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Preface

Seismic, potential field, and electromagnetic (EM) methods are the three principal
tools of applied geophysics. Controlled Source Electromagnetic (CSEM) methods
belong to the class of EM methods which use artificially produced EM fields!.
CSEM has a wide spectrum of applications that include mineral exploration,
hydrogeological applications, mapping and detection of land mines, hydrocarbon
prospecting, as well as others.

In this work, we focused our attention on one interesting example of hydro-
carbon prospecting in the offshore environment. It is one of the more recent
application of CSEM and it is commonly known as marine Controlled Source
Electromagnetics (mCSEM). Electromagnetic waves are sent by a transmitter
that is towed by a vessel and typically located a few meters (10-100 m) above the
sea-floor. This transmitter operates at frequencies in the range of 0.25Hz-1.25Hz
in order for electromagnetic waves to reach long distances. Measurements are
recorded by a set of receivers located along the sea-floor at distances up to 20
km from the source. Our objective is to accurately simulate marine CSEM mea-
surements at the receivers. These measurements can be later used for inversion
in order to characterize the reservoir.

The goal of this thesis is to develop a program for forward modeling CSEM
in a heterogeneous 3-D conductivity environment. The forward problem can be
stated in a time domain or reformulated (and simplified), by using the Fourier
transformation, in the frequency domain. In the frequency domain, there are
many, even freely available, FEM codes solving the CSEM forward problem.
Using the time domain measurements has the advantage of shortening the time
of the field campaign. In recent years, the time domain field measurements in the
marine environment are gaining popularity as described by Constable and Srnka
(2007) and more recently by Constable (2010). Therefore, we aim the focus of this
work on the development of CSEM forward solver in the time domain. We also
investigated the use of Discontinuous Galerkin (DG) method, which is a variant
of finite element method where the test and trial functions are discontinuous and
the coupling between elements are enforced only weakly.

This thesis consists of 4 chapters. The beginning of Chapter I introduces the
physics of CSEM, reviews the Maxwell equations and also their weak formula-
tion. The weak formulation then creates the basis for subsequent discretization
of equations. Chapter 2 introduces one type of nonconforming spatial discretiza-
tion, the Discontinuous Galerkin method, and also a more traditional conforming
discretization using so-called Nédélec elements. A substantial part of the thesis
is developing a program that would practically test these numerical formulation.
This program together with the most important decisions regarding its imple-
mentation is discussed in Chapter 3. Lastly, we carry out the numerical tests of
developed program against known solutions and discuss the result in Chapter 4.

Lin contrast to the magnetoteluric (MT) method that uses naturally occurring EM fields
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1. Introduction

1.1 CSEM as a method of geophysical research

Linear electromagnetic properties of matter are, in simple material models usually
used in applied geophysics, described by three material quantities: electric permi-
tivity €, magnetic permeability 1, and electric conductivity o. Electric permitivity
€ is not considered in our quasistatic approximation that sufficiently describes all
electromagnetic phenomena at the lower frequencies. Most of the materials in the
ground are nonmagnetic and therefore the permeability of most of the materials
is close to the permeability of free space g (e.g. Telford, 1990). On the other
hand, the conductivity is a physical parameter with one of the highest dynamic
range in the nature. For materials in the Earth, it varies from 107'® S/m (dia-
mond) to 107 S/m (copper), i.e., by 25 orders of magnitude (Tezkan, 1999). All
the EM methods used in geophysics observe the conductivity distribution in the
subsurface.

The basic physics of CSEM can be described as the electric current of the
source, which causes, through electromagnetic coupling or directly, the flow of
electric currents in the ground. This electric and magnetic response of the ground
is measured by receivers.

There are many criteria to distinguish different types of CSEM. As these
methods implicate different mathematical descriptions it is useful to introduce
them.!

There are two ways how energy from the source can enter the ground: induction-
magnetic and galvanic-electric. In the case of an electric source, the current from
a battery or electric generator directly flows to the ground through electrodes
galvanically connected to the ground.? In the case of a magnetic source, the
current from the generator flows only in the attached coil and does not directly
enter the ground. The magnetic field from a coil induces, through Faraday’s law,
an electric current in the conductive media. We are generally interested in the
cases when the current from the source is not steady.

Whether the current from the source is time-harmonic or has more gener-
al time dependency it can be preferable to solve the forward problem in the
frequency-domain, or to leave the time dependence in ME and solve ME in time-
domain. In general, it is common to use Fourier transformation also for more
complicated sources with a wide frequency spectrum and to solve many time-
harmonic forward problems.

CSEM has a wide spectrum of applications including mineral exploration,
hydrocarbon prospecting, hydrogeological applications, hazardous waste mapping
and detection of land mines (Everett, 2012). After years of belief that CSEM is
not suited for an offshore environment, because the high electrical conductivity of
sea water preclude the application of electromagnetic systems for exploration, the
marine CSEM is becoming more popular and is extensively and successfully used
for hydrocarbon and hydrates prospecting (e.g. Edwards (2005) and Constable

lalso the specific geophysical terms
2If the current between the electrodes is steady we can directly measure bulk resistivity
between electrodes of the generator. In geophysical literature it is called direct current method.



and Srnka (2007)).

We have to note that although we simulate the EM fields in an inhomogenous
3-D field, this is usually not the final goal in the praxis. The ultimate goal of
most of the CSEM computations is the so-called inverse problem. There, using
our model for concrete description, given a time series of measured EM from the
receivers (Figure 1.1), we need to recover the conductivity under the seafloor.
In other words, we are trying to find such conductivity model, that minimizes
the differences between data observed at the receivers, and signals predicted for
that model by the forward solution. It leads to the ill-posed problem that is
solved by regularization. This problem is harder than the forward problem that
is discussed in this work. However, having a stable and fast forward problem
solver is necessary during a inverse process. The review of possible approaches to
the inverse problem in CSEM can be find in the review papers by Avdeev (2005)
and Everett (2012).

We take a marine CSEM with horizontally deployed electric dipole as a model
problem for this work.

1.2 Physical model

An electromagnetic transmitter is towed close to the seafloor to maximize the
coupling of electric and magnetic fields with seafloor. These fields are recorded
by instruments deployed on the seafloor at some distance from the transmitter
Constable and Srnka (2007). This scenario is shown in Figure 1.1.

The basic types of sources are electric or magnetic dipoles, which are usually
oriented either horizontally or vertically in the sea. Hydrocarbon reservoirs often
form resistive bodies whose thickness is much less than its depth of burial below
the measurement surface. To create a measurable response from such an object
it is necessary to generate currents that are normal to the boundaries (Um and
Alumbaugh, 2007). A vertical magnetic dipole, for example, would excite mainly
horizontal current flows. For the same reason, the magnetotelluric method cannot
be used for their detection. Horizontal magnetic dipoles also excite both vertical
and horizontal currents, but are less favored than electric dipoles for operational
reasons. The solution for this problem is to turn our attention to electrical dipole
sources, in particular horizontal electric dipole (HED) (Constable and Srnka 2007;
Um and Alumbaugh 2007).

In the previous paragraph we justified our focus to use of horizontally deployed
electric dipole as our source of electric current. Now we introduce a concept that
is physically important in CSEM and also later gives us a hint about the size of
the computation domain €.

It is known (Zhdanov, 2009) that the electric field from the source is expo-
nentially attenuated as it enters(z — +o00) the conductive material obeying the
equation

E(z) = Eoexp[—g - ig], (1.1)
1

Voo f

where the electrical field E with the frequency f [Hz| propagates deeper into the

S f,0)= (1.2)
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material with the conductivity o [ S/m | as 2z — +o00o. Frequency f together with
the conductivity o in defines § in (1.2) as the standard depth of penetration, (Zh-
danov 2009; Simpson and Bahr 2005). For an electric source with the frequency
f and conductivity ¢ penetration depth gives us the thickness of the material
that attenuates the magnitude of the initial field to 1/e ~ 0.367.

EM energy

Figure 1.1: Physical model of a marine control source electromagnetic induction.

1.3 Literature overview

In this section we will give a short overview of the previous approaches. We
mostly follow the review articles by (Avdeev, 2005) and (Everett, 2012), and
references therein.

Modeling of CSEM belongs naturally into the computational electromagnetic,
which is a vast field with many important applications in everyday life. The
amount of problems that can be solved by analytical methods is very limited
which had lead to development of many numerical techniques. Some specific
problems can be very effectively solved by particular solvers (e.g. thin sheets
approximation or integral equation approach) but for a general 3-D conductivity
problems the most commonly used methods are the Finite Difference and Finite
element methods (Avdeev, 2005).

The Finite Difference (FDM) and Finite Element (FEM) methods are the most
common choices when simulating EM fields with general 3-D material description.
The advantage of Finite-Difference is its relatively simple implementation, with
the most prominent representant the Yee algorithm. The algorithm proposed
by Yee (1966) discretises first order Maxwell’s equations based on the regular
Cartesian mesh. Staggered grid (Fig. 1.2) combined with the Du Fort-Frankel
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leap-frog time marching process, leads to the fully explicit numerical scheme.
The avoidance of matrix computations and simplicity can be exploited in a very
efficient parallel implementation. The leap-frog time marching process is only
conditionally stable and must obey the well known Courant-Fridrichs-Levy (CFL)
condition. When the domain can be effectively covered by a regular Cartesian
grid, the Yee’s algorithm is heavily used, also among the engineering community
(Jin, 2002).

On the other hand the Maxwell equations in conductive matter have parabolic
behavior. The CFL condition is too restrictive in the time-marching process and
thereby renders direct application of Yee’s algorithm impossible. The problem
was partially solved by Wang and Hohmann (1993). The use of an artificially
high electrical permittivity allows reduction of the computer time. The parallel
implementation of the same algorithm is discussed in (Commer and Newman,
2004).

Figure 1.2: Example of one cell of a staggered grid by Yee (1966). Components
of the vector E on this cell are evaluated only on the edges. On the other side the
components of the vector B are evaluated on the faces of the cell. This scenario
gives a framework to intuitively evaluate line integrals of E and corresponding
face integrals of B and the integral form of Faraday’s Law [,V x E = [, §,B
can be discretized. The dashed line depicts one face of a "staggered” cell with
starred vector components on this face. The roles of the vector components are
interchanged. In the "staggered” face the E resides on the faces and B resides
on the edges. The discretization of Ampere’s Law comes similar as in the case of
Faraday’s Law.

The second numerical method that is commonly used for CSEM forward com-
putations is the finite element method (FEM). In FEM, the EM field (either
directly electric and magnetic fields or through its potentials) is decomposed to
some basic functions on smaller domains called elements. Generally, the main
advantage of finite element methods is considered to be the geometrical flexibili-
ty, because the complex geological structures can be covered by an unstructured
mesh. This is an advantage to the stair-step approximation employed in FDM
(Jin, 2002). Also, when FDM methods are based on the strong formulation of
partial differential equations, FEM methods are developed within the framework
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of the weak formulation. This allows to prove the existence of the discrete solu-
tion, and also to develop rigorous a posteriori error estimates which are valuable
in adaptive methods. Both are either difficult or impossible to do in FDM.

Various formulations have been developed using different forms of EM equa-
tions. Coupled first order Maxwell’s equations, scalar and vector potentials with
(or without) a gauge condition and the second order electric or magnetic equa-
tions.

Methods based on the coupled first order Maxwell’s equations compute direct-
ly both electric and magnetic components of EM field. That can be very conve-
nient if both fields are needed. The disadvantage is a larger memory cost. Vector
potential formulation allows the use of traditional Lagrange elements (Badea
et al., 2001), (Velimsky and Martinec, 2005). Moreover, by implicitly implying
divergence constraints the primary fields are free of the so called spurious solu-
tions, which is otherwise a serious problem in electromagnetic modeling. On the
other side it can be problematic to recover physically relevant primary fields. The
second order wave equation has the advantage that it only solves for the electric
or magnetic fields thus minimizing the total number of parameters to solve (Um
et al., 2010). The high order FEM approximation are more complicated from
implementation point of view, but the need for solving many large problems is
eminent and lately the hp goal-oriented FEM methods in the frequency domain
have been successfully used in CSEM forward modeling (Pardo et al. 2006; Pardo
et al. 2007).

Most of the published papers for geophysical time domain® simulations (Ev-
erett and Edwards 1993, Borner et al. 2008) solve the ME in the frequency domain
for many frequencies. Afterwards, the obtained results are transfered back to the
time domain. Direct time domain computations are less popular because they
lead to the system of linear algebra equations that needs to be inverted at ev-
ery time step thus carrying a hight computational cost. Nevertheless, Um et al.
(2010) successfully implemented such an approach. He partially diminished the
overall computational cost by employing a direct solver. To some extent we fol-
low its approach, but we are using different shape elements and a preconditioned
iterative solver.

The overview and discussion of implemented Discontinuous Galerkin method
is postponed to Chapter 2.

3

1.4 Maxwell’s equations

1.4.1 Maxwell’s equations - the classical form

Models of electromagnetic induction belong under the phenomena of classical
electrodynamics and are described by the Maxwell equations. These equations
are traditionally written in the form of four partial differential equations (e.g.
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Monk, 2003) and read as

0B
. 0D
V-D = p, (1.5)

V.-B = 0,

where vector fields E, H, B, D, 5 and scalar field p are functions of position
x € R3 and time t. We recall that E denotes the electric field, H is the magnetic
field strength, B is the magnetic flux density also called magnetic induction, D
represents electric displacement, 7 is the density of electric current, and p is the
free-charge density.

Taking divergence of Faraday’s law (1.3)

0B
yields
oV -B
= =0, (1.7)

We see that if V- B =0 for t =0 then V-B =0, t € [0,T]. It is important for
any discretization to confine with this constraint.
Taking divergence of Ampere’s law (1.4)

oD
V- (VxH)=V-54+V.-—
ot
yields the conservation equation for charge
dp .
— -7=0 1.8
5 TV (1.8)

We see that four ME are not independent, but the divergence equations (1.5-
1.6) can be understood as necessary conditions for the other tuple of equations
(1.3 - 1.4) that stand for Faraday’s and Ampére-Maxwell’s law. If the initial con-
ditions satisfy the divergence constraints then the solution of Maxwell’s equations
will also satisfy the divergence constraints.

The definitions of differential operators grad, div, and curl from previous
equations (1.3 - 1.5) are classically defined only on smooth (C!(Q))? functions.
Between the materials with non continuous material properties as well as at
the boundaries of the computational domain, the boundary conditions must be
provided (Monk, 2003).

Interface and boundary conditions

When the Maxwell equations are understood in the classical (strong) sense the
equations holds only inside the domain with continuously varying material con-
stants. In general, the electromagnetic fields E, B, D, and H can be discon-
tinuous at a boundary between two different media, or at a surface that carries

9



charge density ps or current density j,. First we introduce the jump of a (vector)
function u(r) across the interface ¥ as

[u(r)]" =uT(r) —u (r), where (1.9)
v = 61_1)r(1;1+v(r —dn) and (1.10)
vt zéllr&v(r—i-én). (1.11)

The boundary conditions across surface discontinuities can be derived from
the integral form of Maxwell’s equations (e.g. Griffiths, 1999) and read as

mx E]f = 0, (1.12)
n-B]f = 0, (1.13)
mnx H|f = j, (1.14)
[n- DT = p, (1.15)

where mn is outer unit normal vector of the interface X, 7, is density of free surface
currents and py is density of free (imposed) surface charges.

We note, that whenever in the following text, we see the boundary value
problem or initial boundary value problem we expect that this problem has to be
understood together with all interface conditions (1.12 - 1.15). Fortunately, when
we work with the weak formulation, all these interface conditions implicitly hold
(Bossavit, 1998).

Constitutive relations

Under the assumption of linear material, the four vector fields E, H, B, D are
further tied up with constitutive equations:

D = :E (1.16)
B = uH (1.17)

where € and p are permittivity and magnetic permeability. Generally € and p are
positive definite tensors. When the material is isotropic the tensors degenerate
to scalars.

The last constitutive relation needs to be posted for conducting materials,
where the electromagnetic field itself gives rise to currents. In most geophysical
simulation it’s customary to use a linear relation; Ohm’s law. As our model
also consists of generators we introduce the generalized version of Ohm’s law
(Bossavit, 1998) and we have for total current density

j=0E+j9, (1.18)

where o is called conductivity and 39 denotes given (or impressed) current of
the source. Conductivity is nonnegative scalar? function of place vanishing on
insulators. Given current is a vector function of place and time describing applied
current and is vanishing outside the generator.

4in the case of anisotropic materials o can be a 2nd rank symmetric tensor (Zhdanov, 2009)
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Dumped wave equation

When we differentiate Ampére-Maxwell’s law (1.4) with respect to the time and
use our linear constitutive relations (1.16 - 1.18) we can eliminate the magnetic
108

term p~' 57 by using Faraday’s law (1.3). Afterwards, we have a dumped wave

equation in E which reads as

’E E 9
aaﬁ +aaa—t+v x (1 'V x E) = —%
If we choose to eliminate electrical field instead we would get similar vector
wave equation where the primary vector field is H (Zhdanov, 2009). The main
difference between the formulations is the source term and the boundary con-
ditions (Rieben and White, 2006). In our case of electrical dipole source it is
advantageous to use formulation where the electric field is the primary unknown.

€ xcQCR? (1.19)

1.5 Magnetoquasistatic model

The entirety of electrodynamics is described by the hyperbolic system of the
Maxwell equations (1.3)-(1.5), which models a wide spectrum of natural phe-
nomena e.g. electrostatic fields, magnetostatic fields, electricity in power lines,
EM waves and others. Solving full Maxwell’s equations (especially in three di-
mensions) can be numerically expensive and, often, not necessary as simplified
models can provide the same® or acceptable accuracy. These models can be static
(EM field are static), quasistatic and also high-frequency approximation (consider-
ing air as vacuum). CSEM, together with the most methods used in geophysics,
fits very well into the quasistatic approximation Zhdanov (2009). A thorough
discussion regarding different quasistatic approximations can be found in Lars-
son (2007). We use the most common magneto-quasistatic model described by
neglecting the Maxwell displacement current in the Maxwell-Ampere law (1.4).
By incorporating the material relations our model is described by (1.4, 1.5 a 1.6)
and the Ampere law

V x H = j9 + oE. (1.20)
Applying divergence to Ampere law (1.20)
V-394 0E)=0 (1.21)

and comparing to equation of charge conservation (1.8), which was the the direct
result of full Maxwell’s equations, we see that the charge is not conservative and
the quasistatic approximation holds only if

dp
5 =0 (1.22)

It is known that most of the materials found in the nature are nonmagnetic. In
this case we can write in (1.17) u = po,

B = H (1.23)

Swithin the computational error
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For the sake of simplicity, we will equip our model with homogeneous Dirichlet
boundary conditions. This condition physically corresponds to the idealization
when the boundary of €2 is created by a perfect electric conductor. Such a claim
is a crude, but commonly used, simplification in geophysical literature (Commer
and Newman 2004; Um et al. 2010). It can be justified by the fact that the
boundary conditions are negligible when choosing ”big enough” domain. A good
hint about the size of domain can give the penetration depth introduced in (1.2),
which is dependent on the frequency of the source and also the conductivity in
the model. Therefore, the size of domain will be dependent on the frequency of
the source, as well as on the conductivity of the domain.

To sum up, we have the following strong formulation for the initial-boundary
value problem for the Maxwell equations in the magneto-quasistatic approxima-
tion:

(Strong formulation, primary field):
Find vector electric intensity E(z,t) in (0, T) such that it holds:

039

nx E=0 at 02 x (0,T) (1.25)
E|—o = E’ in O (1.26)

This is only one of many formulations that can be used in working with
magnetoquasistatic problem. We can also solve the problem in magnetic intensity
H or use one of many vector or scalar potentials (Solin et al., 2003).

1.6 Singularity removal

In the previous formulation we modeled the electric field directly by using im-
pressed current source inside the domain. The straightforward formulation and
implementation are the main advantages of this so-called total field approach.
Linearity of Maxwell’s equations allows us to split the total field into two
parts,
E=FEy+FE,, H=H,+ H;. (1.27)

The primary electric field Eg and the secondary electric field E;.

The primary fields used in geophysics are usually magnetic or electric dipoles
or plane waves which can be computed analytically. It is not necessary to model
the singular source directly and, therefore, this procedure is also sometimes called
singularity removal (Zhdanov, 2009).

Primary field in our work is the field driven by the dipole source embedded in
the infinite isotropic homogeneous conductive matter with conductivity oy. On
the other hand the secondary field is driven only by the conductivity inhomo-
geneities.

We start by writing down Faraday’s and Ampere’s laws in the terms of total
fields as

0H
E=—yu—= 1.2
V x ETR (1.28)
V x H =j9+0E. (1.29)
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We can assume that the primary fields Eo, Hy are either known analytically or
we are able to compute them by some different numerical method, e.g. integral
equation. The primary fields are also a solution to Maxwell’s equations and have
to obey Faraday’s and Ampere’s laws. We have

0Hy
VxEy=—pu—— 1.30
X 0 :u at Y ( )
V X HO = jg + 0'0E0. (131)
Subtracting (1.30) from (1.28) and (1.31) from (1.29) we have
OH,
VxFE =— , 1.32
X £ =5 (1.32)
VxH=cFE — O'0E0. (133)
By introducing anomalous conductivity
o1 =0 — 0y (1.34)
we have
0H,
VxFE =—pu—- 1.35
>< 1 /JJ at 7 ( )
\V4 XHl :UE1+0'1E0. (136)

We supposed that we know or we can cheaply compute the vector Eg. The oy ()
can be trivially computed from (1.34) in every single point & € 2. It has the
properties of source and we introduce an anomalous source

jgl = O-IEO- (137)
Finally, we have
0H,
VX E =—u—- 1.38
X L K ot ( )
V x H]_ = O'E]_ +jgl. (139)

The equations (1.38 - 1.39) have the same form as the original Faraday’s and
Ampere’s laws. Only difference is that instead of the total field E; they describe
relations between the secondary fields E4y and H;. Hence, we can directly write

(Strong formulation, secondary field): Find vector electric intensity Fj(z,t)
in (0, T) such that it holds:

E o1
Uaatl +Vx (p 'V x Ep) = —agt x€QCR? (1.40)
nxFE; =0 at 02 x (0,T) (1.41)
Ei|—o = EY in Q (1.42)
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1.7 Remark about the eddy-currents equation

Let us repeat here again the equation (1.24). Without boundary and initial
conditions it reads as

93¢

O c R
TR xe)C

E
Oaa—t—i—VX(u_IVXE):—

First, let us focus on the constant ¢ that stands in front of the time derivative %—?.

This is the conductivity of the medium introduced by Ohm’s law in (1.18). In
insulating medium this constant can be very low or vanish completely. Depending
on this constant our equation shows different behavior in the conducting (o >
0) and non-conducting (¢ = 0) region. If the region is non-conducting, o will
diminish the time dependency and the parabolic equation (1.24) degenerate to
a stationary elliptic equation. Furthermore, we can see® that in that case the
equation is not even uniquely solvable. It can be shown that when other Maxwell
equations are added the system retains well-possedness (Monk, 2003). We will
not deal with this case in our formulation.

1.8 Solving an Initial Value Boundary Problem

The formulations (1.24-1.26) or (1.40-1.42) are an initial value boundary problem

IVBP-S:
OE . Y i 5
nxE=0 at 02 x (0, T) (1.44)
E|_o = E° in (1.45)

In our model we suppose that there exists a lower bound for the conductivity
op and 0 < oy < o holds a.e. in our simply connected domain 2. Also, as it
was discussed in the previous section, most of the materials in the ground are
nonmagnetic. Therefore, © = py = const. in {2, where we set the magnetic
permeability to be the permeability of a vacuum.

Also we can note that because the curl-curl operator is not elliptic we cannot
use the ’standard theory’ for linear parabolic equations (Evans, 1998, Chapter
7). However, under the condition on the continuous time dependency we can,
by using implicit Crank-Nicolson scheme from Chapter 2, directly discretise the
strong formulation in time. This yields a boundary value problem at every time
step. The resulting operator from the boundary value problem is already elliptic
and the standard Lax-Milgram lemma can be used (e.g. Evans, 1998).

It is important to notice and worth repeating that the IVBP problem (1.24)
cannot solve steady-steady case. In that case some other Maxwell equation has
to be added to retain well-possedness. Also it can be a computational problem
whenever a numerical solution is getting too close to the steady state. For dis-
cussion in geophysical literature see e.g. Smith (1996), who solves the CSEM

6The kernel of V x E is large. For example it contains all gradients of smooth scalar functions
as V x (E+V¢) =V x E for ¢ € C?(Q), (Bossavit, 1998)
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forward problem with Finite Difference in the frequency domain. In the frequen-
cy domain the same problem is observed when the frequency of the source is too
low.

In the following discussion we follow a mathematical convention” and set
u(x,t) := E(x,1).

Following (Beck et al., 2000) we have a strong version of boundary value prob-
lem:

BVP-S:

Vxpu'Vxu+pu=f in Q, (1.46)
uxn=>0 on 09, (1.47)

where u is an electrical intensity at the new timestep. The right hand side f
consist of the time derivative of the current density and also electrical intensity
at the previous steps. The 5 > [y > 0 is a conductivity ¢ divided by a timestep
At and p = pg' = const > 0 is a magnetic permeability.

1.9 Weak formulation of the eddy-current equa-
tions

In the current section, we derive a weak formulation of the (1.46-1.47). We will
use the weak formulation in the second part of Chapter 2 where we discuss spatial
discretization. For proper formulation we will need three things: functional spaces
from where we are trying to find the solution (and also some of their properties),
trace theorem, and the vector Green’s theorem. We start with the functional
spaces.

HYQ) = {u € L2(Q) : gg €[?1<i<3), (1.48)
H(div; Q) = {v € [L*(Q)]* : (iiv v e L*(0)}, (1.49)
H(curl; Q) = {v € [L*(Q)]? : curl v € [L*(Q)]*}. (1.50)
It can be shown that these spaces when equipped with the matching norms
[oll@) = ([o]* + [Vl )2 (1.51)
[0l eurt:on = (I[o][* + [[eur] o][*)* (1.52)
[0l iy = (o] +[|div o]*) (1.53)

are Hilber spaces (Monk, 2003). The operators grad, div and curl are understood
in a weak (distributional) sense (Bossavit, 1998, Chapter 3).
Let us define the tangential trace for the function v from (C*(2))? as:

Y¢(v) = (n X v) (1.54)

then the following theorem holds:

"We prefer this convention also because it can guide us in the question ' What are we talking
about? . If the ’strong’ solution or the conrete physical field is discussed, we see E. If the weak
solution, we see u. They are communicating between each other only through the boundary
value problem (BVP-S) introduced on this page.
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Theorem 1 (Green’s theorem). Let 2 be a bounded Lipschitz domain in R".
Then the trace map ~y¢, which is defined classically can be extended by continuity
to a continuous linear map from H(curl;Q) to (L*(0N))3. Furthermore, the
following Green’s theorem holds for any w € H (curl; ) and ¢ € (H'(Q))3:

(VXu,¢) = (u,V X ¢) = (ve(u), ), (1.55)

where (-,-), and < -,- > are scalar product in (L*(Q))? and (L?(09))?, respective-
ly.

Proof. (Monk, 2003, Chapter 3)

Now we are justified to introduce the space Hg(curl; () as

Hy(curl; Q) = {v € H(curl; ) : n x v =0 on 90} (1.56)

Let us repeat here the strong form:

Vxu 'Vxu+pu=f in €,
uxn=>0 on 0,

The weak formulation can be found by multiplying this equation by the test
function v, integrating over the domain 2 and performing Green’s theorem. The
boundary terms introduced by Green’s theorem vanish because of the homoge-
neous boundary conditions (1.47) and we can directly write:

BVP-W: Find u € Hy(curl; Q2) such that for all v holds:

/M_lvxu-vadx—l—B/u-vdX:/f-'vdx (1.57)
Q Q Q

It is not difficult to see and it is shown by Velimsky (2003) that the bilinear
form a(-,-) defined by

a(u,'v)—/M_Iqu~vadx+6/u-vdx (1.58)
Q Q

is continuous and eliptic in the curl-norm (1.52). Assuming that the right
hand side bilinear form b(v) defined by

b(v) = /Qf-vdx (1.59)

is continuous we can state that the solution is ensured by the Lax-Milgram
theorem (Evans (1998)).
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2. Numerical methods

In this chapter we give an overview of used numerical methods. We start by
discretization of the strong initial value problem (1.24) which will lead to the
series of boundary value problems (BVP-S) (1.46-1.47) with different right hand
sides. Afterwards, we spatially discretise this BVP using two different Galerkin
methods. Before each of these method we give a short introduction.

Let us start with the discretization of the time first.

2.1 Temporal discretization

We have initial value problem from the previous chapter (1.24):

959

oFE . B 3

UE‘FVX(/L VXE)——E reQCR
nxE=0 at 02 x (0,T)
E’tZOZEQ in Q

It is known that for parabolic problems, the explicit schemes are unstable, unless
the timestep obey Courant-Friedrichs-Lewy (CFL) condition (e.g. Hairer and
Wanner, 2004) , which reads as

At = O(AR?). (2.1)

Where h measure the size of the smallest cell on the used mesh. This is unfortu-
nately! prohibitively expensive and, therefore implicit methods need to be used.
One common choice is the -method.

We derive here a standard 8—method for temporal discretization (e.g. Hairer
and Wanner, 2004). First we discretise the time interval [0, T'| with At,, = t,,—t,_1
forn =1,..,N, so that ty = 0 and ty = T. We approximate the time derivative
9B (x 1) b
ot (iB, ) Yy

the forward difference

E™ — En1 . 8]9 n—1
- - - En—l — _ZJd
v RO ) < ot )
and by the backward difference
E™ — En—l . " ajg n

Next, we multiply these differences by (1 — ) and (6), respectively. After sum-
mation we have

'We will later that Discontinuous Galerkin leads to the diagonal 'mass’ matrix and, therefore
to the explicit discrete schemes for explicit timestepping. It is a possible big advantage to the
Continuous Galerkin methods, which lead to the system of linear equations in every timestep
even for explicit schemes.
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g

At,

E" 40V x (4'V x E") =
g

At,

+(1—60)h" +0n",

+0—E"'—(1-0)V x (u 'V x E")

where A" = (—8j;t(t)>n. Setting # = 0.5 leads to the Crank-Nicolson scheme. It

can be shown that this implicit scheme is second order in time accurate (Hairer
and Wanner, 2004).

g mn 1 —1 ny __
AtnE +§VX(,U VXE)—
+ -2 gt 1y« (W 'V x E"Y)
At, 2

1
+ i(h’H +h")

In the end we multiply previous equation by factor 2 and set

20
= , 2.2
5= (22)
Then, we switch the first two terms and we have
BE" +V x (1 'V x E") =
+BE" =V x (u7'V x E")
+ ("' + Rh™). (2.3)
Now we denote the whole right hand side (RHS) of (2.3) as
Fr=BE"' -V x (u'Vx E" N+ (h" '+ h"). (2.4)

Terms on the right side of (2.4) are known from the previous steps. We can
treat the forcing term h = —%” on the right hand side of (2.4) also by Crank
Nicolson, keeping the same order of approximation.

Now, combining this discrete aproximation of derivative —ag;f, together with
previous results (2.3) and (2.4), we can write the formula for the series of BVP-S
problems as

Let [0, 7] be a time interval. Let At, = ¢, —t,_1 forn=1,.., N, so that
to=0and ty =T. Forn=1,..,N find E" such that

BE"+V x (1 'V x E") =f",  where (2.5)
fr=BE"'4+V x (u'V x E"Y) + Aitn(j”_1 -J3") (2.6)

specifically, for the initial condition we have
f'=BE"+V x (u'V x E% + Ait(jo -3 (2.7)
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It is worth to notice that the initial conditions consist of initial value field
E(x,t = 0) but also the given current fields j9(x,t = 0) and j9(x,t = t;). They
are not independent but obey the condition (1.21), which reads:

V-(j9+0FE)=0.

We conclude this section with the hypothesis that this is the most probable source
of problems, when the secondary formulation was used in the computation in
Chapter 4. We refer to Chapter 4 for further discussion.

2.2 Spatial discretization

In the rest of this chapter we will be discussing two different discretization. First
we will review conforming Nédélec Finite elements. The discontinuous version
will be discussed in the next section where we also discuss different discontinuous
schemes, that could be used and provide reasoning about our particular choice.
It is not possible to treat here the complete theory. Therefore, we will only
provide the basic overview and discuss connections and differences between both
of these approaches. First we will show the difference between conforming and
nonconforming method - Discontinuous Galerkin.

Now, let us repeat here our weak formulation of the continuous boundary
value problem from the end of Chapter 1. For better clarity of the ideas we will
slightly change notation and denote V' = Hg(curl, Q):

BVP-W: Find u € V such that
a(u,v) = f(v), YweV

The functional space V' is infinite dimensional. The standard idea behind the
conforming Galerkin approximation is to keep the bilinear form a(u,v) the same
and only choose some subspace V;, C V solve the problem:

BVP-CG: Find uy € V3, such that
a(uh, ’Uh) = f(’l)h), Yo, € Vi, (28)

the advantage of this approach is that if some mathematical property (e.g. ellip-
ticity of the bilinear form a(-, -)) holds on the bigger, infinite dimensional space V'
it has to hold also on the smaller subspace and we have automatically existence
and uniqueness. On the other hand Discontinuous Galerkin methods? are solving
the following problem:

BVP-DG: Find uEG € Uy, such that
ah(ufG,'vh) = f(vn), Vo, € Uy,

we see that two things has changed comparing to the previous case. First, now
the space Uy, is not a subspace of the continuous problem U, ¢ V for the test

2At least in their ’primal’ form. See the discussion in section 2.4 about why we are using
primal and not the more general 'flux’ form.
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and trial functions. And second, we are now using a bilinear form ay(-, -) instead
of a(-,-). In general, the bilinear form ay(-,-) does not have to be even elliptic.
Properties of a(+,-) have to be investigated separately.

This was a fairly abstract point of view. Now, for the time being we skip
discussion about the spaces V}, and Uy, and proceed directly to matrices.

2.2.1 Matrices

Provided that {¢;} are basis of V}, we can (e.g. Brenner and Scott, 2007) expand
the ’trial” functions wuy, to this basis. We have

up =Y ;. (2.9)

Now we insert this expansion to the BVP-CG problem (2.8) from Chapter 2 we
have:
BVP-W: Find up € V}, C Hy(curl; Q) such that for all v € V}, holds:

/u1Vxuh'Vxvdx+ﬁ/uh~vdxz/f~vdx (2.10)
Q Q Q
or in the bilinear form:

a(up,vn) = f(vn)

@ (Z Uj¢javh> = f(vn)
J
By letting v = ¢; we have n conditions

S uwjalehs,on) = f(vn), Von € Vi

Now we can define new matrices and vectors

[ 5o (2.11)
Sy = /Q,H(v x ¢;) - (V X ¢;) dx, (2.12)
9 = | I ¢idx, (2.13)

And we see that the 2.8 reduce to the linear algebra system:

Au = f (2.15)
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2.3 Galerkin discretization

Now let us return to the question of spaces for V;, from the conforming Galerkin
approximation stated in section 2.2. We repeat again (2.8) which reads:

BVP-CG: Find uy € V}, such that
a(uh,'vh) = f('vh), V’Uh < Vh

In the previous section we showed that this leads to a system of linear equations,
provided we have the bases ¢;. Now the only missing thing are some bases, that
we can use. The systematic way how to create such bases is by using a finite
element method (FEM) (e.g. Brenner and Scott, 2007).

As we discussed in the setion 2.2, the key property of the basis is the con-
forming property which ensures that V;, C V as discussed in the beginning of
section 2.2. One such basis provides Nédélec elements.

2.3.1 Conforming Galerkin method
Brief overview of Nédélec elements

In 1980, Nedelec (1980) introduced first® family of finite elements in R", one of
which, called edge elements, conforms to the function space H (curl). This family
of finite elements has a very important property. The tangential component of a
approximated vector function is continuous across the element. boundaries*. On
the other side the normal component of a approximated vector can vary across
the element boundary. This property is necessary for exact modeling jumps of
electric field E and magnetic field H. We will only discuss here a small subset
of the necessary theory. Treatment of these elements can be found in the books
Monk (2003), Solin et al. (2003) and Bossavit (1998).

First, we introduce the mathematical definition of the finite element from
Solin et al. (2003).

Definition 1 (Finite element). Finite element is the triad (K, P, 3), where

o K is a domain in R® - we will discuss only the case of K being tetrahedron
or cuboid.

e P is a space of polynomials on K of dimension dim(P) = Np
o X ={Ly,Lo,...,Ln,} is a set of linear forms

L,:P—>R, i=1,2,...,Np.

The elements of X are called degrees of freedom (DOF).

The domain K, space P and linear forms ¥ from Finite Element cannot be
chosen arbitrarily but need to be compatible to each other and also with the local
functional space Vj,(K). The compatibility condition between the set of DOFs ¥

37first” is used to distinguish these finite elements from the later paper by Nédélec (1986)
4Nedelec (1980) shows that this is also sufficient condition for conformity to H (curl, )
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and the polynomial space P is called unisolvency (Solin et al., 2003). We suppose
that our element is unisolvent.

In the lowest order Nédélec elements Nedelec (1980), discussed lengthly in
(Bossavit, 1998, Chapter 5), their space P consists of the polynomial functions
that have constant tangential component on the edges of element. Their explicit
formula for cuboid element can be found in (Jin, 2002). Also it can be shown
that these bases are divergence-free. Therefore, the global function u, that is
approximated by these functions has to be locally divergence-free (Jin, 2002).
This is a key property for treating the problem of ’spurious solutions’ (Jin, 2002).

2.4 Discontinuous Galerkin method

In this chapter we first introduce Discontinuos Gelerkin method and then review
its possible use to Maxwell’s equations.

Overview

Discontinuous Galerkin finite element method (DG-FEM or only DG) combines
the ideas and techniques from Finite Element and Finite Volume (FVM) methods
(Hesthaven and Warburton, 2007). DG was first used to solve first-order hyper-
bolic neutron transport equation in the seventies (Reed and Hill, 1973). Being
based on discontinuous finite element spaces, DG methods have many advanta-
geous properties. It can easily handle meshes with hanging nodes (see Figure 2.1),
meshes can consists of the elements of different shapes and local spaces can be
easily of different order on various elements leading to p-adaptivity(Schneebeli,
2006). This mesh and order flexibility designates DG as an ideal candidate for
hp-adaptivity °.

There are two approaches that are commonly used in the discretization of a
second order elliptic operator. One comes from interior penalty methods and is
usually called primal discretization. The second option is to rewrite the high
spatial derivative as a system of first-order equations which leads to the term
numerical fluzes (Hesthaven and Warburton, 2007). To distinguish it from the
first approach we will call it a numerical-fluz formulation. It was showed on the
example of Poisson equation in Arnold et al. (2002) that all the primal discretiza-
tion can be developed from a flux formulation by choosing different numerical
fluxes.

Nowadays it is a popular choice for computing linear and nonlinear conserva-
tion laws in e.g. elasticity, shallow water equations or gas dynamics and can be
viewed as an high order generalization of finite volume methods (Feistauer et al.
2003; Hesthaven and Warburton 2007). An comprehensive review in the devel-
opment of the DG can be found in the first chapter of Hesthaven and Warburton
(2007).

®This is many times repeated in the introduction to the most of the articles about DG.
Unfortunately for the modeling of curl-curl operator in Maxwell equations this is a rather
simplifying point as we note later.
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2.4.1 Discontinuos Galerkin for the Maxwell Equations

The reviewing possible choices took considerable amount of time. Therefore, we
would like to provide here a reasoning behind the choice of our particular DG
method. The author of this work tried the best but he is not an expert and the
following review could be biased by the availability of sources he had access to.
They are cited in the next paragraphs.

The Maxwell equations in magnetoquasistatic approximation have parabolic
(or elliptic) character. After reviewing the literature (e.g. especially Hesthaven
and Warburton (2007), Pietro and Ern (2011), Feistauer et al. 2003) and articles
(Grote et al. (2007)), Grote et al. (2008))) we concluded that for these equations
there is no apparent advantage. The places where it could be competitive for
Maxwell’s equations are hp-FEM methods (Pesch et al., 2007) and explicit-time
domain simulations (Hesthaven and Warburton, 2007).

The hp-FEM methods are methods that combine so called (h-adaptation),
which that is adapting mesh and (p-adaptation), which is locally varying the order
of polynomials that approximate the solution on the element. This is a hard task
(not-only) for Maxwell equations in continuous elements as the solution has to be
continuous between adjacent elements. However, Solin et al. (2003) shows that
this is possible. Nevertheless, it was felt that the hp-fem in DG is too challenging
goal to pursue with a very unsure end.

The second place, where the DG is a good choice are explicit-time domain
simulations (Hesthaven and Warburton, 2007). By solving conservative Maxwell
equations® (Hesthaven and Warburton, 2007) shows that high order time schemes
are promising. This route was pursuaded some time. However later it became
evident that it also might be fruitless in the end. The reasoning for this comes
from the comparing two papers by Commer and Newman (2004) and by Um
et al. (2010). Um et al. (2010) compares his FEM implicit solver running on
single processor with a very effective highly parallelize scheme by Yee discussed
in Chapter 1. The DG methods proposed by (Hesthaven and Warburton, 2007)
are similar to Yee scheme solved by Commer and Newman (2004). Having in
mind higher complexity of (any FEM) implementation we concluded that this is
not very promising way for CSEM solver.

After all we decided to implement the most standard scheme for solving
Maxwell’s equation. This happens to be SIPG or interior penalty method. How-
ever even this approach is not without problems, when not using tetrahedral
elements. This was not realized at the beginning and the library deal.it was
chosen as we discuss in Chapter 3.

2.4.2 Introduction

In our work we use the Symmetric Interior Penalty Galerkin (SIPG) method.
Its application to the Maxwell equations is described in the series of articles that
create a substantial part of the doctoral thesis by Schneebeli (2006). Derivation of
SIPG for Maxwell equation is analogous to the one for a simple Poisson problem
that is discussed extensively in many books, e.g. in Pietro and Ern (2011) or
Hesthaven and Warburton (2007). The only difference are that the penalty terms

SFull ME without the conductivity
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contain tangential jumps.

Without the derivation we state the final form of the approximating bilinear
form aP%(-,-) from (Schneebeli, 2006):

apg(up® v)%) =+ Z/ PN (VxR %) - (V x up)€) dx
By (T
By P ——

D3 /f a[wPCy - [vPCr ds,

where [u]lr =n* x u" +n” x u” is a tangential jump and {{u}} = J(u" +u")
is an average across the boundary element.

It corresponds only to the ’curl-curl’” part of our former bilinear form from
section 2.3. After adding the ’Su’ part to bilinear form we can expand it similarly
as we did in the section 2.3 for bilinear form a(-,-) under the assumption that we
specify the space Up. It leads to a rather large amount of terms, some of them
being integrals on the faces between the elements. We will not derive them here,
but rather we will discuss some practical aspects of when programming them to
the deal.ii library.

2.4.3 Penalty

There is an important question of choosing the penalty parameter a from the
last line of the bilinear form a?“. When set too low the continuity of tangential
on between the elements is not enforced and the quality of the solution is not
satisfactory. When set too high, a condition number of the matrix A”¢ is higher.
In theory, there exists bounds on the penalty term (Schneebeli, 2006). However,
for practical computation it has to be used by trial-and-error process.

2.4.4 Boundary condition

Boundary conditions are enforced only weakly in the DG. From the practical
point of view, it is hard to tell if this is an advantage or not. On one side the
matrix APY is not destroyed on every timestep by applying boundary conditions
as in the continuous case. On the other hand this is probably outweighed by
the amount of DOF's, which corresponds to boundary terms and that need to be
added to the (already bigger) matrix AP“. For a further discussion we refer to
Pietro and Ern (2011).

2.4.5 Space of the testing functions and hanging nodes

The last two remarks of practical importance of discretization curl-curl operator
need to be resolved. The first one can be stated as "Which kind of local spaces
can be used on the element?” and the second as ’Can we use hanging nodes?’.
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It turns out that for hexahedral elements and SIPG formulation only the local
version of Nédelec elements discussed in the previous section, provide a spurious-
free approximation, the explanation (Buffa and Perugia, 2006) is out of scope of
this work. Local Lagrange elements cannot be used. The question of hanging
nodes is to my best knowledge discussed only for tetrahedral elements in Buffa
et al. (2007) and not for hexahedral elements. However my own experience from
running numerical simulations showed that hanging nodes could not be used on
hexahedra with SIPG formulation as spurious modes appeared in the solution.

Figure 2.1: The mesh on the picture is composed from 15 cubes of two different
sizes, 7 cubes with the edge a = 2h and 8 cubes with the edge a = h. Only the
nodes on the front face are emphasized by colored points. Hanging nodes are
denoted by the red color, non-hanging nodes by the blue color.

It is not without theoretical interest to state that in tetrahedral elements
one can indeed use hanging nodes for tetraheral elements (Buffa et al., 2007)
and also local bases from Lagrange or also Nédélec elements. The later results
are discussed in Buffa and Perugia 2006 and also extensively in (Hesthaven and

Warburton, 2007, Chapter 9).
In the and of this chapter we will provide a brief overview.

2.5 Overview
Let us repeat our whole numerical scheme
e At the every time step we create a BVP (2.5 2.6)

e This is a strong 'BVP-S’ problem stated in (1.46 - 1.47) for which we de-
veloped a weak 'BVP-W’ formulation (1.57) at the end of Capter 1.

e We solve this weak Boundary Value Problem by means of conforming or
nonconforming methods overviewed in this chapter.

e We proceed to the next time level and if the ¢ < T we return to the first
step. Otherwise we end the algorithm.
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3. Program

In this chapter we discuss an implementation of numerical methods described in
the previous chapter. First, we give the reasoning behind the particular choice
of the software that we used. Afterwards we give a brief summary of experiences
gathered during the implementation itself.

3.1 Object-oriented library deal.ii

Programming a three dimensional time dependent finite element program can be
a technically challenging task Bangerth et al. (2007). For simpler options, which
would be in our case for example an implementation of the lowest order Nédélec
edge element with discretization based on tetrahedral elements, it is certainly
possible to develop and test a working code in the time scale of this thesis. This
is probably a superior approach for the lowest order element as it allows the
most flexibility and the algorithms are well documented in some more practically
oriented computational electromagnetic books, e.g. Jin (2002).

For creating more advanced codes using locally adaptive (h- end especially
hp-) refinement, parallelization, author of this work believe that it is better to
use an underlying library in the expectation that this decision would lead, in the
longer run, to a more competitive code.

There are many freely available FEM libraries, however only a handful of them
are structured and documented well enough to be used outside of a team of their
developers (Bangerth et al., 2007). We can vaguely distinguish two different types
of FEM libraries. The ones that are employing some kind of high level language
(e.g. Fenics') are preferred for their “user-friendliness“ as programs written in
them are usually shorter and very close to the mathematical description of the
problem. For developing larger and more complex programs it is often better
to stay in one of the more traditional computer languages, (e.g. FORTRAN,
C or C++) used in scientific computing and use a library to support such a
program. Our further requirements were the support for Nédélec edge elements
and discontinuous elements. For creating our program we choose to use the
object-oriented library deal.ii, written in C++ and developed by Bangerth et al.
(2007).

From the implementation perspective, our finite element code consists of:

e Preprocessing (creating the geometry and mesh)

e Constructing the algebraic system

Solving the algebraic system

Timestep

Postprocessing

We will shortly describe these processes, without the intention of getting too
deep ’into the code’.

http://fenicsproject.org/, last visit 22. November 2012 and also Logg et al. (2012)
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3.2 Preprocessing

The main part of the preprocessing is to create a good quality mesh. Our code
was initially developed only on the simple geometry with homogeneous materi-
als when the regular meshes were created within the deal.ii library. For more
complicated cases of with variable conductivity or singular sources it is necessary
to use irregular mesh that distributes more degrees of freedoms (DOFs) to these
problematic places and less DOFs to unproblematic places.

For our more realistic scenarios, it was planned to use the program gmsh?.
Gmsh incorporates two important parts. A simple Computer-aided design (CAD)
engine that can be used to create regions with defined material properties and 3D
grid generator which supports tetrahedral and hexahedral elements. However, as
was discovered too late that the hexahedral support is generally not very useful
for FEM modeling. This is because the automatic hexahedral mesh generator in
gmsh can create a hexahedral mesh only indirectly. First, it creates a tetrahedral
mesh. Afterwards each of the tetraheda is divided into four hexahedral elements
as described in ’Hezing the Tet’ article by Carey (2002). Unfortunately, such
hexahedra are very far from the ideal cube shape and, therefore, the mesh has
an unacceptably low quality (Jin 2002; Carey 2002). Furthermore this gives
rise to spurious solutions for curl-curl operator Jin (2002). As looking for an
alternative was not fruitful we decided to overcome this unforeseen difficulty by
programming a several routines to generate acceptable quality of mesh in deal.ii
itself. The results can be seen in Figure 4.3.

This is definitely not a very satisfying solution. The problem with mesh
creation can be partially mitigated by using adaptive mesh refinement.®> However,
as discussed in (Hesthaven and Warburton, 2007) an adaptive mesh refinement
is a delicate thing for the time domain simulations and would be certainly out of
scope of this work. Therefore, this idea is not persuaded any further in this work
and is a possible direction to enhance the code.

3.3 Constructing the algebraic system

The matrix A from (2.15) is constructed by marching over the elements and
numerically computing local contributions from the volume, surface and edge
integrals ((2.11)-(2.13)). This is a core part of any FEM computation. Again,
for a 3D problem the implementation has to be fast, which can be a challenging
software problem.

Deal.ii creates an environment when common things that are needed in this
marching process (Jacobian of the transformation to the master element?, points
of integration, their weights, etc.) are preprogrammed and easily available. This
is the main advantage of using deal.ii especially in the higher order methods.
The support of parallel computations makes this process substantially quicker on

2http://geuz.org/gmsh/, last visit 22. November 2012 and also Geuzaine and Remacle
(2009)

3This solves only the question of effectivity. How to create an initial mesh so the faces of
the mesh conforms to the inhomogeneities in conductivity o remains unanswered.

4All the integrals are computing on the so-called master element as is common in FEM,
more e.g. (Brenner and Scott, 2007)
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modern machines.

In our problem, it is necessary to assemble the matrix A only once, at the
beginning. This optimization can be used as long as the time step in the time
marching process is kept constant. However in praxis, we keep only the 'mass’
(2.11) and ’stiffness’ (2.12) matrices in the memory unchanged and matrix A is
computed as their sum at every time step. The reason is that, enforcing boundary
condition changes the matrix A. This is a possible place for later optimization.

3.4 Solving the algebraic system

The matrix A from the previous step needs to be inverted. A is a sparse, sym-
metric, positive definite matrix with commonly around 400000 DOFs. Further,
A depends on At, and matrices M and S. If the mesh is constant in time and
the time step is constant it would be advantageous to use some direct method
and to explicitly find out A=!. This is computationally expensive process because
during the inversion the places in the sparse matrix that has been filled with zero
values can became non-zero. Naturally for these new values a new memory has
to be allocated. With enough memory and it is probably an superior approach
when the matrix A is unchanged during most of the time steps. Um et al. (2010)
for a similar problem, directly solves matrix with ~ 200000 degrees of freedom
on the computer equipped with 48 GB memory.

The other possibility is to use an iterative solver. In the case of a symmetric,
positive definite matrix the so-called conjugate gradient (CG) method is widely
used. The important measure of the invertibility of the matrix is the condition
number. As noted by Avdeev (2005), the condition number in the CSEM forward
problems can be very large. This causes a very slow convergence of the iterative
solver and, therefore, preconditioning is necessary. Avdeev (2005) cite Jacobi,
SSOR and incomplete LU to be the most favorable preconditioners. All of them
are preimplemented in the deal.7: library. After running a number of numerical
experiments we obtained the best results with SSOR. SSOR method with the
relaxation parameter 1.2 is used consistently in all computations discussed in
Chapter 4.

3.5 Postprocessing

Postprocessing of any 3-D problem is rather time consuming because of the
amount of information on the output of the simulation. Most of the complex
postprocessing programs which can produce an esthetically appealing pictures of
computed reality (e.g. the Figure (4.13)) are internally working with the values of
the function on the nodes. Edge elements have a support on the edges of elements.
Also, shape functions of the lowest degree edge elements in hexahedral elements
are a trilineal functions of place without any constraints at the end of the edge.
Solution that is projected to this basis has also therefore trilinear dependency.
Simple plotting all the points on some line produce a wild discontinuous plot
that is very hard to comprehend. Therefore, when the value difference between
two adjacent middle points is too large (see the place around 300m at Figure
4.4) we need to be sure that only the values in the middle of the edge are used.

28



This conceptually easy task is rather hard to do in deal.ii because this library do
provide a rather complicated® access to the degrees of freedom.

3.6 Conclusion

Almost no program is ever finished and can be further enhanced. All the steps
described in this chapter could be certainly done more effectively. At the end of
all the sections we provide possible directions of further development.

Sin the sense of layers of abstraction one needs to cross

29



4. Results and Discussion

4.1 General settings

In order to verify the accuracy of the solution for marine CSEM simulations, it
has been compared with two other solutions with a constant frequency: an ana-
lytic infinite homogeneous space with the constant conductivity and a 2-layered
model. While during a field campaign the extended area of the floor is covered
by many receivers, during the testing it is convenient to have some standardized
locations of the receivers. The computed results of forward modeling are usually
depicted as a time series of EM fields on certain points which represent receivers.
Alternatively, the distance dependency of EM fields on some distinct directions
in certain time is depicted. Figure 4.1 shows these two distinct directions, a so-
called inline and broadside configuration, as well as our coordinate convention!.
In most figures, the £, component is plotted in the inline configuration presented.

inline

current dipole X

Figure 4.1: An z-oriented current dipole is placed to the center of a Cartesian
coordinate system. An inline and broadside directions then coincide with the
directions of growing x and y coordinates, respectively.

Unless we specifically mention otherwise we set the following for our models.
We consistently used the horizontal electric current dipole (HED) with the fre-
quency f = 1Hz as the current source. The dipole was x-oriented as depicted in
Figure 4.1. Every model in the following discussion is computed in the simple
cuboid domain with the size of edge a = 3100 m.

Where applied, the following conductivity constants are used:

e Salt water: 0w =3.3 S.m~!
e Sea floor: osy =0.8 S.m~!
e Oil: ooii = 0.001 Sm!

LOur z-coordinate has exactly the opposite direction when compared to the most geophysical
literature and also to the equation (1.1)
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We used two different formulations discussed in Chapter 1: the primary formu-
lation given by (1.24 - 1.26) and the secondary formulation given by (1.40-1.42).
We also applied two different numerical methods discussed in Chapter 2: the
Nédélec conforming Galerkin (CG) and SIPG version of Discontinuous Galerkin
(DG).

In the primary formulation the source is modeled as a cube with the size of
the edge 6.25m and spread across at least 4 elements in the coarsest mesh. In
the secondary formulation the imaginary source is every inhomogeneity from the
"'background’ conductivity. The singular source is not present.

4.2 Cases

4.2.1 Homogeneous space

Salt water

Figure 4.2: xz-plane cut of the homogeneous space model

First model was the simplest possible model of homogeneous space. Specially only
in this model, for convenience, we use the source located in the middle of the cube.
We compute only the primary formulation as the secondary formulation is trivially
zero in homogeneous medium. The computed data were compared to the analytic
solution (A.1) and are depicted in Figure (4.4). Additional snapshots of the
primary field at different times are depicted in Figure (4.5). Note, how transient
effect that is clearly visible in first two snapshots disappears for ¢ > 0.25s.

We note a very good match showed in Figure 4.4 and also in Figure 4.5. But,
although, the results looks good the process is costly both on the computational
side and also when considering the invested human labor to create a ’proper’
mesh for the computation. The main problem here is the singularity of the
source field. The mesh around this singularity needs to be very dense. The use of
hanging nodes is necessary to capture this adaptivity. Then, as we go further from
the source the mesh should become sparser, to keep the total number of DOFs
computationally feasible. Figure 4.3 shows two levels of refinement on the used
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mesh. The left mesh was obtained through our simple routines in deal.7i. The
mesh on the right of the Figure 4.3 is one time refined and is used in computations.
The refined mesh contains ~ 300000 DOFs. If we saw bad behavior of the solution
we could not simply refine more, due to memory and computation constraints.
But the new mesh had to be created. Also, only the conforming version of our
finite element program could be used. The reason is the inability of our SIPG
formulation of DG-method to use hanging nodes as discussed in the Chapters
2 and 3. Beside the large number of elements that were needed to be used
the resulting matrix is badly conditioned resulting to a slow convergence of our
iterative solver.

Figure 4.3: The yz-cut through the mesh used in the case of a homogeneous
space. The coarse grid is on the left. Its one time globally refined grid is on the
right.
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Figure 4.4: Homogenous space for a refined mesh at the ¢ = 1.59375s
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Figure 4.5: Time series
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4.2.2 Sea-floor model

Salt water

Figure 4.6: xz-plane cut of the sea-floor model

The first interesting model, we will investigate, is the model of the sea floor. Our
domain is divided by horizontal plane going through the midpoint of the domain,
dividing the domain to two horizontal layers. The top and bottom layers represent
salt water and seafloor, respectively. The model is depicted on the Figure 4.6. We
provide the computed results in both, primary and secondary representation. We
compared our code in primary field formulation against the semianalytic forward
code Dipole1D by Key (2009)%. The resulting time series is depicted in Figure
4.7. Figure 4.8 and Figure 4.9 show results computed in secondary formulation.

First we investigate the primary formulation as depicted on the timeseries in
Figure 4.7. We see that the our numerical finite element solution is in a good
match, after some initial phase, to the semianalytic solution by Key (2009). Also,
we can clearly distinguish the response from the field produced by an homogenous
space described in previous paragraph. We can therefore clearly conclude that
the primary formulation is validated in the case of nontrivial double-layer space.
Again, only the conforming Nédélec elements could be used.

We also computed the secondary field formulation on the seafloor model. In
this case the singularity does not have to be numerically approximated and the
solution exhibit good convergence as we create denser meshes. It can be seen in
Figure 4.8. Meshes used for CG and DG were the same and therefore we could fi-
nally compare these two methods. We see that our continuous and discontinuous
code produce comparable results on different mesh levels which suggests conver-
gence. However, when these results are compared to the semianalytic solution
by Key (2009), as can be seen in Figure 4.9, the secondary formulation (or our
program) has a systematic error. This systematic error is discussed in the next
section.

2http://marineemlab.ucsd.edu/Projects/0Occam/1DCSEM/, last visit November 25, 2012
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seafloor model, primary formulation
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Sf, f=1Hz, t = .5859375 s, inline
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Figure 4.8: See floor model in secondary field. Series of computations on different
levels of mesh and different elements. Inline electric field dependency at the time
snapshot ¢ = 0.59s. The blue line represents the CG solution on the finest mesh.
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Figure 4.9: See floor model in secondary field. Series of computations on different
levels of mesh and different elements. Inline electric field dependency at the time
snapshot ¢t = 1.17s. The blue line represents the CG solution on the finest mesh.
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4.2.3 Sea-floor-oil model

Salt water

Figure 4.10: xz-plane cut of the sea-floor-oil model

The last model consists of the previous model of the sea floor with an added
3D inhomogeneity with a cuboid shape of xyz-size of 500x100x400 meters. Its
location is 300 meters under the sea floor with the horizontal distance of 400
meters from the source. The inhomogeneity represents a hydrocarbon reservoir
with oil of conductivity op. The model is depicted on the Figure 4.10. We depict
two snapshots giving on different response on the receivers on the Figure 4.11
and 4.12. We note that the measurable disturbances are observed. The last
Figure 4.13 shows the distortion of the electric field owing to the inhomogeneity

38



Sea, f=1Hz,t = .5781250 s, inline

9 Seafloor, E; = +
95 Seafloor+Oil, E; -
10 F ' -
10.5
11 F R
11.5
12 } -
-12.5

_13 1 1 1 1 1 1 1
200 400 600 800 100012001400

X [m]

log E, [V/m]

Figure 4.11: A distortion of the secondary electric field as a result of the added,
highly resistive inhomogeneity.
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Figure 4.12: A distortion of the secondary electric field as a result of the added,
highly resistive inhomogeneity.

39



Figure 4.13: A distortion of streamlines of the secondary electric field as a result
of the added, highly resistive inhomogeneity (the red part of the grid).

4.3 Discussion and conclusions

Systematic error

This systematic error observer in our solutions produced by secondary formulation
with respect to the semianalytic solution by Key (2009) was investigated but the
true source was not found. The problem could be caused somewhere inside our
complex programs?®, that needs to be rewritten. Facing time constraint we decided
to use this formulation, being the way how to compare the implemented CG and
DG method. However, the probable source of error is the current conservation
constraint (1.21). Closer inspection and numerical experiments suggest that the
source of this systematic error might be noncompatible enforcing current and
initial condition on E in divergence constraints. In the case of primal formulation
this is not a problem.

Further development

The error in secondary formulation is irrelevant in cases where there is no en-
forcing current j9. A so called swich-off problem described in (Um et al., 2010)
belongs to this category and is the possible future most exciting application of

3Currently totally more then 5000 lines of code become hard to maintain during an different
numeric experiments that has to be done to support or disprove some hypothesis. We had
to create two programs because of the different formulation, the CG and DG methods are
implemented considerably different in deal.ii.
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our code. Implementation is conceptually easy, however not straightforwardly
possible (W. Bangerth, pers. comm.)*.

We conclude that our code was validated, however in this condition it is not
yet fully suitable for the practical computations where the main problem remains
the mesh generation as already extensively discussed.

4’ Implementing this, however, is a bit of of a hassle [in deal.ii] because [one] would need to
know the numbering of degrees of freedom for both kinds of elements, etc.”, W. Bangerth, the
main developer of deal.ii
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Conclusion

During the initial research about Discontinuous Galerkin methods it became clear,
that the family of these methods can be inefficient in modeling Maxwell§s equa-
tion in quasistationary approximation. This problem of inefficiency was further
amplified by the need of solving of a large 3D problem.

By using a finite element method library deal.is we implemented a Symmetric
Interior Penalty method theoretically analyzed by Schneebeli (2006). We tried to
use this method for our test problem in CSEM, which involve a singular source.
We observed that our solution was spoiled by the so called ”spurious solutions”
when using ’hanging nodes’. This was the key aspect which prevented us for
using primary formulation. To treat this problem we tried a different way and
developed a secondary formulation that removes the singularity as discussed in
Chapter 1. By this we have been able to compute results that we provide in
Chapter 3.

Beside to this unsatisfied result with our implemented version of Discontinuous
Galerkin method we developed a program which by using conforming lowest order
Nédélec elements was able to produce better results. We also used this program
to compare these two Galerkin methods. However, the geometrical inflexibility
of the used numerical deal.ii library and the lack of usable hexahedral generator
constraints our code in regular Cartesian grid (with refinement using hanging
elements). It basically mitigated the general advantage of FEM codes comparing
to finite difference methods; geometrical flexibility. This price is hoped to be
payed off as the deal.ii library allows us to relatively easily to use more advanced
numerical techniques such as multigrid preconditioners, hp-refinement etc.
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A. Electric current dipole in
homogeneous space

Electric dipole with the orientation vector d = (dy,ds,ds, ), yd | = 1 (with an
impressed current I = I cos(wt)) in an infinite homogeneous space with a constant
conductivity o has a known analytic solution (Zhdanov, 2009). In the frequency
domain for a source in the origin of the coordinate system, it can be expressed as

etk [ 1 4 ikr + k;27~2p N (3 — 3ikr — k*r?)(p - "“)T

E(r) =

4o 73

where r = (x,y,z) is the position vector, |r| = y/a®+ y*>+ 22 is the Euclid

norm, k = (14 1),/*%57, w is the frequency of the source with dipole moment

p=1 d. Where I is the impressed current. Previous equation holds in the
frequency domain. To match our homogeneous initial conditions, we can express
the electric field in the time-domain as

E(’r’ t) _ Re {e—i(wt+7r/2)+ikr |:_1+ikg+k2r2p + (3—3ikr—k2r2)(p"7“) ’]”:| } ' (A]_)

4o r rd

in (A.1) we assume' that the current dipole is located in the origin. By changing
the coordinate system using r — r — R’, where R’ is the position of the dipole in
the new coordinate system, we receive the final formula.

1to make notation simpler
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