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Résumé

Nous avons étudié le transfert de chaleur et de matiere au cours de I'histoire de la Terre primitive
a de multiples échelles en utilisant des modeéles numériques. Deux systémes différents sont
abordés. Tout d’abord, nous nous concentrons sur les premiers stades de la formation du noyau
terrestre lorsque le fer se sépare des silicates et descend vers l'intérieur de la planeéte. Au cours
de la différenciation, des interactions chimiques et thermiques se produisent entre les gouttes
de fer dispersées dans des silicates fondus formant un océan de magma. Nous étudions le
transport chimique des éléments trace a l'intérieur et autour des gouttes. Nous tirons quelques
lois d’échelle dépendantes du régime dynamique d’écoulement et montrons que le systeme tend
a étre en équilibre chimique extrémement rapidement par rapport a 1’échelle de temps de la

descente de la goutte de fer.

Lors de 'accrétion de la Terre, la fusion intense de son manteau profond ainsi que la formation
d’'un océan de magma en surface a lieu. Comme le rayonnement de la chaleur dans I'espace est
tres efficace, les silicates fondus superficiels cristallisent tres rapidement, en 10 Ma environ.
L’histoire thermique de la couche liquide enterrée, appelée océan de magma basal (OMB), se
déroule sur une longue période de temps et il est proposé que ses restes soient aujourd’hui

observables sous forme de poches partiellement fondues au dessus de la frontiére noyau-manteau.

Nous développons des modeles numériques décrivant la convection dans un océan de magma
basal qui cristallise et déterminons les parametres régissant ce systeme convectif dans lequel
se produit une transition solide/liquide. Les lois d’échelle ainsi obtenues ont été appliquées a
I’OMB et indiquent que la diffrence de température qui peut étre maintenue dans les couches
limites supérieure et inférieure de ’OMB est infime. Par conséquent, la température du noyau
suit la température de liquidus a la base du manteau et ainsi la vitesse de refroidissement de

I’OMB doit étre la méme que celle du noyau de la Terre.
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Summary

We have studied the heat and mass transfer during the early Earth history at multiple scales and
for multiple systems by means of numerical computing. Two different systems are approached.
Firstly, we focus on the early stages of the Earth core formation when iron segregates from
silicates and descends toward the interior of the planet. During the differentiation there are
chemical and thermal interactions between dispersed iron blobs and surrounding molten silicates.
We study the chemical transport of trace elements within and around the drops. We derive
functional relations between critical parameters and show that the system tends to be in chemical

equilibrium.

During the accretion process of the Earth, extensive melting of its deep interior as well as
formation of shallow magma oceans occurred. As heat radiation into space happens with high
efficiency, surface molten silicates crystallize very rapidly, in about 10 My. The thermal history
of the buried liquid layer, called the basal magma ocean (BMO), proceeds over a long time and
it is proposed that its remnants are nowadays observable as partial melts in the core-mantle

boundary region.

We develop numerical models of the thermal history of the crystallizing basal magma ocean
that enable to study coupling between the mantle and the core in the presence of the BMO. We
derive parametrized relations for this convective system that undergoes solidification/melting.
Obtained scaling equations applied to the BMO indicate that the temperature difference that
can be maintained across the top and bottom boundaries of the BMO is minute. Hence, the
temperature of the core follows the temperature of liquidus at the bottom of the mantle and
thus the rate of the BMO cooling must be the same as that of the Earth’s core.
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Introduction

The present picture of the Earth and other planetary bodies is the result of several billions
of years of evolution. How the Earth came to its present state depends on which conditions
and processes were active during its early stages. In this thesis, two models are set up and
investigated contributing to understanding the chemical and thermal history of the early Earth.

Firstly, we review how the Earth was formed and describe its early evolution.

Distribution of chemical elements in the mantle reflects the most dramatic process in terms
of mass redistribution within the Earth history, the metal-silicate differentiation, when iron
separates from silicates and descends to form the core. This event is recorded in the silicate
mantle by the abundances of trace elements. The first part of the thesis is devoted to understand

the efficiency of transport of chemical elements during the core formation event.

Many heat sources, that are not active anymore, were important during the accretion of
planetary bodies. These caused more or less extensive episodic melting of planets. In particular,
it was suggested, that the interior of the Earth in between the silicate mantle and the metallic
core ended completely molten early in the Earth history and a basal magma ocean (BMO) was
formed. Since the heat evacuation from the interior of the planet is very limited by the overlying
solid mantle, the crystallization time of the BMO is very long (of the order of the Earth’s age).
In the second part of the thesis we propose to study the BMO by means of numerical modelling.
We set up a model that enables to investigate the thermal evolution of the crystallizing/melting
BMO coupled with the solid mantle and that enables to infer thermal coupling between the
Earth’s mantle and the core in the presence of the BMO.
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Chapter 1

Evolution of the Earth

The age of the Earth is approximately one third of the age of the universe and goes back about
4.54 billion years. Since the early beginning, melting and transport of magma play a crucial role

in the Earth’s thermal and compositional evolution.

Partial melting and volcanism in the Earth shallow mantle results in the formation of a
thin crust of crystallized melt (Crisp, 1984; Schubert et al., 2001; Marsh, 2007). Creating the
new crust leaves the Earth’s mantle deprived in incompatible elements since they preferentially
partition into the melt. Going deeper into the mantle, partial melt zones are found at the core
mantle boundary (Williams and Garnero, 1996; Lay et al., 1998, 2004). These molten regions
are non homogeneously distributed and very localized. They are possibly the remnants of an
initially thick magma ocean that formed at the base of the mantle during the Hadean and has
been slowly solidifying since (Labrosse et al., 2007). Continuing further toward the center of
the planet, crystallization of the outer core (that has probably started around a billion years

ago (Labrosse et al., 2001)) proceeds helping to drive the geodynamo (Figure 1.1).

Returning deeper back in time, more extensive melting of the Earth’s interior is expected
since core formation ultimately needs that the temperatures exceed the melting temperature
of metal alloys in order to separate mantle material (silicates) from the core forming material
(iron). While iron sinks to form the core (due to the high density contrast compared to the
background matrix), chemical exchanges of trace elements between metal and silicates occur
(equilibration process). As a result, the abundances of siderophile trace elements (iron loving

elements) in the mantle might have been (at least partially) established (Rubie et al., 2007).

The subsequent crystallization of molten mantle is inevitable at some stage of the Earth

evolution (there might be some periods when the Earth’s mantle is actually heating up due to
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e.g. heat production from radiogenic elements or due to over heating of the core).

Theoretical and numerical models significantly improve the knowledge of solidification and
melting processes acting in the Earth and dictating importantly the chemical composition of
distinct reservoirs as well as thermal evolution of the planet. They should describe the physics

of melt as well as the solid.

Present
Earth

Figure 1.1: A sketch of a possible Earth’s structure in the Hadean (~4.5 Gy ago) and nowadays.

1.1 Formation and early stages

1.1.1 First cooling models and the age of the Earth

The thermal history of the Earth and its age are closely related problems. Indeed, finding phys-
ical laws that would describe the cooling of an initially hot sphere placed into a cold space was
an objective of Fourier’s (1822) work. His calculations later encouraged Kelvin to estimate the
age of the Earth (Thompson, W. (Lord Kelvin), 1864). This was at that time an extraordinary
feat since geologists were convinced that the age of the Earth was too high to be determined

and might be infinite.
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The basis for Kelvin’s model is an estimation of the temperature gradient at the Earth’s
surface, that was at that time constrained to around 20 Kkm™!. He considered that the Earth
was initially molten, had a uniform melting temperature Ty = 2000 K, and its surface was held
at constant temperature 7' = 0°C. Kelvin’s work was based on two main assumptions: the
cooling proceeds only by conduction and there are no heat sources. Both of these hypothesis
were well justified and appropriate for that time since neither mantle convection nor radiogenic

heat sources were known.

The solution for the temperature gradient at the surface is
or Ty
0z NeT

where & is the thermal diffusivity and t the time. With x = 1076 m?s™!, Kelvin estimated that

the time needed to drop the temperature gradient to the observed value was around 100 My.

(1.1)

Small improvements can be made to Kelvin’s model to obtain estimations much closer to
today’s value. For example, considering that the gradient of melting temperature increases with
the depth results to the age over 1 Gy (Jeffreys, 1942).

Nowadays, we know that the largest shortcoming of the Kelvin’s model is that he did not
consider convective transport (England, 2007). Indeed, convection maintains high temperature
gradients at the surface during the time significantly higher than that obtained by Kelvin. The
effect of convection can be seen through a simple pure conducive model that contains a variable
thermal conductivity k. Efficient convective heat transport can be simulated, to a certain degree,
by considering a high k. Passing from a region with small k& into a material that possesses a
high k causes a discontinuity in the thermal gradient at the boundary in order to satisfy the
continuity of the heat flux ¢ = k9T /0z. Consider that the Earth is approximated by a semi
infinite space that is made up of two layers with different k, let’s say a thin crust and deep
interior. Approximate estimation leads to n times higher surface temperature gradients when
using n times higher k in the lower layer. Thus, using n times higher k& compared to the surface
value, we obtain that the Earth is n? times older than estimated by Kelvin, cf. Eq.(1.1). The
influence of variable material properties have been already discussed and the age of the Earth
re-estimated by Perry (1895a,b) or Heaviside (1899).

Later, radioactivity was discoverer. This has only a secondary effect for the Kelvin’s cal-
culations but extends its significance by providing an independent chronometer for dating the
age of the Earth (Burchfield, 1975). Besides, geologists challenged the age given by Kelvin. By
estimating the rate of sedimentation and erosion they showed that the Earth must be much
older than that.
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Kelvin laid the foundations of modern geophysics. Omne of the most intriguing questions
we want to answer about the Earth and planetary bodies is to reconstruct their thermal and
chemical histories from the very beginning and describe how these objects came to their present
state. As we will see further, melting is inevitable at some stage during the evolution of planetary
objects. And as we presented above, the idea of the extensive melting of the Earth (or that
the Earth started from a completely molten state) came already from Kelvin and actually it
was proposed even earlier, at the turn of the seventeenth and eighteenth century (Deparis and
Legros, 2000). At the time of Kelvin this had neither observational nor theoretical support and
it was not until the second half of the 20" century that this theory had been reopened and
finally resumed (Wood et al., 1970; Wood, 1972b,a). Prior to this, it was supposed that the

Earth accreted from accumulation of particles of constant size without causing any fusion.

The theory of hot start of the Earth came on the basis of observations and analysis of the
Moon’s samples that indicated large scale melting of its surface and formation of a lunar magma
ocean (Wood et al., 1970). Later, more and more evidences were found to support this (Hostetler
and Drake, 1980). Especially large advance was made when researchers realized that not only
the future planets were growing, but also the objects that were building them were also growing
with time. And so the model of violent accretion causing extensive melting was born (Safronov,
1978; Kaula, 1979; Wetherill, 1985; Melosh, 1990). Below we will see that there are more sources
to heat and melt the young planets.

1.1.2 Making planets: accretion models and heat sources

The Earth is the third planet in the Solar System. Its structure at first order consists of a
metallic core surrounded by a silicate mantle. In this configuration, the system has a minimum
gravitational energy, and this is the reason for such an arrangement. The core lies 2890 km
beneath the Earth surface. However, there is still no unifying model describing timescales of
separation of iron and silicates and determining thermal and chemical conditions before, during

and after core formation.

In order to understand which processes played a key role during the accretion and differen-
tiation we first describe the formation of the Solar System, which birth is defined as a time
when first solid grains in the nebular disk were formed. The oldest known objects (except for
the presolar grains) that witnessed the origin of the Solar System are calcium-aluminum-rich
inclusions (CAI), that are small fragments trapped in carbonaceous chondrite. They can be
dated using 2°7Pb-29Pb isotopic system giving the age of the Solar System 4.5682 Gy (Bouvier
and Wadhwa, 2010).
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The formation of the Solar System can be divided into several distinct stages characterized
by different time and space scales. Here, we briefly review each period one by one in order to
understand which processes lead to the birth of the Earth and set thus the initial thermal and

compositional states of the planet for its subsequent evolution (e.g. Chambers, 2004).

The process of accretion of planetary bodies (Safronov, 1972; Canup et al., 2000) starts in
the protoplanetary disk that is composed of dense gas and dust and rotates around the proto-
Sun (Figure 1.2). Gravitational instabilities and collisions between dust particles with sizes
up to centimeters allowed the growth of planetesimals that are from 1 to 10 km large within
103y. Further, these objects experience the mutual gravitational interactions forming from
Mars to Moon sized embryos called protoplanets. This second stage occurs on the timescales
of 10° — 108y. The final stage of accretion takes the longest time (10 — 100 My) and ends up
with fully grown terrestrial bodies. Probabilities of a collision decrease with time as there is less
and less objects in space, but individual impacts are more violent and more energetic due to the

important masses involved (Melosh, 1990).

Simultaneously with accretion, differentiation, i.e. separation of iron and silicates and mantle
and crust (and eventually a deep silicate reservoir), of planets occurred. There is still an ongoing
debate trying to reconstruct this process. The formation of the core is often presented as a single
stage event. However, it occurred certainly on multiple levels. Also, if a protoplanet encounters
a collision with an already differentiated body, the merging of both cores can happen instead
of emulsification of both phases (Tonks and Melosh, 1992). Then, the chemical signal of the

formation of the impactor’s core would be recorded in a growing planet.

A necessary condition for the separation of the distinct phases is that iron must be molten (e.g.
Stevenson, 1990; Ricard et al., 2009). Several possible sources can heat up the planet. These

operated on different time scales and are not important nowadays. We review them below.

Heating by impacts

As was described above, violent collisions between bodies with important sizes happened late in
the accretion process. The kinetic energy of the impactor is Ey = 1/2M vizmp, with M the mass
of the impactor and vimp its velocity. vimp is comparable to the escape velocity vimp = V2¢R,
where R is the radius of the impacted body and g = 4/3Gmpi. R the gravity (pic is the density of
the impacted body and G = 6.67 - 10~ m3kg~!s~2 the gravitational constant). For impactors
with velocities that are large enough, larger than the elastic velocities, the energy is buried in a
spherical region where the impactor hit the growing planet (the so called isobaric core) (Croft,

1982; Pierazzo et al., 1997; Senshu et al., 2002). The kinetic energy of the impactor is transformed
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Figure 1.2: A schematic picture of planetary formation (Lin, 2008). (Top) Orbiting dust grains
around the proto-Sun (In the centre) forming planetesimals. (Middle) Planetesimals grow to
form planetary embryos. (Bottom) Planetary embryos gravitationally interact.

in heat and is partly retained by the planet (fraction f;) and partly lost to space by radiation.
Considering that the density of the impacted body is equal to the density of the impactor

Pic = Pimp = P, the temperature increase is

4m f1 pGR?
3 fa C,

AT = , (1.2)
where (), is the heat capacity and f» represents the heated volume, that is normalized by the
volume of the impactor and is around fo ~ 9. fi is determined experimentally and its value
lies around f; ~ 0.3 (e.g. Monteux et al., 2007). AT increases rapidly with the radius of the
impacted body (due to the second power in Eq.(1.2)) and does not depend on the radius of the
impactor. Using C), = 1200 Jkg'K~!, p = 4000 kg m 3, we obtain for a Moon size protoplanet
AT ~ 100K. For a Mars size impacted object AT ~ 360K, for an Earth size impacted body
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AT ~ 1260 K.

Heating due to decay of radioactive nuclides

Short-lived radioactive nuclides 26Al (which decays to stable 26Mg) and ®°Fe (which decays to
stable %°Ni) are a significant source of heat during the first millions of years after the formation
of the Solar System thus being important for small bodies (planetesimals). The thermal state of
planetesimals is fundamental since the extensive melting would induce their differentiation. It is
thus still not clear if the Earth (and other planetary bodies) accreted from bodies that already
had a metallic cores or from undifferentiated objects. Most probably a mixture of differentiated
and undifferentiated planetesimals contributed to the formation of planets, depending on their

size and formation history (Sramek et al., 2012).

We now estimate the temperature increase AT due to decay of radioactive nuclides as

fCiEp

AT =
C, ’

(1.3)

where f is the initial fraction of radioactive isotope (i.e. "X /X where X is Al or Fe), C; the
concentration of the stable element, Ep the nuclear decay energy released into heat within the
whole history and C,, is the heat capacity (Rubie et al., 2007). For the 26Al system (half-life
7 = 0.74My) Fp = 1.16 - 103 Jkg™! and f = 5- 107> at the beginning of the Solar System
(CAI time). The abundance of 27Al stable isotope is taken to be chondritic 0.865 wt.%. Using
Cp, = 1200 Jkg'K~! results in a temperature rise of 4180 K. Supposing, that the body was
formed 3 My later, the fraction of the radioactive nuclide would decrease after the decay law
f(t) = foexp(—1In2t/7), where fy is a fraction of radioactive element at time 0 (CAI time).
Hence, f(t = 3My) = 3.01 - 1079 resulting in AT = 252 K.

For the %Fe system Fp = 4.43 - 10'2Jkg~! and the half-life of decaying atoms is 7 =
2.6 My (Rugel et al., 2009) (note that this value differs from 7 = 1.5 My used prior to 2009).
The initial isotopic fraction for this system is still highly debated and recently it has been
suggested that its distribution has been non-homogenous in the early Solar System due to
incomplete isotopic mixing (Quitté et al., 2007, 2010). f is usually estimated either around
f(t = CAI) = 8-107? (Quitté et al., 2010, 2011) or f(t = CAI) = 4 - 1077 (Quitté et al.,
2007). The former concentration is so low, that the temperature increase due to radioactive
decay would be minimal at any time (inferior to 5 K). Considering the chondritic composition
of stable iron isotope *Fe 18.2 wt.% results in AT = 268 K at CAI time and 120 K 3 My later.
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These estimations of the temperature increase were done with an assumption that the body
is isolated. In reality, a fraction of this energy is lost to space. Also, they are valid only for large
planetary bodies where diffusion is negligible. For smaller bodies with radius inferior to diffusion
length the temperature in the centre of the planet is controlled by diffusion. Simple estimates
show that these objects, with kilometer scale sizes, are unaffected by the radioactivity (Sramek
et al., 2012). Hence, the radioactive decay of short lived nuclides is an important heat source

only for larger bodies that have accreted rapidly while the system was alive.

As an example of a differentiated small planetary body, an asteroid Vesta is considered.
Vesta (diameter about 525 km) can be found between Mars and Jupiter and it is supposed
that a meteoritic group Howardite Eucrite Digenite (HED) found on Earth comes from this
parent body. Isotopic measurements of these meteorites indicate that Vesta was formed during
the first 20 million years of the Solar System. Spectral measurements reveal that radioactive
nuclides provided enough heat to differentiate the object (probably by the decay of 26 Al (Ghosh
and McSween, 1998)) forming metallic core, silicate mantle and crust, early after its formation
(between 4 and 16 My after the CAI formation) (Lee and Halliday, 1997; Kleine et al., 2002).

Heating due to differentiation

An accreted undifferentiated planet (density p) is a mixture of silicates (density pg) and metal
(density pmet ). Several physical processes lead to the separation of the two major phases and their
redistribution so that the silicates envelop the metallic core. The change in mass distribution
is accompanied by a change of gravitational potential energy, that is driving the system toward
a lower state and is converted into heat by viscous friction. The amount of energy liberated
depends only on the final and initial states of the planet and is irrespective of the manner the
final state was achieved. The temperature increase AT due to differentiation is (Flasar and
Birch, 1973; Solomon, 1979; Ricard et al., 2009)

B AGTR?

5
AT = 02— p2 b2 — % (1= 0°) — = (pmet — psit) psid® (1 — b2 1.4
550, <p Prnetd” — PG ( ) 5 (Pmet = psit) psi ( ) (1.4)

where b is the ratio between the size of the core R¢qe and the total radius of the planet R, G
the gravitational constant and C), the heat capacity. The average density can be expresses as
p = b2pmet + (1 — b3)psi. Note that zero temperature difference is obtained when there is no
segregation, i.e. b = 1 if the planet is formed only by metal, b = 0 is the planet is composed

entirely of silicates or pg1 = Pmet-

Typically, for a planet with radius R = 3000 km and the core size R¢ore = 1500 km, the tem-

perature increase due to segregation of metal into the centre is 250 K (using pmet = 7000 kg m ™3,

10



1.1. FORMATION AND EARLY STAGES

psit = 3500kgm ™3 and C), = 1200 Jkg ' K~!). Monteux et al. (2009) show that the thermal en-
ergy released during the segregation of metal on growing planets is comparable to the thermal
energy buried during the impact. Contrary to the energy brought by impacts, the gravitational
energy is transformed into heat within the Earth interior and is not readily lost to space. How-
ever, its partitioning between the silicate and the metal is still unclear. The work of Ricard
et al. (2009) predicts a significant temperature increase in both the proto-core and the shallow
mantle, but leaves a rather cold deep mantle (that remains undifferentiated in their model).
At the end of segregation process, the proto-core has a temperature around 1800 K and stays
thermally insulated due to low temperatures in the deep interior of the planet while the upper
part cools by convection. Overheating in the core might have caused melting of the lowermost

mantle.

Samuel et al. (2010) studied core formation by negative diapirism and the associated gravita-
tional heat release. The result strongly depends on the size distribution of diapirs and leads to
two distinct states: a relatively cold core is formed when a small number of large diapirs deliver
the metal in the centre while a relatively hot core is produced with a large number of small
metallic diapirs. In any case, the lowermost mantle is left with higher temperatures compared

to its shallow parts that can further enhance the extensive melting of deep mantle.

1.1.3 Crystallization of the Earth mantle

As we saw in the previous section, multiple heat sources operated during the early evolution of
the Earth resulting in episodic melting and leaving eventually the Earth’s mantle completely

molten. This is crucial since the subsequent Earth history follows from these initial conditions.

Whether inevitable crystallization of the magma ocean proceeds from the bottom, the middle
or the top can be inferred by comparing the liquidus curve with the mantle temperature profile.
The latter can be also linked to the thermodynamic quantity 7, the Griineisen parameter. For

an isentrope in the magma ocean it holds

B d(logT)
7= (Sees )s ’ (15)

where T is the temperature and p the density. The subscript S signifies that the derivative is
at constant entropy. A high v would then imply a relatively high temperature gradients in the

convecting magma ocean.

The classical view is that the crystallization of a deep magma ocean starts from the bottom
advancing upward (e.g. Abe, 1997; Solomatov, 2000, 2007). This has been recently challenged

11



CHAPTER 1. EVOLUTION OF THE EARTH

by a new model of Mosenfelder et al. (2007) and Mosenfelder et al. (2009) based on shock
experiments. They suggest that due to the high Griineisen parameter v of the Earth’s interior,
the crystallization of the mantle starts at the surface or in the middle of the mantle, cf. Figure 1.3.
Increase of « for silicate liquid in Earth’s lower mantle is also supported by the first principles

molecular-dynamics simulations (Stixrude and Karki, 2005; Stixrude et al., 2009).
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Figure 1.3: The liquidus curve (black solid thick line) is compared with several isentropic profiles
for MgyoSiO4 composition. Considering thermal evolution described by three adiabats repre-
sented by colored solid lines, the crystallization would proceed from the bottom (high pressures
and temperatures). The model with low Griineisen parameter v (one of the blue dashed lines)
would give the same evolution. But the new shock wave experiments (Mosenfelder et al., 2009)
predict an increase of the Griineisen parameters of the melts upon compression implying adiabat
with higher temperature gradient (dashed blue line - high v model). This would mean that the
magma ocean would solidify from the middle of the mantle. (Figure taken from Mosenfelder
et al. (2009).)

1.1.4 Equilibration process during Earth’s core formation

An important indicator on the formation of the core is provided by abundances of chemical
elements in the mantle (Figure 1.4). Elements with relatively low condensation temperature
(volatiles) are depleted in the mantle relative to chondritic concentrations. This is because they
can be more easily lost when temperatures get high such as during the accretion. Refractory
elements that have a high condensation temperature are thus more suitable for documentation

of the early state of planets.

12



1.1. FORMATION AND EARLY STAGES

Elements that dissolve more easily in metal (siderophile elements) are also depleted in the
mantle relative to chondrites (Figure 1.4). This is because they were preferentially partitioned
into the metal during formation of the core and were delivered to the center of the Earth.

FElements that have not been affected by the differentiation belong to the refractory litophile
(preferentially dissolves in silicates) group. Indeed, we note that their abundances match the

chondritic ones (Figure 1.4).

10.0
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Figure 1.4: Element abundances in the Earth mantle (normalized to CI chondrite and Ti)
as a function of the condensation temperature. Two phenomenons are reported by the con-
centration depletion. Volatile elements (circles, right half of the figure) are depleted because
the temperature at which they evaporate is low and thus they have been partly lost during
accretion. Siderophile elements (black squares, dissolve readily in iron) are depleted because
they have partitioned into iron rich metal during core formation. Note that elements that are
lithophile (dissolve readily in silicates) and refractory (high condensation temperatures) (black
diamond symbols) have the same concentrations in the Earth and in the chondrites. Reproduced
from Mann et al. (2009).

Timescales of differentiation are constrained by the Hf-W isotopic system. Hafnium '82Hf is a
radioactive nuclide that decays to a stable isotope tungsten 82W with a half-life 8.9 My. Both,
I82Hf and '¥2W, are refractory elements, but Hf is lithophile while W is siderophile. If the core
formed early during the half-life of hafnium, '82Hf would be left in the mantle and the ratio
of radiogenic and nonradiogenic tungsten, '*2W and '®3W, would be high. While if the core

forms tardily when '®2Hf is already extinct, *¥3W would be removed to the core resulting in the
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CHAPTER 1. EVOLUTION OF THE EARTH

low 82W /183W ratio. It has been shown that the Earth’s mantle shows an excess in radiogenic
tungsten compared to undifferentiated chondrites indicating that the Earth’s core must have
formed earlier than ~ 30 My after the Solar System was formed (Kleine et al., 2004). Core
formation and accretion were thus probably processes that happened simultaneously (Stevenson,
1990).

As mentioned above, siderophile elements are depleted in the mantle. Assuming equilibrium
model for core-mantle differentiation (and here we consider only this model), the degree of deple-
tion is given by a partition coefficient K that is the ratio between concentrations of an element ¢
in the metal and silicates at equilibrium, i.e. K = C’imetal / Cfilicates. However, experimentally de-
termined partition coefficients at low pressure predict much lower concentrations of siderophile
elements in the mantle (e.g Wood et al., 2006). This overabundance gives us an insight into the

conditions under which segregation of metal from silicates occurred.
hjll crust
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Figure 1.5: Schematic cartoon representing different processes acting during the core formation.
The shallow part of the planet is molten. In this upper magma ocean, that is probably vigorously
convecting, separation of the metal and silicates occurs. Iron forms a small droplets and sinks
to a rheological boundary between the liquid and solid. After a certain amount of iron was
accumulated, it descends toward the center of the planet in large diapirs to form the core.
After Stevenson (1990).

A range of observed concentrations can be explained by equilibration between metal and

silicate at high pressure and temperature conditions. As metal sinks into the centre of the planet,
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1.2. ARTICLE: COMPOSITIONAL AND THERMAL EQUILIBRATION OF PARTICLES,
DROPS, AND DIAPIRS IN GEOPHYSICAL FLOWS

pressure and temperature increase and the partition coefficient generally decrease. Subsequent
reequilibration at new conditions occurs. During the differentiation of the planet, shallow magma
oceans were formed and small droplets of metals sink due to density excess and deliver metal
toward the centre. Metallic blobs accumulate at a rheological boundary between the molten and
solid mantle (marked as 60% melt fraction) and further descend to form the core having a form
of large diapirs (Stevenson, 1990; Karato and Murthy, 1997; Murthy and Karato, 1997). This
canonical model (Figure 1.5) is probably very simplistic but provides a good first order approach
to be considered. Using this scenario, concentrations of elements in the silicate mantle result
from equilibration at the base of the shallow magma ocean. This requires inefficient equilibration
between the mantle and large diapirs (due to large spatial dimension and small temporal scale)
while very efficient equilibration must proceed between the dispersed iron drops and liquid
silicates (Rubie et al., 2003; Ulvrova et al., 2011; Samuel, 2012). Whether equilibration process
of small droplets of iron is efficient (and to which extent) is an object of the first part of this
thesis and is detailed further in this chapter. Many studies of the partitioning behaviour have
been conducted to infer pressure and temperature conditions at the base of the shallow magma
ocean (e.g Li and Agee, 2001; Chabot et al., 2005; Righter, 2011; Siebert et al., 2012) and a
very broad interval of equilibration conditions have been given, 30-60 GPa for pressure and
2000-4200 K for temperature (Rubie et al., 2007).

1.2 Article: Compositional and thermal equilibration of parti-

cles, drops, and diapirs in geophysical flows

In order to quantify the efficiency of chemical equilibration between dispersed iron droplets and
background silicate matrix during the core formation, we propose to study a single liquid drop
falling in liquid silicates. Assuming that the system is initially at non-equilibrium, we derive
scalings predicting how fast it takes to get into equilibrium state considering the flow structure
outside as well as inside the drop.

Our results were published in a peer reviewed journal Geochemistry, Geophysics, Geosystems

and the paper follows below (Ulvrova et al., 2011).
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[1] Core formation, crystal/melt separation, mingling of immiscible magmas, and diapirism are fundamen-
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that can be used at multiple scales. They depend mostly on the non-dimensional Péclet and Reynolds
numbers, and are consistent with numerical simulations. We show that equilibration between a particle,
drop or diapir and its host needs to be considered in light of the flow structure complexity. It is of funda-
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enhances exchange through the interface. The scaling laws are applied to predict nickel equilibration
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1. Introduction

[2] Bubbles and crystals travel through differenti-
ating magmas; metal drops and diapirs fell through
molten silicates during the formation of Earth’s
core [Stevenson, 1990; Rubie et al., 2003; Samuel
and Tackley, 2008; Monteux et al., 2009]; and
sometimes, coexistent immiscible magmas or metals
separate to reach gravitational equilibrium [Dawson
and Hawthorne, 1973; Dasgupta et al., 2006, 2009;
Morard and Katsura, 2010]. Differential motion
driven by gravity is a prerequisite for planetary dif-
ferentiation at all scales. While a phase travels
through and deforms the other, chemical and thermal
diffusion proceed towards thermodynamic equilib-
rium. Depending on material and flow dynamics,
non-equilibrium fractionation could result from
inefficient mass/heat transfer from one phase to the
other during travel. In order to quantify the time scale
of thermodynamic equilibration, it is necessary to
model deformation of both phases and transport
dynamics.

[3] A generic physical description of these differ-
entiation mechanisms can be formulated by the
rise/fall of chemically (or thermally) distinct parti-
cles, drops or diapirs through a viscously deform-
ing medium. In this paper, the term particle refers
to a small self-contained body significantly more
viscous than the surroundings and possibly solid,
while drop and diapir are defined by self-contained
bodies as viscous or less viscous than the sur-
roundings and possibly inviscid. A diapir is a
large-scale body with approximate sphericity, and
we use the term of drop for small-scale body, when
surface tension controls the sphericity. The purpose
of this paper is to review and propose analytical
laws that describe the chemical/thermal equilibra-
tion of a traveling particle, drop or diapir, that can
be used at multiple scales and applied to a variety
of geological problems. This chemical equilibration
is that of minor or trace elements, migrating across
the surface of the traveling sphere, assuming that
the major element mineralogies, inside and outside
the sphere, do not change. We first draw attention

to results that are often overlooked in the geosci-
ence literature though acknowledged in engineer-
ing and mass/heat transfer communities. Indeed,
the mass and heat transfer between a liquid drop/
solid particle and a viscous surrounding medium
has been described for various industrial purposes
[Clift et al., 1978]. We then extend their use and
couple them to concentration models inside and
around the spherical body. We propose scaling
laws for the time of equilibration for 4 different
regimes: a particle with and without inertia, a drop/
diapir with and without inertia. Then, we propose
times of chemical equilibration during core for-
mation and silicate melt differentiation.

2. Models for the Equilibration of
Rising/Falling Particles, Drops,
and Diapirs

2.1. Chemical and Thermal Transfer
From a Sphere

[4] We restrict ourselves to the study of an indi-
vidual spherical particle, drop or diapir of radius R
in steady-state motion with terminal velocity U,. In
the following, the subscript “o0” denotes the prop-
erties outside the sphere and “i” inside the sphere.
The viscosity ratio between the falling/rising body
and its host liquid is R, = pi/j1, and we speak of
“particles” when R, = pi/p1, > 1 and “drops” or
“diapirs” when R, = pi/j1, < 1. All the notations
and parameters can be found in Table 1.

[5] In order for the dispersed phase to keep its
sphericity, the interfacial force has to exceed dis-
rupting forces, i.e. the viscous force and inertia,
that tend to deform the sphere. The smallest drops
or diapirs coalesce (they are swept by larger
spheres traveling faster), the largest deform, stretch
and eventually break-up. For highly viscous flows,
the capillary number Ca = p,Uy/~ (v is interfacial
tension), being the ratio between the viscous
stresses and the interfacial tension, reaches a criti-
cal value for break-up conditions that depends on
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Table 1. Variables and Parameters of the Studied System Together With Expressions for the Proposed
Equilibration Times 7

Parameter Notation Unit

Viscosity of the host liquid Lo Pas

Viscosity inside the sphere i Pas

Diffusivity of the host liquid D, m’s!

Diffusivity inside the sphere D; m’s !

Density of the host liquid Po kg m~®

Density of the sphere Di kg m>

Radius of the sphere R m

Terminal velocity A ms'

Initial concentration within the sphere Co mol m™>
Concentration at infinity Coo mol m >
Dimensionless Number Notation Expression
Viscosity ratio Ry il Lo

Diffusivity ratio D Dy/D,

Reynolds number Re RUpo/ o

Peclet number Pe RU/D,

Schmidt number Sc Pe/Re = uo/(poDo)
Sherwood number Sh —(V (s

Regime

Equilibrium Timescale

Drop: low Re, low R,
Drop: high Re, low R,
Particle: low Re, high R,

Particle: high Re, high R,

1
+ IORD>

N Y S
3 \o0as1(14+R,) " *pel2
Pe K

—Pe(_ K . _1
7=3 \omrer T om5

_ Pe K 3
T=3 (0.64Pe'/3 + rrzRD>

_Pe K 3
T=3 (0.6Pe'/3Re”" + ﬂ'ZRD)

the viscosity ratio R, across the surface. This
critical capillarity number Ca is about 0.1 for
high viscosity ratios and larger for low viscosity
ratios, for which the drop/diapir stretches and
forms a slender shaped body difficult to fragment
(see Stone [1994] for a review). For low viscosity
flows, perturbations of the interface generate
Rayleigh-Taylor and Kelvin-Helmoltz instabilities
that ultimately break up the drops [Kitscha and
Kocamustafaogullari, 1989]. This situation hap-
pens when the Weber number We = p,UR/y (po
is external density), which is the ratio between
inertia and interfacial tension, reaches values
around 10 [Wierzba, 1990].

[6] For a body sinking or rising through a viscous
medium, two non-dimensional numbers control the
dynamics of chemical equilibration of the traveling
sphere with its surroundings: (1) the Reynolds
number Re = RU;p,/11, that describes the effect of
inertia to viscous force and (2) the Péclet number
Pe = RU/D, that relates the diffusion time to the
advection time in the host liquid, D standing for
chemical diffusivity. As both Re and Pe include the
terminal velocity, it may be confusing to use

simultaneously the two numbers and we introduce
their ratio, also called the Schmidt number Sc =
Pe/Re = po/(poD,). When the spherical body and
its host liquid have different physical properties,
the ratios of internal to external diffusivities Rp =
Di/D, and viscosities R, = pui/{l,, have to be
considered.

[7] Starting from non equilibrium initial conditions,
the sphere and its surroundings tend to chemically
equilibrate by microscopic diffusion and macro-
scopic stirring. The stirring, i.e., the advection of
concentration by the flow, occurs outside and
possibly inside the sphere, due to the circulation
forced by the shear stress at the surface of the drop.

[s] We assume that the initial concentration ¢ of
some trace element outside the sphere is uniform
and equal to ¢,, while the concentration inside the
drop is equal to co. The dimensionless transport
equation governing this process, assuming materi-
als are incompressible, is written as

e D
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where C stands for the normalized concentration
of any minor element of interest, i.e., C = (¢ — ¢)/
(co — ¢x) and D for the dimensionless diffusion
coefficient being 1 outside the drop and Rp = Dy/D,
inside. To scale the quantities back to numbers with
dimensions, the dimensionless distance has to be
multiplied by the radius of the sphere R, and the
time by the advection time R/U,. The initial non-
dimensional concentrations are one inside and zero
outside.

[9] The local chemical equilibrium implies that the
concentration ¢§"" on the inner side of the sphere is
controlled by thermodynamics to be Kc{'™, where
K is the partition coefficient at the surface (K =
e The final equilibrium is reached when
the outside concentration is homogeneous and equal
to ¢, and the inside concentration also homoge-
neous but equal to Kc,.. The normalized concen-
tration inside the sphere, C;, evolves therefore from

1 to (K — 1)co/(co — Co)-

[10] The chemical and thermal diffusion of a trav-
eling sphere is the subject of numerous studies in
the chemical/heat transfer literature [e.g., Clifi et al.,
1978; Levich, 1962] that we can only briefly intro-
duce here. Usually the mass transfer coefficient of
the sphere is defined as the Sherwood number:

e vart)  (var)
() —c  (CT) 7

where (¢i"™) and (C3*), and (V™) and (V)
are the average concentrations at the surface of the
sphere and average gradients of concentration nor-
mal to it, with and without dimensions. The minus
sign in equation (2) insures the positivity of Sh.
Notice also that although the gradient of concen-
tration (Vci"™) can have any sign, the normalized
gradient (V C3"™) is always negative. Because of the
similarity of heat and diffusion equations, all the
results on diffusion relating Schmidt and Sherwood
numbers have thermal counterparts where the mass
flux is equivalent to the Nusselt number Nu =
—RV Tt/ (Tsuet — Tw), and the Schmidt number to
the Prandtl number Pr = po/(pok,), Where T is tem-
perature and « thermal diffusivity.

Sh =

(2)

[11] A very large number of semi-empirical equa-
tions predicting Sh, can be found in the literature,
based on experiments and physical analysis.
However, simple boundary layer theories can be
developed to quantitatively describe mass fluxes at
the interface in the different flow regimes. The
general method is to express the velocity at the
surface of the sphere, estimate the shape of the dif-
fusion layer and perform careful averaging over

the sphere [Levich, 1962; Ribe, 2007]. The gen-
eral results for high enough Pe can be written in
the form

Sh = aSc”Pe” = a Sc""Re”, (3)

where a, m and n are constants for a given
regime. The exponents can be found by scaling
arguments as summarized hereafter and the pre-
factor estimated analytically, numerically or
experimentally:

[12] 1. When R, < 1, i.e., in the case where the
internal viscosity is of the same order or smaller than
the external viscosity, the external flow experiences
the surface of the drop/diapir as a free-slip boundary
condition. The surface velocity in the reference
frame of the drop/diapir is therefore of order U,
the transport term of the advection-diffusion
equation v.V (C is of order U;C/R (transport along
the surface of the s;)here) and is balanced by a
diffusion term D,V-C of order D,C/6* across a
diffusion boundary layer of thickness § (diffusion
perpendicular to the surface of the sphere).
Therefore the diffusion boundary layer is of order
(6/R)* o 1/Pe, and, as Sh = R/§

Sh = aPe'/? = 4 Sc'/*Re!/?. (4)

The details of the external velocity field control the
diffusion layer and hence the expression of the
constant a. (1) For low Re flows, inertia is negli-
gible, the external velocity is given analytically by
the Rybczynski-Hadamard expression [Acrivos and
Goddard, 1965] and following Levich [1962] we
obtain

a=0.461

. 5
TR (5)

(2) At very large Re, the flow becomes irrotational
and the analytical expression of the potential flow
yields a = 0.79 [Clift et al., 1978].

[13] 2. When R, > 1, the sphere behaves rigidly.
In its own reference frame, the surface velocity is
zero then increases away to U,. Two cases must
then be considered. First, at low Re, there is no
viscous boundary layer as viscous forces dominate
everywhere in the domain. As a consequence the
velocity increases from 0 to U, over the distance R
so that the velocity is of order U,6/R at the distance
6. The balance between advection and diffusion
now gives (U0/R)(C/R) o D,C/8%, which leads to
(6/R)” < 1/Pe and thus to

Sh = aPe'? = 4 Sc'*Re!/?, (6)
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where a = 0.64 [Levich, 1962]. Second, at large Re,
the situation is more complex. In this case, there is
a viscous boundary layer of thickness ¢’ where the
inertia term of the Navier-Stokes equation p,UZ/R
is balanced by the viscosity 1,U/6". The diffusive
boundary layer is therefore embedded in a viscous
layer of thickness & o< R Re . The velocity at
the distance 0 of the particle surface is of order
Ub/8" = UsRe'*/R. The balance between diffu-
sion and advection is now (URe"*/R)(C/R)
D,C/8* which leads to (6/R)* x 1/(Re"?Pe) and
thus to

Sh = aRe'/%Pe!/? = 4 Sc™'/%Pe!/? = 4 Sc'PRe'2,  (7)

where a = 0.6 [Ranz and Marshall, 1952].

[14] 3. For a non moving body, the diffusion
equation can be solved exactly and Sh = 1. This is a
special case, that does not obey the asymptotic
equation (3) valid for high Pe. In the intermedi-
ate regime where Pe is small, various empirical
expressions for each specific case can be found in
the literature. For example, for Re < 1, Clift et al.
[1978] propose Sh = 1 + (1 + a**Pe*®)** in the
case R, < 1 (which generalizes equation (4)) and
Sh =1+ (1 + @’Pe)'” in the case R, > 1 (which
generalizes equation (6)). These expressions are
cumbersome and the cases where diffusion dom-
inates advection not very interesting physically. For
numerical applications, the reader should use the
maximum of the asymptotic equation (3) and of the
diffusive limit Sh = 1.

2.2. Equilibration Time Scales

[15] Once the Sherwood number is known (the
average concentration gradient), to compute the
evolution of the concentration within the sphere,
we must now relate (C3"™) to (C)), the average
concentration of the spherical body. Hence we
integrate the diffusion equation (1) to get

o(Cy)
ot

Sh

Pe

=%<ch“ff> = -3 —(C"). (8)

The thermodynamic equilibrium at the surface
. : surf __ surf : :
implies ¢;"" = Kc;, or in term of normalized

concentrations,

Coo

o = KC T 4 (K — 1) (9)

Co— Coo

[16] The concentration diffuses from the surface
where the concentration gradient is (VC3)/Rp.

Therefore a reasonable profile for the radial con-
centration inside the drop is

<V C:urf >

Ci(r) = () + e

f(r). (10)

The function f{r) characterizes the concentration
profile and verifies the conditions at the surface
and the center of the sphere: 1) = 0, f'(1) = 1
and f"(0) = 0. This function should also satisfy
some positivity constraint as the real concentration
¢i(r) should be everywhere positive. We do not
impose such a condition. Our models implies that
the concentration near the surface of the sphere is
always positive and this controls the average con-
centration (related to the integral of Ci(+)r?) which
is always positive as we see below.

[17] Equation (10), averaged over the volume of the
sphere, gives for the radial average concentration

N\ surf\ <churf> _ surf ( Sh )
<Cl> - <C1 > b RD - <C0 > K + b RD
Cowo

+(K—-1)

(11)

Co— Coo

where the second equality uses averaged equation (9),
and where b is positive and given by

1
éz 73/0 f(r)rdr. (12)

[18] Combining equations (8) and (11) we predict an
exponential homogenization of the concentration

With real dimensions, the solution is simply

(ci(t)) = coexp (f%r) +ch(1 —exp G%z)). (14)

These last expressions show that the average con-
centration in the sphere reaches exponentially the
asymptotic equilibrium value and provides an esti-
mate of the characteristic homogenization time 7 as
a function of K, Pe, Re, Ry, and R, (which controls
the appropriate expression of Sh). It also shows that
the average concentration is always positive, inde-
pendently of the choice of f{r), hence b, that we
estimate for two limiting cases:
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Figure 1. Maps (close-ups) of the nondimensional velocity relative to the average drop velocity (arrows) and con-
centration (color) for falling (a) particle in Re < 1 flow, (b) drop in Re < 1 flow (in to out viscosity ratio R, = 107%)
and (c) particle in a higher Re flow (being 50 here). The spheres fall under their own weight and start with a com-
position of 1 (light grey) and the surrounding material has a zero concentration initially (green). All models have
Péclet number Pe = 2800 and equal diffusivity in and out of the sphere (Rp = 1). Snapshots are taken after a
falling distance of 36 (Figure la), 41 (Figure 1b) and 283 (Figure lc), times the sphere radius.

[19] 1. WhenR,, > 1, there is no recirculation inside
the sphere. When diffusivity of the outer material is
large, 1/(bRp) > K/Sh, the time of equilibration in
dimensional quantities is 7 = R*(3bD;), which is
the same as the classical value obtained for diffu-
sion in a sphere with imposed surface concentra-
tion R*/(m*D;) [Carslaw and Jaeger, 1959], when
b = 7%/3. This is obtained for f{r) = —sin(zr)/(7r),
which indeed verifies f/'(0)=f1)=0,and f'(1)=1.In
our equilibration experiments, the concentration is
not imposed at the sphere surface but at infinity.
The diffusion toward the sphere must also proceeds
outside the sphere and using equation (13) with
Sh = 1 we predict for the equilibration time of a
static sphere (with real dimension)

R? R?
3D, T 7D,

s=K (15)
The equilibration of a sphere with concentration
maintained at infinity is indeed slower than when
this concentration is imposed at the surface and
depends on internal and external diffusivities and
on the partition coefficient.

[20] 2. When R, < 1, there is an internal recircu-
lation inside the drop/diapir, the concentration at
the center is close to the concentration at the sur-
face because of the efficient inner transport. Thus,
the radial concentration profile within the fluid
sphere must also satisfy f{0) = 0. The simplest
polynomial function that verifies all four conditions
A0)=£1(0)=A1)=0, and /(1) =1 is f{r) = r*(r— 1)

which results in 5 = 10.

[21] For the convenience of the reader, the expres-
sions for the equilibration times in the different
regimes are summarized in Table 1.

3. Numerical Examples

[22] The goal of this section is to compare full
numerical solutions for the time of equilibration
with the analytical laws proposed above. Hence we
run 2D axisymmetric numerical simulations of the
incompressible Navier-Stokes equation coupled
with the mass transfer equation. The experiments
are performed using the finite element method
(FEM) implemented in the Elmer open software
(CSC IT-Center for Science, 2010, available at
http://www.csc.fi/english/pages/elmer). The com-
puting domain consists of an axisymmetrical cyl-
inder with height and diameter of 40 R. In the
center of the cylinder is a motionless sphere of
radius R. Constant inflow of magnitude U, parallel
to the axis of symmetry together with zero con-
centration boundary condition are prescribed at the
bottom of the cylinder, neglecting thus the influ-
ence of other drops. Free-slip boundary condition
for velocity, and zero concentration are imposed at
the sides of the cylinder. At the top, a flow parallel
to the symmetry axis is forced, and a Neumann
boundary condition of zero concentration gradient
is prescribed. Finally, at the surface of the sphere,
zero normal velocity and zero tangent traction are
prescribed. A jump in concentration is imposed
according to the choice of the partition coefficient,
while the concentration flux remains continuous.
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[23] Using FEM allows us to refine the mesh in the
boundary layer around the sphere in order to have a
good resolution for the velocity and transport
equations, together with the refinement in the wake
where more complicated structures of the flow
appear at high Re. We use up to 80 000 mesh
nodes. For each of the simulations, the time of
equilibration 7 is computed through a least-squares
fit of the time series of (Ci(¢)). We explore its
dependence on the non-dimensional numbers Pe in
the range 10°-10°, Re in the range 0-170 and
diffusivity and viscosity ratios Rp and R, in the
range 10'—10° and 10 °~10°, respectively.

[24] Typical flows are shown in Figure 1 (velocity
in the sphere reference frame is depicted by arrows,
concentration by color scale). For a rigid sphere
and low Reynolds number (panel a, R, = 100,
Re = 0.1), the flow is a typical Stokes flow,
homogenization proceeds from the surface, and a
tail is emitted in the wake of the sphere. When the
internal viscosity is reduced keeping the same low
Reynolds number (panel b, R, = 1073, Re=0.1),a
circulation is induced within the drop with veloci-
ties comparable to the terminal velocity, and we
note two minima for the concentration, along the
symmetry axis and at the surface. As Re increases
(panel ¢, R, = 10*, Re = 50), the symmetry of the
flow breaks down and a vortex is generated behind
the sphere. The variety of flows, within and outside
the sphere, is the expression of the diversity of
regimes for chemical and heat transfer. The tran-
sition from the drop/diapir case, in which the inner
circulation is pronounced, and the particle case,
where the sphere acts as a solid, occurs for R,
between 1 and 500 in our calculations.

[25] In Figure 2 we depict the average radial con-
centrations corresponding to cases with and with-
out internal recirculation, for the situations and
times of the cases in Figures 1b and 1c (the case in
Figure la, without recirculation is comparable to
the case in Figure 1¢ for what concerns the average
radial concentration). Although the fits are not
perfect, the analytical profiles capture the behavior
of the numerical solutions. The quality of the
approximations are increasing with time, as equili-
bration proceeds. As the average concentrations in
the sphere involves Ci(r)?, and are therefore
mostly controlled by the concentration near » = 1,
more accurate fits are not needed.

[26] To benchmark the quality of the predictive
laws proposed above, we compute the evolutions of
the concentrations in numerical simulations. These

evolutions can be closely matched by exponentials,
as predicted. In Figure 3, the Pe dependence pro-
posed above reproduces the results of the simula-
tions in the various cases, at low and high Re. The
proposed analytical expressions are in very good
agreement with the numerical experiments. For the
drop/diapir case, the analytical model with inviscid
flow gives a lower bound for the time of equili-
bration since viscosity should slow motion in
boundary layers. In Figure 3, the role of the cir-
culation within the drop/diapir is expressed by the
shorter equilibration time for the fluid sphere case
relative to the solid case. Indeed, the circulation
within the sphere produces efficient stirring that
generates stronger chemical/thermal gradients which
diffuse away more rapidly. As Pe increases, the
non-dimensional time of equilibration increases. To
keep the same reference time scale for the non-
dimensionalization (fixing the values for U; and R)
while increasing Pe implies that diffusivity has to
be decreased. It is then expected that keeping the
velocity constant and decreasing the diffusivity
thwarts equilibration.

[27] The observed role of Re in the simulations is
also consistent with our predictions with and
without internal circulation, as seen in Figure 4.
Increasing Re leads to a decrease of the dimen-
sionless time of equilibration. At high Re, veloci-
ties can be larger and stronger velocity gradients
are allowed which favor a faster mixing. Indeed,
the higher the Re the thinner the boundary layer
around the sphere, and thus the more efficient the
diffusion across the drop interface. However, this
mechanism is somewhat modest since a limited
reduction of the equilibration time by a factor of
2 requires more than 3 order of magnitude higher
Re. The onset of the wake instability does not
generate significant changes in the equilibration
style mostly because the flux of elements/heat is
dominated by the fluxes at the front of the sphere
while it remains close to zero in the wake.

[28] Figure 5 shows 7 as a function of Rp for a
fixed Pe for the drop/diapir and particle cases at
low and high Re. Again the numerical results show
a good agreement with our theoretical predictions:
when Rp > 1, diffusion inside the sphere is more
efficient than outside. Hence, diffusion in the host
liquid is the limiting parameter for equilibration
and 7 does not depend on Rp, cf. equation (13).
For Rp < 1, diffusion in the sphere is the limiting
parameter and as a consequence 7 decreases with
Rp. As explained above, the analytical model for the
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Figure 2. Average concentrations in the sphere as a function of normalized radius, corresponding to the cases in
Figures 1b and Ic (solid lines). The profile approximations (dashed lines), equation (10) with fr) = #*(» — 1) and
Ar) = —sin(nr)/(7r), are in reasonable agreement with the simulations, particularly near r = 1.

high Re drop regime represents a lower bound for the
analytical model since inviscid fluid is considered.

4. Discussion and Conclusions

[29] We presented approximate analytical models
to predict equilibration times for spherical particles,
drops and diapirs traveling through a viscously
deforming surroundings due to buoyancy forces.
Numerical simulations for a wide range of parameters
confirm our predictive laws that can be used in
geophysical problems at any scale. Small differences
between analytical and numerical predictions can
however be noticed (particularly visible in Figure 4
where we use a vertical linear scale). This might be
due to the several assumptions of the analytical
models (asymptotic expressions and choices of
simple radial profiles) or of the numerical simula-
tions (finite size of the computation domain).

[30] We showed that it is fundamental to take into
account the flow structure and hence evaluate the
correct regime for a given situation. The existence
of an internal circulation within the spherical body
is essential since it significantly reduces the time
needed for equilibration. Compared to the purely
diffusive systems, advective motion gives rise to
thinner boundary layers and thus raises concentra-
tion gradients. Consequently, diffusion transport
inside the spherical body and whole equilibration
are more efficient than for a particle or motionless

drop/diapir. When inertia dominates over the vis-
cous forces, the boundary layer is even thinner
speeding up further diffusion across the rim.
Concerning the role of diffusivity and viscosity, a
high diffusion rate of the surrounding host liquid
always favors a rapid equilibration. The role of
the external viscosity is more complex. The time of
equilibration decreases both when the external
viscosity is too low (in which case no stirring
occurs within the drop) and when it is too large (in
which case the terminal velocity and the internal
velocities also decrease). The cases where the
internal and external viscosities are close, i.e., the
transition between drops (internal recirculation)
and particles (no internal recirculation), are difficult
to predict analytically. In the low Re number limit,
the flow can be expressed as a function of R, by
the Rybczynski-Hadamard formulae but a choice
has to be made for the value of b (b = 10 for a drop,
b = 7%/3 for a particle). The situation is even more
complex at high Re numbers where the real solu-
tion lies in between the two analytical cases.

[31] The predictive laws are scale-independent and
can be applied to various geophysical settings with-
out computing the full mass transfer problems. A
small scale problem is hybridization of mafic blob
falling in a more silicic melt. We choose typical
numbers as those of Grasset and Albaréde [1994]:
200 kg m ™ density excess than the felsic surround-
ings [Huppert et al., 1982], viscosities of 500 Pa s
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Figure 3. Nondimensional time of equilibration as a
function of Péclet number (Pe) for drops and particles,
at Re = 0 and Re = 50. In these simulations, the ratio
of internal to external diffusivity is Rp = 1000 and for
the drop R, = 0.1. The analytical relationships are
depicted by dashed lines.

and 25000 Pa s for the mafic blob and host silicic
melt and viscosity, respectively, and 10 cm for the
blob diameter. The Rybczynski-Hadamard formula
gives a terminal velocity of U, = 5.3 - 10° m s '
which implies Re = 2 - 107", The corresponding
dynamic regime is that of a drop traveling at low Re.
To compute the time of equilibration we use typical
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Figure 4. Nondimensional time of equilibration as a
function of Re for drops and particles. In these simula-
tions the Péclet number is Pe = 2800, ratio of internal
to external diffusivity is Rp = 1000 and for the drop
case, ratio of in and out viscosities is R, = 0.1. The ana-
lytical relationships for low and high Re are depicted by
dashed lines. The transition from low to high Re regime
happens around Re = 1.
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Figure 5. Nondimensional equilibration time as a func-
tion of diffusivity ratio Rp for drops and particles, at
low and higher Reynolds number Re (Re = 0 and 50
here). In these simulations the Péclet number is Pe =
2800 and for the drop viscosity ratio R, = 0.1. The ana-
lytical relationships are depicted by dashed lines.

diffusion coefficients of 1072 m? s ! for trace

elements for both liquids. As a consequence, Pe is
about 2.7 - 10°. We arbitrarily choose a partition
coefficient of 2 between the two melts which means
that a trace element will be twice more abundant in
the mafic enclave than in the silicic melt after full
equilibration. The mafic blob is much less viscous
than the surrounding melt. Stirring inside the body
thus enhances the hybridization rate and the char-
acteristic time of equilibration is 2.7 years corre-
sponding to a falling distance of 4535 m. This is a
significantly shorter time than if equilibration pro-
ceeded only by static diffusion obtained from
equation (15). Without any movement the equili-
bration could be attained in about 60 years. Notice,
that many people would use the classical expression
T = R*/(7*D;) that gives for this case an equilibra-
tion time of § years, but is physically inappropriate
as it neglects the diffusion in the surroundings of
the sphere and the partition coefficient.

[32] For small iron droplets falling through a sili-
cate magma ocean during early planetary differ-
entiation, we use values similar to those given by
Rubie et al. [2003], with a drop size of R = 0.5 cm.
The most uncertain and critical parameter is the
viscosity of molten silicates composing the magma
ocean ranging in a wide interval 10 *~100 Pa s.
Choosing 0.01 Pa s gives us a terminal velocity U, =
0.6 m s ' using the work of Brown and Lawler
[2003] for high Re flows. The viscosity of iron
droplets is fixed at ; = 0.01 Pa s [Vocadlo et al.,
2000] and we choose a partition coefficient of
K = 30, which would be that for nickel at a pres-
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sure of 50 GPa [Li and Agee, 2001]. The diffusivity
of nickel in liquid iron is set to D; = 10 ® m* s~
which is estimated from self-diffusion in liquid
Fe at high pressure [Dobson, 2002]. The diffu-
sion coefficient in molten silicate is chosen to
be D, = 10" m* s™', imposing a diffusion ratio of
10. Using parameters above results in Pe, Re, and
R, of 3 x 10°, 1000, and 1, respectively. Hence,
the regime is that of a drop in a high Re fluid.
In this case equilibration should be attained in
4 minutes with a traveled distance around 126 m.
This distance is certainly shorter than the depth of
a magma ocean that could be generated from
an impact with a Mars-sized object [Tonks and
Melosh, 1992]. Our predictions are of the same
order of magnitude as the results obtained by
Rubie et al. [2003] considering the uncertainties
on the parameters. However, our theory takes into
account the flow within the drop and effect of
high Re, and thus proposes an intrinsically faster
time of equilibration and shorter distance than
Rubie et al. [2003].

[33] Further applications can be made (crystal set-
tling in granitoids or ignimbrites, immiscible silicate
and carbonatitic melts segregation etc...) using the
correct proposed predictive relationships. How-
ever, we have made 3 main assumptions that have
to be considered as limitations:

[34] 1. First, sphericity was assumed, which is
known to be matched for drops when the surface
tension dominates and for low Re, and for solids
having a spheroidal shape. The deformation of
diapirs and drops by viscous stresses along the
boundaries can lead to peculiar shapes possibly
skirted and with instabilities leading to break-up.
More complex calculations have to be performed to
follow the shape evolution in such case.

[35] 2. A second assumption involves non-interacting
bodies. In the case of the previously advocated
metallic rain in magma oceans the coalescence and
influence of neighboring droplets have to be taken
into account [Ichikawa et al., 2010].

[36] 3. Third, we assumed pure buoyancy driven
flow. The settling of particles and drops can be
influenced by the effect of rotation or other forces
that we have not considered in the present study.
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1.3. MELT IN THE LOWERMOST MANTLE

1.3 Melt in the lowermost mantle

1.3.1 Core mantle boundary (CMB) region

The interface between the core and the mantle is the most important boundary inside the Earth
with large density contrasts across it. A detailed picture of the core mantle region, that is
probably as complex as the shallow parts of the Earth (the crust and lithosphere), has been
gathered in large part by seismology.

Seismic tomography is a technique that reveals 3D images of the Earth’s present state. It
uses travel times of seismic waves propagating through the Earth to reconstruct its structure.
Wave velocities depend on the thermal and chemical properties of the material they are passing
through. A seismic wave propagates slower through hot regions while it travels faster through
cold areas at the same depth.

At the base of the mantle two large provinces with reduced shear wave velocities have been
detected, one under the Pacific and one under south Africa continent (e.g. Ritsema et al., 1999;
Romanowicz, 2003; Ritsema et al., 2004). Whereas under the central America lies an area
where waves travel faster. As the seismic wave velocity increase with decreasing temperature,
correlation between this anomaly and arriving cold slab has been made. Large low velocity
seismic anomalies can not be simply associated only with thermal variations alone and it is
necessary to consider chemical effects. Mantle models with heterogeneous composition associated
these structures to thermochemical piles with high density (e.g. Kellogg et al., 1999; Davaille,
1999a; Jellinek and Manga, 2002; Tackley, 2002; McNamara and Zhong, 2005). Due to the
increased density these patches persist to be entrained by mantle convective currents and stay
at the bottom of the CMB. Gravitational stability and elevated temperatures favor that these
regions give rise to the origin of plume clusters.

A seismic discontinuity has been observed in the lowermost mantle. Similar discontinuities
are also detected in the upper parts of the mantle and are attributed to the solid-solid phase
transitions. Solid-solid phase change has been thus debated to explain the seismic observations
deep in the mantle. It was not until recently, that this hypothesis has been verified and a new
phase change transition has been indeed discovered under the extreme pressure and temperature
conditions at the CMB (pressures around 125 GPa and temperatures above 2500 K). Experi-
mental work of Murakami et al. (2004) and ab-initio calculations by Oganov and Ono (2004)
show that the structure of MgSiOg3 perovskite, the most abundant mineral in the lower mantle,
transforms to a high pressure form, post-perovskite. The transition is accompanied by a slight
increase in density of 1.0 to 1.2% and has been associated to an upper limit of D” layer. Since

the discovery of the new mineral phase, many studies have been initiated to explain the bottom
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mantle observations, cf. e.g. Hernlund et al. (2005); Hernlund and Labrosse (2007); Lay et al.
(2006) and a review study by Tackley (2012).

The fine structure of the core mantle boundary has been further constrained by seismology
that detected small regions of very reduced seismic wave velocities, the so called ultra low velocity
zones (ULVZ). These are described in detail in the next section.

The resulting picture of the core mantle boundary of the present-day Earth is given by a

schematic cartoon in Figure 1.6.

lower mantle

Central America

outer core

Figure 1.6: A sketch of the lowermost mantle structure. Dense thermochemical piles (DTCP) are
associated with low-velocity seismic anomalies beneath Africa and the Pacific Ocean. Cold de-
scending slab reaching the bottom mantle has been correlated with fast velocity seismic anomaly
beneath central America. Phase transition between perovskite (Pv) and post-perovskite (PPv)
is depicted by a shadow dashed line and it limits the upper extent of the D” layer. Finally, zones
with ultra low seismic wave velocities (ultra low velocity zones, ULVZ) are depicted. Picture
taken from Garnero et al. (2007).

1.3.2 Ultra Low Velocity Zones (ULVZ): possible insight into the past

Regions with ultra low wave velocities at the core mantle boundary have been discovered by
seismology (Mori and Helmberger, 1995; Garnero and Helmberger, 1996). Estimates of ULVZ
thickness are of the order of 5-40 km. The vertical limit for the zone to be detectable seismolog-
ically is 3-5 km. Horizontally, the extent is estimated to be of the order of 100 km. A significant
reduction of compressional (P) and shear (S) wave velocities has been observed (10% for P wave
and up to 30% for S wave), being thus the largest seismic anomaly in the mantle. The absolute

change in P and S wave velocities is about a factor of two and five, respectively, greater than
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1.3. MELT IN THE LOWERMOST MANTLE

that observed near major mantle discontinuities (i.e. solid-solid phase transitions at 440 and
660 km in the upper mantle and perovskite post-perovskite in the deepest mantle). Because the
reduction of S wave velocity is more pronounced than that of P wave, it has been suggested
that ULVZ results from partial melting (e.g Williams and Garnero, 1996).

Q ULVZ detected
Q¥ NoULVZ

“ dVs=0.0

~ dVs=-0.5%

oVs (%) dVs=-08%

-3 -2 -1 0 1 2 3

Figure 1.7: Distribution of ultra low velocity zones (ULVZ) at the CMB from a number of
available seismic studies (compilation done by McNamara et al. (2010)). Saturated blue corre-
sponds to places where no ULVZs were detected. Saturated red patches correspond to regions
with detected ULVZs. Note the heterogeneous ULVZs distribution. Background colors represent
seismic shear velocity anomalies at the lowermost mantle from the seismic tomography model
by Ritsema et al. (2004). Picture from McNamara et al. (2010).

Since the original discovery of ULVZs (Garnero and Helmberger, 1996; Wen and Helmberger,
1998; Garnero et al., 1998; Garnero and Vidale, 1999) many studies have been devoted to explore
their exact positions as well as their characteristics. A very heterogeneous distribution has been
observed (Figure 1.7). Moreover, these seismic anomalies are extremely localized (e.g. Russell
et al., 1998; Rost et al., 2005) and it has been suggested that they are preferentially found at the
edges of large compositional piles (McNamara et al., 2010) introduced in the previous section.

In order to be gravitationally stable on the lifetime of the Earth, the molten zones must be
dense enough. Numerous numerical and experimental studies were devoted to determine the
necessary density difference between the partial melt and the density of the lowermost mantle
dpurvz and the rate of entrainment (e.g Davaille, 1999b; Zhong and Hager, 2003). It seems that

the chemical density contrast of around 2% is needed for the layer to be stable through time
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CHAPTER 1. EVOLUTION OF THE EARTH

(cf. Tackley (2012) for a review). This result can slightly decrease if the dense zone has a much
lower viscosity (Tackley, 1998). Seismologically, a much higher dpyryz, around 10%, has been
estimated (Rost et al., 2005). Recently, partitioning of iron between the solid and the liquid sili-
cates has been measured over the entire mantle pressure range using laser-heated diamond-anvil
cell (Nomura et al., 2011). A sharp change in the partitioning behaviour has been observed and
associated with a spin crossover of iron (from high-spin to low-spin) in the silicate melt (Fig-
ure 1.8 (left)). At pressures greater than ~ 76 GPa (corresponding to a depth around 1800 km),
heavy element iron enters more easily into melt. As a result, Nomura et al. (2011) deduce that
the melt becomes more dense than solids due to higher iron content (Figure 1.8 (right)). Hence,
the liquid forming above a depth of ~ 1800km is lighter than the background solid and rises
upward whereas below this limit, forming melt is iron rich and sinks downward. This is consis-
tent with seismological observations detailed above. Iron enrichment in the lowermost mantle is
also supported by measurements of the sound velocities of (Mg,Fe)O by x-ray scattering. Wicks
et al. (2010) showed that only a small amount of iron-rich (Mg,Fe)O can reduce the average
sound velocity, implying that this oxide can be a candidate for a chemically distinct ULVZ at

the core mantle boundary.

CMB
1 T T T I T T T T T T T T T T T '
I Lig
1 Fp
é f . MgPv
IS )
) 1 k=2
5 01} + b =
o + o
< I { 8
|
|
High-spin Low-spin
melt I melt 4,000 K
0.01 1 1 1 1 1 1 1 PR R TR | N | N 1 M T
20 40 60 80 100 120 140 160 180 20 40 60 80 100 120 140

Pressure (GPa)

Pressure (GPa)

Figure 1.8: (left) Partition coefficient Kp between perovskite (blue circles) or post-perovskite
(red squares) and melt. Kp changes abruptly at pressure around 76 GPa (the limit denoted by
a dashed vertical line, corresponds to a depth around 1800 km). This change is associated with
the spin crossover of iron in silicates. (right) The density of the liquid (red solid line) calculated
for 4000 K using the new partitioning data. Density profile of the mean mantle is represented
by PREM model (Dziewonski and Anderson, 1981) shown in dashed line. The liquid at great
depth has a higher density than solid. Pictures taken from Nomura et al. (2011).
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1.3. MELT IN THE LOWERMOST MANTLE

1.3.3 Model of a long term evolution of the deep mantle

Above we described the present state of the deep interior of the Earth mainly based on seismic
observations and supported by experimental work. In order to test the feasibility of a scenario
to explain the present observations, one needs a realistic evolutionary model to get the Earth
to the present state. In this effort the Earth has to be considered in its totality since individual
reservoirs form a system that is not independent. Strong coupling between rheologically distinct
parts exists. Indeed, the heat flux evacuated from the core is limited by what can be accepted
by the mantle and thus the mantle controls core cooling. Records of existing geomagnetic field
during at least the last 3 Gy indicate efficient heat escape from the core since convection in
the core is ultimately needed for the geodynamo to run (Labrosse, 2003). The temperature of
the core mantle boundary is thus increasing when going back in time and thus more important
melting is expected to be present in the past. Recently, the existence of a basal magma ocean
(BMO) was proposed (Labrosse et al., 2007). In this scenario the mantle starts from a largely
molten state and crystallization begins from the middle, forming thus two magma oceans, one
at the surface and one buried deep in the Earth’s interior. Due to radiation to space, a very
efficient way of heat loss, the shallow magma layer crystallizes rapidly (e.g. Abe, 1997). On
the other hand, the cooling of the BMO is limited by heat transfer through the solid mantle
and so its decay time is of order 1 Gy. This means that extensive melting has been present
in the deep mantle throughout its whole history whose remnants are nowadays observable as
pockets of partial melt, the ULVZs, discussed before. The slow fractional crystallization would
then determine the composition and thermal evolution of the planet. Schematically, the model

is depicted in Figure 1.9.

Alternatively, other processes have been suggested to explain the observations at the CMB.
In particular, the presence of dense piles can be attributed to the segregation of subducted mid-
ocean rich basalt (MORB) (Christensen and Hofmann, 1994; Coltice and Ricard, 1999; Nakagawa
and Tackley, 2010). Many studies have been devoted to explore this scenario (cf. Tackley (2012)
for a review) and it is still not clear whether the oceanic crust, that would have accumulated at
the base of the mantle since the plate tectonics has been active, can match the observed density

and compositional constrains. Also, they could melt and join the ULVZs.

1.3.4 Deep differentiation and fractionation processes narrated by geochem-

istry

Previously, we discussed mainly geodynamical side of the presence of the BMO and compatibility
of the model with experimental results and seismic observations. In this part we focus on

compositional aspects of the BMO and the solid mantle. A distribution of the chemical elements
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Figure 1.9: A schematic model of the Earth evolution depicting four different stages during
the Earth’s history (on the left and the right hand sides are the most ancient and the present
state, respectively). (left) The early Earth mantle (grey) is supposed to be totally or at least
extensively molten resulting in the presence of two magma oceans (yellow): the shallow magma
ocean at the surface and the basal magma ocean (BMO) buried deep in the interior. (middle
left) As cooling proceeds, the upper liquid layer crystallizes much faster than the melt enveloping
the core (orange) due to efficient heat radiation to the space. A large scale convection sets up in
the solid mantle (depicted by the white arrow). (middle right) Slow fractional crystallization of
the deep liquid layer results in the lower mantle that is enriched in iron (depicted by dark grey).
(right) Solidification of the BMO proceeds and the lower mantle is more and more enriched in
iron with time and becomes gravitationally stable forming distinctive patches of dense material
that resist entrainment by convection in the mantle. A scenario proposed by Labrosse et al.
(2007).

will be largely affected by a slow fractional crystallization of the initially thick liquid layer lying

above the core.

Viscosity estimations of the molten deep magma ocean at high pressure and high temperature
conditions have been given using first-principles molecular dynamics calculations by Karki and
Stixrude (2010). These are very low and do not exceed 0.1 Pas (to comparison, viscosity of the
outer core is assumed to be of the order of 1072 Pas, similar to that of water). Further, as was
discussed earlier, due to high content in iron, a high density is presumed for the melt. The result
is that the BMO resists entrainment by large scale convective currents in the mantle and thus
remains unsampled. Yet, its chemical signatures can be seen through the dense piles forming
by accumulation of solid crystals that are dense enough to be gravitationally stable (having the

density difference about 2% compared to the background solid mantle).

So far, these systems recording the BMO crystallization have been addressed: concentrations

of incompatible elements and rare gas isotopic systems of helium and neon (He and Ne) (Labrosse
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et al., 2007; Coltice et al., 2011). Here, we summarize their most important findings.

Taking a chemical composition of the continental crust that is enriched in incompatible el-
ements, one can compute the volume of the mantle that must be depleted to balance for the
crust’s incompatible element enrichment (taking chondrites as a reference). It turns out, that
about 20-30% of the mantle is estimated to be depleted, leaving thus the rest for a "hidden reser-
voir’ occupying the lowermost mantle (Hofmann, 1997). The BMO was suggested to represent
this hidden unsampled mantle (Labrosse et al., 2007).

Using the BMO scenario, Labrosse et al. (2007) computed the present-day composition of
the melt that has resulted by fractional crystallization from initially 850 km thick melt layer.
They show that the remaining melt is slightly enriched in incompatible elements compared to
the continental crust. Applying the mass balance for the resident melt and the crust, they then
predict a composition of the remaining solid mantle that is consistent with estimations for the

shallow mantle composition.

Presence of a hidden unsampled layer is also supported by noble gases concentrations measured
in the ocean island basalts (OIB) in hotspots. In particular, a high 3He/*He isotopic ratio has
been observed in many OIBs. *He is a stable isotope that is easily degassed into the atmosphere
at the surface of the Earth. Thus, high 3He/*He ratio indicates the source provenance from deep
primordial regions that are not degassed. Coltice et al. (2011) show that the concentrations
of helium recorded in OIBs can be a signal sampling the stable chemical piles (formed by
crystallization of the BMO) in case that the solid-melt partition coefficients of He are high
enough (higher than 0.01).

1.4 Conclusions

Many theoretical and numerical models have been developed in order to determine the ther-
mal and chemical history of the Earth and other planetary bodies. Abundances of chemical
elements are observations that need to be understand by these models and that provide an
insight into the formation and subsequent evolution of these bodies. In particular, a depletion
of measured concentrations of siderophile elements in the Earth’s mantle can be explained by
efficient equilibration between iron and silicates at high pressure and temperature conditions
during core formation event. We further explore the equilibration process that occurred be-
tween a single falling metal droplet and background liquid in order to quantifies characteristic
timescales of equilibration for which we propose scaling laws. Derived parametrized equations

depends on the dynamic regime of the flow outside drop as well as inner circulation. We show
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that the equilibration was very efficient and thus the drops are in permanent equilibrium with

surroundings.

Present day structure of the Earth reveals deep melting at the core mantle boundary. More
extensive melting has been necessarily presented in the early days of the planet and we reviewed
several sources of heat acting at that time. The existence of a deep molten layer, called a basal
magma ocean (BMO), was proposed. The BMO is crystallizing over a long time (order Gy) and
is highly convecting.

Questions that are addressed in our work refer to the thermal evolution of the BMO. What
is the coupling between the Earth’s mantle and the core when a convecting liquid layer is found

in between? What is the dynamics of the solidification of a melt layer coupled with convective
flow?
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Chapter 2

Thermal convection and solid/liquid

phase change

More than a century ago, Bénard (1900a,b) performed one of the first quantitative studies of
convective transport. His work later initiated exploring, theoretically as well as experimentally,
the process of convection. Bénard (1900a,b) heated a thin liquid layer with a thickness of the
order of a millimeter and with a free upper surface. He observed the formation of stable regulars
cells, now called Bénard cells, with polygonal shapes, predominantly hexagonal, cf. Figure 2.1.
Initially it was thought that these instabilities were buoyancy driven. Purely thermally driven
flow has been examined theoretically by Rayleigh (1916) who was excited by the Bénard regular
hexagonal cells and genuinely interested in explaining his results. Rayleigh (1916) investigated
a fluid layer subjected to an unstable vertical temperature gradient, i.e. imposing a bottom
temperature superior to the top temperature. He determined a critical temperature difference
across the liquid necessary for the convective motion to start. Using a stability analysis, Rayleigh
(1916) also obtained a critical wavelength of convective cells. He, however, noticed that his
theory did not match quantitatively the results of Bénard.

It was not until the second half of the 20t century that Bénard’s (1900a,b) observations have
been explained in the works of Block (1956), Pearson (1958) and Nield (1964). The convective
motion in a layer with free surface was caused by the thermally induced surface tension gradients
(the Marangoni effect).

Convection occurring in a horizontal layer heated from below is now called Rayleigh-Bénard
convection and in this chapter we present its governing equations and recall its different aspects

relevant to the system under study, the basal magma ocean (BMO).

Our ultimate goal is to investigate thermal convection coupled with the solid-liquid phase

transformation. Solidification was first studied by Stefan, when exploring the formation of
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Figure 2.1: Stabilized regular polygonal convective patterns observed by Bénard (1900a). Thin
liquid layer (thickess of the order of milimeter) is heated from below with free upper surface. A
network of squares with surface 1 cm? is plotted in the image.

ice in the polar seas. Stefan (1891) gives a mathematical description of the freezing problem
and compares his model with experimental data. The task includes the determination of the
phase change front position at each time. Nowadays, problems with free or moving boundary
problems are called Stefan problems. However, we note also that a similar problem had been
already treated previously by Lamé and Clapeyron (1831) and the mathematical solution given

by Stefan (1891) had been already discovered by Neumann several decades earlier.

The process of solidification and melting is described later in this chapter. We present the
governing equations and further focus on the coupled problem of phase change with convective

motion.

2.1 Physical model for Rayleigh-Bénard convection

2.1.1 General governing equations

The dynamics of the fluid is described by the basic set of conservation equations (e.g. Landau
and Lifshitz, 1959) that are recalled here.
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Conservation of mass is expressed by

Dp
v — 2.1
oy TPV v=0, (2.1)

where p is the density, ¢ is the time and v is the velocity. The symbol D e /Dt represents total
derivation. Its definition depends on the chosen reference frame. Adapting the Euler perspective

where the observer is standing at a fixed point from which a moving particle is seen, we obtain

D d
D= +vVe . (2.2)

Lagrangian specification is a way of looking at fluid motion where an observer is riding on the

particle. In this case, the rate of change seen by an observer is simply

D d

—e=—oeo . 2.3
Dit T At (23)
Momentum conservation reads as
Dv

with g the gravitational acceleration, 7 the deviatoric stress tensor that depends on velocity

and P the thermodynamic pressure.

Conservation of energy is

DT DP

where T is the temperature, Cp is the heat capacity at constant pressure, k£ is the thermal
conductivity, « is the coefficient of thermal expansion and H is the heat production per unit

mass, owing to radioactive decay.

2.1.2 Approximations and nondimensionalization

First, we assume the incompressibility of the flow, i.e. the density is constant when following a
fluid parcel, i.e. Dp/Dt = 0, and thus Eq. (2.1) can be simplified to

V.v=0, (2.6)
known as the continuity equation.
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Considering a Newtonian viscous rheology for incompressible flow
T=n(Vv+ (V’U)T) , (2.7)

where ()7 is a tensor transposition, Eq. (2.4) turns to

D
por = VP + V- (n(Vo+(Vo)T)) +gp, (2.8)
known as the Navier-Stokes equation.

In order to solve Eq. (2.8) we need an equation of state (EoS). We assume that the density

varies linearly with temperature 7', i.e.

p=ro(l-a(T -Tc)), (2.9)

where T, is a reference temperature at which the density is pg. In our case the reference tem-
perature is the temperature of the cold wall. Effects of pressure and composition are neglected
in this EoS.
Considering that pressure P consists of dynamic pressure p and hydrostatic pressure Py, i.e.
P = p + Py, using the equation for hydrostatic equilibrium V Py = gpp, using Eq. (2.9) and
considering the Boussinesq approximation, i.e. we neglect the density variations except in the
body force therm (e.g. Ricard, 2007), we can rewrite Eq. (2.8)
Dv T
Py =—VP+ V- (n (Vo + (Vv)')) — poa(T — To)g - (2.10)
Heating due to decompression/compression (the term aT%) and viscous heating (the term
7 : Vo) are neglected in Eq.(2.5) since we consider incompressibility of the flow and Boussinesq
approximation, respectively (e.g. Ricard, 2007). In addition, internal heating due to the presence
of radioactive elements is also neglected. Assuming the thermal conductivity to be constant, the

energy conservation equation has a form

DT
— = gV?T 2.11
Dr = "© , (2.11)

where the thermal diffusivity x has been introduced

k

KR = .
poCp

(2.12)

In fluid dynamics we want to determine parameters controlling the system and their functional
relations (e.g. Landau and Lifshitz, 1959; Batchelor, 1967; Ribe, 2007). We thus proceed here
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Variable Scaling

Length L Thickness of the system under study

Time L?/ky, Conduction time over the thickness L

Velocity kL/L Velocity over diffusive time

Pressure Py = kynL/ L? Reference pressure

Temperature %; _—% Superisentropic temperature difference across L

Table 2.1: Scaling parameters of different variables.
with the dimensional analysis and transform the governing equations into a dimensionless system.

A suitable transformation is employed. Several choices of scaling parameters can be found
in the literature and we use the following transformations for the length V = V*/L, the time
t = h%/kLt*, the temperature T = (T}, — T.) T* + T, the velocity v = xr,/Lv*, the pressure
p = Pyp* = knL/L? p* with Py the reference pressure, and the viscosity n = ny, n* with 7, the
viscosity of liquid. Dimensionless temperature and length are thus bounded between 1 and 0 in
the computational domain. Star denotes a variable without physical thickness and we drop it
immediately for the sake of simplicity. All scaling parameters are given in Tab. 2.1.

Conservation equations, Egs. (2.6), (2.10) and (2.11), in dimensionless form are

V.o - 0 (2.13)
Do gV () (Yot (Vo)T)) + RaTe (2.14)
Pr Dt o |
DT )
DT Gop 2.1
- \V (2.15)

Two dimensionless numbers were introduced, the Prandtl number Pr that relates the fluid

viscosity to the thermal diffusivity

Pr= 1 (2.16)
PORL

and the Rayleigh number Ra that compares the driving mechanisms (buoyancy) to dissipative

processes (dissipation of heat and momentum)

_ gaL3PO(Th - Tc)
RLTL

Ra (2.17)

A value of the Prandtl number (for a given fluid) is based only on its physical properties.
Rayleigh number on the other hand depends on the parameters of the system like its thickness.
Typical values of Rayleigh and Prandtl numbers for the Earth’s core, the mantle and the
BMO are given in Table 2.2. Parameters of these systems are listed in Table 2.3. As there is
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a large uncertainty on the BMO parameters, large intervals are given for the nondimensional
numbers. Moreover, Ra is very sensitive to the physical dimension of the system, that, for the
BMO, must have varied for more than two orders of magnitude from 1000 km to roughly 10 km.
Estimations of Ra are depicted in Figure 2.2 as a function of most uncertain parameters, the

viscosity and superisentropic temperature difference maintained across the BMO.

Mantle BMO Core
Rayleigh number Ra 4-107 10 —10%® 10?71
Prandtl number Pr 3-10% 1-—10° 102

Table 2.2: Nondimensional numbers for the mantle, the BMO and the core (for the BMO values
see also Figure 2.2). TIn order to give the Rayleigh number of the core, nonadiabatic temperature
difference 1K was used (Ricard, 2007), that is highly uncertain and still unknown parameter.
Thus, please note, that this value is only a raugh estimate.

Parameter Notation Mantle BMO Outer core Units

Density 00 4000 5500 11000 kgm—3
Viscosity o 102 1072 -10 1073 Pas
Size L 2890 10 — 1000 2260 km
Gravity g 10 10 5 ms 2

Table 2.3: Parameters of the system

1o d=10 km o d=100km ., __d—1000km
10! 0!

Q 10-2 0-2

S

0-5 0-5 L L
100 10° 10 10%2 10% 10° 10107 10% 10°  10%
Viscosity [Pa s] Viscosity [Pa s] Viscosity [Pa s]

[ ‘ — |
le+12 le+16 le+20 le+24 le+28
Rayleigh number

Figure 2.2: Rayleigh number of the BMO as a function of the viscosity and superisentropic
temperature jump maintained across the system for three different BMO thicknesses.
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2.2 Isoviscous Rayleigh-Bénard convection

The state of a liquid horizontal layer with constant properties subjected to a given vertical un-
stable temperature gradient is fully determined by two nondimensional parameters, the Rayleigh
number Ra and the Prandtl number Pr. If the Rayleigh number of the fluid is lower than a
certain critical value (denoted Ra.), no movement develops and the heat transfer proceeds by
conduction. The velocity stays null everywhere and a linear temperature profile is established
in the system.

Ra. is independent of Pr and is different for different boundary conditions imposed (e.g
Chandrasekhar, 1961). If the top and bottom boundaries are no-slip surfaces (velocity vanishes
at the limits) Ra, = 1708. For mixed boundary conditions (one boundary is rigid, one free)
Ra, = 1101. With both boundaries free-slip (zero shear stress at the limits) Ra. = 657.

Once Ra exceeds Ra¢, convection develops. At moderate Ra stable convective patterns are
established and variables such as temperature and velocity reach a steady state. Increasing Ra
leads to the formation of instabilities and the flow starts to be time dependent. Temperature
and velocity fields fluctuate around mean values reaching a statistically steady states. And thus,
Ra is a measure of convective vigour of the flow.

Pr compares viscous and heat dissipations. The relative size of mechanical and thermal
boundary layers is controlled by the magnitude of the Prandtl number. The thickness of the
thermal boundary layer is set by the Rayleigh number and then the thickness of the mechanical
boundary layer is set relative to that as a function of Pr. The smaller Pr, the thinner the
mechanical boundary layer. A particular case occurs for very large Pr. If the Prandtl number is
large, the inertia term on the left hand side of Eq.(2.14) can be omitted. Neglecting the inertia
force implies that if the driving force is switched off, the system would stop immediately to
move. This can be considered for the Earth’s mantle convection - as an example we can take an
abrupt change in motion in the Pacific where the Hawaiian chain of islands gives us a possible
insight into the structure of the mantle flow. But it is more questionable for the BMO as Pr
lies somewhere between 1 and 1000 for the BMO (depending on the ill constrained viscosity
parameter), cf. Table 2.2.

Systematically, the (Ra,Pr) parameter space has been investigated in laboratory experiments
by Krishnamurti (1970a), cf. Fig. 2.3. Krishnamurti (1970a) reported that changes between
different convective modes happen at the same Ra for Pr > 100. However, one must not
forget that these results are dependent on the boundary conditions employed (no-slip in case

of Krishnamurti (1970a) experiments) and might change with the size of the convecting system.

In order to ascertain the transfer of heat through planetary mantles, the relationship between

the Nusselt number (dimensionless heat flux density) and the Rayleigh and Prandtl numbers
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Figure 2.3: Different types of convection as a function of the Rayleigh and Prandtl numbers.
Shaded areas represent domains of our study (Pr = 7 and Pr = 00). After Krishnamurti (1970b).

must be determined. Thus, finding a functional relationship Nu = Nu(Ra, Pr) have been always
in the centre of attention. The Nusselt number is a nondimensional parameter describing the
efficiency of heat transfer. It is defined as a ratio between the convective heat flux ¢ (heat
transported by convection and conduction) and the heat flux that would be transported by

conduction alone

q

L

A general relation between the Nusselt and Rayleigh numbers is usually sought in the form
Nu = ;Ra”, (2.19)

with two unknown coefficients 8; and (2. (31 might or might not be a function of Pr. This is
still unclear and debated (Grossmann and Lohse, 2000; King et al., 2012). For large enough Pr
(roughly larger than unity), the coefficient 35 is generally close to 1/3 and does not depend on
Pr. Hence, in infinite Prandtl number approximation Nu is only a function of Ra. So far, no
general consensus has been established and different authors report different relations. Table 2.4

gives a summary of proposed parametrizations.
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CHAPTER 2. THERMAL CONVECTION AND SOLID/LIQUID PHASE CHANGE

2.3 Convection with temperature dependent viscosity

The problem of convection with a temperature dependent viscosity has been extensively studied
because many geophysical systems exhibit this characteristic. Temperature differences across
the Earth’s mantle as well as in magma chambers are large and imply large variations in viscos-
ity. Theoretical studies (Fowler, 1985b,a; Solomatov, 1995), laboratory experiments (Nataf and
Richter, 1982; White, 1988; Davaille and Jaupart, 1993), and numerical models (Christensen,
1984; Jaupart and Parsons, 1985; Moresi and Solomatov, 1995; Tackley, 1996; Solomatov and
Moresi, 1997) approached this problem.

The temperature dependence of the viscosity is often considered to involve an exponential

function whose general expression can be written as
n = noel ). (2.20)

Due to its exponential character, even small temperature variations imply large viscosity varia-
tions. The total viscosity contrast, a nondimensional parameter of the system defined as the ratio
between viscosity of the cold boundary (temperature T;) and the hot boundary (temperature
Th)7 is

n= n(Te) — f(T)—f(Th) (2.21)
n(Th)

At small supercritical Rayleigh numbers and with a constant viscosity, the motion of the
system is prone to have a form of two-dimensional rolls. The temperature dependence of the
viscosity (or any other physical parameter) causes a break in symmetry between the hot and
the cold plate and change in the stable convective pattern is observed. As the viscosity ra-
tio increases, hexagonal convective cells are stable marginal modes. This has been explained
theoretically by Palm (1960) and observed experimentally by e.g. Richter (1978) or Oliver and
Booker (1983). Although already Bénard (1900a) obtained hexagonal cells in his laboratory
experiments, their origin was hidden in surface instabilities driven by the variability in surface
tension. His experiments were driven from one boundary only, and are therefore non-symmetric,
irrespective of the physical parameters being constant or not.

The first study that systematically explored the preferential patterns for the temperature
dependent viscosity convection was done by White (1988). By imposing a controlled initial
temperature conditions he forced selective patterns to be developed. These are then subjected
to stability study. The resulting phase diagram is reproduced in Figure 2.4 that shows a chart of
stable patterns as a function of the Rayleigh number and viscosity ratio. At all Rayleigh numbers
studied and viscosity ratios higher than 40, rolls become unstable modes and are replaced by
hexagonal and square patterns.

The thermal structure of a convecting layer with uniform physical parameters that is heated
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Figure 2.4: Stability of the different convective patterns as a function of the Rayleigh number
and the viscosity ratio R, = fmax /Mmin- An experimental results were obtained with a fluid
with Prandtl number varying from ~ 103 to ~ 107 (White, 1988).

from below and cooled from above consists of an isothermic core and two symmetric boundary
layers at the top and bottom. Imposing a temperature dependent viscosity results in creating
a stagnant lid (in case that the viscosity ratio and the Rayleigh number are high enough, cf.
e.g. Solomatov and Moresi (1997)) where upper boundary layer is not involved in the conventing
motion. This can, to a certain degree, meet characteristics of a convecting layer under a solid
cap. Though in case of freezing and melting there are other physical complications like latent

heat release/consumption.

2.4 Effects of rotation on convection

The Earth is spinning around its own axis with angular speed Q = 27w rad/1day ~ 10~*rad s
This brings additional forces in the problem. In particular, one must take into consideration the

Coriolis acceleration F. (often called Coriolis force),
F, =290 xv, (2.22)
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CHAPTER 2. THERMAL CONVECTION AND SOLID/LIQUID PHASE CHANGE

where () is the angular velocity with which a convecting system rotates. In order to estimate
the importance of the Coriolis force for the Earth’s systems, a comparison to the viscous force
is performed. The nondimensional parameter that measures the ratio of the two forces is called

the Ekman number,
viscosity v

Coriolis ~ 2Qa2’

where a is the characteristic size of the system and v the kinematic viscosity v = n/p. In the

Ek = (2.23)

literature, one can also find the Taylor number Ta used by many authors that is equivalent to
the Ekman number. The relation between these two dimensionless numbers is
_40%t 1

Ta

For the Earth’s mantle (a ~ 3000km and v = n/p ~ 10?'Pas/4000kg m—3 ~ 10"m? s~ 1) we
obtain Ek ~ 10%. Immediately we can see, that the viscous force dominates over the Coriolis

force and hence the rotation effects on convection in the mantle can be ignored.

In order to make the same estimation for the BMO, we choose ¢ = 100km, n = 1 Pas and
p = 5500 kg m~3, thus taking v ~ 2 x 10~4. These parameters give us Ek ~ 1070 for the BMO
with thickness 100 km. The variation of the Ekman number with uncertain parameters, i.e. with
viscosity and layer thickness, is shown in Fig. 2.5(left). Ek < 1 for the BMO, this suggests that

rotation might be important and the question needs further consideration.
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Figure 2.5: (left) Ek estimations for the BMO as a function of viscosity and magma ocean’s
thickness. (right) Critical Rayleigh number estimations for the BMO as a function of viscosity
and magma ocean’s depth
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2.4. EFFECTS OF ROTATION ON CONVECTION

Rotating convective systems have been studied for a long time, owing to their importance
in the dynamics of oceans and atmospheres. One of the first laboratory experiments exploring
Rayleigh-Bénard convection with and without rotation were done by Rossby (1969). He showed
that the stability of rotating fluid is described by three nondimensional parameters, the Rayleigh
number, the Taylor number and the Prandtl number and that the linear theory is insufficient
to describe the fluid’s state. Rossby (1969) also brings some photos of visual observations of
rotating convection.

In rotating systems, fluid velocities tend to be uniform along any parallel line to the axis
of rotation. This is stated by the Taylor-Proudman theorem (Chandrasekhar, 1961). Larger
buoyancy forces compared to non-rotating system are required in order to perturb the flow and
let the buoyancy instabilities develop. The higher the angular speed, the more difficult it is to
start convecting. In other words, the critical Rayleigh number increases with the rate of rotation.
Considering the asymptotic limit of rapid rotation (Ta — c0), the critical Rayleigh number varies
with the Taylor number as Ra. ~ Ta%/3 (Chandrasekhar, 1961). This is only a limiting case
and many studies were devoted to estimate the criterion for the onset of thermal convection
in rotating spherical shells depending e.g. on the Prandtl number or Taylor number and for
different configurations (different boundary conditions or the presence of heat sources) (e.g.
Yano, 1992; Jones et al., 2000; Dormy et al., 2004). Fig. 2.5(right) shows the estimated values
of Ra. using the asymptotic solution as a function of viscosity and the BMO thickness.

Once the rotating convection is set up, time dependent flows develop at a lower supercritical
limit Ra/Ra.. At Ra that are large enough, heat transfer in the turbulent rotating Bénard
convection follows the classical scaling relation Nu ~ Ral/? that is the same law as for the
system with absence of rotation (e.g King et al., 2012). Here, we consider the 1/3 power
law functional relationship although the precise value of the coefficient is still debated and no
common consensus has been established so far as was discussed early in this chapter.

The transition between a high Ra regime where rotation effects are negligible and a regime
whose dynamics is dominated by rotation occurs when the heat fluxes given by the two scaling
laws (that for rotating and non-rotating systems) are approximately equal, cf. Fig. 2.6. Canuto
and Dubovikov (1998) argued that this occurs at a limit Rayleigh number Ra, for which holds
Ra, ~ Ta3/* = Ta%75. More recently, it has been argued that the relative thickness of rotating
(Ekman) and non-rotating (thermal) boundary layers controls the effect of rotation (King et al.,
2009, 2012). Comparing the two boundary layers yields for the transition between the two
regimes (rotationally controlled and non-rotating) Ra, ~ Ta’/8 = Ta%8™  that holds for Ta >
10% and 1 < Pr < 100 (King et al., 2009).

Considering that the thickness of the BMO is 100 km results in Ta ~ 102° for n = 1Pas and
thus we obtain Ra. ~ 10'® using the 3/4 power law or Ra, ~ 10'® using the 7/8 scaling (Rax
would be higher for larger BMO thicknesses). This might be of the same order as the BMO
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Rayleigh number, cf. Fig. 2.2. Thus, rotation could effect the heat transfer across the BMO at

certain conditions. However, here we neglect it, for the sake of somplicity.
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Figure 2.6: Nusselt number versus Rayleigh number. Black dashed line represents a scaling
law Nu ~ Ra?/7 for convection without rotation (Ek = c0). Cyan solid line represents the
rotationally controlled scaling law. The transition between the two regimes (dynamics dominated
by non-rotating or rotating effects) occurs at Ra, ~ Ek~7/* depending on the relative thickness
of the thermal and Ekman boundary layers. After King et al. (2012).

2.5 Solidification and melting

Melting and crystallization have been always important in the Earth’s history. Creation of
continents or freezing of the inner core belong to processes ultimately shaping the present state
of the planet. In Chapter 1 we saw that extensive melting of the Earth’s deep interior is present
since the early beginning of the Earth’s history.

Changing a state between the liquid and solid phase is a physical problem where the melt-
ing front behaves like a free moving boundary. At the melting front, latent heat is liber-
ated/consumed and diffused away from the boundary. Balancing the heat flux at the interface
gives us direction and speed of the phase limit.

Freezing of liquids consisting of more substances gives rise to intrinsic interface instabilities
depending on the structure and dynamics of the thermal and solutal boundary layers (Huppert
and Sparks, 1988; Huppert, 1990; Davis, 2001). When an alloy is solidifying at a moderate speed,

dendritic structure of the frozen substance is created resulting in the formation of a mushy layer
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2.5. SOLIDIFICATION AND MELTING

with characteristics chimneys. In our work we consider the crystallization/melting of a pure
pole. Hence neglecting all compositional effects.

In addition, if the solidification occurs in a gravitational field, more complexities emerge
as the thermal gradients can induce a buoyancy driven flow. Coupling between the convecting
motion and interface instabilities then changes the interface morphology and is at the centre of

our focus.

Theoretical and experimental studies of conditions for formation of instabilities leading to
convection in a pure melt undergoing a phase transformation were carried out by Davis et al.
(1984) and Dietsche and Miiller (1985). They considered a horizontal liquid layer of cyclohexane,
a single component liquid, that was from below. The top boundary was kept at a temperature
inferior to the melting temperature and adjusted so that the phase change interface stayed frozen
in the upper part of the enclosure. Davis et al. (1984) performed a weakly nonlinear analysis in
order to determine the stable interfacial patterns as a function of solid thickness. To characterize

the system they use a parameter A

_ L_hcond _ TM_TC
hcond Th - TM ’

A (2.25)

that is a ratio of solid and liquid depths in static equilibrium with h¢onq the liquid height for
pure heat conduction. The Rayleigh number they use is also based on h.onq and the temperature

difference across the melt

hd Ty — T
rR=92 COHdZE;Lh M) (2.26)

In their experiments they keep T}, and Ty constant. R thus changes through h.onq that also
implies the change in A. They show that two-dimensional rolls are formed when the solid is
thin and hexagonal planform is obtained when the solid is thick. Their stability diagram is
reproduced in Figure 2.7. However, they do not consider that there are alternative mechanisms
that can lead to formation of hexagonal patterns. In particular, as we saw previously, considering
temperature dependent viscosity would predict hexagons without any dependence on the solid
thickness.

Dietsche and Miiller (1985) investigated initiation of convective instabilities around the criti-
cal Rayleigh number. They reported a hysteresis loop of the liquid layer height. When the liquid
layer is progressively increased convection sets up around R = 1450. Reversing the experiment
and progressively decreasing the thickness of the liquid by decreasing T, convection persists in
the melt for Rayleigh numbers lower than the critical value, around R = 1100 (corresponding
to Raeg = 5500). Dietsche and Miiller (1985) also shows that there exists several possible sta-

ble solutions depending on whether they were obtained by increasing or decreasing the liquid
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Figure 2.7: Pattern stability diagram in single-component Rayleigh Bénard system coupled
with solidification. The two curves represent two runs fo experiments for two different total
layer thicknesses. Modified from Davis et al. (1984).

height, cf. Figure 2.8. They argue that the particular convective pattern becomes ’frozen’ by
the interfacial corrugations. Thus, the steady solution obtained at small Rayleigh numbers may
be dependent on initial conditions.

In the next sections we present a physical model enabling to describe the coupled problem
of solidification and melting with microscale fluid flow.

There are two basic mathematical models approaching the coupled physics of convection with
solidification/melting. The first one solves for the conservative equations in each of the phases
separately and couples them by the conditions prescribed at the melting front. Alternatively, in
the so called enthalpy method, governing equations are employed in the whole system comprising
the solid and the liquid together. Latent heat effects are then accounted for by imposing a
suitable liquid fraction function being one in the liquid and zero in the solid. Mechanical

conditions are fulfilled by an eligible choice of the viscosity function that is low enough in
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2.5. SOLIDIFICATION AND MELTING

Figure 2.8: Different steady roll pattern at R = 5100 and A = 2.67. (top) 15-roll pattern
obtained in an experiment where the liquid height was progressively increased (bottom) 12-roll

steady pattern obtained in an experiment where the liquid height was decreased. Reproduced
from Dietsche and Miiller (1985).

the liquid (in order to allow convection) and high enough in the solid (in order to prevent

deformation). The former method is described in Section 2.5.1, the latter one in Section 2.5.2.

2.5.1 Coupling between the solid and convecting liquid

The melting front represents a free moving boundary in a given system. In order to determine

its speed and position, heat and mass balances across it must be considered.

Temperature is continuous across the phase change and equal to the melting temperature Ty;.
Strictly speaking, Ty should be a function of pressure (depth) in the mantle. However, for the
BMO, as will be shown later in Chapter 4, the topography of the boundary should be negligible.
Pressure variation at which the phase transition happens is thus also negligible and 73 can be
considered pressure independent. This is true on short timescales. On the long term, the BMO
thickness changes significantly and thus the melting temperature should also vary. However,
we assume that there is a good separation of long and short time scales so that the long term
evolution can be modeled using the short timescale laws when the melting temperature stays in
a restricted depth interval. This can be violated when considering lateral temperature variations
in the mantle, which can induce important large scale interface deflections. The pressure range
over which the phase transformation happens is then large and the approximation of constant
melting temperature with depth less valid. Including the depth dependence of the melting
temperature poses no technical difficulty but is left aside for the moment in the interest of
simplicity.

The two conditions holding at the melting front can be written as

T]f =0, and T =Ty, (2.27)



CHAPTER 2. THERMAL CONVECTION AND SOLID/LIQUID PHASE CHANGE

where the brackets [ |T indicate the jump of a given quantity across the phase interface.

Second, the condition for flux (Davis, 2001) (known as the Stefan condition) is
pLu-n=[kVT n|T, (2.28)

and expresses conservation of energy while the interface moves. w is the velocity of the interface,
and m is a unit normal vector to the phase interface pointing toward the liquid. We assumed

that the volume changes on melting are negligible, i.e. pr, = ps = p. Its form without dimensions

reads as
Stu-n=[VT- n|t, (2.29)
with the Stefan number r
St = ——7—7—. 2.30
C’PATtot ( )
In order to show the nonlinearity hidden in Eq.(2.28), consider its 1D form (with u = E’g—;“
where hy, is the position of the melting front) (Carslaw and Jaeger, 1959a)
Ohm o1, 0Ty
Olm _ o OTL . Ols 2.31
and assume an isotherm in the liquid 77,(z,t) = const. Then, we write
o1, o1,
dT; t)=—d —dt=0 2.32
L) = Thaz Tar =g, (232
and at the phase interface z = hy,
OT;
dz TtL
= =_0 (2.33)
L
Introducing equation above in Eq.(2.31) we obtain
G on T,
LD = kg 2.34
P T Yoz oz (2.34)

From this form it is obvious, that the boundary condition (2.28) prescribed at the melting front
is nonlinear. Similarly, it can be generalized in more dimensions.

We presented the thermal boundary conditions at the phase interface. What remains to be
determined are the mechanical conditions at the freezing front that must hold for the velocity
v = (vx,v,). Following Davis (2001), we carry out the mass balance in the control volume V
spanning the phase front, cf. Figure 2.9. Mass conservation for a pure pole that undergoes

a solid-liquid phase transition and allows for changes in density between the solid and liquid
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Figure 2.9: Schematic picture of the control volume used to derive the velocity boundary con-
ditions at the phase change interface.

Ap = ps — pr is (assuming there is no flow in the solid)

[ps — pL]aahtmdx = pL{(vz(z + dz)dz — v(x)[z + dz — hm(2)]

+ ve(z + da)[z + dz — ha (@ + dx)]} : (2.35)

that can be rearranged as

Vx(z 4+ dz)hm (2 + dz) — v (@) A ()
dx

ps — pL Ohm
pL Ot

vx( + dx) — vx(z) .

+[z+ dz] e

= v,(z+dz) —
(2.36)

Reducing the control volume to zero, i.e. ¥V — 0, that is equivalent to dz — 0 and dz — 0,

partial derivatives appear on the right hand side of Eq.(2.36) and we can write

psp_LpL %f“ = v, (hm) — a(uggm) + hm% , (2.37)
that finally results in
pSp_LpLaahgn :vz—vxzf;“. (2.38)
We add a condition, that the melting front is a no-slip surface, that is
0=v- -t =uvgty +v5t,, (2.39)
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with the tangent ¢ = (ty,t,) = 1/4/(1 + (aah—m)Q)(l, 8;—;“). It implies that

xr

0= vy <1 + (%’?‘)j : (2.40)

This condition is satisfied if and only if vy = 0. Introducing vx = 0 into Eq.(2.38) results in the

final condition for the horizontal velocity

_ BpOhm

— 241

(%
that reduces to
v, =0, (2.42)

in our particular case since we consider that there is no density difference between the two

phases, i.e. Ap=0.

2.5.2 Enthalpy method

The equation of the energy conservation (Eq.(2.11)) can be formulated using the enthalpy vari-

able H

DH
T = EVAT, (2.43)

where H = f(;[ pcpd\ + pLf1, = pcpT + pLf1, and fi, is the liquid fraction (assuming that p and

cp are constant). Since we can write for the total differential

Df, _ df. DT
—_— = 2.44
Dt dT Dt '’ (2:44)
Eq. (2.43) can be transformed into
ofL oT 9
— | | = T)= T 2.4
<pcp—|—p£aT><at+vV ) EVAT , (2.45)
that gives after nondimensionalization
ofr,\ DT
<1 + StaTL> o = VT (2.46)

In order to solve Eq.(2.46) we have to prescribe the liquid fraction, that is a temperature
dependent function. Taking fi, as the Heaviside step function recovers the condition for the

heat balance at the melting front, Eq. (2.28), and leads to the discontinuous enthalpy. Here, we
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choose

L= % (1 — tanh (TM;T>> : (2.47)

€ is a regularization parameter. Hence, the phase change is not sharp but happens over a mushy
region of finite thickness.

In order to fulfil the mechanical conditions, a temperature dependent viscosity must be
prescribed. The solid should not deform, contrary to the liquid where convection is desirable.

Correspondingly to liquid fraction we choose the viscosity as

n=exp(B(1— f)) = exp {]29 <tanh (TM_T> + 1) } . (2.48)

€

2.6 Conclusions

Due to small viscosity and large thickness of the BMO, the system is supposed to be vigorously
convecting while it is crystallizing. In order to understand its thermal evolution, our ultimate
goal here, we need to understand how the heat is transfered through a convecting layer whose

dynamics is closely coupled with solidification/melting processes.

Functional relations that describe the efficiency of heat transported in the Rayleigh-Bénard
convection have been extensively studied and are still discussed. These have started as a simple
models with constant physical properties and got more complicated with time as they included

more physics, in particular temperature dependent viscosity.

Here, we propose to study convection coupled with liquid-solid phase change transformation.
In this chapter we presented governing equations of the problem. In the next, we construct
numerical models that let us to derive functional relations for the heat flux and allow us to

ascertain the coupling between the BMO and the Earth’s core.
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Chapter 3

Numerical models of convection
coupled with liquid-solid phase

transition

In this chapter we propose a numerical model eligible for the convecting system undergoing a
liquid-solid phase change in order to determine its thermal characteristics. In particular, we
intend to simulate the dynamics and thermal evolution of the basal magma ocean together with

the solid boundary layer representing the lowermost mantle.

3.1 Physical model

In Chapter 2 we presented and discussed the equations governing the dynamics of convection
coupled with a solid-liquid phase transition. These are recalled here in their dimensionless form.

Dimensionless equations governing the dynamics of the liquid are

V.v = 0, (3.1)

1 Dv T
—— = —-Vp+V-(n(Vv+(Vv)'))+RaTe,, (3.2)

Pr Dt
ﬁ —_— V T’ (3.3)
and the solid is ar
_ 2

N veT. (3.4)

v is the liquid velocity, p the dynamic pressure, 7 the dimensionless viscosity, T" the temperature,
e, a unit vector pointing up in the vertical direction.

At the phase change interface, that is a sharp boundary interface, following conditions must
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be fulfilled

VT -n]t = Stu-n, (3.5)
7t = o, (3.6)

T = Ty, (3.7)

v = 0, (3.8)

where u is the velocity of the interface and n its unit normal vector pointing toward the liquid.
Alternatively, Eqs.(3.1)-(3.8) can be recast in a system of equations holding for both, the
solid and the liquid,

V.o = 0, (3.9)
1 Dv T
D ~Vp+ V- (n(Vv+(Vv)')) +RaTe,, (3.10)
oft\ DT _,
(1 +StaT> o - VT, (3.11)

implicitly including the latent heat effects. Using this formulation, the phase change is not sharp
but happens over a mushy region of finite thickness. The liquid fraction fi, and the viscosity 7

are functions of temperature and have been chosen

f = ;(1—tanh (TMET» : (3.12)

n = exp(B(1-fu)) - (3.13)

A parameter € can be seen as a physical parameter linked to the width of the mushy region. B

is a parameter that defines the ratio between the viscosity of the solid and the liquid.

We are interested in the dynamics and heat characteristics of the solidifying basal magma
ocean, whose physical model was retrieved in this section. The large uncertainties in ill con-
strained BMO properties result in a wide interval of parameters decisive for its time evolution,
cf. Table 2.2 and Figure 2.2. In order to explore the parameter space we decide to perform
numerical experiments at finite and infinite Prandtl numbers. For that we use two different
codes, Elmer and StagY'Y, each of them using a different solidification model. In the first model
the inertia force is included (limited Prandtl number) and the latent heat effects are treated as
a boundary condition. In the second model the inertia force is neglected (the infinite Prandtl
number approximation) and the latent heat effects are implicitly included in the heat equation.
This allows us to study the system with and without inertia (both cases being applicable for the
BMO) but also determine the suitability of different numerical techniques for the liquid/solid
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phase transition coupled with a fluid flow that can be useful for other geological systems such
as magma chambers. The methods as well as numerical techniques are presented in detail in
the paper that follows this chapter. Here, we briefly recall them and also present additional

benchmarks.

3.2 Numerical method - finite element code Elmer

The system of equations (3.1)-(3.4) together with conditions (3.5)-(3.8) are solved in the liquid
and solid with the finite element method using Elmer (CSC — IT Center for Science, 2010). A
cartesian 2D geometry is considered.

On a single timestep level, Egs. (3.2) and (3.3) are coupled via a time derivative (in addition
to temperature and velocity) as we consider the inertia term in the Navier-Stokes equation.
Also, the interfacial condition Eq. (3.5) is a time evolution equation. There are several possible
strategies to solve the coupled system including the monolithic algorithm. This algorithm yields
(after discretization of all governing equations) to a single system of equations to be solved at
each time step. Instead, our strategy considers a weak coupling where each equation is solved
separately and the result is used immediately. Common iterations can be employed on a single
time level, but we use no system coupled iterations. The time discretization of equations is thus
of the first order precision.

The phase change interface is always described by the same nodes. This implies that the
solid and liquid domains are present during the whole simulation preventing to perform the
solidification or melting of the whole cavity. Once the interface moves, mesh nodes have to
follow this displacement. This is done by solving a nonphysical elastic equation with boundary
conditions given by the interface position, as if stretching an elastic membrane containing grid
nodes. The mesh is never regenerated entirely. Instead, nodes are displaced relative to the old
position, which reduces considerably computation time. However, there is no way to ensure that
the new mesh stays valid and it might lead to simulation crash. An example of corrupted mesh
is shown in Figure 3.2.

Further details of the solving procedure with careful description and thorough discussion of

the method are described in the paper following this chapter.

3.3 Numerical method - finite volume/finite difference
code StagYY

We also use a different strategy to solve Eqs.(3.9)-(3.13) using StagYY (Tackley, 1993, 1996,

2008) where we implemented the liquid-solid phase transition. In this case, an infinite Prandtl

61



CHAPTER 3. NUMERICAL MODELS OF CONVECTION COUPLED WITH
LIQUID-SOLID PHASE TRANSITION

T T 1T T U U S\ S SN
| I S V— - 11 T
- T 1]
L Z I |
I - )
o - H o |
= Liquid SEEeEs
4
T
-
T
- 11
.
H -
M1 1
H N :___:
i Solid o
m T H
I T H
N T
-
- __‘:—_‘
T o
] H
O ——:::
il -
f -
T, . ]
T .
S SEEEEESEEEEm=S SEE=S=s
AN S N N N N O A | 1 {4
N N N Y N N I I I |
7 N N N N N I | T —t—
A =
/S I [ N N N N A N N | 1
/AN N N A N A N N T
1T 1T 1T 1T 1 1T 1T 17 1

Figure 3.1: Corrupted mesh obtained for a simulation of melting from left vertical wall with a
zoom around the corrupted elements (top picture). Displacement of node corresponding to the
phase front was larger than a distance to the nearest node in the solid region. Solid red line
represents the phase change interface between the liquid (left part of the cavity) and solid (right

part of the cavity).

approximation is considered and thus we neglect a term on the right hand side of Eq.(3.10).
Eqgs.(3.9)-(3.13) are solved in the whole cavity, implicitly including the latent heat effects. A
temperature field is obtained as a solution, that is used to reconstruct the position of the phase
change interface a posteriori. A cartesian 2D or 3D geometry is considered. The algorithm
consists of two steps: finding a solution of pressure and velocity (solving Egs.(3.1) and (3.10))

and taking a timestep (solving Eq.(3.11)).
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To solve the equations of fluid flow, a finite difference multigrid method for primitive variables
(pressure and velocity) on a staggered grid is used (Patankar, 1980) and multigrid F-cycles are
employed.

The advection term in the heat equation is solved using the explicit MPDATA (Multidi-
mensional Positive Definite Advection Transport Algorithm) scheme (Smolarkiewicz, 1998) that
iteratively calls donor-cell scheme to obtain more accurate solution of the second order precision.
Typically, we use 3 iterations. The diffusion term is computed with the explicit Euler method
in time and second-order finite-differences in space. Time steps are computed to get a unity
Courant number for cases with a small Rayleigh number that lead to steady state solution, and
are decreased to a Courant number of 0.6 for higher Ra numbers.

The detailed solution strategy is described in the paper following this chapter.

3.4 Benchmarking the numerical model

In order to evaluate the precision and quality of the numerical solution we perform several
benchmarks. There is no analytical solution for the coupled problem, but only for a purely
conductive solid/liquid undergoing a phase transformation in simple 1D geometry. Besides, a
limited boundary condition (fixed temperature) must be employed because again no analytical
work can be derived for more complicated cases such as constant heat flux. This exercise is
presented in Section 3.4.1.

In addition to analytical comparison, numerical solutions can be used to verify the numerical
solution. Works of Blankenbach et al. (1989) or Busse et al. (1994) provide a reference solution
for convection codes at infinite Prandtl number and in Cartesian geometry. Unfortunately, such
a benchmark comparison does not exist for coupled system of convective motion and solid-liquid
phase transformation. In the past, there has been several attempts to remedy this. The work
of Bertrand et al. (1999) proposes four test cases to be examined. However, all contributors
show significant differences between their numerical solutions so that no reference is given after
all. Nevertheless, we compare our solutions with their outcome (Section 3.4.2).

Finally, we perform qualitative comparison with laboratory experiments of solidification done
by Davis et al. (1984) and Hill (1996).

3.4.1 One dimensional freezing

Numerical resolution of the heat equation, solidification and mesh regeneration is tested here
against an analytical solution for a simple case of solidifying pure melt in 1D semi-infinite space.
This situation does not involve any fluid flow but allows to test the treatment of the diffusion

equation coupled with the phase change.
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Consider a liquid occupying a space z € [0, co] with zero initial undercooling, i.e. the fluid is
initially at the melting temperature T'(t = 0) = Ty everywhere. At time ¢ = 0 the temperature
of the boundary (z = 0) is dropped to T so that undercooling arises AT = Ty — T > 0.

Consequently, phase change transformation initially adjacent to the boundary is created at h(t).

With the initial conditions chosen, the temperature of the liquid does not change and remains

at all times at the melting temperature, 7*" = Tj;. In the solid, heat conduction equation holds

or _ 0*T

with & the thermal diffusivity. Eq.(3.14) can be solved for a given auxiliary conditions. At the
melting front a constant temperature that is equal to the melting temperature is prescribed,
T(z = h) = Typ, and the heat flux balance must hold

or oh
= St— . 1

The so-called Neumann solution for temperature distribution in the solid phase is (e.g. Davis,
2001)

erf ( z )
an 24/ Kkt
T = (VA) (3.16)

where A is a parameter that characterizes the solution and is determined by
Vrhe® erf(A) =St~ (3.17)
A bijection between undercooling and interface speed exists, cf. Fig. 3.2.

As a part of the solution, the position of the phase front is ascertained as a function of time
and is
h?"(t) = 2AVkt . (3.18)

Due to the absence of thermal diffusion in the liquid, the semi-infinite space can be replaced
by a 2D square cavity with constant temperature condition at the top wall equal to the melting
temperature, cf. Figure 3.3. The bottom boundary has a temperature 7. Vertical walls must be
insulating to prevent any lateral diffusion so that the solution does not depend on the horizontal

coordinate.

Numerical solutions of the vertical temperature distribution 7™"™ in the cavity and position

of the phase interface h™™ (both as a function of time) are then compared to analytical solutions.
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Figure 3.2: Analytical solution for A as a function of the undercooling St~*.
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Figure 3.3: Set up for the benchmark comparison: solidification of a pure substance from a cold
boundary. The interface between the liquid and solid stays planar at all times as no convective
motion is involved and its position is at h(t). The temperature in the liquid is constant with
time as temperature gradients are absent, T'(z = h) = Ty and T'(z = L) = Tiy.

The root mean square error for the temperature distribution is

oT = \/ZZ'N:1 BRI (3.19)

N )
where the sum is over the nodal points in the vertical direction with the totality of N nodes.
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The relative error for the phase front position is then

5h = % . (3.20)

The exercise is performed with Elmer. We thus need to start from a solution that already
contains the solid and liquid domains. As an initial condition we take an analytical solution
for the temperature distribution and the phase front position obtained after a time ti,;; = 0.05
has elapsed. A unity Stefan number is chosen. Using Eq.(3.17) gives us A = 0.620. The initial
position of the melting front is thus h = 0.277.

Temperature T | Solve for the interfacial
_—

[ Start simulation cycle ]—> ( Solve diffusion equation ]

Update mesh nodes

heat balance
Mesh displacement d iti fol Interface position SOIVe for Interface speed
End simulation cycle | ¢———————— | Position so as to folow the new position
t

the interface movemen of the me|t|ng front

Figure 3.4: Flowchart of Elmer solving strategy for freezing from bottom boundary without any
flow. See Figure 3.3 for the set up.

The algorithm is depicted on Figure 3.4.1. A weak coupling of the system is employed with
no coupled iterations so that results of individual solvers are used immediately.
Several numerical aspects of Elmer solution are tested. Below, we evaluate the impact of the

choice of the time-stepping strategy and we verify the time and space discretization.

Benchmarking the time-stepping method

There exist many methods for discretization of temporal derivatives. In order to determine their
suitability for our particular problem we test them against analytical solutions. In particular
we compare results of the benchmark test obtained using the Crank-Nicolson method and the
Backward Differences Formulae (BDF) of several orders. Results are depicted in Figures (3.5)
and (3.6). As we can see, the Crank-Nicolson method and BDF of order 1 give satisfactory
results. The BDF method of higher orders is not suitable, at least without performing coupled

iterations. We choose to use the Crank-Nicolson hereafter.

Time resolution

In order to verify the time resolution of equations we compare the relative error between analyt-
ical and numerical solution of phase position at time ¢ = 0.3 for different values of the timestep.
Figure 3.4.1 shows the results. We can see that for a coarse mesh with resolution 10 x (10 + 10)

elements in the horizontal and vertical (solid+liquid) directions, the error decreases till timestep
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employed. Crank-Nicolson and Backward Differences (BDF) of different orders is tested (orders
1, 2 and 5 are used). (Left) Time evolution of the interface position. (Right) Relative error
between the analytical and numerical solutions.
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Figure 3.6: (Left) Vertical profile of temperature in the cavity at time t = 0.3. (Right) Root
mean square error of the temperature solution as a function of time.

is around 10~ and then reaches a plateau. This is because for small timesteps the error is
dominated by the effect of spatial resolution. Results with a finer mesh (100 x (100 + 100))
elements in horizontal and vertical (solid+liquid) direction) decrease at all timesteps. If you
decrease a timestep by a factor of 10, the error decreases ten times. This shows that the time

accuracy of the solution is of the first order precision.
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Figure 3.7: Relative error between the numerical and analytical solutions for the phase change
position at time ¢ = 0.3 as a function of timestep At. Two different meshes are used: a
coarse mesh with spatial discretization of 10 x (10 4 10) elements in the horizontal and vertical
(solid+liquid) directions and fine mesh with a resolution of 100 x (100 + 100) elements.

3.4.2 Melting from vertical wall

In order to verify the flow solver coupled with the heat transfer and solidification/melting, we
perform an exercise where initially a solid cavity is heated from the left vertical wall and progres-
sively melts. This comparison exercise was proposed by Bertrand et al. (1999) in the ultimate
goal to give a reference solution for convection interacting with a melting and solidification in-
terface. Yet, the thirteen contributions reported significant differences and thus no reference

solution is given. This emphasizes that improvements of such numerical models are still needed.

Description of the exercise

Initially the cavity is kept at the melting temperature T3;. Bottom and top horizontal walls
are insulating boundaries with zero velocity conditions. Right vertical wall (x = 1) is kept at
the melting temperature Ty;. At time ¢ = 0 the temperature of the left vertical wall (z = 0) is
increased to a temperature T}, > Tyr. The phase interface originally contiguous to the cavity’s
boundary (z = 0) arises and starts to move horizontally. Progressive melting proceeds through
several stages: a pure conductive stage with a planar interface is established at the beginning.
Later, convection sets up in the liquid and prevails over conduction. This stage is characterised

by the formation of interface corrugations due to different temperature gradients in the vicinity
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of the melting front.

Bertrand et al. (1999) suggested to investigate two different systems with low and high
Prandtl numbers (Pr = 0.02 and Pr = 50), namely melting of pure tin (metal) and octadecane
(paraffin wax). We performed the proposed exercise for high Prandtl number with the two
methods, the finite element method and the finite volumes method. Results and a careful
discussion are included in the paper that follows this chapter. Results for the test case at small

Prandtl number performed with the moving mesh method can be found below.

Results for small Pr number

The exercise at Pr = 0.02 and Ra = 2.5 x 10° is carried out with the finite element code
Elmer using a mesh with resolution (20 + 40) x 60 elements in the horizontal (melt+solid)
and vertical directions. The timestep size is kept constant and equal to 0.0001 throughout
the simulation. We start from a conduction temperature profile after the time ¢;,;; = 0.1 has
elapsed. With a given Stefan number St = 100 this results in A = 0.0706 and At = 0.0446.
The simulation runs for the total time 10. Snapshots of temperature and velocity fields are
depicted in Figure 3.8. The mesh at time ¢ = 0.1 and ¢ = 4 is shown in Figure 3.9.

The time evolution of the Nusselt number over the left vertical wall in comparison with results
of other contributors to this benchmark (Gobin and Le Quéré, 2000) is depicted in Figure 3.10.
Our results are in excellent agreement with published solutions being closest to the simulation
done by Wintruff. Oscillatory instabilities of the system are observed after the time t = 4.
Indeed, it was noted by Le Quéré and Gobin (1999) that the system in consideration is prone
to the multicellular instability for sufficiently high Rayleigh numbers. These are not observed
for high Prandtl number fluids.

Figure 3.11 shows a comparison of the position of the melting front at time ¢ = 4 with results
published by Gobin and Le Quéré (2000). Certain contributors observed one convective cell.
This is probably due to insufficient time resolution. We observe two main rolls that later merges
into one cell. Our results are in excellent agreement with solutions obtained by Wintruff or
Médale.

The comparison exercise is in very good agreement with previously published results and
we conclude that the moving mesh method implemented in Elmer is suitable and accurate for

systems with low Prandtl number.

3.4.3 Qualitative comparison with 3D laboratory experiments

Our numerical tools have been subjected to thorough evaluations against analytical and numer-
ical solutions. In addition, comparison to 3D analogical experiments can be made. However,

these can only be qualitative as several experimental conditions cannot be exactly matched, at
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Figure 3.8: Snapshots of temperature (color scale) and velocity (vectors) fields at times (a)
t=0.1(b)t=2.0(c)t=4.0(d) t =10.0 for the melting exercise from vertical wall proposed
in Bertrand et al. (1999). (Case with Pr = 0.02, Ra = 2.5 - 10° and St = 100.)

least with the present model.

Davis et al. (1984) experimentally examined a single-component liquid that solidifies/melts
in a plane layer heated from below and cooled from above. The upper part of the layer is
frozen while the lower one is convecting. Different morphologies of the phase change interface
were observed depending on the ratio of solid to liquid thicknesses A and the Rayleigh number
R. Davis et al. (1984) chose to relate all results to a purely conductive state in which the interface
is planar. Thus, A is the ratio of the two heights in the case where only heat conduction proceeds
and R is defined using the liquid height for pure heat conduction and temperature difference
across the liquid layer. Small solid thickness (small A) leads to roll-like convective pattern
selection whereas large thickness of the solid (large A) results in hexagonal convection pattern
in the liquid. Figure 3.12 shows two dimensional and hexagonal convective patterns in melting

experiments in comparison with results of Davis et al. (1984). Predicted morphologies of the
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Figure 3.9: Mesh corresponding to snapshots (top) Fig. 3.8(a) and (bottom) Fig. 3.8(c). The
number of elements in the liquid and the solid is constant at each time. The red line represents

the phase change front.

phase change interface were successfully observed. Parameters and resulting wavenumbers of

convective cells k are given in Table 3.1 together with results obtained by Davis et al. (1984).

In the same geometry, Hill (1996) observed in his laboratory experiments square interfacial

3.3-10*. These have been also successfully reproduced (cf. Figure 3.13)

corrugations at Raeg

although the effective Rayleigh numbers are not exactly the same (Racg = 1.4 - 10% in our

case). Hill (1996) uses a cavity with dimensions 320 x 320 x 80 mm that corresponds to the aspect

ratio 4 in both horizontal directions and we kept the same aspect ratio in our experiment. We

observe regular square patterns that have a wavelength \. around 1.8 (adimensionalized with
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R A kT Patterns | kt Raiﬁc Patterns?
3300 0.36 | 3.0 hexagons | 1.9 5-10° hexagons
7500 0.03 | 2.5 rolls 2.9 8-10% rolls

Table 3.1: Benchmark comparison with 3D laboratory experiments. For a given R and A
different convective patterns were observed. ' Results obtained by Davis et al. (1984). * Our
results.

the liquid thickness). This agrees very well with a value given by Hill (1996) A. = 1.55. Albeit a
difference in the solid thickness is observed (Hill (1996) reported hg = 0.65 and in our experiment
hs = 0.38), in both cases the solid is thick (A = 2.8 and A = 1.4 for laboratory and numerical

experiments, respectively).

3.5 Conclusions

Dynamics of solidification coupled with convective flow represents a problem where free moving
boundary is present and thus it requires specific numerical methods to track the phase boundary.
We presented and tested two different numerical frameworks that are described in more detail
in the paper that follows (Ulvrova et al., 2012). A very good agreement in the benchmark tests

was observed.
These numerical tools are then used to infer heat transfer characteristics of a melting/freezing

convecting layer with an application to the thermal evolution of the basal magma ocean, see
Chapter 4.

72



3.5. CONCLUSIONS

25.0

20.0 #

15.0 -

Nusselt number

0.0

9.0

8.0

6.0

Nusselt number

5.0

4.0
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results are compared with results published in Gobin and Le Quéré (2000). (a) The whole time
interval studied. After the time ¢ = 4 oscillations of the system are observed. (b) Zoom over
time ¢ € (1,3). Our results are closest to simulations done by Wintruff. (Case with Pr = 0.02,
Ra = 2.5-10% and St = 100.)
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Figure 3.11: Position of the phase change interface at time ¢ = 4 compared with results published
in Gobin and Le Quéré (2000). (a) All simulations. (b) Simulations that observed multicellular
flow. Best agreement is attained with results of Médale and Wintruff. (Case with Pr = 0.02,
Ra = 2.5-10% and St = 100.)
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Figure 3.12: Morphology of the phase change interface. Laboratory experiments, pictures (a)
and (b), of horizontal layer that is heated from below and cooled from above performed by Davis
et al. (1984). Numerical results, pictures (c) and (d), were computed with the StagYY code in
a cavity with an aspect ratio of 8 in both horizontal directions for St = 1 and (c) Ra = 8.4 - 103
(Raeg = 8-10%) (d) Ra=1.1-10* (Racg = 5 - 10%).
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(a) Square and pentagonal patterns are observed in laboratory exper-
iment of solidification coupled with convection (Hill, 1996) (case with
Pr = 10?, Racg = 3.3 -10* and St = 1.7).

(b) Numerical simulations done with StagYY. Two isotherms are dis-
played: T = T corresponding to the phase change interface (cyan) and
T = 0.9 for hot upwellings (red). (Case with Pr = co, Raeg = 1.4 - 10*
and St = 0.1.)

Figure 3.13: Square patterns observed in morphology of the phase change interface. Qualitative
comparison of laboratory experiments and numerical simulations.
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Melting and solidification are fundamental to geodynamical processes like inner core growth, magma
chamber dynamics, and ice and lava lake evolution. Very often, the thermal history of these systems is
controlled by convective motions in the melt. Computing the evolution of convection with a solid-liquid
phase change requires specific numerical methods to track the phase boundary and resolve the heat
transfer within and between the two separate phases. Here we present two classes of method to model
the phase transition coupled with convection. The first, referred to as the moving boundary method, uses
the finite element method and treats the liquid and the solid as two distinct grid domains. In the second

K ds: . .
I\:gl‘z?]rg s approach, based on the enthalpy method, the governing equations are solved on a regular rectangular
Solidification grid with the finite volume method. In this case, the solid and the liquid are regarded as one domain

in which the phase change is incorporated implicitly by imposing the liquid fraction f; as a function of
temperature and a viscosity that varies strongly with f;. We subject the two modelling frameworks to
thorough evaluation by performing benchmarks, in order to ascertain their range of applicability. With
these tools we perform a systematic study to infer heat transfer characteristics of a solidifying convecting
layer. Parametrized relations are then used to estimate the super-isentropic temperature difference
maintained across a basal magma ocean (BMO) (Labrosse et al., 2007), which happens to be minute

Stefan problem

Phase change

Moving boundary
Convection
Core-Mantle dynamics

(< 0.1 K), implying that the Earth’s core must cool at the same pace as the BMO.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Solidification and melting dynamics have always attracted a lot
of attention, particularly for practical applications: industrial engi-
neering including metal processing, solidification of castings, or
welding, as well as environmental and food engineering. Yet,
changing phase state - tightly linked with mechanics - also plays
a fundamental role in Earth and planetary evolution. Crystalliza-
tion in magma chambers (Brandeis and Jaupart, 1986; Brandeis
and Marsh, 1989) as well as inner core growth (Alboussiére et al.,
2010) are examples of geodynamic processes that have shaped
the state of our planet.

A recent model suggests that after formation of the core, a basal
magma ocean (BMO) was formed at the bottom of Earth’s mantle
and has slowly solidified since (Labrosse et al., 2007; Coltice
et al,, 2011). Remnants may be seismically observed as partially
molten regions at the core mantle boundary (CMB) (Williams

* Corresponding author.
E-mail addresses: martina.ulvrova@ens-lyon.fr, mulvrova@gmail.com (M. Ulv-
rova).

0031-9201/$ - see front matter © 2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.pepi.2012.06.008

and Garnero, 1996). The BMO, the initial thickness of which could
have been 1000 km, slowly cooled down while vigorously convect-
ing because of its high temperature and low viscosity. On a small
scale, the process of solidification coupled with convective flow
has been observed in lava lakes (Worster et al., 1993; Jellinek
and Kerr, 2001) or ice lakes (Notz and Worster, 2006). However,
suitable models capturing melting/solidification coupled with
convective motions need to be developed.

Analytical works conducted in early years contain mainly math-
ematical solutions for one dimensional diffusion problems in an
infinite or semi-infinite domain and for problems with simple ini-
tial and boundary conditions (Crank, 1984; Davis, 2001). More
complex systems in terms of geometry or thermochemical param-
eters require numerical solutions. Including a transformation be-
tween solid and liquid phases presents a challenging numerical
task since the position of the melting/freezing front is a part of
the solution and so the moving boundary needs to be determined
in space at each time.

A number of numerical methods for treating the moving
boundary due to solidification or melting, and also being capable
of handling convection in the melt, have been proposed (Crank,
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1984, and reference therein). These can be divided into two main
groups: moving mesh front tracking methods and fixed grid
numerical techniques. The former group solves different governing
equations in each of the phases and latent heat effects enter via the
heat balance boundary condition at the melting/freezing front. The
latter group uses a static mesh and the same differential equations
are applied in both phases. The position of the phase interface is
then recovered from the temperature solution and the phase
diagram.

The goal of this paper is to propose, implement and critically
test suitable numerical tools for simulating a solidifying/melting
system whose dynamics is closely coupled with convection in
the melt. We start from two different codes that solve motion in
a fluid: the finite element open source code Elmer (CSC - IT Center
for Science, 2010), in which we use the formulation for a moving
grid method, and the finite volume code StagYY (Tackley, 1993,
1996, 2008), in which we implemented the dynamic treatment of
melting/solidification on a fixed grid.

These numerical tools are subsequently applied to benchmark
test cases. We present a detailed comparison of heat flow, phase
change front tracking and the nature of convection. The applicabil-
ity of the different approaches is carefully analyzed and discussed.

In addition, we present a qualitative comparison of the three-
dimensional numerical results with experimental work of Davis
et al. (1984).

Finally, we focus on the thermal evolution of the magma ocean
solidifying in the deep mantle during early Earth’s history. We de-
rive scaling relations for the heat transfer and apply these scalings
to the BMO.

2. Physical model

In this section we describe the physics of a pure substance
undergoing a crystallization/melting phase change. A Newtonian
incompressible liquid in a domain Q € R? changes phase at a fixed
temperature Ty. In the molten region, density differences due to
temperature gradients induce convection through a buoyancy
force term.

The basic set of conservation equations for mass and momen-
tum in the Boussinesq approximation holds in the liquid:

V-v=0, (1)
o D= -Vp+ V- (1n(Vo+ (Vo)) +RaTe, @

written in a dimensionless form. Length is scaled by the vertical
thickness of the whole domain L, velocity vector » by /L, with
Kk the thermal diffusivity, time t by the diffusion time L?/x and
pressure p by xn,/L* with 5, the dynamic viscosity of the liquid.
e, is a unit vector along a vertical direction pointing upward and
n the dimensionless viscosity scaled by #,. The solid is consid-
ered to be a non deformable medium with zero velocity
everywhere.

The definition of the total time derivative 2 depends on the
chosen reference frame. For the Eulerian description of motion
De — 2 1 (»V)e, which reduces to 2 = ¢ when using the Lagrang-
ian description of motion.

There are two dimensionless numbers appearing from the nor-
malization of the conservation equations. The first one is the Pra-
ndtl number Pr, which is the ratio between momentum diffusion
and thermal diffusion,
pr=I_ (3)

Pok

where p, is the density at the temperature of the coldest wall. The
second is the Rayleigh number, which relates the driving forces to
the resistive mechanisms,

Phase
interface Te
g Solid & Tw
Liquid O n b
K,m, h(x,t)

ZL. Tu

X

Fig. 1. Schematic picture of a convecting liquid layer that solidifies/melts. The layer
is heated from below and cooled from above so that the upper part is frozen and the
phase transformation remains in the computing domain.

gL’ pyAT,
ki,

where g is the gravitational acceleration and « is the thermal expan-
sion coefficient. AT, = T, — Ty is the total super-isentropic temper-
ature difference between the hot (T' = Ty) and the cold (T' =T¢)
boundaries (prime denotes physical dimension).

The third governing equation applying to liquid and solid, en-
ergy conservation without any volumetric heat source, is written
as
DT 2
D= VeT. (5)
The temperature field T is scaled as T = (T" — T¢)/(Ty — T¢). Normal-
ized temperature T is thus bounded by 0 and 1 in the computational
cavity.

Thermodynamical properties (thermal diffusivity x, heat capac-
ity at constant pressure Cp, thermal conductivity k) are considered
to be constant and independent of temperature, and are the same
for the liquid and solid. Density is also taken to be constant and the
same for both phases following the Boussinesq approximation
(density variations due to temperature gradients are only consid-
ered in the buoyancy term).

At the phase change interface, the following conditions must be
verified. There are three requirements on temperature: continuity
of temperature that is equal to the melting temperature, [T]” =0,
and T = Ty, and a jump in the heat flux corresponding to the re-
lease or consumption of latent heat % (Crank, 1984; Davis, 2001),

[VT-n]" =Stu-n. (6)

Ra 4)

The brackets []” indicate the jump of a given quantity over the
phase interface. u = (uyx,u,) is the velocity of the phase change
boundary and n = (n,n,) its unit normal vector pointing toward
the liquid, cf. Fig. 1. The Stefan number St is

L%

St = CAT. (7)

It compares the latent heat to the specific heat Cp. The larger St, the
more important latent heat effects are and thus the slower the
interface moves.

In terms of velocity constraints, the melting front is a no-slip
boundary, i.e. for a unit tangent vector t, the condition »-t =0
must be fulfilled. The next condition results from mass balance
allowing the density change over the phase transition. Suppose
that the geometry of the solidifying system is as in Fig. 1, with
the position of the interface described by the function z = h(x, t).
Then the vertical velocity of the interface, u,, must satisfy (Davis,
2001)

oh
Apu, = pL<vz - vxa), (8)

where Ap is the difference between the densities of solid and liquid,
Ap =ps—p, and vy and v, are the horizontal and vertical



M. Ulvrovd et al./Physics of the Earth and Planetary Interiors 206-207 (2012) 51-66 53

components of the fluid velocity vector » = (vx, v;). In our case
Ap =0, thus the above two conditions are satisfied if and only if
v = 0 at the melting front.

3. Front tracking method

The first numerical approach for the solidification/melting pro-
cess with fluid flow in the melt involves treating the solid and the
liquid as distinct domains coupled by the boundary conditions at
the phase change front. At each time the position of the boundary
is explicitly computed. In order to account for its motion, either
mesh deformation or a suitable mapping that transforms the prob-
lem on a fixed mesh is required. This strategy is suitable for the iso-
thermal phase change of a pure substance and might not be
accurate enough when the state transformation happens over a fi-
nite temperature interval. Solving for proper equations, Egs. (1), (2)
and (5), involves finding the velocity field in the liquid and the
temperature field in the solid and the liquid. As a part of the solu-
tion, the position of the melting/freezing front arises as it is not
known a priori.

The finite element (FE) free software Elmer (CSC - IT Center for
Science, 2010) is used to numerically solve the equations described
above. First, the energy equation is solved using the velocity field
from the previous timestep to give the new temperature distribu-
tion. Next, the Navier-Stokes equation is solved in order to deter-
mine the new velocity. The temperature field explicitly defines the
new position of the melting/freezing front and the mesh nodes
must be redistributed so as to follow the interface movement.
The solution of the problem thus involves four steps, four particu-
lar solvers, that are weakly coupled. The linear systems related to
different physical phenomena are solved one-by-one (using itera-
tive or direct methods, cf. below) without any common iterations.

3.1. Navier-Stokes and heat equations

The classical Galerkin method (e.g. Hughes, 1987) implemented
for simulations of natural convection often results in spurious
oscillations whose origin is in the advection terms. Thus, several
stabilization methods have been developed to overcome this prob-
lem including the residual free bubbles method (Baiocchi et al.,
1993) or using Taylor-Hood elements (Taylor and Hood, 1973).
In our simulations the stabilization scheme proposed by Franca
et al. (1992) and Franca and Frey (1992) is applied.

The Galerkin discretization of partial differential equations by
the finite element method (FEM) is applied with subsequent line-
arization of the nonlinear convective term in the Navier-Stokes
equation. The Picard linearization used is somewhat slower in con-
vergence than the Newton’s method, but has a larger radius of
convergence.

Two main strategies in searching for the solution of the linear
set of discretized equations include direct and iterative methods.
For small systems, it is desirable to use the former strategy, which
finds the exact solution up to machine precision but demands a
large memory usage. As a direct solver we use Unsymmetric Mul-
tiFrontal method (UMFPACK) (Davis, 2004). On the other hand,
iterative solvers generate an improving approximate solution to
the given problem. These are useful for 3D geometries or large
2D systems. As an iterative solver strategy, the BiConjugate Gradi-
ent Stabilised method (BiCGStab) (Van der Vorst, 1992) with
incomplete LU (ILU) factorization as a preconditionner is used.

For the time-stepping strategy, the Crank-Nicolson scheme
(Crank and Nicolson, 1947) is chosen. In a single time step, the cou-
pling between individual solvers proceeds in a weak manner (com-
putation of one step after another), thus no coupled iterations of
the system are run.

3.2. Motion of the phase interface and mesh update

Eq. (6), which expresses the heat balance at the melting front, is
used to obtain the velocity of the interface. Supposing that the
interface moves only in the vertical direction z, its velocity in the
z-direction u, is obtained as

[VT -n]* = Stn, (uz - Duvzuz>, 9)

where an artificial diffusion D, has been added because otherwise
the algorithm is subject to numerical oscillations. In order not to
significantly influence the results, the condition D, < A? for the dif-
fusion factor must be fulfilled, with A being the characteristic grid
size.

In order to compute the nodal heat fluxes in Eq. (9) for the solid
and the liquid, respectively, the residual of the discrete system for
the heat equation without the effects of boundary conditions is
used. This procedure provides the most accurate estimate of the
nodal fluxes.

The new position of the phase interface is then obtained from
the computation of its motion within one time step
At : 5h = u,At. In order to account for the movement of the melting
front, which is always described by the same mesh nodes, the grid
must be distorted. The new node distribution results from solving a
non-physical elastic equation for the mesh displacement d

V. (u(w+ (Vd)T) +/V-dl) =0, (10)

where [ is the unity tensor. Fictive Lamé parameters i and 4, repre-
senting the elastic properties of the mesh, are chosen arbitrarily and
can eventually help to enhance the quality of the new mesh. We can
express the Lamé coefficients in terms of Youngs modulus Y and
Poisson ratio v

Yv Y

F=a—vwa-2w “~20+v (I

The larger the value of Y, the stiffer the mesh is. This might be par-
ticularly useful for adding local rigidity near singularities, i.e.
around the corners. The larger the Poisson ratio, the better the ele-
ments maintain their volume until reaching the critical value of
v = 0.5, when Eq. (11) becomes singular. Nevertheless, with smooth
meshes these have only minor effects and we keep them constant
for all numerical experiments.

Coupling between the distorted mesh and interface position
comes through the Dirichlet boundary condition at the melting
front where for the vertical displacement d, the relationship
d, = oh holds.

Using the displacement of nodes allows us to significantly re-
duce the computational time compared to completely regenerating
the mesh at each time step. On the other hand, there is no way to
ensure that the new mesh guarantees good computational preci-
sion since elements can be strongly strained. Thus, small changes
in geometry are favorable for retaining a numerically accurate
mesh.

Since movement of the mesh is involved, in Egs. (1) and (5) the
mesh velocity »,, must be accounted for. The so-called Arbitrary
Lagrangian-Eulerian (ALE) description (Donea et al., 2004), in
which the mesh nodes can be moved about an arbitrary distance
in between nodes following the continuum movement (Lagrangian
description) or being held fixed (Eulerian approach), is imple-
mented. The total time derivative term is then

Doiao
Dt ot

where c is the convective velocity, ¢ = v — vy, In the Lagrangian ap-
proach, the mesh velocity is equal to the material velocity, i.e. ¢ = 0.

+(C Ve, (12)
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Fig. 2. Schematic pictures of moving and non-moving mesh for single component
Stefan problem in configuration depicted in Fig. 1. The melting front is denoted by
the solid red line. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

The Eulerian formulation keeps the mesh non-deformed, and thus
¢ = v holds. In the present model, the mesh motion is computed
such that the phase change interface coincides with a mesh line.

3.3. Mesh

In 2D simulations quadrilateral bilinear elements are used. At
the beginning of the computation, the grid is composed of rectan-
gular elements that deform with the motion of the melting front. A
schematic example of a deformed mesh is depicted in Fig. 2a with
finer and coarser resolution in the liquid and solid, respectively.
The red line represents the phase change front.

Input files for E1mer simulations together with mesh files cor-
responding to the simulations presented can be found at http://
perso.ens-lyon.fr/stephane.labrosse/Ulvrova_etal2012.
These can be also find in online supplementary material, cf.
Appendix A.

4. Fixed grid method

In order to eliminate the necessity of explicitly satisfying the
thermal conditions between the two phases, we can describe heat
transfer in the solid and the liquid using a single governing equa-
tion for energy conservation written in terms of the enthalpy var-
iable H on a fixed grid in an Eulerian reference frame (Crank, 1984).
The system of Eqgs. (5) and (6) comprising additionally the heat bal-
ance at the melting/freezing interface is replaced by a single
equation
%+v~VH:V2T, (13)
ot
implicitly containing the effect of the phase change. The total en-
thalpy of the system is equal to the temperature in the solid part
and is increased in the liquid part by the contribution from latent
heat

T
H(T):{T+St

if T<Tw,

14
if T>TM. ( )

Conditions (14) can be combined into one single equation
H =T + Stf, with f; the liquid fraction. Introducing the definition
of enthalpy into Eq. (13) we obtain

DT
A = 2
c Dt VT, (15)
with the nondimensional apparent heat capacity
dH oft
A = —_—= _—
c =47 1+St8T' (16)

In this case, a temperature field is obtained as a solution, which is
used to reconstruct a posteriori the position of the melting/freezing
front. However, the mechanical boundary condition, which requires
the solid not to deform, must also be fulfilled. This is achieved by
imposing a viscosity strongly dependent on the liquid fraction f;.
Here, we use

1 =exp(B(1-f)), (17)

where B is a parameter that defines the viscosity ratio between the
solid and the liquid. Equations for fluid flow, Egs. (1) and (2), are
then solved in the whole cavity.

Taking fi as the Heaviside step function implicitly imposes the
condition Eq. (9) at the solid liquid boundary. It leads to a discon-
tinuity in the enthalpy. However, treating singularities with meth-
ods that compute derivatives using finite differences requires
regularization techniques. Hence, when using the enthalpy formu-
lation the phase change is not sharp but always happens over a
mushy region of finite thickness. Thus, the enthalpy method is nat-
urally suitable for melting/solidification processes of solids/liquids
consisting of multiple components.

Several numerical approaches have been developed to solve Eq.
(13) including source update methods, where the latent heat ef-
fects are put into a separate term corresponding to the source term,
enthalpy linearization or using the apparent heat capacity (e.g.
Voller, 1985, 1996; Voller et al., 1990). In our paper we choose
the latter one, thus solving governing Eq. (15) instead of Eq. (13)
together with the mass and momentum equations. The advantage
is that the energy equation remains formally the same as for the
standard heat transfer model and only the definition of the heat
capacity changes, which enables the phase change to be easily
incorporated into an already existing convection code. On the other
hand, the drawback of using a temperature dependent heat capac-
ity c? is that it forbids writing Eq. (15) in a fully conservative finite
volume form. Thus, this method is more suitable for small Stefan
numbers, roughly lower that 1, for which the temperature depen-
dence of c? is limited. As a remedy for high Stefan number cases,
fine spatial resolution can be employed to ensure a balanced heat
budget at steady state. A fine resolution is also needed in the vicin-
ity of the phase boundary where the largest enthalpy gradient
occurs.

In order to model a phase change using an effective heat capac-
ity we have to define the liquid fraction as a function of tempera-
ture. For a sharp phase transformation this should be a step
function with value one in the liquid and zero in the solid. As men-
tioned earlier, smoothing of the discontinuity must be incorpo-
rated in order for the system to be solved numerically. Hence,
the phase change occurs over a temperature interval 2 € that de-
fines the width of a mushy region and we choose the phase fraction
function to be

fL:%<1 ~tanh <¥)) (18)

which gives us the derivative needed in Eq. (15). The parameter €
can be seen as a physical parameter linked to the width of the
mushy region, which is observed to exist in experiments of phase
changes in complex compounds. The extent of the mush also de-
pends on the vigor of convection that determines the temperature
gradients at the phase change interface.

The f; function together with viscosity # are depicted in Fig. 3.
The critical parameters in these definitions are the temperature
phase interval 2 € and the parameter B that controls the viscosity
values in the solid and mushy regions.

The physical situation that we consider here is different from
that of solid-solid phase transitions in the Earth’s mantle, where
an effective heat capacity is introduced to treat latent heat effects
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Fig. 3. Melt fraction and viscosity as a function of temperature for the enthalpy method. Dashed vertical lines denote the interval of phase transformation, in this case being

10% of the total temperature range (€ = 0.05).

due to a solid-solid phase transition in mantle convection simula-
tions (Christensen and Yuen, 1985): firstly, the dynamics associ-
ated with solid-solid phase transformations in the interior of the
Earth are dominated by changes in their depth (pressure) caused
by lateral temperature variations, which contrasts to melting that
we here consider to be purely dependent on temperature; also,
with a solid-solid phase change in the mantle, flow is allowed
across the boundary which differs from our case where the solid
does not deform.

We implement the liquid/solid transition into the finite volume
code StagYY; cf. Tackley (1993, 1996, 2002, 2008) for technical de-
tails of the code, and repeat here only some of its important tech-
nical aspects.

StagYY is intended to model Rayleigh-Bénard convection of ex-
tremely viscous fluids in the infinite Prandtl number approxima-
tion, so the time derivative in Eq. (2) is neglected. A staggered grid
discretization is used, hence velocity components are defined at cell
boundaries while pressure and temperature are defined at cell cen-
ters. Of great importance is that StagYY is capable of handling large
viscosity variations of up to 19 orders of magnitude (Tackley, 2008).

Viscosity, which is also defined in the cell center, needs to be
interpolated to the cell corners (in 2-D) or cell edges (in 3-D) in or-
der to compute the viscous shear stresses. There are several viscos-
ity averaging strategies including harmonic mean, arithmetic mean
or geometric mean. The choice of the averaging law is particularly
important in regions of abrupt viscosity change (Deubelbeiss and
Kaus, 2008), i.e. in this case around the phase transition. Arithmetic
averaging would give a stiffer mush while harmonic averaging
would allow the mush to deform more (Schmeling et al., 2008).
These differences would be noticeable only in cases where insuffi-
cient spatial resolution is employed. Geometric averaging lies in
the middle of arithmetic and harmonic mean and we decide to
use this for all of our experiments.

The governing Eq. (15) of the enthalpy formulation of the Stefan
problem is discretized on a regular non-deforming mesh and
treated using the Eulerian description of motion. The position of
the melting front is then read off the temperature solution. A
schematic example of the grid together with the phase boundary
is depicted in Fig. 2b.

5. Benchmarking both codes

In order to test our numerical solutions we performed two- and
three-dimensional calculations in several different settings. Firstly,
we test our tools using an exercise proposed by Bertrand et al.
(1999) in which a 2D solid cavity is heated from a vertical wall
so that the single component phase subsequently melts.

Secondly, we compare the two methodologies for solving the
phase change problem coupled with Rayleigh-Bénard convection
in the melt. The liquid layer is heated from below and cooled from
above so that the melting front stays in between.

Next, we draw a qualitative comparison between our 3D
numerical calculations and experimental results published in Davis
et al. (1984) for a horizontal layer heated from below.

Finally, we quantify the effects of the two parameters needed
when employing the enthalpy formulation: the temperature inter-
val 2 € over which the phase transition occurs and the parameter B
defining the viscosity ratio between the solid and the liquid.

5.1. Melting driven by natural convection in a square cavity

Consider a square cavity that is initially solid and maintained at
an initial temperature that is equal to the melting temperature
Ty = 0. Insulating horizontal walls are imposed and the right ver-
tical wall is kept at Ty, cf. Fig. 4. Zero velocity initial conditions are
prescribed and all boundaries are no-slip.

At time t = 0 the temperature of the left vertical wall is raised
and kept at a temperature Ty > Ty, in order to allow melting to
start. After the initial transient stage dominated by heat conduc-
tion, convection in the melt arises as the thickness of the liquid
layer increases. Finally, heat transfer through the liquid phase is
controlled by convection. The phase change interface remains pla-
nar when heat transfer occurs by conduction. As early as convec-
tion sets up, the upper part of the cavity melts at a higher rate
due to high temperature gradients.

Numerical experiments are first performed using the Elmer
code. As was described in Section 3, the position of the melting/

Fig. 4. Schematic view of the test case after Bertrand et al. (1999). The enclosure is
heated from the left vertical wall, which causes a progressive melting. After an
initial state of pure conduction, natural convection occurs in the liquid and results
in more extensive melting in the upper part of the cavity. Horizontal walls are kept
insulated and the right vertical wall is maintained at the melting temperature Ty.
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freezing front is always assigned to the same mesh nodes, resulting
in deformation of the grid corresponding to latent heat consump-
tion/release. Consequently, the number of mesh nodes changes
neither in the solid nor in the liquid during a simulation. Thus,
for all numerical experiments, both the solid and the liquid must
exist from the beginning to the end of the run. Hence, in the set-
up test case we use as initial conditions for the temperature the
analytical solution of the 1D Stefan problem (Davis, 2001) resulting
after time t =5 x 107> has elapsed. The parameter values of the
simulation correspond to Case 3 in Bertrand et al. (1999), i.e.
Pr=50,Ra =10’ and St =10. The initial position of the phase
front is thus x;,; = 0.031115.

The rectangular 2D mesh is composed of bilinear elements.
Initial equal spacing in both directions is imposed. We use 60
elements in the vertical direction and 15 and 35 elements in the
horizontal direction in the liquid and solid parts of the cavity,
respectively. A fixed time step dt =2 x 107 is used in the
Crank-Nicolson method.

Snapshots of the temperature field at four different times are
depicted in Fig. 5. A comparison of our solution with the synthesis
of results published in Gobin and Le (2000) is plotted in Fig. 7.
Fig. 7a shows the time evolution of the average Nusselt number,
which is the dimensionless heat flux density, over the hot vertical
wall. Fig. 7b shows the position of the melting front at time ¢t = 0.1.

Numerical results published in Gobin and Le (2000) show a
large dispersion of possible solutions, e.g. in the case of melting
front positions at time ¢t = 0.1 (Fig. 7b) the dispersion at z=1 is
around 9%. The differences are caused by the various implementa-
tions of the time and spatial resolutions and not by the mathemat-
ical formulations used (Gobin and Le, 2000). However, in the
absence of an exact solution, it is hard to know which code pro-
duces the most accurate solution.

Nevertheless, our solutions lie in the region of published solu-
tions, being closest to the results of Le Quéré or Wintruff (Gobin
and Le, 2000). The model of Le Quéré uses the enthalpy formula-
tion. The enthalpy is approximated in this case by a continuous
and piecewise linear function with phase change interval 0.001.

@ ,

®) ,

A 2nd order centred finite volume discretization is used in the spa-
tial domain. Wintruff uses the control volume finite element ap-
proach together with a front tracking method to account for the
latent heat effects; the interface position is thus calculated
explicitly.

From this benchmark comparison we conclude that Elmer pro-
vides an accurate tool capable of handling the crystallization/melt-
ing processes closely coupled with convective motions in the
liquid. The impossibility of modelling complete solidification/melt-
ing of the cavity is compensated by the small computational cost.

The same exercise was repeated with the StagYY code, which al-
lows the computation of the phase transformation and convective
motion in the infinite Prandtl number approximation. It is impor-
tant to note that the formulation we have chosen is not suitable
for this test. As all the solid is initially held at the solidification
temperature, the last term in Eq. (16), which should be non-zero
only in the mushy region between the solid and the liquid, contrib-
utes to the solution over the whole solid. We thus modify the
phase fraction function so that the mushy region occurs mainly
in the liquid by adding a shift es

fi- % (1 ~ tanh (TM;?*T)) (19)

and we use €s = €.

The computations were performed on a mesh with 256 x 256
finite volumes. The same initial conditions described above for El-
mer were used.

Snapshots of the temperature field are shown in Fig. 6. Compar-
ison of the interface position at time t = 0.1, which is in this case
represented by the isotherm with the temperature value
T =Ty + €5, together with time evolution of the heat flux over
the hot vertical wall, are presented in Fig. 7. While the form of
the phase interface falls into the interval of solutions obtained in
Gobin and Le (2000), the most significant difference is observed
in the time dependence of the Nusselt number. This difference is
not caused by neglecting the inertia force but rather is related to
the limitation of the method implemented.
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Fig. 5. Snapshots of temperature (color scale) and velocity field (vectors) at times (a) t = 0.005 (b) t = 0.03 (c) t = 0.08 (d) t = 0.1. In an initially nearly completely solid cavity
with temperature equal to the zero melting temperature (Ty = 0), progressive melting occurs from the hot left vertical wall. (Case with Pr = 50, Ra = 107, St = 10.) Results
were obtained with the moving mesh grid code. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 6. The same caption as for Fig. 5, but the results were obtained with the fixed grid StagYY code and for Pr=cc.

5.2. Rayleigh-Bénard convection during melting of a single component
solid

As a second test case, melting in a square cavity heated from be-
low is studied. The schematic layout is depicted in Fig. 8. In a box of
height L, we impose a temperature difference between the top and
bottom boundaries: T¢ = 0 at the upper surface and Ty = 1 at the
lower one, so that with an imposed melting temperature of
Tm = 0.5 the upper region stays solid while the lower one is mol-
ten. If the Rayleigh number is high enough, Rayleigh-Bénard con-
vection establishes itself in the liquid, which leads to the
development of corrugations of the phase change interface.

Vertical walls are taken to be insulating. All boundaries are con-
sidered to be no-slip and we start from a conductive solution,
T =1 — z, with perturbations P = 0.1 sin(7ntx) sin(27z) in the liquid
layer. With Ty = 0.5, initially 50% of the computing volume is li-
quid. Parameters of the test case are chosen to be as follows:
St = 0.1 and Ra = 10°. As time increases the fluid starts to convect.
Ascending current develops in the middle of the cavity and the
fluid descends along the vertical walls. As a consequence, the ini-
tially flat interface becomes corrugated due to the variable temper-
ature gradient normal to the melting front.

The two numerical implementations differ in treating the
momentum equation. In the fixed grid method, an infinite Prandtl
number approximation is considered. Based on laboratory experi-
ments, it was shown by Krishnamurti (1970a,b), that this simplifi-
cation is valid for Pr > 100. We thus use Pr= 1000 for the
distorting grid method so as to make the comparison of the two
sets of results meaningful.

In the moving mesh code, the mesh used during the simulation
consists of 50 elements in horizontal direction and 40 and 10 ele-
ments in vertical direction in the liquid and the solid, respectively,
with the chosen timestep size equal to 2 x 10°. The enthalpy
method formulation is solved on a grid consisting of 128 x 256 ele-
ments. The timestep is chosen so that the Courant number does not
exceed 1. A clear advantage of the moving grid method appears
here: very few grid points can be used in the solid since only diffu-
sion proceeds there. Thus it allows optimization of the computa-

tional cost. On the contrary, the enthalpy method must handle
large viscosity contrasts in the vicinity of the phase transition
and thus requires fine mesh resolution. As a possible strategy
adaptive grid refinement can be employed (e.g. Davies et al.,
2011), which allows having a fine mesh resolution where needed.
However, its implementation is beyond the scope of this work, and
we use a static regular mesh that is dense enough to manage the
large viscosity variations.

Comparison of results from the two methods is shown in Figs. 9-
13. Fig. 9 shows the time evolution of the mean temperature in the
cavity and the average Nusselt number over the hot wall. At steady
state, the relative difference between the two solutions is less than
1% for the mean temperature and around 2% for the bottom heat
flux.

These differences also show up in the thermal profiles displayed
in Fig. 10, where vertical temperature profiles are presented at four
different times at a distance x = 0.25 from the left boundary. The
convecting core is slightly colder with the moving mesh code than
with the fixed grid one. Corresponding velocity profiles are plotted
in Fig. 11. Convective velocities in the liquid are mildly faster for
moving mesh simulations.

A comparison of the interface position obtained by the two ap-
proaches is depicted in Fig. 12. In the case of the distorted grid, lar-
ger amplitudes of corrugations are obtained. Comparing the
position of the melting front at time t = 0.2, the relative difference
between the two average solutions is 0.8%. The maximum of the
difference between deviations of the interface positions is 0.006.

Snapshots of the complete temperature field at four different
times using both methods together with maps of their difference
are depicted in Fig. 13. All results show an excellent agreement
in the temperature fields. The differences are concentrated around
the transition between the two phases. Compared to the results of
Viswanath and Jaluria (1993), the two sets of our solutions show
much better agreement in terms of interface position and temper-
ature structure. In the case of Viswanath and Jaluria (1993) the
large discrepancies between the solutions might be caused mainly
by the insufficient resolution they used within the enthalpy ap-
proach. In contrast to what Viswanath and Jaluria (1993) reported,
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Fig. 8. Schematic picture of the set up for the second test case with solidification/
melting of a liquid layer with developed Rayleigh-Bénard convection. The phase
change front is maintained at a fixed temperature Ty, whose value lies between the
temperature of the bottom boundary Ty and upper boundary T¢. Vertical walls are
insulating and no-slip boundary conditions are applied on all boundaries.

the interface positions obtained by the moving mesh method are
always higher than those obtained by the enthalpy method.

5.3. Pattern selection in a crystallizing 3D convective horizontal layer

Davis et al. (1984) experimentally examined a single-compo-
nent liquid that solidifies/melts in a plane layer heated from below
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Fig. 9. Time evolution of the mean temperature in the cavity (upper figure) and
mean Nusselt number over the hot bottom boundary (lower figure). Solid blue lines
represent solutions obtained by the front distorted grid. Solid red lines result from
the fixed grid enthalpy method. Vertical dashed lines indicate times when
snapshots of Fig. 10-13 were taken. (Case with Pr = 1000 (blue) and Pr = oo
(red), Ra = 10°,St = 0.1.) (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

and cooled from above. The convective pattern established (rolls or
hexagons) depends on the ratio of solid to liquid thicknesses A and
the Rayleigh number. Davis et al. (1984) chose to relate all results
to a purely conductive state in which the interface is planar. Thus,
A is the ratio of the two heights in the case where only heat con-
duction proceeds. Small values of A lead to roll-like convective pat-
tern selection whereas large A results in hexagonal convection.
Here, we qualitatively study these results and show the transi-
tion between these two configurations. Numerical simulations are
carried out with the StagYY code, which is fully parallelized using
domain decomposition and the Message Passing Interface library
(MPI). We use a 3D layer with an aspect ratio of 8 in both horizon-
tal directions, and 256 x 256 x 128 grid cells in the two horizontal
and vertical directions, respectively. Heating from below is im-
posed with insulating vertical walls and zero velocities at all
boundaries. We pick the same parameters used in laboratory
experiments, cf. Fig. 3a and b in Davis et al. (1984). Results of the
first case, computed for Ra = 8.4 x 10° and A = 0.03, i.e. a liquid
layer approximately thirty times thicker than the solid one for pure
conduction, are presented in Fig. 14a. We show the corrugated
solid-liquid interface at a state close to the steady state. Indeed,
we observe convective roll patterns. A second experiment is per-
formed for Ra = 1.1 x 10* and A = 0.36, i.e. the liquid layer approx-
imately three times as thick as the solid. Results are shown in
Fig. 14b. In this case, hexagonal patterns are observed, in agree-
ment with the experimental observations of Davis et al. (1984).

5.4. Choice of parameters in the enthalpy method

In order to test the influence of the two numerical parameters
appearing in the enthalpy method (temperature interval 2 € over
which the phase transformation happens, and which is related to
the width of the mushy two-phase region, and the viscosity con-
trast B between the solid and the liquid), we perform a series of
experiments with the following set-up: fixed temperatures at the
bottom (Ty = 1) and the top (Tc = 0) are imposed together with
insulating vertical walls and zero shear stress on the bottom and
vertical boundaries. The velocity condition at the top boundary
must be no-slip to further prevent deformation of the solid. The
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interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

melting temperature is chosen to be Ty = 0.5, and Ra =3 x 10°
and St = 0.1 are imposed. Steady convection in a square box is then
computed on a 128 x 128 grid.

The temperature field, together with the viscosity for two dif-
ferent values of parameter B, are depicted in Fig. 15. The phase
change temperature interval is here € = 0.05. Fig. 15e shows the

difference between the two solutions with the highest discrepan-
cies around the phase transformation. This is caused by the fact
that the parameter B primarily affects the viscosity gradients in
the mush that in turn controls velocity values in this transition.
The higher the value of B the lower the velocities in the two-phase
region due to higher viscosity gradients. In the limiting case,
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velocities go to zero for temperatures higher than the melting tem-
perature. However, having large viscosity gradients is numerically
challenging. Thus, we determine the minimum value of B sufficient
to create a stagnant solid region and being able to sufficiently re-
duce the velocity values in the mush, by running a systematic
investigation. The effect of B is shown in Fig. 17a where we plot,
as a function of B, the maximum of the relative difference between
the temperature for the given value of B and that obtained for
B = 13 (having a viscosity contrast of 2 x 10'"), chosen as a refer-
ence. The maximum relative difference can be kept below 10% if
the viscosity contrast is larger than 10°, which is the minimum
to keep the solid from deforming. This is in agreement with exper-
iments carried out for convection with strongly temperature
dependent viscosity when a stagnant lid is formed for high enough
viscosity ratios (Davaille and Jaupart, 1993).

The effect of the phase change interval € is shown in Fig. 16
where two cases with € = 0.005 and € = 0.05 are compared (with
B = 6 for both experiments, corresponding to a viscosity contrast
of 2 x 10°). Fig. 16a and b show the phase change interval in the
two cases. The main effect of changing € is to change the thickness
of the two-phase region. This thickness €, can be related to € by

eL

: (20)
f(;- ?TZ |su1'fdx

€

As a normalization factor, the mean temperature gradient at the
surface is suitable since it is approximately constant in the solid
(Fig. 10).

Fig. 16e depicts the relative difference between the two temper-
ature solutions. Again, the largest difference between solutions is
found around the melting front. Results of the systematic study
are displayed in Fig. 17b. As a reference solution, the case with
the smallest € = 0.001 is taken. The relative difference is less than
1% for €, of order Az or less and is kept below the 10% level for
nearly the whole studied interval. Using a larger epsilon amounts
to treating a large two-phase region and could be a good modelling

approach for a convection situation in which a thick mushy layer
develops.

6. Thermal evolution of the crystallizing basal magma ocean
(BMO)

In this section we use the tools developed above to conduct a
series of numerical experiments to derive the heat transfer laws
for the convecting liquid layer undergoing crystallization/melting.
These laws are subsequently applied to the magma ocean that
could have been lying between the Earth’s core and solid mantle
since the formation of the planet (Labrosse et al., 2007).

6.1. Heat transfer by Rayleigh-Bénard convection interacting with a
freezing front

We consider the setting depicted in Fig. 1 where a liquid layer
heated from below underlies the solid layer, similar to the second
test case. The interface is locked in the computing box as we im-
pose for the melting temperature Tc < Ty < Ty.

The dimensionless heat flux is expressed by the Nusselt num-
ber, here termed effective since it is written with variables apply-
ing to the liquid layer,

Nues = %7

(h)

where Q is the actual heat flux density coming in and out of the box,
AT, =Ty — Ty the temperature difference across the convective
zone and (h) its average thickness. We want to describe Nugy as a
function of the effective Rayleigh number based on the temperature
difference AT, and (h),

go(h)* poAT:
Kny

Combining with Eq. (4) we have Raes = (h)>(1 — Ty)Ra. Here, (h)
does not have any physical dimension. For the sake of simplicity,

(21)

Raeff = (22)
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Fig. 13. Temperature field at four different times corresponding to Fig. 12 and dashed lines of Fig. 9. In the first column, solutions obtained with the moving mesh grid code
are displayed. The second column depicts resulted obtained with the fixed grid enthalpy code. The third column shows the absolute difference between the two solutions at a
given time. The melting temperature is Ty = 0.5. (Case with Pr = 1000 (first column) and Pr = oo (second column), Ra = 10°,St = 0.1.)

we use the same symbol as above in Eq. (22). In the numerical
experiments Raey is calculated a posteriori, Ra being imposed as
an input parameter. We explore the Nug(Raer) relationship at
two different Prandtl numbers, Pr = 7 (equivalent to that of water)
and Pr = oo. Clarification of the parameter choice is discussed below
in Section 6.2 and is motivated by our intention to use the scaling
laws for the BMO. We do not aim to simulate the long term cooling
history of the system but focus on heat transfer at statistical steady-
state. All experiments are thus conducted with a balanced energy
budget.

Experiments at Pr=7 and St=0.9 are performed with the
moving grid method. The aspect ratio of the computation domain
is kept at a value of 4 but the resulting liquid layer has an aspect
ratio in the range from 5 to 9. The number of finite elements in
the grid depends on the value of the Rayleigh number. The finest
resolution for the highest Rayleigh number contains 500 elements

in the horizontal direction and 85 and 10 elements in the vertical
direction in the solid and liquid, respectively. Most of the calcula-
tions are performed on a grid with 300 elements in the horizontal
direction and 45 and 10 elements in the vertical direction in the li-
quid and solid, respectively. The grid is refined in the vertical direc-
tion in the thermal boundary layers in the liquid. The bottom and
vertical velocity boundary conditions in the liquid are free slip. The
vertial walls (in the solid and the liquid) are insulating. The initial
condition for temperature is a linearly varying profile in the solid.
In the liquid for cases with small Rayleigh numbers an isothermal
interior is prescribed with boundary layers at top and bottom plus
small random perturbations. The phase front is planar at the begin-
ning of the run. Its initial position is fixed at a height of 0.6. Cases at
high Rayleigh numbers were initiated from the final states of low
Rayleigh number cases since the initial state has little effect on
the final state for these runs.
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a) Roll-like patterns.

b) Hexagonal patterns.

Fig. 14. 3D corrugated phase change interface in two different configurations corresponding to the results of Davis et al. (1984) Fig. 3a and c, depicting the roll and hexagonal
planforms, respectively. Computed with the StagYY code in a cavity with an aspect ratio of 8 in both horizontal directions for St = 1 and (a) Ra = 8.4 x 10% (b)Ra = 1.1 x 10%.
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Fig. 15. Influence of the viscosity contrast between the solid and the liquid in the fixed grid code. Viscosity field (a) B= 6 (b) B = 13 and (c)-(d) corresponding temperature
fields at steady state. (e) difference between the two temperature solutions. (Case with Pr = co,Ra = 3 x 10°,5t = 0.1.)

Experiments at infinite Prandtl number where inertia is ne-
glected and St = 0.1 are done using the enthalpy method imple-
mented in StagYY. We changed St because, for a given spatial
resolution, a lower St ensures better energy conservation in the
system. We compared calculations with both values using StagYY
and found no significant effect on the dynamics of the flow and
heat characteristics as both Stefan numbers are low enough.

We run experiments at aspect ratios of the computation domain
4 and 16 that give, after rescaling to the liquid layer, aspect ratio
ranges 5-9 and 18-36, respectively. Again, the grid resolution var-
ies with the Rayleigh number. The highest resolution cases contain
512 x 256 grid cells for the aspect ratio 4 and 1024 x 128 for the
aspect ratio 16. In all experiments we independently verify that
at steady state the heat flux balance is satisfied, i.e. the difference
between the top and bottom heat flux does not exceed one percent.
The bottom boundary is assumed to have a zero shear stress and a

fixed temperature. The top of the cavity is a no-slip boundary with
a constant temperature. Vertical walls are periodic. The initial tem-
perature profile is isothermal plus top and bottom boundary layers,
and a superimposed small random noise. Initial states for high Ray-
leigh number cases are derived from low Rayleigh number cases.

Fig. 18 shows snapshots of the temperature field for steady and
unsteady flows. At stationary state, Fig. 18a, c and e, when vari-
ables such as mean temperature and heat fluxes remain constant
with time, hot plumes are centred below the highest points of
the corrugated interface. This occurs at small Rayleigh numbers.
At higher Raeg, convection is oscillatory. Boundary layer instabili-
ties develop periodically and are dragged by the main flow around
convective cells (Krishnamurti, 1970b; Jarvis, 1984). Variables then
oscillate evenly around a mean value.

At even higher Raey, convection is unsteady and non-periodic,
Fig. 18f, and variables oscillates irregularly around an average. A
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change width. The mesh step is fixed for all experiments, Az = 0.0078125 (corresponds to grid with 128 x 128 cells).

cluster of hot plumes forms at the bottom boundary drifting hori-
zontally toward the main upwelling. Correspondingly, a set of cold
instabilities is forming in the upper boundary layer. Progressive
remelting and resolidification thus happens over a broad region
where the clusters exist.

Each transition in convective style is generally accompanied by
an abrupt change in the heat transfer (Malkus, 1954). The Rayleigh
number at which this change occurs depends on the particular set-
ting. In our experiments conducted at Pr = 7 the convection regime
changes from steady to oscillating at Ra. ~ 4 x 10*. Such a sharp
transition is not observed for experiments at high Prandtl number
and steady and oscillatory experiments are treated together. A
second transition to unsteady non-periodic flow happens at
Raeg ~ 10° for Pr = 7 and Raeg ~ 10° for infinite Prandtl.

We perform a systematic study for Ra.; between 10* and 108, A
least squares fit in the form Nueg = f; Raﬁgf is then applied for each
of the regimes separately (Fig. 19). Coefficients 8, and 8, depend on

the style of convection and physical parameters of the system (Pr).
B, is around 0.2, and the exponent f, varies between 0.26 and 0.30
(Table 1).

6.2. Heat transfer and thermal evolution of the basal magma ocean
(BMO)

Seismic ultra low velocity zones (ULVZ) at the bottom of the
mantle have been detected for more than a decade now (Williams
and Garnero, 1996; McNamara et al., 2010). These regions are non
homogeneously distributed, have a variable thickness (5-40 km)
and could consist of partial melt (Williams and Garnero, 1996).
One scenario for their existence is that these zones are the rem-
nants of the thick magma ocean that formed between the mantle
and the core early after the Earth was formed and slowly solidified
since (Labrosse et al., 2007). Using our parametrization of heat
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Fig. 19. Effective Nusselt number as a function of the effective Rayleigh number.
Two Prandtl numbers are used: Pr=7 (square symbols) and infinite Prandtl
(triangles). Different colors correspond to different convection styles observed.
Change from steady to oscillating and unsteady flow is accompanied by the jump in
the heat transfer. Lines are the least squares fits obtained for each convecting
regime.

transfer developed in the previous subsection we infer the impact

of the presence of the BMO on the thermal history of the Earth.
To obtain the typical value of the Stefan number, cf. Eq. (7), we

need the estimation of AT, the total temperature difference over

the solid and the liquid. As we show below, high convective vigor
of the liquid layer maintains a small temperature difference across
it. Thus AT, is approximately equal to the temperature jump over
the mantle boundary layer that is around 1000 K. Using this value
results in a Stefan number of the order of unity. This implies that
timescales of resolidification/remelting are short and the system
adjusts nearly instantly to the position of the hot/cold plumes.

Combining Egs. (21) and (22) for the Nusselt and Rayleigh num-
bers, together with the fitting relation, we obtain

b2
Q = pik(%E0) " T 23)

where coefficients g, and B, were determined experimentally
(Table 1). Since B, is close to 1/3, the expression is only weakly sen-
sitive to the depth of the liquid layer (h).

Eq. (23) is used to determine the temperature jump AT, which
embodies the super-isentropic temperature difference across the
BMO. In order to estimate its value, we use parameters listed in Ta-
ble 2. The most critical but uncertain parameter determining the
dynamics of the whole system is the viscosity. There are no exper-
imental results for the viscosity at the pressure conditions pertain-
ing to the bottom of the mantle and extrapolations are not reliable
since the pressure effects are nonmonotonic (Liebske et al., 2005).
It is assumed that it can be very low, varying between 1072 and 1
Pas (Solomatov, 2007). Hence, the Prandtl number is between
unity and several thousand and Ra.s exceeds 10'°. Due to high con-
vective vigor it is appropriate to use the values of coefficients $,
and B, derived for unsteady flow. This results in AT, lower than
0.1K for Q = 100mW m~2. Hence, the superisentropic temperature
difference maintained across the top and the bottom boundary lay-
ers of the BMO is minute and the temperature of the core follows
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Table 1

Least squares fitting of equation Raey = /ilNuﬁg.
Regime Pr B Standard B Standard

deviation deviation

Steady 7 0.227 0.0005 0.296 0.0005
Oscillating 7 0.229 0.0009 0.289 0.0008
Unsteady 7 0.258 0.0023 0.270 0.0016
Steady/oscillating 00 0.219 0.0658 0.255 0.0583
Unsteady 00 0.116 0.0066 0.291 0.0079

Table 2

Typical values of the basal magma ocean properties.
Variable Notation Value Unit
Gravitational acceleration g 10 ms—2
Density Po 5500 kg m3
Viscosity range B 1072 -1 Pas
Coefficient of thermal expansion o 1075 K!
Thermal diffusivity K 1076 m2s1
Heat flux into the solid mantle Q 50-150 mw m—2

the evolution of the liquidus temperature at the bottom of the
mantle. The rate at which the BMO cools is approximately the
same as that of the Earth’s core, which explains why it can be
maintained for so long.

7. Conclusions

We have presented and tested two approaches to compute the
evolution of convection with a solid-liquid phase transition. The
moving grid method involves explicit tracking of the phase change
interface position at each time. We have implemented it in the fi-
nite element code Elmer presented here to the geodynamics com-
munity. The melting/freezing front is assigned to nodes that follow
its motion, deforming the whole mesh. It demands that the topol-
ogy of the phase transition stays approximately aligned along one
of the axes, so that a bijection between the phase change position
and the coordinate always exists. This method is particularly suited
for simulations with large Stefan number, in which the front is
moving slowly and continuously compared to simulations with
low Stefan number where quick jumps between two consecutive
timesteps can exist.

We also implemented a fixed grid method, called the enthalpy
method, in the 3D finite volume code StagYY. In this case, the solid
and the liquid, respectively, are treated together in a single non-
deforming domain and the latent heat effects are implicitly in-
cluded in the enthalpy variable. To account for the phase change,
suitable functions depending on temperature must be prescribed
to describe the liquid phase fraction and the viscosity. Because
an abrupt change of material properties is difficult to model with
such a method, a transition zone of a given width has to be intro-
duced. This drawback can turn into a benefit if the considered
material is not a pure pole. Indeed, a system with multiple compo-
nents involves a mushy zone (Worster, 1997) which is approxi-
mately modeled through the zone of transition between the solid
and the liquid. Compositional effects associated with the crystalli-
zation of multi-component systems are important for the dynam-
ics of both the mushy layer and the liquid but were not addressed
in this simplifying first approach. They should be included in the
future.

The phase transformation is incorporated by modifying the heat
capacity that, due to temperature dependence, is non-constant. For
a given grid, the accuracy of the solution can be enhanced by

increasing the viscosity ratio between the solid and the liquid,
which is ultimately needed to prevent deformation of the solid,
thus limiting the velocities in the mushy region. However, large
viscosity gradients are numerically challenging and also signifi-
cantly increase the computational time.

Both moving and fixed grid codes display a good agreement in
the benchmark tests.

We have used the two numerical tools to derive scaling laws for
the heat flux as a function of the Rayleigh number in the molten
region of the two-phase system, depending on the convective vig-
or. We have applied the scaling law for unsteady flow to determine
the temperature contrast between the base of the mantle and core
in the presence of a deep magma ocean. We found that the temper-
ature difference across the top and bottom boundary layers of the
BMO is lower than 0.1 K, hence negligible, implying that the poten-
tial temperatures at the top of the core for both the BMO and core
are equal, therefore the BMO and core cool at the same rate.
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Chapter 4

Heat transfer

In order to reconstruct the thermal history of the Earth in the presence of the BMO, we
study, using analytical and numerical methods, the physics of heat transfer through a crystalliz-
ing/melting layer that is heated from below and cooled from above (Figure 4.1). In particular,
we investigate the coupling between convective motions in the melt and phase change transfor-
mation. The melting temperature T is chosen such that the upper part of the cavity is always

frozen.

In the goal of understanding the dynamics of the convecting layer that changes its phase state
from liquid to solid, we first focus on a qualitative description of the system that is based on the
numerous simulations performed. This is followed by a quantitative study of heat transported

across a solidifying convecting melt.

4.1 Descriptive analysis of the physics

Description of the system under study (Figure 4.1) is based on a number (around 50) of nu-
merical simulations with various parameters. Each simulation is conducted with a balanced
energy budget when (statistical) steady state is reached since we aim to simulate the short term
evolution of the BMO.

We explore only cases with small St (under unity) and two Prandtl numbers (7 and o), since
these are the plausible parameters for the BMO. Racg is explored over a wide interval from
10 to 10%. Simulation at Pr = 7 are performed with Elmer code in 2D Cartesian geometry.

Experiments at Pr = oo are conducted with StagYY code in 2D and 3D Cartesian geometries.
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Figure 4.1: Schematic picture of the system under study. The upper part of the cavity is frozen
and the lower one is liquid since we impose T, < Ty < T,. The position of the phase change
interface is at h(z,t) with a spatial average hpy(t).

4.1.1 Temperature profiles

A profile of mean temperature in the system (averaged horizontally in space and also temporally)
at (statistically) steady state consists of linearly varying temperature in the solid where heat
conduction dominates (Figure 4.2). In the liquid, where well developed convection is set up, the
mean temperature profile is the same as in the classical Bénard problem. Isothermal convective
core is surrounded by the two boundary layers of thicknesses dt* (upper boundary) and §~
(bottom boundary) where most of the temperature variations occurs (Figure 4.2). ¢ and
0~ are either with similar thicknesses (when boundary conditions at the melting front and at
the bottom are identical, i.e. bottom boundary has fixed temperature and is noslip) or differ
significantly (when boundary conditions at the phase interface and at the bottom differ, i.e.
free-slip condition is employed at the bottom). The exact identical size of the boundary layers
is strictly not possible when convection is developed in the liquid since it implies corrugated top

boundary, and thus breaking the symmetry.

Also, we are interested in the minimum and maximum temperature profiles in the cavity (Fig-
ure 4.3). A value of the maximum temperature gradually decreases from the hottest bottom
boundary over the liquid. Its steep drop is then observed in the upper part of the liquid and the
solid. On the other hand, the structure of the minimum temperature profile changes gradually
in the upper part of the cavity till the bottom where a boundary layer exists with a thickness

inferior to 6.

When the system achieves statistical steady state, there is no mean heat flux discontinuity

96



4.1. DESCRIPTIVE ANALYSIS OF THE PHYSICS

T, T
1.0 M .
0'8 I . . .
Conductive solid layer :
VD @ e e e e e e e e e e e e e e e e e e e SN - — = — — = —_—————— -
o . +
c Top thermal boundary layer ' 15
506 o= S AU
5 .
o
(]
S
B 0.4+
g Convecting liquid interior
0.2}
Bottom thermal boundary layer . S I ....
%30 0.2 0.4 0.6 0.8 1.0
Temperature

Figure 4.2: Thermal structure of the convecting system undergoing solidification/melting. Hor-
izontally and temporally averaged temperature is plotted against vertical coordinate. (3D sim-
ulation with Ra = 3 - 10 and Ty = 0.59)

across the phase change front apparent in the temperature profile since at the phase change
interface latent heat is neither liberated nor consumed on average. Also, we note that the profile
across the whole cavity (i.e. in the solid and the liquid) corresponds to a mean temperature
profile of a system where viscosity is strongly temperature dependent and a thick stagnant lid
develops (White, 1988).

4.1.2 Thermal regimes

As we saw before, the system is fully controlled by three dimensionless parameters: Pr, Ra and
St. When the system does not change in time, i.e. eulerian time derivatives are zero, the heat
transported across the liquid does not depend on the Stefan number. So the heat transfer is
given by a couple: Pr, Ra and we decide to perform two sets of experiments for two different
Pr numbers, Pr = 7 and Pr = oo. This choice is motivated by our intention to use the scalings
laws for the BMO whose Pr is estimated to lie between 1 and 1000 (cf. Chapter 2). For a given

Pr, only one parameter is left and it is Ra.

We are particularly interested in the mean bottom and surface heat fluxes which are equal in

the absence of internal heating, the mean temperature in the cavity and also in the position of
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Figure 4.3: Horizontally and temporally averaged minimum temperature (blue dashed line),
maximum temperature (red dashed line) and mean temperature (solid black line) are plotted
against vertical coordinate. The horizontal dotted line represents the mean (spatial and tem-

poral) position of the phase interface. The vertical dotted line represents the imposed melting
temperature Ty = 0.59. (3D simulation with Ra = 3 - 10%)

the phase front. Several convective regimes have been distinguished depending on time evolution
of relevant variables (mean temperature, mean interface position, mean heat fluxes and mean
effective Rayleigh number). An experiment starts either from a given initial conditions (zero
velocity everywhere, a linearly varying temperature profile in the solid and an isothermal interior
in the liquid with boundary layers at top and bottom, plus small random perturbations) or we
start from the temperature field obtained in another simulation. First of all, a transition period
occurs when the system adjusts for an imposed Ra parameter at given Pr. Then three different
permanent states can be attained depending on Ra. Similarly to the case without phase change,
the evolution with increasing Ra is toward more complex time dependence. The first regime for
small Ra, termed steady state, is when all variables stay constant in time at each point. In the

second regime for intermediate Ra (termed oscillatory regime), variables oscillate periodically

around a mean value. In the third regime for high Ra (termed statistically steady state or
unsteady) mean variables (mean temperature, heat flux, etc.) vary unevenly around an average
value with no long term evolution. The Earth is in another state where in addition to short

scale variations there is a long term evolution. But we assume that there is a good separation of
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long and short time scales so that the long term evolution can be understood from the scaling

obtained for statistically steady state.

At which Ra the transition between the regimes occurs depends on the Prandtl number,
the boundary conditions at vertical as well as horizontal walls, and the size of the box. We
estimate its values later in the manuscript. Snapshots of the temperature field for Pr = 7
simulations and for several Ra are depicted in Figure 4.4 where the transition to more complex
flows with increasing Ra is apparent (insulating vertical walls and free slip vertical and bottom
walls). Temperature snapshots of simulations conducted at Pr = oo are shown in Figure 4.5 (2D

geometry) and Figures 4.6 and 4.7 (3D geometry).

An example of the time evolution of several diagnostic quantities in the unsteady regime
is depicted in Figure 4.8. Temperature and heat flux evolutions are given together with a
mean position of the liquid/solid phase change interface. As the mean thickness of the liquid
layer changes in time, the effective Rayleigh number also changes with time (Figure 4.8(f)).
Comparing Figure 4.8(a) and (c) we note that the small variations in mean temperature induce
large variations in average heat flux. Also, the largest amplitudes of mean temperature variations
occurs on long periods, whereas the mean heat flux over the bottom boundary fluctuates with
large amplitude at high frequencies. Figures 4.8(c), (d) and (e) show a mean heat flux across
the bottom boundary, the phase interface and the top boundary. In these figures we observe a
filtering of high frequency signals and a significant reduction of amplitude when passing from

the bottom boundary to the top of the computational domain.

4.1.3 Form and amplitude of corrugations

When a liquid layer is melting without any flow developed in it, the interface between the solid
and the melt stays planar, perpendicular to the direction of heat flow. Heat is transported by
conduction and depends on the thickness of the layer (solid or liquid), the temperature drop
across the layer and the thermal conductivity. Some of the authors chose this state as a reference
and relate all results to it (Davis et al., 1984; Dietsche and Miiller, 1985). This is a good choice
when the Rayleigh number is not too high but might be rather poor at high Ra.

As soon as convection sets up in the liquid, deflection of the phase front occurs as the heat flux
in the vicinity of the melting interface varies along the phase change front. A higher heat flux,
where hot upwelling currents reach the top, induces a higher rate of melting. The roots of cold
descending currents induce more extensive solidification due to a low heat flux. Corrugations,
i.e. distinctive undulations of the melting front, are created. These have forms of caps at small

Rayleigh numbers when steady flow is developed in the liquid (Figures 4.4(a), 4.5(a) for 2D
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Figure 4.4: Snapshots of the temperature field at (a) steady state (b) oscillatory regime (c)-(e)
statistically steady states. Pink to cyan color scale represents temperatures in the solid. Black
to yellow colors represent temperatures in the liquid. (Cases Pr =7, Ty = 0.8 and St = 0.9)
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Figure 4.5: Snapshots of the temperature field at (statistically) steady states. Pink to cyan color
scale represents temperatures in the solid. Black to yellow colors represent temperatures in the
liquid. (Cases Pr = oo, Ty = 0.8 and St = 0.1)
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(e) Ra=2-10° (Raeg = 4.3-10%), Ty = 0.59 (f)

(g) Ra=2-10" (Raeg = 3.3 - 10°%), T\ = 0.7 (h)

Figure 4.6: (Left column) Isotherms of temperature field at (statistically) steady states. Cyan
isotherm represents the phase change front (temperature of melting), red isotherm represents
the hot upwelling (7" = 0.9). (Right column) Snapshots of temperature field at horizontal cross-
section at mid-depth. The red is hot, the blue is cold. (Cases with Pr = oo, St = 0.14 and
no-slip bottom velocity boundary conditions. I%8Bndary conditions at vertical walls are periodic.
Domain size is 4 x 4 x 1.)
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Figure 4.7: The same caption as for Figure 4.6, but experiments were performed with free-slip
bottom velocity boundary conditions.
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Figure 4.8: Time evolution of the temperature, mean interface position, effective heat flux
(termed effective since its definition is written with variables applying to the liquid layer) and
effective Rayleigh number. Changes in the liquid thickness induce changes in the effective

Rayleigh number. 2D simulation with Pr =7, Ra = 1.6 - 107 and St = 0.9.
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examples, Figure 4.6(a) for 3D example). For unsteady flows at high Ra, multiple clusters of

localized plumes exist (e.g. Figure 4.4(e)) and the topography of the interface becomes irregular.

The convective vigour determines the size and amplitudes of corrugations. We observe a
significant decrease of the corrugation’s amplitude Ah for unsteady flows (Figure 4.9(bottom)).
Ah is determined as a difference between the maximum and minimum of the melting front
position. This leads to higher values of Ah than if they were determined for each corrugation
separately and averaged as was done e.g. in the work of Hill (1996). In Figure 4.9 we see indeed
that Hill (1996) reported lower values of Ah for highly unsteady flows where the difference
between the shape of individual corrugations (and so the size of Ah for separate cells) is very
different.

At small Ra we see a more complex behaviour: Ah increases with increasing Ra and then
starts to decrease (Figure 4.9(top)). This could be possibly explained by forcing the convective
cells to have a wavelength given by the size of the box and thus implicitly also forcing Ah.
However, we would need more experiments at small supercritical Ra in order to confirm this
hypothesis.

The decrease in Ah with increasing Ra can be explained by unsteadiness of the flow in the
liquid. Numerous time dependent currents reduce the temperature differences when temporally
averaged at a given space. In a limiting case at very high Ra, the number of hot and cold plumes
passing at a certain point will be the same after a long time elapsed (typically several convective
times). Also, if the characteristic time scales of solidification/melting are much superior to the
convective times, corrugations will not develop. We thus expect Ah — 0 for very large Ra
and/or St.

4.2 Parametrization: general scaling laws

Here, we give a quantitative study of heat transfer across a solidifying/melting layer using the
results of the numerical simulations. We thus explore a relation between the heat flux and
the Rayleigh and Prandtl numbers at steady state. Results for all experiments are given in
Tables 4.1, 4.2, 4.3 and 4.4. Several resolution tests are carried out to verify the numerical
solutions. Results together with mesh resolutions for individual experiments are reported in

Appendix A.

For an imposed Ra we obtain a mean bottom and top heat fluxes coming in and out, Qe

and Qtopa
_ ff Qbot(x) dzdt

= 4.1
Qbot tSL ) ( )
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Figure 4.9: Amplitude of corrugations (scaled with the thickness of the liquid layer) as a function
of the effective Rayleigh number. The size of corrugation is determined as a difference between
the maximum and minimum positions of the phase front and is thus generally higher than results
of Hill (1996) (pink stars). (top) All numerical experiments. Note the increase in amplitude when
passing from steady to oscillatory regime for Elmer results. Also, no apparent trend is observed
for StagYY 2D steady/oscillatory regime (yellow triangles). (bottom) Selected numerical data
(2D steady regimes are omitted) are depicted together with experimental results of Hill (1996).
The black dashed line represents —1/3 power law.
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where a time integration happens over an interval of length ¢ when the system is in (statistically)
steady state and space integration is over a bottom boundary L (similarly for Qiop). Qnot and
Q+1op can be calculated directly from a temperature gradient as velocities normal to the external
boundaries are zero at all horizontal walls. Since we examine permanent states, Qpot should
be the same as Qop in order to conserve energy in the system. Indeed, in all our experiments

difference between the two fluxes is inferior to 1%.

Qbot and Qiop are not directly related to the convecting liquid layer (they are defined with
variables applying to the whole cavity) and we thus define their effective values that are written
with variables applying to the liquid layer (the thickness of the liquid and the temperature
difference across the melt). In addition, we also give the effective Rayleigh number Racg that is
time dependent and is not known a priori due to dependence on hy, (given as well in the tables

with results).

The heat flux can also be estimated from the energy conservation equation. Integrating
Eq.(2.15) over a volume 2 of a domain bordered by the bottom boundary (z = 0), the horizontal

surface at height z = d and vertical walls we obtain

DT
/QDtdQ:/QVQTdQ. (4.2)

Using the incompressibility condition and applying the boundary conditions we rewrite (4.2)

oT oT — 49T
=—(z2=0=—(z=d) —wl(z=d) — —d 4.3
Qo = 5o =0) = Gz =) —wiz = d) — [ Tz, (13)
where overbars stand for horizontally averaged variables at a given depth and w is the vertical
velocity. We also introduced a temperature perturbation 6, T = T + 6, for which it holds

w0 = w(T —T) = wT.

Eq. (4.3) represents the energy balance in a volume Q. In a steady state the time derivative
disappears ( fod %—sz = 0) and the mean bottom heat flux is composed of two terms: the heat
conducted at height z = d and the heat advected through a horizontal plane at z = d. The
same applies also for statistical steady state. If Eq.(4.3) is averaged over the time interval long
enough compared to the periods in the system, the time derivative also disappears. Then, the

overbar would be defined as the average over the horizontal surface and this timescale.

Eq. (4.3) is valid for all d € (0, D) and can be used to verify the conservation of energy in
the cavity. Figure 4.10 shows individual terms of Eq. (4.3) for one particular simulation at high

Ra and indeed we conclude that the conservation of energy is verified at each depth.
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108

nb | Ra Qvot @?ﬁo Raeg mmﬂ @ﬂomu A?Ev Ah D?\?S A

09 | 42-10° 1.43 1.43 7.1-103 3.14 3.14 0.44 0.090 0.205 1.283
01 | 6.4-10° 1.60 1.60 1.6 - 10% 3.98 3.98 0.50 0.087 0.175 1.012
12 | 7.5-10° 1.67 1.68 2.1-10% 4.32 4.34 0.52 0.105 0.202 0.931
07 | 9.6-10° 1.78 1.79 3.1-10* 4.85 4.86 0.54 0.130 0.238 0.839
13 | 1.0-10% 1.81 1.81 3.3-10* 4.96 4.96 0.55 0.130 0.237 0.822
08 | 1.3-10° 1.82 AO.DmV H.mMA HOI»V 4.1-10%(9 A v 4.94 AO.MC 4.95 Aﬂ.%o . HOI»V 0.54 A%.H . HOImV 0.225 0.414 0.843
14 | 1.4-10% 1.86 Aoomv H.mﬂm HO\»V 4.7-10* (9 A v 5.15 AO.MMV 5.15 AH.DO . HO\mv 0.55 Awﬂ . HO\mv 0.230 0.416 0.810
02 | 1.6-10° 1.93(0.09) 1.93(1.7-10~%) 5.8-10%(10) 5.47(0.26) 547(7.15-10-%) 0.57(3.2-10%) 0253 0447  0.765
15 | 1.8-10° 1.99(0.12) 1.99(2.9-104) 7.0-10*(13) 5.78(0.36) 5.78(9.16-10-%) 0.58(3.6-10°) 0239 0412  0.725
16 | 2.2-10% 2.10 AO.HUV 2.10 A HOI&V 9.5-10* A%: 6.31 AO.%WV 6.31 Aw.Hw . HOIwV 0.60 Am.m . HOIUV 0.241 0.402 0.666
11 [2.7-10° 2.00(0.17) 2.00(0.06) 1.1-10°(7700)  5.87(0.55) 5.87(0.31) 059(14-107%) 0211 0358  0.693
03 | 3.2-106 2.09(0.18) 2.08(0.04) 1.4-10°(5600)  6.31(0.57) 6.28(0.20) 0.60(8.2-103) 0.195 0.323  0.656
04 | 6.4-108 247 AO.MwV 2.47 AO ORC 3.8-10° Awmoov 8.22 AO.,N@V 8.21 AOHﬂv 0.67 Am 5- HOIwV 0.169 0.254 0.501
05 | 1.6-10" 3.13 Ao.wﬂv 3.12 (0. Omv 1.3-106 AMODOOV 11.5 G.OC 11.49 AO.MRC 0.74 Aw 9- HOva 0.151 0.205 0.360
18 | 6.0-107 4.31 Ao.w%v 4.19 AO ORC 6.2 - 106 Awﬂooov 17.3 AH.wwv 16.83 AO.H‘NV 0.80 AH 6 - HOIwV 0.153 0.190 0.246

Table 4.1: Results obtained with moving mesh grid code Elmer. Three regimes were observed: steady (top part of the table),
oscillating (middle part of the table) and unsteady (bottom). All experiments are two dimensional and are performed at Pr = 7,
Tnv = 0.8, St = 0.9 and for aspect ratio 4. Standard deviations (if exist) are given in parentheses.
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nb Ra @Uow ﬁwnon mwmm Nmm @8@ A\?ﬁv Ah DD\\SE A

02a2 [ 2.7-105 1.46 1.45 4.8-10% 3.24 3.23 0.445 0.097 0.217 1.249
02a | 1.0-10% 2.03 2.02 8.2-10% 4.37 4.37 0.648 0.119 0.184 0.544
10a | 6.0-10% 1.67 1.67 1.6 - 10° (3.1 - 55 4.28 4.28 0.512(3.31-107%) 0.142 0.278 0.953
0la | 6.4-10° 3.30(0.01) 3.29 1.9 105 ( 0Y)  5.52(0.02) 5.52 0.838(2.94-107°) 0.120 0.143 0.193
03a | 1.0-107 1.84(0.07) 1.84 3.4-10° (4.3 - 53 5.11 (0.20) 5.10 0.554(2.35-107%)  0.160 0.289 0.805
04a | 4.0-107 2.48(0.06) 2.48(0.01) 2.4-10°(1.1-10%) 8.33(0.19) 8.34(0.05) 0.673(9.78-107%)  0.102 0.151 0.486
05a | 1.0-10% 3.21(0.08) 3.21(0.01) 8.4-10°(1.6-10%) 12.00(0.29) 12.03(0.04) 0.749(4.72-10~*) 0.068 0.091 0.336
06a | 4.0-10% 4.62(0.11) 4.66 4.5-107(3.1-10%) 19.13(0.45) 19.30(0.02) 0.828(1.87-10~%) 0.009 0.011 0.207
07a | 1.0-10° 6.55(0.14) 6.62 1.4-10% (4.6 -10%)  28.78(0.60) 29.12(0.02) 0.879(9.98-1075) 0.006 0.007 0.137

Table 4.3: Results obtained with the fixed grid StagYY code for 2D domain with aspect ratio 16. Standard deviations (if exist)
0.8 is fixed for all experiments except for case 02a that has

are given in parentheses.

Ty = 0.7 and case 0la that has Ty = 0.5.

St

0.1 for all experiments.

T
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Figure 4.10: Profiles of horizontally and temporally averaged advective flux (blue dashed line),
conductive flux (red dashed line) and their sum (solid green line). The horizontal dotted line
represents the mean (spatial and temporal) position of the phase interface. We distinguish the
frozen upper part of the cavity where conduction prevails as the solid in non-deformable with zero
advective transport. The liquid layer contains a well mixed interior where heat is transported
by advection and conduction is negligible. At the bottom and at the phase interface, advection
vanishes and conduction prevails. The conservation of energy is indeed verified as the sum of
the advective and conductive fluxes is constant at all depths. (3D simulation using StagYY with
Ra=2-10" and Ty = 0.7)

We proceed by quantifying the relation between the Nusselt and the Rayleigh numbers. As

was noted in Chapter 2, the general scaling law has the form
Nueg = 61Raeﬁff, (4.4)

where (31 depends among other things on the boundary conditions. Some authors argue, that
(1 does not depend on Pr for Pr > 1 (e.g King et al., 2012). For (3, one of the theories based
on marginal stability analysis predicts (2 equal to 1/3 for large Ra (Malkus, 1954b). This
implies that the dimensional heat flux transfered across a convecting layer does not depend on

its thickness and also that the dynamics of the bottom and top boundary layers are independent.

Theoretical scalings based on the dynamical equations both in the bulk and in the boundary

layers have been derived in Grossmann and Lohse (2000) and discussed for Earth’s systems
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4.2. PARAMETRIZATION: GENERAL SCALING LAWS

in Jaupart and Mareschal (2010). Several regimes in the (Ra,Pr) parameter space were proposed
depending on whether the boundary layer or the bulk dominates the global thermal and kinetic

energy dissipation.

A collection of our results is plotted in Figure 4.11 (top) where the numerical data points
are depicted together with experimental data of Rossby (1969) and Hill (1996). Rossby (1969)
performed laboratory experiments of classical Rayleigh-Bénard convection with water (Pr = 7)
and silicon oil (Pr = 200). We notice that our results obtained at Pr = oo in 3D geometry and
with a no-slip bottom boundary condition correspond remarkably well to his results (for both
the steady and unsteady regimes). This suggests that a convecting layer undergoing a solidifi-
cation/melting follows the same laws as Rayleigh-Bénard convection. In addition, due to this
agreement we conclude as well that we made a right choice in the selection of scaling parameters
(we use the depth of a liquid layer and the temperature difference across the convecting liquid).
However, note that the physics is not exactly the same although the exponents are close. Also
note that the thickness of the layer used as a scaling dimension is a simulation outcome and

depends itself in a way on Ra.

Hill (1996) has conducted a series of laboratory experiments in the same set up as ours, i.e.
he studied a system with a frozen upper part of the cavity lying above a convecting liquid. His
experiments were done with glycerol (Pr = 4 - 10*) in a domain with aspect ratio (horizontal to

vertical dimension) varying from 4 to 8. His data points fall also in the same range of results.

Considering only 3D experiments that were performed for two different bottom horizontal
boundary conditions (no shear stress and vanishing velocities) we see immediately that the heat

transfer is more efficient when free-slip is imposed.

As was discussed earlier, there are several transitions in the convective style (Malkus, 1954a;
Krishnamurti, 1970a). When searching for a Nueg(Raeg) relationship each of the regimes must
be fitted separately so that only experiments following the same convective regime are handled
together. Results of regression are gathered in Table 4.5 and are plotted in Figure 4.11 (bottom).
For unsteady regimes the 35 exponent varies from 0.26 for 3D experiments at Pr = oo to 0.29
for 2D experiments for the same Prandtl number. In any case we obtain an exponent inferior
to 1/3.

Also, the transition from steady to time dependent convective mode is accompanied by the
decrease of (2 (Table 4.5) at both Prandtl numbers and we are receding from a theoretical
value 1/3. However, this is consistent to that of what would be expected. The discrete tran-
sitions toward turbulence at finite Prandtl number generally decrease the slope in the Nu(Ra)

dependence (Grossmann and Lohse, 2000).
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Figure 4.11: Nusselt number as a function of the Rayleigh number. (top) Numerical data
with experimental results of Rossby (1969) and Hill (1996). (bottom) Numerical fits. Different
convective regimes are fitted separately.
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WAVELENGTH OF CONVECTION

Regime Domain Pr 01 B Ra range
Steady 2D 7 | 0.227 (0.0005) | 0.296 (0.0005) | 7-10% < Racg < 4 - 10*
Oscillating 2D 7 | 0.229 (0.0009) | 0.289 (0.0008) | 4-10* < Racg < 10°
Unsteady 2D 7 | 0.263 (0.0033) | 0.268 (0.0022) 10° < Raeg < 107
Steady/Oscillating 2D oo | 0.219 (0.0658) | 0.255 (0.0583) | 4 - 10? < Raeg < 4 - 10°
Unsteady 2D oo | 0.116 (0.0066) | 0.291 (0.0079) 10% < Racg < 10%
Steady 3D oo | 0.162 (0.0065) | 0.285 (0.0088) 10* < Raeg < 10°
Unteady 3D* oo | 0.214 (0.0062) | 0.260 (0.0047) | 2- 105 < Raeg < 2- 107
Unteady 3D T oo | 0.272 (0.0051) | 0.259 (0.0036) | 2-10* < Racg < 10°

Table 4.5: Least squares fitting of equation Raeg = 61Nu£f2f with standard deviations of the re-
gression in the parentheses. * computed with no-slip velocity boundary conditions at the bottom
of the domain.  free-slip velocity conditions at the bottom were imposed.

Pr  box size Raes range A range aspect ratio range
7 4x1 7-10°—-6-105 0.25—1.28 5.0-9.1
00 4x1 2.10°—10% 0.15—1.19 4.6 —8.8
00 16 x 1 5-104 =10 0.14—1.25 18 — 36
oo 4x4x1* 10*—2-10" 0.14—0.61 46 —6.5
oo 4x4x1t 2.10* =10 0.15—0.43 4.6 — 5.7

Table 4.6: Range of parameters for different experiments. A is a ratio of mean solid and liquid
thicknesses once the permanent state is reached. The aspect ratio is computed as a ratio of the
horizontal size of the domain and the liquid layer thickness. *computed with no-slip velocity
boundary conditions at the bottom of the domain. ' free-slip velocity conditions at the bottom
were imposed.

We should not overlook that the results can probably slightly change with the different domain
size (the best way would be to work on a sphere). Indeed, fixing an aspect ratio of the cavity
determines the wavelength of convective cells. The horizontal size of the domain must be an
integer multiple of the size of a convective cell. Since the thickness of the liquid layer changes
with time and is an outcome of a simulation, the final aspect ratio of the liquid layer is also
not known until the (statistically) steady state is reached and changes for each experiment.

Resulting aspect ratios are given in Table 4.6.

4.3 Analytical model: physical quantities as function of wave-

length of convection

Previously we explored the dependence of the heat transport (given by the effective Nusselt num-
ber) on the convective vigour (quantified by the effective Rayleigh number) and gave parameters

(determined numerically) $; and 2 in the general scaling Nueg = ﬁlRagé, cf. Table 4.5. From
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our results, we obtain, that (32 is slightly smaller than 1/3. This means that the heat flux at
the interface (with dimensions) is dependent on the total depth of the convecting liquid layer
(although only weakly) and it also means that the dynamics of the boundary layer is dependent
on the flow in the bulk.

In the next section we conduct a finer analysis where instead of focusing on (32 we explore the
dependence of (31 on the size of convective cells to further explain the measured heat flux. We
compare the synthetic numerical data with an analytical model derived below (called the fluid
loop model). Such models were presented e.g. by Turcotte and Oxburgh (1967), Guillou and
Jaupart (1995) or Grigné et al. (2005) and also were discussed in Jaupart and Mareschal (2010)

but we make some modifications to suit our particular set-up.

4.3.1 Loop model

We consider one convective cell (thickness hy,, length L) in Cartesian 2D geometry that under-
lies a diffusive layer (thickness hg). The hot upwelling current occurs beneath the lid on the left
and the cold downwelling current on the right hand sides. The interior of the cell is well mixed

and has a temperature T;, cf. Figure 4.12.

top
hs
T
m A
him
Y
T

bot

Figure 4.12: Schematic picture of the loop model setup.
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WAVELENGTH OF CONVECTION

The uniform temperature Ty at the bottom of the cell is imposed. The temperature pre-
scribed at the melting front (that is considered to be planar) is Ty;. The vertical sides are
thermally insulated with fixed temperatures of Ti,o¢ in the hot upwelling and Ti.q in the cold

downwelling, respectively.

Heat transfer in the upper and lower thin boundary layers in the cell proceeds by conduction,
the temperature distribution can be thus obtained from a model of cooling of a semi-infinite

space. For the lower boundary layer we have for the temperature distribution 7'(¢, z)

T(t,z)—T; (hm—z>
—— —erfc ) 4.5
Tyot — 13 2v/ Kt (45)

where the time t is measured following a parcel of fluid starting from the bottom right corner
and moving horizontally to the left. Considering a uniform horizontal velocity u at the bottom
of the box, we replace a time dependence by a spatial dependence, i.e. t = (L, — x)/u. Then,

the mean heat flux is given by

1 [l 1 [(Ee 0T(x,2)
Qvot = LC/O qrot(z)dr = Lc/() kT

dr = 2o = 1) oy

kL

z=hm

In order to determine the velocity u we consider the balance of work of shear stresses and

buoyancy forces over the cell volume V' that reads as
OZ/F-'UdV-i-/(V‘T)'UdV. (4.7)
\%4 \%

Using the identity V- (7-v) = (V-7)-v + 7! : Vo and the divergence theorem we can

/F~'UdV:/T:VvdV—/T-vdS, (4.8)
1% \% S

where S is the surface that bounds the volume V. Transposition of the shear stress 7 was removed

rewrite Eq.(4.7) as

because of the symmetry of the tensor. The second term on the right hand side vanishes due
to the boundary conditions since at the phase boundary the velocity is zero and at sides and

bottom shear stress acting on the boundary must be zero. We thus obtain a balance equation

/F-vdV—/T:VUdV, (4.9)
v v

that expresses that the work of buoyancy forces is entirely converted into dissipation (e.g. Hewitt

et al., 1975)

7: Vv = Tijg;},i ) (4.10)
J
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Figure 4.13: Schematic picture of velocity profiles in one convecting cell.

In order to compute the viscous tensor

we approximate the velocity profiles by piecewise continuous linear functions (Figure 4.13) that
would meet the boundary condition requirements. The horizontal profile of vertical velocity
varies linearly with the largest velocity w at vertical sides. Since convective cells are not always
square, a free parameter \ appears, that is the distance in the horizontal cross section over which
velocity changes (Grigné et al., 2005). The vertical profile of horizontal velocity is composed of
piecewise linear functions corresponding to a zero velocity boundary condition at the melting
front, having the maximum value vou at the distance y1hy, /2 from the phase change interface.
This choice will be discussed in more detail further in the manuscript. The lower boundary is

free-slip with the maximum horizontal velocity wu.
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4.3. ANALYTICAL MODEL: PHYSICAL QUANTITIES AS FUNCTION OF
WAVELENGTH OF CONVECTION

We introduced two parameters, y; and 79, in the velocity profile, that are tied by the mass

conservation condition

1
1+

(1 - 71>hmu =Ythmyu = v = (4.12)

Since the viscosity is approximately constant in the liquid, velocity profiles lead to a hori-

zontal shear stress for z € (0,y1hm/2)

2
= L%V;Z : (4.13)
and for z € (y1hm/2, hm) to
bot u
=p— 4.14
Th 7L hon (1 — 1) ( )
Vertical shear stress is )
w
Tv = —'I’]LT . (415)

The dissipation in Eq.(4.9) is approximately calculated by separating horizontal and vertical

parts of the shear stress

4hy, 272 L. Lo(2—71)
: VodV = 2 27C 2 2 4.16
/VT v 77L< 3 w’ + 71hmu +2hm(1_71)2u , ( )

and we remove the vertical velocity w dependence by considering the conservation of mass

A
wy = uhm (1 —71), (4.17)
to obtain
/ 7 VodV = u2 (4 )2 hfrn 3 + 2'722Lc + Lc(2 - 71) (4 18)

A buoyancy force per unit length is f. = agpd™ (T} — Teolq) for cold downwelling and f;, =
agpd™ (Thot — T3) for hot upwelling with Tioq the temperature of cold downwelling and T}t the

temperature of hot upwelling. The rate of heat flux per unit of length of both plumes is
A= Ac+ Ay = peyw (67(T3 — Teold) + 6 (Thot — T3)) - (4.19)
Using Eq.(4.6) we can write for the total heat through bottom boundary

uL.
Th

A= Qtoch = Qboth = 2k(Tbot - Tl) (4'20)
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Combining Eqgs.(4.20) and (4.19) we get

u [ KL 1/2
§T(T3 — Teola) + 0 (Thot — T3) = 2(Thot — 111); ( > ; (4.21)

U

that is introduced into the buoyancy force giving

u [ kL. 1/2
fe+ fo=2apg(Thor — Ti)— ( ) : (4.22)
w U

The velocity can be then expressed by inserting Eq.(4.17) and (4.22) to Eq.(4.9) as
o (L N Too = T\ (2Racy | (423)
N hm 7Thm Thot — T f(Lc) ’ .

B \ 2—vm L 2v2 L
L) = 167272 [ = S £ e Al b R
f(Le) 7”2<A> T b T 1 P

with f(Lc)
(4.24)

Inserting Eq. (4.23) into Eq. (4.6) we get the mean heat flux through the bottom boundary

as

Qbot =

k(Thor — Thi) < Thor — T )4/3 94/3 < Racs >1/3 <hm>1/3 . (4.25)

Pn Thot — Tv) w23\ f(Le) Le

In order to compare our numerical results with analytical model derived above we use a time
averaged quantities (temperature and velocity) that are computed when statistical steady states
are reached. Interval over which averages are constructed is not fixed and for one particular run

several time averaging periods are usually chosen.

For each simulation, first we need to determine individual convective cells. A convective cell is
defined as the space in the fluid in between adjacent hot and cold plumes. For steady solutions
finding cells is obvious, cf. e.g. Figure 4.5(c) where six convective cells are clearly present in
the box. For unsteady flows, cf. e.g. Figure 4.5(e), definition of the cell is less obvious. One
possibility is to use temperature threshold to detect plumes since plumes exhibit (positive or
negative) thermal anomalies. However, here we prefer to use the velocity field. In order to detect
individual cells we use vertically averaged vertical velocity in the box, see Figure 4.14. Zones of
upwellings and downwellings, respectively, then correspond to places where the velocity profile is
maximal and minimal, respectively. Thresholds are used to determine which peak is considered
as plume. Distance between two adjacent peaks is read as a size of a convective cell. Within
a detected cell, the mean bottom heat flux, mean temperature, effective Rayleigh number and

velocity at the bottom of the cell are computed.
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WAVELENGTH OF CONVECTION
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Figure 4.14: Observed horizontal profiles of vertically averaged vertical velocity v, at (top)
Ra = 6-10° (Raeg = 10°) (middle) Ra = 10® (Racg = 8- 10°) (bottom) Ra = 10° (Racg = 108).
Velocities are normalized using the root mean square of the velocity. Time averaged velocity
fields are used for the analysis. Dashed vertical lines denote position of plumes that define the
cell size. (top) 4 cells were detected (middle) 6 cells were detected (bottom) 4 convective cells
were detected.

Figure 4.14(top) shows a horizontal profile of vertically averaged velocity for a steady state
simulation. The form of the profile can be considered as, in the first approximation, a piecewise
linear function. Although in reality, the horizontal gradient of vertical velocity increases closer
to upwelling/downwelling (Jarvis and Peltier, 1982). We also note that cells are regular and
parameter A is the same for all cells. This is not the case for unsteady flows (Figure 4.14(middle))
where A\ differs significantly for each cell. For even more unsteady flows (Figure 4.14(bottom))

the structure of the velocity profile is less clear.

Once we have diagnostic quantities for each cell, we plot the heat flux coefficient in a dimen-
sionless form (Figures 4.15(top) and 4.16(top))

Qoor(1 — 1) **Razg ", (4.26)
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Figure 4.15: Comparison of time averaged numerical results with analytical model for high
prandtl number experiments in boxes with aspect ratio 4. Circles represent experiments at
steady state, inverse triangles cases with unsteady flow. Each point represents a result for one
detected cell. (Orange: Ra = 2.7 - 105, Raeg = 5.1 - 10%; yellow: Ra = 6 - 10, Racg = 1.3 - 10°;
green: Ra = 6.4 - 10° ,Racg = 1.9 - 10°; magenta: Ra = 107 ,Racg = 3.6 - 10°; blue: Ra =
3-107,Racg = 1.6 - 10%; red: Ra = 10% , Racgy = 8.4 - 10%; cyan: Ra = 107, Racg = 1.3 - 108.)

and the velocity coefficient in a dimensionless form (Figures 4.15(bottom) and 4.16(bottom))
u(l - T1) "> Racg /%, (4.27)

as a function of cell width and we compare these results with analytical model derived above
that is represented in figures for several parameters A. A is considered to be independent of
the cell width L.. The parameter 7, = 2/3 was chosen and gives y; = 3/5. We inspect 2D
experiments at high Pr for two aspect ratios of the computational domain (4 and 16). Results
fall close to predicted laws although the match is not ideal. The higher the Ra, the smaller A
explains better the numerical results. Best matches are obtained for small A (A = 0.4). We also
note, that the analytical model predicts better the mean heat flux coefficient rather than the

horizontal velocity coefficient. Predicted velocities are much higher than the observed ones.
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Figure 4.16: Comparison of time averaged numerical results with analytical model for high
prandtl number experiments in boxes with aspect ratio 16. Circles represent experiments at
steady state, inverse triangles cases with unsteady flow. Each point represents a result for one
detected cell. (Brown: Ra = 10, Racg = 8.1-10%; orange: Ra = 2.7 - 10%  Ra.g = 4.7 - 10%;
yellow: Ra = 6-10%,Racg = 1.6 - 10°; green: Ra = 6.4 - 10° ,Ra.g = 1.9 - 10°; magenta:
Ra = 107, Racg = 3.4- 10°; blue: Ra =4-107 ,Raeg = 2.5-10%; red: Ra = 108 , Ra.g = 8.4 - 106;
pink: Ra =4 -10% ,Racs = 4.5-107; cyan: Ra = 107, Racg = 1.4 - 108.)

4.3.2 Amplitude of corrugation

Assuming that we know the heat flux at the phase interface as a function of horizontal coordinate

gm(z). Then using the linear dependence for the conductive flux in the solid with thickness hsg

TM - CZjtop

Im(x) = qrop(z) =k ) (4.28)
we can determine the amplitude of corrugations Ah as
Ah = hy(x = Le) — hy(x = 0) = k(Tag — T )( Lo 1 ) (4.29)
S C S M top qm(ﬂ: — LC) qm(x — 0) . .
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In order to derive gy, (z), we proceed the in same way as in the section 4.3.1 supposing that
the temperature profile in the top thermal boundary can be approximated by the analytical

solution of conduction in a semi-infinite space

T(t - T
M:erfc<

T > : (4.30)

z
2V Kt

that results in the heat flux at the melting interface

oT (x, z) 2k(T; — Tw)
A C LR I PO i in 1 V1 431
q |4 — (4.31)

Time dependence can not be simply replaced by the relation ¢t = x/u since the phase change
boundary imposes no-slip conditions with zero velocity. However, velocity in the vicinity of the
melting front as well as the mean heat flux at the phase change interface must follow the same
Ra dependence. This implies that the ratio between the two velocities, the maximum velocity
in the top boundary layer of the convecting cell and the maximum velocity at the bottom of
the convecting layer, must remain the same for different convective vigour. Also, the depth at
which horizontal velocity in the upper part of the cell attains its maximum (denoted as depth
Y1hm/2 in Figure 4.13) should not be affected by convection. Figures 4.17 and 4.18 show that

indeed these two quantities stay constant for a wide range of Rayleigh numbers.

Thus, we consider that the velocity is determined to some adjustable constant ce so that we

- 2]€(T1 — TM) CyelU
m(z) = N V e (4.32)

Considering the equality of the bottom and middle mean heat flux at steady state, Gpot = Gm,

Toot — T3\ 2
Cvelz( bot 1) . (433)

write t = x/(cyelu) resulting in

we obtain a condition for cye

Ti —Twm

Fig 4.19 shows cye as a function of 1;.

Once we know the spatial dependence of the heat flux, Eq. (4.32), we can determine the
amplitude of the phase change topography Eq. (4.29). Yet, the heat flux diverges at = = 0.

Thus, as a measure of topography size we use

. Lc
Ah = hy(z = Le) — Tn(@) = k(Tar — Tiop) (qm(xl:L) _ Ll /0 qml(@ dx> L (434)
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Figure 4.17: Each solid black line represents a vertical profile of horizontal velocity vk in the
middle of a convective cell. Magenta circles are maxima of velocity in the upper part of the cell.
Cyan circles are maxima of velocity at the bottom boundary. The dashed lines at z = 0 and
z = 0.5 represent a limit between the solid and the liquid layers (negative z values correspond to
the solid where the velocity is zero) and a mid-depth of the liquid, respectively. (2D simulation
with computation domain aspect ratio 16 and Ra = 10% (Raeg = 8 - 109))

Using Eq. (4.32) to evaluate heat flux in (4.34) we obtain

Ah — Th — Ttop kL
- T —Tu 6ycyatu’

that can be further transformed using the expression for velocity derived earlier Eq. (4.23)

(4.35)

Ah— o D= Tiop (T =T\ P2 (LY fL)VE L s (4.36)
NI Ty \ Toor — T 24/3 \ hp, 3/Cval o7 '

Finally, after rescaling and using Eq.(4.33) for coefficient ¢y we obtain

Ttop 772/3-[/01/3 f(LC)1/3 Ra_1/3

Ah = - (1-— Ti)2/3 24/3 3 eff >

(4.37)

where f(L.) is given by Eq.(4.24).

The comparison of our analytical model with numerical simulations is depicted on Fig-
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Figure 4.18: (Left) Depth at which the horizontal velocity attains its maximum in the upper
part of the convective cell as a function of the Rayleigh number. The dashed horizontal line
at z = 0.25 represents a mean value for all experiments. (Right) Ratio of maximum horizontal
velocities in the upper and lower part of the cell with a mean value represented by the dashed
horizontal line. Red and blue circles, respectively, denote simulations in a box with aspect ratio
4 and 16, respectively. Each symbol represents an average for all cells detected and the error
bars thus give a variability of quantities observed (the largest deviations are naturally observed
for the most unsteady flows, i.e. the highest Raeg).
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Figure 4.19: Variation of an adjustable parameter cye as a function of internal temperature T3

ures 4.20 and 4.21 where for each cell we compute the value of coefficient (in a dimensionless

form)

—AW(1—T)**Rall?, (4.38)

and plot it against cell width.
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Figure 4.20: Comparison of time averaged numerical results with the analytical model for high
Prandtl number experiments in boxes with aspect ratio 4. Each point represents a result for one
detected cell. Circles denote experiments at steady state, inverse triangles cases with unsteady
flow. (Orange: Ra = 2.7 105, Racg = 5.1 - 10%; yellow: Ra = 6 - 10%, Raog = 1.3 - 10°; green:
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Figure 4.21: Comparison of time averaged numerical results with analytical model for high
Prandtl number experiments in boxes with aspect ratio 16. Each point represents a result
for one detected cell. Circles denote experiments at steady state, inverse triangles cases with
unsteady flow. (Brown: Ra = 10% Racg = 8.1 - 10%; orange: Ra = 2.7 - 105, Racg = 4.7 - 10%;
yellow: Ra = 6-10%,Racsg = 1.6 - 10°; green: Ra = 6.4 - 10° ,Ra.g = 1.9 - 10°; magenta:
Ra = 107, Racg = 3.4-10°; blue: Ra = 4-107 ,Racg = 2.5-105; red: Ra = 10® ,Ra.g = 8.4 - 105;
pink: Ra =4 -10% ,Racy = 4.5-107; cyan: Ra = 10? , Rag = 1.4 - 108.)

Numerical results fall in the places where theoretical predictions are lying. However, they are
far from close match (even for steady cases). The loop model is built on an assumption of steady

state. When convection flow is highly time dependent, progressive remelting and refreezing of
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the solid occur and thus we expect the theoretical model to be less accurate. This can explain
why we observe for the highest Ra very low amplitudes of corrugations, lower than the loop

model predictions.

4.4 Conclusions

We study a convecting melted layer that undergoes slow crystallization. The convective cells
developed in the liquid are characterized by up-flows and down-flows, hence the solidification is
not uniform and corrugations of the phase interface are formed. The amplitude of corrugations

decreases with increasing convective vigour and it is negligible for highly time dependent flows.

It was proposed that a molten layer was formed at the base of the Earth’s mantle early after
formation of the core. In order to determine a thermal history of the Earth that would experi-
ence extensive melting of its deep interior, we investigate the heat transfer across a solidifying
convecting liquid. We propose a scaling law for the mean heat flux coming out. Although the
physics of the system differs from the classical Rayleigh-Bénard convection, scalings for these
two systems are (with an eligible choice of scaling quantities) close. We further present an an-
alytical model that includes the dependence of the heat flow on the size of the convective cells.
The analysis shows that the data can be better matched with a theory when the wavelength of

a convective cell is taken into account.

An analytical model has been also derived to predict a size of the BMO topography. However,
a rather unsatisfactory match is observed between the predictions and synthetic data although,
taken into account that the loop model is very simple, theory and data are relatively close. For
the estimated BMO parameters, its topography due to convective motions in the liquid would

be negligible, but can be still important due to heterogeneous mantle temperature variations.

128



Conclusions

In this thesis, we have explored several aspects of the dynamics of the early Earth, focusing on

it’s compositional and thermal evolution on multiple scales.

During the differentiation of planetary bodies, iron separates from silicates and descends to the
centre of the planet to form the metallic core. Chemical equilibration proceeds between dispersed
metal blobs and background silicate liquids. We build a physical framework and numerically
model for the equilibration process that occurs by diffusion at the rim and is enhanced by stirring
inside as well as outside the blobs. We derive scaling laws for the time it takes to reach the
equilibrium. These scaling relations critically depend on the dynamic regime of the flow and
on the material properties of the two liquids. In particular, the chemical exchange is enhanced
when internal circulation is developed in the descending material and/or when inertia dominates
the system due to significant reduction of the boundary layer thicknesses. The proposed scaling
laws are applied to nickel equilibration during the Earth’s core formation event and we show

that the system tends to be in chemical equilibrium at all times.

Simultaneously to the differentiation of the Earth, extensive melting of its interior occurs.
During the violent late accretion stages, large impacts hit the planets and part of their kinetic
energy remains buried inside the impacted body. The temperature increase superimposed to
the energy released by short lived radioactive nuclides and gravitational energy released due to
core formation are sufficient heat sources to melt the interior of the planet at some stages of its
evolution. Following this idea, we explore the evolution of a molten silicate layer, a basal magma
ocean (BMO), that would form in between the Earth’s mantle and the core. The initial thickness
of the BMO is estimated to be up to one thousand kilometers and since the heat flow from the
interior of the planet is limited by the overlying solid mantle, timescales of crystallization of this

system would be very long (about the age of the Earth).

We perform numerical experiments of the system representing the crystallizing BMO underly-

ing the solid mantle. Well developed vigorous convection in the liquid magma ocean is simulated.
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The solid layer, representing the bottom thermal boundary of the mantle, is modelled as a non-
deformable medium with suppressed velocities. The melting/freezing front in between represents
a free moving boundary that needs to be tracked. We focus on short term thermal evolution
of the system and conduct a systematic study of the dynamics of the solidification process cou-
pled with convective flow. We infer scaling laws for the heat flux coming out of the system.
Parametrized relations are then used to estimate the super-isentropic temperature difference
maintained across the BMO, which happens to be minute, implying that the Earth’s core must

cool at the same pace as the BMO.

The style of convective motion in the liquid layer determines the size of corrugations that
are developed due to non-homogeneous temperature conditions in the vicinity of the liquid-solid
phase change interface. Convecting vigour tends to decrease the corrugation’s amplitude. Hence,
for the BMO with high convective vigour, the topography due to unsteady flow in the liquid is
negligible, but might be important due to large scale heterogeneous temperature variations in

the solid mantle.
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Perspectives

All our numerical simulations have been performed with constant top temperature boundary
conditions. Yet, large scale convection in the solid mantle imposes laterally varying tempera-
ture/heat flux conditions. Convection in the BMO can change the way these lateral variations
at the bottom of the solid mantle are transmitted to the core. To mimic the effect of convection
in the overlying solid mantle, laterally varying temperature should be imposed at the top surface
in the computation domain. A systematic study with large ratio boxes and laterally varying
top temperature boundary condition should be conducted. This would allow to estimate the
buffering effect of the BMO on the lateral variations imposed by the solid mantle as seen by the

core.

Preliminary simulations have been run. Figure 4.22 shows two snapshots of temperature field:
one with constant top temperature boundary conditions and the second one with variable top
temperature conditions (imposed temperature variations are represented on Figure 4.23(top)).
Imposing variable top temperature conditions results in development of important topography
of the phase change interface. Large scale modulation of the heat flux at the bottom and top of

the cavity appears (Figure 4.23(bottom)).

Laterally varying heat flux boundary condition at the top of the cavity could be implemented.
This would be probably more representative for the conditions solid mantle imposes in its low-
ermost parts. However, this would imply that the whole cavity might end up in solid or liquid
state and from preliminary tests it seems to be the case for most experiments. It is very difficult
to obtain a steady solution, even in the statistical sense, where the solid and liquid layers would
remain in the cavity. As a remedy, melting temperature of the material should be adjusted in

time so as to keep the phase change position within the domain.

Including compositional buoyancy would be also a possible step to cover more complex physics
and be able to model thermo-chemical convection and multi-component phase change. This

would certainly be more realistic for a lot of natural phenomenons since geophysical systems
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Figure 4.22: Snapshots of the temperature field for cases with a spatially varying temperature
imposed at the top boundary. Pink to cyan color scale represents temperatures in the solid.
Black to yellow colors represent temperatures in the liquid. (top) constant temperature at the
top of the cavity is imposed (bottom) amplitude of temperature variations is 0.6. (Case Pr = oo,
Ra = 10%, Tyy = 0.7)
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Figure 4.23: (top) temperature variations imposed at the top of the cavity. (bottom) result-
ing heat flux at the top and bottom. Corresponding temperature snapshot at steady state is
represented in Figure 4.22 (bottom). (Case Pr = oo, Ra = 105, Tjy = 0.7)

such as sea-ice, lava lakes or magma chambers are always composed of multiple components.
As a result, more complex behaviour could be modelled such as super-cooling at the solid-liquid

interface or dynamics and formation of mushy layers. Also, this would allow us to have a melting

132



temperature that depends on the material composition.

A numerical model accounting for the thermal evolution of the whole planet could be devel-
oped. It should couple dynamics of the core, the BMO and the mantle. The thermal history of
the system over the age of the Earth would then be simulated.

More systems that undergo crystallization/melting while vigorously convecting should be
studied and derived scaling relations could be applied to them. These include for example
icy satellites. Space missions Galileo and Cassini have revealed that large scale subsurface water
oceans could be present on icy satellites of Jupiter and Saturn (Anderson et al., 1998; Kivelson
et al., 2000; Sohl et al., 2002; Porco et al., 2006; Schubert et al., 2007). Internal structure being

still great debated, our model can contribute to constrain the internal dynamics of these objects.
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Appendix A

Mesh resolution

Here, a grid resolution of individual simulations is given in Tables A.1 and A.2.

Several resolution tests were carried out, cf. Tables A.3 and A.4. Considering a simulation
with moving mesh method (Table A.3), when approximately doubling the number of elements

in the horizontal and vertical directions in the liquid, the heat flux changes about 0.9%.

Resolution tests for the enthalpy method all show a small difference between the top and
bottom heat fluxes (inferior to 1%), that verifies the conservation of energy in the system. At
Rayleigh number 107, the mean heat flux changes about 1.1% when passing from 512 x 128
resolution to 1024 x 256 grid.
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APPENDIX A. MESH RESOLUTION

nb Aspect ratio Ra nr ny nz
02 4 2.7-10% | 256 64
10 4 6-105 | 512 128
01 4 6.4-10° | 1024 512
03 4 107 1024 256
04 4 3-107 | 512 256
05 4 108 512 256
06 4 10° 512 256
02a2 16 2.7-10° | 1024 64
02a 16 109 1024 128
10a 16 6-105 | 1024 128
0la 16 6.4-10° | 1024 128
03a 16 107 1024 128
04a 16 4-107 | 1024 128
05a. 16 108 1024 128
06a, 16 4.10% | 1024 128
07a 16 10° 1024 128
01b 4x4 1.4-10° | 256 256 128
06 4 x4 3-10° | 256 256 128
02b 4 x4 5-10° | 256 256 128
03 4 x4 106 256 256 128
07 4 x4 2.10% | 256 256 128
04 4 x4 4-105 | 256 256 128
08 4 x4 2.107 | 256 256 256
09 4 x4 108 256 256 256
15 4 x4 1.4-10° | 256 256 128
12 4 x4 3-10° | 256 256 128
11 4x4 2.10 | 256 256 128
13 4 x4 4-108 | 256 256 128

Table A.1: Grid resolution for experiments performed with StagYY code. nz, ny and nz are
number of volumes in the two horizontal and vertical directions.
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nb Ra nr N2iq NZsol
09a 4.2-10° [ 200 30 10
0la 6.4-10°|200 30 10
12a 7.5-10° | 200 30 10
07a  9.6-10° | 300 45 10
13a 108 300 45 10
08a 1.3-10° | 300 45 10
14a 1.4-105 | 300 45 10
02a 1.6-10° | 300 45 10
15a 1.8-106 | 400 50 10
16a 2.2-10% | 400 50 10
1la 2.7-105 | 300 45 10
03a 3.2-10° | 300 45 10
04a 6.4-10% | 300 45 10
05a 1.6-107 | 500 85 10
18a 6-107 | 500 85 10

Table A.2: Grid resolution for experiments performed with Elmer code in 2D Cartesian geometry
in boxes with aspect ratio 4. nx is a number of elements in the horizontal direction. nzj;q and
nzsol are number of elements in the vertical direction in the liquid and solid.

nx NZliq MNZsol Raeff Qbot Qtop % AQ
250 45 8 | 1.2748-10°(2.67-10%) 11.40(0.97) 11.55(0.28) | 1.37
500 85 10 | 1.2732-105(2.01-10%) 11.50(1.01) 11.49(0.24) | 0.06

Table A.3: Resolution test at Ra = 1.6-107 for moving mesh method in the box with aspect ratio
4. In parenthesis standard devations of a given quantity are given. nx is a number of elements
in the horizontal direction. nzjq and nzy are number of elements in the vertical direction in

the liquid and solid.

nr nz Ra Raeg Qbot Qtop %AQ
128 32 [ 27-10°|4.33-10* 3.06 3.04 | 0.64
256 64 | 2.7-10° | 5.13-10* 3.38 3.37 | 0.29
128 32 [ 6.4-10° | 1.87-10° 5.31 5.30 | 0.16
256 64 | 6.4-10° | 1.93-10° 5.73 5.72 | 0.11
512 128 | 6.4-10° | 1.95-10° 5.90 5.89 | 0.04
1024 512 | 6.4-10° | 1.96-10° 5.94 5.94 | 0.01
256 64 107 3.61-10° 5.32 5.29 | 0.50
512 128 107 3.83-10° 5.55 5.54 | 0.17
1024 256 107 3.89-10° 5.62 5.61 | 0.06
256 64 10° 1.20-10° 5.06 5.11 | 0.9

512 256 10° 1.30-108 5.99 6.01 | 0.19

Table A.4: Resolution test for the enthalpy method for four different Ra numbers. Aspect ratio
of the computation domain is 4.
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Appendix B

Article: A model of metal-silicate

separation on growing planets

During my master project and first months of my thesis I developed a finite volume numerical
model solving for the equation of conservation of chemical species in axisymmetric spherical
geometry. Subsequently, this code has been integrated into more complex model describing
the evolution of metal-silicate separation on growing planets. Results have been published in
an international journal (Monteux et al., 2009) and the paper is attached below. With its
governing topic describing the evolution of the primitive Earth, it naturally complements the

work presented in this manuscript.
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The thermal evolution of planets during their accretionary growth is strongly influenced by impact heating.
The temperature increase following a collision takes place mostly below the impact location in a volume a
few times larger than that of the impactor. Impact heating depends essentially on the radius of the impacted
planet. When this radius exceeds ~1000 km, the metal phase melts and forms a shallow and dense pool that
penetrates the deep mantle as a diapir. To study the evolution of a metal diapir we propose a model of
thermo-chemical readjustment that we compare to numerical simulations in axisymmetric spherical
geometry and with variable viscosity. We show that the metallic phase sinks with a velocity of order of a
Stokes velocity. The thermal energy released by the segregation of metal is smaller but comparable to the
thermal energy buried during the impact. However as the latter is distributed in a large undifferentiated
volume and the former potentially liberated into a much smaller volume (the diapir and its close
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1. Introduction

Core formation is the most important differentiation event that
occurred during Earth's history. Metal/silicates separation is a rapid
event (<60 My) (Kleine et al., 2002; Touboul et al., 2007; Yin et al.,
2002) contemporaneous with Earth accretion and involving gravita-
tional mechanisms such as percolation, negative diapirism and
Rayleigh-Taylor instabilities (Honda et al., 1993; Stevenson, 1990).
In the homogeneous accretion hypothesis, metal segregation and
thereby core formation need significant heating to exceed the melting
temperature of iron alloys or of silicates. During the early stages of
planetesimals formation, heating by decay of short lived radionuclides
is a potential energy source to enhance early differentiation (Yoshino
et al., 2003). As a planetesimal grows, its gravity increases and it will
increasingly attract the other surrounding planetesimals. The dissi-
pation of the kinetic energy of the impacts provides a later shallow
source of heat.

Impacts of large planetesimals have strongly influenced the late
accretionary and thermal state of nearly fully-formed planetary
bodies (Senshu et al., 2002; Tonks and Melosh, 1992). During an
impact, when the relative velocity between a planet and an impactor

* Corresponding author. Université de Lyon, Lyon, F-69003, France.
E-mail address: jmonteux@eos.ubc.ca (J. Monteux).

0012-821X/$ - see front matter © 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.epsl.2009.08.020

overcomes the seismic velocities of the medium, a shock wave
develops. The shock pressure is nearly uniform in a spherical region
next to the impact (the isobaric core), and strongly decays away from
it (Croft, 1982; Pierazzo et al., 1997). In this isobaric core, the kinetic
energy of the impact is dissipated and leaves a temperature anomaly
of several hundred degrees on Moon to Mars size bodies (Monteux et
al., 2007; Senshu et al., 2002). The temperatures reached are mostly
related to the properties (density and radius) of the impacted body,
and only weakly to those of the impactor (Monteux et al., 2007). The
melting temperature of iron alloys is lower than the silicates solidus
(Agee, 1997; Fei et al., 1997; Ghosh and McSween, 1998). On large
impacted planets, a local differentiation may occur between heavy
metal and light silicates in the heated anomaly (Tonks and Melosh,
1992). Hence, a thermo-chemical readjustment follows, associated
with the sinking of the metallic component toward the center of the
impacted protoplanet (Fig. 1).

For large planets, gravitational energy release due to core
formation can induce melting of the whole planet (Stevenson, 1989;
Ricard et al.,, 2009). This subsequent melting depends on the
mechanisms of the metal descent (Golabek et al., 2008; Samuel and
Tackley, 2008). The aim of this study is to determine the thermal
evolution of metal during descent and the thermal state of the core.

First, we propose analytical and numerical isoviscous models of
segregation of a purely spherical iron diapir. As the viscosity contrast
between molten metal and undifferentiated cold material can reach
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Fig. 1. Schematic view of the chemical equilibration following a large impact on an
undifferentiated protoplanet. In the isobaric core resulting from the dissipation of the
shock wave (a,b), the temperature increase melts the metal (c) that segregates rapidly
(d), then sinks toward the planetary embryo center by a diapiric instability (e).

several orders of magnitude, we then focus on more realistic models of
segregation of metal after a large impact with temperature dependent
rheologies. We show that the size of impactors and viscosities involved
largely determine the inner thermal state of a young planet.

2. Thermo-chemical state after large impact
2.1. Thermal state

After a meteoritical impact, heating is localized in a spherical region
called the isobaric core just beneath the impact site. The radius of the
isobaric core Ric is comparable to the radius of the impactor Rimp and
depends on energy conversion during the shock. With a minimal set of
assumptions, we get Ric = 3"3R;,,,, following (Senshu et al., 2002) and
(Pierazzo et al., 1997). Just after the adiabatic pressure release, the
isobaric core is isothermal and we call AT, the shock induced
temperature increase. The lower script 0 indicates that we consider
this instant as the origin of our time variable. Outside the isobaric core,
the temperature anomaly decays as ATy(r) = ATo(Ric/r)™ with m~4.4
as proposed by (Senshu et al., 2002). Assuming that the kinetic energy
of the impactor is controlled by the escape velocity of the impacted
body and that impactor and impacted body have the same densities
(i.e., Pic=Pimp=po), a simple energy balance (Monteux et al., 2007),
indicates that

_ 4nm v pgGR?

where pG, is the average heat capacity of the impacted body that is
plausibly a mixture of silicate and metal, G is the gravitational
constant, po is the density of the undifferentiated material, R is the
radius of the impacted planet and where the function h(m) represents
the volume effectively heated normalized by the volume of the
isobaric core (typically h(m)~2-3 (Monteux et al., 2007)). The
empirical coefficient vy is the fraction of the kinetic energy of the
impactor dissipated as heat. From shock experiments, yy ranges
between 0.2 and 0.4 depending on material properties and shock
velocities (O'Keefe and Ahrens, 1977) (i.e., 20 to 40% of the kinetic
energy is buried at depth, the rest rapidly radiated away during or
shortly after the impact). The shock-induced temperature excess, AT,
strongly increases with the radius of the impacted body. According to
the set of parameters of Table 1, ATy(K)=4.7x 10~ °R?(km); for a
Moon size body ATy is 140 K while it is 1925 K for an Earth size body.

The thermal state of a protoplanet before an impact depends on its
growth history and on its initial heating caused by short lived

Table 1

Typical parameter values for numerical models.

Planet radius R 1000-4000 km
Impactor radius R 100-400 km
Silicate density Dsi 3500 kg m—>
Iron density Pre 8000 kg m—3
Density difference ApPo= Pre — Psi 4500 kg m >
Average density Po 4270 kgm >
Heat capacity [iTes 4x10°k] K~ 'm—3
Heat diffusivity K 10~ ®m?s~!
Thermal conductivity k 4Wm 'K !
Initial temperature To K

Metal content fo 0.17

Viscosity o 10%?Pas
Viscosity factor A 25%x1072—1
Gravity g0=4nGpoR/3 ms—?

Stokes velocity scale ApagoR*/Mo ~100 m yr!
Time scale To/ApogoR ~20 kyr
Rayleigh number Ra, pCoApPogoRY Mok ~108
Buoyancy B Apo/opoATy 25-250
Dissipation number D, ApogoR/ pT',,ATo 36.6

Impact energy conversion coefficient b% 0.3

Volume effectively heated by impact h(m) 2.7

Stokes velocity coefficient C 0.1-0.2

Heat diffusion coefficient C 0.3-1.05

radionuclides like 2°Al and ®°Fe. This early radioactive heating can
eventually cause melting and differentiation of planetesimals that
have quickly grown (Yoshino et al.,, 2003). The impact heating
superimposed to a sufficiently hot protoplanetary interior can trigger
melting of the Fe-FeS system (the eutectic temperature is close to
1250 K at 1 bar) (Fei et al., 1997) and potentially of silicates (solidus
temperature is around 1500 K at 1 bar) (Agee, 1997). In these cases, a
fraction of the thermal energy is converted to latent heat during the
phase transformations.

2.2. Compositional state

An impact on a large enough undifferentiated protoplanet
composed of a mixture of metal alloys and silicates can trigger
phase transformations and initiate differentiation. The first compo-
nent that melts is the metal phase. In the region where metal melting
occurs, the liquid metal can percolate through the solid silicate matrix.
Percolation is only possible for small dihedral angles (<60°) or for
large melt volume fraction above a percolation threshold. The
dihedral angle of liquid iron alloy within silicates is large (~100°) in
the upper mantle but decreases with increasing pressure (Shannon
and Agee, 1996). However, the volume fraction of liquid alloy is
typically larger than 10% if melting is complete, which overcomes the
percolation threshold (Von Bargen and Waff, 1986). On Earth the core
represents 17% of the volume of the planet, Mars has likely a slightly
smaller core but Mercury's core is 43% of the planet. The metal is
collected at the bottom boundary of the melted zone forming a diapir
that ultimately sinks within the interior of the impacted protoplanet
(Ricard et al., 2009).

If the temperature exceeds the silicate solidus and eventually the
liquidus, the separation of metal and silicates can occur as a metal
rainfall through a turbulent magma (Hdink et al., 2005; Stevenson,
1990). Small droplets of heavy metal sediment at the bottom of the
melted region. This scenario may not be the generic one, as it would
imply that a planet embryo maintains a melted metal component
without differentiating until the silicates start melting. It has been
suggested that the metal may segregate per percolation, as soon as it
melts, while the silicates are still mostly solid (Ricard et al., 2009).
Locally, however, the impact of an undifferentiated planetesimal on
an already differentiated large planetary embryo, may of course, be
energetic enough to melt (or even vaporize) the silicate and metal
contents of the impactor and the silicates of the impacted body inside
the isobaric core.
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The two processes (percolation or metal “rain”) lead to a local
differentiation within the melted region between light silicates and
heavy metals on a short timescale compared to that of the slow
viscous deformation (Tonks and Melosh, 1992). The melted region is
as large as or a few times larger than the isobaric core (Pierazzo et al.,
1997). Here, we identify the initially differentiated zone to the
isobaric core, metal being overlaid by pure silicates shortly after the
impact (see Fig. 1).

3. Dynamic model of differentiation

The setting described in the previous section is gravitationally
unstable and the metal phase sinks toward the center of the impacted
planetesimal while the silicates (lighter than undifferentiated
material) spread underneath the surface. To study the global
dynamics of this differentiation event, we develop a thermo-
mechanical model in spherical axisymmetric geometry, of viscous
flow with three chemical components. Using a viscous and linear
rheology during the segregation of the core is clearly a large
approximation. The large deviatoric stress generated by the metallic
diapirs should lead to a non-linear rheology (Samuel and Tackley,
2008), elasto-plastic deformations (Gerya and Yuen, 2007) or even to
hydrofracturation if they exceed the ultimate strength of rocks which
is ~1-2 GPa (Davies, 1982). Pressure dependence of the rheology can
also influence the metal sinking time but is not considered here since
we focus on small growing planets. During the early stages of
accretion, the interior of the growing planets may have been colder or
hotter than the outer layers depending on the ratio of radioactive and
impact heating and on the history of accretion. For simplicity, we
assume in our models a homogenous temperature on the growing
planet before the impact.

3.1. Physical model

Sinking occurs under the action of gravity in a spherical homo-
geneous protoplanetary body. We neglect for simplicity the changes
of gravity during the differentiation. Hence gravitational acceleration
g(r) increases linearly with radius r:

gl = 5Gmoor = g0 @)
where g the surface gravity. The density of undifferentiated material
is po=fopre + (1 — fo)psi Where fy is the volume fraction of metal and
Pre, Psi, the densities of the metallic phase and the pure silicates,
respectively (see typical numerical values in Table 1.)

The dynamics of segregation potentially involves a series of
multiscale physical processes, especially to take the effects of melting
into account and a realistic multiphase dynamics (Golabek et al.,
2008; Ricard et al, 2009). No numerical models can handle
simultaneously all these complexities and as a consequence, we
follow the approach of (Samuel and Tackley, 2008) and consider a
thermo-chemical system with infinite Prandtl limit, with no possible
subsequent phase separation within the undifferentiated material
except that caused by the impact (e.g., the volumes of pure metal and
pure silicates remain constant during the simulations and equal to
17% and 83% of the initial isobaric core).

The necessary approximations are somewhat different from the
classic treatment of thermal convection (Ricard, 2007). We non-
dimensionalize the lengths by the planetary radius R, the velocities by
a Stokes velocity ApogoR%/mo (where Apo=pr.—psi and 1) is the
reference viscosity of cold material far from the impact site), the
temperature by ATy (see Eq. (1)). The governing mechanical non-
dimensionnal equations are the conservation of mass

Vv =0, 3)

and the conservation of momentum

—VP + V- <nﬂ Vv + [VV]T]> + (g —f) re, = 0, (4)
0

where v, P, T and r are the non-dimensional velocity, pressure,

temperature and radius, 1) the viscosity and e, the radial unit vector.
The buoyancy ratio B (Christensen and Yuen, 1985) is:

_ _Apo
PoQATy

(5)

The downward buoyancy force that drives the flow increases with
the volume fraction of metal f that varies between 0 (pure silicates)
and 1 (pure metal), 0.17 being that of undifferentiated material.
A depth dependent and constant in time gravity has been used in
Eq. (4) although, in principle, gravity should have been computed
self-consistently from the time-dependent density distribution. We
assume a temperature dependent viscosity such as n=moAT with A
being the viscosity factor (lower than 1) which is equivalent to the
viscosity ratio between the hottest and coldest material at the start of
the experiment. Such a viscosity decreases sharply with temperature
and is simpler to implement than the usual Arrhenius law (Ratcliff
et al., 1997; Ziethe and Spohn, 2007).

The conservation of energy writes

DT _ VT n 1Ap T _ DP
Dt = Ra, Dxn—()(D + EFA_TOD%E' (6)

The importance of diffusion is controlled by the compositional
Rayleigh number Ra,,

_ ApgoR’ _

Ra, KMo

)

the chemical dissipation number is

D, = P08k ®)
pGATy

considering for simplicity that pC, = ppCi’ = pgCy (truly, see
Table 1, preC¥ =4x10°KI K™ 'm™ 3, p5;C5'=3.85x 10°kJ K~ "'m ™3,
and we use pC, =4 x 10’ kJK~"'m~3). As g, is proportional to R
and AT, to R?, see Eq. (1), the chemical dissipation is independent of
the planet radius and amounts to 36.6 (see Table 1).

An important energy source is provided by the dimensionless
dissipation function ¢ that expresses the conversion of potential
energy into heat

b=2c¢c:c. 9)

where ¢ is the dimensionless strain rate tensor. For simplicity, we
make the approximation that the thermal conductivities of the metal,
silicates and undifferentiated materials are the same (truly k.=
100Wm™ 'K '>ks=3Wm~ 'K~ ).

The metal volume fraction is then simply advected by the flow,

CI

o= (10)

3.2. Model approximations

The equations of momentum and energy conservations, Egs. (4)
and (6), are similar to those classically used for mantle convection
simulations but a number of differences should be discussed. As the
buoyancy number B is very large (the density difference between



356 J. Monteux et al. / Earth and Planetary Science Letters 287 (2009) 353-362

metal and silicates is 40 to 620 times larger than the thermal density
variations), the thermal buoyancy T/B can be safely neglected in the
momentum equation.

Neglecting the terms in 1/B implies to omit the adiabatic heat
transfer (the term in (DP/Dt)) in Eq. (6) but to keep the dissipation
term D,(n/no)®. The differentiation of the planet liberates a large
amount of potential energy converted into heat by the dissipation
term but the adiabatic heating remains small. This is very different
from the typical convection situation in which there is no time
variation of the potential energy, and where the dissipation is on
average balanced by the work due to compression and expansion over
the convective cycle (Hewitt et al., 1975).

3.3. Numerical model

We implement a finite volume numerical model to solve Egs. (3),
(4), (6) and (10) in axi-symmetric spherical geometry. We use a
stream function formulation for the equations of motion with a direct
implicit inversion method (Schubert et al., 2001). Egs. (6) and (10)
are solved by an Alternating Direction Implicit (ADI) scheme
(Douglas, 1955; Peaceman and Rachford, 1955).The stream function,
temperature and compositional fields are described by a second-order
approximation in space. To limit numerical diffusion when solving the
transport equations, especially for the compositional field, we use a
Total Variation Diminishing Superbee scheme (Laney, 1998; Roe,
1986) implemented in an implicit way (Sramek, 2007) which enables
a high resolution of pure advective fields. We use at least 200 x 200
grid points. Velocity boundary conditions are free-slip at the surface
and along the symmetry axis. Thermal boundary conditions are
isothermal at the surface and insulating along the symmetry axis. We
benchmark the viscous flow solver with variable viscosity and the
transport scheme against several analytical solutions (Monteux,
2009).

4. Thermal evolution of sinking metallic diapir:
analytical considerations

Before showing the results of complex numerical simulations with
temperature dependent rheologies, we develop a simple model
describing the thermal evolution of the sinking metal diapir, by
approximating the metal diapir by a spherical drop falling into
undifferentiated medium of uniform viscosity with a Stokes-like
velocity. The radius of the metal drop Rg. can be related to the radius
Ric of the volume initially differentiated after impact heating by RZ. =
foR% and to the radius of the impactor by Re = 3foR3,p.

4.1. Sinking velocity

The velocity V of the metallic diapir in an undifferentiated medium is
comparable to the Stokes velocity of a sphere of similar volume. The
density difference between the metal and the undifferentiated material
is a function of temperature and composition but the temperature
contribution is minor. Hence, we consider Ap=(1— fo)Apo. Because
gravity is a linear function of depth, the velocity of the sphere decreases
during sinking as

2
V=G = oy el ()

In Eq. (11), the dimensionless constant c; depends on the geo-
metry of the system and on the viscosity contrast between the falling
sphere and the surrounding medium.

The viscosity of the surrounding undifferentiated material 1)s controls
the sinking velocity. In the case of a sphere sinking in an infinite medium,
the coefficient c; is given by the Hadamard-Rybczynski equation and
varies from 4/15=0.27 (isoviscous) to 1/3 =0.33 for an inviscid sphere

(Hadamard, 1911; Rybczynski, 1911). In the situation described in this
paper, the boundary conditions are applied at a finite distance (the
planetary surface) and the Hadamard and Rybczynski equation is thus
only an approximation (Honda et al., 1993; Samuel and Tackley, 2008).
The exact value of the constant c; will be obtained later through
numerical experiments.

The position of the metallic drop obtained by solving Eq. (11)
varies from an initial position ro (ro=R — Rge~R) as

r(0) = roexp(~ ). (12)
Ts

with a characteristic time equal to

T = T]SR 1 1 (-13)

18008 (1—fo) RZ,

As gy is proportional to the planetary radius R (Eq. (2)), the time 75
is independent of the planetary radius but depends only on the diapir
size Rg.. Of course, no segregation occurs, i.e., 7s— + o, for a planet of
pure silicates (fo =0 which means Rg. =0) or of pure metal (fo=1).
This characteristic sinking time is strongly dependent of the viscosity
of the surrounding undifferentiated material which is poorly
constrained. With the typical values of Table 1, this time can be
computed from the size Rimp of the impactor and we find 7s(kyr) =
2.7x10°(1)s/10)Rims(km).

4.2. Global energy conversion

As we assume that gravity remains constant with time (albeit non-
uniform), the energy equation Eq. (6) integrated over the whole
planet with the use of the momentum equation Eq. (4) and neglecting
the adiabatic decompression of the planet during the core segregation
is simply

%(AEP + AE;) = F, (14)

where the total potential and thermal energies changes are

at, = [ Lipro—piroye - av. 1)
a2 R

(Q is the planetary volume),

AE; = fn PG, [T(r,t)—T(r,0)]dV, (16)

and the heat flux F is

T
F= jEkEds, (17)

(2 is the planetary surface).

As we neglect the term in 1/B in the energy equation Eq. (4), the
Eq. (14) misses the energy variation AE, due to the changes in
pressure (the subscript a means that this term is related to changes in
adiabatic compression)

d
d

dAE,
de

= jﬂ aTg—IZdV~ aT, jﬂ [P(r,t)—P(r,0)|dV (18)
where the last approximation assumes that the temperature remains
close to Ty. The difference of pressure between a homogeneous and a
differentiated planet is easy to compute analytically and is of order
aToAE,, ie., a few percent of the changes in potential energy. This
confirms that the energy change due to pressure changes is a minor
effect.
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4.3. Maximum temperature

The maximum temperature that the sinking metal can reach can
be estimated by assuming that the whole variation of potential energy
is only used to heat up the metal, without any heat transfer to the
surrounding material.

Let us consider a melted zone of radius R;. underneath and tangent to
the planetary surface that differentiates ultimately forming a metallic
core of volume V. and radius Rg. (with RE. = foRZ.) and a silicate layer of
volume Vs; within a shell surrounding the whole planet with inner shell
radius Rs and outer shell radius Ri.e., RZ = R> — (1 — fy)R:. The change of
potential energy is according to Eq. (15) (Flasar and Birch, 1973):

2n
AE, = =28 ((Pre—Po)Re + (Psi—Po) (R’ —KS)). (19)

Assuming Ric <R, a Taylor expansion of Eq. (19) leads to

1
AEP~_§Ap0g0RfO(1_fO)Vic = — 5 (Pre—P0)80R Ve (20)

(Po—Psi)8oRVs;,

N[ = N =

where V. is the volume of the isobaric core. The change of potential
energy is thus equivalent to that released by the sinking of the isobaric
volume V;. and excess density fo(1—fo)Apo. Alternatively it corre-
sponds to the energy released by a metal sphere of volume Vg,
sinking, or of a silicate sphere rising, through undifferentiated
material. If only the metal heats up, the change of thermal energy
according to Eq. (16) is AFEr = pCyfoABV,, where AO is the
temperature increase (just after the impact, the metal temperature
is To + ATy, then it reaches at most To + ATy + AO). A scaling value for
the temperature increase during segregation is thus

po =101 ppgor 1)
PGy

As go is proportional to R (Eq. (2)), the core segregation can
increase the temperature by a quantity proportional to R? (Flasar and
Birch, 1973; Ricard et al., 2009 ). The ratio of A® to the post impact
temperature ATy is, according to Table 1 and Eq. (1),

A® _ 3h(m) Apy

AT = 2y (R 0118 (22)
or, AO(K) = 11.8ATy(K) = 5.6 x 10~ “R?(km) which rapidly becomes a
large quantity as R increases. Of course, in a real situation not all
energy will remain within the metal, and we will see that, when the
metal diapir is too small, the metal can even cool off rather than warm
up during its motion.

4.4. Thermal regime of the metallic sphere

While the hot metallic sphere is sinking, it warms up by shear
heating but it also cools down by diffusion. In the reference frame of
the sinking drop, the conservation of energy integrated over the
volume Vg, of the metallic drop (or through its surface Sg.) indicates
that

—, dAT AT
pCpVFGF = _k?SFe + T: Vv VFea (23)

where we assume that the temperature and the dissipation are at first
order uniform in the metal. The difference AT is the difference
between the diapir and the undifferentiated material. We assume that
AT=T—T,, i.e., that the hot diapir sinks into a medium that keeps its
initial temperature outside the boundary thickness 6. Even when the

diapir viscosity is low and when the dissipation occurs significantly
outside it, our numerical simulations show that the maximum
temperature is reached inside the diapir.

The thickness 6 over which the temperature diffuses should be
written as Rpe times a dimensionless function c, of the various
parameters of the problem. The thickness of the diffusive boundary
layer, c,, should decrease with the sinking velocity of the diapir (i.e.,
with the Peclet number VRg/k) as a power law with exponent — 1/2 or
—1/3, depending on the viscosity ratio between the metal and
the undifferentiated material (see e.g., Ribe, 2007). We can also write
the dissipation 7:Vv=1,V?/RE where 7, is the effective viscosity of
the region where dissipation occurs. In this case, Eq. (23) using the
expressions of the time dependent position, Eq. (12), and of the
maximum temperature increase, Eq. (21), can be recast as

dAT _ AT T\2AO [t
Ty +2a<E) T—sexp< ZT_5>’ (24)

where the dimensionless constant

a= cl% (25)

characterizes the proportion of heat effectively dissipated in the metal
and 7p the characteristic time of diffusion

— CZRIZ:E
p=ZF, (26)
where c,, measuring in terms of Rg. the thickness of the thermal
boundary layer around the metal, 6=c3Rg, is a dimensionless
number.

Eq. (24) cannot be used predictively in a complex situation as it
requires the knowledge of various parameters c;, ¢; and a. The
dependences of these parameters with more fundamental quantities
(mostly with the temperature dependence of the viscosity) have to be
determined empirically. We will see however, that for a given choice
of the rheology, Eq. (24) captures the evolution of the metallic diapir
temperature as a function of time and the dependence of this
temperature with the diapir size. For example, Eq. (24) suggests that
the diffusion term decreases with Rr. (as Rre? if one considers ¢, as a
constant) while the dissipation term increases with R%.. We can also
use Eq. (24) qualitatively by assuming a~c;~4/15 (using Stokes law)
and ¢c;~1.

Eq. (24) shows that the temperature is not necessarily an in-
creasing function of time. More precisely, according to Eq. (24) the
metal temperature increases just after the impact (t~0), if

AT, T\2A0
o 2a(§) 5 =0 27)

Using the expressions for the temperature increase upon impact
ATy (see Eq. (1)), the maximum temperature increase during
segregation AO (see Eq. (21)) and for the two time constants 7s and
Tp (see Egs. (13) and (26)), this condition implies that dissipative
heating overcomes the conductive diffusion when

RFe > RFe.min 28

where Rpe min involves the properties of the planet, but not its radius
since ATy is proportional to R?

1 AT, Mgk

4 _ 9 M\? =20
Ree min = 8t (R) 16,0 AO Gpy(1—fy)Apg »

According to the set of parameters shown in Table 1, Rge min ~45 km
(using ¢;~a~4/15, rg~R and ¢, ~1). However, using values fitted from
experiments does not change this radius very much for the moderate
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level of viscosity variations used in our simulations hereafter. Such a
diapir corresponds to an impactor of radius Rimp~60 km (Rimp = Ric/
3'3 =Ree/(3f0)"?). Therefore, only impactors larger than Rinp,=
60 km generate metallic diapirs that heat up during sinking, although
their initial temperature set by the impact is not dependent on the size
of the impactor.

Integration of Eq. (24) leads to

_ _ To\2 2Tp A ot
AT—ATOexp( E) +a(§> AGZTDiTS exp % exp ZT—S .

(30)

The initial temperature anomaly AT, decreases exponentially with
time while the interplay between diffusion and dissipation controls
the general temperature evolution. For the diapir to heat up, the
heating time 7s/2 must be shorter than the diffusive time 7p. Typically
ro~R and in the regime where the diapir heats up, the dissipation
occurs before the diffusion, 7s/2 <t < 7p; the temperature rapidly
increases to AT= ATy + a(ro/R)?A®, and the physical interpretation of
a is therefore the percentage of heat dissipated inside the metal.
According to Eq. (25), a should be lower than the coefficient c; of the
Rybczinski-Hadamard velocity as the effective viscosity of the hot
diapir 7. is likely lower than the average viscosity 7)s. For a numerical
application we take however a~c; =4/15~0.27 as obtained for the
isoviscous Rybczinski-Hadamard velocity. As A® and AT, are
simultaneously proportional to R?, the maximum temperature of the
diapir is at most AT=4.2AT, and is independent of the planet size.

Dissipation decreases as exp(— 2t/7s) = (r/ro)? according to Eq. (12).
Hence, the dissipation term in Eq. (24) decreases with depth. When a
diapir heats up, its temperature increases therefore to the maximum
AThax reached at the radius r that satisfies dAT/dt =0 or

AT, AO (12)2’

0=——1% + 20—
T

D Ts (31)

which implies

<L)2 — ATmax <RFe‘min)4. 32
To ATy Ree

The factor AT..x/ATo varies between 1 (no heating) and 4.2
(maximum estimated temperature). As an example, an impactor of
radius 120 km, generates a metallic diapir of 96 km (two times Rre min)
that heats up until it reaches half the radius of the impacted planet. The

expression Eq. (32) is only valid when Rpe> Rgemin, Otherwise the
diapir temperature simply decreases.

5. Numerical simulations

We compare the predictions of the analytical model to spherical
axisymmetric calculations of a sinking metallic drop, especially to
extract the diffusive and sinking times 7p and 75 and the fraction of
heat trapped in the metallic phase (e.g., the constants c;, ¢; and q, that
we expect to be close to 4/15, 1 and 4/15). We then compare these
results to more complex numerical experiments where a composi-
tional anomaly is generated in the isobaric core after a large impact.
The effect of variable viscosity is also studied in these models.

5.1. Numerical models of sinking metallic drops

5.1.1. Sinking velocity

We solve numerically a set of problems in which we introduce
metallic spheres (fo=1) of different sizes, tangent to the surface, in
undifferentiated planets (fo =0.17) of various radii. From this set of
experiments, we compare the temporal evolution of the sphere
position to what is predicted by Eq. (12). The calculations presented

here are isoviscous for simplicity but variable viscosity will be
introduced in more complex cases. Fig. 2 shows that the values of 75
obtained by fitting the center of the diapir position to an exponential
in the numerical models, vary as 1/RZ as expected from the analytical
model, with ¢; =0.187 (almost 70% of the Hadamard-Rybczynski
velocity for a homogenous viscosity 4/15=0.27). For large sphere
radii, boundary effects are stronger and the sinking times are slightly
larger.

5.1.2. Temperature evolution

Large sinking diapirs heat up before cooling down by diffusion
when the velocity of the metal decreases sufficiently towards the
center. Our theoretical predictions given by Eq. (30) are in good
agreement with the computed evolutions using the value ¢, obtained
previously. Fig. 3 shows the consistency between the numerical
results and the theory when the parameters c; and a are fitted
(c;=0.72, a=0.2 which is reasonably close to c; =0.187). The value
of a, indicates that 20% of the released heat is trapped in the metal.
The maximum temperature value, 2.2ATy, is in rough agreement with
the estimate AT= AT, + a(ro/R)?>A0 = 2.88AT,. This value is obtained
for sufficiently large impactors (>200 km) since smaller ones can cool
off very early upon sinking as seen from Eq. (32).

We monitor the temperature evolution for various diapir radii.
Fitting the temperature evolution with Eq. (30) leads to values of 7p
and a for each diapir radius. The corresponding characteristic diffusive
times are plotted in Fig. 4. These times are consistent with analytical
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Fig. 2. Characteristic sinking time 75 as a function of 1/RZ normalized with the
impacted planet radius.. Results from numerical experiments (with uniform viscosity
1s=10%? and R=1000 km) are represented with black circles. Theoretical fit from
Eq. (13) is shown by the dashed line with c; =0.187.
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Fig. 3. Temperature evolution (black line) of a metallic sphere (Rre = 130 km) falling in
an undifferentiated planet with R= 1000 km. Theoretical evolution from Eq. (30) is
shown with a dashed line (¢; =0.187, c;=0.72 and a=20%).
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predictions from Eq. (26) and increase with the square of the diapir
size. For all the experiments, the fraction of heat a trapped in the
metal is therefore reasonably constant (~22 + 5%) and close to c;.

To verify Eq. (32) that predicts the radius for which dissipation
overcomes diffusion, we computed the rate of heating or cooling of
metallic spheres as a function of their radius and depths. Various
planetary radii have been used and, as predicted, the heating always
occur in the external part of the planet (filled symbols). Near the
center of the impacted planet, when the gravity decreases, diffusion
dominates (open symbols) and the temperature of the sinking
metallic phase decreases. As shown in Fig. 5, the transition between
heating and cooling occurs consistently within the shaded area
predicted by the analytical expressions Eq. (32). For small diapirs (i.e.
for Rg.<45 km), diffusion dominates and prevents heating. Large
diapirs reach their maximum temperature and start cooling near the
high temperature estimate of the analytical model.

5.2. Application to global evolution after an impact

The thermo-chemical initial conditions after an impact differ from
a simple hot metallic sphere sinking within an undifferentiated
material. Indeed, the denser metallic pond collected at the bottom of
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Fig. 4. Non-dimensional characteristic time of diffusion T as a function of the non-
dimensionalized metallic sphere radius. Results from numerical experiments (with a
uniform viscosity and R=1000 km) are represented with black circles. Theoretical fit
from Eq. (26) is shown in dashed line with c; =1.01.
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Fig. 5. Thermal behaviour of a sinking metal sphere in an undifferentiated media as
function of position and sphere radius. Each symbol represents the instantaneous
thermal behaviour of a hot metallic sphere with radius R for a given initial position.
Filled symbols represent numerical experiments with viscous heating and open
symbols represent numerical experiments with only cooling. Different symbols
characterize different planets radii. The analytical transition between heating and
cooling is predicted within the shaded area and the boarders of this area are defined
with AT,x/ATo between 1 (no heating) and 4.2 (maximum heating) (see, Eq. (32)).

the isobaric core is not spherical and above it, a volume of light
silicates rises and spreads underneath the surface until it covers the
entire surface of the planet. These deviations from our analytical
model potentially modify the results obtained from the sinking
metallic drop model. Here we show numerical simulations of
segregation after an impact and compare them to the analytical
model previously developed.

Fig. 6 depicts the thermal and compositional evolution after an impact
of alarge impactor (R=4000 km, Rimp = 600 km and Rg. =480 km). The
four rows correspond to real time snapshots at 0, 1.4, 3.8 and 546 Myrs.
The temperature field is depicted in the left column, and the composition
in the right column (undifferentiated material in light blue, metal in red,
silicates in green). The metallic pond sinks towards the center of the
planet while heating. This heating is in agreement with our previous
findings that dissipation is larger than diffusion for large impacts.
However, the metal develops a tail through sinking and is significantly
deformed. In the meantime, the light silicates rise upward and heat up as
well, while stretching laterally to cover the whole surface of the planet. Of
course, the diffusion of heat out of the silicate layer near the surface, is
much faster than that out of the deep protocore and this shallow hot
silicate layer cools rapidly. On a much longer time scale (assuming
unrealistically that no other impact occurs, hot thermal plumes should
start from the proto core-mantle boundary and deliver the protocore
heat to the surface (Behounkova and Choblet, 2009).

Fig. 7 illustrates the evolution of the conversion from potential to
thermal energy with time. During the thermo-chemical reequilibra-
tion, the potential energy (thick line) decreases as the metal
approaches the center and as the silicates spread beneath the surface.
Viscous heating induces an increase of thermal energy (grey line).
Once the metal has reached the center of the impacted protoplanet,
the thermal energy can only decrease. During this whole process, heat
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Fig. 6. Non-dimensional temperature (left) and composition (right) at times t =0 (first
line), t=1.4 Myr (second line), t=3.8 Myr (third line) and t=546 Myr (fourth line)
(computed for a uniform viscosity with R=4000 km, Rim, = 600 km and 200 x 200 grid
points).



360 J. Monteux et al. / Earth and Planetary Science Letters 287 (2009) 353-362

0.06 . '
r Thermal energy
—— Potential energy
004 S~ |- Surface heat flux
> I — — 100%error
3 0.02f .
2 r -
&
° OfF... -
N s
- R | A e
T -0.02 ]
E i ]
é’ -0.04 L . i
-0.06 R
-0.08 - . 1 . ] R |
0 5000 10000 15000

Normalized time

Fig. 7. Non-dimensionalized potential (solid black line) and thermal (solid grey line)
energies and time integrated surface heat flow (dotted black line) as functions of time.
The sum of these three quantities times 100 is shown in dashed black line. Its difference
to zero is indicative of the accuracy of the energy conservation of the numerical code
(for R=2000 km, Rip =300 km and Rge =240 km and uniform viscosity).

is slowly removed by diffusion through the surface of the planet and
the cumulative heat flux (dotted line) balances the total energy
budget. This global balance (sum of potential energy, thermal energy
and cumulative heat flux (see Eq. (14)) is closely satisfied which
illustrates the good accuracy of the numerical code.

We now introduce a temperature-dependence of the viscosity in
the calculations. Experimental results suggest that the viscosity
contrast between melt iron and solid silicates can reach 20 orders of
magnitude (Vocadlo et al., 2000). Such a viscosity contrast is difficult
to handle numerically and we use much smaller values.

In our models, the viscosity varies as n=mnoA" and as the
temperature of metal may increase while sinking by a factor up to
2, it implies maximum viscosity contrasts up to 1/A% orders of
magnitude between cold and hot materials. Using a composition
dependent viscosity would have been more realistic but viscous fronts
are too difficult to handle numerically. We compare the thermo-

Fig. 8. The four rows depict the temperature (left) and the composition (right) at
t=3.2 Myr (with R=2000 km and Rin, =300 km), for a uniform viscosity (top) and
for variable viscosities (contrast of ~16 (second row), ~100 (third row) and ~1600
(bottom row)). As expected, the sinking velocity of the metallic diapir and the rising
velocity of the silicates, both increase when their viscosity is decreased.
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Fig. 9. Position of the inertia center of the metal phase as a function of time for a uniform
viscosity (black line) and for temperature-dependent viscosities with A =0.25 (dashed
dotted line), A=0.1 (grey line) and A=2.5x10"2 (dotted line) (R=2000 km and
Rimp =300 km). Thin dashed lines correspond to simple exponential fittings from
which the sinking times are extracted (see Table 2).

chemical states at the same time, t=23.2Myr for different viscosity
factors in Fig. 8. We use A=0.25 (Fig. 8 second row), A=0.1 (Fig. 8
third row) and A =2.5x 10~ 2 (Fig. 8 bottom row), the top row being
the reference isoviscous case.

Increasing the temperature-dependence of the viscosity softens
the surrounding material around the metallic drop and the metallic
diapir, at a given time, is closer to the center when its viscosity is
decreased, as shown in Fig. 8. However, this effect remains small.
Because the metallic pond becomes less viscous, its shape becomes
more spherical and the tail developed in isoviscous experiments
becomes thinner. Increasing the sinking velocity increases the rate of
shear heating but not the total release of thermal energy which is only
related to the change in gravitational energy. Lowering the viscosity in
the surrounding material and within the metallic pond has also the
effect of diminishing 1. The dissipation is therefore increased in the
undifferentiated material and decreased in the hot and less viscous
metallic diapir. This effect combined with the faster spreading of the
hot silicate that removes the heat more rapidly lead to lower
maximum temperatures (see Fig. 8).

We monitor the position of the inertia center of the metallic diapir
as a function of time and compute the sinking times 7 (see Fig. 9). The
position of the diapir obeys reasonably the exponential law predicted
by Eq. (12). In the isoviscous case, the observed normalized time is
Ts =563 which is twice longer than what is predicted by Eq. (13). This
is due to the fact that the initial diapir shape is not spherical and to the
presence of the rising volume of silicates. When the viscosity
decreases with temperature the sinking is faster, 7s=249, 170 and
114, for A=0.25, 0.1 and 2.5x 102 (see Fig. 9 and Table 2). This is
due to two effects: the reduction of viscosity inside the metal (the
Rybczinski-Hadamard formula predicts an increase of the velocity
factor c; from 0.27 to 0.33 when the interior viscosity of the diapir
decreases) and the decrease of viscosity of the heated surrounding
material.

In the experiments depicted in Figs. 6 and 8, the metal temperature
increases and reaches a value close to twice the initial temperature of
the isobaric core (Fig. 10). However, heating within the metal is less

Table 2
Values obtained by fitting numerical experiments with theoretical predictions
(Egs. (12) and (30)) for different values of A (with R=2000 km and Rj,, =300 km).

A=1 A=0.25 A=0.1 A=25x10"2
Ts 563 249 170 114
Tp 20054 16520 13316 8974
a 19% 14.7% 11% 7%
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Fig. 10. Temperature evolution of the metal phase as a function of time for a uniform
viscosity (solid black line) and for temperature-dependent viscosities with A=0.25
(dashed dotted line), A=0.1 (grey line) and A=2.5x 10~ 2 (dotted line) (R= 2000 km
and Rimp = 300 km). Thin dashed lines correspond to theoretical results from Eq. (30)
from which the diffusive times and the proportion of energy heating the metal diapir
are extracted (see Table 2).

pronounced with variable viscosity and decreases with the viscosity
contrast. Fitting the computed temperature evolutions in the metallic
diapirs with our theoretical model gives values of ¢, in the isoviscous
case and the variable viscosity cases (see Table 2 and Fig. 10). The
thickness of the thermal boundary measured by c, decreases with the
sinking velocity (the Peclet number). The values of ¢, and of 7p are
therefore related to Pe™ "oc 7' with an exponent ~1/3 in the range of
values, n=1/2 —1/3 predicted in Ribe (2007).

When the temperature dependence of the viscosity increases, the
proportion of energy heating the metal diapir, a, decreases (see
Table 2). As a consequence, the heat release of the gravitational
energy becomes increasingly efficient in the surrounding undifferen-
tiated material. This suggests that a diapir of very small viscosity does
not heat much during its motion while most of the release of
gravitational energy occurs in the undifferentiated materials. A low
viscosity diapir keeps basically its initial temperature because its
characteristic diffusive time is larger than its sinking time and also
because of the buffering effect of the temperature dependent viscosity
(i.e., a too large cooling would increase the viscosity and would bring
back the dissipation within the diapir itself).

6. Discussion and conclusion

Core formation events induced by meteoritical impacts play a
major role in determining the early thermo-chemical state of growing
planets. Large meteoritical impacts can trigger a local differentiation
between metal and silicates in a spherical zone above the surface
called the isobaric core. The segregation of dense and light phases
through the undifferentiated material of the impacted protoplanet
induces a large viscous heating.

We followed the dynamics of the metal phase after a large impact
with numerical experiments in axisymmetrical spherical geometry.
The sinking velocity of the metal phase is Stokes-like and is function of
the viscosity contrast between the metal phase and the undifferen-
tiated crossed media. The velocity increases when viscous heating
decreases the viscosity of the surrounding material. A stress
dependent viscosity (not considered here) would also increase this
velocity (Samuel and Tackley, 2008). The sinking process in a planet
with a cold interior compared to its surface would eventually imply
higher viscosity contrasts between the metal and the surrounding
material and would lead to longer sinking times.

The gravitational energy release during the segregation is
converted into viscous heating in the metal and in the silicates. Our
results show that a net viscous heating of the metallic phase only
occurs for large metallic diapirs (Rpe >45 km). This metallic volume at

the bottom of the isobaric core would be produced by an impactor of
order Rimp> 60 km. This result underlines the importance of accretion
conditions on the inner thermal state of planetary bodies. Small
metallic diapirs cool while sinking and may ultimately bring the metal
in a solid state to the core of the impacted planet.

The heat repartition between the metal phase, the silicates and the
undifferentiated material is not only a function of the size of the
metallic diapir but also of the rheology of the various phases. For low
viscosity of the metal and of the sheared zone around the metallic
diapir, the metal phase is weakly heated. Hence, gravitational energy
release will mainly lead to the heating of the surrounding undiffer-
entiated material and ultimately to its differentiation.

The viscosity variations that we explore in our simulations are of
order N2Tm which in the most extreme cases reach about four orders of
magnitude over very short distances. This is certainly modest relative to
the viscosity contrasts of 20 orders of magnitude that exist between
liquid metal and solid silicates (Vocadlo et al., 2000). Viscosity contrasts
based on composition rather than temperature would be more realistic
but would have occurred on even shorter distances (the computation
grid itself) that could not be resolved with classical numerical methods.
Our model is therefore an end-member of possible models on heating
modes during core formation. However, the description of the physics of
the processes would still be valid for larger viscosity contrasts.

As soon as a growing planet reaches a few thousand kilometers in
radius R, the heating by impacts becomes significant (the temperature
increase varies as R? and reaches 400 K for R = 3000 km, (Monteux et
al., 2007)). This temperature increase superimposed on the fossil
temperature T, from short half-life radionucleides (*°Al and ®°Fe) and
previous impacts can lead to a temperature larger than the melting
temperature of the metallic phase. Our analytical models confirmed
by numerical experiments show that the metallic drop reaches the
planet center in a time depending on the size of the metallic drop and
the background viscosity of the planet but not of its radius (see
Eq. (13)). Even in the case where the impacted planet is relatively cold
and with a high viscosity of 10%?Pa s, this time is smaller than a few
million years for an impactor of 300 km. The sinking timescales
obtained in our models are comparable to those obtained with an
Arhenius rheology (Ziethe and Spohn, 2007) and within the time-
frame required for an early core formation (<60 My). The temper-
ature increase in the undifferentiated material localized along the
sinking path of the metallic diapir could provide a preferential low
viscosity channel for the following differentiation events.

Proposing predictive models for the thermal consequences of
differentiation after an impact is fundamental in order to understand
the thermal state of the interior of growing planets. As shown in Ricard
et al. (2009), core formation of terrestrial protoplanets could be the
consequence of a runaway segregation induced by a large enough
impact on undifferentiated material. These results also underline the
importance of accretionary conditions (size and temporal repartition of
impacts) on the thermal energy repartition and, hence, on the magnetic
history of growing planets (Elkins-Tanton et al., 2005).
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