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Introduction

Computer simulations are used to study various phenomena in geophysics. One of such
phenomenon is Iapetus, an icy satellite whose flattened shape is inconsistent with its
present-day rotational period and whose surface features an equatorial ridge which is
unique in the Solar system. Robuchon et al. (2010) and Castillo-Rogez et al. (2007)
explained the flattening as a relict from period with fast rotation that Iapetus preserved
by forming a lithosphere strong enough to resist the deformations due to despinning. The
origin of ridge, however, remains enigmatic with hypothesis that relate its formation to
despinning, volcanic, and tectonic activities all awaiting verification.

A challenge of modeling the ridge formation lies in the time-dependent domain where
governing equations are solved. Therefore, numerical method must be used that is capable
of tracking the deforming domain. Further, the method should also be robust as high-
Rayleigh-number convection was likely to occur in Iapetian mantle.

The aim of this thesis is to design a numerical method for simulation of thermal
convection inside a deforming rotating icy satellite and thus create a tool that could be
later used to explain the formation of the equatorial ridge on Iapetus.

The thesis consists of five chapters. In Chapter 1 we discuss physical properties of
icy satellites. In Chapter 2 we derive governing equations that describe the flow of ice
inside the mantle. Our method of tracking the deforming surface is explained in Chapter
3. Numerical method for solving the governing equations on the time-dependent domain
is then explained in Chapter 4. Finally, in Chapter 5 the method is subjected to tests.
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Chapter 1

Physics of Icy Satellites

In this chapter we give an overview of characteristics of icy satellites. We focus especially
on heat sources and rheological properties of water ice. The last section is devoted to
Iapetus and its mysteries that inspired our work.

1.1 Introduction

Icy satellites in our Solar system revolve around the giant planets, i.e., Jupiter, Saturn,
Uranus and Neptune. The main source of information about satellites’ properties are
flybys by spacecrafts from missions such as Voyager (Jupiter, Saturn, Uranus, Neptune),
Galileo (Jupiter) and Cassini (Saturn). The collected data reveals that the moons have
the following characteristics in common.

The shape of satellites can be described as a triaxial ellipsoid that corresponds to a
figure of rotating and tidally distorted body in the state of hydrostatic equilibrium. The
specifics of shape provide details about the moon’s history which is typically guided by
the evolution scenario by Multhaup and Spohn (2007): (1) Initial phase after accretion
with cold interior and warmer surface. (2) The heat from decay of short-lived/long-lived
radioactive isotopes warms the interior from within. (3) Possible onset of convection which
cools down warmer interior more effectively than pure conduction. (4) Halt of convection
due to exhaustion of heat sources, conductive cooling continues further.

The composition of icy satellites is dominated by water ice, silicates and iron com-
pounds. We will refer to the latter two materials as rock. The density of water ice is
920 kg.m−3. The density of rock can vary between 2500 kg.m−3 for hydrated rock to
8000 kg.m−3 for pure iron (Hussmann et al., 2007). Rock-to-ice fraction can be deter-
mined from mean density which is calculated from measuring the satellite’s gravitational
field assuming that the satellite is homogeneous. No differentiation of the interior is a
reasonable starting approximation but the validity of this assumption isn’t certain for
most of the satellites. A level of differentiation can be expected within the water ice layer
of some smaller satellites, as the internal pressures could have been sufficiently large to
cause phase transition in ice. The Galilean satellites are predicted to have even complex
interiors with iron cores and liquid-water oceans (Spohn and Schubert, 2003).

Existence of liquid layers is related to presence of volatiles (e.g., ammonia) that act as
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1.2. Heat sources 1. Physics of Icy Satellites

antifreeze and even in small amounts can significantly reduce the melting point of water
ice. Other factors are the heat sources and properties of water ice.

1.2 Heat sources

Accretional heating, radioactive decay and tidal dissipation are the main contributors to
heat budget of undifferentiated icy satellite. For differentiated satellite, release of potential
energy due to differentiation should also be included among the heat sources.

Accretional energy is especially relevant at the very beginning of the satellite’s evo-
lution. It is a fraction h of the kinetic energy of falling planetesimals that is stored un-
derneath the growing surface of satellite. Temperature is therefore higher on the surface
than in the interior. The temperature profile Ta(r) for homogeneous accretion is given by
Breuer and Moore (2007)

Ta (r) = h
GMs (r)

Cpr

(
1 +

ru2

2GMs (r)

)
+ Te, (1.2.1)

where G is the universal gravitational constant, Ms(r) is the mass of satellite at radial
distance r, Cp is the specific heat, u is the average velocity of planetesimals and Te is the
temperature of surrounding nebula.

After the completion of accretion, radiogenic heating becomes the main source of
energy. Short-lived radioactive isotopes (SLRI) provide a strong energy peak early in
the history while energy from long-lived radioactive isotopes (LLRI) prevails later. The
isotopes are contained in the rock component and their initial concentrations Ci

0 are de-
termined from the composition of chondrites. The chondrites reflect the state of elemental
abundances at the time of formation of the CAIs (Calcium-Aluminum-rich Inclusions) at
4.567 Gyr (Robuchon et al., 2010). The concentration of i-th isotope Ci(t) decays with
time following the law

Ci(t) = Ci
0 exp

(
− ln 2

τ i1/2
t

)
, (1.2.2)

where τ i1/2 is the half-life and t is the time elapsed since the formation of CAIs. The heat

production of i-th isotope H i ([H i] = W.kg−1) is given by Castillo-Rogez et al. (2009)

H i =
A

mi
Ei
dev

ln 2

τ i1/2
, (1.2.3)

where A is Avogadro’s number, ev = 1.60217646× 10−19 J.(eV)−1, mi is the molar weight
and Ei

d is the energy per decay of single atom measured in eV. Finally the total volumetric
radiogenic heat rate HR(t) ([HR(t)] = W.m−3) for the satellite with mean density ρ, rock-
to-ice mass ratio χ that contains N isotopes can be calculated as

HR(t) = ρχ

N∑
i=1

H iCi(t). (1.2.4)
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1.2. Heat sources 1. Physics of Icy Satellites

Element τ i1/2(Myr) Ci
0(ppb) H i(µW.kg−1)

L
L

R
I

238U 4468 26.2 94.65
235U 703.81 8.2 568.7
232Th 14.030 53.8 26.38
40K 1277 1104 29.17

SL
R

I 26Al 0.716 600 356×103

60Fe 1.5 200 (68-74)×103

53Mn 3.7 25.7 27×103

Table 1.1: Half-lives, initial isotopic abundances and heat productions for important LLRIs
and SLRIs. Values adopted from Castillo-Rogez et al. (2007) and van Schmus (1995).

In eq. (1.2.4) Ci(t) is in kg per kg of rock. The properties of important LLRIs and SLRIs
are summarized in Table 1.1 where the ordinary chondrites with density 3510 kg.m−3 are
considered.

The tidal heating is due to interaction between the satellite and the planet it orbits.
The satellite traveling on an elliptical orbit is subjected to gravitational force which varies
periodically with the distance from the satellite’s primary. If the satellite’s interior were
elastic, its shape would be instantly rotated in such a way that the tidal bulge would be
aligned with the force. In case of viscoelastic interior, the response is not instantaneous
and a misalignment of the tidal bulge with respect to the planet causes a torque which
slows down rotation of the satellite. The dissipated energy is then the source of tidal
heating. The torque M on a satellite in a circular orbit with constant semi-major axis D
is given by Peale (1999)

M =
3

2

k2 (t)GM2
pa (t)5

D6Q (t)
, (1.2.5)

where Mp is the mass of the planet, a is the equatorial radius of satellite, k2 is the second-
degree potential Love number and Q−1 is the specific dissipation function. The last two
quantities depend strongly on rheology; the former describes viscoelastic response of the
satellite to external periodic forcing on timescale of the orbital period (Hussmann et al.,
2007) while the later corresponds to the ratio between energy dissipated over one cycle
and peak energy reached during the tidal cycle (Robuchon et al., 2010). From eq. (1.2.5)
time rate of the spin rate w can be calculated following Robuchon et al. (2010) as

dω

dt
=

3

2

k2 (t)GM2
pa (t)5

D6Q (t)C (t)
, (1.2.6)

where C is the polar moment of inertia. The lag of the tidal wave, and therefore the torque,
is bigger for fast rotating satellites that haven’t yet despun into the state of synchronous
rotation. In this phase tidal heating is very efficient and can release more energy than the
decay of radioactive elements (Breuer and Moore, 2007). The heating continues after the
despinning and as the heat rate given by Segatz et al. (1988) suggests, it is most effective
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1.3. Rheological properties of water ice 1. Physics of Icy Satellites

for large satellites on eccentric orbits that are close to the primary

HT = −21

2

a5n5e2

G
= (k2) . (1.2.7)

In eq. (1.2.7), e and n

(
=
√
G (Ms+Mp)

D3

)
are the eccentricity and the mean motion,

respectively. The last equation hints the link between orbital and thermal evolution of
the satellite. The thermal state effects rheology which is related to k2. The Love number
k2 is related to tidal heating via the aforementioned relation and closing the loop, tidal
friction implies loss of orbital energy, i.e., decrease of eccentricity.

1.3 Rheological properties of water ice

Water ice is the major constituent of icy satellites. Understanding its rheological properties
is therefore a key to understanding processes in the satellites’ interior and their evolu-
tion. While there is plenty of laboratory measurements from glaciers, conditions in which
extraterrestrial ice exists are too different (e.g., lower temperatures, higher pressures and
velocities) to allow just a simple extrapolation of terrestrial data. In the following section
we give an overview of the recent knowledge about planetary ice based on (Greve, 2009),
(Durham and Stern, 2001).

Water ice is a polycrystalline material. The phase diagram (Fig. 1.1(a)) shows eight
types of water ice that are referred to as ice I through VIII. They differ in density, melting
temperature, deformation mechanisms, etc. The phase diagram also shows that ices I, III,
V, VI, VII can undergo two types of direct transformations: (i) If the temperature profile
intersects the melting curve a phase transition could take place and a liquid layer could
form an ocean inside the satellite. (ii) Transformation into a different type of ice, which
leads to differentiation of the interior.

Laboratory experiments have established the following complicated relation for vis-
cosity of water ice

η =
1

2
δ−1+1/ndp/n

[
A exp

(
−E

∗ + PV ∗

RT

)]−1/n

, (1.3.1)

where P is hydrostatic pressure, d is grain size, T is temperature, R is the gas constant and
δ is the second invariant of the strain rate tensor ε̇εε (ε̇εε is defined as a symmetric part of the
velocity gradient). The constants A, activation energy E∗, activation volume V ∗, stress
exponent n and grain-size exponent p then characterize each mechanism of deformation.
To account for whole range of conditions multiple sets of constants might be needed to
capture a particular mechanism. Table 1.2 shows that in order to characterize dislocation
creep and grain-size-sensitive creep (GSS) of ice I, three and two sets respectively are
required.

Mechanisms can operate in an independent or dependent way. In the first case, the
effective viscosity of deformation consisting of these mechanisms is calculated as the sum
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1.3. Rheological properties of water ice 1. Physics of Icy Satellites

(a) (b)
Figure 1.1: Phase diagram and deformation map of water ice. (a) Phase diagram of water
ice. (b) Deformation map for ice I. Pressure and grain size are constant, Tm = 273 K is
the melting temperature, E = 9.3 GPa is the Young modulus. Dislocation creep is paired
as independent with GSS and basal slip. The former two are combined as dependent. The
weaker lines are contours of constant strain rate. Graphs courtesy (Durham and Stern,
2001).

of individual viscosities ηi. In the second case, the effective viscosity is given by

1

ηtot
=
∑
i

1

ηi
. (1.3.2)

Table 1.2 shows high stress dependence of all deformation mechanisms of all types
of ices. Consequently, using the definition of viscosity in eq. (1.3.1), we can see that a
relation between deviatoric part of the stress tensor and strain rate tensor σσσ = 2ηε̇εε is
not linear. Thus, by definition water ice is not a Newtonian fluid. We discuss models of
non-Newtonian fluids that were used in previous investigations of icy satellites in Section
1.4.

In certain applications, simplified linearized rheology can be used. Water ice can be
approximated as a Newtonian fluid by setting n=1 in eq. (1.3.1). Moreover, if the grain-
size dependence is negligible, p can be set to zero and viscosity then follows the Arrhenius
law

η(T, ρ) = η0 exp

(
E∗ + PV ∗

RT

)
, (1.3.3)

where η0 is the reference viscosity and ρ is density. Further, if incompressibility is assumed,
the density is constant and the viscosity becomes only a function of temperature. This
simplification suppresses all other dependencies but leaves a very important feature of
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1.4. Rheological models 1. Physics of Icy Satellites

Creep Regime
logA

p n
E∗ V ∗

(MPa-nmps−1) (kJ/mole) (cm3/mole)
Dislocation creep
T > 258 K 28.8 0 4 181 −13*
A T ∈ (240 K, 258 K) 11.8± 0.4 0 4.0± 0.6 91± 2 −13*
B T ∈ (? K, 240 K) 5.1± 0.03 0 4.0± 0.1 61± 2 −13± 3
C T <? K −3.8 0 6.0± 0.4 39± 5 −13*

GSS
T > 255K 26.5 1.4 1.8 192 −13*
T < 255K −2.4 1.4 1.8 49 −13*

Basal slip
7.74 0 2.4 60 −13*

Table 1.2: Rheological constants of mechanisms of deformation of ice I. (*) by the value
means that the value is estimated not measured. (?) indicates that boundary between
Regimes B and C depends on strain rate and temperature. Data from (Durham and
Stern, 2001)

rheology; viscosity can act as a thermostat. Following eq. (1.3.3), an increase in temper-
ature will decrease viscosity which encourages convection and thus more effective cooling
of the interior.

We conclude this section by stating a simplified constitutive relation for water ice. If
modeled as an incompressible, Newtonian fluid with temperature-dependent viscosity, the
response of water ice to deformation is given by stress tensor TTT ,

TTT = −πI + 2η(T )ε̇εε, (1.3.4)

where π is pressure.

1.4 Rheological models

We showed in previous sections that water ice is a non-Newtonian fluid and that its
viscoelastic character is necessary for the despinning. In eq. (1.2.6), the time derivative of
angular velocity is a function of the second-degree potential Love number; a real part of
the complex Love number kc2 which is computed from rheological profile. The rheological
profile, characterized by complex shear modulus µc, varies with the frequency of forcing
s = 2 (ω − n). The forcing frequencies can cover wide interval as the differences between
the initial and current spin rates of the icy satellites can be significant (e.g., ˜2.10−4 Hz
for Iapetus rotating with period of 9 hours to ˜9.10−7 Hz for the spin period of 80 days).
There is no experimental data about viscoelastic behavior of ice mixtures at such low
frequencies of loading in terrestrial conditions, let alone the conditions on Iapetus and
other icy satellites. Therefore, rheological models of viscoelastic fluids have to be used

9



1.4. Rheological models 1. Physics of Icy Satellites

to predict the response. We will describe two models that were used in calculations that
explained the flattening of Iapetus.

1.4.1 Maxwell material

The simplest linear viscoelastic material is the Maxwell material. It was utilized by
Castillo-Rogez et al. (2007) in their model with conductive heat transfer. Its model con-
sists of a spring and a dashpot joined in the series. Deformation of the spring is elastic
and follows Hooke’s law

F = µ∆, (1.4.1)

where F , ∆ and µ are shear stress, shear deformation and shear modulus. Deformation
of the dashpot is viscous and is described by

F = η∆̇, (1.4.2)

where dot indicates differentiation with respect to time. We refer reader to (Gross et al.,
2006) for constitutive relation as well as other characteristics of the material. In our
study, response of the material under cyclic loading is of particular interest as it reveals
the rheological profile. The complex shear modulus is given by

µcm =
F0

u0

ısµ

ıs+ µ
η

, (1.4.3)

where ı is the imaginary unit. The Maxwell model is often used for description of vis-
coelastic deformation of icy bodies. The main advantage is its simplicity; viscosity of the
dashpot is the actual effective (long-term) viscosity of the material and so can be experi-
mentally measured. The model is well adapted for processes with forcing period close to
Maxwell time τm = η

µ
but it fails when forcing covers wide range of frequencies.

1.4.2 Burgers material

If the period of loading differs from Maxwell time, other rheological models should be used
instead of the Maxwell one. Based on laboratory experiments with frequencies larger than
10−4 Hz, Burgers rheology is one of the replacement candidates. It is proposed especially
to describe transient deformations. The model is less commonly used and information
about it is scattered in many sources. Therefore, in the following text we are going to
summarize its main characteristics.

Burgers model can be represented by Maxwell model and Kelvin-Voigt model joined
together in series as shown in Fig. 1.2. In addition to two parameters from Maxwell model,
Burgers material is also characterized by a short-term viscosity ηk and a transient shear
modulus µk. The secondary viscosity is suggested to follow the same rheological law as the
primary one, i.e., the Arrhenius law, but with different reference viscosity. For the sake
of simplicity, the shear moduli are often set equal. Using mechanical representation, the
following equations for total stress and total deformation can be determined (subscripts

10



1.4. Rheological models 1. Physics of Icy Satellites

ηm, ∆dm

ηk, ∆dk

µk, ∆sk

µm, ∆sm

∆k

Figure 1.2: Mechanical representation of a Burgers model. Kelvin-Voigt element is shown
in the dashed square.

s, d indicate spring and dashpot respectively)

∆ = ∆dm + ∆k + ∆sm

∆k = ∆sk = ∆dk

F = Fdm = Fk = Fsm

Fk = Fsk + Fdk.

Combining these equations we can derive the relation between stress, deformation and
their time derivatives

F = Fsk + Fdk

= ηk

(
∆̇− ∆̇sm − ∆̇dm

)
+ µk

(
∆̇−∆sm −∆dm

)
= ηk

(
∆̇− Ḟ

µm
− F

ηm

)
+ µk

(
∆− F

µm
−∆dm

)
. (1.4.4)

Differentiating eq. (1.4.4) with respect to time and rearranging the terms yields the desired
constitutive relation

F̈ ηkηm + Ḟ (µmηm + ηkµm + µkηm) + Fµmµk = ∆̈µmηmηk + ∆̇µmµkηm. (1.4.5)

This is a second-order differential equation and so even without actually solving it for
unit step deformation (stress-relaxation test) we can tell that the relaxation modulus will
include two relaxation processes. That is one more than the Maxwell material. The extra
dissipation peak due to additional process allowed Robuchon et al. (2010) to successfully
despin Iapetus while explaining the flattening. These authors also considered Maxwell
rheology but the model failed due to insufficient dissipation.

Rheological profile is a dynamic characteristic of material. The response of material
to dynamic deformation is measured in oscillatory tests where the material is deformed
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1.5. Iapetus 1. Physics of Icy Satellites

by simple harmonic waves. Using complex representation for the oscillations, deformation
takes the form of

u(t) = u0 exp (ıst). (1.4.6)

Under periodic deformation the response F (t) is also periodic and can be written as

F (t) = F0 exp (ıst). (1.4.7)

After substituting these forms into eq. (1.4.5), we obtain the complex shear modulus of
Burgers model

µcb =
F0

u0

ısµm
ıs+ τk

(ıs+ τm) (ıs+ τk) + ısµm
ηk

. (1.4.8)

Here τk = ηk/µk and τm = ηm/µm are the two aforementioned relaxation times of Kelvin
and Maxwell elements.

1.5 Iapetus

Iapetus is the third largest and the most distant regular satellite of Saturn. It has a
mean density of 1083± 13 kg.m−3 (Thomas et al., 2007). These authors consider a model
with ice and rock densities of 930 kg.m−3 and 3000 kg.m−3. The value of mean density
then translates into rock-to-ice fraction of 0.20. Iapetus has several interesting properties,
some of which are unique in the Solar system.

Having discovered Iapetus in 1671, Giovanni Domenico Cassini noted that he could
only see Iapetus clearly near western elongation but he could not detect it near east-
ern elongation. He concluded that one side of Iapetus’ surface isn’t capable of reflecting
the Sun light. In 2007, inspection by the Voyager spacecraft revealed that the difference
in reflectivity between the two hemispheres is of factor 5 to 6; the trailing bright side
(Fig. 1.3(a)) has albedo 0.35, the leading dark side (also known as Cassini Regio) has
albedo 0.07 (Morrison et al., 1975). This asymmetry of photometric properties between
the hemispheres is the largest in the Solar system (Owen et al., 2001). The composition
and the origin of the surfaces remain enigmatic even today. Neutral color of the bright
side indicates presence of ices of water or ammonia, whereas red color of the dark side is
suggestive of hydrate silicates, organic polymers, iron minerals, etc. In neither case the
lack of spectroscopic data permits unique composition to be established. The theories
about the origin of surface propose mostly formation by some external mechanism. Based
on the calculations of the frequency of meteoric impacts, which peaked in the equatorial
region of the leading side and was about half of the peak value in polar regions and on
the trailing side, Cook and Franklin (1970) proposed that such selective destruction could
have uncovered the dark rocky material hidden underneath the layer of ice. More recent
theories explain the dark side by local deposition of the dust from Phoebe, Titan or even
interplanetary dust.

Iapetus orbits on an almost circular orbit (e = 0.0283) in the distance of 3.51×106 km
from Saturn. It is in synchronous rotation with Saturn with the orbital/rotation period of
79.33 days. Given such a large value of semi-major axis and D-dependence of the rate of
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1.5. Iapetus 1. Physics of Icy Satellites

spin rate in eq. (1.2.6), the synchronicity is unexpected and it suggests stages with very
dissipative interior in the evolution history of Iapetus.

The shape of Iapetus is best approximated by triaxial ellipsoid with equatorial radii a,
b equal to 748.8 km, 743.2 km and polar radius c equal to 712.4 km (Thomas et al., 2007).
Based on the mean density and the current spin rate, the flattening a − c should be of
only ˜10 m. However, the observed flattening is 35.0 ± 3.7 km making it the largest non-
hydrostatic anomaly known for the satellite larger than 1000 km in radius (Castillo-Rogez
et al., 2007). The difference between the expected and actual flattening is well seen at 9
o’clock in Fig. 1.3(b).

Iapetus’ shape corresponds to a body in the state of hydrostatic equilibrium with a
rotation period of ˜16 h in case of homogeneous interior or ˜15 h in case of differentiated
interior. Neither of these values agrees with the observed rotation period. To resolve this
inconsistency, Castillo-Rogez et al. (2007) suggested that Iapetus preserved this shape as
it despun into synchronous rotation by forming a lithosphere strong enough to resist the
deformation from despinning. In the evolution scenario proposed by these authors, heat
from SLRIs increased the temperature early in the history which led to a reduction of
porosity and in turn to an increase of the conductivity of mantle. Consequently, strong
lithosphere could have been formed. As the decay of SLRIs and LLRIs continued to warm
the interior, tidal dissipation could start and despin the satellite into synchronous rotation.

It is noteworthy that these authors used purely conductive heat transfer, whereas
Robuchon et al. (2010), who were also able to despin Iapetus and obtain the observed
flattening, considered also convection. In both cases the success of calculation depended
on the amount of radiogenic heating. Thus, the time of accretion of Iapetus could have
been estimated. Castillo-Rogez et al. (2007) estimated the accretion time at 3.4−5.4 Myr
after the formations of CAIs. Robuchon et al. (2010) then placed the accretion at 2−4 Myr
after the formations of CAIs.

The last property that we mention is a high ridge in the equatorial region of Iapetus.
This topographic feature, which is unique in the Solar system, was revealed by the Cassini
mission (see Figs. 1.3(c), 1.3(d)). Visual observations established the length of ridge of
at least 1600 km, width of ˜20 km and height of ˜18 km. In order to support such massive
topography, the lithosphere has to be ˜20 km thick. The ridge is heavily cratered which
is suggestive of age similar to the surrounding terrain. Volcanic activity, tectonic activity
and despinning were proposed as plausible explanations for the origin of the ridge. The
connection between its formation and the shape of Iapetus has not yet been examined.
However, in the investigations of flattening, existence of the ridge was always included by
the constraint on minimal thickness of lithosphere.

In the remainder of this thesis we lay down the foundations for future exploration
of the origin of the ridge by designing and testing a numerical method that can handle
surface deformations due to thermal convection.
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(a) (b)

(c) (d)
Figure 1.3: Notable features of Iapetus. (a) Bright trailing hemisphere and the transition
to dark region captured by Cassini on September 10, 2007. (b) The dashed line indicates
the hypothetical shape of the body in hydrostatic equilibrium with rotation period of
79.33 days, the solid line indicates the actual surface. Captured by Cassini on December
31, 2004. (c) The length of the ridge in picture (by Cassini from December 31, 2004) can
be traced to 1300 km. The ridge runs parallel to the equator within couple of degrees. On
the western horizon, the peak of the ridge has an elevation of at least 13 km. (d) Close
flyby a few thousand kilometers above the surface by Cassini on September 10, 2007
showing the detail of the ridge. Highest peaks are 10 km above the surrounding terrain.
Picture credits: (b) (Castillo-Rogez et al., 2007); (a), (c), (d) NASA/JPL/Space Science
Institute.
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Chapter 2

Model

A realistic mathematical model of Iapetus capable of accurate description of the ridge
formation is very complex, as it has to include the nonlinear rheology, the despinning
and the radiogenic heating. In addition, the model has to be formulated on the time-
dependent domain. In this work, our objective is not as bold as explaining the origin of
the mysterious ridge. We are focused on designing the numerical method that can simulate
thermal convection and the deforming surface. For this purpose we use a model of Iapetus
that is of less complexity, yet includes all the characteristic necessary for thorough testing
of our numerical method. In this chapter we derive the simplified model from general
balance laws.

2.1 Balance laws

We will begin by summarizing the equations of conservation of the mass, the linear mo-
mentum, the energy and the angular momentum using material description (e.g., Ricard
(2007), the used symbols are listed in Table 2.1):

Dρ
Dt

+ ρ∇ · ~v = 0, (2.1.1)

ρ
D~v
Dt

= ∇ · TTT + ρ~f, (2.1.2)

ρCv
DT
Dt

= −∇ · ~q + TTT : ∇~v + ρH (2.1.3)

TTT = TTT T . (2.1.4)

To complete the system of eqs. (2.1.1)-(2.1.4), rheological properties and equation of state
of the material must be provided. Based on physical considerations about the problem
and our interest to reduce the complexity of the realistic model, we make the following
simplifications to the system:

1. We consider water ice to be incompressible.

2. We assume that time and spatial variations of velocities as well as velocities them-
selves are small, so that inertia can be neglected. This is a common argument in
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2.1. Balance laws 2. Model

geophysics because on Earth, these quantities can be measured and proven to be
negligible. There are no such results for Iapetus but we use the assumption in our
model anyway and in Chapter 5 provide an a posteriori justification. A priori justi-
fication can be made using the dimensionless form of the momentum equation (e.g.,
Ricard (2007)); the term becomes negligible if Ra � Pra. Here Ra is the thermal
Rayleigh number

Ra =
d3∆Tρ0α0g0

η0κ0

and Pra is the Prandtl number

Pra =
η0

ρ0κ0

.

The subscript 0 indicates the reference value. In our case Ra/Pra = 1/107.

3. The vector of body forces consists of gravitational force and centrifugal force only.
We neglect Coriolis force and Poincaré acceleration because even for Iapetus rotating
with the spin rate close to Roche limit (3.8 h, Castillo-Rogez et al. (2007)), these
effects are orders of magnitude smaller in comparison to gravity and centrifugal
force. For our scaling argument, we use the surface gravity of Iapetus g = 0.2 m.s−2,
its outer radius a = 750 km, angular velocity corresponding to Roche limit and
characteristic velocity U = 1 m.yr−1, which is hundred times larger than on Earth.
Consequently, we obtain the comparison of magnitudes of the forces

centrifugal
Coriolis

=
ω2a

2ωU
=

1

10−9
,

gravity
centrifugal

=
g

ω2a
=

1

200
.

Moreover, we neglect self-gravitation. Finally, we make our first complexity-reducing
simplification; we consider centrifugal force that is constant in time instead of the
evolving centrifugal force given in eq. (1.2.6).

4. The second complexity-reducing simplification is the assumption that the deforma-
tions in mantle can be approximated as deformations of incompressible, Newtonian
fluid with temperature-dependent viscosity and so rheological description in eq.
(1.3.4) can be used. Furthermore, we utilize the simplified form of the Arrhenius
law

η = η0 exp (−avisT ),

where avis is a positive dimensionless constant.

5. We consider density to be only a linear function of temperature. The equation of
state then takes the form

ρ = ρ0 (1− α (T − T0)) .
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This assumption does not contradict Assumption 1., where we consider fluid to
be mechanically/isothermally incompressible. Here, we consider it to be thermally
compressible. Due to small thermal expansion of water ice, the variations of density
are less than 1%. The reference temperature T0 is uniform ans so following Ricard
(2007) we can choose Cv = Cp.

6. In the balance of energy we assume Fourier’s law ~q = k∇T . Furthermore, due to
Assumption 4., the term TTT : ∇~v reduces only to σσσ : ∇~v. This term is known as
viscous dissipation. Following Robuchon et al. (2010) we do not include it in our
model as according to their calculations, the term is negligible compared to the
radiogenic power which is the dominant source of heat. In our model the radiogenic
heat rate does not follow eq. (1.2.4). Instead, as our third and final complexity-
reducing simplification, we chose to warm the mantle from below.

2.2 Governing equations

Imposing all the simplifications on the balance laws, the equation of state and the rheo-
logical relation yields the governing equations of our model (see Table 2.1 for meaning of
symbols)

∇ · ~v = 0

−∇π +∇ ·
(
η
(
∇~v + (∇~v)T

))
+ ρ~f = 0

ρ0Cp

(
∂T

∂t
+ ~v · ∇T

)
= ∇ · (k∇T )

 Ωt × (0, T ] , (?)

where

ρ = ρ0(1− α(T − T0)), α = const > 0,

η = η0 exp(−avisT ), avis = const > 0,

k = const > 0, Cp = const > 0,

~f = ~g(|~x|) +~b(~x).

If we kept inertia in balance of linear momentum, the governing equations would con-
stitute the Oberbeck-Boussinesq approximation (e.g., Feireisl and Novotný (2009)). The
continuity equation and the momentum equation in system (?) are known as the Stokes
problem. Because of the use of Fourier’s law in the conservation of energy, that equation
in system (?) is known as the Fourier problem.

For the space variables, we do not consider the full 3D problem, but instead restrict
ourselves to time dependent domain Ωt that lies in a half-plane defined by the axis of ro-
tation of Iapetus and a random point in its mantle (Fig. 2.1). This axisymmetric approx-
imation is meaningful, as both the ridge and the volume forces have rotational symmetry.
Thus, we obtain a 2D problem for which the choice of polar coordinates is natural. The
domain of our model is then the cylinder with base Ωt.
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Ωt ΓtΓ3

Γ1

Γ2

Figure 2.1: Time-dependent base of the model domain.

2.3 Boundary and initial conditions

In order to solve the system (?) we must provide boundary and initial conditions. Bound-
aries Γ1 and Γ2 are virtual. The conditions that we prescribe on them express our require-
ment of axial symmetry of the velocity and temperature fields.

vθ = 0
∂vr
∂θ

= 0
∂T

∂θ
= 0 on (Γ1 ∪ Γ2)× [0, T ] (2.3.1)

Boundary Γ3 is physical. We prescribe the boundary as impermeable and heated with
constant temperature Tcore. We would like to remind the respected reader that while the
no-slip condition is perfectly valid, the prescribed temperature is a simplification that
replaces the radiogenic heating.

~v = ~0 T = Tcore on Γ3 × [0, T ] (2.3.2)

Boundary Γt is the deformed boundary where the ridge is formed. Here we prescribe a
constant temperature Tspace and zero surface force, which is defined as a projection of the
stress tensor into the direction of outward normal to the surface. This means that there
are no surface forces acting on the boundary which can then deform freely.

TTT · ~n = ~0 T = Tspace on Γt × [0, T ] (2.3.3)

As this model’s ambition isn’t to accurately describe the ridge formation, the initial
conditions are not based on realistic accretional temperature profile in eq. (1.2.1). Instead,
for the purpose of testing our numerical method, we use different (even discontinuous)
initial conditions. These temperature profiles are specified in Chapter 4.
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Symbol Meaning
~v vector of velocity
ρ density
π pressure
TTT Cauchy stress tensor
σσσ deviatoric part of Cauchy stress tensor
ε̇εε strain rate tensor
t time
T temperature
η viscosity
~f, ~g, ~b volume, gravitational and centrifugal force
H heat production per unit volume
~q heat flux
k conductivity
Cp, Cv specific heat capacity at constant pressure/volume
κ = k

ρCp
thermal diffusivity

α thermal expansion coefficient
ω spin rate
~n outer-pointing normal to the boundary
d characteristic length

Table 2.1: Table of symbols.

The simplified model describes the flow of linear, highly viscous fluid with temperature-
dependent viscosity that is driven by centrifugal force and thermal buoyancy. The flow
is modeled inside the deforming spherical shell. Temperature-dependent viscosity and
external heating allow the model to describe vigorous convection that was likely to occur
inside Iapetian mantle. Due to free outer boundary, the model can capture large scale
deformations caused by the centrifugal force. Thus, with exception of the effects due
to nonlinear rheology, the simplified model can describe all the important phenomena
related to the formation of the ridge. This fact make it a well-suited candidate for testing
our numerical method. We argue that as long as the method performs reasonably well in
conditions of the simplified model, it is also very likely to succeed when applied to realistic
model of Iapetus. In the rest of the thesis we therefore examine the simplified model.
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Chapter 3

Surface Tracking

This chapter describes two different approaches that we used for description of the moving
boundary. After a brief overview of existing methods, we explain the method due to Gerya
that inspired our first approach. After its description, a discussion follows of the reasons
why it failed. We then introduce our second and successful approach. The last section
outlines the problems with existence and regularity of classical and weak solutions that
are due to free surface.

3.1 Overview of methods

The crudest classification divides surface tracking methods into those working with La-
grangian grids and those that use Eulerian grids. Lagrangian grid methods construct a
grid that moves with the fluid, thus automatically traces the surface. These methods are
mostly utilized by finite-element methods (FEM). Their main disadvantage is the com-
putational cost of regridding techniques that have to be employed when the deformations
are too big. Eulerian grid methods work on a fixed Eulerian grid and are therefore more
suitable for finite-difference methods (FDM). We review this class in greater detail, as our
numerical method is based on the FDM.

Two of the most applied Eulerian grid methods are marker-and-cell method (MAC)
and volume-of-fluid of method (VOF). There are two features that these methods have
in common. First, the computational domain is extended to contain the model domain
by adding some artificial nodes and this new domain is fixed. Second, the methods track
surface indirectly by following the changes in volume of the fluid. For this purpose the
term cell is defined as a group of Eulerian nodes.

Volume-of-fluid method

In every cell, the volume-of-fluid method (Hirt and Nichols, 1981) defines a scalar quan-
tity φ, volume fraction, that takes values between zero and one depending on the type
(location) of the cell. In the full cell that lies inside the fluid we set φ = 1, while in the
empty cell located outside the fluid we set φ = 0. The cells with φ ∈ (0, 1) and at least one
empty neighboring cell are treated as interface cells and are used to locate the surface.
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3.1. Overview of methods 3. Surface Tracking

The surface evolves according to the basic kinematic equation

∂φ

∂t
+ ~v · ∇φ = 0. (3.1.1)

Due to hyperbolic nature of this equation, numerical solution can be seriously affected
by numerical effects if the appropriate scheme is not used. Oscillations could produce
meaningless values of volume fraction (φ > 1), while diffusion could smear the sharp
gradients needed for accuracy of the method.

Even with accurate scheme, the resolution of VOF method is lower compared to other
methods. This is due to surface location being stored only in the cells. Better resolution
could be achieved on a finer grid but at higher computational expenses. Another weak
spot of the method is the nontrivial calculation of surface curvature and normals which
are important for prescription of boundary conditions at the moving boundary.

Markers-at-cell method

Markers-at-cell method (e.g., McKee et al. (2008)) improves on the resolution of VOF
method by tracing the surface with Lagrangian particles/markers. The markers are ad-
vected by the velocity field according to

d~xi

dt
(t) = ~v(~xi, t), (3.1.2)

where ~xi(t) is the position of i -th marker at time t and ~v(~xi, t) is its velocity. The location
of surface is reconstructed by different techniques using markers’ positions (e.g., weighted
interpolation). Cells are classified according to the concentration of fluid markers or void
markers they contain. The cell is pronounced full if it contains fluid markers exclusively
and empty if it is filled with void markers. Cells containing mixture of markers are the
interface cells. The classification serves the purpose of identifying the cells where boundary
conditions must be prescribed. Even with the additional information about the location
of surface between the interface cells, calculation of normals is not a straightforward
operation.

Apart from increased CPU requirements connected with the accommodation of mark-
ers, the main weakness of MAC method is the fact that markers can be pulled apart
by certain kind of flows. Thus, voids can be created that give misleading picture of the
surface.

Variable-density approximation

For neither of the methods normal calculation is a trivial task. Once the normal to surface
is known, the questions arises how much of an error is made when the condition in eq.
(2.3.3) is discretized into the grid nodes. To avoid difficulties due to normals, simplified
boundary conditions could be prescribed on the moving boundary (e.g., assume that the
surface remains spherical by ~n = ~er). This simplification, however, does not treat the
essential problem of Eulerian grid methods; the dynamically changing system matrix.

21



3.2. Method of Gerya 3. Surface Tracking

The number of Eulerian nodes, i.e., the number of unknowns, is constant because of
the fixed size of the computational domain. Meanwhile, the type of equations changes as
the deformed fluid contains different full and surface cells. Thus, structure of matrix of
the system evolves. Depending on the boundary conditions, adjusting the matrix can be
quite costly. Therefore, some methods make use of the variable-density approximation.

This approach originated in studies of flow near the interface of two fluids with high
density contrast. The main idea is to solve the governing equations of the thicker fluid
in a whole region occupied by the two fluids. In this way we treat the problem as a flow
of a single fluid with variable density and so there is no need for boundary conditions
on the interface. In practice, there are two reasons why this approach can fail. First one
is down to the fact that for iterative solvers, high density contrast affects the rate of
convergence and so the solution might not even converge. The second reason is connected
with different character of flows in the interface region. It is possible that there might even
be a discontinuity of tangential velocities at the interface. Thus, if an averaging method for
calculating the velocities for advection is chosen poorly, unrealistic movements of surface
could be introduced.

3.2 Method of Gerya

Large scale problems in geophysics (e.g., collisions of tectonic plates) are modeled as flow of
multiple fluids with high density and viscosity contrast. Since such diverse properties give
rise to instabilities, the numerical method applied must be robust. Also, the often peculiar
shapes of regions occupied by different fluids require a method with great resolution. One
of the most successful methods used is the method by Gerya (Gerya and Yuen, 2003).

The approach is based on MAC method with some aspects of the variable-density
approximation. The method defines as many types of markers as there are types of fluid
within the computation domain. Markers have the material properties of the fluid they
represent. In addition to tracking the interfaces, markers are also used to solve the Fourier
problem in system (?). With their help the difficulties caused by the advection term ~v ·∇T
are overcome (the reader is referred to (Gerya, 2010) for more details).

Key feature of the approach is the interpolation between markers and Eulerian nodes.
The velocities used to advect markers are computed in nodes and then interpolated by
distance-weighted averaging to markers. For each marker, a zone is defined, that contains
the nodes used for interpolation. Material properties prescribed in material nodes are
given by distance-weighted averaging of material properties of markers included in the
interpolation region of the node (see Figs. 3.1(a) and 3.1(b) for illustration of the process
on the staggered grid). Because of the interpolation, governing equations that use the
values defined in nodes, do not feel the discontinuity of material properties that would
otherwise be located on the interface. We believe that part of the success of the method
can be attributed to this procedure. The other part is probably associated with adjusting
the velocity interpolation in such a way, that the values possibly producing unrealistic
movements of interface are omitted.

According to Gerya (2010), the method can also be used to model deformations of
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Figure 3.1: Interpolation between markers and Eulerian nodes. (a) Velocities are interpo-
lated from node to markers. In this case, the velocity is defined in a full black square node
and interpolation region of the marker is bounded by four nearest velocity nodes. (b) Ma-
terial properties are interpolated from markers to node. In this case, material properties
are defined in a full black square node and the interpolation region of the node is bounded
by the nearest nodes of the same kind.

the surface. To replicate the method’s original setting, the body is surrounded by a weak
medium that has much smaller density (ρ � 1 kg.m−3) and much smaller viscosity than
the deformed object.

3.3 Surface markers method

Our first approach to solving the system (?) was based on the method of Gerya which
is modified for modeling surface deformations following the last section. We make several
alternations to the proposed method:

1. We use a single type of tracers; the surface markers. As we show in Chapter 4, our
numerical method for the heat equation is robust. Thus, we do not need markers
to resolve the issues due to advection term. The surface markers are used solely to
locate the surface.

2. We perform spline interpolation to define surface between the markers. The interface
should therefore be sharper compared to the original method where it is located by
interpolating the positions of numerous kinds of markers.

3. We only interpolate velocities from the nodes to the markers. No nodes are omitted
from the interpolation. The surface markers are advected according to eq. (3.1.2).
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Figure 3.2: Definition of material properties. (a) Node (i, j) carries properties of the weak
medium as it is located above the surface represented by the blue line. (b) Marker is
advected with velocity ~v. Node (i, j) is now below new surface and receives the material
properties of mantle.

4. In addition to small viscosity and density the weak medium has high conductivity,
so that thermal boundary condition prescribed on the fixed boundary of extended
domain can be conducted to the interface.

5. Material properties are set in Eulerian nodes. A material node located below the
interface obtains the properties of mantle, whereas a node above the interface gets
properties of the weak medium (Fig. 3.2). Thus, there is no smoothing of the pa-
rameters near the interface.

The above presented version of the method, however, fails to model the deforming
surface. As shown in Fig. 3.3, the shape of surface is faulted with unrealistic oscillations.
The oscillations appear when mantle/weak medium material nodes are about to change
character with the translation of interface. The discontinuity of material parameters that
the system suddenly feels is responsible for the oscillations. Since the method includes no
filter or damping, these oscillations propagate and eventually ruin the whole solution.

As the description suggests there are at least two solutions to this problem. First, a
larger radial spatial step could be used. If possible, the distance between the material
nodes should be chosen in such a way that a strip these nodes define would accommodate
the surface at all times. Thus, no node would change character. This approach could be
meaningful for methods that can handle variable spatial step size. Otherwise it implies
sparser grid which results in less accurate solution of Stokes-Fourier system. The second
approach is to smooth the material parameters near the interface of the body and the
weak medium.
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Figure 3.3: Oscillations in the interface. Rising equatorial plume creates a central ridge
while falling side currents create valleys near θ = 1.2 and θ = 2.0. The oscillations arise
as mantle material nodes are about to be included in the weak medium region. The
simulation parameters: time step ∆t = 103 yr, Rayleigh number Ra = 105 and radial
spatial step ∆r˜4.8 km.

We do not implement the treatment to oscillations into surface markers method. Nei-
ther do we implement here the modification that would prevent creation of voids due
to markers being driven apart by divergent flows, which we observed in some numerical
experiments. Instead, we design a new approach with the listed weak spots in mind.

3.4 Surface height method

Our second approach to problem (?) belongs to the class of surface tracking methods
(e.g., Hyman (1984)). Unlike MAC methods or VOF methods, these methods trace the
deforming surface directly. In this section we explain how our method locates and evolves
the surface and how it handles the boundary conditions.

The surface is defined as an implicit material surface H(r, θ, t) = 0. The observations of
current shape of Iapetus do not suggest dramatic deformations in the history. Therefore,
we assume that at every time t conditions of the implicit function theorem (e.g., the
surface is not multivalued with respect to θ) hold and we can express the height of surface
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explicitly as
r = h(θ, t). (3.4.1)

Obviously, this method of tracing is not affected by diverging flows. The surface evolves
according to

∂H

∂t
+ ~v · ∇H = 0, (3.4.2)

which is a necessary and sufficient condition for material surface to stay material (see
(Maršík, 1999) for proof).

The difficulties due to moving boundary are overcome by applying the variable-density
approximation. The computational domain Ω pictured in Fig. 3.4(a) is extended in such
a way that ∀t ∈ [0, T ] : Ω ⊃ Ωt. We only replace part of the boundary Γt so that
∂Ω = Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4. The new domain is fixed. On solid boundary Γ4 we prescribe
no-slip boundary condition and a fixed temperature.

~v = ~0 T = Tspace on Γ4 × [0, T ] (3.4.3)

For a fixed time t we divide the computational domain into two disjoint regions using the
known position of surface (interface)

ice := {~x = (r, θ) ∈ Ω | r < h(θ, t)} ,
air := {~x = (r, θ) ∈ Ω | r ≥ h(θ, t)} .

Material parameters in these regions differ and the discontinuity is located on the surface

ρ(~x, T ) =

{
ρ0,ice(1− α(T − T0)) ~x ∈ ice

ρ0,air ~x ∈ air

η(~x, T ) =

{
η0,ice exp(−avisT ) ~x ∈ ice

η0,air ~x ∈ air

α = const > 0,

avis = const > 0.

We set ρ0,air � ρ0,ice, η0,air � η0,ice to obtain high contrast required by variable-density
approximation. To avoid oscillations, we smooth the density discontinuity. We use linear
extrapolation and restrict the smoothing only to air nodes in immediate neighborhood of
the interface. The process is illustrated in Fig. 3.4(b). Since in our numerical experiments,
the discontinuous viscosity does not seem to cause difficulties, we keep this interface sharp.

The essence of using variable density and viscosity is to approximate the Stokes prob-
lem in (?). For this problem, the boundary conditions on free surface are quite complex.
In addition, the problem is solved using three types of nodes of the staggered grid. On the
other hand, the heat equation uses only single type of nodes and the boundary condition
that we chose is simple enough so that we can prescribe it with reasonable accuracy at the
interface Γt. Thus, there is no need to use variable conductivity as in our first approach.
Surface temperature Tspace is in fact prescribed in the whole air region. The choice is
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Ω
Ωt

Γt Γ4Γ3

Γ1

Γ2

(a)

θ

r
j − 1 j j + 1

i+ 1

i

i− 1

∆θ

δr
∆
r

(b)

Figure 3.4: Surface height method. (a) The computational domain Ω is fixed and contains
the model domain Ωt. (b) Discontinuity of density at the interface is smoothed by linear
extrapolation. The value in node (i− 1, j) is set according to ρ(ri−1, θj) = δr

∆r
ρ(ri, θj).

meaningful as this region represents the universe that surrounds Iapetus which is likely
to have constant temperature because of its huge distance from the Sun.

We treat the two weaknesses of variable-density approximation mentioned in Section
3.1 in the following way. Instead of an iterative solver, we use a direct one (type of Gauss
elimination implemented in UMFPACK). Instead of interpolation, the material velocities
for eq. (3.4.2) are obtained by extrapolating the velocities from ice nodes. We use simple
polynomial extrapolation from two nodes. Results of numerical experiments with this
method are presented in Chapter 5.
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3.5 Remarks on existence and regularity

Modern theory of partial differential equations focuses on the existence and regularity
of weak solutions rather than classical solutions. The obtained results are very useful
for the FEM methods, as their very essence is the weak (integral) formulation. Classical-
formulation-based FDM methods are used in geophysical modeling with great success but,
unlike the FEM methods, they often lack the rigorous mathematical justification. In this
sections we outline the difficulties we face when trying to provide the support for usage
of FDM for our problem (?).

The justification attempt consists of two steps. First, we seek a regularity result for
the system (?) as we want make use of the embedding Theorem 3.5.1:

Theorem 3.5.1. Assume that Ω ∈ Rn is a bounded domain with sufficiently smooth
boundary, 1 < p <∞, m ∈ Z+ and

k < m− n

p
.

Then
Wm,p(Ω) ↪→↪→ Ck(Ω).

In order to apply the theorem we would consider fixed bounded domain Ω ⊇ Ωt,∀t ∈ [0, T ]
and extend the solution smoothly.

Classical solution of system (?) requires ~v(•, t) ∈ C2(Ω)2. Since in our case n = 2, p = 2
we want m > 3. Unfortunately, there is no such regularity result available for our system.
In fact there are no results that establish existence let alone regularity even for much
simpler systems that are formulated on the evolving domain.

To avoid the issue with moving boundary, we might try to research regularity of solu-
tion to the approximate problem formulated in Section 3.4. However, material properties
in regularity estimates for similar systems with fixed domain must not be discontinuous
(e.g., Bulíček et al. (2011) require at least continuous viscosity for evolutionary Stokes-
Fourier system). We could regularize material properties by suitable mollifiers, but still,
we would not be able to establish the regularity result ~v(•, t) ∈ W 3,2(Ω)2. The result is
essentially a requirement for velocity field to be contained in some Bochner space. In order
to prove it, the term ∂~v

∂t
would have to be included into the momentum equation and the

term σσσ : ∇~v would have to be included into the heat equation so that appropriate energy
estimates could be made. Since, our argument for neglecting these terms from the original
balance laws is based on scaling, adding them back should not affect the solution.

In the second step, we would seek an equivalent of Serrin’s result ‘certain weak solutions
of the time dependent Navier-Stokes equations must actually be solutions in an ordinary
sense’ (Serrin, 1962) for our system.

The existence of results described above would mean that there exists a strong suffi-
ciently regular solution and application of FDM would thus be mathematically justified.
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Chapter 4

Numerical Methods

In this chapter we describe a method for obtaining the numerical solution to approxima-
tion of the Stokes-Fourier system described in Section 2.2. Separate sections are devoted
to methods for Stokes problem, the heat equation and the advection of surface. We also
analyze the stability of numerical schemes used to solve the evolutionary equations of the
system.

4.1 Introduction

Application of variable-density approximation to system (?) leads to an approximate
problem that we outlined in Section 3.4. It is this new problem that we solve with our
numerical method. For the sake of clarity we begin the discussion of method by definition
of the approximate problem.

4.1.1 Approximate problem

Governing equations

In a fixed domain Ω× (0, T ] , Ω ∈ R2, ∂Ω = Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4 (Fig. 3.4(a)) we solve the
stationary Stokes-Fourier system

∇ · ~v = 0, (4.1.1)

−∇π +∇ ·
(
η
(
∇~v + (∇~v)T

))
+ ρ~f = 0, (4.1.2)

ρ0,iceCp

(
∂T

∂t
+ ~v · ∇T

)
= ∇ · (k∇T ) , (4.1.3)
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where

ρ(~x, T ) =

{
ρ0,ice(1− α(T − T0)) ~x ∈ ice

ρ0,air ~x ∈ air
(4.1.4)

η(~x, T ) =

{
η0,ice exp(−avisT ) ~x ∈ ice

η0,air ~x ∈ air
(4.1.5)

~f = ~g(|~x|) +~b(~x) (4.1.6)

with α, avis, k, Cp, ρ0,air, ρ0,ice, η0,air, η0,ice all constant and ρ0,air � ρ0,ice, η0,air � η0,ice.
The ice and air regions are determined by the location of surface at a fixed time t. If

the position of surface is expressed explicitly in polar coordinates (~x = (r, θ)) as

r = h(θ, t) (4.1.7)

the ice and air regions are defined as

ice := {~x ∈ Ω | r < h(θ, t)} ,
air := {~x ∈ Ω | r ≥ h(θ, t)} .

The surface evolution is an initial value problem

∂h

∂t
+
vθ
r

∂h

∂θ
= vr, (4.1.8)

h(θ, 0) = h0(θ)

that we solve in domain [0, π] × (0, T ]. Here h0(θ) is the initial position of surface and
vr, vθ are radial and tangential components of velocity.

Boundary and initial conditions

Boundary conditions of the approximate problem and exact problem (?) remain un-
changed for segments Γ1, Γ2, Γ3.

vθ = 0
∂vr
∂θ

= 0
∂T

∂θ
= 0 on (Γ1 ∪ Γ2)× [0, T ] (4.1.9)

~v = ~0 T = Tcore on Γ3 × [0, T ] (4.1.10)

In the new domain, the moving boundary Γt with prescribed free surface boundary con-
dition is replaced by a fixed boundary Γ4 which is impermeable and cooled to a constant
temperature Tspace.

~v = ~0 T = Tspace on Γ4 × [0, T ] (4.1.11)

We use three types of initial conditions. The first temperature profile is continuous
and is given as symmetrically perturbed conductive profile

T0(r, θ) = A+
B

r
+

∆T

100

(
3

2
cos2(θ)− 1

2

)
sin

(
− π

log(Rn)
log

(
d

1−Rn

rRn

))
, (4.1.12)
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where ∆T = Tcore−Tspace. Fraction Rn = R1/R2 is the ratio of inner and outer radii of Ω,
d is then the characteristic length. Constants A and B are set such, that the conductive
profile A + B/r is equal to Tcore for r = R1 and Tspace for r = R2. Clearly, this is a
continuous initial condition. The remaining initial conditions are based on discontinuous
profile

T (r) =


Tcore r = R1

Tspace r = R2

T0 otherwise
(4.1.13)

For the second initial profile, we prescribe an anomaly Tspace − 0.05∆T in the point
(r, θ) = ((R2 − R1)/2, π/2). Thus, the profile is symmetric. The last initial profile is
asymmetric with the anomaly placed in (r, θ) = ((R2 −R1)/2, π/4).

4.1.2 Algorithm

The key step to obtaining a quartet (~v, π, T, h) ∈ R2 × R × R × R, which solves the
approximate problem, is to decouple the system in time, i.e., to seek the solution to
Stokes problem (~v, π) and the solution to heat equation T and advection equations h
on two different consecutive time levels. The decoupling leads to the following solution-
seeking algorithm (see also Fig. 4.1):

0: Let the temperature T n and surface position hn be known on the n-th time level,
i.e., solutions T (r, θ, t), h(θ, t) are known at the fixed time t = n∆t where ∆t is the
time step.

1: Using T n, hn define density, viscosity and volume forces in Ω by eqs. (4.1.4), (4.1.5),
(4.1.6).

2: Solve the Stokes problem (eqs. (4.1.1), (4.1.2)). Since Stokes problem is stationary,
the solution (~vn, πn) remains on the n-th time level.

3: Using the computed velocity field, solve the heat equation (eq. (4.1.3)) to obtain
temperature field at n+ 1-th time level.

4: Using the computed velocity field, solve the advection equation (eq. (4.1.8)) to
obtain the surface height at n+ 1-th time level.

5: With T n+1, hn+1 goto step 1.

Due to simplifications of our model and consequently the approximate problem, the
first step of the algorithm is trivial. However, the remaining steps are quite intriguing
and must be solved carefully. We present our methods of obtaining numerical solutions
to appropriate partial differential equations from steps 2., 3., 4., in the next sections.
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Tn, hn

ADVECTION

Tn+1

h
n
+
1

ρn, ηn

HEAT

STOKES

~vn

~vn

Figure 4.1: Flowchart for algorithm used to solve the approximate problem.

4.2 Stokes problem

The Stokes problem of decoupled approximate problem takes the form

∇ · ~vn = 0,

−∇πn +∇ ·
(
ηn
(
∇~vn + (∇~vn)T

))
+ ρn ~fn = 0,

where for general (scalar/vector valued) function ϕ(~x, t) we denote ϕn its projection to
n-th time level, that is, ϕn = ϕ(•, n∆t). For better readability, we drop the superscript
as the equations include only spatial derivatives of the projections to same time level.
We express the system in polar coordinates (Appendix A) and apply conservative finite-
difference method on staggered grid.

Conservative FDM guarantee the conservation of stresses. Due to variable viscosity,
the stresses would not be conserved if non-conservative FDM were used.

Staggered grid consists of different types of nodes that are used to define different
quantities. The types of nodes are shown in Fig. 4.2. Consequently it is more convenient
to differentiate particular equation in certain type of node than in others. We choose
to differentiate the continuity equation in pressure nodes, the momentum equation in
direction ~er in radial velocity nodes and finally, the momentum equation in direction ~eθ
in tangential velocity nodes.

Differentiating a partial differential equation in the point (ri, θj) = (i∆r, j∆θ), which
we denote as (i, j), of the staggered grid with fixed radial and angular step sizes ∆r, ∆θ
leads to a finite difference equation defined on a finite set of nodes. Usually, the FDE
takes the form

~W (i, j) · ~V (i, j) = F (i, j), (4.2.1)
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θ

r
j − 2 j − 1 j j + 1 j + 2

i+ 2

i+ 1

i

i− 1

i− 2

∆θ

∆
r

T, σrθ, η, ρ, k, cp
vθ, qr

vr, qθ

π, σrr, σθθ
Figure 4.2: Staggered grid in polar coordinates (Fig. borrowed from (Běhounková, 2007)
and modified). We zoom on a small part of a very dense curvilinear grid so that it can be
viewed as regular. Different quantities are defined in different nodes. In full black squares
we define material properties, temperature and shear component of deviatoric stress. In
empty white triangles we define tangential velocities and radial heat flux. In empty white
circles we define radial velocities and tangential heat flux. In empty white square we define
pressure and normal deviatoric stresses.

where ~V (i, j) ∈ Rd is a vector of nodal values used to approximate the original PDE
differentiated in point (i, j), d is the number of nodes, ~W (i, j) ∈ Rd is the vector of
corresponding weights and F (i, j) ∈ R is the discrete value of the right hand side. For
example, the continuity equation discretized in point (i+ 1, j+ 1) has the right-hand-side
F (i, j) equal to zero and vectors ~V (i + 1, j + 1) and ~W (i + 1, j + 1) have the following
components

~V (i+ 1, j + 1) =
(
vr,(i,j+1), vr,(i+2,j+1), vθ,(i+1,j+2), vθ,(i+1,j)

)
,

~W (i+ 1, j + 1) =

(
r2
i

2r2
i+1∆r

,−
r2
i+2

2r2
i+1∆r

,
sin θj+2

ri+1 sin θj+1

,− sin θj
ri+1 sin θj+1

)
,

where for function φ(r, θ) nodal value φ(i,j) is defined as φ(i∆r, j∆θ). Vectors for the two
remaining equations of Stokes problem can be found in Appendix B.

If the solution (~v, π) of Stokes problem is sufficiently smooth ((π,~v) ∈ C2(Ω)×C3(Ω)2)
and we restrict ourselves to nodes away from the region with density and viscosity dis-
continuity, it can be shown by means of Taylor’s theorem, that each finite difference ap-
proximation is of second order of accuracy. In other words, the solution of the differential
system satisfies the difference system with error O([∆r]2 , [∆θ]2).

Because of the boundary conditions of Stokes problem, the pressure solution is given
up to an arbitrary constant. Consequently, matrix of the finite difference system is ill-
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conditioned. A common way of determining the constant is to prescribe the value of
pressure in one node. In (Kuchta, 2008) the problem is treated by penalization/allowing
small compressibility in continuity equation. Much to our surprise, by using direct solver
implemented in UMFPACK we are able to invert the matrix without allowing compress-
ibility or setting the pressure. We offer a summary of our trick and discuss what we believe
is the key to its success.

UMFPACK inversion has two stages. After the first symbolic stage, where informa-
tion about the matrix structure is gathered, a numerical stage follows where the values
of entries are used and the matrix is actually inverted. We assume that our trick success-
fully abuses this two stage algorithm. For the symbolic stage we provide the solver with
discretized continuity equation that indicates compressibility, i.e., FD approximation to
∇ ·~v+ επ = 0. However, for the numerical stage we set ε = 0. UMFPACK is then able to
solve our system. Interestingly enough, the inversion requires less time than the inversion
of system with nonzero compressibility.

4.3 Heat equation

The heat equation of the decoupled approximate problem discretized semi-implicitly1 in
time takes the form

ρ0,iceCp
(T n+1 − T n

∆t
+ ~vn · ∇T n+1

)
= ∇ ·

(
k∇T n+1

)
, (4.3.1)

where T n = T n(~x) = T (~x, n∆t) retains its meaning from the previous section. The velocity
field ~vn is known from the solution of Stokes problem. This equation can be simplified
by taking advantage of the fact that conductivity is constant. Expressing the equation in
polar coordinates leads to

T n+1 − T n

∆t
=
(

2
κ

r
− vnr

) ∂T n+1

∂r
+ κ

∂2T n+1

∂r2
+

(
κ cos θ

r2 sin θ
− vnθ

r

)
∂T n+1

∂θ
+
κ

r2

∂2T n+1

∂θ2
.

(4.3.2)
Equation (4.3.2) is differentiated on the staggered grid (Fig. 4.2) using two non-conservative
finite difference schemes. There is no need for conservative FDM as the conservation of
heat fluxes is given due to constant conductivity.

4.3.1 Scheme of Crank and Nicolson

The Crank-Nicolson method defines the finite difference approximation of eq. (4.3.2) as

T n+1 − T n

∆t
=

[
(AAAn +BBB +CCCn +DDD)

(
T n+1 + T n

2

)]
, (4.3.3)

1Discretization is semi-implicit because of the term ~vn · ∇Tn+1.
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where the difference operators are defined in the following way

(
AAAkT l

)
(i,j)

= ak(i,j)
T l(i+1,j) − T l(i−1,j)

2∆r
, ak(i,j) =

(
2
κ

ri
− vkr,(i,j)

)
∈ R

(
BBBT l

)
(i,j)

= b(i,j)

T l(i+1,j) − 2T l(i,j) + T l(i−1,j)

(∆r)2
, b(i,j) = κ ∈ R+

(
CCCkT l

)
(i,j)

= ck(i,j)
T l(i,j+1) − T l(i,j−1)

2∆θ
, ck(i,j) =

(
κ cos θj
r2
i sin θj

−
vkθ,(i,j)
ri

)
∈ R

(
DDDT l

)
(i,j)

= d(i,j)

T l(i,j+1) − 2T l(i,j) + T l(i,j−1)

(∆θ)2
, d(i,j) =

(
κ

r2
i

)
∈ R+

For function ϕ(r, θ, t) we define its nodal value ϕn(i,j) as ϕ(i∆r, j∆θ, n∆t). If the solution to

eq. (4.1.3) is T ∈ C1([0, T ])×C3(Ω) and we plug it into the difference scheme the original
equation can be recovered with error that is O(∆t, [∆r]2 , [∆θ]2). Thus, the scheme is first
order accurate in time and second order accurate in space.

Consistency of the scheme does not imply that the exact solution of the difference
equation converges to the exact solution of the differential equation as grid is made finer.
Convergence is often studied using results of Lax and Richtmyer (e.g., Strikwerda (2004)).

Theorem 4.3.1. (The Lax-Richtmyer Equivalence Theorem) A consistent one-step sche-
me for a well-posed initial value problem for partial differential equation is convergent if
and only if it is stable.

Since the original theorem is not concerned with initial-boundary-value problems,
Fletcher (1991) suggests that it cannot be applied rigorously and should be interpreted as
providing necessary but not always sufficient conditions. On the other hand, the theorem
is often used for various linear problems in a form Consistency+Stability=Convergence.
Regardless of form of the theorem applied, stability of the scheme should be investigated.

Stability

We investigate the stability by von Neumann method (e.g., Richtmyer and Morton (1967)).
The method is used for stability analysis of schemes for problems with constant coefficients
but according to Strikwerda (2004), it can also be applied to problems with variable
coefficients.

He argues that global instability is caused by local instabilities that are not dampened.
Consequently, stability of the scheme for problem with variable coefficients is determined
by local stability. When investigating local stability, the values of coefficients are frozen.
Thus, constant coefficients problem is investigated and von Neumann stability analysis
can be used. If each of the frozen coefficients problems arising from the scheme is stable,
then the variable coefficients problem is also stable.

Our aim to show that the Crank-Nicolson scheme for eq. (4.3.2) is unconditionally
stable.
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Lemma 4.3.2. The scheme defined by eq. (4.3.3) is unconditionally stable.

Proof. Let us choose a node (r, q) from the interior of Ω and set the coefficients constant
in such a way that ak(i,j) = ak(r,q), b(i,j) = b(r,q), c

k
(i,j) = ck(r,q), d(i,j) = d(r,q) ∀(i, j). We apply

the von Neumann method to problem with constant coefficients and seek the solution as

T n(i,j) = λn exp(ıkr∆r) exp(ıkθ∆θ),

where kr, kθ are components of the wave vector and λ is the amplification factor. Here
we consider our grid to be Cartesian as in Fig. 4.2. We propose that this approximation
is reasonable, if the grid is dense and improves as the grid is made finer.

Substituting the ansatz into difference equation, we obtain

λn+1 − λn

∆t
=aλn+1 ı sinφ

2∆r
+ aλn

ı sinφ

2∆r
+ cλn+1 ı sinϕ

2∆θ
+ cλn

ı sinϕ

2∆θ

− bλn+1 2 sin2 φ/2

(∆r)2
− bλn2 sin2 φ/2

(∆r)2
− dλn+1 2 sin2 ϕ/2

(∆θ)2
− dλn2 sin2 ϕ/2

(∆θ)2
,

where φ = kr∆r , ϕ = kθ∆θ and a, b, c, d are the frozen coefficients. The amplification
factor is then given as

λ =
1− ψ + ıξ

1 + ψ − ıξ
,

where for better readability we set

ψ = b∆t
2 sin2 φ/2

(∆r)2
+ d∆t

2 sin2 ϕ/2

(∆θ)2
, ξ = a∆t

sinφ

2∆r
+ c∆t

sinϕ

2∆θ
.

According to von Neumann definition of stability (e.g., Richtmyer and Morton (1967)), the
necessary and sufficient condition for stability is that the amplification factor is bounded

|λ|2 ≤ 1 +O(∆t).

Since in our case ψ > 0, we get

|λ|2 =
(1− ψ)2 + ξ2

(1 + ψ)2 + ξ2
= 1− 4ψ

(1 + ψ)2 + ξ2
≤ 1.

This proves unconditional stability of the scheme for problem with constant coefficients
determined by (r, q). The only requirement that we used was that ψ is positive but this is
guaranteed in whole Ω, i.e., independent of (r, q). Therefore, unconditional stability holds
for all values of coefficients. Finally, using argument due to Strikwerda (2004) we obtain
unconditional global stability.
Remark : In our proof we dropped the subscript indicating time levels from an, cn and
consequently ξn, ψn, λn. If retained, we would obtain sequence of amplification factors
{λn}, with every member |λn|2 ≤ 1. Thus, the instabilities would not be amplified between
any two consecutive time levels. Consequently, they would not be amplified on some
interval. Our conclusion about unconditional stability therefore holds.
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4.3.2 Upwind scheme

While the scheme of Crank and Nicolson uses only central differences to approximate
spatial derivatives, the upwind scheme chooses between forward and backward differences
depending on the sign of coefficients in front of the derivatives. For convenience, we rewrite
eq. (4.3.2) in a more suitable form

T n+1 − T n

∆t
=2

κ

r

∂T n+1

∂r
+ κ

∂2T n+1

∂r2
+
κ cos θ

r2 sin θ

∂T n+1

∂θ
+
κ

r2

∂2T n+1

∂θ2

− vr
∂T n+1

∂r
− vθ

r

∂T n+1

∂θ
. (4.3.4)

We apply upwinding only to the convective term. The implicit upwind scheme defines
approximation to eq. (4.3.4) as

T n+1 − T n

∆t
=
[
(AAA+BBB +CCC +DDD +EEEn +FFF n)T n+1

]
, (4.3.5)

where the difference operators are defined in the following way

(
AAAT l

)
(i,j)

= a(i,j)

T l(i+1,j) − T l(i−1,j)

2∆r
, ak(i,j) = 2

κ

ri
∈ R+

(
BBBT l

)
(i,j)

= b(i,j)

T l(i+1,j) − 2T l(i,j) + T l(i−1,j)

(∆r)2
, b(i,j) = κ ∈ R+

(
CCCT l

)
(i,j)

= c(i,j)

T l(i,j+1) − T l(i,j−1)

2∆θ
, c(i,j) =

κ cos θj
r2
i sin θj

∈ R

(
DDDT l

)
(i,j)

= d(i,j)

T l(i,j+1) − 2T l(i,j) + T l(i,j−1)

(∆θ)2
, d(i,j) =

(
κ

r2
i

)
∈ R+

(
EEEkT l

)
(i,j)

= −

(
vkr,(i,j)

(
T l(i+1,j) − T l(i−1,j)

2∆r

)
− |vkr,(i,j)|

(
T l(i+1,j) − 2T l(i,j) + T l(i−1,j)

2∆r

))
(
FFF kT l

)
(i,j)

= − 1

ri

(
vkθ,(i,j)

(
T l(i,j+1) − T l(i,j−1)

2∆θ

)
− |vkθ,(i,j)|

(
T l(i,j+1) − 2T l(i,j) + T l(i,j−1)

2∆θ

))

The scheme is first order accurate in time, but unlike scheme of Crank-Nicolson, it is
only first order accurate in space. This is caused by the upwinding. On the other hand,
upwinding is also responsible for dissipative property of the scheme. In our case, dissipa-
tivity is a desirable property as it improves the ability of scheme to dampen unwanted
oscillations.

Stability

When subjected to analysis of stability, the implicit scheme with upwinding on convective
term for eq. (4.3.4) turns out to be unconditionally stable
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Lemma 4.3.3. The scheme defined by eq. (4.3.5) is unconditionally stable.

Proof. We follow steps of the proof of unconditional stability of the Crank-Nicolson
scheme. The amplification factor is given as

λ =
1

1 + ψ − ıξ
,

where

ψ = ∆t

(
4b

(∆r)2
+

2|vkr,(r,q)|
∆r

)
sin2 ϕ/2 + ∆t

(
4d

rr(∆θ)2
+

2|vkθ,(r,q)|
rr∆θ

)
sin2 φ/2,

ξ =
∆t

∆r

(
a− vkr,(r,q)

)
sinϕ+

∆t

∆θ

(
c− vθr,(r,q)

)
sinφ.

We can see that ψ > 0 and thus

|λ|2 =
1

(1 + ψ)2 + ξ2
≤ 1.

4.4 Advection of surface

Evolution of surface is defined by initial-value problem (4.1.8). The approximation of the
problem by semi-implicit upwind scheme is written as

hn+1 − hn

∆t
+AAAnhn+1 = Ṽr

n

h0 given

 , (4.4.1)

where h0 is the discretized initial condition h0. Components of vector
Ṽr

n
= (ṽnr,m)Mm=0, M∆θ = π are constructed by extrapolation from nodal values of radial

velocity field at time level n to points θm = m∆θ. Used nodes must lie in ice region. The
difference operator AAAk is given as

(Akhl)m = akm
hlm+1 − hlm−1

2∆θ
− |akm|

hlm+1 − 2hlm + hlm−1

2∆θ
, akm =

ṽnθ,m
rm

, (4.4.2)

where ṽnθ,m are defined from tangential velocity field at time level n in a similar way to
ṽnr,m. The scheme (4.4.1) is first order accurate in both time and space.

Stability

We investigate stability using energy method (e.g., Dautray et al. (2000)). Basic idea of
the method is that the conditions under which we can prove that the difference problem
is well-posed are the stability conditions of the scheme. Our aim is to prove unconditional
stability of the scheme (4.4.1).
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4.4. Advection of surface 4. Numerical Methods

Lemma 4.4.1. The scheme defined by (4.4.1) is unconditionally stable.

Proof. We divide the proof into three steps. In the first two steps, we consider simplified
versions of scheme (4.4.1) and show their unconditional stability. In the final step we use
our findings to show unconditional stability of the original scheme.

Step 1: Let us consider difference scheme

hn+1 − hn

∆t
+AAAhn+1 = 0

h0 given

 , (4.4.3)

where

(Ahl)m = a
hlm+1 − hlm−1

2∆θ
− |a|

hlm+1 − 2hlm + hlm−1

2∆θ
, a ∈ R.

We equip the space l2 of sequences g = {gm} with scalar product 〈g, h〉 =
M∑
m=0

gmhm which

induces the norm of solution |h| = (
M∑
m=0

hmhm)1/2. Squaring the first equation of (4.4.3),

we obtain

|hn+1|2 − |hn|2 = −2∆t〈AAAhn+1, hn+1〉 − (∆t)2〈AAAhn+1,AAAhn+1〉.

The first term on the right hand side is nonnegative due to Lemma 1. on p. 103 in Dautray
et al. (2000). The second term is obviously nonnegative. Therefore we have

|hn+1|2 − |hn|2 ≤ 0 =⇒ |hn+1|2 ≤ |hn|2 =⇒ |hn+1|2 ≤ |h0|2.

Thus, the difference problem (4.4.3) is well-posed independent of ∆t, ∆θ or a. Conse-
quently, the scheme is unconditionally stable.

Step 2: Let us consider scheme (4.4.1) with zero right hand side. We use the same proce-
dure as in Step 1. Instead of the result from (Dautray et al., 2000) we use the estimate

〈AAAnhn+1, hn+1〉 ≤ ‖AAAn‖|hn+1|2,

where ‖AAAn‖ = max
m
{|anm|}. It is then possible to show that the solution is bounded by

initial data.

Step 3: We consider original scheme (4.4.1). Using Duhamel’s principle it can be shown
that a scheme for inhomogeneous initial-value problem Pu = f is stable if it is stable
for homogeneous initial-value problem Pu = 0. Application of the Duhamel’s principle to
findings of Step 2. then concludes our proof.
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Chapter 5

Results

In this chapter our numerical method described in Chapter 4 is subjected to tests. We
begin by modeling thermal convection in solid spherical shell. In the next test we model
viscous relaxation. Finally, in the last tests thermal convection with free surface is mod-
eled.

Preliminaries

The fixed parameters that are shared between the test cases are listed in Table 5.1. The
parameters are relicts from the early development stages of our program and they generally
do not agree with parameters of Iapetus or water ice. Among other characteristics, the
simulations also differ by their thermal Rayleigh number which is defined as

Ra =
∆Td3ρ2

0,iceCpαg0

η0,icek
,

where d = R2 − R1, ∆T = Tcore − Tspace and g0 = (4/3)Gρ0,iceR2 is the surface gravity of
our model satellite. This dimensionless number is the sole parameter that determines the
nature of thermal convection. Therefore our somewhat unfortunate choice of parameters
is irrelevant as long as the results are compared with the model that has the same Ra.
We vary the Rayleigh number only by setting different reference viscosity. Some results
include dimensionless time t′ = d2ρ0,iceCp

k
t.

Quantity Value in SI Quantity Value in SI
R1 400 km ρ0,ice 600 kg.m−3

R2 800 km α 50× 10−5 K−1

Tspace 90 K k 2.4 W.m−1.k−1

Tcore 3000 K Cp 1000 J.K−1.kg−1

T0 273 K ρ0,air 10−2 kg.m−3

Table 5.1: Settings of parameters common for all tests.
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5.1. Thermal convection with solid surface 5. Results

5.1 Thermal convection with solid surface

Description

In the first test, we study thermal convection in solid spherical shell using Implicit Upwind
scheme and Crank-Nicolson scheme to approximate the heat equation. For this purpose
the entire computational domain Ω is filled with ice medium and we set η0,ice = 1018 Pa.s
or η0,ice = 1017 Pa.s to obtain different vigor of convection. Boundary conditions follow
Chapter 4. We use temperature profile given by eq. (4.1.12) as an initial condition. The
time step as well as spatial steps are fixed at ∆t = 5.104 yr (˜4.10−5), ∆r˜2.4 km (˜6.10−3),
R2∆θ˜1.6 km (˜2.10−3).

Our primary aim is to qualitatively compare the nature of convection with results
of Moser (1991) where models with similar Rayleigh numbers and initial conditions are
studied. In order to characterize convection we define the surface Nusselt number as

Nu = −(R2 −R1)2

2R2R1

∫ π

0

∂T

∂r
sin θdθ.

Our secondary aim is to compare the numerical schemes and identify the one that is safer
to use with more complex models that include free surface.

Results

The nature of convection for models that were considered in this test is compared in Fig.
5.2. We can see that the solution to model with Ra = 2.105 reaches a quasi-stationary
state, while the solution to model with Ra = 2.106 is chaotic. In Fig. 5.1 the snapshots
of temperatures fields are shown at time t˜822 Myr (0.65). We can see that the solution
for Ra = 2.105 is symmetric. In fact the symmetry is not broken throughout the whole
simulation. On the other hand the symmetry is broken in the solution for Ra = 2.106.
These results qualitatively agree with Moser (1991). The author observed quasi-periodic
character of solution for Ra = 105. His solution for Ra = 5.106 was chaotic in nature,
which he attributed to the solution being close to transition to hard turbulence. However
the solution for Ra = 106 remained symmetric. Thus, we conclude that the critical value
for break-up of the symmetry lies between Ra = 1.106 and Ra = 2.106.

Temperature fields for model with Ra = 2.106 and time dependences of Nusselt num-
ber for model with Ra = 2.105 reveal most about the differences between Implicit Upwind
scheme and scheme of Crank-Nicolson. The temperature profiles show that the model com-
puted with Crank-Nicolson scheme is colder and due to zero dissipativity of the scheme,
includes finer thermal formations. Dissipative nature of Implicit Upwind scheme can also
be seen in Fig. 5.2 where the amplitudes are smaller compared to C-N scheme. We believe
that the difference in dissipativity is also responsible for slight shift in the graphs. In Fig.
5.1 we can see that the C-N solution is colder than T = 0, a phenomenon that should
not occur as the maximum principle holds for our approximate problem. Even though
the scheme prevents propagation of this instability, the Implicit Upwind scheme appears
to be more robust. Therefore, in the tests with thermal convection and free surface we
decide to use Implicit Upwind scheme.
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5.1. Thermal convection with solid surface 5. Results

Figure 5.1: Comparison of temperature fields at t′ = 0.65 for Ra = 2.105, Ra = 2.106

computed with Implicit Upwind scheme and Crank-Nicolson scheme.
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5.1. Thermal convection with solid surface 5. Results

Figure 5.2: Time dependence of Nusselt number for models with Ra = 2.105, Ra = 2.106

computed with Implicit Upwind scheme and Crank-Nicolson scheme is compared.
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5.2. Viscous relaxation 5. Results

5.2 Viscous relaxation

Description

Having tested the ability of our numerical method to model thermal convection, we now
focus on its surface tracking abilities. For this purpose, we consider a model planet that is
no longer thermally active and is subjected to gravitational and centrifugal force. Thus,
density and material properties in our model do not depend on temperature. The cen-
trifugal force corresponds to rotational period τ = 20 h. We prescribe the surface as
circular-shaped interface between ice and air medium h0(θ)˜756 km. We set ice viscosity
as η0,ice = 5.1018 Pa.s and air viscosity as η0,air = 1014 Pa.s. Boundary conditions follow
Chapter 4. As in the previous test, time and spatial steps are fixed at ∆t = 104 yr (˜8.10−6),
∆r˜1.6 km (˜4.10−3), R2∆θ˜2.0 km (˜5.10−3).

Our aim is to obtain a solution that would be in agreement with the character of
centrifugal force which deforms the surface.

Results

The deformed surface at t = 0.5 Myr is shown in Fig. 5.3. The shape is retained almost
immediately after the start of deformation and then remains constant throughout the
simulation. We fit our solution with function h(θ) = A sin2 θ + B where A = 737.78 ±
0.02 km and A = 26.02 ± 0.01 km. Thus, the obtained deformation agrees well with the
nature of centrifugal force.

5.3 Thermal convection with free surface

Description

In this test we study thermal convection in a rotating model planet with free surface.
We consider four model cases. In model I the Rayleigh number Ra = 2.105 is constant
and gravitational force is the only component of the volume force. In model II we add
centrifugal force to model I. In model III our planet rotates and viscosity follows Arrhenius
law with reference viscosity of ice set as η0,ice = 1019 Pa.s. Since the dimensionless surface
temperature is T ′ = 0, viscosity on the surface is equal to the reference viscosity. Using the
value of surface viscosity, we define the surface Rayleigh number. In this case RaS = 2.104.
The avis parameter in Arrhenius law is such that the viscosity contrast between the coldest
and hottest spots in ice is ∆η = 150. The viscosity of air medium is set as η0,ice = 1014 Pa.s
allowing for 103 viscosity contrast between ice and air. Settings for model IV replicate
those of model III but we treat the discontinuity of viscosity near the interface in the same
way as the discontinuity of density. In all models, the surface is prescribed as interface at
depth r˜756 km, the centrifugal force (if present) corresponds to rotational period of τ =
16 h, the time and spatial steps are fixed at ∆t = 104 yr (˜8.10−6), ∆r˜1.62 km (˜4.10−3),
R2∆θ˜1.97 km (˜5.10−3) and the boundary conditions follow Chapter 4. The simulations
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5.3. Thermal convection with free surface 5. Results

Figure 5.3: Deformed surface of relaxing model planet subjected to gravity and centrifugal
force. The shape is fitted with function h(θ) = A sin2 θ + B to show that it follows the
deforming force.

are started from symmetric and asymmetric initial temperature profiles based on eq.
(4.1.13) with anomaly T ′ = 0.95.

Our aim is to obtain reasonable surface deformations that can be qualitatively ex-
plained by initial conditions, nature of convection and nature of volume forces.

Results for symmetric initial condition

Results for models I-IV started from symmetric initial condition are summarized in Figs.
5.4-5.7. The solutions are symmetric throughout the whole simulation. We can see that
the surface shape of model I, where centrifugal force is absent, is determined by rising and
falling plumes. In Fig. 5.6, the surface at 17 Myr includes three peaks that correspond
to the rising plumes shown at snapshot of temperature field in Fig. 5.4. Figures 5.5 and
5.7 then show that as the northern tropic and southern tropic plumes travel towards the
poles, so do the lateral peaks. As the large flattening (˜ 25 km) suggests, the surface shape
for models II-IV is determined by the centrifugal force. The effect of rising polar plumes
is approximately ten times smaller.

It is interesting to compare the temperature fields and surface shapes for models
III and IV. With two rising polar plumes in temperature field for model III and an
additional rising equatorial plume for model IV, we can see that the character of convection
differs significantly between the two models. Consequently, there are also some differences
between the surface deformations. However, these differences are relatively small as the
shape is predominantly determined by centrifugal force.
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5.3. Thermal convection with free surface 5. Results

Figure 5.4: Comparison of temperature fields at t = 17 Myr for models I, II, III, IV started
from symmetric initial condition. Cold outer layer corresponds to air.
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5.3. Thermal convection with free surface 5. Results

Figure 5.5: Comparison of temperature fields at t = 60 Myr for models I, II, III, IV started
from symmetric initial condition. Cold outer layer corresponds to air.
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5.3. Thermal convection with free surface 5. Results

Figure 5.6: Surface evolution for model I and model II started from symmetric initial
condition. Snapshots of initial state and states at 10 Myr, 17 Myr,19 Myr and 60 Myr.
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5.3. Thermal convection with free surface 5. Results

Figure 5.7: Surface evolution for model III and model VI started from symmetric initial
condition. Snapshots of initial state and states at 10 Myr, 17 Myr,19 Myr and 60 Myr.
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5.3. Thermal convection with free surface 5. Results

We believe that onset of the extra plume was caused by instabilities that were in-
troduced into the system by extrapolation of viscosity to air region. The motivation for
viscosity smearing was to create a transition zone between ice, where fluid velocities are
small, and air, where the flow is vigorous because of very low viscosity. Even though
velocities for advection of interface are extrapolated from ice, we fear that the different
character of flows could impact our solution especially for models with RaS > 106. In
such case regularization of viscosity is a potential treatment but as our test results show,
it should be used cautiously.

Results for asymmetric initial condition

Results for models I-IV started from asymmetric initial condition are summarized in Figs.
5.8-5.11. Our conclusions from previous test about the effects that the nature of convection
and centrifugal force have on surface shape hold for all models. All deformed surfaces are
asymmetric. Because of the absence of centrifugal force, the asymmetry due to thermal
anomaly is most apparent in surface deformation of model I (Fig. 5.10). Symmetry of the
surface shape for the remaining models appears to be only slightly broken.

In Figs. 5.10 and 5.11 we can see slight oscillations in surface shapes near north pole.
Because of the application of polar coordinates, polar axis are most sensitive to numerical
errors as there are singular points at θ = 0 and θ = π. However, we believe that these
oscillations are caused by sudden change of the character of flow. The shape of surface at
10 Myr in Fig. 5.10 corresponds to a cold sinking polar plume (Fig. 5.8). The flow remains
stationary for some 80 Myr but at 95 Myr the transition occurs and the plume begins to
rise. At 97 Myr the transition is finished; there is a hot rising polar plume in Fig. 5.9.
The oscillations are caused by the rapid change of surface area that is due to this rapid
change of character of flow.

In Fig. 5.10 we can also notice minor oscillations near θ = 1 and θ = 3. These
oscillations usually appear when the gradient of solution is big. Because of the stability of
numerical scheme, they do not propagate. The amplitude of oscillations becomes smaller
if the grid resolution is improved.

Remark on neglected terms in momentum equation

In Chapter 2 we promised to provide a posteriori justification for neglecting inertia from
momentum equation of our model. In the first test simulation with Ra = 2.106, we recorder
maximum velocity U˜1 m.yr−1 and maximum pressure P˜2500 Pa. We approximate each
term in the momentum equation using these maximum values and spatial/time step sizes
to obtain the following comparison of magnitudes

~v,t
~v · ∇~v

= 10−2,
~v · ∇~v

pressure gradient
= 10−20,

pressure gradient
divergence of σσσ

= 10−1

Clearly, the inertia can be neglected.
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5.3. Thermal convection with free surface 5. Results

Figure 5.8: Comparison of temperature fields at t = 20 Myr for models I, II, III, IV started
from asymmetric initial condition. Cold outer layer corresponds to air.
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Figure 5.9: Comparison of temperature fields at t = 95 Myr for models I, II, III, IV started
from asymmetric initial condition. Cold outer layer corresponds to air.
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5.3. Thermal convection with free surface 5. Results

Figure 5.10: Surface evolution for model I and model II started from asymmetric initial
condition. Snapshots of initial state and states at 10 Myr, 20 Myr, 95 Myr, 97 Myr and
190 Myr.
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5.3. Thermal convection with free surface 5. Results

Figure 5.11: Surface evolution for model III and model VI started from asymmetric initial
condition. Snapshots of initial state and states at 10 Myr, 20 Myr,95 Myr, 97 Myr and
190 Myr.
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Conclusions

Having been motivated by presence of equatorial ridge on Iapetus whose origin is yet to
be explained, we studied in this thesis thermal convection with free surface in a rotating
icy satellite. In Chapter 1 we discussed the heat sources that warm the interior up so
that convection can begin. We also discussed complicated nonlinear rheological properties
of water ice. In Chapter 2 we introduced a simplified model that did not include non-
linear rheology but other than that was able to describe all the important phenomena
related to the formation of ridge. The model was used for thorough tests of our numerical
method. Governing equations of the model formed a stationary Stokes-Fourier system with
temperature-dependent density that follows Boussinesq approximation, and temperature-
dependent viscosity that follows Arrhenius law. Because of free surface, the equations were
formulated on a time-dependent domain. In Chapter 3 we outlined the difficulties that
free surface presents both to regularity theory and numerical methods. Having identified
the main defects of our initial surface tracking method that was based on markers-at-
cell method, we introduced our second approach, which uses surface-height method and
variable density approximation. Numerical methods for solving Stokes problem, the heat
equation and advection of surface were presented in Chapter 4. Using von Neumann sta-
bility analysis we proved unconditional stability of Crank-Nicolson and Implicit Upwind
schemes for the heat equation. Using energy method we then proved unconditional sta-
bility of Implicit Upwind scheme for the advection equation. In Chapter 5 we subjected
our numerical method to tests. The results of simulation of thermal convection in a solid
spherical shell with Ra = 2.105 and Ra = 2.106 qualitatively agreed with the results in
literature. The results of tests with free surface had reasonable physical interpretation.

Performance of our numerical method in these tests is encouraging. That said, method’s
ability to give quantitative predictions should be tested before the method is applied to
model of Iapetus with internal heating, despinning and nonlinear rheology. Further, lim-
its of the numerical method should be established. An obvious limitation of our surface
tracking technique is its inability to handle surfaces that are multivalued with respect
to θ. However, this limit should not be reached as the observations suggest only well-
behaved deformations. Limits of the method that could be reached in simulations are due
to variable density approximation. We hinted in Chapter 5 that turbulent flows in air
could present difficulty. We also showed that smearing the viscosity discontinuity, which
seems like a meaningful treatment, can affect the surface deformation. Regardless of the
treatment, differences between the solutions of treated and untreated method should be
quantified.

Based on the results of tests performed so far, we believe that our numerical method
will help to explain the formation and the shape of Iapetian ridge. We also believe that
it is a useful tool for numerical simulations of a broader class of problems with small
deformations.
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Appendix A

Balance Laws in Polar Coordinates

Continuity equation

1

r2

∂(r2vr)

∂r
+

1

r sin θ

∂(sin θvθ)

∂θ
= 0

Momentum equation in direction ~er

−∂π
∂r

+
1

r2

∂(r2σrr)

∂r
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r sin θ

∂(sin θσrθ)

∂θ
+
σθθ
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+ ρfr = 0

Momentum equation in direction ~eθ
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r sin θ
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cot θ
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Heat equation
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Deviatoric part of stress tensor

σσσ = η
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Appendix B

Finite Difference Approximations of
Momentum Equation

Momentum equation in direction ~er

The equation is differentiated in nodes (i, j + 1). The difference equation takes the form
~W (i, j + 1) · ~V (i, j + 1) = (ρfr)(i, j + 1), where ~W (i, j + 1), ~V (i, j + 1) ∈ R11 and fr is
radial component of the volume force. The vector of nodal values is defined as

~V (i, j + 1) = (π(i−1,j+1), π(i+1,j+1), vr,(i−2,j+1), vr,(i+2,j+1), vr,(i,j+1), vr,(i,j+3), vr,(i,j−1)

vθ,(i−1,j+2), vθ,(i+1,j+2), vθ,(i−1,j), vθ,(i+1,j)). (B.0.1)

Using notation ~W (i, j) = (W1(i, j),W2(i, j), . . . ,W11(i, j)), components of the vector of
weights are then

W1(i, j + 1) = − 1

2∆r
, (B.0.2)

W2(i, j + 1) =
1

2∆r
, (B.0.3)

W3(i, j + 1) =
η(i,j+1)

2ri∆r
+

1

r2
i

r2
i−1η(i−1,j+1)

2 (∆r)2 , (B.0.4)

W4(i, j + 1) = −
η(i,j+1)

2ri∆r
+

1

r2
i

r2
i+1η(i+1,j+1)

2 (∆r)2 , (B.0.5)

W6(i, j + 1) =
1

r2
i sin θj+1

sin θj+2η(i,j+2)

4 (∆θ)2 , (B.0.6)

W5(i, j + 1) =− 1

r2
i

r2
i−1η(i−1,j+1)

2 (∆r)2 − 1

r2
i

r2
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2 (∆r)2

− 1

r2
i sin θj+1

sin θj+2η(i,j+2)

4 (∆θ)2 − 1

r2
i sin θj+1

sin θjη(i,j)

4 (∆θ)2 , (B.0.7)
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W7(i, j + 1) =
1

r2
i sin θj+1

sin θjη(i,j)

4 (∆θ)2 , (B.0.8)
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4ri∆θ sin θj+1
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1
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− 1

ri
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W9(i, j + 1) =
sin θj+2η(i,j+2)

4ri∆θ sin θj+1
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− 1
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− 1

ri

)
, (B.0.10)

W10(i, j + 1) =
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ri
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4ri∆θ sin θj+1
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+

1

ri

)
. (B.0.12)

Momentum equation in direction ~eθ

The equation is differentiated in nodes (i + 1, j). The difference equation takes the form
~W (i + 1, j) · ~V (i + 1, j) = (ρfθ)(i + 1, j) where ~W (i + 1, j), ~V (i + 1, j) ∈ R11 and fθ is
tangential component of the volume force. The vector of nodal values is defined as

~V (i+ 1, j) = (π(i+1,j+1), π(i+1,j−1), vθ,(i−1,j), vθ,(i+1,j), vθ,(i+3,j), vθ,(i+1,j+2), vθ,(i+1,j−2)

vr,(i,j+1), vr,(i,j−1), vr,(i+2,j+1), vr,(i+2,j−1)). (B.0.13)

Using notation ~W (i, j) = (W1(i, j),W2(i, j), . . . ,W11(i, j)), components of the vector of
weights are then

W1(i+ 1, j) = − 1

2ri+1∆θ
, (B.0.14)
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, (B.0.15)
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, (B.0.17)
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, (B.0.21)

W9(i+ 1, j) =− 1
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riη(i,j)

4∆r∆θ
− 1

r2
i+1 sin θj

sin θj−1η(i+1,j−1)
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, (B.0.22)

W10(i+ 1, j) =− 1
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i+1

ri+2η(i+2,j)

4∆r∆θ
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1
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i+1 sin θj
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, (B.0.23)

W11(i+ 1, j) =
1
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i+1
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4∆r∆θ
− 1
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i+1 sin θj
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. (B.0.24)
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