
Evolution of the Bohemian Massif: 
Insights from numerical modeling

Petra Maierová
Supervisor: Doc. RNDr. Ondřej Čadek, CSc.

Consultants: Mgr. Ondrej Lexa, Ph.D., RNDr. Stanislav Ulrich, Ph.D.

Department of Geophysics
Faculty of Mathematics and Physics

Charles University in Prague



February 4, 2013Evolution of the Bohemian Massif: Insights from numerical modeling 2/31

The Bohemian Massif
● the Variscan orogeny
● geology and geophysics
Numerical model
● software description and tests
● model setup
Reference model
Parametric study
Conclusions

Outline



February 4, 2013Evolution of the Bohemian Massif: Insights from numerical modeling 3/31

from Wikipedia, the free encyclopedia

The Variscan orogeny

● a large mountain-building process, ~400–300 Ma
● convergence between Gondwana and Laurasia
● collision of smaller continental terranes, several subductions
● the resulting mountain range was gradually eroded, covered by 

sediments, incorporated into younger mountain belts
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The Bohemian Massif: geology

red: plutonic rocks

tectonic domains:
● Saxothuringian
● Teplá–Barrandian
● Moldanubian
● West Sudetes (Lugian)
● Brunia (Brunovistulian, Moravo-Silesian)

white: sedimentary 
cover
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1) oceanic subduction:
formation of a volcanic arc 

above the subduction 
zone

back-arc spreading

after Maierová et al. (2012a), 
scenario by Schulmann et al. (2008), Lexa et al. (2011)

The Bohemian Massif: Variscan evolution
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2) continental subduction:
contact between the 

Saxothuringian and the 
Teplá-Barrandian

emplacement of felsic 
material into the 
Moldanubian lower crust

after Maierová et al. (2012a), 
scenario by Schulmann et al. (2008), Lexa et al. (2011)

The Bohemian Massif: Variscan evolution
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3) compressional stage:
progressive thickening – 
crustal thickness up to 
~60 km

after Maierová et al. (2012a), 
scenario by Schulmann et al. (2008), Lexa et al. (2011)

The Bohemian Massif: Variscan evolution



February 4, 2013Evolution of the Bohemian Massif: Insights from numerical modeling 9/31

4) turnover event:
vertical exchange of rocks
break-up of the crustal lid

after Maierová et al. (2012a), 
scenario by Schulmann et al. (2008), Lexa et al. (2011)

The Bohemian Massif: Variscan evolution
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5) indentation:
horizontal structures in 

Moldanubian rocks 
pebbles of highly 

metamorphosed rocks in 
sediments on Brunia after Maierová et al. (2012a), 

scenario by Schulmann et al. (2008), Lexa et al. (2011)

The Bohemian Massif: Variscan evolution
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The Bohemian Massif: geophysics

Hrubcová et al. (2005)

Tomek et al. (1997)

Saxothuringian Teplá-Barrandian Moldanubian
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The Bohemian Massif: geophysics

Plomerová et al. (2012)
Bouguer gravity anomaly; for inverse modeling results see

 e.g. Švancara and Chlupáčová (1997), Guy et al. (2011)
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● thickening and indentation stages – continental collision and 
underthrusting

● test the feasibility of the proposed scenario of the lower crustal 
exhumation

● constraints: pressure–temperature conditions, timing, vertical and 
horizontal deformation, sedimentary record

● crustal deformation and the temperature field
● model requirements: brittle–ductile rheology, free surface, 

heterogeneous material composition

Numerical model: definition of the studied process
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● finite element method for the solution of partial differential equations
● open-source software Elmer www.csc.fi/english/pages/elmer
● particle-in-cell method for tracking the flow of heterogeneous material

Numerical model: basic equations
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● particle-in-cell method: a cloud of particles distributed over the 
computational domain, advected by the velocity field

● parameters in equations interpolated from particles onto the 
computational mesh

Numerical model: material treatment

setup after Gerya and Yuen (2003)

viscosity contrast   
 10

viscosity contrast  
 102

viscosity contrast 
 103



February 4, 2013Evolution of the Bohemian Massif: Insights from numerical modeling 16/31

Numerical model: visco-plastic rheology

● viscous regime – the stress is lower than the yield stress:

● plastic regime – the 
stress is equal to the 
yield stress:

setup after Lemiale et al. (2008)

● approximation of brittle–ductile behavior
● yield stress – the maximum stress in material before it yields (fractures)
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● free surface – the position of the domain boundary is adjusted to 
follow the motion of the material

● correction for surface erosion and sedimentation 
● isostatic compensation of the crustal load, computed analytically
● mesh deformation – the arbitrary Lagrangian-Eulerian method

setup after Vanderhaeghe et al. (2003)

Numerical model: mesh deformation

flexural isostasy

Airy isostasy
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mesh resolution

Numerical model: further tests

  arithmetic           geometric            harmonic

100 particles 
per element

25 particles 
per element

setup after Van Keken et al. (1997)

setup after Gerya and Yuen (2003)

averaging scheme of viscosity

particle resolution

particle advection

setup after Fullsack (1995)

 200x50

 800x200
setup after Lemiale et al. (2008)
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Model setup: initial and boundary conditions

● collision of two continental blocks with contrasting characteristics
● the equations of flow solved only in the crustal part
● the heat equation solved in the crustal and mantle parts

   left: „orogenic root“ (Moldanubian)          right: „indentor“ (Brunia)
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Model setup: initial and boundary conditions

thinned back-arc

thinned 
continental 

margin
strong continental block

+ felsic material

                             low density, low viscosity,                                                          
                             high content of radiogenic elements

                     high density, high viscosity

felsic:             
 

mafic:            
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convergence velocity 1.5 cm/yr
heat productivity 4 μW/m3

● folding of the mafic  
layer (blue)

● folds amplified by 
gravity – diapiric 
upwellings

● underthrusting of 
the orogenic root by 
the stiff continental 
block – indentation

● exhumation of the 
former lower crust 
(yellow)

Reference model: material and temperature

16 Myr

26 Myr

33 Myr

34 Myr
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● low strain rates in 
the upper crust – 
formation of a 
crustal lid

● weak middle and 
lower crust

● a flat zone of 
deformation in the 
middle crust

● lid disruption

Reference model: strain rate

16 Myr

26 Myr

33 Myr

34 Myr

convergence velocity 1.5 cm/yr
heat productivity 4 μW/m3



February 4, 2013Evolution of the Bohemian Massif: Insights from numerical modeling 23/31

Reference model: pressure–temperature paths

felsic lower crust:
● peak pressures up to 2 GPa
● peak temperatures more than 

800°C
● nearly isothermal decompression

middle crust:
● meets with felsic lower crust at  

0.5–1.2 GPa and temperatures of 
600–750°C

 

temperature (°C)
pr

es
su

re
 (k

ba
r)

observed paths after Schulmann et al. (2008)



February 4, 2013Evolution of the Bohemian Massif: Insights from numerical modeling 24/31

Parametric study

varied parameters:
● concentration of the radiogenic heat sources in the felsic lower crust 

(0 μW/m3, 2 μW/m3, 4 μW/m3)
● velocity of convergence 

(1 cm/yr, 1.5 cm/yr, 2 cm/yr)
● rate of erosion 

(2, 2.5, 3  topographic slope)
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Parametric study: two endmembers

heat productivity 4 μW/m3, convergence velocity 1 cm/yr, erosion 2 cm/yr  slope 

zero heat productivity, convergence velocity 1.5 cm/yr, erosion 2.5 cm/yr  slope 
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Parametric study: two endmembers

● proportion of the mafic material in the middle crust
● importance of horizontal deformation
● deformation in the surrounding middle crust
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Parametric study: P–T–t paths   

  „slow“        „reference“        „cold“              „fast“

pressure–temperature

pressure–time

temperature–time 
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Parametric study: P–T–t paths

● Moldanubian domain – full equilibration at high temperatures, 
    partial melting

● West Sudetes – rocks not completely equilibrated 
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In the Bohemian Massif, there is a remarkable volume of felsic rocks 
metamorphosed under high-pressure and high-temperature 
conditions now exposed at the surface. 

We investigated their formation and exhumation by means of 
numerical modeling using a newly developed computational tool.

The model successfully reproduces:
the stages of vertical and horizontal deformation,
the timing and rate of exhumation of the lower crustal rocks,
the sedimentary record and
the pressure-temperature conditions.

Conclusions



February 4, 2013Evolution of the Bohemian Massif: Insights from numerical modeling 30/31

Different values of model parameters yield two contrasting types of 
behavior:

gravity-dominated (high heat production and slow convergence),
fold-dominated (low heat production and/or rapid convergence).

We interpret the contrasting character of the Moldanubian and the 
West Sudetes parts of the Bohemian Massif as a result of a different 
amount of internal heat sources and/or a different deformation rate.

Conclusions
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We investigated three basic parameters but many other effects may 
be important:

rock rheology
melt migration
three-dimensional structure
initial and boundary conditions
mechanical coupling between the crust and the mantle
etc.

More attention shall be paid to the previous stage of continental 
subduction when the felsic material was emplaced into the lower 
crust and to the processes in the mantle lithosphere. A large-scale 
model is needed for this purpose.

We intend to address these topics in future work.

Conclusions
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