, such as deformation at oceanic transform
faults, can not be approximated in two dimensions and have to be treated in a fully
three-dimensional model (Gerya, 2010).

In the modeling of crustal and lithospheric deformation, most attention is paid
to general mechanisms or to explanation of recent processes (active subductions,
continental collision), which are mostly described through geophysical observations.
However, increasing number of studies deals also with reconstruction of ancient
mountain-building processes (e.g. Jamieson et al., 2007), where most of the con-
straints come from geological studies. An example of an ancient mountain belt
comparable in size and heat budget to the modern Himalayas are the Paleozoic
Variscides. The Bohemian Massif is the largest well-preserved exposure of the for-
mer European Variscan belt. It has been extensively studied by means of geological
and geophysical methods, but just a few numerical modeling studies concerning its
evolution have been performed so far (Henk, 1997; Gerdes et al., 2000; Arnold et
al., 2001; Willner et al., 2002; Duretz et al., 2011; Lexa et al., 2011). A numerical
model of a particular episode of the building of the Bohemian Massif is the main
focus of this study.

In Chapter 1 we briefly overview the geological and geophysical data available
for the Bohemian Massif, and introduce scenarios of its tectonic evolution. We pay
special attention to the Variscan evolution (∼400–300 Ma), which can be further
divided into several stages. During the last stage, several continental blocks collided,
and the collision was accompanied by exhumation of large volumes of rocks from
the deep crustal interior. These rocks, now exposed at the surface, bear witness
of a complex metamorphic and deformational history. Our aim is to set up a nu-
merical model which would be in agreement with the basic geological data related
to this process and which would provide a deeper insight into the dynamics of the
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exhumation process. In Chapter 2 we describe the computational tool we developed
for this purpose, and we show several simple numerical tests in order to illustrate its
accuracy and applicability. Chapters 3 and 4 contain two articles published in inter-
national scientific journals. In Chapter 3 we introduce the numerical model of the
late Variscan evolution of the Bohemian Massif and discuss its main characteristics.
In Chapter 4 we present a parametric study and correlate the differences among the
calculated models with the variations observed in the geological record within the
Bohemian Massif. The concluding chapter provides a brief summary of the results
and outlines a possible continuation of the research.
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At the bottom of pages 6–74 a model of crustal deformation presented in Chapter 3 is visualized.

The modeling results were plotted using the Generic Mapping Tools (Wessel and Smith, 1998).
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Chapter 1

The Bohemian Massif

The Variscan orogeny was a major mountain-building process which operated during
the Late Paleozoic (∼400–300 Ma) as a result of convergence between Gondwana
and Laurasia. The relics of the European Variscan orogen can be found in a belt
spanning the continent from west to east (Fig. 1.1): Iberia, Armorican Massif, Massif
Central, Vosges, Rhenish Massif, Harz, Black Forest, Bohemian Massif, and parts
incorporated in the Alps and Carpathians. The Bohemian Massif approximately
coincides with the Czech Republic, but it extends further to Austria, Germany and
Poland. The Bohemian Massif is the largest European Variscan outcrop and it was
only marginally affected by later tectonic events. During the Alpine orogeny, its
south-eastern part was covered by the Carpathian foreland and pre-existing crustal-
scale shear zones were reactivated in conjunction with widespread volcanism during
Tertiary.

The topographic relief of the Variscan mountain belt has been reduced by de-
nudation leading to exposure of deep levels of the former crustal root at the surface.
Based on the geological (e.g. structural, petrological, geochronological) observations
of the exposed rocks, we can constrain the deformation history, pressure and temper-
ature conditions that took place in the interior of the ancient orogen. The geological
methods can study the tectonic processes in great detail, but the gathered pieces of
information have to be carefully assembled in order to obtain a consistent image of
the past evolution of the orogen.

Information on the recent internal architecture of the Bohemian Massif can be in-
ferred from geophysical observations (e.g. seismology, gravity, magnetotelluric data)
and it is mostly acquired by inverse modeling methods. The knowledge of limita-
tions of the methods and appropriate error estimates are crucial in evaluating the
results. In particular, the inversion of geophysical data in order to obtain a model
of the crust and lithosphere (distribution of seismic velocities, density and material
structure, presence of fluids) is non-unique and depends on the applied approach.
A combination of geological and geophysical methods together with a larger frame
of European tectonics thus has to be used in order to constrain the evolution of the
Bohemian Massif.
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Figure 1.1: Location of Variscan outcrops and sutures in Europe, and (deformed) Euro-
pean shorelines. Modified from Wikipedia, the free encyclopedia, http://en.wikipedia.org-
/wiki/File:Hercynian structures Europe EN.svg.

1.1 Geology

From the geological1 point of view the Bohemian Massif is an interesting region
where all three basic types of rocks are abundant:

Sedimentary rocks consist of material that was detached from its original site
by surface processes, such as water or wind erosion, transported and later deposited.
Their location and volume, shape of the sedimentary layers, and size and shape of
their constituents provide information on the environment where they were created,
on the climate and topography. Historically, the fossils in the sedimentary sequences
and organic sediments were used as a basis for establishment of a relative geological
time scale. In contrast, the modern dating is based on radioactive decay and it
provides absolute ages of different stages of rock formation such as deposition of
sediments, crystallization of rock from magma, and metamorphism.

Igneous rocks are made of solidified magma derived from of pre-existing rocks
by melting. Melting occurs when the temperature exceeds the solidus of the par-
ent rock e.g. due to an increase of temperature on site, burial of fertile rocks to a

1We note that this section is not comprehensive and summarizes only the basic characteristics
of the geology of the Bohemian Massif. The scientific literature on the topic is extensive and we
mostly cite overviews. The geological terminology is rather complicated and we try to avoid it,
which may in some cases lead to a simplification of the problem. Necessary terms are written in
italics and explained in a short dictionary at the end of this chapter, together with a geological
time-scale.
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greater depth with higher temperature, an increase of fluid content, or decompres-
sion. Melt then usually percolates upward, and depending on the place where it
solidifies igneous rocks can be further divided into volcanic and plutonic groups.
In the former group, the melt reached the surface and formed for example different
kinds of lavas, while in the latter, it remained trapped within the crust, and either
cooled slowly in large bodies (typical extent of several km in each dimension) or
more quickly in planar bodies such as dykes. The composition of magma depends
on the composition of rocks that were primarily melted, but it can be significantly
influenced by contributions from rocks along the path of the melt. The igneous rocks
bring information about deep crustal levels, which are otherwise hardly accessible.

Rocks that underwent changes in their mineral composition and structure are
called metamorphic. In contrast to the igneous rocks that are formed by melting
and solidification, the metamorphic changes take place in the solid state. The meta-
morphism mostly results from increased pressure and temperature (P–T) conditions,
determination of which is the subject of petrological studies. Certain P–T condi-
tions in general, and the temperature gradient with depth in particular, are typical
for different kinds of tectonic settings. A high pressure attained at low-temperature
conditions indicates a subduction setting, where a relatively cold lithospheric mate-
rial is dragged into the mantle. A contrasting example is a rifted region above an
asthenospheric updoming, where high temperatures can be reached at low pressures.
Changes in the mineral composition due to evolving P–T conditions are accompa-
nied by changes in the rock structure at various spatial scales (sub-grain size to
kilometers). From the resulting structure the rock strain can be determined, which
is a basic step towards deciphering individual stages of a tectonic process.

1.1.1 Tectonic units

The Bohemian Massif (Fig. 1.2) can be divided into several tectonic domains or ter-
ranes (Saxothuringian, Teplá-Barrandian, Moldanubian, Lugian, Moravo-Silesian,
Brunovistulian; for original definitions see Suess, 1912; Kossmat, 1927; Dudek, 1980)
separated by zones of major deformation. Besides the characteristics of these tec-
tonic domains and their boundaries, we will pay attention to several rock types that
are specific for the Bohemian Massif and that play an important role in assessment
of a scenario of its Variscan evolution.

• The Saxothuringian domain is an elongated region between the Rhenoher-
cynian Zone to the north-west and the Teplá-Barrandian to the south-east. Its
basement is formed by Neoproterozoic (580–550 Ma) rocks with sequences of
volcanics and sediments characteristic for an active continental margin. After
a gap in sedimentation at the beginning of the Cambrian (540 Ma, corresponds
to the so-called Cadomian orogeny) the character of sediments changed point-
ing to lithospheric extension and rifting. The corresponding high thermal
regime has also been deduced from bimodal volcanism and magmatism inter-
preted as a result of updoming of the lithosphere. Since the Ordovician, the
sedimentation typical for passive margin environment continued until 350 Ma.
(For overview of the Saxothuringian sedimentary record see Linnemann et al.,
2004.)
During the subsequent Variscan orogeny, the rocks were deformed and meta-
morphosed with intensity increasing towards the contact with the Teplá–
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Figure 1.2: Simplified geological map of the Bohemian Massif (modified after Franke,
2000; Schulmann et al., 2009). Red and violet colors correspond to plutonic rocks. White
areas are covered by post-Variscan sediments and volcanics. CBPC=Central Bohemian
Plutonic Complex, CMPC=Central Moldanubian Plutonic Complex, KVP=Karlovy Vary
Pluton, MLC=Mariánské Lázně Complex, SG=Saxon Granulite Massif.

Barrandian to the south-east. On top of the sediments relics of flat thrust
sheets (nappes) which sustained a high degree of metamorphism at ∼340 Ma
are located. The original lateral extent of the nappes may have been tens
to hundreds of kilometers and their thickness a few kilometers. Their relics,
now partly eroded and/or folded to steep position, can be classified into two
groups showing contrasting metamorphic conditions (Konopásek and Schul-
mann, 2005, and references therein). The first group is composed of sediments
metamorphosed under eclogite facies and mafic eclogites. The occurrence of
this rock type points to burial to large depths with relatively low-temperature
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Figure 1.3: Stripped contact of the Saxothuringian and Teplá-Barrandian domains after
Mlčoch and Konopásek (2010).

conditions corresponding to a cold geotherm. The rocks belonging to the sec-
ond group reveal burial along hotter geotherm (granulites, ∼800 ◦C at ∼2 GPa)
and bear evidence of partial melting. These high-temperature conditions are
recorded for example in a large body of granulite rocks, the Saxon Granulite
Massif (Rötzler and Romer, 2001).
The contact of the Saxothuringian and Teplá-Barrandian domains sustained
intense deformation and metamorphism. The region is characterized by jux-
taposition of slices of rocks with contrasting composition and metamorphism,
including rocks that underwent high pressures, high temperatures or partial
melting (eclogites, gneiss, granulites, migmatites). The high-pressure condi-
tions have been confirmed by the finding of micro-diamonds, which are as-
sumed to be stable at pressures higher than ∼4 GPa (Kotková et al., 2011). Di-
rectly at the boundary, units with a high content of (ultra)mafic rocks (e.g. the
Mariánské Lázně Complex, MLC) are located. The MLC contains rocks meta-
morphosed under conditions suggesting burial and exhumation along a cold
geotherm (serpentinites, amphibolites, eclogites and meta-gabbros).
A major part of the contact is hidden under younger sedimentary and volcanic
rocks, but continuation of a belt of highly metamorphosed units and MLC-type
rocks is confirmed from borehole samples (Mlčoch and Konopásek, 2010, see
the reconstruction of the contact in Fig. 1.3). In the Sudetes region east of
the Elbe (Labe) Zone rocks of a similar type as in the Saxothuringian domain
continue, including units with (ultra)mafic composition (Mazur et al., 2006).

• The Teplá-Barrandian domain is a well spatially defined crustal block in the
center of the Bohemian Massif which was only affected by low-grade Variscan
metamorphism. It consists of Neoproterozoic volcanics and sediments (ages
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6.0 Myr

of about 620–560 Ma) whose characteristics point to an active-margin setting
(for overview see Drost et al., 2004). The discontinuity in sedimentation at
the end of the Proterozoic (∼540 Ma) is interpreted to be a result of the Cado-
mian orogeny. Similarly to the Saxothuringian domain, a high thermal regime
during the Late Cambrian (∼500 Ma) is recorded in volcanic and magmatic
rocks. The sedimentation continued until the mid-Devonian (∼380 Ma), and
culminated by flysh sediments related to closing of an oceanic basin. The
resulting Cambrian–Devonian sedimentary sequence is particularly well pre-
served in the Prague basin (Chlupáč, 1993). During the Devonian, the rocks
were folded and metamorphosed with intensity and age increasing towards the
contact with the Saxothuringian domain in the north-west.

• A large association of plutonic bodies, the Central Bohemian Plutonic

Complex (CBPC), is located along the south-eastern margin of the Teplá-
Barrandian. The composition of magmas in the CBPC is variable and suggests
that the source of the melt evolved in time (for overview see Janoušek et al.,
2000). The oldest rocks of CBPC are dated to ∼370 Ma, but two slightly
older plutons (375–373 Ma) in the Teplá-Barrandian crust some 20 and 50 km
to the west have been interpreted to genetically belong to the CBPC (Venera
et al., 2000; Žák et al., 2011). The composition of the plutonic rocks placed
during the Late Devonian (∼355 Ma) indicates that they originate from a
slightly depleted mantle mixed with crustal rocks. In the Early Carboniferous
(∼349–346) plutonic rocks, the composition of the mantle source is observed
to be more enriched in incompatible elements.
A large shear zone separating the Teplá-Barrandian and Moldanubian domains
coincides with the location of the CBPC. It is about 2 km wide and it records
a downward displacement of the Teplá-Barrandian downwards with respect
to the Moldanubian domain by about 10 km. Based on the age of plutonic
bodies which intruded along the shear zone, the time when the zone operated
has been constrained to 343–337 Ma (for overview see Dörr and Zulauf, 2010).

• The Moldanubian domain is a region to the south-east from the Teplá-
Barrandian, continuing further south-west to Austria and Germany. The Mol-
danubian rocks show medium to high grade of metamorphism (see Schulmann
et al., 2008, and references therein). The protoliths of the metamorphosed rocks
were dated to Proterozoic and Early Paleozoic age. According to the degree of
metamorphism, the Moldanubian domain is divided into the Drosendorf and
Gföhl Units. The Drosendorf Unit consists of rocks that underwent medium
metamorphic conditions, which reached regionally pressures of 0.5–1.2 GPa
(∼15–35 km depth) at temperatures of 600–750 ◦C (Racek et al., 2006; Pe-
trakakis, 1997). Higher grade of metamorphism is typical for the Gföhl Unit,
where some rocks (granulites, eclogites) bear witness of peak P–T conditions
of 800–1000 ◦C and 1.6–2.2 GPa (∼50–65-km depth) (O’Brien and Rötzler,
2003; Št́ıpská and Powell, 2005). The timing of formation of the granulites is
very well defined and the data from different locations all yield similar ages
around 340 Ma.
Locally the granulites contain lenses (∼100-m to 2-km long) of peridotites
(rocks with mantle composition) pointing to an interaction of the crust and
the mantle during the tectonic process. The peak-pressure conditions (more
than ∼3 GPa) recorded by these peridotites suggest that they were originally

12



located deeper than the surrounding granulites. Peridotites are also present in
Saxothuringian granulites and their characteristics are similar to those in the
Moldanubian domain (Schmädicke et al., 2010).
At ∼340–335 Ma, a number of plutons of (ultra-)potassic composition called
durbachites were emplaced in a close spatial association with the granulites of
the Gföhl Unit. The specific composition of durbachites requires melting of a
mantle source contaminated by crustal material. The relationship between the
Moldanubian durbachites and granulites is underlined by their complementary
enrichment and depletion, respectively, in trace elements such as uranium, lead
and thorium (Janoušek and Holub, 2007).
The rocks in the Moldanubian domain have a complex structure, which can
be interpreted as a result of a succession of several stages of deformation
(Schulmann et al., 2008). The stage of vertical motion of material is recorded
in vertical fabrics. These were later reworked by subhorizontal fabrics, that
can be attributed to a flow at medium- to low-pressure and high-temperature
conditions. The vertical fabrics were dated to 350–340 Ma, while the ages of
the subhorizontal fabrics are 330–325 Ma. The intensity of the reworking varies
within the Moldanubian domain suggesting that the horizontal deformation
was more prominent at its eastern margin.

• In the central part of the Moldanubian domain, numerous plutonic bodies
form the Central Moldanubian Plutonic Complex (CMPC). The age of
emplacement of the CMPC is significantly younger than that of the CBPC,
and its composition is pointing to a crustal origin of the melt. The oldest
ages (about 325 Ma) are recorded in the northern part of the CMPC, while
southern and eastern bodies are typically younger (about 320–310 Ma) (Finger
et al., 2009). A number of other plutons of similar composition and age are
scattered in the south-western part of the Moldanubian domain along faults
in the Bavarian Zone. Finger et al. (2009) suggested that not only the CMPC
and plutons in the Bavarian Zone, but also late granites in the Saxothuringian
domain including a large body of the Karlovy Vary Pluton, result from the
same tectonic process.

• The Lugian domain (a part of the Sudetes region) is located north of the
Moldanubian domain, from which it is separated by the Elbe Zone. It is
significantly smaller than the Moldanubian domain, but they share several
similarities (Schulmann et al., 2008). The core of the Lugian domain is formed
by rocks (gneisses) that sustained medium-grade metamorphism and a belt
(∼1×10 km) of granulites (maximum pressure 1.8–2 GPa, temperature 800–
900 ◦C). These metamorphic rocks are considered to be an equivalent of the
Moldanubian Gföhl Unit, which is further supported by their coeval peak
metamorphism at 340 Ma. The core is surrounded by a few kilometers thick
belt of mafic rocks interpreted to be a relic of a Cambro-Ordovician rift. In
contrast to the Moldanubian domain, the steep fabrics associated with the
vertical flow of material are well preserved in the Lugian domain, and the
horizontal flow is not recorded (Schulmann et al., 2008; Št́ıpská et al., 2012).

• The rocks at the eastern margin of the Moldanubian domain are thrusted over
the Brunia domain to the east, in the form of nappes containing pieces of high-
pressure metamorphs (eclogites, pressure ∼1.6 GPa, temperature ∼650 ◦C,
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8.0 Myr

granulites and peridotites). The thrusting affected also the underlying Bru-
nian rocks leading to the development of a 50-km wide zone of deformation
and metamorphism — the Moravo-Silesian Zone. The metamorphic condi-
tions in this zone (0.5–1 GPa, 550–650 ◦C) show inverse metamorphic gradient,
i.e. increase towards the contact of the two domains. The cooling after the
metamorphism was constrained to 340–325 Ma (Schulmann et al., 2009, and
references therein).

• The Brunia (also called Brunovistulian) domain consists of a Neoproterozoic
basement, intruded by 550-Ma-old granites. The basement is overlain by a
thick pile of Devonian sediments. During the Early Carboniferous (∼345 Ma) a
foreland basin developed, where the sediments were deposited for about 20 Ma
now forming an up to 7.5-km thick sedimentary sequence. In the sediments,
pebbles of highly metamorphosed rocks were identified, and the earliest age
of their deposition was dated to 330 Ma (see Hartley and Otava, 2001, and
references therein).

Figure 1.4: Permo-Carboniferous sedimentary cover in the area of the Czech republic
after Chlupáč and Štorch (1992). 1) Sudetic Basins, 2) Central and Western Bohemian
basins, 3) Late Paleozoic of the Erzgebirge, 4) sediments in graben structures (4a–Blanice
graben, 4b–Boskovice graben, 4c–Jihlava graben).

14



1.1.2 Post-Variscan sediments and volcanics

A large portion of the surface of the Bohemian Massif is covered by post-Variscan
sediments and accompanying volcanics. The Permo-Carboniferous (∼320–250 Ma)
extensional basins (Fig. 1.4) are aligned along structural discontinuities, such as
the Saxothuringian–Teplá-Barrandian boundary and the Moravo-Silesian Zone (see
e.g. Ulrych et al., 2006). The upper part of their sedimentary infill, deposited in a
continental environment, often contains coal-bearing layers.

The largest area is covered by Cretaceous sediments (∼90 Ma) located along
Elbe and Odra Zones. Younger (mostly 35 Ma and later) sedimentary basins are
located in the České Budějovice and Třeboň regions. At ∼20–12 Ma, a Carpathian
foreland basin developed at the eastern margin of the Bohemian Massif and was
being filled with marine sediments.

A system of Tertiary rift-related sedimentary basins and volcanics is located
along the southern rim of the Krušné hory Mountains (Erzgebirge) in the region of
the Eger (Ohře) Rift (Fig. 1.5). It extends from the Cheb basin (younger, 5 Ma)
towards Doupovské hory and České středohoř́ı. The volcanic rocks of this system
cover an area of ∼1100 km2. The main phase of the volcanism took place ∼30 Ma
ago, but the oldest volcanic rocks in this system were dated to 80 Ma, and the
volcanoes near Frantǐskovy Lázně in the western Bohemia are only several hundreds
of thousands of years old (see e.g. Ulrych et al., 1999).

Figure 1.5: Cenozoic sediments and volcanics in the Bohemian Massif. After Kopecký
(1978), adapted by Ulrych et al. (1999). DH=Doupovské hory, CS=České sťredohoř́ı.

15



10.0 Myr

1.2 Geophysics

There is a broad spectrum of geophysical methods which can be used to constrain the
crustal and lithospheric structure. In the following short and incomplete overview,
we will focus on studies that help to reveal the deep crustal structure, especially the
sub-surface equivalent of the geological domains described in the previous section.

The most important source of information about the lithospheric structure are
seismic waves. The velocity of seismic waves is sensitive to the material through
which they propagate, namely its density and elastic properties. Seismic studies can
detect both abrupt and continuous changes in the velocity, but different methods
are sensitive to different features, or they visualize them in a different manner.
For example, steeply dipping velocity discontinuities are not directly observable in
reflected seismic waves from a standard seismic profiling. The zones where the
velocity decreases with depth are difficult to examine by seismic rays, but they can
be identified by surface waves. In all methods of inversion of seismic data in order
to obtain a model of velocity distribution in the Earth’s interior, a good coverage of
the studied domain by seismic waves is essential.

The Bohemian Massif is a well consolidated and therefore seismically relatively
quiet region. An exception is the area of the Eger Rift in the western Bohemia, where
swarms of earthquakes with magnitudes up to ∼5 occur (e.g. Fischer and Horálek,
2003; Fischer et al., 2010), and the Sudetic Marginal Fault in the north-eastern
Bohemia (Štěpanč́ıková et al., 2010). The earthquakes in the western Bohemia are
suitable for studies of the local crustal structure (e.g. Novotný, 1996; Málek et al.,
2004). For determination of a regional structure, either teleseismic waves or active
seismic experiments are used.

The area of the Bohemian Massif is crossed by a number of profiles along which
experiments with actively generated seismic waves were performed. A steep-angle
reflection profile 9HR passes through the Krušné Hory Mountains in the Saxothurin-
gian domain, the Teplá-Barrandian and Moldanubian domains (see red line “9HR”
in the geological map in Fig. 1.8). In this experiment, a high seismic energy pro-
duced by explosive sources permitted to study features in a depth of up to ∼60 km.
Tomek et al. (1997) interpreted the obtained seismic sections (Fig. 1.6) in terms
of individual reflectors or reflexive zones. The upper crust (above 10-km depth)
of the Saxothuringian domain shows flat reflectors interrupted by a low-reflectivity
zone corresponding to the Karlovy Vary Pluton. Below this depth, there is a num-
ber of reflectors dipping towards south-east. Another series of inclined reflectors
starts underneath the MLC and continues to the center of the Teplá-Barrandian
domain. Between the Teplá-Barrandian and Moldanubian domains, a main change
in the character of reflectors occurs, interpreted as a steep fault. The Moho (i.e. the
boundary between the crust and the mantle) appears to be shallower beneath the
Saxothuringian and Teplá-Barrandian crust (minimum depth ∼33 km) than be-
neath the Moldanubian crust (up to 40-km depth). Several important reflexions of
unknown origin were observed also in the lithospheric mantle approximately below
the MLC.

The depth of the Moho was determined by several methods, and the results
generally agree that the crustal thickness is larger in the Moldanubian domain and
decreases towards the west and north. A compilation and interpolation of the results
of active seismic experiments shows that the Moho depth varies between ∼40 km

16



Figure 1.6: Ray-tracing migrated section (black) of the 9HR profile and its geological
interpretation (red). Modified after Tomek et al. (1997). Reflexions “M” were interpreted
to correspond to the Moho discontinuity.

Figure 1.7: Moho depth below the Bohemian Massif after Karousová et al. (2012), who
compiled and interpolated results of inversions of active seismic experiments along several
profiles (gray dots). Solid lines show boundaries of the tectonic domains and main faults.

beneath the Moldanubian and ∼28–30 km beneath the Saxothuringian domain (see
Fig. 1.7, Karousová et al., 2012).

The crustal structure was also studied using data acquired during a series of
refraction and wide-angle reflexion experiments, such as CELEBRATION 2000 and
SUDETES 2003. The distribution of P-wave velocities along the profiles CEL09
and CEL10 was modeled by Hrubcová et al. (2005) and Hrubcová et al. (2008),
respectively, who used seismic tomography combined with ray-tracing modeling (for
their results and locations of the profiles, see Fig. 1.8). The profiles CEL09 and
CEL10 are practically perpendicular. The profile CEL09 is passing through a similar
region as the profile 9HR but it continues further to the south-east. The profile
CEL10 intersects the Moravo-Silesian and Brunia domains in the south-west–north-
east direction and continues further to Poland.

The lowest P-wave velocity is observed near the surface and corresponds to
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weakly consolidated sedimentary layers (see e.g. the northern part of the CEL10
profile in Fig. 1.8). Within the crust, only a few reflectors were detected and most
of them are (nearly) horizontal; the several major moderately inclined reflectors
identified by Tomek et al. (1997) were not confirmed by Hrubcová et al. (2005).

Along the profile CEL09, a sharp velocity discontinuity interpreted as Moho
is observed only in the center of the Bohemian Massif (eastern part of the Teplá-
Barrandian and western part of the Moldanubian domain). In the rest of the profile,
a zone of a vertical velocity gradient below ∼25-km depth is detected. This feature,
possibly interpreted as a laminated lower crust, continues more than 200 km to
the north-east along the profile CEL10. In the Moldanubian domain, the Moho is
deflected downwards and reaches the depth of ∼40 km compared to ∼30 km at the
contacts with the two zones of the velocity gradient.

A different method of inversion of data from active seismic experiments was ap-
plied by Růžek et al. (2007). In their study, they first established a low-parametric
velocity model based on Pg, Pn and PmP phases, and in the final stage they ap-
plied a tomographic refinement. This approach yields qualitatively different results
than those reported by e.g. Hrubcová et al. (2005). They both observe similar near-
surface features related to sedimentary layers, and a homogeneous middle crust with
a P-velocity around 6 km s−1 at 10–15-km depth. In contrast to the velocity model
by Hrubcová et al. (2005), Růžek et al. (2007) reported a highly heterogeneous
lower crust (depths of 20–30 km) on most of the analyzed profiles. In the central
(Moldanubian) part of the profile CEL09, Růžek et al. (2007) identified a promi-
nent low-velocity anomaly (velocities less than 6.5 km s−1 compared to more than
7 km s−1 in the surrounding regions) almost reaching the Moho depth. The location
of this anomaly coincides with that of the thick crust calculated by Hrubcová et
al. (2005). However it should be noted that Růžek et al. (2007) did not attempt
to interpret the acquired crustal models in terms of crustal composition and rock
types. Moreover, the largest variations of velocities in the lower crust coincide with
a relatively low resolvability and their significance may be debatable. Interestingly,
Růžek et al. (2007) observe a high-velocity lower crust and inverted velocity gradient
at approximately the same places where Hrubcová et al. (2005) reported velocity
gradient instead of a sharp Moho (compare Fig. 1.8, left, and Fig. 1.9).

Another model of the P-velocity distribution within the upper and middle crust
along the profile CEL09 was set up by Novotný (2011) (Fig. 1.10). This tomographic
model shows highly variable velocities in the marginal parts of the Bohemian Massif,
and anomalous low-velocity zones approximately at the supposed boundaries of the
crustal domains. Similar features were reported by Novotný et al. (2009) along
the profile S01 crossing the Saxothuringian domain in the south-west–north-east
direction. Despite the significant differences among the models by Hrubcová et
al. (2005), Růžek et al. (2007) and Novotný (2011), they all point a contrasting
character of the Moldanubian with respect to the marginal Teplá-Barrandian and
Brunian domains. For a detailed discussion of differences between the methods of
inversion we refer to Novotný et al. (2009).
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Figure 1.8: Model of P-wave velocities along the profiles CEL09 and CEL10 and a
schematic geological map of the region plotted below, modified after Hrubcová et al.
(2008). The position of the profiles CEL09, CEL10 and 9HR is plotted in red.

Figure 1.9: Distribution of P-wave velocities along the profile CEL09 by Růžek et al.
(2007). The vertical dashed line corresponds to the right end of the profile CEL09 plotted
in Fig. 1.8.
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12.0 Myr

Figure 1.10: Tomography model along the profile CEL09 after Novotný (2011).
KVP=Karlovy Vary Pluton, TBU=Teplá-Barrandian Unit (domain), MLC=Mariánské-
Lázně Complex. Note that the depth extent is only up to 20 km.

Passive seismic experiments are another source of data for studies of the crustal
structure. Wilde-Piórko et al. (2005) applied receiver function method on teleseis-
mic waves and determined S-wave velocities below seismic stations located in the
Bohemian Massif. They reported a low-velocity zone in the middle crust (10–15-km
depth) of the Saxothuringian domain and attribute this feature to the tectonic and
magmatic activity of the Eger Rift. The anomalous character of the crust beneath
the Eger Rift was suggested by other authors who used various methods (e.g. Heuer
et al., 2006; Hrubcová and Geissler, 2009).

Plomerová et al. (2007) observed a broad low-velocity anomaly beneath the Eger
Rift using a 3D tomography from teleseismic waves, and interpreted this feature
as an upwelling of the lithosphere–asthenosphere boundary. On the other hand,
no columnar low-velocity anomaly which could correspond to a mantle plume was
identified there.

Koĺınský et al. (2011) studied dispersion of surface Love waves from Aegean-
Sea earthquakes in order to determine the S-wave velocity vs. depth in different
domains in the western part of the Bohemian Massif. Their results show a fast
increase of velocity in shallow depths (less than 5 km). Below, at ∼10–30-km depth,
the velocity is slowly increasing in the Saxothuringian domain, but it is constant
or even slightly decreasing with depth in the Moldanubian and Teplá-Barrandian
domains. Underneath the Eger Rift, the velocity gradient with depth is almost
the same in the whole middle and lower crust and no sharp increase of velocity
at the Moho is observed. Koĺınský et al. (2011) suggest that the missing Moho
discontinuity is a result of asthenospheric updoming.

The uplift of the lithosphere–asthenosphere boundary was indicated by a study
of seismic anisotropy by Babuška and Plomerová (2001). These authors processed
teleseismic data and estimated the depth of the lithosphere–asthenosphere boundary
to 120–140 km in the Moldanubian domain and 90–120 km in the Saxothuringian
domain, with the smallest depth beneath the Eger Rift. The lithospheric anisotropy
further shows that the preferred dip of fabrics is different in these two domains.

According to Babuška et al. (2008), not only the Moldanubian and Saxothurin-
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Figure 1.11: Stations included in the passive seismic experiments evaluated by Plomero-
vá et al. (2012) colored according to the calculated pattern of P-wave velocity anisotropy.
Redrafted after Plomerová et al. (2012). The dashed white line is supposed to mark the
minimum westward extent of the mantle lithosphere corresponding to the Brunia (Bruno-
vistulian) crustal domain. Abbreviation TB stands for the Teplá-Barrandian domain.

gian domains differ in their lithospheric anisotropy, but also the Teplá-Barrandian
domain exhibits a distinct anisotropy pattern (Fig. 1.11). Different anisotropy of
the lithosphere of the Teplá-Barrandian domain is more easily detectable by the P-
wave velocity anisotropy, because it is smaller in depth-extent and requires smaller
wavelengths to be resolved. Further, differences in the anisotropy of the Moldanu-
bian and Brunian lithospheres were distinguished by Plomerová et al. (2012) and
Babuška and Plomerová (2012). The lithospheric boundary between the two do-
mains is shifted by about 100 km to the west with respect to their contact at the
surface (see Fig. 1.11). In addition, the Brunian (Brunovistulian) block can be sub-
divided into two regions with a different P-velocity anisotropy (yellow and violet
triangles in Fig. 1.11). Based on their observations, these authors conclude that
the lithosphere of the Bohemian Massif still consists of blocks separated by sharp
boundaries. Each of the blocks has a different anisotropy which remained from the
pre-Variscan times and have not been significantly modified by asthenospheric flow.

Apart from waves associated with a certain earthquake, ambient seismic noise
can be used for determination of crustal structure. For example, Růžek et al. (2012)
applied a joint inversion of teleseismic P-waveforms and local group velocities of sur-
face waves obtained from seismic noise. In line with other methods, their analysis
points to systematic variations of crustal characteristics within the Bohemian Massif.
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Variations of the gravity field are related to the density structure of the sub-
surface material. The density within the crust mostly depends on the rock type.
Mafic rocks, such as basalt and amphibolite, have a higher density than felsic rocks,
such as granite. A very low density is typical for weakly consolidated sediments,
where porosity plays an important role. The sensitivity of the gravity field to a
density anomaly decreases with distance. For this reason, interpretation of gravity
data in terms of local features such as plutonic bodies (felsic or mafic) in a shallow
depth is most common.

For geophysical purposes, the gravity field measured at the Earth’s surface is
usually reduced to the Bouguer anomaly. The Bouguer anomaly is the difference
between the observed and calculated gravity field, which is corrected for the grav-
itational effect of the topography. In the Bohemian Massif, the gravity anomalies
(Fig. 1.12) are smaller in magnitude than those observed in active orogenic belts,
such as the large gravity low associated with the Alpine orogenic belt located to
the south-west and south-east of the Bohemian Massif (see e.g. Bielik et al., 2006)
(blue area in the south-west corner in Fig. 1.12). Within the Bohemian Massif
the Bouguer anomaly has maximum variations of ∼100 mGal and shows a long-
wavelength undulation in the north-west–south-east direction. In the north—west,
gravity lows coincide with low-density rocks in the Saxothuringian domain and in
the Sudetes. The lowest anomaly is observed in the area of the Karlovy Vary Pluton,
whose vertical extent was estimated to approximately 10 km based on gravity data
(e.g. Blecha et al., 2009).

A chain of local positive anomalies starts at the MLC and continues further
east. These anomalies were interpreted to belong to high-density bodies at the
Saxothuringinan–Teplá-Barrandian boundary hidden below sediments of the Elbe
Zone (Sedlák et al., 2009). A positive gravity anomaly is typical for the whole
Teplá-Barrandian, and it increases towards its north-western margin. By means of
inverse modeling Guy et al. (2011) and Švancara and Chlupáčová (1997) interpreted
this gravity increase as a signal from an inclined high-density body coinciding with
the MLC at the surface and dipping to the south-east. Their agreement on this result
is likely related to the fact that they used the same seismic study by Tomek et al.
(1997) as a basis for determination of boundaries separating bodies with continuous
density.

The Moldanubian domain can be divided into two parts: the western part up
to the eastern rim of the CMPC shows a low gravity anomaly, while east of the
CMPC the gravity is significantly higher, similar to that above the adjacent Brunia
basement. The high anomaly in the eastern part of the Moldanubian domain was
interpreted as a signal from a relatively dense tip of the Brunian block covered by a
thin layer of light Moldanubian rocks (Guy et al., 2011).

The low anomaly of the western Moldanubian domain was interpreted by Guy et
al. (2011) to originate from a low-density material in the Moldanubian lower crust.
However, the study by Švancara and Chlupáčová (1997) gives a contradictory re-
sult. This difference is not surprising, as the solution of this inverse problem is
non-unique due to the integral character of the gravity field, and the signal from
density anomalies in the lower crust is relatively weak.
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Figure 1.12: Map of Bouguer gravity anomalies in the Bohemian Massif after Lexa et
al. (2011) (data were provided by the Czech Geological Survey). Lines are boundaries of
the tectonic domains (cf. Fig. 1.2). White areas are not covered with data.

Additional information on crustal structure can be retrieved from electric and
magnetic anomalies. The area of the Bohemian Massif is weakly magnetized com-
pared to the East European Craton (former Baltica continent). Positive magnetic
anomalies usually correspond to igneous rocks while negative anomalies occur above
regions with a thick pile of weakly magnetized sediments. In the Bohemian Mas-
sif, the most prominent anomalies (green and blue in Fig. 1.13) are located along
the boundaries of the crustal domains (along the Eger Rift, the CBPC) and at the
contact with the Carpathian foreland (e.g. Šalanský, 1994).

Sources of most anomalies are exposed at the surface, or they are in a shallow
depth, e.g. covered by a layer of sediments. A local magnetic field along the Teplá-
Barrandian–Saxothuringian boundary was discussed by Sedlák et al. (2009). These
authors interpreted a belt of positive anomalies along the Teplá suture and further
east below the sediments of the Elbe Zone as a continuation of MLC-type rocks with
high susceptibility.

A crustal-scale model of magnetic susceptibility along the profile 9HR, con-
strained from seismic and gravity data, was set up by Pokorný and Beneš (1997).
The magnetic anomalies along the western part of the profile were interpreted as a
combination of a signal from several near-surface highly magnetized bodies and an
inclined mafic layer 3–5 km thick dipping to the south-east underneath the Teplá-
Barrandian domain. In the easterly Moldanubian domain, the magnetic anomalies
are much less pronounced and a simple layered structure of the crust was sufficient
to explain the data.
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Figure 1.13: Map of magnetic anomalies in the area of the Czech Republic. Data were
provided by the Czech Geological Survey. Lines are boundaries of the tectonic domains
(cf. Fig. 1.2).

Measurements of the near-surface heat flow show its systematic variation within
the Bohemian Massif (Čermák, 1994, Fig. 1.14). The lowest values (50–60 mW m−2)
coincide with a higher crustal thickness in the central part of the Bohemian Massif.
Towards north-west and north-east, the heat flow increases and attains values of
∼70–80 mW m−2 in some parts along the Eger Rift and Elbe Zone.

Together with the heat coming from the mantle, natural radioactivity of rocks
(see Fig. 1.15) contributes significantly to the surface heat flow. High and low
radioactivity is typical for felsic and mafic rocks, respectively, although exceptions
may occur. A typical example of highly radioactive felsic rocks are granitic plutons in
the Saxothuringian domain, which increase the local heat flow by up to 40 mW m−2.
In contrast, the felsic granulite bodies in the Moldanubian domain show relatively
low radioactivity compared to the neighbouring (mostly mafic) durbachites.
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Figure 1.14: Map of the surface heat flow in Europe after Cloething et al. (2010). The
boundaries of the Bohemian Massif are plotted in white.
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Figure 1.15: Map of the radiometric field in the area of the Czech Republic. Data were
provided by the Czech Geological Survey. Hatched areas are plutons belonging to the
Central Bohemian Plutonic Complex, areas with “x” symbols are late Variscan plutons.
The highest values of the radiometric field coincide with durbachitic plutons (“v” symbols).
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15.0 Myr

1.3 Tectonic evolution

The motion of lithospheric plates in the past is mostly inferred from paleomagnetic
and paleobiogeographic data. The paleomagnetisation can reveal the position of
individual plates with respect to the Earth’s magnetic dipole in the past, while the
mutual distance of plates can be inferred from the distribution of different kinds
of fossils. The contact between the plates, their deformation and associated tec-
tonic stresses are studied by geological methods as described at the beginning of
Section 1.1. Based on a combination of these observations, a scenario of drift and
tectonic evolution of lithospheric plates and terranes, such as those that form the
Bohemian Massif, can be assessed (see e.g. Tait et al., 1997; Pharaoh, 1999; Franke,
2000; Matte, 2001; Winchester et al., 2002; Linnemann et al., 2004).

1.3.1 Pre-Variscan

Although the dating from the radioactive decay reveals the existence of a recycled
∼2.5 Ga-old crust (see references in Franke, 2000), the oldest relatively well estab-
lished tectonic event recorded in the area of the Bohemian Massif is the Cadomian
orogeny (about 650–550 Ma). The Cadomian orogeny took place on the margin of
the Gondwana continent, and it involved accretion of material at a subduction zone
and collision with volcanic arcs. In the Bohemian Massif, the corresponding active-
margin setting is recorded in the sediments and volcanics of the Saxothuringian and
Teplá-Barrandian domains.

After this stage of continental convergence, the orientation of plate motion
changed. In the Ordovician (∼500–430 Ma), rifting of the northern Gondwana mar-
gin occurred and led to separation of a terrain called Avalonia and opening of the
Rheic ocean (Fig. 1.16, left). Relics of Avalonia are now in England and Belgium,
but it is supposed to extend further to Germany and Poland, where it is covered
by layers of sediments. Later another assemblage of small continental terranes or
micro-plates called Armorica detached from Gondwana, and drifted to the north
towards Laurasia, a supercontinent formed by closing of the Iapetus ocean between
Laurentia and Baltica (Fig. 1.16). The maximum distance between Armorica and
Gondwana remains debated (Linnemann et al., 2004). The individual micro-plates
forming Armorica were probably also separated by oceanic domains, but their exact
relationship is uncertain (Tait et al., 1997; Matte, 2001). Based on the associated
magmatism, an interaction of the lithosphere with a mantle plume has been pro-
posed as a mechanism of the influx of heat, rifting of Gondwana, and fragmentation
of Armorica (Winchester et al., 2002).

The Saxothuringian and Teplá-Barrandian blocks were a part of the Armorica
terrane assemblage, and they record the rifting and asthenospheric upwelling. Based
on geological evidence and paleomagnetic data showing a post-Silurian pre-380 Ma
rotation of the Teplá-Barrandian block, its oceanic separation from the Saxothu-
ringian block was proposed (Franke, 2000; Tait et al., 1997). The position of the
Moldanubian block is difficult to constrain because of the lack of sedimentary se-
quences, but it is assumed to be also a part of Armorica. Mafic mantle rocks along
the eastern margin of the Moldanubian domain can point to the existence of another
oceanic domain there (Tait et al., 1997). The Brunia domain (or so-called Moravo-
Silesian Terrane) is usually considered to be another Gondwana-derived block or a
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continuation of the Rhenohercynian Zone (see Pharaoh, 1999, for discussion).
The formation of the Bohemian Massif from several micro-plates is supported by

geophysical data. The seismic profiling shows differences between the deep crustal
structure of individual domains and discontinuities at their boundaries (e.g. Hrub-
cová et al., 2005; Tomek et al., 1997). Seismic anisotropy in the lithosphere also
reveals individual domains, but the boundaries between the lithospheric domains
are shifted with respect to those in the crust (e.g. Plomerová et al., 2012).

Figure 1.16: Reconstruction of position of main terranes involved in the Variscan orogeny
reproduced from Torsvik (1998). In the late Ordovician (left), Avalonia (AV) had drifted
apart from Gondwana towards Laurentia and Baltica, and Armorica (AR) was about
to separate from Gondwana. In the Middle Devonian (right), the Rheic ocean between
Avalonia and Armorica closed again and the plates, including the Bohemian Massif (B),
collided.

1.3.2 Variscan

The Variscan orogeny was a result of collision of Laurasia, smaller terranes like
Avalonia and Armorica, and Gondwana. Avalonia was accreted to Laurasia during
the Silurian, and by that time it was separated from Armorica and Gondwana by
the Rheic ocean (cf. Fig. 1.16, left). In late Silurian/early Devonian times the
plate motion changed towards convergence between Laurasia and Gondwana. The
convergent motion was accommodated by subduction leading to the closing of the
Rheic ocean, and later collision of individual blocks (Fig. 1.16, right). Besides the
subduction of the Rheic ocean, other subductions most probably operated as well,
such as that of the Saxothuringian ocean.

The convergence between the Saxothuringian and Teplá-Barrandian is recorded
in the metamorphism and deformation of the Teplá-Barrandian domain and MLC
at about 410–370 Ma. In the scenario of subduction of the Saxothuringian ocean,
the MLC represents a relic of an oceanic crust. The polarity of the subduction of
the Saxothuringian ocean is debated, but the scenario of eastward subduction of
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the Saxothuringian below the Teplá-Barrandian domain is mostly accepted (Franke,
2000; Mazur et al., 2006; Schulmann et al., 2009). This is supported by inclined
reflectors in the Saxothuringian and below the Teplá-Barrandian crust (Tomek et
al., 1997, Fig. 1.6). The structure of inclined bodies of mafic composition starting
approximately at the MLC and dipping below the Teplá-Barrandian domain is con-
firmed by gravity and magnetotelluric inverse modeling (Švancara and Chlupáčová,
1997; Guy et al., 2011; Pokorný and Beneš, 1997).

The magmatic arc corresponding to the Saxothuringian subduction is commonly
identified with the CBPC (Schulmann et al., 2009). The composition of the CBPC
is typical for magmatism above a subducting plate, and it shows a temporal shift
consistent with the evolution from young towards mature subduction. However,
the composition of the CBPC does not necessarily require oceanic subduction, as
it may be obtained by re-melting of mafic material for example from the previous
rifting of Gondwana (Janoušek et al., 2000). As an alternative to the hypothesis of
a magmatic arc above a subduction zone, Dörr and Zulauf (2010) attribute most of
the magmatism of the CBPC to post-collisional processes.

During the oceanic subduction, the back-arc region was subject to extension,
the Moldanubian crust was thinned, and a small oceanic basin may have been cre-
ated (Schulmann et al., 2009). Alternatively, a wide oceanic separation between
the Teplá-Barrandian and the Moldanubian domains has been proposed by Franke
(2000).

After the consumption of the Saxothuringian ocean, and possibly another ocean
in the east, the continental lithospheres collided. The collision was accompanied by
crustal thickening and growth of the topography. As a result, the surface in the
center of the newly growing orogen was uplifted, and marine sedimentation in the
Teplá-Barrandian domain ceased at ∼380 Ma. At 340 Ma, peak P–T conditions
were reached inside the Moldanubian crust and led to the formation of granulites,
gneiss and migmatites of the Gföhl Unit. At about the same time, the sediments in
the Saxothuringian domain underwent metamorphism and highly metamorphosed
nappes were thrusted on top of them.

The topographic load caused bending of the lithosphere and growth of a fore-
land sedimentary basin in the Brunia domain. Shortly after the peak metamor-
phism in the Moldanubian domain, the metamorphosed rocks were exhumed from
the lower-crustal depth (∼60 km) to mid-crustal levels or even to the surface. Their
exhumation to the surface is documented in the foreland basin, where starting from
∼330 Ma, i.e. ∼10 Ma after the peak metamorphism, sediments derived from highly
metamorphosed rocks were deposited. At some places, the exhumation of the rocks
is accompanied by emplacement of durbachitic plutons.

The exhumation was a multi-stage process, as witnessed by P–T evolution and
deformational fabrics of the Moldanubian rocks. Lexa et al. (2011) proposed that the
vertical fabrics recorded in the Moldanubian rocks correspond to a stage of diapiric
upwelling of the lower crust accompanied by a simultaneous burial of the middle
crust. This vertical exchange was later followed by a horizontal flow resulting into
horizontal fabrics, which are most prominent in the Moldanubian nappes and the
underlying Moravo-Silesian Zone. The position of the nappes led some authors to
propose a model of the far-travelling Gföhl Unit (Franke, 2000). In their model,
the nappes were rooted below the Teplá-Barrandian and travelled several hundreds
of kilometers to the Moravo-Silesian Zone, and also to the west above Saxothurin-
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gian rocks. In contrast, e.g. Schulmann et al. (2008) interpreted the nappes as a
result of underthrusting of the Moldanubian thickened crust by the Brunia block.
The underthrusting of the Brunia could be also regarded as a result of oceanic
and later continental subduction. Supporting evidence for such westward oceanic
subduction can be found in the metamorphic rocks derived from mid-ocean ridge
basalts within the Gföhl Unit and eclogites located along the eastern Moldanubian
boundary (Kalvoda et al., 2008). The Brunian promontory covered by a thin layer
of Moldanubian rocks was revealed by interpretation of the gravity data (Guy et al.,
2011), and further supported by the westward shift of the Brunian lithosphere with
respect to the surface contact of the two blocks (Plomerová et al., 2012).

The lack of horizontal reworking of the vertical fabrics in the Lugian domain
in comparison to the Moldanubian domain suggests a significant difference in their
tectonic evolution. The absence of the low-gravity anomaly in the Lugian domain
compared to the Moldanubian domain again points to the importance of the un-
derthrusting event on the formation of the horizontal fabrics (Schulmann et al.,
2008).

Dörr and Zulauf (2010) proposed that the continental collision induced the
growth of a large Tibetan-style plateau consisting of the Teplá-Barrandian and Mol-
danubian blocks. At ∼340 Ma, the crust of the plateau was disrupted, and due to
unequal denudation lower orogenic levels were exposed in the Moldanubian domain,
while the surface of the Teplá-Barrandian domain is largely preserved until today.

At ∼325–310 Ma, numerous granitic plutons were emplaced within the Molda-
nubian and Saxothurigian domains. Different mechanisms have been considered to
provide the heat source needed for this episode of crustal melting. Due to (partial)
delamination of the mantle lithosphere, the ascending asthenosphere can increase
the heat flow from the mantle and induce widespread melting (e.g. Finger et al.,
2009). Alternatively, enough heat can be generated by radioactive elements in a
significantly thickened crust (Gerdes et al., 2000).

1.3.3 Post-Variscan

After cessation of the collision-related compression, the thickened orogenic crust
started to flow laterally in order to equilibrate the differences in the crustal load.
Around 300 Ma, this extensional movement activated a system of faults and basins.
During and after this orogenic collapse, the Variscan mountains were gradually
leveled by denudation processes. The early stage of the erosion and deposition of
Variscan material is preserved in abundant Permo-Carboniferous sediments, but
only a few sedimentary records document the later Triassic and Jurassic times.

The next important tectonic event was the onset of the Alpine–Carpathian
orogeny, which operated at ∼70–3 Ma as a result of closing of the Tethys ocean
between Africa and Europe. Due to the compressional forces, faults in the Elbe and
Odra Zones were activated during the Late Cretaceous leading to subsidence and
filling of the resulting basins. At 40–30 Ma, a long system of rifts was activated in
the Alpine foreland. This system extended from the Pyrenees to the North Sea and
its activity is attributed to the lithospheric folding and thinning, probably due to
an interaction with a mantle plume (Dèzes el al., 2004). The Eger Rift, activated
at ∼30 Ma, is considered a part of this system. Although the volcanism in that
region ceased before some ∼200 ka (e.g. Ulrych et al., 1999), the area of the Eger
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Rift is still geodynamically active, as documented by seismic swarms and thermal
springs. The thinned lithosphere below the Eger Rift shows that it is a rheologically
weakened zone, but no plume have been detected below the lithosphere (Plomerová
et al., 2007).

At ∼20–10 Ma, the growth of the Carpathian topography loaded and bent the
lithosphere in the eastern part of the Bohemian Massif. The resulting foreland basin
and adjacent Carpathian nappes covered a part of the Moldanubian and Brunia
domains. In the Quaternary, the intra-plate tectonic forces reactivated pre-existing
crustal discontinuities and caused uplift of the marginal parts of the Bohemian
Massif leading to its current topography (Ziegler and Dèzes, 2007).

1.4 Achievements and challenges of numerical

modeling

The scenarios of the tectonic evolution of the Bohemian Massif are mostly concep-
tual, and verification of their feasibility with respect to dynamics of the processes is
rare. Numerical modeling can help to discriminate between different scenarios and
improve our understanding of the nature of the tectonic processes. Due to the large
complexity of orogenic systems, it is generally not possible to capture in detail the
whole evolution of any orogen, and its individual stages (e.g. oceanic subduction,
continental collision, continental underthrusting) have to be modeled separately.
Moreover, many discrepancies between different models occur, because the freedom
in the choice of model parameters is relatively large, and initial conditions are mostly
unknown.

Generic models of oceanic subduction are applicable to the early Variscan evo-
lution of the Bohemian Massif. The oceanic-subduction models show burial and ex-
humation of material along a cold geotherm which corresponds to the high-pressure
low-temperature metamorphism recorded by the rocks along the Saxothuringian–
Teplá-Barrandian boundary.

The collision during the Variscan orogeny was investigated by Arnold et al.
(2001), who simulated the building of the orogenic root and its subsequent reduc-
tion due to slab break-off and delamination. Arnold et al. (2001) pointed out that
asthenospheric upwelling after lithospheric delamination provides an efficient heat
supply for extensive post-collisional melting, and related this process to the for-
mation of the Moldanubian granites. However, their models have a relatively low
resolution, and they do not provide a direct comparison to geological data. In con-
trast to Arnold et al. (2001), Gerdes et al. (2000) preferred increased radioactive
heating in the thickened crust as a likely mechanism of the post-collisional melting.

The delamination of the over-thickened lithosphere was invoked by Willner et al.
(2002) as a mechanism of (syn-collisional) exhumation of the high-pressure meta-
morphic rocks that are found e.g. in the Saxothuringian domain. In their model,
the material of the thickened orogenic crust is first pulled into large depths by the
negatively-buoyant mantle lithosphere, and after detachment of the lithosphere it
is exhumed again. The P–T paths achieved by Willner et al. (2002) agree only ap-
proximately with those measured for the Saxothuringian rocks, and the authors had
to apply a better-constrained one-dimensional modeling in order to obtain a closer
fit.
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The late stage of the Variscan continental collision was studied by Duretz et al.
(2011), who set up a crustal-scale numerical (and analogue) models of underthrusting
of the Brunian promontory into the Moldanubian crust. The models reproduce
emplacement of the nappe of the Moldanubian lower-crustal material into the middle
crust accompanied by the development of a topographic plateau above the nappe.
However, the exhumation of the lower-crustal rocks to the surface was not achieved
in their models. This can be due to the neglecting of the buoyancy forces that could
lead to the Rayleigh-Taylor instability in the system and increase the efficiency of
exhumation. Also the rheology (linear viscous in combination with plasticity) was
simplified, and surface processes were neglected completely.

The growth of the Rayleigh-Taylor instability leading to diapiric exhumation
of the lower crust was addressed by Lexa et al. (2011). These authors assumed
temperature- and composition-dependent rheology, density and radioactive heat
sources. Lexa et al. (2011) concluded that once relatively high radioactive heat-
ing is prescribed, the P–T evolution in the exhumed lower crust fits well the P–T
paths observed for the Moldanubian granulite bodies.

In some of the models mentioned above (Gerdes et al., 2000; Arnold et al.,
2001; Duretz et al., 2011; Lexa et al., 2011) it is assumed that the continental crust
of the subducting plate was emplaced into lower-crustal levels of the overriding
plate. Such subduction of continental material was discussed e.g. by Hacker et al.
(2011), but numerical models of this process are still rare. Faccenda et al. (2008)
simulated the continental collision including the subduction of the continental crust.
The model by Faccenda et al. (2008) successfully reproduced several characteristics
of metamorphism and lithospheric structure of orogens like the Andes, Himalayas
and Alps. The Variscan orogeny was in some respects comparable to that in the
modern Himalayas, and the model of Faccenda et al. (2008) thus can be applicable
for the evolution of the Bohemian Massif as well. However, a numerical model of
continental subduction which would take into account the specific features of the
Variscan orogeny, such as a large number of accreted microplates, has not been set
up yet.

Besides the continental subduction, there is a number of episodes of the Bohe-
mian-Massif evolution that remain to be addressed by means of numerical modeling.
The accretion and collision of the microplates, juxtaposition of contrasting meta-
morphic units along the Saxothuringian–Teplá-Barrandian boundary, formation of
a crustal-scale vertical shear zone in the center of the orogen, and multi-stage de-
formation within the Moldanubian domain are only a few examples.

In the following chapters, we focus on the last episode of the Variscan collision,
and we elaborate the models of lower-crustal exhumation by Duretz et al. (2011) and
Lexa et al. (2011). This late Variscan evolution is well preserved in the geological
record, and we can compare the results of the numerical model with petrological
and structural data. In order to obtain a high resolution of the studied area, and
at the same time to reduce the number of free parameters, we set up a crustal-scale
model only. On the other hand, we take into account some of the aspects of crustal
deformation, which have been neglected so far.
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1.5 Geological terminology and time scale

• amphibolite – a metamorphic rock type, medium- to coarse-grained, typically
high-density and dark-colored due to presence of mineral amphibole

• basalt – a common type of mafic volcanic rock, fine-grained, dark grey, com-
posed mainly of the minerals plagioclase and pyroxene

• durbachite – potassium-rich mostly mafic plutonic rock
• eclogite – mafic metamorphic rock, forms at pressures higher than those in the

normal ∼35-thick crust, typically contains garnet (red color) in a matrix of
pyroxene (green)

• fabric – a spatial structure of the rock’s constituents, including orientation of
grains and crystals, and planar or linear structures made of minerals of the
same type

• felsic – rich in light elements. Felsic rocks contain more than 75% of felsic min-
erals such as quartz and feldspar, are usually light-colored and have relatively
low density.

• flysh – a sequence of sedimentary rocks that is deposited in a deep marine
environment in a foreland basin of a growing orogen

• gabbro – mafic plutonic rock, dark, coarse-grained, compositionally equivalent
to basalt

• granite – felsic plutonic rock, light-colored, medium- to coarse-grained, com-
posed mainly of the minerals quartz, feldspar and mica

• granulite – rock that underwent high-temperature metamorphism. The min-
eral composition of granulites varies depending on the protolith and metamor-
phic conditions, and it can be both felsic and mafic.

• gneiss – a type of rock formed by high-grade regional metamorphic processes.
Due to deformation, the minerals are typically arranged into darker and lighter
bands.

• mafic – rich in magnesium and iron. Mafic minerals (e.g. olivine, pyroxene
and amphibole) are usually dark-colored and have high density.

• metamorphic facies – areas in the pressure-temperature space where metamor-
phism leads to formation of a typical assemblage of minerals, see Fig. 1.17

• migmatite – rock which experienced very high temperature conditions resulting
into partial melting. Migmatites often record intense deformation leading to
separation of different mineral types into thin light and dark bands.

• nappe – a large planar body of rock that has been displaced over a long distance
from its original position

• peridotite – mafic plutonic rock consisting mostly of the minerals olivine and
pyroxene, dark and dense, coarse-grained. The composition of peridotite is
typical of the Earth’s upper mantle.

• protolith – the original rock from which a metamorphic rock was formed
• serpentinite – rock composed of minerals formed by serpentinization, i.e. hy-

dration and metamorphism, of the mantle material
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Table 1.1: Simplified geological time scale after Odin (1994).

Quaternary
Cenozoic Neogene

Paleogene
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Figure 1.17: Metamorphic facies,
after Bentley (2010) and Bousquet et
al. (2008).
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Chapter 2

Numerical model setup

We set up a model of continental collision (Fig. 2.1) that takes into account the
basic characteristics of crustal deformation: brittle-ductile behavior including the
material weakening due to sustained strain, body forces due to density variations,
growth of the topography and its coupling with surface processes. In a number of
respects we follow the strategy developed by Fullsack (1995) and applied in models
of large collisional orogens (e.g. Beaumont et al., 2001). We use a two-dimensional
plane-strain approximation of the generally three-dimensional problem. The model
domain is divided into crustal and mantle parts. The flow of material is solved only
in the crustal part, and therefore we neglect the dynamic effect of the mantle flow
on the crustal deformation. The computational domain is initially rectangular but
its shape evolves with time due to a growing topography of the upper free surface
and due to isostatic compensation of the crustal load. For discretization of the
solved equations we use a finite element approach with structured mesh of bilinear
quadrilateral elements. The model is implemented in the open-source software Elmer
(http://www.csc.fi/english/pages/elmer), which we have extended by a number of
procedures dealing with the specific features of crustal deformation as described in
more details below in this chapter.

Figure 2.1: Sketch of the numerical model.

35



20.0 Myr

2.1 Equations

2.1.1 Governing equations

We model deformation of heterogeneous material coupled with heat transport (cf.
Gerya and Yuen, 2003; Beaumont et al., 2009). We use the following primary vari-
ables: the velocity v, the pressure p, the temperature T , the concentration ci of the
material with the composition i, and derived variables: the deviatoric stress tensor
σ and the strain-rate tensor ε̇. The flow of incompressible material with negligible
inertia (the Stokes problem) can be described by the following equations expressing
the conservation of momentum and mass:

∇p−∇·σ = −ρgez , (2.1)

∇·v = 0 , (2.2)

where ρ is the density, g is the gravity acceleration and ez is the unit vector in the
direction of the z−axis. For the meaning of symbols see also Notation on pages 147–
148. In the heat equation, we take into account terms of advection and diffusion,
heating by viscous dissipation and additional heat sources Q:

ρcp
DT

Dt
−∇· k∇T = σ : ε̇ +Q , (2.3)

where cp is the specific heat capacity at constant pressure and k is the thermal
conductivity. We assume that the evolution of material composition has a non-
diffusive character on geological scales:

Dci
Dt

= 0 for every i . (2.4)

The full set of equations (2.1)-(2.4) is solved only in the crustal part of the model
domain (red in Fig. 2.1). In the lithospheric mantle (below the red border in Fig. 2.1)
we solve only equation (2.3) without the terms on the right-hand side and assume
a prescribed velocity field (see Section 2.1.5).

The deviatoric stress tensor is a function of the strain rate, temperature, pressure
and composition,

σ = σ(ε̇, T, p, {ci}), (2.5)

and its form is defined in Sections 2.1.2-2.1.3. The parameters in the equations
(2.1)-(2.3) are assumed to be constant (g, cp and k), or depend on the material
composition,

ρ = ρ({ci}), Q = Q({ci}). (2.6)

In a more general case, the parameters may depend also on temperature, pressure,
phase transitions and other factors. In particular, we neglect variations of density
due to the thermal expansivity1.

1The variations of temperature at a certain crustal depth may reach up to a few hundreds of
Kelvins at maximum. Thermal expansivity of rocks is approximately 3 · 10−5K−1 and density of
crust is about 2500–3000 kgm−3 (e.g. Guy et al., 2011). The resulting density variations ρα∆T
are up to ∼ 101 kg m−3 that is by one order of magnitude less than the density differences among
different crustal rock types (∼ 102 kg m−3).
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2.1.2 Rheology

We assume non-linear visco-plastic rheology as a description of the response of the
crustal material to stress. Plastic deformation is an approximation of brittle failure
that dominates at low temperatures and high strain rates, while at relatively low
strain rates and high temperatures the crustal material flows viscously. Viscous
flow is characterized by immediate irreversible deformation of material with a rate
dependent on the applied stress. Plastic deformation is also irreversible, but it
occurs only after reaching a certain differential stress σyield, called the yield strength
of material. The functional dependence (2.5) for the visco-plastic material can be
expressed in terms of the effective viscosity, ηeff :

σ = 2ηeff ε̇ . (2.7)

In the viscous regime, i.e. when the second invariant of the deviatoric stress tensor
σII is smaller than σyield, we consider dislocation creep which is characterised by a
non-linear relation between the stress and strain-rate tensors,

ε̇ = ÃσII
n−1 exp

(

−EA

RT

)

σ , (2.8)

where R is the gas constant and parameters Ã, n and EA are determined experi-
mentally. Typically, the parameter Ã is not a direct output of experiments, because
a simpler relation between scalar quantities is measured:

ε̇ = Aσn exp

(

−EA

RT

)

, (2.9)

where the exact meaning of σ and ε̇ depends on the experimental setup. In the
common case of a uniaxial stress experiment, the conversion from measured A to Ã
is (Ranalli, 1995)

Ã = A
3

n+1

2

2
. (2.10)

From the comparison of (2.7) and (2.8) we observe that the effective viscosity de-
pends on the temperature, pressure and second invariant of the strain rate, ε̇II:

ηeff =
1

2

(

Ã
)

−1/n

ε̇
1/n−1
II exp

(

EA

nRT

)

. (2.11)

After substituting (2.10) into (2.11) we get

ηeff = η0ε̇
1/n−1
II exp

(

EA

nRT

)

, where η0 =
1

2
(A)

−1

n

2
1−n

n

3
n+1

2n

. (2.12)

In the plastic regime, the relation σII = σyield holds, and the effective viscosity can
be expressed from (2.7):

ηeff =
σyield

2ε̇II
. (2.13)
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21.0 Myr

2.1.3 Yield criterion

The yield strength is not constant, but it depends on intrinsic and extrinsic pa-
rameters. There are several empirical criteria on the yield strength (for overview
see Ranalli, 1995), out of which the pressure-dependent Drucker-Prager criterion is
commonly used as an approximation of behavior of rocks:

σyield = p sinφ+ C cosφ , (2.14)

where the angle of internal friction φ and the cohesion C are parameters. To show
the meaning of these two parameters, we will derive the Drucker-Prager criterion
from the Mohr-Coulomb(-Navier) criterion in two dimensions. The Mohr-Coulomb
criterion gives a linear relation between the shear stress Tt and the normal stress Tn

at a given plane at which the material yields:

Tt = Tn tanφ+ C . (2.15)

The criterion means that the shear stress which can be sustained by the material
without yielding is proportional to the confining normal stress. Higher shear stresses
than that given by the criterion can not be reached, as the material yields (i.e. is
fractured) beforehand. In Fig. 2.2 the Mohr-Coulomb criterion is represented by
a line separating admissible stresses in the material (below the line) from non-
admissible stresses (above the line). We can see that the cohesion is the maximum
possible shear stress when a zero normal stress is applied and the angle φ corresponds
to the slope of the line.

The shear and normal stresses are the parallel and perpendicular components of
the traction T at a given plane corresponding to a stress tensor τ , respectively. The
stress tensor in the Cartesian basis {ex, ez} has the form

τ =

(

τxx τxz

τzx τzz

)

ex ⊗ ez , (2.16)

and we define the principal stresses σ1, σ3 as its eigenvalues:

σ1,3 =
τxx + τzz

2
±

√

(

τxx − τzz

2

)2

+ τ 2
xz . (2.17)

admissible stress

non-admissible

stress   

Figure 2.2: Yield strength of material.
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Let us first express the components of the traction on a plane with a normal vector
n = (cosβ, sin β) and a tangent vector t = (− sin β, cosβ) in the Cartesian basis:

Tx = τxx cosβ + τxz sin β , (2.18)

Tz = τxz cosβ + τzz sin β , (2.19)

and then in the basis {n, t}:

Tn = n · (Tx, Tz) = Tx cosβ + Tz sin β =

= τxx cos2 β + 2τxz cos β sin β + τzz sin2 β = (2.20)

=
τxx + τzz

2
+
τxx − τzz

2
cos 2β + τxz sin 2β ,

Tt = t · (Tx, Tz) = −Tx sin β + Tz cos β =

= −τxx sin β cosβ + τxz

(

cos2 β − sin2 β
)

+ τzz sin β cosβ = (2.21)

= −τxx − τzz

2
sin 2β + τxz cos 2β .

Without loss of generality, we choose the coordinate system so that the principal
axis of the stress tensor is parallel to ex, and β is the angle between the principal
axis and the vector n. In this case τxz = 0, and

Tn =
τxx + τzz

2
+
τxx − τzz

2
cos 2β , (2.22)

Tt = −τxx − τzz

2
sin 2β . (2.23)

After introducing the mean stress σ̄ and the differential stress ∆σ,

σ̄ =
σ1 + σ3

2
, (2.24)

∆σ =
σ1 − σ3

2
, (2.25)

the normal and shear stresses are

Tn = σ̄ + ∆σ cos 2β , (2.26)

Tt = −∆σ sin 2β . (2.27)

Geometrically we can represent the stress state given by equations (2.26) and (2.27)
as a circle in the Mohr-Coulomb diagram (Fig. 2.3). We see that yielding first occurs
on a plane inclined to the principal axis at an angle β = π/4+φ/2. (The same result
can be obtained by minimizing the yield function F (β) = Tn(β) tanφ+C−Tt(β) .)
Reinserting this angle into (2.26) and (2.27), we can express the Mohr-Coulomb
criterion (2.15) in the form

∆σ = σ̄ sin φ+ C cosφ , (2.28)

which is in two dimensions equivalent to the Drucker-Prager yield criterion,

σyield = σII = p sinφ+ C cosφ . (2.29)

The type of relation between the shear and normal stresses (2.15) has been
experimentally observed during reactivation of pre-existing faults in rocks (Byerlee,
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22.0 Myr

Figure 2.3: Mohr-Coulomb diagram.

1978), formation of new faults, but also in localized shear zones operating by means
of various mechanisms. The measured angle of internal friction is approximately
30◦ for dry rocks independently on their composition. The friction required for
formation of new faults is higher, but crustal rocks are usually pre-fractured at
different spatial scales, e.g. due to cooling or past deformation. The reactivation of
pre-existing faults is thus a more likely mechanism of brittle failure than formation
of new cracks (Ranalli, 1995).

The crustal material often contains a certain amount of water or other fluids.
The pressure exerted by the fluid on the walls of the pores in rocks counteracts the
confining pressure p, and effectively reduces the yield strength (2.14). In the case of
a vertical column of “wet” rocks, i.e. rocks with an interconnected network of fluid,
the pore-fluid pressure can be estimated by the hydrostatic pressure. The yield
strength is then decreased by about one third, corresponding to the ratio between
the hydrostatic and lithostatic pressures. This effect can be approximated by an
appropriate reduction of the angle of internal friction φ.

In the tensional domain (Tn < 0), there is a singularity where material yields
at any shear stress (left from the intersection point of the line with the x−axis in
Fig. 2.2). In numerical simulations, a certain minimum value of the yield stress σmin

is often used (e.g. Lemiale et al., 2008; Kaus, 2009),

σyield = max(σmin, p sinφ+ C cosφ) , (2.30)

as depicted by the dotted line in Fig. 2.2. However, the experimentally observed
behavior of rocks is different, showing a steeper slope of the stress envelope in the
tensional domain and its flattening in the compressional domain (Ranalli, 1995).

Observations and theoretical models (Dieterich, 1979; Ruina, 1983) point to a
more complex behavior of the stress at yield. The friction between the sliding sur-
faces is different when initiating the motion from a static situation than in a dynamic
case. An important mechanism observed in experiments (e.g. Bos and Spiers, 2001)
and appropriate for crustal deformation at long time scales (e.g. Holyoke and Tullis,
2006) is strain weakening: A local accumulation of strain causes changes in the
characteristics of the material at yield and a subsequent decrease of friction. As an
approximation of this process, we consider a linear decrease of the angle of internal
friction (or cohesion) with strain (e.g. Huismans and Beaumont, 2003; Buiter et al.,
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2006; Gerya, 2010):

φ = φ0 if εII ≤ ε0 ,

φ = φ0 + (φ∞ − φ0)

(

εII − ε0
ε∞ − ε0

)

if ε0 < εII < ε∞ , (2.31)

φ = φ∞ if εII ≥ ε∞ ,

where φ0, φ∞, ε0 and ε∞ are parameters and εII is the plastic strain obtained by
integrating the second invariant of the plastic strain rate along the material trajec-
tory.

2.1.4 Material treatment

The evolution of material composition (2.4) is treated using the particle-in-cell
method (e.g. Gerya and Yuen, 2003). A cloud of material particles, which are
initially regularly or randomly distributed, is advected by the velocity field obtained
by solving the governing equations. For the advection of the particles, the velocity
field is evaluated using an appropriate element basis (i.e. bilinear interpolation on
bilinear elements in our case). The particles are then displaced using the fourth-
order Runge-Kutta method; methods of lower order (explicit Euler, mid-point and
Heun’s method) are implemented as well (see Section 2.3.3 for details).

The number of particles in an element is initially set to a certain value, but it
changes during the time evolution. If it drops below a certain level in an element, new
particles are injected at random positions in the element. The material composition
i of a newly injected particle is set randomly with a probability proportional to
the material composition {ci} averaged from the particles that are currently in the
element (Běhounková, 2007). The plastic strain of the new particle is evaluated
using an arithmetic average of εII stored by the particles in the element.

For the solution of the governing equations (2.1)-(2.3), evaluation of parameters
that depend on the material composition is required. Each material particle stores
information about its composition (i.e. identifier i of a rock-type it represents) and
the accumulated plastic strain (εII). The values of parameters in a selected spa-
tial point can be inferred from properties stored by nearby particles, but different
schemes of evaluation can be applied. In the presence of sharp boundaries between
materials with different properties, the scheme can play an important role (Deubel-
beiss and Kaus, 2008; Schmeling et al., 2008), particularly in the case of the viscosity
that varies by several orders of magnitude at crustal conditions. We use an approach
where the parameters are evaluated at integration points of elements by averaging
over all particles in the element. The effective viscosity is then computed using
geometric averaging:

log (ηeff) =

∑

i wi log (ηeff,i)
∑

iwi
, (2.32)

while the arithmetic average is used to evaluate other quantities F :

F =

∑

i wiFi
∑

iwi
, (2.33)

where index i denotes a particle in the element and wi are weights (cf. Gerya and
Yuen, 2003):

wi =
1

∆xmax∆zmax

(

1 − ∆xi

∆xmax

)(

1 − ∆zi

∆zmax

)

. (2.34)
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Symbols ∆xi and ∆zi are the distances along the x− and z−axis, respectively, of
the particle from the point {x, z} where the quantity is evaluated, and ∆xmax and
∆zmax are respectively the maxima of ∆xi and ∆zi over all particles in the element.

2.1.5 Boundary conditions, free surface treatment and

surface processes

Besides the equations that are to be solved in the model domain, we have to specify
the interaction of the model with the surrounding space. At the boundaries of the
model, we prescribe velocities, forces and thermal conditions that are appropriate
for a collision of two lithospheric blocks. At the boundaries of the lithosphere (blue
in Fig. 2.1) we specify the condition for the heat equation (2.3): at the top of the
crust we prescribe the temperature, at the bottom of the lithospheric mantle the
heat flux at the direction normal to the boundary (qn = −k∇nT = qBC), and the
sides are insulated (qn = 0).

The boundary conditions for flow equations (2.1)-(2.2) are specified only for the
crustal part of the domain (red in Fig. 2.1). On the sides, we prescribe the normal
velocity (vn = vx = vBC) and leave the tangential velocity free, i.e. the tangential
traction is zero. At the boundary between the crust and the mantle lithosphere,
the velocity in the normal direction is zero, and the tangential velocity is set to be
different beneath the left and the right parts of the model (Fig. 2.1). This setup
involves a velocity discontinuity at one point at the bottom of the crust, which leads
to formation of two colliding blocks.

In the lithospheric mantle, we have to fully specify the velocity field, because
we do not solve the equations of flow there, but we still take into account the
advection of heat in equation (2.3). The velocity field in the mantle is prescribed in
agreement with the condition at the crust–mantle boundary, and it corresponds to
a lithospheric wedge moving along with the right colliding block and pushing a part
of the lithospheric material down into the mantle (Fig. 2.1). The velocity in this
downward-moving wedge is calculated so that the mass is conserved at the contact
of the lithospheric blocks.

The upper boundary of the domain is a free surface with zero traction (σ ·n = 0)
and its shape follows the deformation of the material. The advection of the free
surface is implemented by shifting the mesh nodes by an explicit Euler step followed
by a linear interpolation of the advected surface to a priori known positions of the
nodes in the x−direction (Fig. 2.4). In such a scheme, the x−positions of the free-
surface nodes have to be either fixed or prescribed analytically.

The shape of the free surface is then corrected for the effect of surface processes:
erosion and sedimentation. From the wide range of phenomenological descriptions
of erosion on geological timescales (e.g. Martin and Church, 1997; Montgomery and
Brandon, 2002) we choose the slope-dependent rate of erosion,

ve(x) = E| tanα(x)| , (2.35)

where E is a parameter and the slope tanα is computed from the topography h(x)
of the surface using a linear approximation of its slope on a finite interval (see
Fig. 2.5). The slope-dependent erosion corresponds to the material removal by a
network of rivers incising into bedrock (e.g. Willet et al., 2001; Montgomery and
Brandon, 2002). This type of erosion is non-conservative with respect to the mass
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in the model, because the eroded material is assumed to be transported over a
large distance and deposited outside the studied domain. Besides the river-incision
erosion, other processes leading to removal and deposition of material may operate,
and they are usually simulated by a conservative diffusive law (e.g. Willet et al.,
2001; Montgomery and Brandon, 2002).

The rate of sedimentation of material into topographic lows is proportional to
the topography:

vs(x) = S h(x) for h(x) < 0 , (2.36)

vs(x) = 0 for h(x) ≥ 0 , (2.37)

where S is a parameter. A small amount of local diffusive smoothing is employed
in order to omit grid-scale oscillations of the free surface. The rate of this process
is computed from the “roughness” of the surface: The difference d of the position
of a node with respect to the position of the free surface interpolated from the
surrounding nodes is evaluated, as shown in Fig. 2.5. The rate of local smoothing
of the surface is then proportional to this difference:

vd(x) = Ed d(x) . (2.38)

The total correction of the position of the free surface at a time step of length ∆t
is:

∆h(x) = −∆t
(

ve(x) + vs(x) + vd(x)
)

. (2.39)

before advection

interpolated

advected

Figure 2.4: Advection of free surface. Vertical dashed lines are (fixed) x−positions of
mesh nodes. Arrows pointing from open circles towards crosses show the displacement
of the material. Filled circles show position of the boundary nodes after advection and
interpolation.
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Figure 2.5: Parameters for evaluation of erosion and sedimentation.

2.1.6 Mesh deformation, ALE description

Due to the deformation of the free surface, the shape of the computational mesh
has to vary with time. The major role of convection does not allow the use of
purely Lagrangian methods, as they would lead to large mesh distortion, or they
would require remeshing. The numerical framework developed for the treatment of
large deformations of material in a domain with a shape evolving with time is called
an Arbitrary Lagrangian–Eulerian (ALE) approach (for overview see Donea and
Huerta, 2003; Scovazzi and Hughes, 2007; Duran, 2000). In the ALE description, the
computational mesh is moving (unlike in the Eulerian description) and its motion is
independent of the material motion (unlike in the Lagrangian description). Besides
the spatial and material configurations that are used in the Eulerian and Lagrangian
descriptions, respectively, we define the referential configuration. In the spatial
configuration, the frame of reference is fixed with respect to the “laboratory”. In
contrast, the material frame of reference coincides with the position of the material
particles. In the ALE approach, the referential configuration is defined so that
the positions of mesh nodes are constant. The spatial, material and referential
coordinates, x, X and χ, respectively, can be converted one to another using the
following invertible mappings:

x = ϕ(X, t) , x = ψ(χ, t) , X = ϕ−1 (ψ(χ, t)) , (2.40)

as shown in Fig. 2.6.
We will now outline the basic kinematic equations in the ALE description and

their application to the studied problem. An arbitrary property F can be expressed
in any of the coordinate systems (2.40):

F(x, t) = F(ψ(χ, t), t) = F(ϕ(X, t), t) . (2.41)

Keeping in mind that the functional form of the property F is different in different
coordinate systems we will simplify the notation:

F(χ, t) ≡ F(ψ(χ, t), t) , (2.42)

F(X, t) ≡ F(ϕ(X, t), t) . (2.43)

In the following, we will need to express the velocity of material with respect to the
spatial frame:

v ≡ ∂x

∂t

∣

∣

∣

X

, (2.44)
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Spatial configuration

Referential configuration

Material configuration

Figure 2.6: Spatial, material and referential configuration.

the velocity of material with respect to the referential frame (i.e. with respect to the
mesh):

w ≡ ∂χ

∂t

∣

∣

∣

X

, (2.45)

and the velocity of the mesh with respect to the spatial frame:

v̂ ≡ ∂x

∂t

∣

∣

∣

χ
. (2.46)

Besides the property F and its spatial derivatives, the governing equations usually
contain the material-time derivatives of F, which is defined in the material configu-
ration:

DF

Dt
≡ ∂F(X, t)

∂t

∣

∣

∣

X

. (2.47)

In the spatial configuration, the material-time derivative can be expressed using the
chain rule:2

DF

Dt
=

∂F(x, t)

∂t

∣

∣

∣

x

+
∂x

∂t

∣

∣

∣

X

· ∂F(x, t)

∂x
=

=
∂F(x, t)

∂t

∣

∣

∣

x

+ v · ∂F(x, t)

∂x
, (2.48)

and analogously in the referential configuration with coordinates χ:

DF

Dt
=

∂F(χ, t)

∂t

∣

∣

∣

χ
+
∂χ

∂t

∣

∣

∣

X

· ∂F(χ, t)

∂χ
=

=
∂F(χ, t)

∂t

∣

∣

∣

χ
+ w · ∂F(χ, t)

∂χ
. (2.49)

2For a vector F, the components of ∂F

∂x
in the Cartesian coordinates are

(

∂F

∂x

)

ij
=

∂Fj

∂xi
.
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As the property F is arbitrary, we can apply equation (2.49) also to spatial coordi-
nates x:

∂x

∂t

∣

∣

∣

X

=
∂x

∂t

∣

∣

∣

χ
+ w · ∂x

∂χ
, (2.50)

and after rearrangement we obtain:

∂x

∂t

∣

∣

∣

X

− ∂x

∂t

∣

∣

∣

χ
= w · ∂x

∂χ
, (2.51)

v − v̂ = w · ∂x
∂χ

, (2.52)

where the difference of velocities at the left hand side,

c ≡ v − v̂ , (2.53)

is called the convective velocity. The convective velocity arises in the equation (2.49)
when the last term is further expanded:

DF

Dt
=

∂F(χ, t)

∂t

∣

∣

∣

χ
+

(

w · ∂x
∂χ

)

· ∂F(χ, t)

∂x
=

=
∂F(χ, t)

∂t

∣

∣

∣

χ
+ c · ∂F(χ, t)

∂x
. (2.54)

Comparing the material-time derivative in the ALE (2.54) and Eulerian descriptions
(2.48) we make three important observations: In both cases the spatial gradient ∂

∂x

occurs in the convective term. The velocity v is replaced by the convective velocity c

in the ALE description. The time derivative is not evaluated at a fixed spatial point,
but at a fixed point with respect to the mesh, e.g. fixed node or integration point.
All these three features are particularly convenient for numerical implementation.
The form of the material-time derivative (2.54) can be substituted into the governing
equations while keeping the classical Eulerian form of the remaining terms, which
is an approach widely used in the modelling of flow with free surface and fluid–
structure interaction (see e.g. Donea and Huerta, 2003).

Apart from the solved equations, we have to specify the position of the computa-
tional mesh at each time step. The position of the mesh boundaries usually conforms
with the boundaries of the material body, or it is prescribed in spatial coordinates.
Inside the model domain, the mesh deformation is not constrained, although a cer-
tain regularity of the mapping ψ (2.40) is required. There are several methods of
mesh adaptation to the prescribed shape of the boundaries. One possibility is to
formally describe the mesh as a compressible elastic body stretched in between the
boundaries. On a structured mesh, also geometrical methods can be used, where
the positions of the inner nodes are calculated analytically from the positions of the
boundary nodes (for overview of mesh adaptation methods see Donea et al., 2004).
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2.1.7 Flexural isostasy

The evolving topography of the free surface and the redistribution of density within
the crust induces a non-uniform and time-dependent loading of the lithosphere.
The crustal load should be compensated by flexure of the lithosphere leading to an
equilibrium between the load and the buoyancy and elastic forces. However, when
the flow equations (2.1)-(2.5) are solved only in the crustal part, the equilibrium can
not be achieved self-consistently and the flexure of the lithosphere has to be imposed
artificially (Fullsack, 1995). For this purpose, the position of the boundary between
the crust and the mantle is adjusted so that it satisfies an analytical equation for
flexure u of a thin elastic beam with the flexural rigidity D (Watts, 2001, for notation
see Fig. 2.7):

D
∂4u(x, t)

∂x4
+B(x, t) = L(x, t) . (2.55)

The buoyancy B acting on the crustal root is proportional to the flexure, mantle
density and gravity acceleration:

B(x, t) = u(x, t)ρmg . (2.56)

The load L is computed from the mass of the column of material above the loaded
point {x, z} at the crust–mantle boundary,

L(x, t) =

∫ h(x,t)

u0−u(x,t)

ρ(x, z, t)gdz − Lref , (2.57)

where Lref is the load at a given reference point xref at the beginning of the time
evolution,

Lref =

∫ 0

u0

ρ(xref , z, t0)gdz , (2.58)

and xref = xmax in our case.
Equation (2.55) is solved analytically using the Fourier method in the spatial

domain. We assume a symmetrical boundary condition at the left end of the beam
(∂u

∂x
|xmin

= 0) and keep the right end of the beam fixed (u(xmax) = 0). For these
boundary conditions, only cosine terms with

l̃ =
2l + 1

2
, l = 0, 1, 2, . . . (2.59)

are non–zero in the Fourier series:

L(l̃) =
2

xmax − xmin

∫ xmax

xmin

L(x) cos

(

πl̃
(x− xmin)

(xmax − xmin)

)

dx (2.60)

(we omit time in the notation). In the Fourier domain, we can express the flexure
from equation (2.55):

u(l̃) =
L(l̃)g

D
(

πl̃/(xmax − xmin)
)4

+ ρmg
, (2.61)

and then transform it back to the spatial domain:

u(x) =
∑

l̃

u(l̃) cos

(

πl̃
(x− xmin)

(xmax − xmin)

)

. (2.62)
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At a given time step, we evaluate the difference between the flexure u satisfying
equation (2.55) and the actual shape of the bottom crustal boundary and shift the
computational mesh and particles in the z–direction by this difference to a new
position zcorr:

zcorr(x, t) = z(x, t) + u(x, t) − uprev(x, t) . (2.63)

The mesh is shifted not only in the crust, but also in the mantle lithosphere. The
bottom boundary of the model thus deforms in the same way as the boundary
between the crust and the mantle (see Fig. 2.1).

0

correction

(before correction)

Figure 2.7: Evaluation of flexural isostatic compensation.
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2.2 Numerical implementation

We use the following computational scheme:

0. initialization of temperature field and particles

1. evaluation of time step

2. interpolation of viscosity and density from particles to integration points and
iterative solution of the Stokes problem, equations (2.1)-(2.5)

3. interpolation of heat sources and density from particles to integration points
and solution of the heat equation (2.3)

4. advection of free surface and correction for erosion and sedimentation

5. mesh deformation

6. advection of material particles, integration of plastic strain in particles

7. computation of isostatic flexure and appropriate adjustment of mesh and par-
ticles

8. output and return to step 1

The simulation is implemented using the open-source finite-element software
Elmer (http://www.csc.fi/english/pages/elmer). Elmer contains several modules,
called solvers, designed for the solution of different types of partial differential equa-
tions, in particular for thermo-mechanical convection in a domain with a free surface.
The setup of a numerical simulation (i.e. time stepping, order of solvers, parameters
in the solved equations, numerical methods, initial and boundary conditions) is spec-
ified in an input text file, which also serves as an interface for linking of user-written
procedures to Elmer. These external procedures can either provide parameters in
the solved equations or they can be separate solvers. We use both possibilities in
order to implement the specific properties of the crustal deformation.

The solution of the partial differential equations in steps 2, 3 and 5 is imple-
mented in the Elmer software, but we evaluate some of the parameters in the equa-
tions (viscosity, density and heat sources) in external procedures. The visco-plastic
rheology is defined in Sections 2.1.2 and 2.1.3 and the evaluation of composition-
dependent properties is described in Section 2.1.4. The composition-dependent pa-
rameters can be evaluated either in mesh nodes or inside elements in points of
integration over elements. We prefer the latter possibility, because it avoids sec-
ondary interpolation from nodes to integration points performed by Elmer during
assembly of the local representation of the solved equations.

We developed solvers to compute the advection of the free surface and surface
processes (step 4, Section 2.1.5), the advection of particles (step 6, Section 2.1.4)
and crustal flexure (step 7, Section 2.1.7). During the advection of particles, several
additional procedures are used for a fast search of particles contained in an element.

The partial differential equations are discretized using bilinear quadrilateral el-
ements. The low order of elements ensures fast solution and assembly, but the
choice of equal-order elements requires additional stabilization of the solution of the
Stokes equations (see e.g. Donea and Huerta, 2003). There are several stabilization
methods implemented in Elmer, two of which can be used with bilinear elements,
as will be discussed in Section 2.3. For the solution of the discretized system we
use direct methods, namely the package UMFPACK (Davis, 2004), which is robust
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and fast for a relatively small number of unknowns. For the time integration of the
heat equation we use the backward differentiation of the first order. The time-step
length is given by the Courant criterion with the Courant number typically between
0.1 and 0.2.

2.2.1 Output and postprocessing

There are several different types of output data. Nodal values of primary variables
(velocity, pressure, temperature and mesh deformation) are a part of the standard
Elmer output. In addition, Elmer can store boundary values of variables or their
fluxes through the boundaries (e.g. heat flow) and scalar characteristics of the model
(e.g. kinetic energy and mean temperature) which are calculated from the finite-
element solution. The free-surface solver saves topography, rate of sedimentation
and rates of different types of erosion.

The properties stored by particles (e.g. material, total strain, plastic strain,
strain rate, viscosity) are saved during particle advection. Selected particles also
record pressure and temperature along their trajectories, and the resulting pressure–
temperature–time paths then can be used for comparison with geological data.

The density field is post-processed in order to obtain a gravitational anomaly
comparable to the Bouguer gravity anomaly (for definition see e.g. Watts, 2001).
We calculate the gravitational effect of density anomalies within the model domain.
The density anomalies ∆ρ are taken with respect to some one-dimensional reference
density profile, which can be chosen arbitrarily. In order to simplify the calculations,
we use the density profile at the right boundary of the model domain followed
downwards by mantle density ρm. The density anomalies are assumed to be non-
zero only inside the model domain and zero elsewhere. During the calculation of
the Bouguer anomaly, the gravitational effect of topography is removed from the
gravity field. For that reason, we integrate the density anomalies only below the
zero-topography level h = 0.

We transform the model domain into a part of a sphere with the radius rE equal
to the radius of the Earth, see Fig. 2.8. The model domain is placed south of the
equator so that θ = π/2 at x = xmin, and it is symmetrically reflected north of
the equator. The transformation of the Cartesian coordinates {x, z} into the polar
coordinates {r, θ} is then:

r = z + rE , θ =
π

2
+
x− xmin

rE

. (2.64)

We express the density anomaly using spherical harmonics. Because the density
is independent of longitude δ, we use Legendre polynomials of degree j instead of
full spherical harmonics:

∆ρ(r, θ) =
∞
∑

j=0

∆ρj(r)Pj(cos θ) , (2.65)

where ∆ρj(r) =

∫ 2π

0

∫ π

0

∆ρ(r, θ)Pj(cos θ) sin θ dθ dδ . (2.66)

From the symmetry around the equator (∆ρ(r, θ) = ∆ρ(r, π − θ)) and integrating
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over δ we get:

∆ρj(r) = 4π

∫ π/2

0

∆ρ(r, θ)Pj(cos θ) sin θdθ for j = 0, 2, . . . (2.67)

∆ρj(r) = 0 for j = 1, 3, . . . (2.68)

The gravitational potential due to the density anomaly ∆ρj(r) is (Burša and Pěč,
1988):

vj(rE) =
4πGrE

2j + 1

∫ rE

0

(

r

rE

)j+2

∆ρj(r)dr , (2.69)

and the corresponding gravitational acceleration is:

gj(rE) = (j − 1)
vj(rE)

rE
. (2.70)

Finally, combining equations (2.67)-(2.70) we get the following formula:

gj(rE) =
16π2G(j − 1)

2j + 1

∫ rE

0

∫ π/2

0

(

r

rE

)j+2

∆ρ(r, θ)Pj(cos θ) sin θ dθ dr , (2.71)

which can be used for the calculation of the Bouguer gravity anomaly at a given
colatitude θ:

g(rE, θ) =
∑

j

gj(rE)Pj(cos θ) . (2.72)

Figure 2.8: The transformation of the
model domain to a part of a sphere. The
model domain (thick black boundaries)
is positioned south of the equator and
symmetrically reflected north of it (thick
gray boundaries). Density anomalies ∆ρ
are integrated over the hatched domain.
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2.3 Tests

Prior to the application of the software to the continental-collision modeling, we
tested its numerical behavior on several simple setups. Because the original version
of the Elmer software has been tested on a number of physical problems, we focus
on the newly implemented features (non-linear visco-plastic rheology, advection of
material particles, advection of free surface and isostasy), and on the effect of the
mesh resolution and particle density.

Elmer provides several schemes for the specification of material properties. The
viscosity and density can be prescribed at mesh nodes and then interpolated to in-
tegration points of elements. Another possibility is to prescribe them directly at
integration points. In that case, we may either interpolate the values from material
particles directly to the position of the integration points (i.e. the value differs at
different integration points of an element), or we can use one value per element calcu-
lated at the element center. The latter possibility was recommended by Deubelbeiss
and Kaus (2008) as numerically more accurate, but their study does not apply to
equal-order stabilized elements that we deal with.

Besides the location where the viscosity and density are specified also the applied
averaging scheme influences the result. Here we test arithmetic, geometric and har-
monic averaging evaluated analogously as in equations (2.32)-(2.33). For a detailed
discussion on averaging schemes and their physical interpretation see Schmeling et
al. (2008).

Another numerical issue is the solution of the incompressible Stokes equations
(2.1)-(2.2) (see Donea and Huerta, 2003, and references therein). The solution of the
weak formulation of the incompressible Stokes equations is numerically stable only
for certain combinations of finite-element spaces for the velocity and pressure. The
elements that are bilinear both in velocity and pressure are not stable, which may for
example result into spurious pressure oscillations. Different methods can be applied
to stabilize the solution. For bilinear elements, there are two stabilization methods
available in Elmer: residual-free bubbles (see e.g. Russo, 1996; keyword “bubbles”
will be used to refer to this method in the following text) and Galerkin-least-squares
(Franca and Frey, 1992; keyword “stabilized”).

Bubble stabilization is based on enrichment of the finite-element space by ele-
ment-wise defined functions. The name “bubbles” refers to the additional nodes by
means of which these functions are specified. The bubble functions are of higher
order than the standard finite elements, and they vanish on element boundaries.
They capture the fine-scale part of the exact solution which is not resolved on the
standard mesh.

In the Galerkin-least-squares method, special terms defined over the element
interiors are added to the weak formulation. The choice of the terms is not unique,
but they have to depend on the residual of the momentum equation, so that they
equal to zero when exact solution is reached. The main drawback of this method is
that spatial derivatives of viscosity occur in the stabilization terms. In the presence
of large viscosity contrasts (several orders of magnitude), the evaluation of spatial
derivatives of viscosity may yield large errors. We were not able to use this method
in some of the numerical tests, but we used an incomplete stabilization, where these
derivatives are set to zero. The result of this kind of incomplete stabilization is not
consistent when the viscosity varies. Nevertheless, we present the results of two tests
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(circular inclusion in pure shear and initiation of shear bands) calculated using this
stabilization, because they can provide interesting insight into the effect of pressure
oscillations on the deformation of material of Drucker-Prager type.

When examining the accuracy of different numerical settings, we mostly rely
on cases where analytical solutions are available, but we also reproduce results for
different kinds of numerical setups reported in literature. In the majority of the
tests, we use dimensionless formulation of equations.

2.3.1 Thermal convection

A series of classical tests on coupling of thermal and flow equations was described
by Travis et al. (1990). We solve equations (2.3) and (2.1)-(2.2) without heating
by viscous dissipation in a rectangular domain Ω = (0,W ) × (0, 1). Free slip is
prescribed at all four boundaries, constant temperature at the upper boundary, and
zero heat flux at vertical boundaries. At the bottom boundary, either temperature
(cases B1 and B4) or heat flux (cases B2 and B3) is specified (for values of parameters
see Travis et al., 1990). The cases B1-B3 lead to a steady-state solution, that can
be quantified by the kinetic energy, Nusselt number and average temperature at the
bottom boundary as follows:

KE =
1

2W

∫

Ω

(

v2
x + v2

z

)

dΩ , (2.73)

Nu =
1

W

∫ W

0

(

vzT − ∂T

∂z

)

dx , (2.74)

T̄ (0) =
1

W

∫ W

0

T (x, z = 0) dx . (2.75)

For the summary of the results see Table 2.1.
In the case B4, a mode with periodically growing thermal instabilities is reached.

The time of onset of this periodic mode depends on the prescribed length of the time
step. When a too long time step is applied, the thermal instabilities are not resolved
properly and a spurious steady state is reached (Fig. 2.9).
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Figure 2.9: Time evolution of the kinetic energy (KE) in the test case B4. Blue and
black lines are calculated for time steps of 10−5 and 10−3, respectively. Right panel shows
the periodic evolution of kinetic energy (blue line) in more detail. For a long time-step
length (black line), the periodic state is not observed.
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Table 2.1: Results for four test cases for thermal convection. For simplicity we report
absolute values. Time-step length was 10−4. The reference values along with a detailed
description of the four testing cases can be found in Travis et al. (1990).

B1 32×32 64×64 128×128 reference

KE 13550 13561 13566 13558
Nu 9.7091 9.7119 9.7141 9.7143
vz(0, 0.5) 303.51 303.70 303.83 303.86
vx(0.5, 0) 227.98 227.65 227.58 227.49
vx(0.5, 1) 227.98 227.65 227.58 227.50
max vz|x=0 305.38 305.80 305.95 305.99
max vx|z=0 228.61 228.26 228.18 228.09
max vx|x=1 228.61 228.26 228.18 228.11

B2 32×32 64×64 128×128 reference

KE 322.73 323.97 324.28 324.30
T̄ (0) 0.12244 0.12230 0.12226 0.12225
vz(1, 0.5) 50.053 50.174 50.172 50.182
vx(0.5, 0) 32.843 32.849 32.851 32.851
vx(0.5, 1) 36.815 36.800 36.797 36.795
max vz|x=1 51.221 51.375 51.422 51.436
max vx|z=0 33.381 33.389 33.391 33.392
max vx|x=1 40.496 40.588 40.598 40.602

B3 32×32 64×64 128×128 reference

KE 935.41 938.08 938.74 938.63
T̄ (0) 0.095079 0.095019 0.095006 0.095987
vz(1, 0.5) 103.18 103.32 103.36 103.38
vx(0.5, 0) 53.051 53.029 53.024 53.017
vx(0.5, 1) 55.993 55.834 55.793 55.776
max vz|x=1 106.93 107.20 107.28 107.31
max vx|z=0 56.191 56.175 56.185 56.187
max vx|x=1 71.521 71.542 71.545 71.550
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2.3.2 Channel flow

Implementation of non-linear rheology is tested on a flow in an infinitely long channel
parallel to the z−axis. The flow is driven by a constant pressure gradient ∂p/∂z
and slowed down due to a zero velocity prescribed at the side-walls. The material
in the channel is viscous with the following non-linear relation between stress and
deformation:

σxz = η0

(

∂vz

∂x

)
1

3

, (2.76)

where η0 is a reference value of viscosity. The analytical solution of the problem
(Turcotte and Schubert, 2002; Gerya and Yuen, 2003) is then

vz = −W
4

64

(

∂p/∂z

η0

)3
(

1 −
(

2x

W
− 1

)4
)

, (2.77)

whereW is the width of the channel. The comparison of the analytical and numerical
solutions (Fig. 2.10) shows that the software deals well with this type of non-linear
rheology.
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Figure 2.10: A comparison of analytical (line) and numerical (crosses and circles) so-
lutions of the channel-flow problem with W = 1, ∂p/∂z = 1, and η0 = 1. The solutions
were obtained on a two-dimensional (0, 1) × (0, 1) domain. Circles, “x” and “+” crosses
correspond to a discretization by 32×32, 16×16 and 8×8 elements, respectively.
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2.3.3 Vortex flow

Different schemes of advection of material particles were tested on the case of the
vortex flow described by Fullsack (1995). In a vortex, material rotates around a
center with an angular velocity dependent on the distance from the center. In this
test case, the angular velocity is prescribed analytically:

ω(r) = ω0
r

r0
exp

(

− r

r0

)

, (2.78)

where r =
√
x2 + z2 is the distance from the center, r0 = 0.25 and ω0 = 0.3. Initially,

60× 60 particles are regularly positioned in a (−0.3, 0.3)× (−0.3, 0.3) square. Each
particle is assigned a scalar quantity F (x, z, t) defined as a homogeneous gradient
in the x−direction at t = 0:

F (x, z, 0) = x . (2.79)

The particles are then advected by the velocity field (2.78), and we evaluate their
position at selected time steps (Figs 2.11-2.12), and the time evolution of F at
selected spatial points (Fig. 2.13). The analytical solution for the time evolution of
F is

F (x, z, t) = x cos (ω(r)t) + z sin (ω(r)t) . (2.80)

For advection of particles, we use four different schemes. In each scheme, the
position of a particle xit is evaluated from the velocity field v and from the position
of the particle at the previous time-step tit−1, xit−1. The simplest is the explicit
one-step Euler method,

xit = xit−1 + ∆tvit−1(xit−1) , (2.81)

where it is the index of the time step, and ∆t = tit − tit−1. We use two different
second-order Runge-Kutta schemes: the midpoint method,

v1 = vit−1
(

xit−1
)

,

v2 = vit−1/2

(

xit−1 +
∆t

2
v1

)

, (2.82)

xit = xit−1 + ∆tv2 ,

and Heun’s method,

v1 = vit−1
(

xit−1
)

,

v2 = vit
(

xit−1 + ∆tv1

)

, (2.83)

xit = xit−1 +
∆t

2
(v1 + v2) .

Higher precision can be attained using the fourth-order Runge-Kutta scheme:

v1 = vit−1
(

xit−1
)

,

v2 = vit−1/2

(

xit−1 +
∆t

2
v1

)

,

v3 = vit−1/2

(

xit−1 +
∆t

2
v2

)

, (2.84)

v4 = vit
(

xit−1 + ∆tv3

)

,

xit = xit−1 +
∆t

6
(v1 + 2v2 + 2v3 + v4) .

56



Apart from the explicit Euler method, the velocity field is required not only at tit−1,
but also at other times (tit−1/2, tit). The velocity field (2.78) is stationary, so we can
use:

vit = vit−1/2 = vit−1 . (2.85)

In non-stationary problems, we will still use this approximation assuming that the
spatial variability of the field is large compared to the temporal variability between
time steps (cf. Fullsack, 1995). In some cases it may, however, deteriorate the
accuracy of the result.

The (−0.5, 0.5)× (−0.5, 0.5) model domain is discretized by 60×60 elements and
the time step is ∆t = 1. The results obtained for the second- and fourth-order
schemes are comparable to those presented by Fullsack (1995). The shape of the
area covered by the particles changes due to the variation of the angular velocity, but
the particles still follow circular trajectories (Fig. 2.11, Fig. 2.12A-C). The sinusoidal
time evolution of F (2.80) is better reproduced far from the center of rotation (blue
dots in Fig. 2.13) than in its vicinity (black dots in Fig. 2.13). In the case of the
Euler method (Fig. 2.12D), the circular shape of the trajectories is not preserved,
particles migrate away from the center of rotation and some of them leave the model
domain. This corresponds to a decrease of amplitudes of F with time (gray circles
in Fig. 2.14).

A B C

Figure 2.11: Model domain with particles colored according to the quantity F at three
different time-steps: (A) t = 0 (initial position of particles), (B) t = 50, and (C) t = 200.
The advection is computed using the fourth-order Runge-Kutta scheme.
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A B

C D

Figure 2.12: The same plot as Fig. 2.11, but for different advection schemes at t = 100.
Advection was computed using (A) the fourth-order Runge-Kutta scheme, (B) the mid-
point method, (C) Heun’s method and (D) the explicit Euler method.
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Figure 2.13: Time evolution of the
scalar quantity F interpolated at differ-
ent distances from the center of the vor-
tex (circles) compared to the analytical
solution (lines). Black, red and blue
colors correspond to the distances r =
0.2r0, r = 0.4r0 and r = 0.5r0, respec-
tively. Advection was computed using
the fourth-order Runge-Kutta scheme.
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Figure 2.14: Time evolution of the
scalar quantity F interpolated at the dis-
tance r = 0.4r0 from the center of the
vortex calculated using different advec-
tion schemes (circles) compared to the
analytical solution (black line). Black,
red, blue and gray circles correspond to
advection using the fourth-order Runge-
Kutta scheme, the mid-point method,
Heun’s method and the explicit Euler
method, respectively.
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2.3.4 Circular inclusion

The solution of flow equations in the presence of sharp viscosity contrasts can be
tested on a problem concerning small-scale rock deformation: strain and rotation of
a rock clast in a weaker matrix. We approximate the clast and the matrix by a high-
viscosity (η1 = 1000) circular inclusion of radius r1 = 0.1 embedded in relatively
low-viscosity (η2 = 1) material. We consider a pure shear with a background value
of strain rate ε̇ = 1:

vx = ε̇x, vz = −ε̇z (2.86)

in the far field. The analytical solution of the problem was described by Schmid
and Podladchikov (2003) and used by Deubelbeiss and Kaus (2008) as a testing
case for accuracy of numerical schemes of viscosity interpolation. According to the
analytical solution (Fig. 2.15) the pressure in the inclusion is zero, and the velocity
is

vx =
η2

η1 + η2
2ε̇x , vz = − η2

η1 + η2
2ε̇z . (2.87)

In the surrounding matrix, the pressure is

p = −2
η2(η1 − η2)

η1 + η2

(r1
r

)2

2ε̇ cos
(

2 arctan
(x

z

))

, (2.88)

where r =
√
x2 + z2.

At the boundaries of the model domain Ω = (−1, 1) × (−1, 1) we prescribe the
condition (2.86). We use 10 × 10 particles per element and two mesh resolutions
(100 × 100 elements, 200 × 200 elements). For a quantitative comparison of the
results we use the same error estimates as Deubelbeiss and Kaus (2008):

velocity error =

√

√

√

√

√

√

∫

(

vcomputed
x − vanalytic

x

)2

dΩ

∫

(

vanalytic
x

)2

dΩ
, (2.89)

pressure error =

√

∫

(pcomputed − panalytic)2 dΩ
∫

(panalytic)2 dΩ
. (2.90)

Our results agree with those presented by Deubelbeiss and Kaus (2008) only partly.
Similarly to them, we obtain relative errors in the velocity more than one order
of magnitude lower than those in the pressure (Table 2.2). However, the compari-
son between interpolation schemes yields different results, presumably because the
numerical method (e.g. the type of finite elements) is different.

The velocity errors show only minor variations for different numerical setups (see
Table 2.2). Besides resolution, they mostly depend on averaging scheme, yielding
smallest errors for harmonic and largest for arithmetic averaging (compare different
rows in Fig. 2.16). The errors in pressure are more variable and depend mostly
on stabilization method. Best results were obtained for the “stabilized” method
and arithmetic averaging to element centers. The source of errors can be observed
in Fig. 2.17. The pressure near the rim of the circular inclusion is not well re-
produced especially when harmonic averaging and/or bubble stabilization are used.
For a lower resolution, the pressure overshoot near the rim is even more pronounced
(Fig. 2.18). The interpolation of viscosity to integration points yields slightly higher
errors than using a constant viscosity in each element.
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Figure 2.15: Analytical solution for the circular inclusion under pure shear. Velocity
field (left) and pressure (right).

Table 2.2: Velocity and pressure errors

resolution stabilization element or averaging velocity error pressure error
integration points (×10−2)

200×200 bubbles integration points arithmetic 2.766 0.7570
200×200 bubbles integration points geometric 2.625 1.1836
200×200 bubbles integration points harmonic 2.450 1.0111
200×200 bubbles element arithmetic 2.744 0.5975
200×200 bubbles element geometric 2.632 0.7421
200×200 bubbles element harmonic 2.476 0.7874

200×200 stabilized integration points arithmetic 2.869 0.4208
200×200 stabilized integration points geometric 2.715 0.4721
200×200 stabilized integration points harmonic 2.541 0.4724
200×200 stabilized element arithmetic 2.835 0.3783
200×200 stabilized element geometric 2.701 0.4317
200×200 stabilized element harmonic 2.547 0.4760

100×100 bubbles integration points arithmetic 3.069 1.1216
100×100 bubbles element arithmetic 3.054 0.8627
100×100 stabilized integration points arithmetic 3.233 0.6060
100×100 stabilized element arithmetic 3.202 0.5194
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Figure 2.16: Circular-inclusion test. Difference between numerical and analytical solu-
tions for velocity. The stabilization method and interpolation (element-wise constant, or
variable at integration points) is noted to the top of the panels. The averaging schemes
used are noted to the left of the panels. The resolution of 200×200 elements and 10 × 10
particles per element is used. The whole (−1, 1) × (−1, 1) model domain is plotted.
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Figure 2.17: Circular-inclusion test. Difference between numerical and analytical solu-
tions for pressure. The setups are the same as in Fig. 2.16.
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Figure 2.18: Circular-inclusion test with a resolution of 100 × 100 elements. Difference
between numerical and analytical solutions for velocity (first and third columns) and
pressure (second and fourth columns). Arithmeticl averaging of viscosity is used. The
color scales for velocity and pressure are the same as in Figs 2.16 and 2.17, respectively.

2.3.5 Growth rate of the Rayleigh-Taylor instability

Following Deubelbeiss and Kaus (2008), we use a model of the Rayleigh-Taylor
instability to estimate the precision of averaging schemes for viscosity and density.
The term Rayleigh-Taylor instability refers to an unstable layering of material in the
gravity field, where material with lower density resides beneath that having higher
density. In a simple case with two layers, the amplitude of the initial perturbation
of the interface grows with a rate v dependent on densities, viscosities, gravity and
geometry of the layers (for definition of symbols see Fig. 2.19):

v = −∆z0K (λ, η1, η2, h1, h2)
ρ1 − ρ2

2η2

h2g , (2.91)

where the form of the factor K can be found in Ramberg (1981). The model domain
is discretized using 100×100 elements each containing 10×10 regularly distributed
material particles. We use an initial undulation of the interface ∆z0 = 0.0025, which
is less than mesh resolution, but it is still resolved by the cloud of particles. In the
model, we identify the rate of growth of this undulation with the maximum velocity
in the z−direction.

The results (Fig. 2.20, Table 2.3) show that the velocity is well reproduced only
for a limited viscosity contrast. The arithmetic averaging of viscosity yields the
most stable results and the correct value of the growth rate is obtained even for
the viscosity contrast of 106. With the geometric averaging, we can reproduce the
velocity for the contrast of up to 105, and using the harmonic averaging this threshold
is ∼103. This behavior has been reported by Deubelbeiss and Kaus (2008) for certain
combinations of interpolation and averaging schemes. The interpolation of viscosity
(variable or constant at element) does not influence the result significantly. For
the evaluation of density, we use mostly arithmetic averaging and the geometric
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averaging gives similar results (see last row in Table 2.3). In contrast, the growth
rate is sensitive to the density interpolation, showing an overshoot when element-
wise constant density is assumed.
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Figure 2.19: Model setup. The ampli-
tude of undulation ∆z0 is not in scale.
The viscosity of the lower layer varies
between 100 and 106. We prescribe free-
slip and no-slip conditions at vertical and
horizontal boundaries, respectively.
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Figure 2.20: Analytically (dashed
line) and numerically (circles) computed
growth rates of the Rayleigh-Taylor in-
stability. Black, blue and red circles are
values calculated for arithmetic, geomet-
ric and harmonic averaging, respectively.
Results were obtained for the resolution
of 200×200 elements and interpolation
to integration points.

Table 2.3: Growth rate of the Rayleigh-Taylor instability for viscosity contrast of 106

η: element or η: ρ: element or growth velocity
integration points averaging integration points (×10−10)

integration points arithmetic integration points 2.1365
integration points geometric integration points 5.4489
integration points harmonic integration points 5231.5

element arithmetic integration points 2.1053
element geometric integration points 102.89
element harmonic integration points 6541.4

element arithmetic element 3.4569
integration points arithmetic element 3.4569
integration points arithmetic integration points, geometric 2.1079

analytical solution 1.9882
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2.3.6 Time evolution of the Rayleigh-Taylor instability

−1

0

z

0.9142x0

Figure 2.21: Model domain and
initial material distribution. The
viscosity of the lower layer varies
between 1 and 10−2. We pre-
scribe zero velocity at the horizon-
tal boundaries and free slip at the
sides.

The analytical solution (2.91) is valid only
for small perturbations of the interface be-
tween the two layers with different den-
sity. The time evolution of the Rayleigh-
Taylor instability with large deformations
was modeled by van Keken et al. (1997) us-
ing various numerical approaches. We repro-
duced their results using different averaging
schemes, points of interpolation and particle
densities (for the model setup see Fig. 2.21).
The plotted results (Figs 2.22–2.24) were ob-
tained using the mesh resolution of 50 × 50
elements, geometric averaging of viscosity,
and element-wise constant viscosity. The re-
sults mostly depend on the particle density.
A relatively high density of material parti-
cles (approximately 10×10 particles per ele-
ment) was needed to reproduce the results of
van Keken et al. (1997). Small particle reso-
lution leads to earlier initiation and growth
of small–scale secondary instabilities (Fig. 2.23). The calculated velocity is highly
variable in time (Fig. 2.24) and space. For this reason, the time-step length was
evaluated using the Courant criterion.

Figure 2.22: Material distribution for η1 = η2 = 1 at t = 500, 1000 and 2000 (from left
to right).
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Figure 2.23: Material distribution at t = 1500 for different viscosity of the buoyant (gray)
material (noted to the top of the panels). The initial number of particles per element is
noted to the left of the panels.
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Figure 2.24: Time evolution of the root-mean-square velocity during the growth of the
Rayleigh-Taylor instability. The black, blue and red lines show the results for η2 = 1, 10−1

and 10−2, respectively. The pairs of numbers are the peak values and times, when they
were achieved. The rise of a low-viscosity buoyant material is faster and earlier.
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2.3.7 Sinking cube

The effect of density and viscosity evaluation was also tested on the sinking cube
experiment (Gerya and Yuen, 2003). In this experiment, an initially cubic body
made of material with a high density is sinking through a less dense fluid (Fig. 2.25).
The model domain (Fig. 2.25, left panel) was discretized to 50×50 elements, each
of them initially containing 5 × 5 regularly distributed material particles. When
the viscosity of the cube is similar to that of the surrounding fluid, the shape of the
sinking body evolves (Figs 2.25 and 2.26, left). For the viscosity contrast higher than
approximately 3 orders of magnitude, the original cubic shape remains unchanged
during its motion through the fluid (Fig. 2.26, right). However, even for the viscosity
contrast of 6 orders of magnitude, the harmonic averaging of viscosity leads to slight
deformation of the edges of the cube, where some particles are detached by the
surrounding fluid (see the right panels in Fig. 2.27). For all viscosity contrasts, the
averaging scheme of viscosity influences the sinking velocity: the harmonic averaging
leads to the fastest, geometric to an intermediate and arithmetic to the slowest
sinking of the dense body (compare the position of the cube in different columns in
Fig. 2.27), as discussed by Schmeling et al. (2008). Variable vs. constant viscosity
in elements has only a minor effect on the shape and velocity of the sinking body.
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Figure 2.25: Setup of the model showing the initial position of the material particles
(left), and material distribution at two time steps (middle and right panels) in an isoviscous
model.

Figure 2.26: Material distribution after 15 Myr of evolution for three different viscosity
contrasts between the sinking body and the surrounding material. Geometrically averaged
constant viscosity per element and arithmetically averaged density at integration points
was used. The plotted domain is the same as in Fig. 2.25.
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Figure 2.27: Material distribution after 15 Myr of evolution for the viscosity contrast of
106 between the sinking body and the surrounding material. The interpolation (element-
wise constant or variable at integration points) is noted to the left of the panels. The
averaging schemes used for viscosity is noted to the top of the panels. The plotted domain
is the same as in Fig. 2.25.

2.3.8 Initiation of shear bands

As a basic test of the plasticity implementation we used a similar setup as Lemiale
et al. (2008) and Kaus (2009). We examined inclination of shear bands initiated
near a weak impurity in otherwise homogeneous material due to compression or
extension (Fig. 2.28). Panels in Fig. 2.29 show the second invariant of strain rate in
the domain after 0.5% of shortening or extension. The strain rate is concentrated
into narrow bands forming a certain angle near the weak inclusion. The contrast
between the strain rate in the bands and that in the surrounding area is more than
3 orders of magnitude, and the width of the bands is only a few elements. This
concentration of strain into narrow bands is related to the strain weakening due to
a prescribed decrease of cohesion with increasing strain (Lemiale et al., 2008).

Theoretically, angles of shear bands measured from the main stress axis attain
values between the Coulomb angle π

4
− φ

2
(black lines in Figs 2.29-2.31, see also

Section 2.1.3) and the Roscoe angle π
4

(Lemiale et al., 2008). Similarly to Kaus
(2009), we obtained angles close to the Coulomb angle for a high resolution and
angles getting closer to the Roscoe angle for a low resolution (Fig. 2.30). In Fig. 2.30,
we observe that the use of the “stabilized” method effectively reduces the resolution.
In this test, the number of particles per element, interpolation and averaging schemes
play only a minor role.

The reason for inefficient localization of the strain rate when using the “stabi-
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lized” method can be seen in the pressure field (Fig. 2.31). The bubble stabiliza-
tion causes a pressure overshoot near the band with the high strain rate. This is
in line with the results of the circular-inclusion test, where the bubble stabiliza-
tion caused large pressure oscillations (see Fig. 2.17). This high pressure contrast
helps to focus the strain rate into narrow bands where pressure is low, because
the yield strength (and effective viscosity) of the material decreases with pressure:
σyield = p sinφ+ C cosφ.
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Figure 2.28: Model domain and boundary conditions. Material parameters are the same
in the whole model domain, except the background viscosity of ductile flow, which is by
5 orders of magnitude smaller in the weak inclusion than in the surrounding matrix. The
size of the inclusion is 0.04 × 0.02 (not in scale with the plotted domain).
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Figure 2.29: Initiation of shear bands for different model setups. Shortening (left) or
extension (right) of the model domain is prescribed at the vertical boundaries. The angle
between the shear bands and the main stress axis depends on the angle of internal friction
φ (noted to the left of the panels). The black line shows the Coulomb angle π

4 − φ
2 . Mesh

resolution is 400×100 elements with 3×3 particles per element.
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Figure 2.30: Initiation of shear bands — effects of mesh resolution (noted to the left)
and stabilization method (noted on top). The results obtained using the incomplete “sta-
bilized” method have effectively smaller resolution compared to those computed using
residual-free bubble stabilization. The angle of internal friction is 30◦. The particle den-
sity is 3×3 per element.
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Figure 2.31: Pressure field during the formation of shear bands in two cases with different
stabilization methods (noted to the top of the panels). Resolution is 400×100 elements,
3×3 particles per element. The angle of internal friction is 30◦.
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2.3.9 Numerical sandbox

A more complicated setup requiring not only plasticity, but also free surface and
large mesh deformations in both vertical and horizontal directions, was described by
Buiter et al. (2006). It simulates a box filled with layers of plastic (brittle) material
shortened from one side. The overall dynamic evolution of the model as well as
quantitative characteristics were compared among results from different numerical
codes and analogue experiments. Our result (Fig. 2.32) is well within the range of
the reported results achieved by other numerical codes.
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Figure 2.32: The strain-rate field in the numerical sandbox. The model domain is
shortened from the right side, causing activation of shear bands and deformation of the
upper free surface. The amount of shortening is indicated to the left of the panels. The
model description is detailed in Buiter et al. (2006). The resolution is 400×70 elements,
5×5 particles per element. Different interpolation of viscosity (to the element center or to
integration points) affects the distribution of the shear bands, but the overall evolution is
similar.

2.3.10 Collisional orogen

The general setup of our model of continental collision follows the approach of Full-
sack (1995), that was applied by e.g. Vanderhaeghe et al. (2003) for the modeling
of orogenic wedges and their transition to continental plateaux. In order to test the
implementation of the free surface and its coupling with material flow and isostasy,
we reproduced the results presented by Vanderhaeghe et al. (2003) for several simple
cases (isoviscous, purely brittle-plastic, with and without flexural isostatic compen-
sation). In this setup, the deformation of two colliding crustal blocks is modeled.
The velocity of convergence of the two blocks is prescribed through a boundary
condition at the bottom of one of the blocks and at the adjacent vertical boundary.
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The top boundary is a free surface and the bottom of the crust deforms due to
isostasy. The resulting evolution of the model (velocity field, shape of the domain
and material distribution, in Figs 2.33 and 2.34) is in a good agreement with the
results of Vanderhaeghe et al. (2003), although the isostatic flexure is evaluated an-
alytically in our model (see Section 2.1.5), while Fullsack (1995) and Vanderhaeghe
et al. (2003) use a 1D finite-element approach.
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Figure 2.33: Shape of the free surface, velocity and material distribution in the model
after 30 Myr of evolution for different viscosity of material: (A) brittle-plastic rheology
with φ = 11.3, (B) η = 1021 Pa s, (C) η = 1022 Pa s, and (D) η = 1023 Pa s. Sticks
show the magnitude and direction of flow. The upper free surface and the material layers
are initially flat, the bottom boundary is rigid. At the bottom boundary, the prescribed
tangential velocity changes from 0 to −1 cm yr−1 at x = 500 km. The model description
is detailed in Vanderhaeghe et al. (2003).
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Figure 2.34: Comparison of models with the flexural rigidity of 1022 Nm (panels A, C)
and with Airy isostasy (D = 0, panels B, D) after 45 Ma of evolution. The viscosity is
either constant 1023 Pa s (panels A, B) or follows brittle-plastic rheology with φ = 11.3
(panels C, D). The plotted properties are the same as in Fig. 2.33. We observe that
the difference between the results obtained using the flexural isostatic compensation with
D = 1022 Nm and those using Airy isostasy are relatively minor, as already discussed by
Vanderhaeghe et al. (2003).
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2.3.11 Summary of numerical tests

The performed numerical tests show that the software successfully treats thermal
convection, advection of heterogeneous material, non-linear rheology and brittle-
plastic deformation in a domain with moving boundaries. The accuracy of the
simulations depends on several aspects, and the optimal numerical setup can be
different for different modeled problems. Nevertheless, we made the following ob-
servations:

• At least second-order schemes shall be used for advection of material particles
(see the vortex experiment).

• The velocity field exhibits large errors when harmonic averaging of viscosity
is applied, as was shown in the Rayleigh-Taylor instability and sinking-cube
experiments.

• The geometric averaging of viscosity is a compromise between the accuracy of
the calculated pressure and velocity field calculated in the circular-inclusion
experiment.

• The interpolation of viscosity to integration points or using element-wise con-
stant viscosity does not have a large effect on the results of the tests.

• Interpolation of density to integration points gives a more accurate solution
of the Rayleigh-Taylor instability test. Arithmetic averaging of density is
appropriate.

• The mesh resolution influences not only the accuracy of the solution (see
e.g. the circular-inclusion test), but also the angle of the shear bands in a
model of Drucker-Prager plastic material.

• The particle density should be set according to the modeled problem (compare
3×3 particles per element in the model of shear-band initiation and 10×10
particles per element in the model of the Rayleigh-Taylor instability).

• Stabilization influences the calculated pressure near boundaries with large vis-
cosity contrasts. Residual-free-bubble stabilization leads to a larger pressure
overshoot compared to the incomplete “stabilized” method. Pressure con-
trasts play important role during initiation of shear bands, and the bubble
stabilization leads to more focused shear zones. For some applications, both
stabilization methods can be used. However, if the brittle-plastic rheology
is modeled, an effective decrease of resolution in the case of the incomplete
“stabilized” method has to be taken into account.
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Petra Maierová1, Ondřej Čadek1, Ondrej Lexa2 and Karel Schulmann3

1Department of Geophysics, Faculty of Mathematics and Physics, Charles University,
Prague, Czech Republic
2IPSG, Faculty of Science, Charles University, Prague, Czech Republic
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Abstract

We present a numerical model of the main phase (370–335 Ma) of the Variscan
orogeny in the central part of the Bohemian Massif. The crustal deformation in our
model is driven by radiogenic heating in the felsic lower crust, the lateral contraction
of the Moldanubian domain due to convergence with the Saxothuringian plate (in the
early stage of orogeny), and the indentation of the Brunovistulian basement into the
weakened orogenic root (in the late stage). Our model explains the main geological
events inferred from the geological record in the Moldanubian domain: formation of
the orogenic plateau and onset of sedimentation at about 345 Ma, rapid exhumation
of the orogenic lower crust at about 340 Ma and subsurface flow of crustal material
(∼335 Ma and later). The results of our modeling suggest that delamination of the
lithosphere, often invoked to explain the high temperature metamorphism in the
orogenic lower crust of the Bohemian Massif, is not the only physical mechanism
which can transfer a sufficient amount of heat to the crust to trigger its overturn.

Keywords: felsic granulites, Moldanubian zone, radiogenic heating, delamination
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3.1 Introduction

Despite the large amount of geophysical and geological data collected in central Eu-
rope in the past decades, our knowledge of the formation of the Bohemian Massif is
still rather limited and a number of key details remain elusive. It is mostly accepted
that the Bohemian Massif is a collage of microplates assembled during the Variscan
orogeny in Devonian and Carboniferous (Franke, 2000; Winchester et al., 2002).
The amalgamation process was probably initiated by collision of the Saxothurin-
gian microplate with a Gondwana-derived lithospheric block in the east (in present
geographic coordinates) which was subsequently thickened and its central part (Mol-
danubian domain) was intensely reworked. These tectonic events were accompanied
by the release of a large amount of heat leading to high-temperature metamorphism
and voluminous magmatism. The final stage of the orogeny was marked by a change
of the convergence direction from east-west to north-south resulting in collision of
the orogen with the Brunovistulian domain and the development of a sedimentary
basin along the eastern margin of the Bohemian Massif.

From the physical point of view, a fundamental question related to the sce-
nario described above is the source of the heat that was needed, together with
plate tectonic forces, to drive the processes of crustal deformation, magmatism and
metamorphism. Steltenpohl et al. (1993) have suggested that the collision with the
Saxothuringian microplate was followed by delamination of the underthrust litho-
sphere which enhanced the heat transfer from the asthenosphere and resulted in
widespread deformation and granite plutonism (see also Arnold et al., 2001; Willner
et al., 2002; Massonne, 2006; Dörr and Zulauf, 2010). An alternative explanation
has been proposed by Gerdes et al. (2000) who pointed out the possibility that a
sufficient amount of heat may have been produced by radiogenic heating. This con-
cept has been further developed by Lexa et al. (2011) who suggested that a part
of the Saxothuringian upper crust, rich in radioactive elements, was pulled into the
mantle and emplaced at the base of the crust of the overriding plate. The subsequent
overheating of this material in synergy with the collisional process in the east led
to a dramatic turnover, marked by exhumation of the orogenic lower crust, crustal
indentation and widespread crustal melting.

In the present paper, we examine the latter hypothesis by means of a numerical
simulation, mimicking the evolution of two adjacent crustal blocks subject to a com-
pression. Our simulation begins at the time when the radiogenic material is already
emplaced at the base of the Moldanubian crust. The simulation itself represents
∼35 Ma of geological evolution and can be divided into two stages: In the first one,
the model imitates the processes related to the collison of the blocks with the Saxo-
thuringian unit, while the other stage represents indentation of the Brunovistulian
block into the thickened Moldanubian crust. In evaluating the admissibility of our
models, we consider only the geological data. The geophysical aspects, including
seismic information (e.g. Hrubcová et al., 2005; Babuška et al., 2008), gravity field
measurements (e.g. Bielik et al., 2006; Guy et al., 2011) and others, will be discussed
in a subsequent paper.

The number of modeling efforts which have directly addressed the geological
evolution of the Bohemian Massif is still rather limited (cf. Gerdes et al., 2000;
Arnold et al., 2001; Willner et al., 2002; Lexa et al., 2011; Duretz et al., 2011).
The present work is thus one of the first attempts to explain the processes that
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led to exhumation of the orogenic lower crust using a complex numerical modeling
approach. The structure of the paper is as follows. In the Section 3.2 we summarize
the basic geological information that can be used to constrain our numerical model
and we briefly discuss possible scenarios of the Variscan evolution of the Bohemian
Massif. The equations governing the deformation and heat transfer in the crust as
well as the numerical method used for the simulations are detailed in Section 3.3. In
Section 3.4, we present the results of our numerical modeling and, in Section 3.5, we
compare them with the geological data. Potential feedback of the numerical model
on the current geological concepts of the Bohemian Massif is outlined in the final
section.

3.2 Geological constraints

The last few years have seen remarkable progress in the numerical modeling of
geological processes (e.g. Gerya et al., 2008; Beaumont et al., 2001; Sobolev and
Babeyko, 2005; Burov and Yamato, 2008). Used in conjunction with traditional ge-
ological and geophysical approaches, numerical modeling now appears to be a pow-
erful tool to verify geological concepts and provide insight into the processes that
formed the Earth’s crust. Although the present-day numerical models of crustal
deformation are significantly more complex than the usual models of mantle convec-
tion (as they often include several mineralogical phases, complicated visco-plastic
rheology and free upper surface, shaped not only by crustal flows but also by erosion
and sedimentation), they are still too simplified to capture all details of the geolog-
ical record. Nevertheless, some geological data can be directly used as constraints
on the numerical models, namely (i) the petrological data, which provide informa-
tion about the pressure and temperature (P–T) history of rocks, (ii) the data on
the time scales of principal tectonic and thermal events based on U-Pb zircon and
40Ar-39Ar ages, and (iii) the structural data which can be considered as a proxy for
deformation regime, prevailing orientation of stress, rate of deformation and possible
tectonic setting. In the following overview, we will focus on the above three types
of data.

3.2.1 Variscan orogeny in the Bohemian Massif

The Bohemian Massif is an eastern part of a large orogenic belt formed during the
Variscan mountain-building event in the Devonian and Carboniferous (400–300 Ma).
It consists of four basic geological units (Saxothuringian, Teplá-Barrandian, Mol-
danubian and Brunovistulian, see Fig. 3.1) which probably played the role of mi-
croplates in the process of closing the Rheic Ocean between Laurentia and Baltica in
the north and Gondwana in the south (Franke, 2000; Winchester et al., 2002). The
tectonic structure of the Bohemian Massif established during the Variscan orogeny
is only mildly affected by later geological events, which involve Cretaceous and
Cenozoic sedimentation and Tertiary volcanism to name the most important ones.

The record of early evolution of the Variscan orogeny is well preserved in the
Teplá-Barrandian domain and along its boundary with the Saxothuringian domain,
where the low-temperature eclogites of the Mariánské Lázně Complex (MLC in
Fig. 3.1) are considered to be a relic of the oceanic crust subducted beneath the
Teplá-Barrandian domain (e.g. Beard et al., 1995). Most rocks in this region pre-
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Figure 3.1: Simplified geological map of the Bohemian Massif (modified after Franke,
2000).

serve fabrics and structures related to east-west oriented convergence (e.g. Zulauf,
2001) and reveal Upper Devonian (380–360 Ma) metamorphic and cooling ages
(e.g. Dallmayer and Urban, 1998; Timmermann et al., 2006). This concept is fur-
ther supported by the magmatic history of the Central Bohemian Plutonic Complex
(CBPC in Fig. 3.1) located along the border between the Teplá-Barrandian and the
Moldanubian domains and interpreted by some authors as a continental magmatic
arc (e.g. Janoušek at al., 2000; Žák et al., 2005). A different view has been presented
by Dörr and Zulauf (2010) who relate most of the plutons along the Barrandian-
Moldanubian boundary to post-collisional processes.

The main collisional stage is characterized by crustal thickening in the Molda-
nubian domain leading to the development of an orogenic root. The lower crust of
the orogenic root is now exposed in the Gföhl Unit (see Fig. 3.1) which is composed
of high-grade rocks including felsic granulites and boudins of meta-peridotites and
eclogites. All these rocks exhibit equilibration at temperatures of 800–1000 ◦C and
pressures of 16–20 kbar at about 340 Ma ago followed by isothermal decompres-
sion. The orogenic middle crust is represented by medium grade rocks (Monotonous
and Varied Units in Fig. 3.1) which experienced metamorphism at 8–12 kbar and
600–700 ◦C with the maximum temperature attained during decompression. Recent
studies (e.g. Schulmann et al., 2008) have revealed that the early exhumation of the
lower crust, the emplacement of mantle-derived melts (durbachites) and the peak
metamorphism of the middle crust were accompanied by the development of sub-
vertical fabrics (for a complete list of citations relevant to orogenic processes in the
Moldanubian domain, see Schulmann et al., 2008).

The final stages of the Variscan orogeny are manifested by the development of a
major deformation zone along the boundary between the Moldanubian and Bruno-
vistulian domains. This zone is characterized by intense subhorizontal shearing
and metamorphism related to an inverted temperature gradient which have been
interpreted as a result of continental indentation occurring between ∼340–325 Ma
(Št́ıpská and Schulmann, 1995; Fritz et al., 1996). During this event (between
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about 335 and 325 Ma) the subvertical fabrics in the orogenic root are reworked
by a subhorizontal flow at high-temperature and intermediate-pressure (7–5 kbars)
conditions associated with significant partial melting (e.g. Central Moldanubian Plu-
ton, for review see Finger et al., 1997). This period of deformation coincides with
the break-up of the brittle upper crust and exposure of deeper orogenic levels (Dörr
and Zulauf, 2010). At about 345 Ma, a foreland basin (Culm) develops along the
north-eastern margin of the orogenic plateau. Deposition of sediments continues in
this region until about 315 Ma. The high-grade rocks are detected in the sediment
record starting from ca. 330 Ma (Hartley and Otava, 2001).

3.2.2 Goals of the present study

The details of the evolution scenario outlined above remain unclear and they are
hotly debated. The nature of the collision process in the east, the tectonic affinity
between the Teplá-Barrandian and Moldanubian blocks as well as the character and
timing of the oceanic and continental subduction in the west are just a few exam-
ples of problems that require further study. Another important question concerns
the role of mantle convection and, in general, the source of heat needed to accom-
plish the processes described above. Delamination of the thickened lithosphere is a
physical mechanism providing a large amount of heat within a time scale of a few
million years and therefore a tempting explanation for the rapid high temperature
metamorphism and extensive volcanism observed in the Bohemian Massif (e.g. Mas-
sonne, 2006; Dörr and Zulauf, 2010). The other possibility is to invoke radiogenic
heating (Gerdes et al., 2000). This mechanism does not require any supply of ad-
ditional heat from the mantle but it is usually considered to be only effective on
larger (∼10–100 Ma) time scales (for comparison of different heating mechanisms,
see Arnold et al., 2001). Schulmann et al. (2008, 2009) have proposed a scenario
for the evolution of the Bohemian Massif (Fig. 3.2, modified) in which a part of the
felsic material of the Saxothuringian upper crust was emplaced under or near the
Moldanubian crust (stage 2 in Fig. 3.2, cf. Kotková et al., 2011). This material,
possibly rich in radioactive elements, could be an important source of heat influ-
encing the thermal evolution of the orogen (stages 3–5 in Fig. 3.2). Invoking the
concept of relamination (Hacker et al., 2011) and following the study by Faccenda
et al. (2008), Lexa et al. (2011) have demonstrated that this type of heating can
increase the temperature of the lower crust to 900–1000 ◦C within a time period of
15–25 Ma and, therefore, it is a likely candidate for explaining the high-temperature
metamorphism and durbachite magmatism in the Variscan orogenic root.

In this study, we aim to examine the scenario proposed for exhumation of the
lower crust by Schulmann et al. (2008, 2009) and later developed by (Lexa et al.,
2011). With the aid of a numerical model comparable with those used today to
study hot orogens (e.g. Beaumont et al., 2001), we will attempt to reproduce the
main phase of the Variscan orogeny in the Bohemian Massif, sketched as stages 3–5
in Fig. 3.2. Our goal is to predict:
(i) the P–T conditions typical for the formation of the Moldanubian granulites
(depths of upto 60 km and temperatures of ∼850 ◦C);
(ii) a rapid turnover occurring some 20–40 Ma after the emplacement of the Sa-
xothuringian upper crust underneath the Moldanubian crust, and the subsequent
channel flow deformation, observed in the geological record in the eastern part of
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the Moldanubian unit;
(iii) the fast exhumation of the granulites in P–T conditions consistent with the
observed P–T paths, and, finally,
(iv) the evolution of surface topography compatible with the sediment record from
the Culm Basin.
This study does not have the ambition to provide an explanation of the process that
was responsible for underplating of the Moldanubian crust by the Saxothuringian
upper crustal material (stages 1–2 in Fig. 3.2). For a general discussion of this
problem, the reader is referred to the review paper by Hacker et al. (2011).

Figure 3.2: Conceptual model of tectonic evolution of the Bohemian Massif during the
Variscan orogeny. Modified after Schulmann et al. (2008, 2009) and Lexa et al. (2011)
and simplified for the purpose of numerical simulation. 1) Eastward subduction of the
Saxothuringian ocean and back-arc spreading in the future Moldanubian domain. 2) Un-
derthrusting of the Saxothuringian continental crust and relamination of the felsic crust
in the region of the future Moldanubian domain. 3) The main thickening event and for-
mation of the orogenic root. 4) Laterally forced gravity overturns of the buyoant felsic
lower crust and break-up of the upper crustal lid. 5) Indentation of the Brunovistulian
associated with channel flow and subhorizontal flow of extruded lower crust.
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3.3 Numerical model

3.3.1 Model setting

Our numerical model simulates the compressional and indentation events of the
scenario proposed in Section 3.2.2. Although the direction of compression changed
from about east-west in the former to about north-south in the latter (or, to be
more accurate, from NW-SE to NNE-SSW), we simulate the whole process in two
dimensions, that is, we impose the same direction of compression during the whole
simulation. This simplification has been adopted to avoid the computational dif-
ficulties associated with three-dimensional modeling. The initial geometry of the
domain is shown in Fig. 3.3a. The domain consists of two lithospheric blocks rep-
resenting respectively the Teplá-Barrandian and Moldanubian domains (“orogenic
root”, left) and the Brunovistulian domain (“indentor”, right). In the crustal part
of the model domain we solve the full set of equations governing the heat transfer
and deformation of chemically heterogeneous visco-plastic crustal material, while in
the lower part (lithospheric mantle) we evaluate the temperature field using a kine-
matically prescribed velocity. Our modeling strategy follows the approach proposed
for studying hot orogenes by Beaumont and co-workers (see e.g. Beaumont et al.,
2006). This approach allows to study in detail the crustal processes but it simplifies
the thermal and mechanical coupling between the crust and mantle and does not
properly involve mantle dynamics (the details of which are, however, largely un-
known in our case). A discussion of advantages and pitfalls of the crustal models as
well as their comparison with upper mantle models can be found in the appendix of
Beaumont et al. (2006).

For the solution of the governing equations we use an extended version of the
finite element software Elmer (http://www.csc.fi/english/pages/elmer). The com-
putational mesh consists of 20500 bilinear quadrilateral elements, 13000 of which
being in the crustal part of the domain. The resolution in the crustal part is ap-
proximately 0.7×4 km at the beginning and 1×2 km at the final stage of the time
evolution. The left boundary of the model domain is fixed. The right boundary is
moving with a constant velocity, mimicking the compression due to the collison with
the Saxothuringian plate (stages 3 and 4 in Fig. 3.2) and subsequently the inden-
tation of the orogenic root by a promontory of the Brunovistulian plate (stage 5).
The upper boundary of the model is freely deformable which allows the topographic
relief resulting from orogenic processes to be predicted. In our model, the topog-
raphy reflects not only the crustal deformation but also erosion, sedimentation and
the isostatic response of the lithosphere to internal and surface loading (for more
details, see Section 3.3.3).

The initial lithological stratification (Fig. 3.3b) corresponds to the end of stage 2
in Fig. 3.2, i.e. prior to the thickening of the orogenic root. In the indentor (the
Brunovistulian plate), we assume a simple stratification with a strong and dense
mafic lower crust, typical of stable continental crust (for values of model parame-
ters, see Table 3.1). In the orogenic root corresponding to the Teplá-Barrandian
and the Moldanubian, we consider a more complex structure consisting of three lay-
ers. The middle layer corresponds to a relatively stiff and dense mafic rocks that
presumably underplated the thinned crust during the Devonian rifting (stage 1 in
Fig. 3.2). Below the mafic middle crust, we place an anomalous layer of felsic ma-
terial characterized by low density, weak rheology and a high content of radiogenic
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elements (stage 2 in Fig. 3.2). We assume no lithological differences between the
Teplá-Barrandian and the Moldanubian, partly for the sake of simplicity but also
because the tectonic relationship between these two domains in the period preced-
ing the main phase of the Variscan orogeny is still unclear. Between the root and
the indentor, we prescribe a transition region consisting of an ordinary upper and
middle crust. During the evolution of the model, this region helps to accommodate
the sharp differences in material properties in the two domains, and thus to reach
a more natural state of the system. Most of the material of the transition region is
eroded during the thickening stage and it does not influence the indentation stage
significantly.

Figure 3.3: a Model domain geometry and boundary conditions. The upper boundary is
stress-free and it deforms during the evolution of the model. Both left and right boundaries
are impermeable. The left boundary is fixed, the right boundary moves to the left with
velocity vx = vin. This velocity is prescribed also at the base of the crust of the indentor,
while the velocity is zero at the base of the crust of the orogenic root. The crust-mantle
boundary deforms due to isostatic flexure and the shape of the lithospheric mantle follows
this deformation. The velocity in the mantle is prescribed as follows: In the indentor,
the velocity is tangential to the crust-mantle boundary and its magnitude equals vin. In
the wedge below the indentor, vx = 0 and vy = ṽx sinα, where α is 30◦ and ṽx is the
x-coordinate of the velocity at the crust-mantle boundary. In the heat equation (2.3),
we prescribe temperature Ttop at the top boundary, heat flux qbot through the bottom
boundary and zero heat flux at the side boundaries. b Initial material distribution. The
total crustal thickness is 35 km, the thickness of the upper/middle crust (yellow and light
green), mafic middle crust (blue), felsic lower crust (pink) and mafic lower crust (dark
green) is 20 km, 7 km, 8 km and 15 km, respectively. c Initial geotherm. It results
from a steady-state simulation of heat conduction with heat sources prescribed only in the
upper/middle crust and using the same boundary conditions as used for the time evolution
– see panel a.
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Table 3.1: Parameters of the model

Parameter Symbol Value

thermal conductivity k 2.5 Wm−1K−1

specific heat cp 800 J kg−1K−1

gravity acceleration g 9.81 ms−2

gas constant R 8.314 JK−1m−1

mantle density ρ 3300 kg m−3

flexural rigidity D 3 · 1022 Nm
velocity of indentor vin 1.5 cm a−1

erosion parameter E 2.5 cm a−1

sedimentation parameter S 0.2 cm a−1

temperature at the top boundary Ttop 273 K
heat flux at the bottom boundary qbot 20 mW m−2

switch–off temperature of heat sources Toff 1170 K
minimum and maximum viscosity ηmin, ηmax 1018 Pa s, 1026 Pa s
reference values of plastic strain ε0, ε∞ 0, 1
cohesion C 1 MPa
upper/middle crust, sediments:

initial angle of internal friction φ0 15◦

final angle of internal friction φ∞ 7.5◦

mafic middle crust, felsic lower crust, mafic lower crust:
initial angle of internal friction φ0 30◦

final angle of internal friction φ∞ 15◦

upper/middle crust, sediments — quartzite (Hirth et al., 2001):
viscosity stress exponent n 4

pre-exponential parameter B 1.89 · 108 Pa s1/n

activation energy EA 135 kJ mol−1

density ρ 2800 kg m−3

heat production r 2 µW m−3

mafic middle crust — plagioclase (Ranalli, 1995):
viscosity stress exponent n 3.2

pre-exponential parameter B 3.69 · 106 Pa s1/n

activation energy EA 238 kJ mol−1

density ρ 3000 kg m−3

felsic lower crust — granite (Ranalli, 1995):
viscosity stress exponent n 1.9

pre-exponential parameter B 2.75 · 107 Pa s1/n

activation energy EA 137 kJ mol−1

density ρ 2700 kg m−3

heat production r 4 µW m−3

mafic lower crust — basalt (Mackwell et al., 1998, viscosity decreased 10×):
viscosity stress exponent n 4.7

pre-exponential parameter B 1.91 · 104 Pa s1/n

activation energy EA 485 kJ mol−1

density ρ 2900 kg m−3
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3.3.2 Governing equations, rheological description and ma-

terial advection

The incompressible flow of crustal material can be described by the following equa-
tions:

∇p−∇·σ = ρg , (3.1)

∇·v = 0 , (3.2)

where p is the pressure, σ is the deviatoric stress, ρ is the density, g is the gravity
acceleration and v is the flow velocity. The density ρ only depends on the material
composition c,

ρ = ρ(c), (3.3)

and the deviatoric stress is a function of the strain-rate ε̇, temperature T , pressure
and composition,

σ = σ(ε̇, T, p, c). (3.4)

The transfer of heat is governed by the following equation:

ρcp
DT

Dt
−∇· k (∇T ) = σ : ε̇ + r , (3.5)

where D/Dt denotes the material time derivative, cp is the heat capacity at constant
pressure, t is the time, k is the thermal conductivity and r are additional heat
sources. The initial geotherm is plotted in Fig. 3.3c.

We assume non-linear visco-plastic rheology, where plastic deformation approx-
imates brittle failure. The admissible stress in the visco-plastic material is enclosed
by the stress envelope defined by

σII = σyield , (3.6)

where σyield is the yield strength of the material and the subscript II denotes the
second invariant of a tensor. The functional dependence (3.4) for the visco–plastic
material can be expressed in terms of an effective viscosity ηeff which depends on
temperature, pressure and the second invariant of strain-rate,

σ = 2ηeff ε̇. (3.7)

In the viscous regime, i.e. σII < σyield, we consider non-linear dislocation creep with

ηeff = Bε̇
1/n−1
II exp

(

EA

nRT

)

, (3.8)

where R is the gas constant and B, n and EA are experimentally determined pa-
rameters. In the plastic regime, σII = σyield and the effective viscosity is

ηeff =
σyield

2ε̇II
. (3.9)

For the yield strength of the material we assume the Drucker-Prager yield criterion,

σyield = p sinφ+ C cosφ , (3.10)

84



where C is the cohesion and φ is the effective angle of internal friction which includes
the effect of internal pore-fluid pressure. Both parameters in the Drucker-Prager
criterion may depend on strain in a rather complex way. For simplicity, we consider
strain-softening characterized by a linear decrease of the effective angle of internal
friction with strain (e.g. Buiter et al., 2006)

φ = φ0 if εII ≤ ε0 ,

φ = φ0 + (φ∞ − φ0)

(

εII − ε0
ε∞ − ε0

)

if ε0 < εII < ε∞ , (3.11)

φ = φ∞ if εII ≥ ε∞ ,

where φ0, φ∞, ε0 and ε∞ are parameters and εII is the plastic strain obtained by
integrating the second invariant of plastic strain-rate along the material trajectory.

The evolution of material composition is treated using the particle-in-cell method
in which the material properties are stored in particles advected by the velocity field.
Each particle contains information about its composition (which does not change
during the evolution) and the accumulated plastic strain (εII). The displacement of
the particles from the velocity field is computed by the fourth–order Runge-Kutta
method. The material properties in each mesh element are evaluated at integration
points by averaging over the particles in the element. The effective viscosity is
computed using geometric averaging

log (ηeff) =
∑

i

ci log (ηeff,i), (3.12)

while the arithmetic average

P =
∑

i

ciPi , (3.13)

is used to evaluate the other quantities. In eqs. (3.12) and (3.13), index i denotes
the i-th component and ci is the fraction of the i-th component. To evaluate ci
and the strain εII,i of the i-th fraction at a point with coordinates {x, z} we use the
following formulas (cf. Gerya and Yuen, 2003):

ci =

∑

mi
wmi

∑

mwm
, εII,i =

∑

mi
εII,miwmi

∑

miwmi

, (3.14)

where w are weights, index mi denotes the particles containing the i-th component
and index m is used when summing over all particles in the element. The weight
wm of the particle is computed as follows

wm =
1

∆xmax∆zmax

(

1 − ∆xm

∆xmax

)(

1 − ∆zm

∆zmax

)

, (3.15)

where ∆xm and ∆zm are the distances of the particle from point {x, z}, and ∆xmax

and ∆zmax are respectively the maxima of ∆xm and ∆zm over all particles in the
element.

3.3.3 Boundary conditions, surface processes and flexural

isostasy

At each domain boundary, we impose boundary conditions describing the interaction
of the model with the surrounding region. The boundary conditions used in our
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model are specified in Fig. 3.3a. The upper boundary of the domain is a free surface:
Its shape changes according to the velocity field computed at the surface and is
affected by erosion and sedimentation. From the wide range of phenomenological
descriptions of erosion on geological timescales (e.g. Montgomery and Brandon, 2002;
Martin and Church, 1997) we choose the slope-dependent one,

ve(x) = E| tanα(x)| , (3.16)

where ve is the rate of erosion, E is a parameter and the slope tanα is computed
from the topography h(x) of the surface using a linear approximation of its slope
on a finite interval. The sedimentation is imposed only in topographic lows and its
rate, vs, is proportional to topography:

vs(x) = S h(x) for h(x) < 0 , (3.17)

vs(x) = 0 for h(x) ≥ 0 , (3.18)

where S is a parameter. A small amount of local diffusive erosion is employed in
order to omit grid-scale oscillations of the free surface. We note that the erosion-
sedimentation law used in this study is non-conservative which is in agreement with
the use of a two-dimensional model and the assumption that only a part of the
eroded material was deposited in the Culm basin while the rest was transported out
of the model domain (Hartley and Otava, 2001).

During the time evolution, the shape of the model domain changes significantly
and the computational mesh has to be adjusted not only at the boundaries but also
inside the domain. For this purpose, the mesh is formally described as a compressible
elastic body with the boundaries attached to the model domain boundaries (for
review of mesh adaptation methods, see Donea et al., 2004). As the shape of the
model domain evolves, the mesh deforms and the positions of its nodes change.

Since the flow equations (3.1)-(3.4) are solved only in the crustal part, the flexure
of the lithosphere due to topographic and internal loads cannot be evaluated in a
self-consistent manner and it has to be approximated by the deformation of the
boundary between the crust and the mantle (Fullsack, 1995). This deformation is
computed as a flexure u of a thin elastic beam (Watts, 2001),

D
∂4u(x, t)

∂x4
+B(x, t) = L(x, t) , (3.19)

where D is the flexural rigidity, B is the buoyancy of the crustal root

B(x, t) = −u(x, t)ρg , (3.20)

with ρ being the density of the lithospheric mantle, and L is the load of the beam,

L(x, t) =

∫

ρ(x, y, t)gdy −
∫

ρ(x = xmax, y, t = 0)gdy , (3.21)

where xmax is the point at the right end of the beam, and the integrals are evaluated
over the whole crustal thickness at times t and 0, respectively. Equation (3.19) is
solved analytically using the Fourier method for a beam fixed at the right end. At
the end of each time step, we evaluate the difference ∆z between the calculated
flexure u and the actual shape zbot of the bottom crustal boundary,

∆z(x, t) = u(x, t) − [zbot(x, t) − zbot(x, 0)] , (3.22)
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and shift the position of all mesh nodes and particles in the z–direction by this
difference, depending on their x–coordinates. As a result, the shape of the crust–
mantle boundary satisfies equation of elastic flexure (3.19) at the beginning of the
next time step.

3.3.4 Numerical implementation

We use the following computational scheme:

0. initialization of temperature field and particles

1. evaluation of time step

2. interpolation of viscosity and density from particles to integration points and
iterative solution of the Stokes problem, eqs. (3.1)-(3.4)

3. interpolation of heat sources and density from particles to integration points
and solution of heat equation (3.5)

4. advection of free surface and correction for erosion and sedimentation

5. mesh deformation

6. advection of material particles, integration of plastic strain in particles

7. computation of isostatic flexure and appropriate adjustment of mesh and par-
ticles

8. output and return to step 1

For the simulation we use Elmer, an open–source finite–element software suitable
for modeling of thermo–mechanical convection in the domain with deforming bound-
aries using ALE method (Fullsack, 1995; Donea et al., 2004). Elmer itself contains
several modules, called solvers, designed for the solution of different types of par-
tial differential equations. The setup of a numerical simulation (i.e. time–stepping,
order of solvers, parameters in the solved equations, numerical methods, initial and
boundary conditions) is specified in an input text-file. The text-file also serves as an
interface for the linking of user-written procedures to Elmer. These external proce-
dures can either provide parameters in the solved equations or they can be separate
solvers. In our simulation, we use both possibilities in order to implement the spe-
cific properties of crustal deformation (chemical convection, visco-plastic rheology,
surface erosion and isostatic compensation). The solution of the partial differential
equations in steps 2, 3 and 5 is implemented in the Elmer software, but we eval-
uate some of the parameters in the equations (viscosity, density and heat sources)
in external procedures. We have also developed our own solvers to compute the
advection of the free surface and the effects of erosion and sedimentation in step 4,
the advection of particles (step 6) and the crustal flexure (step 7). In calculating
the advection of particles, several additional procedures are used for a fast search of
particles contained in an element. For the time integration of the heat equation we
use the backward differentiation scheme of the first order with a variable time-step
evaluated using the Courant criterion with a Courant number of 0.1.
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The Elmer software has been tested on a number of physical problems in flow dy-
namics and heat transport, including a series of classical tests for thermal convection
with an infinite Prandtl number (e.g. Blankenbach et al., 1989). The main modifica-
tion of the software, namely the implementation of the compositional convection, was
tested on the growth of an isothermal Rayleigh-Taylor instability (e.g. van Keken
et al., 1997) and by the sinking cube experiment (Gerya and Yuen, 2003). As a
test of our plasticity implementation we used a simple setup described by Lemiale
et al. (2008) and Kaus (2009), and a more complicated setup requiring not only
plasticity, but also free surface and large mesh deformations described by Buiter
et al. (2006). The general setup of our model of a collisional orogen follows the ap-
proach of Fullsack (1995). This approach was applied by Vanderheaghe et al. (2003)
for the modeling of orogenic wedges and their transition to continental plateaux. We
reproduced the results presented by Vanderhaeghe et al. (2003) for several simple
cases. The detailed description of the benchmarks together with their results can
be found on the web-page http://geo.mff.cuni.cz/∼maipe/research.

3.4 Results

The results of our modeling are presented in Figs 3.4 and 3.5. The series of snapshots
in Fig. 3.4a illustrates the evolution of the temperature and composition fields while
the corresponding strain rate and flow velocity are depicted in Fig. 3.4b. The model
is shown at five unevenly spaced times (t = 16, 26, 29, 33 and 34 Ma after the
beginning of the simulation) reflecting the accelerating evolution of the system. The
plots zoom in on the crustal part of the model domain and laterally span 500 km
(counted from the left fixed boundary). The topographic relief and the lateral
variations of erosion and sedimentation rates are detailed in Figs 3.5a-c. In Fig. 3.5d
the typical P–T paths predicted by our model are compared with the petrological
data published by Schulmann et al. (2008).

We now describe the results in more detail. After 16 Ma of evolution (top panel
in Figs 3.4a and b), the right block has moved by more than 200 km to the left,
which induced the thickening of the left block to about 45 km and the growth of
topography. The topographic plateau is 2-km high on average, with a 4-km peak
at the contact of the two blocks (Fig. 3.5a, violet line). The compression of the
left block is accommodated by folding of the mafic middle crust (Fig. 3.4a, blue),
by motion on several shear zones developed in the upper crust and by viscous flow
in the felsic lower crust (Fig. 3.4b). At this stage, the felsic lower crust is heated
to about 600 ◦C mostly due to the internal heat sources, as it is indicated by the
geometry of isotherms following the shape of the layer (Fig. 3.4a).

At 26 Ma (second panel in Figs 3.4a and b), the orogenic root at the left is 60-km
thick and it has a 5-km high plateau (Fig. 3.5a, green line). A part of the orogenic
root is loading the left end of the right crustal block and causes its bending, which
leads to the development of a topography low some 100–200 km to the right from the
peak topography (Fig. 3.5a, green line) and deposition of first sediments (Fig. 3.5c,
green line). The erosion pattern (Fig. 3.5b, green line) at this stage is rather complex
and shows large lateral variations. The maximum erosion rates are obtained at the
contact of the two crustal blocks, while the orogenic plateau is characterized by low
erosion. This spatial distribution of erosion rates is also typical for the subsequent
stages of the evolution. The internal deformation of the root concentrates in the
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Figure 3.4: Model evolution in five representative time steps. a Composition and tem-
perature fields. The colors are the same as in Fig. 3.3, sediments are plotted in gray.
The isotherms are plotted every 100 ◦C and labeled every 200 ◦C. b Strain-rate and flow
velocity fields. Sticks show the magnitude and direction of velocity.
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lower and middle part of orogenic root where the dense middle crustal material sinks
to regions originally occupied by light felsic rocks, forming a new mafic layer at the
base of the crust, while “blobs” of the felsic material gradually rise up to shallow
crustal levels. The temperature in the felsic lower crust increases up to 800 ◦C in
some points.

In the next stage (29 Ma, third panel in Figs 3.4a and b), the indentation process
begins to play an important role. The tip of the right block plunges beneath the
orogenic root and causes flattening of the upwellings of felsic material and their
mechanical decoupling from the lower part of the root. The material above the
felsic lower crust is not involved in the deformation and forms a stiff lid (blue in
Fig. 3.4b). The temperature field is characterized by progressive heating of the felsic
lower crust and the development of an inverse temperature gradient in the indentor
due to a lateral flow of hot material towards the right at middle crustal levels.

Around 33 Ma (fourth panel from top in Figs 3.4a and b, red line in Fig. 3.5a),
the orogenic root reaches the maximum thickness exceeding 70 km and its evolution
speeds up. A subhorizontal channel of flowing material connects the depths of about
40 km inside the root with the surface and the upwellings of the felsic lower crust
are about to reach the surface. At 34 Ma (bottom panels in Figs 3.4a and b),
the flow in the channel is accompanied by disruption of the crustal lid into several
independently moving blocks. The blocks near the right edge of the orogenic plateau
start moving quickly in the opposite direction than the indentor (see the velocity
field in Fig. 3.4b) which results in the shift of the edge and the adjacent foredeep
to the right with respect to the previous snapshot (Fig. 3.5a, black vs. red line).
The process is accompanied by deepening of the sedimentary basin and intense
sedimentation (Fig. 3.5c). The basin is now about 2-km deep and the thickness of
the sediments reaches to 5–10 km. A part of the sediments is pushed down under
the exhumed lower crustal material and deformed.

At the final stage of the simulation we can recognize three lens-shaped regions of
the former felsic lower crust. One of them has reached the surface, the second one is
being exhumed along a ramp formed by the indentor, and the third one remains at
a depth of 40–50 km in the left part of the orogenic root. Most of the former mafic
middle crust is now located above the crust-mantle boundary, while the rest of it can
still be found on top of the three felsic regions described above. A part of the former
felsic upper crust is trapped at a depth of 50–60 km and its temperature exceeds
800 ◦C. The temperature at the contact between the indentor and the orogenic root
is about 600 ◦C at 20-km depth and 700 ◦C at 30-km depth. The temperature of the
orogenic root below a depth of 40 km is ∼800 ◦C.

Figure 3.5d shows several P–T paths typical of the orogenic crust in our model.
The green, red and blue paths correspond to felsic rocks originally forming the lower
crust which are eventually found in the first, second and third felsic region from the
right, respectively, discussed in the previous paragraph. All these P–T paths show
an initial increase of pressure and temperature due to the thickening and warming
of the orogenic root, followed by fast decompression associated with exhumation
during the indentation stage. The green path bears witness of complete exhumation
to the surface, with a maximum pressure of 14 kbar and maximum temperature of
800 ◦C attained during the ascent phase.

The red path, illustrating the P–T history of the second felsic region, records
higher peak pressure conditions (16 kbar) followed by nearly isothermal (840 ◦C)
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decompression to 9 kbar. At this point, the green and red paths meet, and we may
expect that if the evolution continued, the “red” particle would be decompressed
along a similar path as the “green” one. In the deepest felsic region, the peak
pressure and temperature are even higher (18 kbar and 900 ◦C, respectively), but
the decompression stage is short and the final pressure is relatively high (12 kbar).
The black path depicts the evolution of a middle crustal rock which first moves down
and plunges into the felsic lower crust and then is captured by the subhorizontal
flow above the indentor. After reaching the peak conditions of 9 kbar and 750 ◦C,
the pressure and temperature in this rock slightly decrease to 8 kbar and 700 ◦C. At
these P–T conditions, the black and green paths meet, similarly to the red and green
paths which, however, meet at somewhat higher pressure and temperature. The
pressure and temperature of about 8–9 kbar and 700–800 ◦C, respectively, thus can
be regarded as typical P–T conditions of the flow above the indentor, independently
of the type of rock and its origin.

Figure 3.5: Profiles of topography (a), rate of erosion (b) and rate of sedimentation (c)
for the same times as in Fig. 3.4. Violet, green, blue, red and black lines correspond to 16,
26, 29, 33 and 34 Ma of evolution, respectively. d) P–T paths for selected material particles
of felsic lower crust (green, red and blue line) and middle crust (black). The observed P–T
paths for rock samples from the orogenic lower and middle crust (Schulmann et al., 2008)
are shown in light and dark gray, respectively.

3.5 Discussion

We now compare the basic characteristics of our model with the geological con-
straints discussed in Section 3.2 and assess how much our modeling effort meets the
goals set up in Subsection 3.2.2. Our numerical simulation covers some 35 Ma of
geological evolution and the initial setting of our model corresponds to the geolog-
ical situation in the Bohemian Massif at the beginning of the compressional phase
at about 370 Ma ago. In our model the compression phase takes about 25 Ma
and thus can be identified with an age range of 370–345 Ma on the geological time
scale. The turnover period occurring in the Moldanubian between about 345 Ma
and 335 Ma (with a peak activity at about 340 Ma) then corresponds to model times
of 25–35 Ma.
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As follows from comparison of modelled and measured P–T paths in Fig. 3.5d, the
model described in the previous section predicts rather well the P–T conditions of the
formation of granulites and their fast exhumation. After some 20–25 million years
of compression, during which the Moldanubian domain is gradually thickened (up
to about 60 km) and its bottom felsic layer is heated up (to more than 800 ◦C) and
significantly weakened, the modelled system reaches a critical point in its evolution
and its unstable density layering is reversed. This turnover is characterized by
avalanche-like downwellings of the upper and middle crustal material and fast ascent
of the lower crust leading to the redistribution of the mass to a gravitationally more
stable position. The time needed for the granulites to get from a depth of 50–60 km
to shallow crustal levels is just a few millions of years. This time is comparable
with that predicted for the delamination process (Arnold et al., 2001) which is often
considered to be the only effective mechanism for granulite exhumation.

The material structure during the turnover event is rather complex showing
large lateral variations in material composition. A part of the mafic middle crust is
passively carried by the lower-crustal bodies up to near the surface while blobs of the
upper crustal material are pulled into the deep crust and heated up to 700–850 ◦C,
thus to temperatures near the partial melting point. This pattern is consistent
with the P–T paths of the granulites and the middle crustal material presented in
Schulmann et al. (2008) and also with the structure of the Moldanubian domain
which shows two NNE-SSW trending belts of high-grade metamorphic rocks with
the Central Moldanubian Pluton located in between them.

As demonstrated in the previous section, the flow of the crustal material was
further boosted by indentation of the Brunovistulian lower crust. This process
leads to a gradual change of relative flow direction from vertical, prevailing at the
beginning of the turnover event, to horizontal, characteristic of its later phase. This
change of the flow direction is in agreement with the deformation history of the
Moldanubian domain inferred from structural data.

The evolution of topographic relief in our model roughly agrees with the geolog-
ical record from the Culm Basin containing sediments younger than about 345 Ma.
This age is likely to correspond to the beginning of the rapid topographic uplift of
the Moldanubian domain accompanied by intense erosion at the eastern slope of the
topographic plateau. In our model, the initial compression of the domain leads to
intense crustal thickening but to only limited erosion and sedimentation. During
most of the compression phase, the slope of the topography remains rather small
and there is no pronounced depression where sediments could be deposited. The
situation changes after about 25 Ma of evolution (∼345 Ma on the geological time
scale) when a topographic plateau with a steep eastern slope develops. This leads to
intense erosion and sedimentation which is enhanced due to the rapidly descending
foredeep formed at the western margin of the Brunovistulian domain.

It is worth noting that the western block of the model domain does not deform
uniformly. The upper crust in the left part of this block, roughly corresponding to
the present Teplá-Barrandian domain, remains basically untouched by the processes
taking place in the lower-crustal levels. The composition and temperature structures
of this region are only weakly affected by the material upwellings evolving deep in
the orogenic root and by the deformation zone developed at the contact with the
Brunovistulian plate. It is tempting to speculate that this dichotomy reflects the
observed differences in geological characteristics between the Teplá-Barrandian and
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the Moldanubian as mentioned in Section 3.2.
The physical process simulated by our model is strongly non-linear and depends

on a large number of model parameters as well as the initial and boundary conditions.
Besides the parameters used in the model run discussed in this section, we have
tested several other combinations of model parameters to better understand the
behaviour of the system and to determine those physical characteristics that are
crucial for its evolution. From the physical point of view, the process can be split
into three major stages: folding, diapirism and indentation. The stages build on each
other with the processes in earlier stages determining the subsequent evolution. In
general, different sets of model parameters can produce models which significantly
differ in timing and geometry. Figure 3.6 illustrates the role of three parameters
that can strongly influence the evolution of the modelled system, namely the heat
productivity of the lower crust, the rate of erosion and the velocity of shortening
and indentation. The dependence of the model on the rheological properties of the
individual layers will be discussed in more details in a further study.

Figure 3.6: Examples of models with different parameters. In model a, the radiogenic
heating in the felsic lower crust is switched off and rheological parameters are the same as
for upper crust. As a consequence, the lower crust is colder and stronger, the mafic middle
crust is only gently folded and a simple doubly vergent wedge is developped. Models (b)
with lower and (c) higher erosion rate differ in the overall thickness of the crust and
in the timing of exhumation of the lower crust. While in the model with E = 2cm/a
the felsic lower crust stays deeper than 20 km after 33 Ma of evolution, in the model
with E = 3cm/a one of the felsic bodies is already exhumed and almost eroded (see the
thin pink layer at the surface at the contact of the two crustal blocks). In model d, the
effect of a higher velocity of shortening (vin = 2cm/a) is illustrated. The model is shown
already after 25 Ma of evolution when the displacement of the indenting crustal block is
approximately the same as in the reference model (with vin = 1.5 cm/a) after 33 Ma. The
faster model is slightly colder and the exhumation is less efficient than in the reference
model. All parameters that were not mentioned here are the same as in the reference
model (see Table 3.1).
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We will now briefly discuss the basic physical mechanisms controlling the indi-
vidual stages of the model evolution. The folding of a viscous layer embedded in
a medium of lower viscosity and subject to layer-parallel shortening is a classical
problem of continuum physics. In the simplest case of a single layer, the wavelength
of folding is proportional to the layer thickness and increases with the viscosity con-
trast between the layer and the medium (e.g. Turcotte and Schubert, 2002). In our
model, the formal analysis of the folding process is complicated by the fact that the
viscosities of the layers vary in time due to the evolution of temperature and strain
rate and the uppermost layer exhibits plastic (brittle) behavior. Nevertheless, the
results of our runs indicate that the above rule is still more or less valid and it can
help us to guide our intuition in analyzing the first stage of evolution of our system.
The folding in our model is mostly controlled by the viscosity and the thickness of
the layer forming the mafic middle crust, and by the viscosity contrast between this
layer and the felsic lower crust. If we switch off the radiogenic heating in the lower
crust and use the same rheological properties for the felsic lower crust as for the
upper crust, the viscosity contrast between the lower and the middle crust remains
rather small during the whole evolution and the middle crustal layer is not folded
(Fig. 3.6a). In contrast, if we increase the viscosity of the mafic layer and keep the ra-
diogenic heating in the bottom layer, we obtain a model with even more pronounced
folds than in the case presented in Fig. 3.4 but with longer wavelengths. The results
of our numerical experiments (not shown here because of the lack of space) clearly
show that the initial folding stage is crucial for the further evolution of the system.
In the absence of compression (and hence folding), the Rayleigh-Taylor instability
of the light felsic lower crust overlain by the denser middle crust is still present.
However, the rate of its growth is low because of small (zero) perturbation of the
interface between the two layers (cf. also equation 6-156 in Turcotte and Schubert,
2002). As a consequence, the time necessary for the lower crust to reach the surface
is much larger than the time scale of the observed geological events.

The Rayleigh-Taylor instabilities developed during the folding stage promote the
subsequent diapirism of the light lower crust which is further boosted by continuing
lateral shortening of the domain. The geometry of diapirs depends on the size of
the previously developed folds, on the material properties of the visco-plastic upper
crust and, in the later stage, also on the rate of shortening and erosion (which draws
the lower crustal material to areas with the steepest topographic slope).

The final stage is characterized by interaction of the diapirs with a moving crustal
wedge. The wedge is relatively stiff and its tip penetrates into the bottom part of
the thickened domain. The behavior of the system at this stage is very complex
and depends on the choice of the model parameters in a non-trivial way. The shear
zone developed at the contact between the wedge and the orogenic root is usually
transformed to a subhorizontal low-viscosity channel connecting the lower crust with
the surface. The flow in this channel is further enhanced by surface erosion and may
take the form of a few pulses characterized by strikingly high exhumation rates.
The results of simulations with different rates of erosion and shortening velocity are
shown in Fig. 3.6b-d. The flow velocity field in the vicinity of the channel has a large
rotational component which induces intense mixing of the uprising crustal material,
resulting in a complex compositional pattern at the surface.
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3.6 Concluding remarks

The Variscan structure of the Bohemian Massif is characterized by the presence of
numerous felsic granulite bodies which presumably originate from the same protolith
(Saxothuringian upper crust) and show similar metamorphic ages (∼340 Ma). Petro-
logical analysis of the granulites from the Moldanubian zone of the Bohemian Massif
suggests that these rocks were buried to deep crustal levels (50–60 km), heated up
(to 750–850 ◦C) and then rapidly exhumed. The timing of the exhumation event
roughly coincides with the initial stage of orogenic uplift as well as the durbachitic
magmatism, bearing evidence of melting in the upper mantle. These processes
clearly required a large amount of energy and an effective physical mechanism of
its transfer to the crust. For many researchers, delamination of the lithosphere is
the only process which could provide a sufficient amount of heat in a short time
scale and trigger the crustal overturn documented in the geological record of the
Bohemian Massif. In the present paper, we demonstrate that the overturn event
may have different causes and could be induced by the combined effects of radio-
genic heating in the (relaminated) felsic lower crust, the lateral contraction of the
domain due to the collision with the Saxothuringian plate and the later indentation
of the Brunovistulian basement. Although the radiogenic heating plays a crucial
role in our model, it is worth emphasizing that the system is mainly deformed due
to the contraction and indentation. In other words, the radiogenic heat is only a
part of the energy needed for the overturn event to occur, and the other part is the
mechanical energy of plate tectonic origin.

Our model is simplified in a number of respects: The complex three-dimensional
process of the Variscan orogeny is simulated in two dimensions and the contraction of
the domain is controlled “by the hand of God.” The thermal evolution of the system
includes neither convective heat transfer in the mantle lithosphere, nor temporal and
lateral variations of the heat flux from the asthenosphere. Melting processes and
associated latent heat release and absorption, as well as magma percolation can also
influence the resultant temperature field in a non-negligible way. It is possible that
the initial temperature field was significantly affected by the processes responsible
for the emplacement of the Saxothuringian upper crustal material under or near
the base of the Moldanubian crust. The temperature predicted by our model in
the mantle lithosphere is obviously too low to account for partial melting of mantle
material which has been suggested by the petrological analysis of durbachites. This
indicates that the role of convective processes in the mantle, including, for example,
partial delamination or anomalous heat flux from the subduction wedge, may have
been substantial. These issues will be addressed in a future study.
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Beard B.L., Medaris L.G., Johnson C.M., Jeĺınek E., Tonika J. and Riciputi L.R., 1995.
Geochronology and geochemistry of eclogites from the Marianske Lazne Complex, Czech
Republic - Implications for Variscan orogenesis. Geol. Rundsch., 84, 552–567.

Beaumont C., Jamieson R.A., Nguyen M.H. and Lee B., 2001. Himalayan tectonics ex-
plained by extrusion of a low-viscosity crustal channel coupled to focused surface de-
nudation. Nature, 414, 738–742.

Beaumont C., Jamieson R.A., Nguyen M.H. and Ellis S., 2006. Crustal flow models in
large hot orogens. Geological Society, London, Special Publications, 268, 91–145, doi:
10.1144/GSL.SP.2006.268.01.05.

Bielik M., Kloska K., Meurers B., Švancara J., Wybraniec S., Fancsik T., Grad M., Grand
T., Guterch A., Katona M., Krolikowski C., Mikuška J., Pašteka R., Petecki Z., Pole-
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Abstract

The Bohemian Massif, located at the eastern margin of the European Variscan
belt, is characterised by an exceptional accumulation of felsic high-pressure gran-
ulites. The petrological, structural and geochronological studies of this region
revealed systematic differences between the tectonometamorphic evolution of the
southern (Moldanubian) and northern (West Sudetes) parts of the orogen. Two
contrasting tectonic scenarios have been proposed: gravity-driven vertical mass
exchanges followed by continental indentation in the Moldanubian domain, and
crustal-scale folding leading to gneiss dome formation in the West Sudetes. We
present a numerical model in order to correlate the apparent differences between
these two regions with the variations in the dynamics of the modelled system. We
model two colliding blocks: an orogenic root, where a felsic lower crust is overlain by
a mafic layer and a middle crust, and a continental indentor. We examine the role
of the rate of convergence of the two blocks, radiogenic heat production within the
felsic lower crust and efficiency of erosion. The prograde part of the metamorphic
evolution is controlled by the rate of convergence and the peak temperature depends
on the heat production. The retrograde evolution is controlled mostly by erosional
processes. In the models, where the material is weakened due to the heating in the
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felsic lower crust, the gravitational instability of the mafic and felsic layers causes
their complete vertical exchange followed by a flow above the indentor. In colder
and/or faster models, the thickening is dominated by the buckling of the mafic layer.
These two styles of deformation, i.e. gravity-dominated and fold-dominated models,
correspond to the structures observed in the Moldanubian and the West Sudetes.
Moreover, the calculated pressure-temperature paths of the felsic lower crust are in
agreement with available data.

Keywords: felsic lower crust, PT evolution, numerical model, Bohemian Massif

Graphical abstract

P
re

s
s
u

re

Temperature

P
re

s
s
u

re

Temperature

P
re

s
s
u

re

Temperature

Moldanubian West Sudetes

radiogenic heating convergence rate

gravity dominated fold dominated

100



4.1 Introduction

Recent progress in mineral equilibria modelling and geochronological methods al-
lowed more accurate determination of pressure–temperature–time (P–T–t) paths.
The P–T–t paths represent the basic tool for understanding orogenic processes and
constraining thermal evolution as well as time-scales of deformation and metamor-
phism in orogens (England and Thompson, 1984). The P–T evolutions observed in
different orogenic systems exhibit common features that are characteristic for dis-
tinct types of orogens, such as large hot collisional orogens (Jamieson et al., 2004),
paired metamorphic belts (Brown, 2010) or subduction-related cold orogenic sys-
tems (Duchene et al., 1997). In addition, Brown (2006, 2007) pointed out systematic
differences between P–T arrays of Archean, Proterozoic and Phanerozoic orogenic
systems. Rocks related to high- to ultra-high-temperature (HT–UHT) metamor-
phism are granulites which occur since the Archean and are dominant metamorphic
rocks in Proterozoic orogens. The granulites typical for the Archean to Early Pro-
terozoic period are characterized by average dP/dT trends (Harley, 2008). Since
the late Proterozoic new branches of high- and low-pressure granulitic rocks have
developed, suggesting a major change in plate tectonic dynamics. While the low-
pressure granulites are attributed to backarcs and continental or oceanic magmatic
arcs (Brown, 2007), the mechanism of formation of high-pressure (HP) granulites
remains debated. The HP granulites are chiefly described from fossil orogenic belts,
such as the Proterozoic Grenville orogeny in Canada (Jamieson et al., 2007), the
Paleozoic European Variscan belt (Pin and Vielzeuf, 1983), and only recently from
the Tertiary Namche Barwa syntaxis of the Himalayan orogen (Guilmette et al.,
2011; Zeng et al., 2012). In all three cases the granulites have experienced high
temperatures typical for large hot orogens, but the tectonic models that were sug-
gested for these orogens differ: tectonic stacking in the case of the Grenville orogen
(Indares et al., 1998), deep continental underthrusting in the Variscan belt (O’Brien
and Rötzler, 2003; Babuška and Plomerová, 2012) and lower crustal flow in Tibet
(Henry et al., 1997).

The eastern termination of the European Variscan belt, exemplified by the Bohe-
mian Massif (Fig. 4.1), represents an ideal source of constraints on the HP granulites
formation and exhumation (e.g. Faryad et al., 2012). This is due to exceptional accu-
mulation of felsic HP granulite massifs and well studied P–T evolution, geochronol-
ogy and structural evolution (e.g. Schulmann et al., 2008) of these rocks. Recently, a
new conceptual model of formation of these rocks has been proposed (Schulmann et
al., 2009; Lexa et al., 2011) which calls for testing by means of numerical modelling.

Since 1980s (England and Thompson, 1984), numerical modelling has been used
as a unique tool for simulation of P–T evolutions in a number of subduction and col-
lisional regions (Allemand and Lardeaux, 1997; Jamieson et al., 2004). The modern
numerical parametric studies examine the effect of the rate and geometry of subduc-
tion, the age of the subducting slab, etc., on subduction dynamics (e.g. Gerya and
Stockhert, 2006; Burov and Yamato, 2008), or they focus on the role of lithological
stratification, radiogenic heat production, erosion and other processes important in
evolution of orogenic systems (e.g. Babeyko et al., 2006; Beaumont et al., 2006; Fac-
cenda et al., 2008). However, a dynamically consistent model of felsic HP granulite
formation is still missing.

For the felsic HP rocks in the Bohemian Massif a large geological database is
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available, but only a few attempts to model their formation have been made. Duretz
et al. (2011) compared numerical and analogue models of extrusion of lower crustal
material induced by a stiff indentor. Gravity-driven exhumation of felsic rocks from
lower crustal levels was numerically studied by Lexa et al. (2011). The concepts
of continental indentation and diapirism were combined in a model by Maierová et
al. (2012). Based on their model setup, we perform a parametric study with special
emphasis on the comparison of the calculated structural and P–T evolution with the
corresponding geological data. We examine the role of the rate of continental con-
vergence, syn-tectonic erosion and radiogenic heat sources on the model evolution,
and correlate the results with the observed systematic variations in metamorphism
and tectonic setting of granulite rocks in the Bohemian Massif.

4.2 Geodynamic model of the Bohemian Massif

and tectonic setting of granulitic rocks

The Bohemian Massif tectonic model is based on eastward Devonian oceanic sub-
duction followed by underthrusting of Saxothuringian continent below the Teplá-
Barrandian and the Moldanubian domains (Schulmann et al., 2009; Keppie et al.,
2010). The latter one was subsequently indented by the Brunia promontory advanc-
ing to SW during the Early Carboniferous (Schulmann et al., 2008). The granulite-
facies rocks of the Bohemian Massif occur in three distinct regions (Fig. 4.1): 1)
a narrow belt extruded over the imbricated Saxothuringian continent from the SE
(Kotková et al., 1996; Konopásek and Schulmann, 2005), 2) as bodies which together
with other lower crustal and deeply buried rocks form a NE–SW trending belt in
the central part of the orogen (Machek et al., 2009; Franěk et al., 2011a, 2011b),
and 3) as dismembered lenses surrounded by migmatites forming a wide NE–SW
trending belt along the margin with the Brunia promontory (Racek et al., 2006;
Tajčmanová et al., 2006; Št́ıpská et al., 2008). In the central part of the orogen,
the granulite bodies coincide with gravity lows and with a vertical domain of low
seismic reflectivity (Franěk et al., 2011a). These geophysical arguments along with
generally preserved vertical fabrics formed under granulite-facies conditions and ret-
rograded mineral assemblages within subhorizontal fabrics led Franěk et al. (2011a)
to propose a model of vertical extrusion of granulites from the bottom of the thick-
ened crust. Lexa et al. (2011) further suggested that this process was accompanied
by synchronous burial of mid-crustal rocks (see also Racek et al., 2006; Skrzypek
et al., 2011; Št́ıpská et al., 2012). The lower crustal rocks were finally reworked at
mid-crustal conditions due to vertical shortening below a rigid crustal lid (Schul-
mann et al., 2005). The eastern granulite belt shows a similar succession of steep
and subhorizontal metamorphic fabrics but the latter reworking is much more inten-
sively developed. The assemblage of HP granulites and mid-crustal rocks embedded
in migmatites (Hasalová et al., 2008) was interpreted as channel flow resulting from
indentation of the hot and thick crustal root by the Brunia promontory (Schulmann
et al., 2008; Št́ıpská et al., 2008).

The vertical gravity-driven redistribution of a low-density lower crust and a high-
density middle crust followed by indentation of a continental promontory are the
salient features of a tectonic scenario proposed by Schulmann et al. (2009) for the
Moldanubian part of the Bohemian Massif (Fig. 4.1, left block). A slightly differ-
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ent scenario has been proposed for the West Sudetes part north of the Elbe zone
(Fig. 4.1, right). In the West Sudetes, the HP granulites form a core of a high-
grade gneiss body further surrounded by a coherent layer of Early Ordovician mafic
rocks and low-grade Proterozoic metasediments. Chopin et al. (2012) and Mazur et
al. (2012) suggest that this is a surface expression of a large mantled gneiss dome
emerging through the Teplá-Barrandian crust. Št́ıpská et al. (2012) and Chopin
et al. (2012) proposed that crustal-scale folding was the dominating mechanism of
gneiss dome formation. They also argue that the effect of indentation by the Brunia
promontory on the final exhumation of the high-grade rocks is negligible compared
to the southerly Moldanubian region.
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Figure 4.1: Schematic 3D block-diagram showing major structural features of the Bohe-
mian Massif. Two separate blocks represent southern part (Moldanubian) and northern
part (West Sudetes) of the orogen. Occurrences of the felsic lower crust including granulite
massifs according to surface geology and gravity modelling (Chopin et al., 2012; Guy et
al., 2011) are shown in yellow. The mafic rocks (blue) represent Ordovician magmatic un-
derplate originally located above the felsic lower crust. The infrastructure–superstructure
transition zone (ISTZ) is highlighted by orange colour and includes channel of partially
molten rocks above the Brunia indentor. See text for details. The location of the studied
area is marked by a rectangle in the map of the Eastern Variscan belt in the lower right
corner. Map view is based on Franke (2000) and N–S section is redrawn after Schulmann
et al. (2008).
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4.3 Bohemian Massif granulites and their P–T–t

paths

The Bohemian Massif granulites represent mylonites of a coarse-grained protolith of
granitic composition developed under HT to UHT conditions (Behr, 1978; Franěk
et al., 2011b). A typical felsic granulite consists of garnet, quartz, ternary feldspars,
kyanite and accessory rutile, zircon, apatite, and ilmenite ± monazite (O’Brien and
Rötzler, 2003). Janoušek et al. (2004), based on low zircon and monazite saturation
temperatures (750 ◦C) and preservation of an Ordovician–Silurian principal inherited
component in zircons, argued that these felsic granulites do not represent high-
pressure Variscan granitic liquids (as proposed by Kotková and Harley, 1999; Vrána,
1989). Instead, he suggested that they originate from limited HP melting of an
Ordovician–Silurian rhyolite to granite protolith (e.g. Fiala et al., 1987).

Inferring P–T–t paths for a granulite body is not a straightforward task and for
the Bohemian granulites there are only several attempts to correlate P–T paths,
geochronology and structural evolution (Št́ıpská et al., 2004; Tajčmanová et al.,
2006; Tajčmanová et al., 2010). A rock is supposed to progressively equilibrate
in the presence of fluid (melt), but the equilibration may take place at different
scales causing earlier assemblages and/or mineral chemistry to be locally preserved.
In addition, to preserve granulite-facies assemblages, melt loss (and therefore H2O
loss) must occur leading to changes in the whole-rock composition along the P–T
paths. In mineral equilibria modelling, the P–T paths must be therefore traced back-
wards, starting with the last equilibration that is supposed to occur just above the
solidus and affects commonly rims of large porphyroblasts and matrix. In the Bo-
hemian granulites, the last metamorphic stage reflects amphibolite-facies overprint
and commonly involves the assemblage garnet-rim–biotite–sillimanite–plagioclase–
K-feldspar–quartz. The corresponding P–T conditions have been estimated to 700–
850 ◦C and 4–12 kbar (Petrakakis, 1997; Kröner et al., 2000; Št́ıpská and Powell,
2005b; Št́ıpská et al., 2008; Verner et al., 2008; Nahodilová et al., 2012) using ther-
mobarometry and pseudosection modelling.

Tracing the P–T paths to the metamorphic peak may be more difficult and
it involves interpretation of equilibrium among mineral relics like kyanite, ternary
feldspars, Zr-rich rutile and garnet core chemistry. Using conventional thermo-
barometry peak metamorphic conditions have been estimated to 750–1100 ◦C and
18–28 kbar (e.g. Carswell and O’Brien, 1993; Cooke, 2000; O’Brien and Rötzler,
2003; Vrána, 1989) while mineral equilibria modelling yields a maximum of 850–
900 ◦C and 16–20 kbar (Št́ıpská et al., 2004; Št́ıpská and Powell, 2005b; Tajčmanová
et al., 2006; Racek et al., 2008). However, it has been shown that some granulites
contain two generations of garnets, and some of the garnets preserve in their core
chemistry that may have been achieved on the prograde path, or these garnets may
have grown in a rock with different whole-rock composition (Št́ıpská and Powell,
2005a; Racek et al., 2008; Nahodilová et al., 2012). Combination of such high-Ca
garnet core and ternary feldspar then leads to results as high as 28 kbar and 1100 ◦C,
but it is not clear if these minerals were in equilibrium. Even if the recent finding
of microdiamonds confirms the UHP conditions of some granulites (Kotková et al.,
2011), it is not clear at which temperature they were achieved. Therefore, tracing
the P–T paths beyond the major equilibration at 850–1000 ◦C and 17–20 kbar is still
questionable. Some attempts to interpret mineral inclusions in garnet and garnet
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chemical zoning point to prograde P–T paths, but their slope is highly uncertain
(Št́ıpská and Powell, 2005a,b; Tajčmanová et al., 2010; Nahodilová et al., 2012).

There is only limited amount of geochronological data that allows us to constrain
the time scales of prograde evolution of the Bohemian granulites. There are several
Late Devonian U-Pb zircon ages as well as an Early Visean Sm-Nd age of garnet
from the granulites in the central part of the Moldanubian domain (Prince et al.,
2000), which suggest that the age range 360–350 Ma reflects the end of burial and
onset of exhumation (van Breemen et al., 1982; Schulmann et al., 2005; Tajčmanová
et al., 2010; Nahodilová et al., 2012). This corroborates with Lu–Hf and Sm–
Nd study of granulites from the West Sudetes indicating that (U)HP conditions
were attained already between c. 387 and 360 Ma (Anczkiewicz et al., 2007). The
onset of exhumation of most granulites is well dated by the U-Pb zircon method
which yields an almost uniform age of ∼340 Ma (Kröner et al., 2000; Št́ıpská et
al., 2004; Schulmann et al., 2005), while their mid-crustal emplacement occurred at
340–323 Ma (Št́ıpská et al., 2004; Tajčmanová et al., 2006; Tajčmanová et al., 2010;
Friedl et al., 2011). Finally, the cooling varies from 335 to 325 Ma based on a range
of available Ar40–Ar39 data (Dallmeyer et al., 1992; Svojtka et al., 2002). In general,
the burial and crustal thickening were probably rather slow (several mm yr−1), while
exhumation rates may vary between 1 cm yr−1 and 5 cm yr−1 (Št́ıpská et al., 2004;
Tajčmanová et al., 2006; Tajčmanová et al., 2010).

4.4 Numerical model setup

We follow the modelling strategy of Beaumont and co-workers developed for study-
ing hot orogens (Fullsack, 1995). The deformation of the crust is obtained by solving
the full set of equations governing the heat transfer and flow of a chemically het-
erogeneous incompressible visco-plastic material. In the lithospheric mantle, the
velocity of flow is explicitly prescribed and we only evaluate the temperature field
by solving the heat transfer equation. This approach allows simulating in detail
the processes in the crust, and testing the conceptual models derived on the basis
of geological data. A potential drawback of this approach is that it may oversim-
plify the mechanical coupling between the crust and the mantle: the flow of mantle
lithosphere is reduced to plate motion, the role of thermal convection in the upper
mantle is suppressed, and the vertical motion of the crust must be artificially cor-
rected for the effect of isostasy or elastic flexure. For a more detailed comparison of
different modelling strategies, the reader is referred to the appendix in Beaumont et
al. (2006) and to Beaumont et al. (2010).

The initial setup of the model is shown in Fig. 4.2. We simulate convergence
of two crustal blocks in 2D Cartesian geometry. The block on the left represents a
precursor of the Moldanubian domain which was originally stretched and thinned
(Fig. 4.2a, plotted in yellow, see also Schulmann et al., 2005), underplated by a
mafic material (blue), and then, in the process of relamination (Hacker et al., 2011),
underlain by a felsic lower crust (FLC) rich in radioactive elements (pink). This
felsic material is assumed to originate from the upper crust of the subducting Saxo-
thuringian continent (Lexa et al., 2011) which is located to the left from the model
domain and is not a subject of the present study. The block on the right represents a
tectonically stable area which was not affected by the subduction process. It consists
of a felsic upper layer (light green) and a mafic lower crust (dark green) with miner-
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alogical compositions and rheological properties typical of stable continental crust
(see Table 4.1 for values of the model parameters). The two blocks are separated
by a 100 km long transition region consisting of an ordinary upper and lower crust
which represents a proximal passive margin of the Brunia microcontinent stretched
during the Devonian basin formation. Although the existence of such a transition
region has not yet been confirmed by geological or geophysical data, we include it in
our model because it helps to smooth large contrasts in material properties between
the two domains at the beginning of the model evolution. Most of the material of
this region is eroded already during an early stage of evolution and it has little effect
on the final deformation.

At the beginning, the crustal part of the model domain is 35-km thick and its
horizontal size is 1000 km. The convergence of the two crustal blocks is simulated by
imposing a constant horizontal velocity vin at the right-side boundary of the model
domain while the left-side boundary is kept fixed (see Fig. 4.2b). The same velocity
vin is prescribed as a boundary condition at the base of the right crustal block. The
bottom boundary of the left crustal block is assumed to be stagnant and its vertical
position is only corrected for the effect of isostasy at each time step (Fullsack, 1995).
The upper boundary of the model domain is a free surface and its shape thus directly
corresponds to the surface topography. Erosion and sedimentation are included using
a non-conservative formulation, which means that the mass of eroded material is not
necessarily the same as the mass of sediments. This choice is justified by the two-
dimensional nature of the model and the assumption that a certain amount of eroded
material could be deposited outside the model domain. The rate of erosion, ve, is
proportional to the topographic slope, tanα,

ve(x) = E |tanα(x)| , (4.1)

and the rate of sedimentation, vs, is proportional to topography h (in km),

vs(x) = S h(x) for h(x) < 0 , (4.2)

vs(x) = 0 for h(x) ≥ 0 , (4.3)

where E and S are parameters. The topography elevation h is measured with respect
to the top right corner of the model domain.

The boundary conditions for the heat equation involve an influx of heat at the
base of the lithosphere, a constant temperature at the surface, and zero heat flux at
the side boundaries (Fig. 4.2b). The heat sources are prescribed in the upper layers
of both blocks and in the bottom layer of the left block. The thermal evolution is
started from a conductive steady state which is obtained for the boundary conditions
described above and the heat sources prescribed only in the upper layers.

The deformation properties of the crustal material are approximated by non-
linear visco-plastic rheology. For stresses smaller than the yield strength, σyield, the
material behaves like a viscous fluid with effective viscosity

ηeff = Bε̇
1/n−1
II exp

(

EA

nRT

)

, (4.4)

where ε̇II is the second invariant of the strain-rate tensor, T is the temperature, R
is the gas constant, and B, n and EA are material parameters (see Table 4.1). If
σII = σyield, material enters a plastic regime and its effective viscosity is

ηeff =
σyield

2ε̇II
. (4.5)
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Figure 4.2: Model configuration with initial material distribution (a) and boundary
conditions (b).

Table 4.1: Material parameters

Parameter Symbol Value

upper and middle crust, sediments — quartzite (Hirth et al., 2001):
viscosity stress exponent n 4

pre-exponential parameter B 1.89 · 108 Pa s1/n

activation energy EA 135 kJ mol−1

density ρ 2800 kg m−3

heat production r 2 µW m−3

mafic middle crust — plagioclase (Ranalli, 1995):
viscosity stress exponent n 3.2

pre-exponential parameter B 3.69 · 106 Pa s1/n

activation energy EA 238 kJ mol−1

density ρ 3000 kg m−3

felsic lower crust — granite (Ranalli, 1995):
viscosity stress exponent n 1.9

pre-exponential parameter B 2.75 · 107 Pa s1/n

activation energy EA 137 kJ mol−1

density ρ 2700 kg m−3

heat production r 0, 2µW m−3 or 4µW m−3

mafic lower crust — basalt (Mackwell et al., 1998, viscosity decreased 10×):
viscosity stress exponent n 4.7

pre-exponential parameter B 1.91 · 104 Pa s1/n

activation energy EA 485 kJ mol−1

density ρ 2900 kg m−3

reference values of plastic strain ε0, ε∞ 0, 1
cohesion C 1 MPa

upper and middle crust, sediments:
initial and final angle of internal friction φ0, φ∞ 15◦, 7.5◦

mafic middle crust, felsic lower crust, mafic lower crust:
initial and final angle of internal friction φ0, φ∞ 30◦, 15◦
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In the present study, the plastic regime mimics brittle deformation and the yield
strength is obtained from the Drucker-Prager yield criterion,

σyield = p sinφ+ C cosφ , (4.6)

where p is the pressure, C is the cohesion and φ is the effective angle of internal fric-
tion. Strain-softening is included via a linear decrease of φ with strain (e.g. Buiter
et al., 2006): When the plastic strain increases from ε0 to ε∞, the material soft-
ens as φ decreases linearly from φ0 to φ∞. The governing equations are solved
using the extended version of the finite element software Elmer (http://www.csc.fi-
/english/pages/elmer). The resolution in the crust is approximately 0.7×4 km at
the beginning and 1×2 km at the final stage of the time evolution. For a detailed
description of the numerical implementation the reader is referred to Maierová et
al. (2012).

4.5 Results

We examine the role of three basic parameters: the velocity of shortening of the
model domain vin, rate of erosion (parameter E) and the radiogenic heat production
within the felsic lower crust, rFLC. The velocity of shortening, i.e. the velocity of the
right block, varies between 1 and 2 cm yr−1 in different models. Correspondingly,
we change the total time of the model evolution in order to keep the same final
shortening in all models (i.e. models with velocity of shortening 1 cm yr−1 span twice
longer time than those with vin = 2 cm yr−1). For each value of vin we test three
values of erosion parameter E (2, 2.5, and 3 cm yr−1). The third tested parameter
is the heat production in the felsic lower crust, rFLC. Besides a reference value
of 4µWm−3, we consider heat productivity that is reduced by one half, rFLC =
2µWm−3, and a model where rFLC = 0. A complete list of models with values of
the tested parameters, together with output characteristics, is given in Table 4.2.

4.5.1 Modelled crustal deformation

The general evolution of all investigated models can be divided into three stages.
At the beginning of the shortening, folding governed by the competent mafic mid-
dle crust occurs inside the left block. Subsequently, the mafic middle crust and
the felsic lower crust vertically exchange, and finally the thickened orogenic root is
underthrusted by the right block (see e.g. model v15e25r4 with parameters vin =
1.5 cm yr−1, E = 2.5 cm yr−1, rFLC = 4µWm−3 in Fig. 4.3). However, the internal
structure and evolution of individual models differ in many respects. We classify
the models according to three basic criteria: 1) the relative importance of folding
and diapirism as a mechanism of thickening, 2) the existence of the infrastructure–
superstructure transition zone (ISTZ) and its characteristics, and 3) the time of
exhumation of the felsic lower crust to the surface. The characteristics of the mod-
els according to these three criteria are summarized in Table 4.2, and described in
more detail on four representative models shown in Figs 4.3–4.6.

In all of the models, the shortening and thickening in the domain of the future
orogenic root are initially accommodated by crustal-scale folding. This is due to
a large viscosity contrast between the mafic middle crust and the felsic material
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above and below this layer. While in some models the folding remains the governing
mechanism during most of the model evolution (v15e25r0, Fig. 4.4), in others it grad-
ually becomes less important and the Rayleigh-Taylor instability prevails (v15e25r4,
Fig. 4.5). In the fold-dominated models, the whole competent mafic layer is buckled
(blue layer in Fig. 4.6a, top panel). In the models, where the Rayleigh-Taylor insta-
bility prevails, it grows independently on lateral stresses. The originally continuous
layer of the buoyant FLC evolves into circular or lense-shaped bodies, while the
dense middle crust is dismembered and sinks in between them (pink and blue areas
in Fig. 4.5a). In some models, the Rayleigh-Taylor instability, leading to diapirism,
dominates the deformation soon after the onset of compression (v10e20r4, Fig. 4.5a).
The relative importance of diapirism vs. folding is indicated in Table 4.2, showing
that folding is more important in models with high vin and/or small rFLC.

In the gravity-dominated models, the FLC emplaced to mid-crustal levels forms
a weak zone which accommodates most of the deformation induced by the lateral
shortening (Fig. 4.5b). As it separates the upper crust, traditionally named orogenic
superstructure, from the deep crustal levels — orogenic infrastructure (Wegmann,
1935; Culshaw et al., 2006) — we call it here infrastructure-superstructure transition
zone (ISTZ). According to the character of the ISTZ, we observe two main groups
of models. In the first group (“n” in the ISTZ column, Table 4.2), the ISTZ is a flat,
well defined and relatively narrow (∼10–20 km thick) zone of intense deformation.
It is always developed from the internal part of the orogen towards the surface
contact between the root and the indentor (Figs 4.3b, 4.5b). In some models, the
deformation along the indentor front is localized into a very thin zone (Fig. 4.5b)
corresponding to highly deformed low-viscosity FLC material, which decouples the
underthrusting block from the material of the root. Another observed feature is the
channel flow (“c” in the ISTZ column, Table 4.2), defined here as a flow between the
relatively rigid lower block and the upper lid, that has opposite direction than the
motion of the underthrusting block (Fig. 4.5b, bottom panel). The second group of
models (“w” in the ISTZ column, Table 4.2), is characterized by a wide and diffuse
zone of deformation (ISTZ) in the middle crust (e.g. v20e25r4, Fig. 4.6b). The FLC
bodies are not interconnected and therefore the horizontal flow within the ISTZ is
not developed and the crustal lid remains mechanically coupled with deeper levels.
In the model without radiogenic heat sources in the FLC, the ISTZ can hardly be
identified and several relatively steep thrusts develop (v15e25r0, Fig. 4.4b).

The occurrence of the FLC at the surface is documented in foreland basin sed-
iments and its onset can constrain the duration and speed of the FLC exhumation
(Schulmann et al., 2008). In the model, the time of the FLC exhumation mostly
results from the interplay between the velocity of shortening and erosion. Faster
shortening of the model domain speeds up the model evolution and thus leads to
earlier exhumation (Table 4.2, last column). We note, however, that not all models
with high vin predict exhumation: If the rate of erosion is low, the FLC does not
reach the surface during the evolution time considered and it remains trapped at
mid-crustal levels (e.g. v20e25r4, Fig. 4.6a).
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Table 4.2: Description of models. The name of each model is constructed as a combina-
tion of values of the three varied parameters, e.g. v10e20r4 is a model with vin = 1cm yr−1,
E = 2cm yr−1 and rFLC = 4µWm−3. Description of columns: (Folding) the number of
“+” signs increases with the importance of folding as a mechanism of deformation, and
“-” indicates gravity-dominated deformation. (ISTZ) “n” denotes a well defined narrow
zone of deformation between relatively more rigid upper and lower crust, “w” denotes a
wide and diffuse zone of deformation, and “c” indicates that channel flow is developed
above indentor. (FLC-exhumation time) the time when the felsic lower crustal material
reaches the surface.

Model Velocity
vin
(cm yr−1)

Erosion
E
(cm yr−1)

Heat sources
rFLC

(µW m−3)

Max.
time
(Myr)

Folding ISTZ FLC-
exhumation
time (Myr)

v10e20r4 1.0 2.0 4 51 - nc 49
v10e25r4 1.0 2.5 4 51 - nc 41
v10e30r4 1.0 3.0 4 51 - nc 37
v10e25r2 1.0 2.5 2 51 + n 43
v15e20r4 1.5 2.0 4 34 + nc -
v15e25r4 1.5 2.5 4 34 + nc 33
v15e30r4 1.5 3.0 4 34 + n 30
v15e25r2 1.5 2.5 2 34 ++ w -
v15e25r0 1.5 2.5 0 34 +++ - 34
v20e20r4 2.0 2.0 4 26 + wc -
v20e25r4 2.0 2.5 4 26 + w -
v20e30r4 2.0 3.0 4 26 + w 25
v20e25r2 2.0 2.5 2 26 + w -
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Figure 4.3: Evolution of the model v15e25r4 in three representative time steps (for a
detailed discussion see Maierová et al., 2012). a) Composition and temperature fields.
The colours are the same as in Fig. 4.2a, sediments are plotted in grey. The isotherms
are plotted every 100 ◦C and labelled every 200 ◦C. b) Strain-rate and flow velocity fields.
Sticks show the magnitude and direction of velocity.
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Figure 4.4: Model v15e25r0: a) composition and isotherms, b) strain-rate and flow
velocity fields. Description is the same as for Fig. 4.3.
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Figure 4.5: Model v10e20r4: a) composition and isotherms, b) strain-rate and flow
velocity fields. Description is the same as for Fig. 4.3.
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Figure 4.6: Model v20e25r4: a) composition and isotherms, b) strain-rate and flow
velocity fields. Description is the same as for Fig. 4.3.
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4.5.2 Calculated pressure–temperature–time paths

The metamorphic history of rocks can be approximated by modelled P–T conditions
recorded along selected material trajectories. In Fig. 4.7, we show such P–T paths
of 1000 material particles regularly distributed in the FLC for each of the models
considered (Table 4.2). In the description of the paths, we will restrict ourselves
only to the material particles which record pressure less than 10 kbar at the end
of the simulation (red, green and blue lines in Fig. 4.7) and neglect those that
remain stuck deeper in the orogenic root (cloud of grey lines in Fig. 4.7). We expect
that even if the material was not fully exhumed to the surface during the model
evolution, it may reach it later due to relaxation of the orogenic root accompanied by
erosion and extensional processes. The colour-coding of individual paths of particles
corresponds to their x-position at the beginning of the time evolution. The “blue”,
“green” and “red” particles were initially at x =200–300 km, 300–400 km and 400–
500 km, respectively. We will focus on four main characteristics of the recorded P–T
paths: 1) the slope of the prograde branch, 2) the peak conditions in pressure and
temperature and their relative position, 3) the shape of the retrograde branch, and
4) the area enclosed by the P–T loop, i.e. by the prograde and retrograde branches
in the P–T space. As the recorded P–T paths show significant variations within
each model, our analysis will be restricted to the most typical evolution imaged by
the highest density of paths in the P–T plot.

In all models considered, the prograde path recorded by most particles ex-
hibits linear relation between temperature and pressure. The slope is mainly con-
trolled by the velocity of convergence of the two crustal blocks showing a moderate
dP/dT gradient of 1 kbar/40 ◦C and a high dP/dT gradient of 1 kbar/25 ◦C for slow
(vin = 1 cm yr−1) and fast convergence (vin = 2 cm yr−1), respectively. The peak
pressure also increases with increasing vin, and with the distance from the front of
the indentor. The peak pressure in models with vin = 1 cm yr−1 and vin = 2 cm yr−1

is up to 15 kbar and 17 kbar, respectively. For slow convergence and position far
from the indentor, oscillating P–T paths reflect complex deformation within the
FLC (e.g. blue and green lines in Fig. 4.7, model v10e20r4), while rapid convergence
leads to simpler paths (e.g. Fig. 4.7, model v20e20r4).

The parameter vin also controls the shape of the path in the vicinity of the
pressure peak. In the case of a high velocity (vin = 2 cm yr−1, right panels in Fig. 4.7),
the peak pressure (up to 17 kbar) is significantly higher than the pressure at the
peak temperature (typically 10–12 kbar). Moreover, the angle between the prograde
and retrograde paths becomes sharper (right panels in Fig. 4.7). This is because
the heat production is practically constant in time but the higher convergence rate
causes faster elevation of the fertile rocks, and therefore most of the heat is released
in a shallower depth. Slow convergence (vin = 1 cm yr−1, left panels in Fig. 4.7)
favours a small pressure difference between the points with the peak pressure and
the peak temperature, open angle between the prograde and retrograde paths and
generally more complex shapes of the paths.

The peak temperature is, not surprisingly, controlled by the heat production
rFLC. A high production of 4µWm−3 (three upper rows in Fig. 4.7) leads to the
maximum temperature around 850 ◦C, while a moderate production of 2µWm−3

(fourth row in Fig. 4.7) leads to the maximum temperature close to 650 ◦C. When
there are no radiogenic heat sources in the FLC, the prograde and retrograde paths
follow practically the same geotherm (Fig. 4.7, model v15e25r0). Consequently, the
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area enclosed by the P–T loop is roughly proportional to the amount of internal
heating.

After reaching the peak temperature, the shape of the retrograde path is chiefly
controlled by erosional processes. As erosion operates mostly near the contact of
the two colliding blocks, the paths related to exhumation to the surface are recorded
only by particles close to the margin of the orogen. The relation between the shape
of the retrograde branch and the erosion parameter E is non-linear and reflects the
deformation regime at the contact. The geotherm along the contact varies with
time due to a highly unsteady velocity of the material outflow. Consequently, even
closely spaced particles within a single simulation can record contrasting retrograde
P–T paths (e.g. Fig. 4.7, model v15e25r4). A completely different evolution is
observed in the central part of the orogen (blue and most of green paths in Fig. 4.7),
where the FLC remains stuck in a depth corresponding to ∼10 kbar in all presented
models. This depth is related to the base of the effectively rigid part of the upper
crust, commonly called the orogenic lid. It should be noted that this level does
not coincide with the brittle–ductile transition, which is always located above. In
the models where the efficiency of erosion is very low (small E, high vin, e.g. model
v20e25r4 in Fig. 4.7) the FLC does not reach the surface at all and the retrograde
paths end at mid-crustal level. In the fold-dominated models, the retrograde P–
T paths are more homogeneous and show important cooling during decompression
(Fig. 4.7, model v10e25r2).

The evolution of pressure and temperature with time for three selected models
is shown in Fig. 4.8. For P–t and T–t paths from other models see Supplementary
Figs S1 and S2, respectively. In models with a low velocity of shortening (vin =
1 cm yr−1, e.g. model v10e20r4) the P–t paths have polyphase behaviour. During
the early and longest stage (∼30 Myr) pressure increases steadily, afterwards it starts
to fluctuate, and finally drops rapidly (Fig. 4.8, v10e20r4, top panel). The rapid
pressure drop always starts from pressures of ∼10 kbar, i.e. from the base of the
orogenic lid. The timing of the pressure drop depends on the erosion rate and varies
between ∼50 Myr for E = 2 cm yr−1 and < 40 Myr for E = 3 cm yr−1 (cf. Table 4.2,
last column, showing the time of the first FLC exhumation to the surface). In the
T–t paths, the three stages of pressure evolution (gradual increase, fluctuations and
sudden drop of pressure) correspond to a slow increase of temperature, a temperature
plateau and rapid cooling (Fig. 4.8, v10e20r4, bottom panel).

Models with fast shortening (vin = 2 cm yr−1) reveal different P–t paths with
a short period of burial followed by gradual exhumation (Fig. 4.8, v20e25r4, top
panel). The final pressure drop is present only in the model v20e30r4 with efficient
erosion (see Supplementary Fig. S1). The T–t paths in the fast models lack the
temperature plateau and the final rapid cooling (Fig. 4.8, v20e25r4, bottom panel).
The period of fast exhumation and cooling is absent also in models with a low
radiogenic heat production (Fig. 4.8, model v15e25r0 with rFLC = 0).

In summary, the early stages of metamorphic evolution (prograde path and pres-
sure peak) are controlled mostly by the rate of convergence, while the peak tem-
perature depends on the heat production. Moreover, an elevated heat production
causes overall rheological softening of the FLC allowing focused and fast outflow
above the indentor, the timing of which is governed by the efficiency of erosion. The
influence of the studied parameters (vin, E, rFLC) on the shape of the P–T, T–t and
P–t paths is schematically shown in Fig. 4.9.
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Figure 4.7: P–T paths of material particles of the FLC for all models considered. The
name of the model corresponding to the first column in Table 4.2 is written in the top left
corner of each panel. For details see Section 4.5.2.
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Figure 4.8: Time evolution of pressure (upper row) and temperature (lower row) in three
selected models (v10e20r4, v20e25r4, v15e25r0). The colour-coding of individual paths is
the same as in Fig. 4.7.
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4.6 Discussion

We have shown that the investigated models can be classified according to their
preferred deformational mechanism and typified by two end-members: gravity-
dominated and fold-dominated models. In this section, we assess the relative con-
tribution of gravity tectonics, crustal folding, and development of the ISTZ on the
metamorphic evolution of the orogenic lower crust expressed in P–T–t paths, and
compare the structural and P–T evolution in these two contrasting models with the
available data from the Bohemian Massif. Finally, we will compare our results with
previous studies and discuss the model limitations.

4.6.1 Geological implications of gravity-dominated and fold-

dominated models

The gravity-dominated models result from slow convergence and high internal heat-
ing (e.g. model v10e20r4). The characteristic feature of these models is an efficient
exchange of the FLC with the mafic crust leading to relatively lower peak pressures
recorded by the FLC. The P–T–t paths are characterized by a temperature plateau
in the T–t plot and fluctuations of pressure around 14 kbar at the same time interval.
From a petrological point of view the long thermal relaxation may imply important
diffusion of elements in minerals like garnet, equilibration of mineral textures and
coarsening. The subsequent development of the ISTZ and flow of the FLC rocks
over the indentor is recorded in the P–T–t paths as a fast exhumation and cooling
allowing good preservation of mineral assemblages. The geological expression of
the major gravity redistribution is subordinate occurrence of mafic material in the
middle crust which is dominated by felsic HP material. The ISTZ would have a
form of a well defined layer of migmatites and granulitic gneisses exhibiting intense
deformation under high temperature.

The second end-member is the fold-dominated model with a high to intermediate
convergence rate and a small radiogenic heat production (e.g. model v15e25r0). As
the folding is the dominant mechanism of the thickening, the burial and subsequent
exhumation are relatively slow and gradual. The prograde and retrograde P–T paths
have high dP/dT slopes and form a narrow P–T loop. The negligible temperature
increase in the T–t paths reflects the absence of heat sources. In such an orogen, a
continuous mafic layer surrounding the FLC should be preserved and embedded in
mid-crustal material. The deformation in the middle crust would not be accompa-
nied by melting implying that HP gneisses and mafic rocks will be surrounded by
Barrovian-type schists and not by migmatites.

An intermediate type of behaviour is observed in models with rapid convergence
and moderate to high heat production (e.g. model v20e25r4). The orogenic root
is build up by buckling of the mafic middle crustal layer leading to exhumation of
lower crustal material in cores of large-scale antiforms. The progressive indentation
creates a wide zone of deformation including large volumes of hot material that are
still internally heated and later sustain gradual cooling and exhumation. This type of
orogen is characterized by steep prograde P–T paths, relatively high peak pressures
of up to 17 kbar, and a large pressure difference between the peak pressure and peak
temperature, which is achieved at pressures of about 10–12 kbar. From the geological
point of view, a big portion of mafic crust remains attached to the exhumed FLC in
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mid-crustal levels. The large volume of the exhumed FLC efficiently advects heat
and together with adjacent partially molten middle crustal rocks forms a wide ISTZ.

4.6.2 Correlation with the tectonic evolution of the Bohe-

mian Massif

In the frame of the Bohemian Massif two regions with contrasting tectonic styles
were recognized which can be compared to numerical models presented in this work:
1) The central part of the Bohemian Massif represented by the Saxothuringian sub-
duction system and the overlying Teplá-Barrandian lid and complex Moldanubian
infrastructure, and 2) The West Sudetes system, which is significantly smaller and
reveals a simple wedge-type geometry with a typical structure of a mantled gneiss
dome.

In the central part of the Bohemian Massif, the occurrences of the FLC mostly
lack Ordovician gabbroic rims (Racek et al., 2008; Franěk et al., 2011a) even though
small relics have been described (Št́ıpská et al., 2008; Tajčmanová et al., 2010).
In addition, the seismic imagery indicates a possibility that the deepest part of the
Moldanubian domain contains pieces of eclogitized mafic crust just below the seismic
Moho (Edel, pers. comm.). This is in agreement with the gravity-dominated models,
where almost entire volume of mafic rocks sinks to the deepest orogenic levels. In
addition, the ISTZ observed in these models corresponds to the partially molten mid-
crustal rocks and granulite massifs exposed today at the surface of the Moldanubian
domain (Franěk et al., 2011a). Above the Brunia indentor, the ISTZ has a form of a
highly deformed channel of migmatites and high-grade gneisses containing disrupted
bodies of granulites and mid-crustal rocks (Schulmann et al., 2008).

In the West Sudetes system, the FLC forming the core of the large gneiss dome is
surrounded by a continuous layer of mafic rocks overlain by mid-crustal Barrovian-
type schists. The dome-like geometry suggested by Don et al. (1990) is supported
by gravity modelling of Chopin et al. (2012). Moreover, the deformation related to
the growth of the dome is localized in a shear zone in its upper part. This style of
deformation is consistent with the fold-dominated models where the ISTZ is weakly
developed and the mafic layer is not disrupted and surrounds the FLC antiforms.

The existing petrological and geochronological data allow only qualitative com-
parison with numerical modelling results, often due to insufficient precision of the
data. It is only recently, when coupled thermodynamic modelling and in-situ geo-
chronology yield more precise constraints on the P–T–t evolution. Nevertheless,
there are several robust observations which can be compared with the predictions
of the numerical model.

The granulites situated either along the margins of the Moldanubian root or in
the West Sudetes are characterized by the presence of prograde zoning in garnets
and inclusions of muscovite (phengite) suggesting that the rocks were not entirely
equilibrated before exhumation (Št́ıpská et al., 2004; Tajčmanová et al., 2010; Na-
hodilová et al., 2012). This can be due to insufficient time for thermal maturation,
i.e. cooling and exhumation started shortly after peak granulite-facies conditions (at
∼360 Ma) as suggested by Nahodilová et al. (2012). Other explanations are a lack
of radioactive heat sources within the FLC or a small thickness of the relaminated
felsic crust. The latter interpretation is in line with crustal-scale gravity modelling
suggesting that the thickness of a residual felsic layer above Moho is gradually de-
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creasing from the core of the orogen to its margins and further north to the West
Sudetes (Guy et al., 2011; Chopin et al., 2012). In contrast, granulite samples com-
ing from the central part of the Moldanubian domain show perfectly equilibrated
mineral textures, absence of relics of hydrous minerals in cores of garnets and their
compositional zoning. In addition, these rocks are marked by migmatitic appear-
ance (Franěk et al., 2011b) indicating high-temperature conditions related to a long
residence time (∼30 Myr) at a deep crustal level before exhumation at 340 Ma.
Similarly, these two contrasting trends in the temperature evolution are observed in
the numerical models. The temperature plateau in the T–t paths is present only in
the gravity-dominated models (right panel in Fig. 4.9, low vin), while in the fold-
dominated models (high vin), cooling immediately follows the temperature peak.
Moreover, the Sudetic granulites are the only samples showing important cooling
during exhumation as predicted by the fold-dominated models.

There are also important differences in the depth of the transition from vertical
to subhorizontal fabrics. In the West Sudetes granulites, the transition occurs at
pressures 7–4 kbar (Skrzypek et al., 2011; Št́ıpská et al., 2012), while pressures
5–4 kbar are documented in the granulite massifs located along the margin of the
Moldanubian domain (Tajčmanová et al., 2006, 2010). This contrasts to exhumation
P–T paths in the core of the orogen, where the transition to subhorizontal fabrics
generally occurs at pressures 10–12 kbar (Št́ıpská and Powell, 2005b). In summary,
in the core of the orogen the vertical material transfers occur in the depth range
of 70–35 km, while along the margins of the orogen and in the West Sudetes it
continues to ∼15-km depth. Regarding our model, the data from the centre and
margin of the Moldanubian domain corroborate well with the gravity-dominated
model where a part of the FLC is exhumed at the periphery and the rest remains
stuck below the orogenic lid.

The Ar40–Ar39 cooling age patterns show different trends according to the posi-
tion in the orogen. The samples from the margin of the Moldanubian domain show
prolonged cooling from 340 to 325 Ma. The ages in the core of the orogen suggest a
transition of 500 ◦C isotherm (blocking temperature of amphibole) at about 340 Ma
and a transition of 320 ◦C isotherm (blocking temperature of biotite) at 330–325 Ma
(see Schulmann et al., 2008, for review). This contrasts with the T–t evolution of
the West Sudetes where amphibole, muscovite and biotite cooling ages are clustered
between 340 and 335 Ma. The cooling pattern in the core of the orogen is explained
by gravitational emplacement of large volumes of the FLC in mid-crustal levels at
340 Ma, which remained stuck below the orogenic lid until the final cooling period
at 330–325 Ma related to either erosional or extensional post-orogenic processes.
The continuous cooling path in the West Sudetes fits well with the cooling path
predicted by the fold-dominated model.

To test the predictions of the existing model an effort has to be done in a system-
atic analysis of prograde evolution of granulitic and associated HP rocks using ther-
modynamic modelling. The first prograde paths presented by Skrzypek et al. (2011),
Chopin et al. (2012) and Tajčmanová et al. (2010) indicate prograde dP/dT gradi-
ents similar to the modelled P–T evolutions. A diagnostic feature for the folding-
or gravity-driven models is also the mutual position of the peak-pressure and the
peak-temperature conditions. The thermodynamic modelling combined with in-situ
geochronology may provide decisive input in understanding of the orogenic tectonic
and thermal evolution.
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4.6.3 Numerical modelling aspects

Only few numerical studies of exhumation of felsic material from lower crustal levels
have been performed so far. Duretz et al. (2011) explored behaviour of relatively
weak material forced by a stiff indentor, as proposed for the eastern margin of the Bo-
hemian Massif. These authors successfully reproduced the geometry of mid-crustal
sub-horizontal flow (“hot fold nappe” introduced by Beaumont et al., 2006), and
formation of a topographic plateau. However, they neglected the effect of buoyancy,
and the vertical motion of material is rather restricted. Despite a good correlation
of their numerical- and analogue-modelling results, their model does not explore
several important features characteristic for the eastern margin of the Bohemian
Massif. It is in particular the P–T evolution of exhumed rocks and the time scales
of the indentation event.

Lexa et al. (2011) focused on the growth of the Rayleigh-Taylor instability and
diapirism of the felsic lower crust, which is recorded mostly in the central part of the
Moldanubian domain. Without lateral forcing, they obtained a typical “mushroom”
shape of diapirs, retrograde P–T evolution characteristic for exhumation of felsic
granulites located in the core of the Bohemian Massif and time scales of exhumation
events corresponding to existing high- and low-temperature geochronology. Their
modelling is not related to continental indentation but the growth of crustal diapirs
is initiated exclusively due to the existing Rayleigh-Taylor instability induced by a
dense mid-crustal gabbroic layer. However, indentation is a key factor for develop-
ment of a mid-crustal channel and specific P–T evolution of the orogenic lower crust
located originally close to the continental indentor.

The model presented by Maierová et al. (2012) incorporated both the gravity
and lateral forcing, and reproduced basic geological data available for the Moldanu-
bian part of the Bohemian Massif, including the time scale of the tectonic process,
topography evolution and sedimentary record. However, their model is restricted
to the lower-crustal exhumation in the Moldanubian domain and does not attempt
to explain variations of geological characteristics among different granulite massifs.
We followed the modelling strategy of Maierová et al. (2012), but we varied model
parameters and obtained a rich family of models applicable to other systems, in par-
ticular to the West Sudetes region. However, we investigated only three parameters,
and many others may be important. Namely, the applied rock rheology only roughly
approximates stress–strain relation of crustal material and we are aware that differ-
ent choice of rheological description could significantly influence the results. Further,
there are several restrictions and uncertainties of the model setup: We neglect the
three-dimensional structure of the Bohemian Massif using a 2D modelling approach.
The initial and boundary conditions are prescribed, although they are only vaguely
indicated by geological and geophysical data. We use a kinematic velocity field in
the mantle, and the mechanical coupling between the crust and the mantle is sim-
plified. Further, we neglect the effect of mantle processes on the thermal state of
the lithosphere, although a significant perturbation of the lithospheric temperature
field during the orogeny can be expected.

The issue of mechanical coupling between the crust and the mantle was studied
by several authors in different parts of the Bohemian Massif. Machek et al. (2009),
based on similar fabrics of felsic granulites and pyroxenite layers included in garnet
peridotites, suggest complete mechanical coupling between the mantle and the lower
crust. However, these authors also suggest that the mechanical coupling may be
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valid only for early stages of tectonic evolution in the forearc region. The coupling
is possibly induced by a localized heat input of a nearby magmatic arc (Nahodilová
et al., 2012). In contrast, Kusbach et al. (2012) based on a detailed microstructural
study of peridotites and granulites argue that the orogenic lower crust was entirely
mechanically decoupled from the underlying mantle during the indentation event.
These data are more relevant to our modelling as the study area of Kusbach et
al. (2012) is located close to the indentor and records the tectonic evolution related
to the indentation process. These authors suggest that only small fragments were
mechanically detached from the underlying mantle basement. In agreement with
this model we have adapted our modelling strategy and assumed a mechanically
strong mantle basement and a weak lower crust.

Models of continental collision often show significant deformation within the
mantle (e.g. lithospheric delamination, Gray and Pysklywec, 2012) and of the crust–
mantle boundary (e.g. lithospheric folding, Burg and Podladchikov, 1999). However,
the wavelength of the lithospheric folding would be presumably significantly larger
than that of the folding governed by the mafic middle crust included in our model.
In addition, no ultramafic bodies are found in the cores of the observed crustal an-
tiforms (Chopin et al., 2012; Franěk et al., 2011a). The signature of lithospheric
delamination is not in agreement with the observed syn-orogenic thermal evolu-
tion of the region (Lexa et al., 2011), although it can be related to post-orogenic
melting (Finger et al., 2009). Moreover, numerical models by Gray and Pysklywec
(2012) suggest that a weak felsic lower crust can reduce the efficiency of lithospheric
delamination during continental collision.

Some mechanisms observed in our crustal-scale model appear to be valid also in
mantle-scale models. Faccenda et al. (2008) studied the effect of highly radioactive
sedimentary material of the subducting plate accreted at the active continental
margin during continental collision. Similarly to our results, the P–T paths reported
by Faccenda et al. (2008) show that the timing of exhumation increases with lower
radiogenic heating.

Despite its limitations, the model well reproduces the basic scenario of laterally
forced upwelling of the felsic lower crust and its subsequent sub-horizontal flow over
the indentor. For this reason, we consider the model being a good representation of
crustal dynamics of such an orogenic system. At the same time we do not preclude
other mechanisms of exhumation to operate, especially those related to anomalous
heat supply from the mantle.

4.7 Conclusions

The presented numerical model is based on a scenario of formation of felsic HP
granulites in the Bohemian Massif during the Variscan orogeny (e.g. Schulmann et
al., 2009; Lexa et al., 2011), and simulates the exhumation of felsic lower crustal
material during continental collision. Using different values of model parameters, we
are able to interpret the contrasting character of the Moldanubian and Sudetic parts
of the Bohemian Massif. The gravity-dominated models with a high heat production
and a relatively slow convergence of colliding crustal blocks satisfactorily reproduce
the structural and metamorphic evolution of the Moldanubian domain. Conversely,
the data from the West Sudetes conform to the fold-dominated models characterized
by a low heat production and/or rapid convergence.
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The main differences between the gravity-dominated and fold-dominated systems
are: 1) the proportion of mafic material surrounding felsic HP metamorphs, 2) peak
temperatures leading to migmatization of rocks, 3) the presence of a temperature
plateau corresponding to thermal equilibration at high pressures and character of
subsequent cooling, and 4) the depth of the transition between the vertical and
subhorizontal flow. Furthermore, our results predict a direct relation between the
prograde P–T paths and the velocity of continental convergence. Even if the modern
thermodynamic modelling made progress in determination of prograde metamorphic
evolution, the data are still sparse and inaccurate. The possibility to estimate the
convergence rate could be tested once such data are available.

The apparent difference between the Moldanubian and Sudetic parts can be
related to their position within the Variscan orogenic belt. In a relatively smaller
Sudetes domain, a similar closing velocity would lead to higher strain rates and
shorter time for thermal maturation. The second key parameter, concentration
of radioactive elements, may be smaller in the West Sudetes granulites due to their
more mafic composition in comparison to those in the Moldanubian domain (Št́ıpská
et al., 2004). The heat budget and the rate of deformation in the model orogen are
influenced also by the thickness of the heat-productive lower crust and its lateral
extent. A smaller volume of the heat-productive material would lower the total heat
budget and the resulting model will presumably favour fold-dominated behaviour.
As there are systematic variations in the proportion of the light felsic crust across
the Bohemian Massif inferred from gravity anomalies, the influence of the thickness
of the heat-productive layer should be systematically studied.

The presented model is only a first step in understanding the HP granulite for-
mation, and improvements shall be introduced in a future study. In particular, the
interaction between the crust and the mantle and the role of rheological properties
are of major concern.
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Supplementary Figure S1: P–t paths of material particles of the FLC for all models
considered. The name of the model corresponding to the first column in Table 4.2 is
written in the top left corner of each panel. The colour-coding of individual paths is the
same as in Fig. 4.7.
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Supplementary Figure S2: T–t paths of material particles of the FLC for all models
considered. The name of the model corresponding to the first column in Table 4.2 is
written in the top left corner of each panel. The colour-coding of individual paths is the
same as in Fig. 4.7.
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Kotková, J., O’Brien, P.J., Ziemann, M.A., 2011. Diamond and coesite discovered in
Saxony-type granulite: Solution to the Variscan garnet peridotite enigma. Geology 39,
667–670.
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Tajčmanová, L., Konopásek, J., Schulmann, K., 2006. Thermal evolution of the orogenic
lower crust during exhumation within a thickened Moldanubian root of the Variscan
belt of Central Europe. Journal of Metamorphic Geology 24, 119–134.
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Conclusions and perspectives

The Bohemian Massif consists of micro-plates assembled during a large mountain-
building process called the Variscan orogeny (∼400–300 Ma). The formation of
the Bohemian Massif was rather complicated and involved oceanic and continental
subductions followed by continental collision. The oceanic subduction is documented
by relics of the oceanic crust and by rocks that reveal metamorphism along a cold
geotherm. Besides that, there is a remarkable volume of relatively light (felsic) rocks
metamorphosed under high-pressure and high-temperature conditions now exposed
at the surface. Based on observations of the structure and metamorphism of these
rocks some authors (Schulmann et al., 2009; Lexa et al., 2011) proposed that during
the continental collision the rocks were vertically displaced from ∼60 km to the
middle crust and later subjected to (sub)horizontal flow. Lexa et al. (2011) further
suggested, that the felsic material could have been emplaced to the lower crustal
depth during the preceding continental subduction. The main goal of the presented
study was to establish a numerical model of exhumation of these rocks.

We developed a computational tool suitable for modeling of crustal deformation
during continental collision (Chapter 2). As a starting point, we used the multi-
physical finite-element software Elmer (http://www.csc.fi/english/pages/elmer), in
which we implemented main features of crustal deformation. This extended version
of the Elmer software can treat the flow of materials with different properties (den-
sity, heat productivity, rheological parameters), visco-plastic rheology simulating the
brittle-ductile character of crustal deformation, and surface processes (erosion and
sedimentation of material). Testing of the software on several simple setups gives
results comparable to those calculated by other numerical methods and published
in scientific literature.

Using the software, we modeled convergence of two crustal blocks, one of which
contains a layer of an anomalous felsic (light, rheologically weak and rich in radio-
genic elements) material in the lower crust (Chapter 3). The lateral shortening of the
domain leads to folding of the felsic layer and undulation of its upper boundary. As
the felsic material is buoyant with respect to the overlying (partly mafic) layers, the
folds are amplified by gravity forcing and gradually develop into diapiric upwellings.
Subsequently, the rheologically weak felsic material forms a flat zone of deformation
which is underthrusted by a tip of the second continental block. The numerical
model shows that the scenario proposed by Schulmann et al. (2009) and Lexa et al.
(2011) is dynamically feasible. Characteristics of the numerical model (topography
evolution and related sedimentation, timing of the process, pressure-temperature
paths) are in general agreement with those inferred from the geological record. The
radiogenic heat sources within the crust in combination with tectonic stresses pro-
vide enough energy for deformation and metamorphism of rocks observed in the
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Bohemian Massif. This means that delamination of the lithosphere is not required
in order to reach high temperatures of ∼850 ◦C at pressures of ∼1.8 GPa.

The model with the stages of the vertical and horizontal flow is applicable only to
the central — Moldanubian — part of the Bohemian Massif. The northern Lugian
(also called Sudetic) part is similar to the Moldanubian domain, but it is signifi-
cantly smaller and lacks structures related to the horizontal flow. Besides that, a
belt of mafic rocks is associated with the highly metamorphosed core in the Lugian
domain. In Chapter 4, we varied model parameters (velocity of convergence of the
two crustal blocks, heat productivity of the felsic lower crust, rate of surface ero-
sion) and obtained a family of models with distinct characteristics. According to
the deformational style and pressure–temperature evolution calculated in individual
models, two end-member types can be distinguished. The gravity-dominated type
of models was already described in Chapter 3. Its multi-stage evolution is compa-
rable to that of the Moldanubian domain, and it requires high radiogenic heating
and/or a slow velocity of convergence. When low heating and/or rapid convergence
is applied, the folding of the felsic material and the overlying layers is more per-
sistent. These fold-dominated models show a gradual evolution without a distinct
phase of horizontal flow. The exhumed material records lower peak temperatures
and shorter time of residence at high pressure and temperature. Importantly, a con-
tinuous layer of mafic material surrounding the felsic upwellings is preserved, in line
with the observations from the Lugian domain. The parametric study supports the
hypothesis of a similar origin of the Moldanubian and Lugian domains and provides
an interpretation of the differences between these two regions. The difference in
the rate of deformation and amount of heat sources between the Moldanubian and
Lugian domains can be related to their size and position within the orogen. In the
Lugian domain, a smaller volume of the heat-productive material would lower the
total heat budget and favor the fold-dominated behavior. In addition, its smaller
lateral extent would lead to a higher deformational rate.

We investigated the role of three selected parameters only, while many others
may be important. The most challenging task is an appropriate rheological descrip-
tion of the crustal material. Not only that the values of rheological parameters of
different rock types are largely unknown (Burov, 2011), but even the rock types
change due to melting or recrystallization. In the Bohemian Massif, there is an
evidence that the flow of the felsic highly-metamorphosed rocks was governed by
diffusion creep accommodated by grain-boundary sliding (Franěk et al., 2011). In-
volvement of this deformational mechanism would cause strain weakening, and may
significantly influence strain partitioning within the crust. Diffusion creep of crustal
material is currently neglected in numerical models, although it may have important
consequences on crustal deformation.

It should be noted that we explored only one stage of one possible evolutionary
scenario. In a future study, more attention shall be paid to the previous stage of
continental subduction, when the felsic material was emplaced into the lower crust.
The model of continental subduction can be rather complicated, because several
small plates were probably accreted during the orogeny. Moreover, a large-scale
(e.g. upper-mantle scale) model is required for treatment of lithospheric and sub-
lithospheric mantle flow. The large-scale model could be used also for investigation
the processes that caused detachment and exhumation of pieces of mantle material
during the orogeny. With a reasonable approximation of melt generation and migra-
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tion, the melting of the mantle, recorded in several plutons in the Bohemian Massif,
could be studied.

Most of the issues outlined above require significant modifications of the model-
ing approach and the applied software. At the same time, the current version of the
software is easily applicable to a number of problems related to crustal and litho-
spheric deformation. A big advantage is the relatively user-friendly design of the
Elmer software, which allows easy implementation of different kinds of model setups
(e.g. oceanic subduction with variable thermal properties, Maierová et al., 2012). In
the research of the tectonics of the Bohemian Massif, as well as in the other topics
mentioned above, the more we know the more questions arise. Nevertheless, we
believe that this study contributed to the understanding of the crustal deformation
during continental collision.
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Bousquet R., Oberhänsli R., Goffé B., Wiederkehr M., Koller F., Schmid S.M.,
Schuster R., Engi M., Berger A. and Martinotti G., 2008. Metamorphism of
metasediments in the scale of an orogen: A key to the Tertiary geodynamic evo-

1The references for Chapters 3 and 4 are listed in Sections 3.7 and 4.8, respectively.

133



lution of the Alps. In: Siegesmund S., Fügenschuh B. and Froitzheim N. (Eds.),
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Venera Z., Schulmann K. and Kröner A., 2000. Intrusion within a transtensional
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√
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