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Preface

Ice sheets are masses of grounded ice that evolve in regions where climaticconditions allow for the long-
term deposition of snow cover. Through a complex process of successive compaction inducing internal
structure changes, glacier ice is formed, being one of the many known crystalline phases of solid water. At
sufficiently long time scales, due to internal creep, glacier ice behaves as anon-Newtonian fluid. This fact
enables us to describe and explain the evolution of ice sheets over such time scales by means of continuum
thermomechanics, constructing a nonlinear-fluid model with geometry that is controlled by gravitationally
driven creep flow, and by the surface processes of accumulation, ablation and basal sliding.

Ice sheets represent a major part of the Earth’s cryosphere and playan important role in the global
climate system, affecting it both directly, for instance by creating specific local climatic conditions in the
glaciated areas, or constraining ocean circulation, or indirectly by varying the total Earth’s albedo, being
one of the key parameters controlling the total insolation. Last but not least,they are the biggest reservoirs
of freshwater on the Earth, holding more than 76% of its total supplies.

From a geophysical point of view, they provide an important source of information about the Earth’s
lithosphere and mantle rheological properties through the process of glacial-isostatic adjustment (GIA),
which deals with the viscoelastic response of the Earth to long-term variationsof ice-sheet load distribution
caused by glacial cycles. Over the past several million years, the Earth has been subject to approximately
periodic changes in global glaciation with a period of about 100 thousand years, considered to be caused
by variations in the Earth’s orbital parameters (Milankovich cycles). Eachperiod comprises of a longer
period of gradual glaciation, during which the ice masses are concentrated in polar regions, and deform the
underlying lithosphere and mantle. A relatively short (10 thousand years) period of deglaciation is too fast
for the mantle material to relax in time with the change in surface load, thus resultingin ongoing present-day
motions (mostly uplift) in the formerly glaciated regions. These surface motions when properly measured
by either modern GPS methods, or indirectly by satellite measurements of gravity-field variations, represent
valuable data sets for constraining the rheological parameters of the Earth’s lithosphere and mantle.

The growth and retreat of ice sheets is the main forcing in the GIA. To model ice-sheet dynamics
is thus of key importance, and has motivated us to develop a numerical model for large-scale ice-sheet
evolution. Since ice sheets are typically flat, with a vertical-to-horizontal aspect ratio smaller than1/100, a
scaling approximation utilizing this fact is often adopted in the glaciological community, resulting in the so-
called ”shallow-ice” approximation. This approximation of ice flow enables usto quickly compute the ice-
sheet velocity field, induced by gravity, semi-analytically, which represents an effective computational tool
compared to more accurate but more time-expensive approaches. Duringthe last several years, however, the
shallow-ice approximation has been slowly abandoned, as the effects of higher-order dynamics or even the
exact solution to the ice-flow problem are looked for, typically, by means ofadvanced numerical techniques
such as finite-elements or spectral methods. The increase of computationaldemands is, however, enormous
compared to the SIA, making it problematic to implement these techniques for large-scale evolutionary
ice-sheet models.
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2 PREFACE

We have therefore designed an iterative algorithm capable of successive improvements of the SIA so-
lution towards the exact solution, while still possessing the SIA’s computational effectiveness. After being
intensively tested, the algorithm was incorporated into a large-scale ice-sheet model, providing thus an al-
ternative numerical tool between the two extremes - fast but inaccurate shallow-ice approximation on the
one hand and accurate but slow advanced numerical techniques on the other. Our approach provides the SIA
solution in regions where it is sufficiently accurate, and enables us to significantly improve the solution in
regions where the assumption of ”shallowness” becomes violated.

To give some insight into the origin of the algorithm, in Chapter 1 we first outline abrief summary of
the ice-sheet continuum thermodynamics, based on the theory of rational thermodynamics of mixtures. For
the presented equations we provide their ”shallow-ice” counterparts in Chapter 2 by deriving systematically
their leading-order (in the scaling flatness parameter) form. A novelty in the derivation is that we consider
general curvilinear orthogonal coordinates, obtaining thus a whole class of shallow-ice approximations -
its realization for any particular coordinate system is given just by evaluating certain geometrical quanti-
ties. This can be useful for large-scale models where the effects of the Earth’s surface curvature cannot
be neglected. In Chapter 3, we introduce a novel SIA-I iterative algorithm which successively improves
the shallow-ice solution. We verify its performance via several benchmarks such as the ISMIP-HOM (Ice-
Sheet Model Intercomparison Project - Higher-Order Models) benchmark, which focused on evaluating the
”higher-order” (non-shallow) effects in ice-sheet dynamics, and byperforming a realistic simulation using
the field data from Antarctica. A simplified convergence analysis for the SIA-I algorithm is presented in
the Appendix A. In Chapter 4, we provide a detailed description of the ice-sheet numerical model, focusing
on the free-surface evolution and the implementation of the heat transport equation in an ice sheet. Both
numerical features are validated by the benchmarks - geometry evolution byperforming a reference run
with an ”exact” finite-element model and the heat transport together with the effects of thermomechanical
coupling by going through some of the EISMINT (European Ice Sheet Modeling INiTiative) simulations.
In Chapter5, the numerical model is run for a series of three benchmarks for Greenland Ice-Sheet models,
including a paleo-climatic simulation over the two last glacial cycles and a prognostic greenhouse warming
scenario.



Chapter 1

Glacier Continuum Thermomechanics

1.1 Introduction

In this section, we briefly outline the mathematical apparatus used to describe the essential features of glacier
physics within the framework of continuum mechanics and thermodynamics. Asusual, when dealing with a
real-world physical phenomena, the presented model must be understood as only an idealized simplification
with its relevance and validity restricted to certain limits in spatial and time scales.

In terms of macroscopic glaciology, the problem of ice-sheet evolution andflow may be viewed as a
gravitationally driven flow of a fluid with a nonlinear viscosity, generally depending on both the strain-rate
and temperature. In addition, it is a problem with a free-boundary, that is,the glacier’s geometry itself is a
part of the solution.

A delicate question arises whether to consider ice as a single-component material, that is dealing with
pure ice only, or to take into account the presence and effects of some tracers, for instant percolating liquid
water in the so-called temperate-ice zones, or the salinity transport in marine ice-shelves. Both effects re-
quire us to adopt a more complex approach of mixture continuum mechanics and thermodynamics. In either
case, we may, however, formulate the mass-balance equation, linear and angular momentum balance equa-
tions and balance of energy, together with appropriate boundary conditions (both dynamic and kinematic)
at the upper free surface, at the glacier’s base and at all internal discontinuities.

In the following theoretical summary, we confine ourselves to a model of a polythermal ice sheet, which
is defined by the presence of two types of regions: temperate-ice zones are defined by the presence of a
certain amount of liquid water, and the cold-ice zones, where only pure iceis considered.

1.2 Cold ice sheet

Consider first a simpler case, where the whole ice sheet is assumed to be composed only of pure glacier ice.
The glacier’s geometry will be captured by prescribing two intersecting surfaces – the upper free surface
and lower glacier bed, given e.g. in Cartesian coordinates (i.e.x1, x2, x3, wherex1, x2 are the horizontal
coordinates andx3 is the vertical), by

x3 = fs(x1, x2, t) , (1.1)

x3 = fb(x1, x2, t) , (1.2)

3



4 CHAPTER 1. GLACIER CONTINUUM THERMOMECHANICS

wherefs andfb represent the upper free surface and the lower glacier bed, respectively, or, more generally,
by implicit functions for the glacier surface and bed, respectively,Fs(x1, x2, x3, t) andFb(x1, x2, x3, t):

Fs(x1, x2, x3, t) = 0 , (1.3)

Fb(x1, x2, x3, t) = 0 , (1.4)

where:Fs(x1, x2, x3, t) = x3 − fs(x1, x2, t), Fb(x1, x2, x3, t) = x3 − fb(x1, x2, t) . Taking the total time
derivative of (1.3), we obtain

∂Fs

∂t
+ ~ν · gradFs = 0 , (1.5)

where~ν is the velocity of surface movement. It is convenient to rewrite this equation byintroducing the
material (ice) surface velocity~v

∂Fs

∂t
+ ~v · gradFs = (~v − ~ν) · gradFs , (1.6)

or, alternatively, by the (upward-oriented) surface normal vector~ns,

~ns :=
gradFs

‖gradFs‖
, (1.7)

such that
∂Fs

∂t
+ ~v · gradFs = (~v − ~ν) · ~ns‖gradFs‖ . (1.8)

The term(~v − ~ν) · ~ns is the normal flow of material through the upper free surface, and represents the
mass production or loss at the free surface by climatological processes.It is usually prescribed by the
accumulation-ablation conditions. We define the accumulation-ablation function(positive for ablation) as

as := (~v − ~ν) · ~ns , (1.9)

and finally express the kinematic condition as

∂Fs

∂t
+ ~v · gradFs = as‖gradFs‖ . (1.10)

If, for instance, the explicit (Cartesian) description of the free-surface is used, the evolution equation for the
free surface reads as:

−∂fs
∂t

+ ~v ·
(

− ∂fs
∂x1

,− ∂fs
∂x2

, 1

)

= as

√

1 +

(

∂fs
∂x1

)2

+

(

∂fs
∂x2

)2

. (1.11)

We will assume that the glacier bed evolution, i.e.Fb(x1, x2, x3, t) is known, with the glacier bed either
being rigid and not moving, henceFb stands for the prescribed glacier-bed topography, orFb is given by
the solution of the equations for viscoelastic deformational response of theunderlying bed to ice-mass load
changes.

1.2.1 Field equations

The behavior of a cold ice-sheet may be derived from the single-component conservation laws that read in
the Eulerian description as follows (Hutter, 2004).
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General balance laws

∂ρ

∂t
+ div(ρ~v) = 0 . . . mass balance , (1.12)

ρ~̇v = divτ + ρ~g . . . linear momentum balance , (1.13)

τ = τ
T . . . angular momentum balance , (1.14)

ρε̇ = τ .. d+ div~q + ρh . . . internal energy balance , (1.15)

where the quantities used are:ρ - density,~v - velocity vector,τ - Cauchy stress tensor,ε - internal energy
density,d - strain-rate tensor,~q - heat flux vector,h - heat supply. The dot operator(̇) stands for the material
time derivative -(̇) := ∂()

∂t + ~v · grad().
In order to make the above system of general balance laws solvable, it is necessary to specify the partic-

ular material by prescribing appropriate constitutive equations.

The rheology is specified as follows. Despite even pure ice is a very complex substance having 13 known
phases and several dislocation mechanisms that contribute to the final stress–strain-rate constitutive equa-
tion (Hutter, 1983), for glaciological modeling, an idealization by a non-Newtonian incompressible fluid
with uniform density is mostly used. To specify this fluid, the stress tensor is split into an isotropic and a
deviatoric part:

τ = −pI + σ , (1.16)

where the deviatoric part is described byGlen’s flow law (e.g. Paterson, 1981):

σ = 2ηd, η =
1

2
A(T )−1/nd

(1−n)/n
II , n = 3 , (1.17)

or, inversely,
d = A(T )σn−1

II σ , (1.18)

where the second invariantsdII , σII are given by1

dII =

√

dijdij

2
, σII =

√

σijσij

2
, (1.19)

and the strain-rate tensord is defined as

d =
1

2

(

grad~v + gradT~v
)

. (1.20)

The (absolute) temperature dependence of the rate-factorA(T ) is of the Arrhenius type

A(T ) = Aexp

(

− Q

kBT

)

, (1.21)

often corrected for the pressure-dependence of the melting temperature(see (1.48)):

A(T, p) = Aexp

(

− Q

kBT ⋆

)

, (1.22)

with kB the Boltzmann constant, andT ⋆ the absolute temperature corrected for the pressure melting point,
T ⋆ = (T + CClp), CCl is the constant from (1.48), andp is the pressure. The activation parameterQ and
the constantA may, in general, depend on the considered temperature range.

1The Einstein’s summation convention is used if not otherwise stated.
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Note that, in some applications such as in planetary science, a simple Newtonian rheological model of
ice with only temperature-dependent viscosity is considered.

The constitutive equation for internal energy density is specified by a simple, only temperature-
dependent model of the form

ε̇(T ) = cv(T ) Ṫ , (1.23)

wherecv(T ) is the heat capacity at a constant volume. For theheat flux, we assume the traditional Fourier
law

~q = −k(T ) gradT , (1.24)

with the heat conductivityk(T ). For ice sheet flow, we do not consider any internal heat sources, and put
h ≡ 0 in (1.15).

By these constitutive relations, the general balance laws may be rewritten asfollows.

Themass balanceunder the assumption of uniform ice density is expressed as

div~v = 0 . (1.25)

The linear momentum balanceis written as

ρ~̇v = −gradp + divσ + ρ~g , σ = 2η(dII , T )d , (1.26)

where the inertial term can be neglected due to a very small Froude number (see Section 2.3 on scaling):

~0 = −gradp + divσ + ρ~g . (1.27)

Theenergy balanceis given by

ρcvṪ = σ
.. d+ div(k(T )gradT ) . (1.28)

1.2.2 Boundary conditions

The boundary conditions closing the system of equations are found for the upper free surface and the glacier
bed. The upperfree surface(x3 = fs(x1, x2, t) or Fs(x1, x2, x3, t) = 0), is assumed traction-free, giving

−patm~ns = −p~ns + σ · ~ns, (1.29)

where~ns :=
gradFs

‖gradFs‖
, is by definition positive upwards andpatm is the atmospheric pressure. Typically, the

temperature is prescribed at the upper surface as climatological input datatogether with the accumulation
ablation functionas (defined by (1.9)):

T = T s(x1, x2, fs(x1, x2, t), t) , as = as(x1, x2, fs(x1, x2, t), t) . (1.30)

At the glacier bed (x3 = fb(x1, x2, t) or Fb(x1, x2, x3, t) = 0), eitherno-slip is assumed in the case of
frozen bed conditions(T < Tm(p)), with Tm, the pressure-dependent melting temperature given by (1.48),
i.e.:

~v − ~νb = ~0 , (1.31)

or asliding law is specified for the sliding velocity~vsl, defined by

~vsl := (~v − ~νb)− ~nb(~v − ~νb) · ~nb , (1.32)
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where the surface velocity~νb equals the bedrock material velocity at the glacier base. Usually the sliding
law may be written in the form (Blatter et al., 1998)

β2~tb · ~vsl = −~tb · σ · ~nb , (1.33)

where~tb is a vector tangent to the glacier bed,~nb is the normal to the glacier bed~nb := − gradFb

‖gradFb‖
(positive

downwards) andβ(~nb ·τ ·~nb, T, ...) is the sliding coefficient which is, typically, a function of the total normal
stress, temperature, and the roughness of the underlying bedrock. Inaddition, the normal component of the
relative velocity is assumed to vanish

(~v − ~νb) · ~nb = 0 , (1.34)

which expresses the impermeability of the bedrock to ice.

Theenergy equationis completed by prescribing the geothermal heat flux at the glacier bed

~q = ~qgeo(x1, x2, fb(x1, x2, t), t) . (1.35)

It still remains to be discussed possible melting at the glacier’s bed (we assumethat the rest of the glacier
has a temperature below the melting temperature of ice), which requires us to consider the energy balance of
a melting surface. This case will be obtained as a limiting case of a polythermal icesheet with an infinitely
thin temperate-ice layer above the glacier bed. This general situation is addressed below.

1.3 Polythermal ice sheet

The presence of liquid water in a glacier cannot, in certain cases, be ignored since its effect on both the
rheology of the ice and the subglacial environment (roughness) becomes important. Typical examples are
small alpine glaciers at lower altitudes, or fast-flowing ice streams in ice sheets. Although the modeling of
glacial drainage systems remains an open challenge due to its enormous complexity and time variability,
some basic insights may be gained by treating water content as a diluted component in the ice matrix.
This topic has been studied and modelled by e.g. Hutter & Greve (1983), andSoǔcek & Martinec (2005).
The approach of the latter is new in terms of the formulation of the governing equations by means of
rational thermodynamics. The diffusive water flux is expressed relativeto the ice velocity, contrary to the
traditional treatment (e.g. Greve, 1997) where barycentric velocity is used instead. Our approach provides a
better insight in the generalizations appearing in the constitutive equations for temperate ice, and allows the
possibility of further extension. For example, the diffusive water flux is obtained as a limit of the equation
of motion for the water component.

We first summarize our treatment of temperate-ice physics. The detailed derivation and explanations of
the presented approach can be found in Souček & Martinec (2005). We assume that, in the interior of an ice
sheet, there are two types of regions -cold-ice zonesandtemperate-ice zones. The former is formed by a
pure glacier ice and the latter contains a small amount of liquid water. A sketch of a polythermal ice sheet
is presented in Fig. 1.1.

We assume that each zone of temperate ice is separated from the surrounding cold ice by a smooth
surface (cts = cold-temperate ice transition surface) given by implicit or explicit equations:

Fcts(x1, x2, x2, t) = 0 , or x3 = fcts(x1, x2, t) .

The problem of a so-called polythermal (containing both cold and temperate ice zones) ice sheet therefore
comprises not only additional temperate ice-physics, but also the evolution problem for the contact surfaces.
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Cold ice

Lithosphere

Temp. ice

z

x,y

Atmosphere
s

CTS

b

F (x,t) = 0

F (x,t) = 0
F (x,t) = 0

Figure 1.1: A sketch of a polythermal ice sheet.

As in the case of a cold ice sheet, the upper free surface is described by

Fs(x1, x2, x3, t) = 0 , or x3 = fs(x1, x2, t) ,

and the glacier base by

Fb(x1, x2, x3, t) = 0 , or x3 = fb(x1, x2, t) .

For all the surfaces, the unique correspondence between the (Cartesian) explicit and implicit forms are
assumed

Fs(x1, x2, x3, t) = x3 − fs(x1, x2, t) , (1.36)

Fb(x1, x2, x3, t) = x3 − fb(x1, x2, t) , (1.37)

Fcts(x1, x2, x3, t) = x3 − fcts(x1, x2, t) . (1.38)

1.3.1 Field equations

For thecold-ice zone, the balance laws listed in the previous section for cold ice sheets remain unchanged.
However, they must now be accompanied by the boundary conditions at thecontact with the temperate ice.
Additional details are given below.

In the temperate-ice zone, ice is treated as a two-component mixture of ice and water and the conti-
nuum mixture approach is adopted to formulate the balance laws for mass, linear and angular momentum
and energy. As was pointed out by Hutter (2004), various subclassesof mixture theories exist which differ
in their treatment of particular balance laws, where one may prescribe a particular balance law for each
mixture component or take one global balance law for the mixture as a whole. Here, we adopt an approach
between the two limiting strategies, namely, the balance laws of mass and momenta areconsidered for each
component separately, whilst the energy balance is considered for the ice-water mixture as a whole.

The mass balanceis derived as follows. Ice-water mixture is considered incompressible, which is justi-
fied by the fact that (i) the water content does not exceed few percentand (ii) the relatively small difference
between the pure-ice and the pure-water densities. The uniform mixture density is denotedρ. Ice and water
are moving with velocities~v and~vw, respectively. Water transport is then described by a relative diffusive
water flux~j,

~j := ρw(~vw − ~v) , (1.39)
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wherew is the water mass fraction (mass concentration).

Despite the mixture as a whole and the ice specifically remaining incompressible, the mass fraction
of ice can be altered due to the process of melting or refreezing. Consequently, the ice-velocity field is
no-longer divergence-free and themass balance for icereads as

div~v = −div

(

~j

ρ

)

. (1.40)

Themass balance for watercan be given in terms of the water mass fractionw,

ρẇ + div~j = mw , (1.41)

where(̇) := ∂()
∂t + ~v · grad() is the material time derivative with respect to ice velocity, andmw is the water

production rate (positive for melting and negative for refreezing), resulting from the balance of energy below.

The linear momentum balance for icecan be written in the form

ρ(1− w)ρ~̇v + ρw~̇v(w)
w = −gradp+ divσ + ρ~g , (1.42)

where on the left-hand side,~̇v(w)
w := ∂~vw

∂t + ~vw · grad~vw. The inertial forces will be omitted, as they are
very small (which we will justify later by evaluating the corresponding Froude number) and the balance law
takes the form

~0 = −gradp+ divσ + ρ~g . (1.43)

The linear momentum balance for the water componentcan then be written as

~j = −α1gradw + α2(ρw~g − grad(pw)) , (1.44)

which is, in fact, a constitutive equation for the diffusive water flux~j. The termpw can be thought of as one
possible realization of the partial water pressure. A reasonable extension might be to replacepw by a more
general partial water pressurepw, defined by the appropriate constitutive equation. Then, (1.44) would read
as

~j = −α1gradw + α2(ρw~g − gradpw) . (1.45)

Such a generalization would require modifying the energy balance equation(1.49). Nevertheless, we will
not consider this more general case here.

The angular momentum balance for icestates the symmetry of the partial Cauchy stress tensor devia-
torσ:

σ = σ
T . (1.46)

There is no need to consider this equality for thewater component, because for water the only stress contri-
bution that remains in the equations comes from the partial water pressure, which is symmetric already by
definition.

The energy balanceis considered for the mixture as a whole. Contrary to the cold-ice zone, it does not
have a form of an evolution equation for the temperature, asT is no longer an independent field variable in
this case. In the temperate-ice zone, ice is, by definition, at the pressure-melting point and the temperature
is obtained by solving the Clausius-Clapeyron equation

T = Tm(p) , (1.47)



10 CHAPTER 1. GLACIER CONTINUUM THERMOMECHANICS

where a linear relationship is often assumed (Greve, 1997):

Tm(p) = Tm0 − CClp , (1.48)

with CCl andTm0 constants.

The role of temperature is now replaced by the water contentw, as the energy release is associated with
melting or refreezing of ice and water, respectively. The energy equation then specifies the rate of water
production by

Lmw = σ
.. d− div~q − ρcvṪm +

~j

ρ
· (ρ~g − gradp) , (1.49)

whereL is the latent heat of melting of ice andd is the strain-rate tensor of iced = 1
2(grad~v + gradT~v),

and the heat flux~q is given by the Fourier law

~q = −k(Tm(p)) gradTm(p) . (1.50)

The rheology is specified as follows. Glen’s flow law as outlined in (1.17) is again considered for ice
with the rate factor depending on the water fractionw, since the lubricating effect of water enhances the
deformational flow rate

σ = 2ηd, η =
1

2
A(w)−1/nd

(1−n)/n
II , n = 3 , (1.51)

or, inversely,
d = A(w)σn−1

II σ . (1.52)

The water-content dependence of the rate-factorA(w) is usually assumed to be linear

A(w) = A(1 + γw)exp

(

− Q

kBT0m

)

, (1.53)

whereQ is the activation parameter,kB the Boltzmann constant,A andγ constants, andTm0 the constant
from (1.48).

1.3.2 Boundary conditions

Apart from the boundary conditions at the upper free surface and thebottom of the glacier, for polythermal
ice sheets, we need to also prescribe appropriate interface conditions atthe contact between the cold and
temperate zones. Souček & Martinec (2005) derived these conditions with the help of the mixture theory,
assuming that (i) all mixture components are present at both sides of the interface, and (ii) by limiting the
appropriate concentrations to zero.

Free surface

The upper surface is the contact surface of either cold or temperate ice with air. A sketch of the geometry
of the free surface is depicted in Fig. 1.2. Describing the free surface by an implicit equation,

Fs(x1, x2, x3, t) = 0 , (1.54)

its evolution is governed by a kinematic equation

∂Fs

∂t
+ ~v · gradFs = (~v − ~νs) · ~ns ‖gradFs‖ , (1.55)
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Atmosphere (+)
n

s

ν

Cold or temperate ice(-)

F (x,t) = 0

Figure 1.2: The free-surface geometry.

whereνs is the velocity of the free surface (generally non-material), and~ns := gradFs

‖gradFs‖
, is the surface

normal being positive upwards.

The dynamic boundary conditions following from the general mixture balance laws are as follows:

• Cold ice - air boundary(water is not present)
This case was discussed in the previous section about single-componentice.

• Temperate ice - air boundary(water present)

◦ Mass-jump condition

The ice component is given by

(1− w)(~v − ~νs) · ~ns = −a
s

ρ
, (1.56)

whereas is the surface accumulation-ablation function, prescribed by climatological data,

as = as(x1, x2, fs(x1, x2, t), t) (1.57)

The water component is given by
~j · ~ns = − Ps , (1.58)

wherePs is the surface-melted water and liquid precipitation that enters the glacier volume,
again assumed to be given as an independent input information by climatology,

Ps = Ps(x1, x2, fs(x1, x2, t), t) . (1.59)

◦ Linear-momentum jump condition

−patm~ns = −p~ns + σ · ~ns , (1.60)

wherepatm is theatmospheric pressure, p is the sum of partial pressures of ice and water, and
σ is the ice Cauchy stress deviator.

◦ Energy-jump condition
Since the temperature in the temperate part of a glacier is fully determined by the pressure
according to the Clausius-Clapeyron equation (1.48), an appropriate boundary condition is (ne-
glecting the surface friction)

0 = ms
w(εw − εi) + [~q]+− · ~ns , (1.61)



12 CHAPTER 1. GLACIER CONTINUUM THERMOMECHANICS

Cold or temperate ice (-)

n

ν

b

Lithosphere (+)

F (x,t) = 0

Figure 1.3: The base geometry.

which relates the discontinuity in the heat flux[~q]+− at the surface with the surface melting rate
ms

w, whereεi and εw are internal-energy densities of ice and water, respectively. We will,
however, assume the melting rate is given by climatological input data (includedalready in
the ice-accumulation functionas and water precipitation ratePs), therefore we do not need to
specify any boundary condition, neither for the temperature, nor for theheat flux.

The base

The base geometry is depicted in Fig. 1.3. Similarly, as for the cold-ice glacier,we assume that the base
geometry is given a-priori, either it is rigid and does not change in time, or its timeevolution is influenced
by independent geophysical processes, such as the glacial-isostatic adjustment or tidal loading. We thus
assume to know the function

Fb(x1, x2, x3, t) = 0 . (1.62)

In the case of the dynamic conditions, we again distinguish between the two cases, cold ice – bedrock
boundary and temperate ice – bedrock boundary.

• Cold ice – bedrock interface(water is not present)
This situation has been discussed in the section about single-component ice-bedrock conditions (Sec-
tion 1.2).

• Temperate ice – bedrock interface

◦ Mass-jump condition
The ice component is expressed by

(1− w)(~v − ~νb) · ~nb =
mb

w

ρ
, (1.63)

wheremb
w is the rate of surface meltwater production at the glacier base, and the normal

~nb :=
−gradFb

‖gradFb‖
is now pointing downwards and~νb is the velocity of the glacier base.

The water component is described by

~j · ~nb = ob − mb
w

1− w
, (1.64)

where thewater-outflow functionob has been introduced to describe the rate of the water-mass
flow penetrating into the bedrock, and has to be prescribed independentlyin the form

ob = ob(x1, x2, fb(x1, x2, t), t) . (1.65)
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◦ The linear-momentum jump conditionis expressed as

τ b · ~nb = −p~nb + σ · ~nb , (1.66)

wherep is the sum of the partial pressures of ice and water,σ is the deviator of Cauchy stress of
ice, andτ b is the Cauchy stress tensor in the underlying bedrock.

◦ Sliding law
Setting naturally the surface velocity~νb equal to the bedrock velocity at the glacier base, the
sliding velocity is defined as

~vsl := (~v − ~νb)− ~nb(~v − ~νb) · ~nb , (1.67)

while the sliding law typically has the form

β2~tb · ~vsl = −~tb · σ · ~nb , (1.68)

where~tb is a vector tangent to the glacier bed,~nb is the normal to the glacier bed andβ(~nb ·
τ · ~nb, w, Tm(p), ...) is the sliding coefficient, now also dependent on the water contentw. The
term~nb · τ ·~nb stands for the total normal pressure at the glacier base, which is equal tothe sum
of partial pressures and~nb · σ · ~nb.

◦ The energy-jump conditionas derived by Soǔcek & Martinec (2005), reads as

0 = mb
w (εw − εi) + ~v · τ i · ~nb + ~v−w · τ−

w · ~nb − ~νb · τ b · ~nb + [~q]+− · ~nb , (1.69)

whereτ i andτw are partial stress-tensors of ice and water, respectively. This relationcan be
further rewritten with the use of the linear momentum jump condition (1.66). If we keep only the
partial water pressure contribution to the water partial stress tensorτw, that is writeτw ≃ −pwI,
and again, byp denote the sum of partial pressurespi andpw, and neglect the friction work
associated with the diffusion of water in ice, that is, omit the term(~v−w − ~v) · τ−

w · ~nb, we arrive
at

0 = mb
w(εw − εi) + (~v − ~νb) · (−pI+ σ) · ~nb + [~q]+− · ~nb . (1.70)

Employing the definition of sliding velocity (1.67), together with (1.63) gives

0 = mb
w

(

εw − εi +
~nb · (−pI+ σ) · ~nb

ρ(1− w)

)

+ ~vsl · σ · ~nb + [~q]+− · ~nb . (1.71)

It is convenient to express the difference of specific internal energies of ice and water by means
of latent heat of melting of iceL. Considering simple equilibrium thermodynamics, it holds that
(Soǔcek & Martinec, 2005):

εw − εi = L− p

(

1

ρmat
w

− 1

ρmat
i

)

, (1.72)

where the second term corresponds to the work done during the phase change due to different
specific volumes of the two phases, and whereρmat

i andρmat
w are material densities of pure ice

and pure water. In a large ice sheet, this term is considerably smaller than thelatent heat, and so
it may be neglected, with the energy jump condition simplified to

0 = mb
w

(

L+
~nb · (−pI+ σ) · ~nb

ρ(1− w)

)

+ ~vsl · σ · ~nb + [~q]+− · ~nb , (1.73)

with the geothermal heat flux prescribed by independent information

~q+ := ~qgeo(x1, x2, fb(x1, x2, t), t) . (1.74)
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n

ν

Temperate ice (-)

Cold ice (+)

CTS
F (x,t) = 0
CTS:

Figure 1.4: The cold-temperate ice transition surface (cts) geometry.

The cold-temperate ice transition surface

The kinematic equation at the cold-temperate ice transition surfacects, (see Fig. 1.4) is

∂Fcts

∂t
+ ~v− · gradFcts = (~v− − ~νcts) · ~ncts ‖gradFcts‖ , (1.75)

where the superscripts()+ and()− denote the value of a quantity at the corresponding side of the oriented
surface (the sign convention is shown in Fig. 1.4).

The dynamic transition conditions are as follows:

• Mass-jump condition
For the ice component the ice velocity is assumed to be continuous across thects, i.e.

~v+ = ~v− = ~v , (1.76)

hence the ice-mass jump condition reads

w−(~v − ~νcts) · ~ncts = −m
cts
w

ρ
, (1.77)

where~νcts is the velocity of thects surface and the~ncts :=
gradFcts

‖gradFcts‖
is the unit normal, andmcts

w is
the rate of meltwater production at thects.
The water component is given by

~j− · ~ncts = 0 . (1.78)

• The linear-momentum jump conditionis expressed as

−p+~ncts + σ
+ · ~ncts = −p−~ncts + σ

− · ~ncts , (1.79)

with p− the sum of partial pressures of ice and water in the temperate region.

• For the energy-jump condition, the temperature is continuous,

T+ = T− , (1.80)

and the rate of ice surface production is given by

0 = mcts
w (εw − εi) + [~q]+− · ~ncts . (1.81)

Performing the same simplification as in the case of (1.72), we may rewrite this condition using the
latent heat of meltingL as

0 = mcts
w L + [~q]+− · ~ncts . (1.82)
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1.4 Traditional approach

We briefly summarize the main differences between the above presented approach and the traditional ap-
proach and comment on advantages and disadvantages of both. In the traditional approach (e.g. Greve,
1997), a barycentric velocity~vb is introduced by

~vb := ρi~vi + ρw~vw , (1.83)

where the ice and water densitiesρi, ρw, express the mass of particular component in a unit-volume of
the mixture, and thus do not coincide with the usual material densities of pure water and ice. The mixture
densityρ is thus defined by

ρ := ρi + ρw . (1.84)

The transport of water moving with velocity~vw and a concentrationw := ρw
ρ is then considered and ex-

pressed by the water flux relative to the barycenter~j(b)

~j(b) := ρw(~vw − ~vb) . (1.85)

Then the balance of mass for the mixture and for water reads as:

div~vb = 0 , (1.86)

ρẇ = −div~j(b) +mw , (1.87)

where(̇) := ∂()
∂t + ~vb · grad() is now the material time derivative in the barycentric velocity field, andmw

is the water-production due to melting.

We find it more convenient to consider the ice-velocity rather then the barycentric velocity as the prin-
ciple variable because water transport in ice generally occurs over muchshorter time-scales than deforma-
tional ice flow. For certain types of processes, such as water runoff and glacial lake bursts, the barycentric
velocity might be greatly affected by the water transport, and then the relevance of barycentric velocity and
its relation to the ice-flow speed becomes questionable. Our approach, however, can handle such situations,
just by prescribing a proper form of the water flux~j. However, the price paid for choosing the ice velocity
as the principle variable is that the ice flow is not divergence-free.

The remaining balance laws are formulated in the classical approach as follows (Greve, 1997). The
balance of linear-momentum, or equation of motion, is considered only for the mixture as a whole and reads
as

ρ~̇vb = −gradp+ divσ + ρ~g , (1.88)

with the balance of energy given by

Lmw = τ
.. db − div~q − ρcṪm , (1.89)

and the system is closed by specifying therheologyas follows

τ = −pI + σ , (1.90)

db = A(w)σn−1
II σ , n = 3 , (1.91)

~j = −α gradw , (1.92)

db =
1

2
(grad~vb + gradT~vb) . (1.93)

This presented set of equations is in good agreement with our formulation from the previous section. It
should be noted, however, that the traditional approach, as admitted by Greve (1997), is a result of more
physical intuition than consistent and systematic derivations from first principles.
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Chapter 2

Shallow Ice Approximation

2.1 Introduction

In this chapter, we will follow the systematic procedure precisely formulated by Baral et al. (2001). The
previously derived equations will first be made non-dimensional by introducing appropriate scales and di-
mensionless numbers. Then a formal polynomial expansion series of field variables in terms of the flatness
ratio ǫ will be performed which enables us to carry out a perturbation analysis bysuccessively including
higher-order terms in the expansion. In this chapter, we will restrict ourselves merely to the first step of
this expansion, that is theO(ǫ0) degree terms, and obtain the traditional Shallow Ice Approximation (SIA)
(Hutter, 1983).

The SIA is formulated in Cartesian coordinates. However, for large-scale modeling, it is appropriate
to use more general coordinates, such as spherical, polar or orthographic. To avoid multiple derivations
for each particular case, we derive the SIA in general orthogonal curvilinear coordinates. Performing ge-
neralisations of the scaling procedure for Cartesian coordinates, we obtain a whole class of Shallow Ice
Approximations, whose particular realization is given only by evaluating geometrical quantities related to
the chosen coordinate system. The resultant equations for the basic coordinate systems - Cartesian, spherical
and cylindrical - are listed out explicitly.

2.2 Curvilinear orthogonal coordinate system

The equations of motion and evolution of a glacier listed in the previous chapterare expressed in an invariant
form by means of invariant differential operators. Hence, they can beexpressed in a particular coordinate
system. For the purpose of glaciological modeling and also with respect to thescaling analysis, it is con-
venient to consider only orthogonal curvilinear coordinates, for whichthe base vectors remain orthogonal
in almost all points in the geometrical spaceR3. Moreover, for the purpose of scaling, it is convenient to
consider only such orthogonal coordinates, in which the first two coordinates,x1, x2, refer to ”horizontal”
dimensions and the third coordinatex3 stands for the ”vertical” dimension. This convention is necessary
when introducing the flatness scaling parameterǫ, essential for the Shallow Ice Approximation.

In particular, three curvilinear orthogonal coordinate systems will be considered as examples (see Fig.
2.1):

• Cartesian coordinates

17
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(x1, x2, x3) = (x, y, z) , (2.1)

wherex, y ∈ 〈−Lsc,Lsc〉, z ∈ 〈−Hsc,Hsc〉 ,

• Spherical coordinates

(x1, x2, x3) = (ϑ, ϕ, ζ) , (2.2)

whereζ := r − R, for r the radial distance andR some mean radius (of the Earth), andζ ∈
〈−Hsc,Hsc〉, ϑ ∈ 〈0, π〉, ϕ ∈ 〈0, 2π). The relation to Cartesian coordinates is

x = r sinϑ cosϕ, y = r sinϑ sinϕ, z = r cosϑ . (2.3)

• Cylindrical coordinates

(x1, x2, x3) = (̺, ϕ, z) , (2.4)

where̺ ∈ 〈0,Lsc〉, ϕ ∈ 〈0, 2π), z ∈ 〈−Hsc,Hsc〉 . The relation to Cartesian coordinates is

x = ̺ cosϕ, y = ̺ sinϕ, z = z . (2.5)

2.3 Scaling

We perform the scaling analysis for a general polythermal ice sheet. Thesimpler case of a purely-cold ice
sheet is obtained by letting the cold-ice zone extend throughout the whole volume of the ice sheet.

As the first step of the scaling analysis, we non-dimensionalize the governing equations and the boundary
conditions by introducing representative scales for the field quantities. For a field quantityψ, we define its
non-dimensional counterpart̃ψ, by introducing the scale[ψ] (not to be mixed with a jump of quantity at the
discontinuity surface, which is denoted[ψ]+−)

ψ = [ψ]ψ̃ , (2.6)

where the quantitỹψ, if properly scaled, is without a physical unit and its magnitude is of the order of unity.

We start by scaling the geometry. As already noted, we assume thatx1 andx2 are ”horizontal” co-
ordinates, whilex3 is ”vertical”. Geometrical scaling is now done by specifying the scales for the Lame
coefficients[h1],[h2],[h3], and for the typical scale of change of a particular coordinate, denoted[∆1], [∆2],
[∆3]. These two requirements follow from the expression for a length of a coordinate line element

dsk = hk dxk = [hk][∆k] h̃k dx̃k , k = 1, 2, 3 . (2.7)

Note that, in general, neither[hi], nor [∆i], but only their product has the dimension of length. We assume
that the typical ”horizontal” lengths of line elements are equal, i.e.

[h1][∆1] = [h2][∆2] . (2.8)

We then introduce the typical vertical-to-horizontal ratio as a first dimensionless number, denoted byǫ:

ǫ :=
[h3][∆3]

[h1][∆1]
=

[h3][∆3]

[h2][∆2]
. (2.9)

Examples for the scales within the possible coordinate systems are given below:
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Figure 2.1: Cartesian and cylindrical coordinate system (left) and spherical coordinate system (right).

• Example (1) - for Cartesian coordinates (2.1), we have

hx = [hx] = h̃x = 1, hy = [hy] = h̃y = 1, hz = [hz] = h̃z = 1 , (2.10)

and
[∆x] := Lsc, [∆y] := Lsc, [∆z] := Hsc . (2.11)

• Example (2) - for spherical coordinates (2.2), we define the scales

[∆ϑ] = 1, [∆ϕ] = 1, [∆ζ ] = Hsc , (2.12)

leading to

hϑ = r = R+ζ = R

(

1 +
Hsc

R
ζ̃

)

, hϕ = (R+ ζ) sinϑ = R

(

1 +
Hsc

R
ζ̃

)

sinϑ, hζ = 1 , (2.13)

and, therefore, we set
[hϑ] = R, [hϕ] = R, [hζ ] = 1 , (2.14)

and
h̃ϑ = 1 + ǫζ̃, h̃ϕ = (1 + ǫζ̃) sinϑ, h̃ζ = 1 . (2.15)

• Example (3) - for cylindrical coordinates (2.4), we define the scales

[∆̺] = Lsc, [∆ϕ] = 1, [∆z] = Hsc , (2.16)

which gives
h̺ = 1, hϕ = ̺ = Lsc ˜̺, hz = 1 , (2.17)

and, therefore, we set
[h̺] = 1, [hϕ] = Lsc, [hz] = 1 , (2.18)

and
h̺̃ = 1, h̃ϕ = ˜̺, h̃z = 1 . (2.19)
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Introducing the time scale[t] and non-dimensional timẽt by (2.32), we will always assume that the
scaled field quantities are defined in the scaled time-space, i.e. the scaling (2.6) reads as

ψ(x1, x2, x3, t) = [ψ] ψ̃(x̃1, x̃2, x̃3, t̃) . (2.20)

It will be convenient to choose the shape of the implicit surface functions for the free surface, glacier
bed and cold-temperate ice transition surface, such that they posses scales

(Fs, Fb, Fcts) = [h3][∆3] (F̃s, F̃b, F̃cts) , (2.21)

or, in the explicit representation,

fs = [fs] f̃s = [∆3] f̃s , (2.22)

fcts = [fcts] f̃cts = [∆3] f̃cts , (2.23)

fb = [fb] f̃b = [∆3] f̃b . (2.24)

For the horizontal and vertical velocities, we introduce the scales[vh], and[vv] as

(v1, v2) = [vh] (ṽ1, ṽ2) , (2.25)

v3 = [vv] ṽv, (2.26)

asserting the relation
[vv]

[vh]
= ǫ , (2.27)

which means that[vv] and[vh] are not independent scales. Provided that all the surface non-material veloc-
ities are assumed to be small, the relative velocities at the discontinuities will be scaled according to

(v1 − ν1, v2 − ν2) = [vh] (ṽ1 − ν̃1, ṽ2 − ν̃2) , (2.28)

v3 − ν3 = [vv] (ṽ3 − ν̃3) , (2.29)

and the sliding basal velocities can be reasonably scaled in the same manner:

(vsl1 , v
sl
2 ) = [vh] (ṽ

sl
1 , ṽ

sl
2 ), (2.30)

vsl3 = [vv] ṽ
sl
3 . (2.31)

Having introduced scales for geometry and velocities, it is straightforwardto introduce the time scale as

t = [t] t̃ =
[h1][∆1]

[vh]
t̃ =

[h2][∆2]

[vh]
t̃ =

[h3][∆3]

[vv]
t̃ . (2.32)

A crucial essence of the Shallow Ice Approximation lies in one particular choice of scaling of the stress-
tensor components. Following on from observations and measurements, aswell as from theoretically based
deductions (Hutter, 1983), the scaling is traditionally chosen to be

p = ρg[h3][∆3] p̃, (2.33)

(σ13,σ23) = ǫρg[h3][∆3] (σ̃13, σ̃23) , (2.34)

(σ11,σ22,σ12) = ǫ2ρg[h3][∆3] (σ̃11, σ̃22, σ̃12) . (2.35)

Because the typical aspect ratioǫ for real ice sheets is a small number (10−2-10−3, Baral et al., 2001), this
scaling specifies that the dominant stress component in the ice sheet interioris the overburden pressure. The
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vertical shear stressesσ13,σ23 are then one order ofǫ smaller, and the longitudinal stressesσ11,σ22 (and, of
course,σ33 = −σ11−σ22, by definition), together with the horizontal shear stressσ12 are even two orders
of ǫ smaller. These scaling assumptions are typically valid in large ice sheets with the exception of ice sheet
margins or regions of massively undulated bedrock topography, or in highly lubricated regions such as ice
streams. That is, in regions where the longitudinal stresses become comparable or even dominant over the
shear stresses. This particular scaling thus mainly concerns large-scalebehavior of grounded ice masses and
completely different stress-scaling assumptions must be introduced when floating ice is investigated. Then, a
procedure analogous to the one that follows may be performed, resulting ina ”Shallow-Shelf” approximation
(Greve, 1997). We will, however, restrict ourselves to grounded ice sheets where the considered scaling
(2.33)–(2.35) is the most convenient and appropriate for the perturbation analysis.

It remains to introduce scales also for the following quantities:

w = [w] w̃ , (2.36)

(T, Tm) = [T ] (T̃ , T̃m) , (2.37)

k(T ) = [k] k̃(T̃ ) , (2.38)

(A(T ),A(T, p),A(w)) = [A] (Ã(T̃ ),A(T̃ , p̃), Ã(w̃)) , (2.39)

(as,Ps, ob) = ρ[vv] (ã
s, P̃s, õb) , (2.40)

(ms
w,m

b
w,m

cts
w ) = ρ[vv] (m̃

s
w, m̃

b
w, m̃

cts
w ) , (2.41)

(q1, q
geo
1 , q2, q

geo
2 ) =

[k][T ]

[h1][∆1]
(q̃1, q̃

geo
1 , q̃2, q̃

geo
2 ) , (2.42)

(q3, q
geo
3 ) =

[k][T ]

[h3][∆3]
(q̃3, q̃

geo
3 ) , (2.43)

β(~nb · τ · ~nb, T, w, ...) = [β] β̃(~̃nb · τ̃ · ~̃nb, T̃ , w̃, ...) , (2.44)

cv(T ) = [cv] c̃v(T̃ ) , (2.45)

α1 = [α1] α̃1 , (2.46)

α2 = [α2] α̃2 . (2.47)

To scale the water flux~j, we introduce a scale for the water velocity magnitude[vw], and assuming that the
water flow is governed by relation (1.44), we set the following

(j1, j2) = ǫρ[w][vw] (j̃1, j̃2) , (2.48)

j3 = ρ[w][vw] j̃3 , (2.49)

(vw1, vw2) = ǫ[vw] (ṽw1, ṽw2) , (2.50)

vw3 = [vw] ṽw3 . (2.51)

Now, an elementary scaling analysis can be performed in order to rewrite theequations in a dimensionless
form. We have introduced 12 basic independent scales[vh],[vw], [h1][∆1] = [h2][∆2], [h3][∆3], [w], [T ],
[k], [A], [cv], [β], [α1], [α2]. Scales[hi],[∆i] are taken as a couple and count for one quantity only because
in all equations they appear only as a product.

Together with 8 physical constantsρ, g, L, γ,CCl, Tm0,
Q
kB

, patm, we have in total 20 quantities, whose
physical dimensions consist of the basic physical units: meter, kilogram, second and Kelvin. The dimension
matrix can be shown to have the rank four, and thus according to Buckingham’s Pi Theorem (e.g. Hutter,



22 CHAPTER 2. SHALLOW ICE APPROXIMATION

2004),20− 4 = 16 independent dimensionless numbers can be introduced. These are

ǫ = [h3][∆3]
[h1][∆1]

, C = g[h3][∆3]
[cv ][T ] , J = [w][vw][h1][∆1]

[vh][h3][∆3]
, E = g[h3][∆3]

L[w] ,

K = [A]ρngn([h3][∆3])2n+1

([h1][∆1])n[vh]
, B = ρg([h3][∆3])2

[h1][∆1][vh][β]2
, D = [k][h1][∆1]

ρ[cv ][vh]([h3][∆3])2
, [w],

T0 = Tm0
[T ] , T = CClρg[h3][∆3]

[T ] , γ, Q = Q
kB [T ] ,

N1 = [α1]
[h3][∆3]ρ[vw] , N2 = [α2]g

[vw] , F = [vh]
2

[h1][∆1]g
, L = patm

[h3][∆3]ρg
.
(2.52)

To gain some insight into the importance of various terms in the following derivations, we find it useful
to evaluate the dimensionless numbers in (2.52) for a typical large ice sheet. Assume we are inspecting
an ice sheet with a horizontal extent of hundreds of kilometers ([h1][∆1] = 100 km) with typical thickness
reaching units of kilometers, we thus set ([h3][∆3] = 1 km). Using previously applied values of the physical
properties for ice e.g. in Payne et al. (2000) or Greve (1997), we choose[T ] = Tm0 = 237.15 K, g =
9.81 m s−2, ρ = 910 kg m−3, [cv] = 2000 J kg−1 K−1, [w] = 0.01, [vh] = 1 m a−1, L = 3.35 ×
105 J kg−1, [A] = 4 × 10−13 Pa−3 s−1, [k] = 2 W m−1 K−1, CCl = 9.7 × 10−8 K Pa−1, γ = 184,
Q
kB

= 7216 K, patm = 100 k Pa, [β2] = 1000 kg m−2 s−1. Unfortunately, we lack reasonable estimates
for the values of[vw], α1, α2, therefore the dimensionless numbersJ , N1, N2, remain unevaluated. For the
rest, we arrive at:

ǫ ∼ 10−2, C ∼ 0.018, J ∼ 10−4 × [vw]
[vh]

, E ∼ 2.9,

K ∼ 8.98× 1012, B ∼ 2.81× 109, D ∼ 3.44, [w] ∼ 0.01,

T0 ∼ 1, T ∼ 0.0032, γ ∼ 184, Q ∼ 26.42,

N1 ∼ ?, N2 ∼ ?, F ∼ 1.1× 10−23, L ∼ 0.011 .

(2.53)

2.4 Shallow Ice Approximation

In this section we present the resultant form of the governing equations for a polythermal ice sheet. The
procedure is as follows. In the previous section, we introduced appropriate scales for the field quantities.
Now, we perform a first step of the perturbation analysis in terms of the scaling parameterǫ (aspect ratio),
reflecting the fact that typically in nature, the valueǫ is small (typically varying between10−3-10−2 for
large ice sheets), thus allowing for such a perturbation procedure. Hence for any (already non-dimensional)
field quantityϕ̃, we consider an expansion

ϕ̃ =

∞
∑

n=0

ϕ̃(n)ǫn . (2.54)

Inserting this expansion into the non-dimensionalized equations and keepingonly the leading terms inǫ, we
obtain in the limitǫ→ 0+ the zero-order scaling approximation, the so-called Shallow Ice Approximation.
To give some insight into this procedure, we will present several more detailed examples of the required
derivations, but for the sake of brevity, most of the resultant SIA formulas are presented without detailed
derivations, which are nonetheless quite straightforward.
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We present only results for a polythermal ice sheet. The special case ofa purely-cold ice sheet can be
obtained by simply excluding the temperate-ice zone and letting the cold-ice zoneextend throughout the
whole glacier volume.

2.4.1 Field equations – Cold-ice zone

Themass balancefor ice (1.25) reads in the general curvilinear coordinates (D.12) as:

0 = div~v

=
3
∑

k=1

1

hk





∂vk
∂xk

+
∑

m,m 6=k

1

hm

∂hk
∂xm

vm





=
1

h1

∂v1
∂x1

+
1

h1h2

∂h1
∂x2

v2 +
1

h1h3

∂h1
∂x3

v3

+
1

h2

∂v2
∂x2

+
1

h2h3

∂h2
∂x3

v3 +
1

h2h1

∂h2
∂x1

v1

+
1

h3

∂v3
∂x3

+
1

h3h1

∂h3
∂x1

v1 +
1

h3h2

∂h3
∂x2

v2

=
[vh]

[h1][∆1]

1

h̃1

∂ṽ1
∂x̃1

+
[vh]

[h2][∆2]

1

h̃1h̃2

∂h̃1
∂x̃2

ṽ2 +
[vv]

[h3][∆3]

1

h̃1h̃3

∂h̃1
∂x̃3

ṽ3

+
[vh]

[h2][∆2]

1

h̃2

∂ṽ2
∂x̃2

+
[vv]

[h3][∆3]

1

h̃2h̃3

∂h̃2
∂x̃3

ṽ3 +
[vh]

[h1][∆1]

1

h̃2h̃1

∂h̃2
∂x̃1

ṽ1

+
[vv]

[h3][∆3]

1

h̃3

∂ṽ3
∂x̃3

+
[vh]

[h1][∆1]

1

h̃3h̃1

∂h̃3
∂x̃1

ṽ1 +
[vh]

[h2][∆2]

1

h̃3h̃2

∂h̃3
∂x̃2

ṽ2 ,

which, after dividing by [vh]
[h1][∆1]

and realizing that[h1][∆1] = [h2][∆2] and [vh]
[h1][∆1]

= [vv ]
[h3][∆3]

, leads to

0 =
1

h̃1

∂ṽ1
∂x̃1

+
1

h̃1h̃2

∂h̃1
∂x̃2

ṽ2 +
1

h̃1h̃3

∂h̃1
∂x̃3

ṽ3

+
1

h̃2

∂ṽ2
∂x̃2

+
1

h̃2h̃3

∂h̃2
∂x̃3

ṽ3 +
1

h̃2h̃1

∂h̃2
∂x̃1

ṽ1

+
1

h̃3

∂ṽ3
∂x̃3

+
1

h̃3h̃1

∂h̃3
∂x̃1

ṽ1 +
1

h̃3h̃2

∂h̃3
∂x̃2

ṽ2 . (2.55)

This is the non-dimensional version of the ice mass balance (1.25). Now, theSIA-limit is obtained by
expanding

ṽi = ṽ
(0)
i + ṽ

(1)
i ǫ+ ṽ

(2)
i ǫ2 + . . . ,

h̃i = h̃
(0)
i + h̃

(1)
i ǫ+ h̃

(2)
i ǫ2 + . . . ,

∂h̃i
∂x̃j

=

(

∂h̃i
∂x̃j

)(0)

+

(

∂h̃i
∂x̃j

)(1)

ǫ+

(

∂h̃i
∂x̃j

)(2)

ǫ2 + . . . ,

i, j = 1, 2, 3 ,
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Inserting these expansions to (2.55), lettingǫ → 0+, and keeping only the zero-order()(0) terms, while
introducing new symbols

Hi := lim
ǫ→0+

h̃i = h̃
(0)
i , (2.56)

Hij := lim
ǫ→0+

∂h̃i
∂x̃j

=

(

∂h̃i
∂x̃j

)(0)

, (2.57)

and omitting the()(0) superscript in the resultant form, we arrive at

0 =
1

H1

∂ṽ1
∂x̃1

+
H12

H1H2
ṽ2 +

H13

H1H3
ṽ3

+
1

H2

∂ṽ2
∂x̃2

+
H23

H2H3
ṽ3 +

H21

H2H1
ṽ1

+
1

H3

∂ṽ3
∂x̃3

+
H31

H3H1
ṽ1 +

H32

H3H2
ṽ2 . (2.58)

• Example (1) - Cartesian coordinates
For Cartesian coordinates (2.1), according to (2.10), we have

Hi = 1 , Hij = 0 , i, j = 1, 2, 3 , (2.59)

and (2.58) reads

0 =
∂ṽx
∂x̃

+
∂ṽy
∂ỹ

+
∂ṽz
∂z̃

. (2.60)

• Example (2) - Spherical coordinates
For spherical coordinates (2.2), following (2.15), we obtain

Hϑ = lim
ǫ→0+

h̃ϑ = 1 , Hϕ = lim
ǫ→0+

h̃ϕ = sinϑ , Hζ = lim
ǫ→0+

h̃ζ = 1 , (2.61)

where the only non-zero derivatives∂h̃i

∂x̃j
are

∂h̃ϑ

∂ζ̃
= ǫ , (2.62)

∂h̃ϕ
∂ϑ

= (1 + ǫζ̃) cosϑ , (2.63)

∂h̃ϕ

∂ζ̃
= ǫ sinϑ . (2.64)

Taking the limitǫ→ 0+ results in the only non-zeroHij being

Hϕϑ = cosϑ , (2.65)

thus, (2.58) in spherical coordinates reads as

0 =
∂ṽϑ
∂ϑ

+ cotϑ ṽϑ +
1

sinϑ

∂ṽϕ
∂ϕ

+
∂ṽζ

∂ζ̃
. (2.66)
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• Example (3) - Cylindrical coordinates
In view of (2.19),

H̺ = lim
ǫ→0+

h̺̃ = 1 , Hϕ = lim
ǫ→0+

h̃ϕ = ˜̺ , Hz = lim
ǫ→0+

h̃z = 1 , (2.67)

hence, the only non-zero derivative∂h̃i

∂x̃j
is

∂h̃ϕ
∂ ˜̺

= 1 . (2.68)

By taking the limitǫ→ 0+, the only non-zeroHij is

Hϕ̺ = 1 , (2.69)

leading to (2.58) in cylindrical coordinates reading as

0 =
∂ṽ̺
∂ ˜̺

+
ṽ̺
˜̺
+

1

˜̺

∂ṽϕ
∂ϕ

+
∂ṽz
∂z̃

. (2.70)

The linear-momentum balanceequations (1.26) when rewritten in the non-dimensional form with the use
of (D.11) and (D.14) read as:

F
ǫ
(. . . ) = − 1

h̃1

∂p̃

∂x̃1
+ σ̃13

(

2

h̃1h̃3

∂h̃1
∂x̃3

+
1

h̃2h̃3

∂h̃2
∂x̃3

)

+
1

h̃3

∂σ̃13

∂x̃3
+
g1
ǫg

+O(ǫ) ,

(2.71)

F
ǫ
(. . . ) = − 1

h̃2

∂p̃

∂x̃2
+ σ̃23

(

1

h̃1h̃3

∂h̃1
∂x̃3

+
2

h̃2h̃3

∂h̃2
∂x̃3

)

+
1

h̃3

∂σ̃23

∂x̃3
+
g2
ǫg

+O(ǫ) ,

(2.72)

F (. . . ) = − 1

h̃3

∂p̃

∂x̃3
+
g3
g

+O(ǫ) , (2.73)

where the left-hand sides are not expressed explicitly, because, as shown in (2.53), the typical magnitude of
the Froude numberF and the fractionFǫ are very small. We may therefore safely assume that, in the SIA
limit, together withǫ→ 0+, bothF , Fǫ → 0+. Thus, the SIA limit of the momentum equations reads as

0 = − 1

H1

∂p̃

∂x̃1
+ σ̃13

(

2
H13

H1H3
+

H23

H2H3

)

+
1

H3

∂σ̃13

∂x̃3
+ eg 1 , (2.74)

0 = − 1

H2

∂p̃

∂x̃2
+ σ̃23

(

H13

H1H3
+ 2

H23

H2H3

)

+
1

H3

∂σ̃23

∂x̃3
+ eg 2 , (2.75)

0 = − 1

H3

∂p̃

∂x̃3
+ eg 3 , (2.76)

where

eg i := lim
ǫ→0+

1

ǫ

(

~g

g

)

i

, i = 1, 2 , eg 3 := lim
ǫ→0+

(

~g

g

)

3

. (2.77)
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• Example (1) - Cartesian coordinates
Taking naturally thez-axis parallel with the vector of the gravitational field, oriented as~g = (0, 0,−g),
with the use of (2.59), gives the SIA form of the linear-momentum equations inCartesian coordinates
as follows (see also e.g. Greve, 1997):

0 = −∂p̃
∂x̃

+
∂σ̃xz

∂z̃
, (2.78)

0 = −∂p̃
∂ỹ

+
∂σ̃yz

∂z̃
, (2.79)

0 = −∂p̃
∂z̃

− 1 . (2.80)

• Example (2) - Spherical coordinates
Choosing again the orientation of the coordinate axes such that~g = (0, 0,−g), and using (2.61) and
(2.65), results in

0 = −∂p̃
∂ϑ

+
∂σ̃ϑζ

∂ζ̃
, (2.81)

0 = − 1

sinϑ

∂p̃

∂ϕ
+
∂σ̃ϕζ

∂ζ̃
, (2.82)

0 = −∂p̃
∂ζ̃

− 1 . (2.83)

• Example (3) - Cylindrical coordinates
Again, provided that~g = (0, 0,−g), and using (2.67) and (2.69), results in the cylindrical coordinate
form

0 = −∂p̃
∂ ˜̺

+
∂σ̺̃z

∂z̃
, (2.84)

0 = −1

˜̺

∂p̃

∂ϕ
+
∂σ̃ϕz

∂z̃
, (2.85)

0 = −∂p̃
∂z̃

− 1 . (2.86)

Therheology is specified as follows. We give the SIA form of both (1.17) and (1.18). The five independent
equations (1.17) in the SIA approximation read as

σ̃13 = η̃

(

1

H3

∂ṽ1
∂x̃3

− H13

H1H3
ṽ1

)

, (2.87)

σ̃23 = η̃

(

1

H3

∂ṽ2
∂x̃3

− H23

H2H3
ṽ2

)

, (2.88)

σ̃11 = 2η̃

(

1

H1

∂ṽ1
∂x̃1

+
H12

H1H2
ṽ2 +

H13

H1H3
ṽ3

)

, (2.89)

σ̃22 = 2η̃

(

1

H2

∂ṽ2
∂x̃2

+
H21

H2H1
ṽ1 +

H23

H2H3
ṽ3

)

, (2.90)

σ̃12 = η̃

(

1

H1

∂ṽ2
∂x̃1

− H12

H1H2
ṽ1 +

1

H2

∂ṽ1
∂x̃2

− H21

H1H2
ṽ2

)

, (2.91)
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where

η̃ :=
1

(2ÃK)
1
n

(

(

1

H3

∂ṽ1
∂x̃3

− H13

H1H3
ṽ1

)2

+

(

1

H3

∂ṽ2
∂x̃3

− H23

H2H3
ṽ2

)2
)

1−n
2n

, n = 3 . (2.92)

The temperature dependence ofÃ(T̃ ) (1.21) is given by

Ã(T̃ ) =
A

[A]
exp

(

−Q
T̃

)

, (2.93)

or, if the pressure-melting point correction is considered as in (1.22):

Ã(T̃ , p̃) =
A

[A]
exp

(

− Q
(T̃ + T p̃)

)

, (2.94)

andQ, T andK are given in (2.52).

• Example (1) - Cartesian coordinates

σ̃xz = η̃
∂ṽx
∂z̃

, (2.95)

σ̃yz = η̃
∂ṽy
∂z̃

, (2.96)

σ̃xx = 2η̃
∂ṽx
∂x̃

, (2.97)

σ̃yy = 2η̃
∂ṽy
∂ỹ

, (2.98)

σ̃xy = η̃

(

∂ṽy
∂x̃

+
∂ṽx
∂ỹ

)

, (2.99)

where

η̃ =
1

(2ÃK)
1
n

(

(

∂ṽx
∂z̃

)2

+

(

∂ṽy
∂z̃

)2
)

1−n
2n

, n = 3 . (2.100)

• Example (2) - Spherical coordinates

σ̃ϑζ = η̃
∂ṽϑ

∂ζ̃
, (2.101)

σ̃ϕζ = η̃
∂ṽϕ

∂ζ̃
, (2.102)

σ̃ϑϑ = 2η̃
∂ṽϑ
∂ϑ

, (2.103)

σ̃ϕϕ = 2η̃

(

1

sinϑ

∂ṽϕ
∂ϕ

+ cotϑ ṽϑ

)

, (2.104)

σ̃ϑϕ = η̃

(

∂ṽϕ
∂ϑ

+
1

sinϑ

∂ṽϑ
∂ϕ

− cotϑ ṽϕ

)

, (2.105)

where

η̃ :=
1

(2ÃK)
1
n

(

(

∂ṽϑ

∂ζ̃

)2

+

(

∂ṽϕ

∂ζ̃

)2
)

1−n
2n

, n = 3 . (2.106)
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• Example (3) - Cylindrical coordinates

σ̺̃z = η̃
∂ṽ̺
∂z̃

, (2.107)

σ̃ϕz = η̃
∂ṽϕ
∂z̃

, (2.108)

σ̺̺̃ = 2η̃
∂ṽ̺
∂x̺̃

, (2.109)

σ̃ϕϕ = 2η̃

(

1

˜̺

∂ṽϕ
∂ϕ

+
ṽ̺
˜̺

)

, (2.110)

σ̺̃ϕ = η̃

(

∂ṽϕ
∂ ˜̺

+
1

˜̺

∂ṽ̺
∂ϕ

− ṽϕ
˜̺

)

, (2.111)

where

η̃ :=
1

(2ÃK)
1
n

(

(

∂ṽ̺
∂z̃

)2

+

(

∂ṽϕ
∂z̃

)2
)

1−n
2n

, n = 3 . (2.112)

The inverse relation (1.18) in the SIA reads as

1

H3

∂ṽ1
∂x̃3

− H13

H1H3
ṽ1 = 2KÃσ̃

n−1
II σ̃13 , (2.113)

1

H3

∂ṽ2
∂x̃3

− H23

H2H3
ṽ2 = 2KÃσ̃

n−1
II σ̃23 , (2.114)

1

H1

∂ṽ1
∂x̃1

+
H12

H1H2
ṽ2 +

H13

H1H3
ṽ3 = KÃσ̃σn−1

II σ̃11 , (2.115)

1

H2

∂ṽ2
∂x̃2

+
H21

H1H2
ṽ1 +

H23

H2H3
ṽ3 = KÃσ̃

n−1
II σ̃22 , (2.116)

1

H1

∂ṽ2
∂x̃1

− H12

H1H2
ṽ1 +

1

H2

∂ṽ1
∂x̃2

− H21

H1H2
ṽ2 = 2KÃσ̃

n−1
II σ̃12 , (2.117)

where

σ̃II =

√

σ̃
2
13 + σ̃

2
23 . (2.118)

• Example (1) - Cartesian coordinates

∂ṽx
∂z̃

= 2KÃσ̃
n−1
II σ̃xz , (2.119)

∂ṽy
∂z̃

= 2KÃσ̃
n−1
II σ̃yz , (2.120)

∂ṽx
∂x̃

= KÃσ̃
n−1
II σ̃xx , (2.121)

∂ṽy
∂ỹ

= KÃσ̃
n−1
II σ̃yy , (2.122)

∂ṽy
∂x̃

+
∂ṽx
∂ỹ

= 2KÃσ̃
n−1
II σ̃xy , (2.123)

where
σ̃II =

√

σ̃
2
xz + σ̃

2
yz . (2.124)
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• Example (2) - Spherical coordinates

∂ṽϑ

∂ζ̃
= 2KÃσ̃

n−1
II σ̃ϑζ , (2.125)

∂ṽϕ

∂ζ̃
= 2KÃσ̃

n−1
II σ̃ϕζ , (2.126)

∂ṽϑ
∂ϑ

= KÃσ̃
n−1
II σ̃ϑϑ , (2.127)

1

sinϑ

∂ṽϕ
∂ϕ

+ cotϑ ṽϑ = KÃσ̃
n−1
II σ̃ϕϕ , (2.128)

∂ṽϕ
∂ϑ

+
1

sinϑ

∂ṽϑ
∂ϕ

− cotϑ ṽϕ = 2KÃσ̃
n−1
II σ̃ϑϕ , (2.129)

where
σ̃II =

√

σ̃
2
ϑζ + σ̃

2
ϕζ . (2.130)

• Example (3) - Cylindrical coordinates

∂ṽ̺
∂z̃

= 2KÃσ̃
n−1
II σ̺̃z , (2.131)

∂ṽϕ
∂z̃

= 2KÃσ̃
n−1
II σ̃ϕz , (2.132)

∂ṽ̺
∂ ˜̺

= KÃσ̃
n−1
II σ̺̺̃ , (2.133)

1

˜̺

∂ṽϕ
∂ϕ

+
ṽ̺
˜̺

= KÃσ̃
n−1
II σ̃ϕϕ , (2.134)

∂ṽϕ
∂ ˜̺

+
1

˜̺

∂ṽ̺
∂ϕ

− ṽϕ
˜̺

= 2KÃσ̃
n−1
II σ̺̃ϕ , (2.135)

where
σ̃II =

√

σ̃
2
̺z + σ̃

2
ϕz . (2.136)

Theenergy balance(1.28) in the SIA limit reads as

c̃v

(

∂T̃

∂t̃
+
ṽ1
H1

∂T̃

∂x̃1
+
ṽ2
H2

∂T̃

∂x̃2
+
ṽ3
H3

∂T̃

∂x̃3

)

= 2C
(

σ̃13d̃13 + σ̃23d̃23

)

+D
(

k̃
∂T̃

∂x̃3

(

H13

H1H2
3

+
H23

H2H2
3

)

+
1

H3

∂

∂x̃3

(

k̃

H3

∂T̃

∂x̃3

))

, (2.137)

with C, andD given in (2.52) and

d̃13 =
1

2

(

1

H3

∂ṽ1
∂x̃3

− H13

H1H3
ṽ1

)

, (2.138)

d̃23 =
1

2

(

1

H3

∂ṽ2
∂x̃3

− H23

H2H3
ṽ2

)

. (2.139)
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• Example (1) - Cartesian coordinates

c̃v

(

∂T̃

∂t̃
+ ṽx

∂T̃

∂x̃
+ ṽy

∂T̃

∂ỹ
+ ṽz

∂T̃

∂z̃

)

= 2C
(

σ̃xzd̃xz + σ̃yzd̃yz

)

+D ∂

∂z̃

(

k̃
∂T̃

∂z̃

)

,

(2.140)

and

d̃xz =
1

2

∂ṽx
∂z̃

, (2.141)

d̃yz =
1

2

∂ṽy
∂z̃

. (2.142)

• Example (2) - Spherical coordinates

c̃v

(

∂T̃

∂t̃
+ ṽϑ

∂T̃

∂ϑ
+

ṽϕ
sinϑ

∂T̃

∂ϕ
+ ṽζ

∂T̃

∂ζ̃

)

= 2C
(

σ̃ϑζ d̃ϑζ + σ̃ϕζ d̃ϕζ

)

+D ∂

∂ζ̃

(

k̃
∂T̃

∂ζ̃

)

,

(2.143)

and

d̃ϑζ =
1

2

∂ṽϑ

∂ζ̃
, (2.144)

d̃ϕζ =
1

2

∂ṽϕ

∂ζ̃
. (2.145)

• Example (3) - Cylindrical coordinates

c̃v

(

∂T̃

∂t̃
+ ṽ̺

∂T̃

∂ ˜̺
+
ṽϕ
˜̺

∂T̃

∂ϕ
+ ṽz

∂T̃

∂z̃

)

= 2C
(

σ̺̃zd̺̃z + σ̃ϕzd̃ϕz

)

+D ∂

∂z̃

(

k̃
∂T̃

∂z̃

)

,

(2.146)

and

d̺̃z =
1

2

∂ṽ̺
∂z̃

, (2.147)

d̃ϕz =
1

2

∂ṽϕ
∂z̃

. (2.148)

2.4.2 Field equations – Temperate-ice zone

Themass balance for the ice component(1.40) in the SIA limit reads as

1

H1

∂ṽ1
∂x̃1

+
H12

H1H2
ṽ2 +

H13

H1H3
ṽ3 +

1

H2

∂ṽ2
∂x̃2

+
H23

H2H3
ṽ3 +

H21

H2H1
ṽ1

+
1

H3

∂ṽ3
∂x̃3

+
H31

H3H1
ṽ1 +

H32

H3H2
ṽ2 = −J

(

1

H3

∂j̃3
∂x̃3

+ j̃3

(

H13

H1H3
+

H23

H2H3

))

, (2.149)

whereJ is listed among the dimensionless numbers in (2.52).
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• Example (1) - Cartesian coordinates

∂ṽx
∂x̃

+
∂ṽy
∂ỹ

+
∂ṽz
∂z̃

= −J ∂j̃z
∂z̃

,

• Example (2) - Spherical coordinates

∂ṽϑ
∂ϑ

+
1

sinϑ

∂ṽϕ
∂ϕ

+ cotϑ ṽϑ +
∂ṽζ

∂ζ̃
= −J ∂j̃ζ

∂ζ̃
.

• Example (3) - Cylindrical coordinates

∂ṽ̺
∂ ˜̺

+
1

˜̺

∂ṽϕ
∂ϕ

+
ṽ̺
˜̺
+
∂ṽz
∂z̃

= −J ∂j̃z
∂z̃

.

Themass balance for the water component(1.41) with the water production termmw derived from the
energy balance (1.49) with (1.50), takes the SIA limit in the form

∂w̃

∂t̃
+
ṽ1
H1

∂w̃

∂x̃1
+
ṽ2
H2

∂w̃

∂x̃2
+
ṽ3
H3

∂w̃

∂x̃3
+

J
[w]

(

1

H3

∂j̃3
∂x̃3

+ j̃3

(

H13

H1H3
+

H23

H2H3

))

= 2E(σ̃13d̃13 + σ̃23d̃23) +
DE
C

(

1

H3

∂

∂x̃3

(

k̃

H3

∂T̃m
∂x̃3

)

+ k̃
H13

H1H2
3

∂T̃m
∂x̃3

+ k̃
H23

H2H2
3

∂T̃m
∂x̃3

)

− E
C c̃v

(

∂T̃m

∂t̃
+
ṽ1
H1

∂T̃m
∂x̃1

+
ṽ2
H2

∂T̃m
∂x̃2

+
ṽ3
H3

∂T̃m
∂x̃3

)

. (2.150)

This form can be further simplified by inserting the Clausius-Clapeyron relation (2.161) and subsequent
partial integration of the linear momentum equations, which results in an explicit formula for pressure. We,
however, will not perform this simplification here.

• Example (1) - Cartesian coordinates

∂w̃

∂t̃
+ ṽx

∂w̃

∂x̃
+ ṽy

∂w̃

∂ỹ
+ ṽz

∂w̃

∂z̃
+

J
[w]

∂j̃z
∂z̃

= 2E(σ̃xzd̃xz + σ̃yzd̃yz)

+
DE
C

∂

∂z̃

(

k̃
∂T̃m
∂z̃

)

− E
C c̃v

(

∂T̃m

∂t̃
+ ṽx

∂T̃m
∂x̃

+ ṽy
∂T̃m
∂ỹ

+ ṽz
∂T̃m
∂z̃

)

.

(2.151)

• Example (2) - Spherical coordinates

∂w̃

∂t̃
+ ṽϑ

∂w̃

∂ϑ
+

ṽϕ
sinϑ

∂w̃

∂ϕ
+ ṽζ

∂w̃

∂ζ̃
+

J
[w]

∂j̃ζ

∂ζ̃
= 2E(σ̃ϑζ d̃ϑζ + σ̃ϕζ d̃ϕζ)

+
DE
C

∂

∂ζ̃

(

k̃
∂T̃m

∂ζ̃

)

− E
C c̃v

(

∂T̃m

∂t̃
+ ṽϑ

∂T̃m
∂ϑ

+
ṽϕ
sinϑ

∂T̃m
∂ϕ

+ ṽζ
∂T̃m

∂ζ̃

)

.

(2.152)
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• Example (3) - Cylindrical coordinates

∂w̃

∂t̃
+ ṽ̺

∂w̃

∂ ˜̺
+
ṽϕ
˜̺

∂w̃

∂ϕ
+ ṽz

∂w̃

∂z̃
+

J
[w]

∂j̃z
∂z̃

= 2E(σ̺̃zd̺̃z + σ̃ϕzd̃ϕz)

+
DE
C

∂

∂z̃

(

k̃
∂T̃m
∂z̃

)

− E
C c̃v

(

∂T̃m

∂t̃
+ ṽ̺

∂T̃m
∂ ˜̺

+
ṽϕ
˜̺

∂T̃m
∂ϕ

+ ṽz
∂T̃m
∂z̃

)

.

(2.153)

The linear momentum balance for the ice componentis given by (1.42). We have seen that, in the SIA-I
limit for cold-ice, the linear momentum balance can be simplified such that the inertiaterms on the left-hand
sides of (2.71)-(2.73) related to the ice component may are omitted due to the very small Froude numberF .
Now, in (1.42), the same argumentation applies and enables us to neglect the inertia term corresponding to
the ice component. The resultant relation in the SIA limit reads as

lim
SIA

(ǫFJ ) w̃

(

∂ṽw1

∂t̃
+

J
[w]

(

ṽw3

H3

∂ṽw1

∂x̃3
+ ṽw1ṽw3

H13

H1H3
− ṽ2w3

H31

H1H3

))

= − 1

H1

∂p̃

∂x̃1
+ σ̃13

(

2
H13

H1H3
+

H23

H2H3

)

+
1

H3

∂σ̃13

∂x̃3
+ eg 1 , (2.154)

lim
SIA

(ǫFJ ) w̃

(

∂ṽw2

∂t̃
+

J
[w]

(

ṽw3

H3

∂ṽw2

∂x̃3
+ ṽw2ṽw3

H23

H2H3
− ṽ2w3

H32

H2H3

))

= − 1

H2

∂p̃

∂x̃2
+ σ̃23

(

H13

H1H3
+ 2

H23

H2H3

)

+
1

H3

∂σ̃23

∂x̃3
+ eg 2 , (2.155)

lim
SIA

(ǫFJ ) w̃

(

∂ṽw3

∂t̃
+

J
[w]

ṽw3

H3

∂ṽw3

∂x̃3

)

= − 1

H3

∂p̃

∂x̃3
+ eg 3 . (2.156)

The symbollimSIA stands for the SIA limit, which is now more difficult to evaluate, because the tilded
terms on the left-hand sides of (2.154)-(2.156) are not of the order of unity. Namely, we should, in general
assume that the typical spatial and time scales of the water transport processes substantially differ from the
scales appropriate for the ice flow. We will, however, still assume that the inertia force of the water compo-
nent, i.e. the left hand sides of (2.154)-(2.156) can be omitted and the linearmomentum equations then take
the same form as for a cold ice, i.e. (2.74)-(2.76).

We need not consider all threelinear momentum balance equations for the water component, because
only the vertical component of water flux appears in the SIA limit. The third equation in (1.44) in the SIA
limit reads as

j̃3 = −N1
α̃1

H3

∂w̃

∂x̃3
−N2α̃2

(

1

H3

∂(p̃w̃)

∂x̃3
− w̃eg 3

)

, (2.157)

whereN1, N2 are listed among the dimensionless numbers in (2.52).

• Example (1) - Cartesian coordinates - (2.157) reads as

j̃z = −N1α̃1
∂w̃

∂z̃
−N2α̃2

(

∂(p̃w̃)

∂z̃
+ w̃

)

. (2.158)

• Example (2) - Spherical coordinates - (2.157) reads as

j̃ζ = −N1α̃1
∂w̃

∂ζ̃
−N2α̃2

(

∂(p̃w̃)

∂ζ̃
+ w̃

)

. (2.159)
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• Example (3) - Cylindrical coordinates - (2.157) reads as

j̃z = −N1α̃1
∂w̃

∂z̃
−N2α̃2

(

∂(p̃w̃)

∂z̃
+ w̃

)

. (2.160)

The energy balance(1.49) in the SIA limit was already used in the mass balance for water compo-
nent (2.150) and need not be considered separately. The temperature-pressure relation given by Clausius-
Clapeyron equation (1.48) in the SIA limit reads as

T̃m(p̃) = T0 − T p̃ , (2.161)

with the dimensionless numbersT0, T defined in (2.52).

The rheology for the temperate-ice zone as seen from a comparison of (1.51) and (1.17) is the same as
for the cold-ice zone, except that the rate factorA(w) depends on the water contentw. The same applies
for the SIA limit. Thus, (2.87)-(2.136) are the correct SIA rheological relations withÃ now depending on
w̃, e.g. for (1.53) through an expression

Ã =
A

[A]
(1 + γ[w]w̃) exp

(

−Q
T0

)

. (2.162)

2.4.3 Boundary conditions - Free surface

Thekinematic condition (1.55) at the free surface which is a temperate-ice – air interface, with the use of
the mass balance for ice component (1.56), takes the SIA limit in the form

∂F̃s

∂t̃
+
ṽ1
H1

∂F̃s

∂x̃1
+
ṽ2
H2

∂F̃s

∂x̃2
+
ṽ3
H3

∂F̃s

∂x̃3
= − ãs

1− [w]w̃

∣

∣

∣

∣

∣

1

H3

∂F̃s

∂x̃3

∣

∣

∣

∣

∣

, (2.163)

while for the cold-ice – air interface, we only setw̃ = 0 in (2.163).

• Example (1) - Cartesian coordinates

∂F̃s

∂t̃
+ ṽx

∂F̃s

∂x̃
+ ṽy

∂F̃s

∂ỹ
+ ṽz

∂F̃s

∂z̃
= − ãs

1− [w]w̃

∣

∣

∣

∣

∣

∂F̃s

∂z̃

∣

∣

∣

∣

∣

. (2.164)

• Example (2) - Spherical coordinates

∂F̃s

∂t̃
+ ṽϑ

∂F̃s

∂ϑ
+

ṽϕ
sinϑ

∂F̃s

∂ϕ
+ ṽζ

∂F̃s

∂ζ̃
= − ãs

1− [w]w̃

∣

∣

∣

∣

∣

∂F̃s

∂ζ̃

∣

∣

∣

∣

∣

. (2.165)

• Example (3) - Cylindrical coordinates

∂F̃s

∂t̃
+ ṽ̺

∂F̃s

∂ ˜̺
+
ṽϕ
˜̺

∂F̃s

∂ϕ
+ ṽz

∂F̃s

∂z̃
= − ãs

1− [w]w̃

∣

∣

∣

∣

∣

∂F̃s

∂z̃

∣

∣

∣

∣

∣

. (2.166)

Thewater flux boundary condition for the case of temperate-ice – air interface (1.58) in the SIA limit reads
as

j̃3 = −P̃s

J , (2.167)

and, of course, need not be considered for cold-ice – air interface.
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• Example (1) - Cartesian and cylindrical coordinates

j̃z = −P̃s

J . (2.168)

• Example (2) - Spherical coordinates

j̃ζ = −P̃s

J . (2.169)

The linear momentumboundary condition (1.60) takes the SIA form as

p̃ = L , σ̃13 = 0 , σ̃23 = 0 , (2.170)

where the dimensionless numberL is listed in (2.52).

• Example (1) - Cartesian coordinates

p̃ = L , σ̃xz = 0 , σ̃yz = 0 . (2.171)

• Example (2) - Spherical coordinates

p̃ = L , σ̃ϑζ = 0 , σ̃ϕζ = 0 . (2.172)

• Example (3) - Cylindrical coordinates

p̃ = L , σ̺̃z = 0 , σ̃ϕz = 0 . (2.173)

Theenergyboundary condition for the cold-ice free surface takes the form of a Dirichlet boundary condition
for surface temperature, c.f. (1.30), i.e.

T̃ = T̃ (x̃1, x̃2, f̃s(x̃1, x̃2, t̃), t̃) , (2.174)

while for the temperate-ice free surface, the energy boundary conditionwould be a condition constraining
the melting-refreezing rate, but since we assume this rate to be a part of the prescribed climatological inputs
Ps andas, it need not be explicitly taken into account.

2.4.4 Boundary conditions - Glacier base

Thekinematic condition is not considered, as the base geometry is assumed to be prescribed c.f. (1.62),
i.e. F̃b(x̃1, x̃2, x̃3, t̃) is given.

The ice mass balancecondition (1.63) takes the SIA limit form as

(ṽ − ν̃b)1
H1

∂F̃b

∂x̃1
+

(ṽ − ν̃b)2
H2

∂F̃b

∂x̃2
+

(ṽ − ν̃b)3
H3

∂F̃b

∂x̃3
= − m̃b

w

1− [w]w̃

∣

∣

∣

∣

∣

1

H3

∂F̃b

∂x̃3

∣

∣

∣

∣

∣

. (2.175)

• Example (1) - Cartesian coordinates

(ṽ − ν̃b)x
∂F̃b

∂x̃
+ (ṽ − ν̃b)y

∂F̃b

∂ỹ
+ (ṽ − ν̃b)z

∂F̃b

∂z̃
= − m̃b

w

1− [w]w̃

∣

∣

∣

∣

∣

∂F̃b

∂z̃

∣

∣

∣

∣

∣

. (2.176)



2.4. SHALLOW ICE APPROXIMATION 35

• Example (2) - Spherical coordinates

(ṽ − ν̃b)ϑ
∂F̃b

∂ϑ
+

(ṽ − ν̃b)ϕ
sinϑ

∂F̃b

∂ϕ
+ (ṽ − ν̃b)ζ

∂F̃b

∂ζ̃
= − m̃b

w

1− [w]w̃

∣

∣

∣

∣

∣

∂F̃b

∂ζ̃

∣

∣

∣

∣

∣

. (2.177)

• Example (3) - Cylindrical coordinates

(ṽ − ν̃b)̺
∂F̃b

∂ ˜̺
+

(ṽ − ν̃b)ϕ
˜̺

∂F̃b

∂ϕ
+ (ṽ − ν̃b)z

∂F̃b

∂z̃
= − m̃b

w

1− [w]w̃

∣

∣

∣

∣

∣

∂F̃b

∂z̃

∣

∣

∣

∣

∣

. (2.178)

Thewater mass balancecondition (1.64) reads now as

j̃3 =
1

J

(

m̃b
w

1− [w]w̃
− õb

)

. (2.179)

• Example (1) - Cartesian and cylindrical coordinates

j̃z =
1

J

(

m̃b
w

1− [w]w̃
− õb

)

. (2.180)

• Example (2) - Spherical coordinates

j̃ζ =
1

J

(

m̃b
w

1− [w]w̃
− õb

)

. (2.181)

The linear momentum boundary condition (1.66) will not be considered in the SIA limit as, firstly we
would have to prescribe a scaling for the stress tensor in the lithosphereτ b, which is not convenient, and
secondly, this condition is necessary only for computing lithosphere deformations, which we do not explic-
itly discuss here. The proper boundary condition for the ice flow is either aDirichlet condition for velocity
in the case of no-slip frozen-bed conditions at the base or a Newton-typecondition when sliding occurs and
the sliding law is specified, combined with the normal-flux condition resulting fromthe ice-mass balance
(2.175).

The no-slip boundary condition (1.31) is required for the frozen-bed conditions, i.e. at the contact of the
cold-ice and bedrock, when the ice temperature is below the pressure meltingpoint, and reads as

~̃v = ~̃νb , T̃ < T̃m . (2.182)

Thesliding-law has to be specified for the ice-bedrock interface at the pressure melting point i.e. T̃ = T̃m.
Considering the particular type of sliding law as (1.68), the SIA limit takes the form

β̃2ṽsl1 = B σ̃13 , (2.183)

β̃2ṽsl2 = B σ̃23 , (2.184)

β̃2ṽsl3 = B



σ̃13

1
H1

∂F̃b

∂x̃1
∣

∣

∣

1
H3

∂F̃b

∂x̃3

∣

∣

∣

+ σ̃23

1
H2

∂F̃b

∂x̃2
∣

∣

∣

1
H3

∂F̃b

∂x̃3

∣

∣

∣



 , (2.185)

where the dimensionless numberB is defined in (2.52).
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• Example (1) - Cartesian coordinates

β̃2ṽslx = B σ̃xz , (2.186)

β̃2ṽsly = B σ̃yz , (2.187)

β̃2ṽslz = B



σ̃xz

∂F̃b

∂x̃
∣

∣

∣

∂F̃b

∂z̃

∣

∣

∣

+ σ̃yz

∂F̃b

∂ỹ
∣

∣

∣

∂F̃b

∂z̃

∣

∣

∣



 . (2.188)

• Example (2) - Spherical coordinates

β̃2ṽslϑ = B σ̃ϑζ , (2.189)

β̃2ṽslϕ = B σ̃ϕζ , (2.190)

β̃2ṽslζ = B



σ̃ϑζ

∂F̃b

∂ϑ
∣

∣

∣

∂F̃b

∂ζ̃

∣

∣

∣

+ σ̃ϕζ

1
sinϑ

∂F̃b

∂ϕ
∣

∣

∣

∂F̃b

∂ζ̃

∣

∣

∣



 . (2.191)

• Example (3) - Cylindrical coordinates

β̃2ṽsl̺ = B σ̺̃z , (2.192)

β̃2ṽslϕ = B σ̃ϕz , (2.193)

β̃2ṽslz = B



σ̺̃z

∂F̃b

∂ ˜̺
∣

∣

∣

∂F̃b

∂z̃

∣

∣

∣

+ σ̃ϕz

1
˜̺
∂F̃b

∂ϕ
∣

∣

∣

∂F̃b

∂z̃

∣

∣

∣



 . (2.194)

Thesliding velocity (1.67) in SIA reads

ṽsl1 = ṽ1 − ν̃b1 , (2.195)

ṽsl2 = ṽ2 − ν̃b2 , (2.196)

ṽsl3 = (ṽ1 − ν̃b1)
1
H1

∂F̃b

∂x̃1
∣

∣

∣

1
H3

∂F̃b

∂x̃3

∣

∣

∣

+ (ṽ2 − ν̃b2)
1
H2

∂F̃b

∂x̃2
∣

∣

∣

1
H3

∂F̃b

∂x̃3

∣

∣

∣

. (2.197)

• Example (1) - Cartesian coordinates

ṽslx = ṽx − ν̃bx , (2.198)

ṽsly = ṽy − ν̃by , (2.199)

ṽslz = (ṽx − ν̃bx)
∂F̃b

∂x̃
∣

∣

∣

∂F̃b

∂z̃

∣

∣

∣

+ (ṽy − ν̃by)

∂F̃b

∂ỹ
∣

∣

∣

∂F̃b

∂z̃

∣

∣

∣

. (2.200)

• Example (2) - Spherical coordinates

ṽslϑ = ṽϑ − ν̃bϑ , (2.201)

ṽslϕ = ṽϕ − ν̃bϕ , (2.202)

ṽslζ = (ṽϑ − ν̃bϑ)
∂F̃b

∂ϑ
∣

∣

∣

∂F̃b

∂ζ̃

∣

∣

∣

+ (ṽϕ − ν̃bϕ)

1
sinϑ

∂F̃b

∂ϕ
∣

∣

∣

∂F̃b

∂ζ̃

∣

∣

∣

. (2.203)
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• Example (3) - Cylindrical coordinates

ṽsl̺ = ṽ̺ − ν̃b̺ , (2.204)

ṽslϕ = ṽϕ − ν̃bϕ , (2.205)

ṽslz = (ṽ̺ − ν̃b̺)

∂F̃b

∂ ˜̺
∣

∣

∣

∂F̃b

∂z̃

∣

∣

∣

+ (ṽϕ − ν̃bϕ)

1
˜̺
∂F̃b

∂ϕ
∣

∣

∣

∂F̃b

∂z̃

∣

∣

∣

. (2.206)

Theenergy jump condition (1.73) in the SIA limit reads as

0 = −m̃w
b

(

1

E [w] −
p̃

1− [w]w̃

)

+ (σ̃13ṽ
sl
1 + σ̃23ṽ

sl
2 ) +

D
C (q̃geo3 − q̃−3 ) . (2.207)

• Example (1) - Cartesian coordinates

0 = −m̃w
b

(

1

E [w] −
p̃

1− [w]w̃

)

+ (σ̃xz ṽ
sl
x + σ̃yz ṽ

sl
y ) +

D
C (q̃geoz − q̃−z ) . (2.208)

• Example (2) - Spherical coordinates

0 = −m̃w
b

(

1

E [w] −
p̃

1− [w]w̃

)

+ (σ̃ϑζ ṽ
sl
ϑ + σ̃ϕζ ṽ

sl
ϕ ) +

D
C (q̃geoζ − q̃−ζ ) . (2.209)

• Example (3) - Cylindrical coordinates

0 = −m̃w
b

(

1

E [w] −
p̃

1− [w]w̃

)

+ (σ̺̃z ṽ
sl
̺ + σ̃ϕz ṽ

sl
ϕ ) +

D
C (q̃geoz − q̃−z ) . (2.210)

2.4.5 Boundary conditions - Cold–temperate ice transition surface (CTS)

Thekinematic condition (1.75) with the use of theice-mass jumpcondition (1.77) in the SIA reads as

∂F̃cts

∂t̃
+
ṽ1
H1

∂F̃cts

∂x̃1
+
ṽ2
H2

∂F̃cts

∂x̃2
+
ṽ3
H3

∂F̃cts

∂x̃3
= − 1

[w]

m̃w
cts

w̃−

∣

∣

∣

∣

∣

1

H3

∂F̃cts

∂x̃3

∣

∣

∣

∣

∣

. (2.211)

• Example (1) - Cartesian coordinates

∂F̃cts

∂t̃
+ ṽx

∂F̃cts

∂x̃
+ ṽy

∂F̃cts

∂ỹ
+ ṽz

∂F̃cts

∂z̃
= − 1

[w]

m̃w
cts

w̃−

∣

∣

∣

∣

∣

∂F̃cts

∂z̃

∣

∣

∣

∣

∣

. (2.212)

• Example (2) - Spherical coordinates

∂F̃cts

∂t̃
+ ṽϑ

∂F̃cts

∂ϑ
+

ṽϕ
sinϑ

∂F̃cts

∂ϕ
+ ṽζ

∂F̃cts

∂ζ̃
= − 1

[w]

m̃w
cts

w̃−

∣

∣

∣

∣

∣

∂F̃cts

∂ζ̃

∣

∣

∣

∣

∣

. (2.213)

• Example (3) - Cylindrical coordinates

∂F̃cts

∂t̃
+ ṽ̺

∂F̃cts

∂ ˜̺
+
ṽϕ
˜̺

∂F̃cts

∂ϕ
+ ṽz

∂F̃cts

∂z̃
= − 1

[w]

m̃w
cts

w̃−

∣

∣

∣

∣

∣

∂F̃cts

∂z̃

∣

∣

∣

∣

∣

. (2.214)
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The ice velocity continuity condition (1.76) is given by

~̃v+ = ~̃v− = ~̃v . (2.215)

Thewater mass jumpcondition (1.78) reads now as

j̃−3 = 0 . (2.216)

• Example (1) - Cartesian and Cylindrical coordinates

j̃−z = 0 . (2.217)

• Example (2) - Spherical coordinates
j̃−ζ = 0 . (2.218)

The linear-momentum jump condition (1.79) is written as:

p̃+ = p̃− , σ̃
+
13 = σ̃

−
13 , σ̃

+
23 = σ̃

−
23 . (2.219)

• Example (1) - Cartesian coordinates

p̃+ = p̃− , σ̃
+
xz = σ̃

−
xz , σ̃

+
yz = σ̃

−
yz . (2.220)

• Example (2) - Spherical coordinates

p̃+ = p̃− , σ̃
+
ϑζ = σ̃

−
ϑζ , σ̃

+
ϕr = σ̃

−
ϕζ . (2.221)

• Example (3) - Cylindrical coordinates

p̃+ = p̃− , σ̃
+
̺z = σ̃

−
̺z , σ̃

+
ϕz = σ̃

−
ϕz . (2.222)

Theenergy jump condition (1.82) is expressed as:

0 = m̃w
cts +

DE [w]
C (q̃+3 − q̃−3 ) . (2.223)

• Example (1) - Cartesian and Cylindrical coordinates

0 = m̃w
cts +

DE [w]
C (q̃+z − q̃−z ) . (2.224)

• Example (2) - Spherical coordinates

0 = m̃w
cts +

DE [w]
C (q̃+ζ − q̃−ζ ) . (2.225)

2.5 Summary

We introduced appropriate scales for both the geometric and physical quantities appearing in the equations
for ice sheet evolution in Chapter 1. After introducing several dimensionless parameters we arrived at the
dimensionless version of these equations. We then derived the Shallow IceApproximation for the system
of equations by rewriting them in general orthogonal curvilinear coordinates, expanding all field quantities
into power series in the scaling flatness parameterǫ, and finally keeping only the leading-order terms of the
expansion. The improvement compared to the standard SIA approach comes from the fact that instead of
any particular coordinate system, general orthogonal coordinates were used. This resulted to a whole class
of Shallow Ice Approximations, its realization for any particular choice of orthogonal coordinate system can
be obtained just by evaluating certain geometric quantities. As an example, we explicitly listed out the SIA
form for three important coordinate systems, namely the Cartesian, the spherical and the cylindrical.



Chapter 3

Iterative improvement of the Shallow-Ice
Approximation - SIA-I algorithm

3.1 Introduction

Increasing demands on the accuracy of the solutions for glacier flow andimproving computational possi-
bilities are pushing the glaciological community to leave the traditional Shallow-IceApproximation (SIA)
(Hutter, 1983) and include the computation of longitudinal stresses in their numerical models. This is essen-
tial when the scaling assumptions of the SIA approach (Greve, 1997) areviolated, such as for small alpine
glaciers, ice streams, floating ice shelves, grounding line dynamics and other, usually small-scale, examples
of ice dynamics.

A number of theoretical and numerical approaches has been proposedand tested, including several
higher-order approximations of the Stokes problem by ”multilayer” methods (Saito et al., 2003; Pattyn,
2003; Blatter, 1995). For their classification and discussion, see Hindmarsh (2004). Also, a number of exact
full-Stokes solvers have been developed, based on various numericaltechniques such as finite-difference
(e.g. Pattyn, 2003), spectral (Hindmarsch, 2004), finite-volume (Priceet al., 2007) and finite-element
methods (Zwinger, 2007; Gagliardini and Zwinger, 2008; Le Meur et al.,2004).

However, making a step from the SIA approach to more advanced models substantially increases compu-
tational demands that subsequently complicates the embedding of these techniques into large-scale models.
We have developed a computational algorithm that provides an approximate solution of the Stokes problem
that is more accurate than the SIA solution, but still applies the traditional SIA scaling assumption to the
aspect ratio of a glacier. The primary criterion for the construction of the new algorithm is its computational
efficiency.

The content of this section is a transcription of the author’s article (Souček & Martinec, 2008), with a
few minor changes in the text and with the extension of Section 3.4 dealing with theSIA-I algorithm in
general orthogonal curvilinear coordinates.

3.2 The Stokes problem for ice flow

Let us recall the physical problem we are dealing with and the assumptions and simplifications we apply.
Our aim is to solve the boundary-value problem that allows us to model an incompressible Stokes flow with

39
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non-linear viscous rheology in Cartesian geometry. We are looking for thesolution of the Stokes equation
with the acceleration term neglected, that is, the linear momentum equation of the form

divτ + ρ~g = ~0 , (3.1)

whereρ is the ice density,~g is the gravity acceleration at the Earth’s surface and the stress tensorτ is given
by

τ = −pI+ σ , (3.2)

wherep andσ are the isotropic and deviatoric parts ofτ , respectively, andI is the identity tensor. Since the
ice flow is assumed to be incompressible and ice density homogeneous, the divergence-free constraint on
the ice velocity~v is to be satisfied:

div~v = 0 . (3.3)

We consider only cold-ice glacier with geometry captured by two continuouslydifferentiable surfaces
(i.e. explicit description)

z = fs(x, y) (free surface) , (3.4)

z = fb(x, y) (bed) , (3.5)

wherex, y, z are the Cartesian coordinates, and time is not explicitly considered now.

The scaling analysis corresponding to the Shallow-Ice Approximation, which was performed in the
previous chapter, has to be slightly altered to allow the consideration of longitudinal stresses. Considering
the typical horizontal (Lsc = [h1][∆1] = [h2][∆2]) and vertical (Hsc = [h3][∆3]) dimensions of a glacier,
and the typical horizontal[vh] and vertical[vv] velocities of the glacier flow with the aspect ratio

ǫ =
Hsc

Lsc
=

[vv]

[vh]
, (3.6)

the following scaling is introduced

(x, y, z) = (Lscx̃,Lscỹ,Hscz̃) , (3.7)

(vx, vy, vz) = ([vh]ṽx, [vh]ṽy, [vv]ṽz) , (3.8)

(fs(x, y), fb(x, y)) = Hsc(f̃s(x̃, ỹ), f̃b(x̃, ỹ)) , (3.9)

A = [A]Ã . (3.10)

The scaling of the stress tensor is chosen as

(p,σij) = ρgHsc(p̃, σ̃ij) i, j ∈ {x, y, z}. (3.11)

Such a scaling only non-dimensionalizes the stresses, without requiring thescaled quantities to be of the
order of unity, for which case the more appropriate scaling would be that in(2.33)-(2.35).

The Stokes equation (3.1) for the scaled quantities reads as

0 = −∂p̃
∂x̃
ǫ +

∂σ̃xx

∂x̃
ǫ +

∂σ̃xy

∂ỹ
ǫ +

∂σ̃xz

∂z̃
, (3.12)

0 = −∂p̃
∂ỹ
ǫ +

∂σ̃xy

∂x̃
ǫ +

∂σ̃yy

∂ỹ
ǫ +

∂σ̃yz

∂z̃
, (3.13)

1 = −∂p̃
∂z̃

+
∂σ̃xz

∂x̃
ǫ +

∂σ̃yz

∂ỹ
ǫ − ∂(σ̃xx + σ̃yy)

∂z̃
, (3.14)
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where the symmetry of the deviatoric stressesσij was used andσzz was eliminated from the system of
equations by making use of the trace-free constraint on the deviatoric stresses in such a way that only six
independent stress unknowns remained. The incompressibility condition (3.3) for scaled quantities then
reads as

∂ṽx
∂x̃

+
∂ṽy
∂ỹ

+
∂ṽz
∂z̃

= 0 . (3.15)

Boundary conditions.

We assume stress-free conditions at the surface, i.e.

τ · ~n = ~0 , at z = fs(x, y) , (3.16)

where~n is the unit outer normal. In the scaled form, (3.16) reads as

0 = p̃

(

∂f̃s
∂x̃

)

ǫ− σ̃xx

(

∂f̃s
∂x̃

)

ǫ− σ̃xy

(

∂f̃s
∂ỹ

)

ǫ+ σ̃xz, (3.17)

0 = p̃

(

∂f̃s
∂ỹ

)

ǫ− σ̃xy

(

∂f̃s
∂x̃

)

ǫ− σ̃yy

(

∂f̃s
∂ỹ

)

ǫ+ σ̃yz, (3.18)

0 = p̃+ σ̃xx + σ̃yy + σ̃xz

(

∂f̃s
∂x̃

)

ǫ+ σ̃yz

(

∂f̃s
∂ỹ

)

ǫ, (3.19)

at z̃ = f̃s(x̃, ỹ) .

At the glacier bed, we first for simplicity assume no-slip conditions, i.e.

~v = ~0, at z = fb(x, y) (3.20)

or, in the scaled form,

~̃v = ~0, at z̃ = f̃b(x̃, ỹ) . (3.21)

Rheology.

The rheology is expressed by Glen’s flow law (1.17) and after applying the scaling forms (3.7)-(3.11), it
becomes

σ̃xz = η̃

(

∂ṽx
∂z̃

+ ǫ2
∂ṽz
∂x̃

)

, (3.22)

σ̃yz = η̃

(

∂ṽy
∂z̃

+ ǫ2
∂ṽz
∂ỹ

)

, (3.23)

σ̃xy = ǫη̃

(

∂ṽx
∂ỹ

+
∂ṽy
∂x̃

)

, (3.24)

σ̃xx = 2ǫη̃
∂ṽx
∂x̃

, (3.25)

σ̃yy = 2ǫη̃
∂ṽy
∂ỹ

, (3.26)

η̃ =
1

(2ǫ−1XÃṼ) 1
3

, (3.27)

X =
[A](ρg)3H5

sc

[vh]Lsc
, (3.28)
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Ṽ =

(

∂ṽx
∂z̃

+ ǫ2
∂ṽz
∂x̃

)2

+

(

∂ṽy
∂z̃

+ ǫ2
∂ṽz
∂ỹ

)2

+ ǫ2
(

∂ṽx
∂ỹ

+
∂ṽy
∂x̃

)2

+ 4ǫ2
(

∂ṽx
∂x̃

)2

+ 4ǫ2
(

∂ṽy
∂ỹ

)2

+ 4ǫ2
(

∂ṽx
∂x̃

)(

∂ṽy
∂ỹ

)

. (3.29)

The inverse relation (1.18) expressed by the scaled quantities thereforereads as

∂ṽx
∂x̃

= ǫ−2XÃS̃σ̃xx , (3.30)

∂ṽy
∂ỹ

= ǫ−2XÃS̃σ̃yy , (3.31)

∂ṽx
∂ỹ

+
∂ṽy
∂x̃

= 2ǫ−2XÃS̃σ̃xy , (3.32)

∂ṽx
∂z̃

+ ǫ2
∂ṽz
∂x̃

= 2ǫ−1XÃS̃σ̃xz , (3.33)

∂ṽy
∂z̃

+ ǫ2
∂ṽz
∂ỹ

= 2ǫ−1XÃS̃σ̃yz , (3.34)

S̃ = σ̃
2
xx + σ̃

2
yy + σ̃xxσ̃yy + σ̃

2
xy + σ̃

2
xz + σ̃

2
yz.

(3.35)

3.3 The SIA-I algorithm

In this section, we derive an iterative algorithm for updating the velocity andstress fields. The iterations start
with the SIA-derived stress and velocity fields, which are then updated bysolving an approximate problem
that has more convenient numerical properties compared to the original setting. A crucial issue, convergence
of the iterative algorithm, i.e. existence of a fixed point of the solution operator, is ensured if the contractivity
of the iterations holds. A detailed theoretical analysis in full detail has yet to be undertaken, although in
Appendix A, we present a sketch of the convergence proof for the simplest case - Newtonian rheology with
uniform viscosity. The numerical examples presented in the following indicatethat the algorithm converges
for a wide range of ice-model parameters if the relaxation parameters controlling the iterations are chosen
to be sufficiently small.

To derive the algorithm, let us consider the system of equations (3.12)-(3.14) and assume that there is
an approximate solution in thekth iterative step, i.e. the field

~uk ≡ (p̃k, σ̃k
xx, σ̃

k
xy, σ̃

k
yy, σ̃

k
xz, σ̃

k
yz) . (3.36)

The solution in the(k + 1)th iteration is constructed in a two-step procedure. In the first half-step, we find
~uk+

1
2 as follows.

Denoting the exact solution of (3.12)-(3.14) by~u and defining the incrementδ~uk+
1
2 as

δ~uk+
1
2 = ~u− ~uk , (3.37)

the system of equations (3.12)-(3.14) for~u may be rewritten as a system of equations for the increment
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δuk+
1
2 , assuming that~uk is known. We therefore obtain

− ∂δp̃k+
1
2

∂x̃
ǫ +

∂δσ̃
k+ 1

2
xx

∂x̃
ǫ +

∂δσ̃
k+ 1

2
xy

∂ỹ
ǫ +

∂δσ̃
k+ 1

2
xz

∂z̃

=
∂p̃k

∂x̃
ǫ − ∂σ̃k

xx

∂x̃
ǫ −

∂σ̃k
xy

∂ỹ
ǫ − ∂σ̃k

xz

∂z̃
, (3.38)

− ∂δp̃k+
1
2

∂ỹ
ǫ +

∂δσ̃
k+ 1

2
xy

∂x̃
ǫ +

∂δσ̃
k+ 1

2
yy

∂ỹ
ǫ +

∂δσ̃
k+ 1

2
yz

∂z̃

=
∂p̃k

∂ỹ
ǫ −

∂σ̃k
xy

∂x̃
ǫ −

∂σ̃k
yy

∂ỹ
ǫ −

∂σ̃k
yz

∂z̃
, (3.39)

∂δp̃k+
1
2

∂z̃
ǫ − ∂δσ̃

k+ 1
2

xz

∂x̃
ǫ − ∂δσ̃

k+ 1
2

yz

∂ỹ
ǫ +

∂(δσ̃
k+ 1

2
xx + δσ̃

k+ 1
2

yy )

∂z̃

= −1− ∂p̃k

∂z̃
ǫ +

∂σ̃k
xz

∂x̃
ǫ +

∂σ̃k
yz

∂ỹ
ǫ −

∂(σ̃k
xx + σ̃

k
yy)

∂z̃
. (3.40)

We now retain only the stressesδp̃k+
1
2 , δσ̃

k+ 1
2

xz andδσ̃
k+ 1

2
yz in (3.38) and (3.39) and the stressδp̃k+

1
2 in

(3.40), and neglect all other terms on the left-hand sides of the equations.This approximation exactly cor-
responds to the traditional SIA approach, assuming that only the retaining stress components are dominant.
Here, this approach is, however, applied to the stress incrementsδ~u only, instead of the complete stress field
as in the SIA (e.g. Greve, 1997). Hence, none of the stress componentsfrom the previouskth iterative step
are omitted on the right-hand sides of (3.38)-(3.40). The SIA-like approximation results in the equations for
the stress increments as follows

−∂δp̃
k+ 1

2

∂x̃
ǫ +

∂δσ̃
k+ 1

2
xz

∂z̃
=

∂p̃k

∂x̃
ǫ − ∂σ̃k

xx

∂x̃
ǫ−

∂σ̃k
xy

∂ỹ
ǫ− ∂σ̃k

xz

∂z̃
, (3.41)

−∂δp̃
k+ 1

2

∂ỹ
ǫ +

∂δσ̃
k+ 1

2
yz

∂z̃
=

∂p̃k

∂ỹ
ǫ −

∂σ̃k
xy

∂x̃
ǫ−

∂σ̃k
yy

∂ỹ
ǫ −

∂σ̃k
yz

∂z̃
, (3.42)

∂δp̃k+
1
2

∂z̃
= −1− ∂p̃k

∂z̃
+

∂σ̃k
xz

∂x̃
ǫ+

∂σ̃k
yz

∂ỹ
ǫ −

∂(σ̃k
xx − σ̃

k
yy)

∂z̃
. (3.43)

Equation (3.43) is now integrated along the vertical coordinatez̃ from the computation point(x̃, ỹ, z̃) to
the boundary point(x̃, ỹ, f̃s(x̃, ỹ)), which yields the pressure incrementδp̃k+

1
2 at the computation point

(x̃, ỹ, z̃). This result is then substituted into (3.41) and (3.42) which, after the integration along the vertical

coordinatez̃, gives the incrementsδσ̃
k+ 1

2
xz , δσ̃

k+ 1
2

yz at the computation point(x̃, ỹ, z̃). The values of the
integrands at(x̃, ỹ, f̃s(x̃, ỹ)) are determined from the boundary conditions (3.17)-(3.19). To find them,the
same procedure as above is applied. The exact solution is decomposed intothekth iterative-step solution~uk

and the incrementδ~uk+
1
2 , and only increments iñp, σ̃xz, σ̃yz are retained to compensate for the discrepancy

in adjusting the boundary conditions in thekth iterative step. After some algebraic manipulation, we obtain
the boundary conditions for the increments in the form

δp̃k+
1
2 (·, f̃s(·)) = −p̃k(·, f̃s(·))− σ̃

k
xx(·, f̃s(·))− σ̃

k
yy(·, f̃s(·)) + ǫ2 . . . (3.44)

δσ̃
k+ 1

2
xz (·, f̃s(·)) = −σ̃

k
xz(·, f̃s(·)) + 2σ̃k

xx(·, f̃s(·))
(

∂f̃s
∂x̃

)

ǫ+ σ̃
k
xy(·, f̃s(·))

(

∂f̃s
∂ỹ

)

ǫ

+ σ̃
k
yy(·, f̃s(·))

(

∂f̃s
∂x̃

)

ǫ+ ǫ2 . . . (3.45)



44 CHAPTER 3. ITERATIVE IMPROVEMENT OF THE SHALLOW-ICE APPROXIMATION - SIA-I
ALGORITHM

δσ̃
k+ 1

2
yz (·, f̃s(·)) = −σ̃

k
yz(·, f̃s(·)) + σ̃

k
xx(·, f̃s(·))

(

∂f̃s
∂ỹ

)

ǫ+ σ̃
k
xy(·, f̃s(·))

(

∂f̃s
∂x̃

)

ǫ

+ 2σ̃k
yy(·, f̃s(·))

(

∂f̃s
∂ỹ

)

ǫ+ ǫ2 . . . , (3.46)

where(·, f̃s(·)) stands for(x̃, ỹ, f̃s(x̃1, x̃2)) for brevity and we do not explicitly write the terms withǫ2,
because they will be excluded from the computations in the algorithm. Strictly speaking, this cannot be jus-
tified by the introduced scaling because we do not assume the scaled quantities and their spatial derivatives
to be of the order of unity. What we present may hence be viewed as merelya formal procedure, which
will be justified only by the final performance of the algorithm. However, onemay recognize that what
we are performing is nothing else but the SIA applied only to the incremental stresses rather than the full
stress-field solution.

The integration of (3.43), followed by the integration of (3.41) and (3.42) with the use of (3.44)-(3.46),

now results in the following formulae for the stress incrementsδp̃k+
1
2 , δσ̃

k+ 1
2

xz andδσ̃
k+ 1

2
yz :

δp̃k+
1
2 (·, z̃) = −p̃k(·, z̃)− σ̃

k
xx(·, z̃)− σ̃

k
yy(·, z̃) + (f̃s(·)− z̃)

− ǫ
∂

∂x̃

∫ f̃s(·)

z̃
σ̃
k
xz(·, z̃′)dz̃′ − ǫ

∂

∂ỹ

∫ f̃s(·)

z̃
σ̃
k
yz(·, z̃′)dz̃′

+ ǫσ̃k
xz(·, f̃s(·))

∂f̃s(·)
∂x̃

+ ǫσ̃k
yz(·, f̃s(·))

∂f̃s(·)
∂ỹ

+ ǫ2 . . . , (3.47)

δσ̃
k+ 1

2
xz (·, z̃) = −σ̃

k
xz(·, z̃)− ǫ

∂f̃s(·)
∂x̃

(f̃s(·)− z̃)

+ 2ǫ
∂

∂x̃

∫ f̃s

z̃
σ̃
k
xx(·, z̃′)dz̃′

+ ǫ
∂

∂ỹ

∫ f̃s

z̃
σ̃
k
xy(·, z̃′)dz̃′

+ ǫ
∂

∂x̃

∫ f̃s

z̃
σ̃
k
yy(·, z̃′)dz̃′ + ǫ2 . . . , (3.48)

δσ̃
k+ 1

2
yz (·, z̃) = −σ̃

k
yz(·, z̃)− ǫ

∂f̃s(·)
∂ỹ

(f̃s(·)− z̃)

+ ǫ
∂

∂ỹ

∫ f̃s

z̃
σ̃
k
xx(·, z̃′)dz̃′

+ ǫ
∂

∂x̃

∫ f̃s

z̃
σ̃
k
xy(·, z̃′)dz̃′

+ 2ǫ
∂

∂ỹ

∫ f̃s

z̃
σ̃
k
yy(·, z̃′)dz̃′ + ǫ2 . . . , (3.49)

where the dot in(·) stands for the pair(x̃, ỹ) for brevity and again, terms withǫ2 are not considered any
further and are therefore not explicitly written.

We now define the updated solution in thek + 1
2 step as

~uk+
1
2 = ~uk + θ1δ~u

k+ 1
2 , (3.50)
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whereθ1 ∈ (0, 1〉 is the first relaxation parameter of the iterative scheme. Note that, by the previous
derivations, we consider

δ~uk+
1
2 = (δp̃k+

1
2 , 0, 0, 0, δσ̃

k+ 1
2

xz , δσ̃
k+ 1

2
yz ) , (3.51)

that is, only these three stress components are updated in the first half-step and

δσ̃
k+ 1

2
xx = δσ̃

k+ 1
2

xy = δσ̃
k+ 1

2
yy = 0 . (3.52)

In the second half-step, the consistency of the stress field with the velocity field must be ensured, that is,
the rheological equation must be adjusted.

In order to obtain the velocity field from the rheological equations, we firstsplit the equations (3.33) and
(3.34) in the following manner:

∂ṽ
k+ 1

2
x

∂z̃
= 2ǫ−1XÃS̃k+ 1

2 σ̃
k+ 1

2
xz − ǫ2

∂ṽ
k− 1

2
z

∂x̃
, (3.53)

∂ṽ
k+ 1

2
y

∂z̃
= 2ǫ−1XÃS̃k+ 1

2 σ̃
k+ 1

2
yz − ǫ2

∂ṽ
k− 1

2
z

∂ỹ
, (3.54)

that is, the terms withǫ2 on the left-hand sides in (3.33) and (3.34) are taken from the previous time step.
The result can now be integrated along the vertical coordinatez̃ from the glacier bed(x̃, ỹ, f̃b(x̃, ỹ)) to
the computation point(x̃, ỹ, z̃). Making use of the no-slip boundary condition (3.21) and considering the

updated stress fieldσ
k+ 1

2
ij , we obtain

ṽ
k+ 1

2
x (·, z̃) = 2ǫ−1X

∫ z̃

f̃b(·)
ÃS̃k+ 1

2 σ̃
k+ 1

2
xz (·, z̃′)dz̃′ − ǫ2

∫ z̃

f̃b(·)

∂ṽ
k− 1

2
z

∂x̃
(·, z̃′) dz̃′ , (3.55)

ṽ
k+ 1

2
y (·, z̃) = 2ǫ−1X

∫ z̃

f̃b(·)
ÃS̃k+ 1

2 σ̃
k+ 1

2
yz (·, z̃′)dz̃′ − ǫ2

∫ z̃

f̃b(·)

∂ṽ
k− 1

2
z

∂ỹ
(·, z̃′) dz̃′ . (3.56)

The velocityṽ
k+ 1

2
z is then obtained by the integration of the incompressibility condition (3.15) from(·, f̃b(·))

to (·, z̃). Making use of the no-slip boundary condition (3.21), we obtain

ṽ
k+ 1

2
z (·, z̃) = −

∫ z̃

f̃b(·)





∂ṽ
k+ 1

2
x

∂x̃
+
∂ṽ

k+ 1
2

y

∂ỹ



 (·, z̃′)dz̃′ . (3.57)

This completes the determination of the velocity field~vk+
1
2 .

We also propose an alternative to the treatment of theǫ2 terms in (3.33) and (3.34) and thẽvz compo-
nent. If rheology equations (3.30) and (3.31) are combined with the incompressibility condition (3.15) and
evaluated at thek + 1

2 step, we obtain

∂ṽ
k+ 1

2
z

∂z̃
= −ǫ−2XÃS̃k+ 1

2 (σ̃
k+ 1

2
xx + σ̃

k+ 1
2

yy )

= −ǫ−2XÃS̃k+ 1
2 (σ̃k

xx + σ̃
k
yy) . (3.58)

This relation can be integrated along the vertical coordinate from the base tothe point(·, z̃). Using the

no-slip boundary condition at the base, a formula forṽ
k+ 1

2
z is obtained

ṽ
k+ 1

2
z (·, z̃) = −ǫ−2X

∫ z̃

f̃b(·)
ÃS̃k+ 1

2 (σ̃k
xx + σ̃

k
yy)(·, z̃′) dz̃′ . (3.59)
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Now equations (3.33) and (3.34) may be evaluated at thek + 1
2 step:

∂ṽ
k+ 1

2
x

∂z̃
= 2ǫ−1XÃS̃k+ 1

2 σ̃
k+ 1

2
xz − ǫ2

∂ṽ
k+ 1

2
z

∂x̃
, (3.60)

∂ṽ
k+ 1

2
y

∂z̃
= 2ǫ−1XÃS̃k+ 1

2 σ̃
k+ 1

2
yz − ǫ2

∂ṽ
k+ 1

2
z

∂ỹ
, (3.61)

leading to alternative formulae to (3.55) and (3.56):

ṽ
k+ 1

2
x (·, z̃) = 2ǫ−1X

∫ z̃

f̃b(·)
ÃS̃k+ 1

2 (·, z̃′)σ̃k+ 1
2

xz (·, z̃′)dz̃′

+ X
∫ z̃

f̃b(·)

∂

∂x̃

∫ z̃′

f̃b(·)
ÃS̃k+ 1

2 (σ̃k
xx + σ̃

k
yy)(·, z̃′′)dz̃′′ dz̃′ , (3.62)

ṽ
k+ 1

2
y (·, z̃) = 2ǫ−1X

∫ z̃

f̃b(·)
ÃS̃k+ 1

2 (·, z̃′)σ̃k+ 1
2

yz (·, z̃′)dz̃′

+ X
∫ z̃

f̃b(·)

∂

∂ỹ

∫ z̃′

f̃b(·)
ÃS̃k+ 1

2 (σ̃k
xx + σ̃

k
yy)(·, z̃′′)dz̃′′ dz̃′ . (3.63)

By either way described above, we obtained the velocity field at thek + 1
2 time step. This field is now

used to update the stress components according to the rheological equations to reduce the inconsistency of
the updated velocity field with stresses. The substitution of the velocity~vk+

1
2 into the rheological equations

(3.22)-(3.29), with all the variables evaluated at thek + 1
2 step, yields the stress components that forms a

stress vector denoted by~u⋆k+
1
2 .

The new~uk+1 is finally defined as a convex combination of the previous estimate given by (3.50) and
the rheologically-consistent estimate~u⋆k+

1
2 , i.e. we define

~uk+1 = ~uk+
1
2 (1− θ2) + θ2~u

⋆k+ 1
2 , (3.64)

whereθ2 ∈ (0, 1〉 is the second relaxation parameter of the iterative scheme.

We call the presented approach that iteratively improves the SIA solution theSIA-I algorithm. Its
computational steps may symbolically be depicted by the following scheme (Table 3.1), starting fromuk:

~uk // (3.47)− (3.49) //
δp̃k+

1
2 , δσ̃

k+ 1
2

xz , δσ̃
k+ 1

2
yz

��

~uk+
1
2

��

(3.50)oo

~uk+1

KS

(3.55)− (3.57) or (3.62), (3.63), (3.59) //
~vk+

1
2

��
(3.64)

OO

~u⋆k+
1
2

oo (3.22)− (3.29)oo

Table 3.1: SIA-I scheme
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3.4 SIA-I in general curvilinear orthogonal coordinates

In accordance with our previous approach, we also present the derivation of the SIA-I algorithm in general
orthogonal curvilinear coordinates as introduced in Section 2.2.

In the first half-step of the iterative procedure, the balance equation ofmomentum (equation of motion)
(1.27) is updated. With the scaling introduced by (3.7)-(3.11), and with the expressions for gradient of
scalar and divergence of tensor operators in general orthogonal curvilinear coordinates (see Appendix D),
the linear momentum equations (3.1) may be rewritten in the following manner:

0 = − ǫ

h̃1

∂p̃

∂x̃1
+

ǫ

h̃1h̃2h̃3

∂

∂x̃1
(h̃2h̃3σ̃11) +

ǫ

h̃1h̃2h̃3

∂

∂x̃2
(h̃1h̃3σ̃12) +

1

h̃1h̃2h̃3

∂

∂x̃3
(h̃1h̃2σ̃13)

+
ǫ

h̃1h̃2

∂h̃1
∂x̃2

σ̃12 −
ǫ

h̃1h̃2

∂h̃2
∂x̃1

σ̃22 +
1

h̃1h̃3

∂h̃1
∂x̃3

σ̃13 +
ǫ

h̃1h̃3

∂h̃3
∂x̃1

(σ̃11 + σ̃22) + ẽ1 , (3.65)

0 = − ǫ

h̃2

∂p̃

∂x̃2
+

ǫ

h̃1h̃2h̃3

∂

∂x̃1
(h̃2h̃3σ̃12) +

ǫ

h̃1h̃2h̃3

∂

∂x̃2
(h̃1h̃3σ̃22) +

1

h̃1h̃2h̃3

∂

∂x̃3
(h̃1h̃2σ̃23)

+
ǫ

h̃1h̃2

∂h̃2
∂x̃1

σ̃12 −
ǫ

h̃1h̃2

∂h̃1
∂x̃2

σ̃11 +
1

h̃2h̃3

∂h̃2
∂x̃3

σ̃23 +
ǫ

h̃2h̃3

∂h̃3
∂x̃2

(σ̃11 + σ̃22) + ẽ2 , (3.66)

0 = − 1

h̃3

∂p̃

∂x̃3
+

ǫ

h̃1h̃2h̃3

∂

∂x̃1
(h̃2h̃3σ̃13) +

ǫ

h̃1h̃2h̃3

∂

∂x̃2
(h̃1h̃3σ̃23)−

1

h̃1h̃2h̃3

∂

∂x̃3
(h̃1h̃2(σ̃11 + σ̃22)

+
ǫ

h̃1h̃3

∂h̃3
∂x̃1

σ̃13 −
1

h̃1h̃3

∂h̃1
∂x̃3

σ̃11 +
ǫ

h̃2h̃3

∂h̃3
∂x̃2

σ̃23 −
1

h̃2h̃3

∂h̃2
∂x̃3

σ̃22 + ẽ3 , (3.67)

with ẽi :=
gi
‖~g‖ . As in the Cartesian case, we introduce the stress increments for pressure and dominant shear

stressesδp̃k+
1
2 , δσ̃

k+ 1
2

13 , δσ̃
k+ 1

2
23 , updating in the first half-step of thek-th iteration the stress field. Keeping

δp̃k+
1
2 , δσ̃

k+ 1
2

xz , δσ̃
k+ 1

2
yz in (3.65), (3.66) and onlyδp̃k+

1
2 in (3.67), the equations (3.65)-(3.67) are rewritten

as explicit equations for the increments, starting with the last one:

∂δp̃k+
1
2

∂x̃3
= −∂p̃

k

∂x̃3
− ∂σ̃k

11

∂x̃3
− ∂σ̃k

22

∂x̃3
+ ǫ

h̃3

h̃1

∂σ̃k
13

∂x̃1
+ ǫ

h̃3

h̃2

∂σ̃k
23

∂x̃2

+ ǫσ̃k
13α13 + ǫσ̃k

23α23 − σ̃
k
11α11 − σ̃

k
22α22 + ẽ3h̃3 , (3.68)

where

α13 :=
1

h̃1h̃2

∂(h̃2h̃3)

∂x̃1
+

1

h̃1

∂h̃3
∂x̃1

, α23 :=
1

h̃1h̃2

∂(h̃1h̃3)

∂x̃2
+

1

h̃2

∂h̃3
∂x̃2

,

α11 :=
1

h̃1h̃2

∂(h̃1h̃2)

∂x̃3
+

1

h̃1

∂h̃1
∂x̃3

, α22 :=
1

h̃1h̃2

∂(h̃1h̃2)

∂x̃3
+

1

h̃2

∂h̃2
∂x̃3

.

(3.69)

For σ̃13 andσ̃23 in (3.65) and (3.66), we first notice that it holds that

1

h̃1h̃2h̃3

∂

∂x̃3

(

h̃1h̃2σ̃13

)

+
1

h̃1h̃3

∂h̃1
∂x̃3

σ̃13 =
1

h̃21h̃2h̃3

∂

∂x̃3

(

h̃21h̃2σ̃13

)

, (3.70)

1

h̃1h̃2h̃3

∂

∂x̃3

(

h̃1h̃2σ̃23

)

+
1

h̃2h̃3

∂h̃2
∂x̃3

σ̃23 =
1

h̃1h̃22h̃3

∂

∂x̃3

(

h̃1h̃
2
2σ̃23

)

, (3.71)
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which allows us to postulate the equation for increments in the following manner:

− ∂

∂x̃3
(h̃21h̃2δσ̃

k+ 1
2

13 ) + ǫh̃1h̃2h̃3
∂δp̃k+

1
2

∂x̃1
=

∂

∂x̃3
(h̃21h̃2σ̃

k
13)− ǫh̃1h̃2h̃3

∂p̃k

∂x̃1
+ ǫh̃1h̃2h̃3

∂σ̃k
11

∂x̃1

+ ǫh̃21h̃3
∂σ̃k

12

∂x̃2
+ ǫ(σ̃k

11β11 + σ̃
k
12β12 + σ̃

k
22β22)

+ ẽ1h̃
2
1h̃2h̃3 , (3.72)

and

− ∂

∂x̃3
(h̃1h̃

2
2δσ̃

k+ 1
2

23 ) + ǫh̃1h̃2h̃3
∂δp̃k+

1
2

∂x̃2
=

∂

∂x̃3
(h̃1h̃

2
2σ̃

k
23)− ǫh̃1h̃2h̃3

∂p̃k

∂x̃2
+ ǫh̃22h̃3

∂σ̃k
12

∂x̃1

+ ǫh̃1h̃2h̃3
∂σ̃k

22

∂x̃2
+ ǫ(σ̃k

11γ11 + σ̃
k
12γ12 + σ̃

k
22γ22)

+ ẽ2h̃1h̃
2
2h̃3 , (3.73)

where

β11 := h̃1
∂(h̃2h̃3)

∂x̃1
+ h̃1h̃2

∂h̃3
∂x̃1

, γ11 := −h̃2h̃3
∂h̃1
∂x̃2

+ h̃1h̃2
∂h̃3
∂x̃2

β22 := −h̃1h̃3
∂h̃2
∂x̃1

+ h̃1h̃2
∂h̃3
∂x̃1

, γ22 := h̃2
∂(h̃1h̃3)

∂x̃2
+ h̃1h̃2

∂h̃3
∂x̃2

,

β12 := h̃1
∂(h̃1h̃3)

∂x̃2
+ h̃1h̃3

∂h̃1
∂x̃2

, γ12 := h̃2
∂(h̃2h̃3)

∂x̃1
+ h̃2h̃3

∂h̃2
∂x̃1

.

Before we solve the approximate system for stress increments, we first evaluate the stress condition at
the upper surface (1.29). Neglecting the atmospheric pressurepatm, which is small compared to typical
hydrostatic pressures in ice sheets, and expressing (1.29) in the curvilinear coordinates by using the explicit
description of the free surface, this condition reads as:

0 = ǫ
h̃3

h̃1

∂f̃s
∂x̃1

p̃− ǫ
h̃3

h̃1

∂f̃s
∂x̃1

σ̃11 − ǫ
h̃3

h̃2

∂f̃s
∂x̃2

σ̃12 + σ̃13 , (3.74)

0 = ǫ
h̃3

h̃2

∂f̃s
∂x̃2

p̃− ǫ
h̃3

h̃1

∂f̃s
∂x̃1

σ̃12 − ǫ
h̃3

h̃2

∂f̃s
∂x̃2

σ̃22 + σ̃23 , (3.75)

0 = −p̃− ǫ
h̃3

h̃1

∂f̃s
∂x̃1

σ̃13 − ǫ
h̃3

h̃2

∂f̃s
∂x̃2

σ̃23 − σ̃11 − σ̃22 , (3.76)

at x̃3 = f̃s(x̃1, x̃2). We again expect that for each iteration step of the SIA-I procedure, this set of boundary
conditions need not be fulfilled exactly and we again compensate the possiblediscrepancy by the stress
incrementsδp̃, δσ̃13, δσ̃23. We may explicitly express the increments by solving the algebraic system
(3.74)-(3.76), which, after omitting the terms multiplied by the small factorǫ2, leads to

δp̃k+
1
2 (·, f̃s) = −(p̃k + σ̃

k
11 + σ̃

k
22)(·, f̃s) , (3.77)

δσ̃
k+ 1

2
13 (·, f̃s) =

(

−σ̃
k
13 + 2ǫ

h̃3

h̃1

∂f̃s
∂x̃1

σ̃
k
11 + ǫ

h̃3

h̃1

∂f̃s
∂x̃1

σ̃
k
22 + ǫ

h̃3

h̃2

∂f̃s
∂x̃2

σ̃
k
12

)

(·, f̃s) , (3.78)

δσ̃
k+ 1

2
23 (·, f̃s) =

(

−σ̃
k
23 + ǫ

h̃3

h̃2

∂f̃s
∂x̃2

σ̃
k
11 + 2ǫ

h̃3

h̃2

∂f̃s
∂x̃2

σ̃
k
22 + ǫ

h̃3

h̃1

∂f̃s
∂x̃1

σ̃
k
12

)

(·, f̃s) . (3.79)
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Equation (3.68) can now be integrated along the ”vertical” coordinatex̃3 from (·, x̃3) to (·, f̃s(·)). With the
use of (3.76), we obtain:

δp̃k+
1
2 (·, x̃3) = −(p̃k + σ̃

k
11 + σ̃

k
22)(·, x̃3) +

∫ f̃s

x̃3

(σ̃k
11α11 + σ̃

k
22α22) dx̃

′
3 −

∫ f̃s

x̃3

ẽ3h̃3 dx̃
′
3

− ǫ

∫ f̃s

x̃3

(

h̃3

h̃1

∂σ̃k
13

∂x̃1
+
h̃3

h̃2

∂σ̃k
23

∂x̃2
+ σ̃

k
13α13 + σ̃

k
23α23

)

dx̃′3. (3.80)

This expression can be inserted into (3.72) and (3.73), which again afterintegration along the ”vertical”
coordinatẽx3 from (·, x̃3) to (·, f̃s(·)), with the use of (3.78), (3.79) and after neglecting the terms multiplied
by the factorǫ2, finally gives

h̃21h̃2δσ̃
k+ 1

2
13 (·, x̃3) = −h̃21h̃2σ̃k

13(·, x̃3) + ǫ

∫ f̃s

x̃3

h̃1h̃2h̃3
∂

∂x̃1

∫ f̃s

x̃′

3

ẽ3h̃3 dx̃
′′
3 dx̃

′
3 +

∫ f̃s

x̃3

ẽ1h̃
2
1h̃2h̃3 dx̃

′
3

+ ǫ

(

2

∫ f̃s

x̃3

h̃1h̃2h̃3
∂σ̃k

11

∂x̃1
dx̃′3 +

∫ f̃s

x̃3

h̃1h̃2h̃3
∂σ̃k

22

∂x̃1
dx̃′3 +

∫ f̃s

x̃3

h̃21h̃3
∂σ̃k

12

∂x̃2
dx̃′3

)

+ ǫ

(

2σ̃k
11h̃1h̃2h̃3

∂f̃s
∂x̃1

+ σ̃
k
22h̃1h̃2h̃3

∂f̃s
∂x̃1

+ σ̃
k
12h̃

2
1h̃3

∂f̃s
∂x̃2

)

(·, f̃s)

+ ǫ

∫ f̃s

x̃3

σ̃
k
11β11 + σ̃

k
22β22 + σ̃

k
12β12) dx̃

′
3

− ǫ

∫ f̃s

x̃3

h̃1h̃2h̃3
∂

∂x̃1

∫ f̃s

x̃′

3

(σ̃k
11α11 + σ̃

k
22α22) dx̃

′′
3 dx̃

′
3 , (3.81)

and

h̃1h̃
2
2δσ̃

k+ 1
2

23 (·, x̃3) = −h̃1h̃22σ̃k
23(·, x̃3) + ǫ

∫ f̃s

x̃3

h̃1h̃2h̃3
∂

∂x̃2

∫ f̃s

x̃′

3

ẽ3h̃3 dx̃
′′
3 dx̃

′
3 +

∫ f̃s

x̃3

ẽ2h̃1h̃
2
2h̃3 dx̃

′
3

+ ǫ

(

∫ f̃s

x̃3

h̃1h̃2h̃3
∂σ̃k

11

∂x̃2
dx̃′3 + 2

∫ f̃s

x̃3

h̃1h̃2h̃3
∂σ̃k

22

∂x̃2
dx̃′3 +

∫ f̃s

x̃3

h̃22h̃3
∂σ̃k

12

∂x̃1
dx̃′3

)

+ ǫ

(

σ̃
k
11h̃1h̃2h̃3

∂f̃s
∂x̃2

+ σ̃
k
22h̃1h̃2h̃3

∂f̃s
∂x̃2

+ σ̃
k
12h̃

2
2h̃3

∂f̃s
∂x̃1

)

(·, f̃s)

+ ǫ

∫ f̃s

x̃3

σ̃
k
11γ11 + σ̃

k
22γ22 + σ̃

k
12γ12) dx̃

′
3

− ǫ

∫ f̃s

x̃3

h̃1h̃2h̃3
∂

∂x̃2

∫ f̃s

x̃′

3

(σ̃k
11α11 + σ̃

k
22α22) dx̃

′′
3 dx̃

′
3 . (3.82)

For the standard choice of Cartesian coordinates with the verticalx3 axis, we have, according to (2.10),
h̃1 = h̃2 = h̃3 = 1, andẽ3 = −1, ẽ1 = ẽ2 = 0. Formulae (3.80)-(3.82) then reduce to the form (3.47)-
(3.49) from the previous section. As another example, let us consider thespherical coordinates as introduced
in (2.2). Then, according to (2.15), we have

h̃1 = (1 + ǫζ̃) , (3.83)

h̃2 = (1 + ǫζ̃) sinϑ , (3.84)

h̃3 = 1 , (3.85)
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α13 =
cotϑ
1+ǫζ̃

, α23 = 0 ,

α11 =
3ǫ

1+ǫζ̃
, α22 =

3ǫ
1+ǫζ̃

,

β11 = (1 + ǫζ̃)2 cosϑ , γ11 = 0 ,
β22 = −(1 + ǫζ̃)2 cosϑ , γ22 = 0 ,
β12 = 0 , γ12 = 2(1 + ǫζ̃)2 sinϑ cosϑ .

and~̃e = (0, 0,−1).

Now, we insert these expressions to (3.80)-(3.82), neglect terms multipliedby ǫ2 and arrive at the fol-
lowing:

δp̃k+
1
2 = −p̃k − σ̃

k
ϑϑ − σ̃

k
ϕϕ + 3ǫ

∫ f̃s

ζ̃
(σ̃k

ϑϑ + σ̃
k
ϕϕ) dζ̃

′ + (f̃s − ζ̃)

− ǫ

∫ f̃s

ζ̃

∂σ̃ϑζ

∂ϑ
dζ̃ ′ − ǫ

sinϑ

∫ f̃s

ζ̃

∂σ̃ϕζ

∂ϕ
dζ̃ ′ − ǫ cotϑ

∫ f̃s

ζ̃
σ̃ϑζ dζ̃

′ , (3.86)

δσ̃
k+ 1

2
ϑζ = −σ̃

k
ϑζ − ǫ

∂f̃s
∂ϑ

(f̃s − ζ̃)

+ ǫ

(

2

∫ f̃s

ζ̃

∂σ̃k
ϑϑ

∂ϑ
dζ̃ ′ +

∫ f̃s

ζ̃

∂σ̃k
ϕϕ

∂ϑ
dζ̃ ′ +

1

sinϑ

∫ f̃s

ζ̃

∂σ̃k
ϑϕ

∂ϕ
dζ̃ ′

)

+ ǫ

(

2σ̃k
ϑϑ

∂f̃s
∂ϑ

+ σ̃
k
ϕϕ

∂f̃s
∂ϑ

+
σ̃
k
ϑϕ

sinϑ

∂f̃s
∂ϕ

)

(·, f̃s) + ǫ cotϑ

∫ f̃s

ζ̃
(σ̃k

ϑϑ − σ̃
k
ϕϕ) dζ̃

′ ,

δσ̃
k+ 1

2
ϕζ = −σ̃ϕr −

ǫ

sinϑ

∂f̃s
∂ϕ

(f̃s − ζ̃)

+ ǫ

(

1

sinϑ

∫ f̃s

ζ̃

∂σ̃k
ϑϑ

∂ϕ
dζ̃ ′ +

2

sinϑ

∫ f̃s

ζ̃

∂σ̃k
ϕϕ

∂ϕ
dζ̃ ′ +

∫ f̃s

ζ̃

∂σ̃k
ϑϕ

∂ϑ
dζ̃ ′

)

+ ǫ

(

σ̃
k
ϑϑ

sinϑ

∂f̃s
∂ϕ

+ 2
σ̃
k
ϕϕ

sinϑ

∂f̃s
∂ϕ

+ σ̃
k
ϑϕ

∂f̃s
∂ϑ

)

(·, f̃s) + 2ǫ cotϑ

∫ f̃s

ζ̃
σ̃
k
ϑϕ dζ̃

′ .

The computed stress updates are added to the stress field according to (3.50).

In the second half-step, the stress field is updated in order to be consistent with the rheology. Taking
the Glen’s flow law (1.18) and inspecting the ”13” and ”23” components of this tensorial relation, using
the general orthogonal coordinates (Appendix D), and applying the scaling (3.7)-(3.11) from the previous
section, we obtain

∂

∂x̃3

(

ṽ1

h̃1

)

+ ǫ2

(

h̃3

h̃1

)2
∂

∂x̃1

(

ṽ3

h̃3

)

= 2ǫ−1XÃ h̃3
h̃1

S̃σ̃13 , (3.87)

∂

∂x̃3

(

ṽ2

h̃2

)

+ ǫ2

(

h̃3

h̃2

)2
∂

∂x̃2

(

ṽ3

h̃3

)

= 2ǫ−1XÃ h̃3
h̃2

S̃σ̃23 , (3.88)

where
S̃ = σ̃

2
11 + σ̃

2
22 + σ̃11σ̃22 + σ̃

2
12 + σ̃

2
13 + σ̃

2
23 . (3.89)

Now, as in the previous section, we have two possibilities of treating the ”ǫ2” terms in (3.87) and (3.88).
In the first case, we take these terms from(k − 1

2)-th iteration and integrate both equations along the ”ver-
tical” coordinatex̃3 from the base(·, f̃b) to the computational point(·, x̃3). Assuming the basal velocity
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~̃vk+
1
2 (·, f̃b) is either prescribed independently or given by the sliding law as a function of σ̃k+ 1

2 , (see Sec-
tion 3.5.7), we arrive at the updated velocity field:

ṽ
k+ 1

2
1 (·, x̃3) =

h̃1(·, x̃3)
h̃1(·, f̃b)

ṽ
k+ 1

2
1 (·, f̃b) + 2ǫ−1X h̃1(·, x̃3)

∫ x̃3

f̃b

h̃3

h̃1
ÃS̃k+ 1

2 σ̃
k+ 1

2
13 (·, x̃′3) dx̃′3

− ǫ2h̃1(·, x̃3)
∫ x̃3

f̃b

(

h̃3

h̃1

)2
∂

∂x̃1





ṽ
k− 1

2
3

h̃3



 (·, x̃′3) dx̃′3 , (3.90)

ṽ
k+ 1

2
2 (·, x̃3) =

h̃2(·, x̃3)
h̃2(·, f̃b)

ṽ
k+ 1

2
2 (·, f̃b) + 2ǫ−1X h̃2(·, x̃3)

∫ x̃3

f̃b

h̃3

h̃2
ÃS̃k+ 1

2 σ̃
k+ 1

2
23 (·, x̃′3) dx̃′3

− ǫ2h̃2(·, x̃3)
∫ x̃3

f̃b

(

h̃3

h̃2

)2
∂

∂x̃2





ṽ
k− 1

2
3

h̃3



 (·, x̃′3) dx̃′3 . (3.91)

The ”vertical” velocity component̃v
k+ 1

2
3 can be obtained from the mass balance (continuity) equation (1.25),

which, with the use of (D.12) and the scaling (3.7)-(3.11) reads as

0 =
∂

∂x̃3
(h̃1h̃2ṽ3) +

∂

∂x̃1
(h̃2h̃3ṽ1) +

∂

∂x̃2
(h̃1h̃3ṽ2) . (3.92)

After integration along the vertical coordinate as in the case ofṽ1, ṽ2, we arrive at the final expression:

ṽ
k+ 1

2
3 (·, x̃3) =

h̃1(·, f̃b)h̃2(·, f̃b)
h̃1(·, x̃3)h̃2(·, x̃3)

ṽ
k+ 1

2
3 (·, f̃b)

− 1

h̃1(·, x̃3)h̃2(·, x̃3)

∫ x̃3

f̃b

(

∂

∂x̃1
(h̃2h̃3ṽ

k+ 1
2

1 ) +
∂

∂x̃2
(h̃1h̃3ṽ

k+ 1
2

2 )

)

(·, x̃′3) dx̃′3 . (3.93)

In the previous sections, we have discussed only the case of no-slip conditions at the base. The case pre-
sented here is slightly more general, as non-zero basal velocities can alsobe taken into account. This is
crucial for the implementation of either non-homogeneous Dirichlet boundary conditions for velocity or
even a sliding law, as will be presented in Section 3.5.7.

However, for no-slip conditions and Cartesian geometry, we obtain the formulae (3.55)-(3.57). For
spherical coordinates, introduced in (2.2), we have

ṽ
k+ 1

2
ϑ (·, ζ̃) =

1 + ǫζ̃

1 + ǫf̃b
ṽ
k+ 1

2
ϑ (·, f̃b) + 2ǫ−1X (1 + ǫζ̃)

∫ ζ̃

f̃b

1

1 + ǫζ̃ ′
ÃS̃k+ 1

2 σ̃
k+ 1

2
ϑζ (·, ζ̃ ′) dζ̃ ′

− ǫ2(1 + ǫζ̃)

∫ ζ̃

f̃b

(

1

1 + ǫζ̃ ′

)2 ∂ṽ
k− 1

2
ζ

∂ϑ
(·, ζ̃ ′) dζ̃ ′ , (3.94)

ṽ
k+ 1

2
ϕ (·, ζ̃) =

1 + ǫζ̃

1 + ǫf̃b
ṽ
k+ 1

2
ϕ (·, f̃b) + 2ǫ−1X (1 + ǫζ̃)

∫ ζ̃

f̃b

1

1 + ǫζ̃ ′
ÃS̃k+ 1

2 σ̃
k+ 1

2
ϕζ (·, ζ̃ ′) dζ̃ ′

− ǫ2(1 + ǫζ̃)

∫ ζ̃

f̃b

(

1

1 + ǫζ̃ ′

)2 1

sinϑ

∂ṽ
k− 1

2
ζ

∂ϕ
(·, ζ̃ ′) dζ̃ ′ , (3.95)

ṽ
k+ 1

2
ζ (·, ζ̃) =

(1 + ǫf̃b)
2

(1 + ǫζ̃)2
ṽ
k+ 1

2
ζ (·, f̃b)−

1

(1 + ǫζ̃)2 sinϑ

∫ ζ̃

f̃b

(1 + ǫζ̃ ′)





∂

∂ϑ
(sinϑṽ

k+ 1
2

ϑ ) +
∂ṽ

k+ 1
2

ϕ

∂ϕ



 (·, ζ̃ ′) dζ̃ ′ .

(3.96)
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The second possibility of treating the ”ǫ2” terms in (3.87) and (3.88), lies in first computing the vertical
velocity ṽ3, which is then inserted into (3.87) and (3.88) and again these equations areintegrated along the
vertical coordinate in order to obtain the velocity componentsṽ1, ṽ2. The procedure starts from expressing
”33” component of the rheological equation (1.18). When scaled, and with σ33 expressed byσ33 = −σ11−
σ22 (sinceσ is traceless), it reads as

d̃33 = −ǫ−2XÃS̃(σ̃11 + σ̃22) , (3.97)

which, with the use of the definition ofd33 in curvilinear coordinates (3.118), can be taken at the(k+ 1
2)-th

iteration as follows

∂ṽ
k+ 1

2
3

∂x̃3
= −





ṽ
k− 1

2
1

h̃1

∂h̃3
∂x̃1

+
ṽ
k− 1

2
2

h̃2

∂h̃3
∂x̃2



− ǫ−2X h̃3ÃS̃k+ 1
2 (σ̃

k+ 1
2

11 + σ̃
k+ 1

2
22 ) . (3.98)

Now this form allows us to obtaiñv
k+ 1

2
3 by vertical integration, considering again the value at the base from

thek-th iteration as

ṽ
k+ 1

2
3 (·, x̃3) = ṽ

k+ 1
2

3 (·, f̃b)−
∫ x̃3

f̃b





ṽ
k− 1

2
1

h̃1

∂h̃3
∂x̃1

+
ṽ
k− 1

2
2

h̃2

∂h̃3
∂x̃2



 (·, x̃′3) dx̃′3

− ǫ−2X
∫ x̃3

f̃b

h̃3ÃS̃k+ 1
2 (σ̃

k+ 1
2

11 + σ̃
k+ 1

2
22 )(·, x̃′3) dx̃′3 . (3.99)

Substituting now̃v
k+ 1

2
3 into (3.87) and (3.88) for̃v3, and integrating along the vertical coordinate from the

base(·, f̃b(·)) to the computational point(·, x̃3), we arrive at

ṽ
k+ 1

2
1 (·, x̃3) =

h̃1(·, x̃3)
h̃1(·, f̃b)

ṽ
k+ 1

2
1 (·, f̃b) + 2ǫ−1X h̃1(·, x̃3)

∫ x̃3

f̃b

h̃3

h̃1
ÃS̃k+ 1

2 σ̃
k+ 1

2
13 (·, x̃′3) dx̃′3

− ǫ2h̃1(·, x̃3)
∫ x̃3

f̃b

(

h̃3

h̃1

)2
∂

∂x̃1





ṽ
k+ 1

2
3

h̃3



 (·, x̃′3) dx̃′3 , (3.100)

ṽ
k+ 1

2
2 (·, x̃3) =

h̃2(·, x̃3)
h̃2(·, f̃b)

ṽ
k+ 1

2
2 (·, f̃b) + 2ǫ−1X h̃2(·, x̃3)

∫ x̃3

f̃b

h̃3

h̃2
ÃS̃k+ 1

2 σ̃
k+ 1

2
23 (·, x̃′3) dx̃′3

− ǫ2h̃2(·, x̃3)
∫ x̃3

f̃b

(

h̃3

h̃2

)2
∂

∂x̃2





ṽ
k+ 1

2
3

h̃3



 (·, x̃′3) dx̃′3 . (3.101)

In particular, for Cartesian coordinates (2.1) due to (2.10), and no-slipat the base, we obtain (3.62), (3.63)
and (3.59). For spherical coordinates (2.2), due to (2.15), we obtain

ṽ
k+ 1

2
ζ (·, ζ̃) = ṽ

k+ 1
2

ζ (·, f̃b)− ǫ−2X
∫ ζ̃

f̃b

ÃS̃k+ 1
2 (σ̃

k+ 1
2

ϑϑ + σ̃
k+ 1

2
ϕϕ )(·, ζ̃ ′) dζ̃ ′ , (3.102)
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ṽ
k+ 1

2
ϑ (·, ζ̃) =

1 + ǫζ̃

1 + ǫf̃b
ṽ
k+ 1

2
ϑ (·, f̃b) + 2ǫ−1X (1 + ǫζ̃)

∫ ζ̃

f̃b

1

1 + ǫζ̃ ′
ÃS̃k+ 1

2 σ̃
k+ 1

2
ϑr (·, ζ̃ ′) dζ̃ ′

− ǫ2(1 + ǫζ̃)

∫ ζ̃

f̃b

(

1

1 + ǫζ̃ ′

)2 ∂ṽ
k+ 1

2
ζ

∂ϑ
(·, ζ̃ ′) dζ̃ ′ , (3.103)

ṽ
k+ 1

2
ϕ (·, ζ̃) =

1 + ǫζ̃

1 + ǫf̃b
ṽ
k+ 1

2
ϕ (·, f̃b) + 2ǫ−1X (1 + ǫζ̃)

∫ ζ̃

f̃b

1

1 + ǫζ̃ ′
ÃS̃k+ 1

2 σ̃
k+ 1

2
ϕr (·, ζ̃ ′) dζ̃ ′

− ǫ2(1 + ǫζ̃)

∫ ζ̃

f̃b

(

1

1 + ǫζ̃ ′

)2 1

sinϑ

∂ṽ
k+ 1

2
ζ

∂ϕ
(·, ζ̃ ′) dζ̃ ′ . (3.104)

(3.105)

The computed velocity fields (3.90), (3.91), and (3.93) are used to evaluate the auxiliary stress field~u⋆ =
(σ̃⋆

11, σ̃
⋆
22, σ̃

⋆
12, σ̃

⋆
13, σ̃

⋆
23) using the rheology (1.17). In orthogonal coordinates with the scaling (3.7)-(3.11)

and with the help of (D), we obtain:

σ̃13 = 2η̃d̃13 , (3.106)

σ̃23 = 2η̃d̃23 , (3.107)

σ̃11 = 2ǫη̃d̃11 , (3.108)

σ̃22 = 2ǫη̃d̃22 , (3.109)

σ̃12 = 2ǫη̃d̃12 , (3.110)

where

η̃ =
1

(2ǫ−1XÃṼ) 1
3

, (3.111)

Ṽ = 4(d̃
2
13 + d̃

2
23 + ǫ2(d̃

2
11 + d̃

2
22 + d̃11d̃22 + d̃

2
12)) , (3.112)

X =
[A](ρg)3([h3][∆3])

5

[vh][h1][∆1]
, (3.113)

and

d̃13 =
1

2

(

1

h̃3

∂ṽ1
∂x̃3

− 1

h̃1h̃3

∂h̃1
∂x̃3

ṽ1 + ǫ2

(

1

h̃1

∂ṽ3
∂x̃1

− 1

h̃1h̃3

∂h̃3
∂x̃1

ṽ3

))

, (3.114)

d̃23 =
1

2

(

1

h̃3

∂ṽ2
∂x̃3

− 1

h̃2h̃3

∂h̃2
∂x̃3

ṽ2 + ǫ2

(

1

h̃2

∂ṽ3
∂x̃2

− 1

h̃2h̃3

∂h̃3
∂x̃2

ṽ3

))

, (3.115)

d̃11 =

(

1

h̃1

∂ṽ1
∂x̃1

+
1

h̃1h̃2

∂h̃1
∂x̃2

ṽ2 +
1

h̃1h̃3

∂h̃1
∂x̃3

ṽ3

)

, (3.116)

d̃22 =

(

1

h̃2

∂ṽ2
∂x̃2

+
1

h̃1h̃2

∂h̃2
∂x̃1

ṽ1 +
1

h̃2h̃3

∂h̃2
∂x̃3

ṽ3

)

, (3.117)

d̃33 =

(

1

h̃3

∂ṽ3
∂x̃3

+
1

h̃1h̃3

∂h̃3
∂x̃1

ṽ1 +
1

h̃2h̃3

∂h̃3
∂x̃2

ṽ2

)

, (3.118)

d̃12 =
1

2

(

1

h̃2

∂ṽ1
∂x̃2

− 1

h̃1h̃2

∂h̃1
∂x̃2

ṽ1 +
1

h̃1

∂ṽ2
∂x̃1

− 1

h̃1h̃2

∂h̃2
∂x̃1

ṽ2

)

. (3.119)
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For Cartesian coordinates, these formulae reduce to (3.22)-(3.29), while for spherical coordinates we arrive
at:

σ̃ϑζ = 2η̃d̃ϑζ , (3.120)

σ̃ϕζ = 2η̃d̃ϕζ , (3.121)

σ̃ϑϑ = 2ǫη̃d̃ϑϑ , (3.122)

σ̃ϕϕ = 2ǫη̃d̃ϕϕ , (3.123)

σ̃ϑϕ = 2ǫη̃d̃ϑϕ , (3.124)

and
Ṽ = 4(d̃

2
ϑζ + d̃

2
ϕζ + ǫ2(d̃

2
ϑϑ + d̃

2
ϕϕ + d̃ϑϑd̃ϕϕ + d̃

2
ϑϕ)) , (3.125)

where

d̃ϑζ =
1

2

(

∂ṽϑ

∂ζ̃
− ǫ

1 + ǫζ̃
ṽϑ +

ǫ2

1 + ǫζ̃

∂ṽζ
∂ϑ

)

, (3.126)

d̃ϕζ =
1

2

(

∂ṽϕ

∂ζ̃
− ǫ

(1 + ǫζ̃)
ṽϕ +

ǫ2

(1 + ǫζ̃) sinϑ

∂ṽζ
∂ϕ

)

, (3.127)

d̃ϑϑ =

(

1

1 + ǫζ̃

∂ṽϑ
∂ϑ

+
ǫ

1 + ǫζ̃
ṽζ

)

, (3.128)

d̃ϕϕ =

(

1

(1 + ǫζ̃) sinϑ

∂ṽϕ
∂ϕ

+
cotϑ

1 + ǫζ̃
ṽϑ +

ǫ

1 + ǫζ̃
ṽζ

)

, (3.129)

d̃ϑϕ =
1

2

(

1

(1 + ǫζ̃) sinϑ

∂ṽϑ
∂ϕ

+
1

1 + ǫζ̃

∂ṽϕ
∂ϑ

− cotϑ

1 + ǫζ̃
ṽϕ

)

. (3.130)

The SIA-I scheme itself may then again be depicted a scheme analogous to thatfrom Table 3.1:

~uk // (3.80)− (3.82) // δp̃k+
1
2 , δσ̃

k+ 1
2

13 , δσ̃
k+ 1

2
23

��

~uk+
1
2

��

(3.50)oo

~uk+1

KS

(3.90), (3.91), (3.93) or (3.100), (3.101), (3.99) //
~vk+

1
2

��
(3.64)

OO

~u⋆k+
1
2

oo (3.106)− (3.110)oo

Table 3.2: SIA-I scheme in general orthogonal curvilinear coordinates.

3.5 Numerical simulations

In this section, we present numerical results obtained by the SIA-I approach for theIce-Sheet Model Inter-
comparison Project – Higher Order Models (ISMIP-HOM) (Pattyn, 2007, http://homepages.ulb.ac.be/
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∼fpattyn/ismip/). This benchmark experiment aimed to demonstrate the effects of higher-order solutions
of various ice-flow model problems compared to the solution by the Shallow IceApproximation, where by
”higher-order” all such solutions are meant that take into account the longitudinal stresses.

Our approach has been incorporated into experiments A and B (modeloso1, see Pattyn et al. (2008),
for a discussion of the results and model outputs). Since experiment B is only a 2-D (flowline) version of
experiment A, we present here only the results for the more challenging 3-D experiment A.

Although we did not participate in experiment C, we now discuss the performance of the SIA-I algorithm
for this case, where basal sliding with a prescribed sliding law is considered in contrast to A and B where
no-slip was considered at the glacier base.

3.5.1 Numerical implementation of the SIA-I algorithm

For the examples shown below, a rather elementary approach was adoptedfor the numerical implementation
of the SIA-I algorithm. After inspecting the particular steps of the iterative scheme shown in Table 3.1, one
realizes that the whole algorithm is relatively simple from the numerical point ofview, as the only operations
to be applied are

• Data storage
We have chosen a staggered grid with two types of alternating nodes, where one type of node contains
the velocity vector components̃vx, ṽy, ṽz, while the other nodes contain the stress-tensor compo-
nentsσ̃xx, σ̃yy, σ̃xy, σ̃xz, σ̃yz, and pressurẽp. Such a choice provides better stability of the iterative
scheme.

• Numerical differentiation
This is performed by a two-sided symmetrical finite difference scheme, i.e. weapproximate

(

∂ϕ

∂x

)

(xi, yj , zk) ≈ ϕ(xi+1, yj , zk)− ϕ(xi−1, yj , zk)

xi+1 − xi−1
, (3.131)

(

∂ϕ

∂y

)

(xi, yj , zk) ≈ ϕ(xi, yj+1, zk)− ϕ(xi, yj−1, zk)

yj+1 − yj−1
, (3.132)

(

∂ϕ

∂z

)

(xi, yj , zk) ≈ ϕ(xi, yj , zk+1)− ϕ(xi, yj , zk−1)

zk+1 − zk−1
. (3.133)

• One-dimensional numerical integrationis performed by the simple extended trapezoidal rule (e.g.
Press, 1992):

∫ b

a
ϕ(z)dz ≈ b− a

n
(ϕ(z0) + 2ϕ(z1) + 2ϕ(z2) + · · ·+ 2ϕ(zn−1) + ϕ(zn)) . (3.134)

The application of more sophisticated methods such as a higher-order differentiation scheme or higher-order
integration approach is possible, but the overall effect was found to benegligible. Moreover, the relative
simplicity of the numerical realization of the SIA-I algorithm in the following demonstrations results in its
efficiency in terms of computational speed and lower computer memory demands.

3.5.2 ISMIP-HOM experiment A

This experiment is set up as follows. It involves a Stokes flow problem, no slip at the bed, stress-free
conditions at the surface and the ice is considered isothermal. The values of the physical parameters used
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Symbol Constant Value Units
A Ice-flow parameter 10−16 Pa−3a−1

ρ Ice density 910 kg m−3

g Gravitational acceleration 9.81 m s−2

Table 3.3: Values of the physical parameters used in experiment A.

are given in Table 3.3.

The glacier has a square base of sizeLsc × Lsc. The upper and lower surfaces are given (inm) by

fs(x, y) = −x tanα , α = 0.5◦, (3.135)

fb(x, y) = fs(x, y)− 1000 + 500 sin(ωx) sin(ωy) ,

(3.136)

with

ω =
2π

Lsc
.

At the sides, the periodic boundary conditions are prescribed:

∀x ∈ 〈0,Lsc〉, ∀z ∈ 〈fb(·), fs(·)〉 : ~v(x, 0, z) = ~v(x,Lsc, z) , (3.137)

∀y ∈ 〈0,Lsc〉, ∀z ∈ 〈fb(·), fs(·)〉 : ~v(0, y, z) = ~v(Lsc, y, z) . (3.138)

The plotted quantities are the velocitiesvx, vy, vz at the upper surface (inma−1) and the stress components
σxz, σyz, ∆p = p−Hρg at the bottom (inkPa), H = fs − fb. All quantities are mapped onto the scaled
domain〈0, 1〉 × 〈0, 1〉.

The numerical implementation includes the transformation of the problem into stretched coordinates, as
usual in glaciology (e.g. Pattyn, 2003). The SIA-I algorithm in stretched Cartesian coordinates is outlined
in Appendix C.

The glacier flow computed by the SIA-I approach is first checked against a finite-difference full-Stokes
solver that we developed and that is briefly described in the next section.We also present comparisons with
other ISMIP-HOM participants, based on the published ISMIP-HOM results in Pattyn et al. (2008), where
a detailed description of the benchmark and the comparisons between our SIA-I-based results and other
solvers can be found.

3.5.3 The finite-difference full-Stokes solver

To carry out the benchmarks against which the SIA-I solution can be checked, we developed a simple full-
Stokes solver. The governing equations (3.12)-(3.14), (3.15) and (3.22)-(3.29) are rewritten in the stretched
coordinates (see e.g. Pattyn, 2003) or Appendix C.

The spatial derivatives are approximated by two-point symmetric differences and the resulting system
of non-linear algebraic equations is solved on the staggered grid with two types of alternating nodes, first
for the rheology equations and the equation of continuity, the others for themomentum balance equations.
For a fixed viscosity, the linear system of equations is solved by a PARDISO(Parallel Sparse Direct Linear
Solver) routine (http://www.intel.com), and the viscosity is iteratively updated by the convex combination
of the previous and updated velocity fields. The convergence is checked by inspecting the evolution of the
maximal difference between two successively computed velocity fields.
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3.5.4 Results I - Comparison with a finite-difference full-Stokes solver

The ISMIP-HOM benchmark was performed for aspect ratiosǫ = 1
5 ,

1
10 ,

1
20 ,

1
40 ,

1
80 , and 1

160 . As one might
expect, the higher the aspect ratio, the worse the performance of the SIA-I algorithm. Bellow, we display
the comparison of the SIA-I solution and the full-Stokes solution by a finite-difference solver, described in
the previous section, for the most interesting cases ofǫ = 1

20 and 1
10 . Forǫ = 1

5 the SIA-I algorithm already
fails to converge for this particular problem.

Results for ǫ = 1
20 . The SIA-I solution is computed with the relaxation parametersθ1 = 0.2 and

θ2 = 0.05. The results are stored in a staggered grid of dimensions41 × 41 × 41. The SIA-I solution,
obtained after 60 iterations, is shown in Fig. 3.1 (full lines). The computation was performed on an Intel
Pentium 4, 3.2GHz computer and took approximately 52s. The full-Stokes solution (dotted lines in Fig.
3.1) was obtained by the finite-difference code from Section 3.5.3 by an iterative updating of the nonlinear
viscosity until the convergence criterion was fulfilled. The computation was started from the SIA-I solution
interpolated to a staggered20× 20× 20 grid.

Fig. 3.1 shows almost perfect agreement between the SIA-I and the full-Stokes surface velocities and
a minor quantitative mismatch for the bottom stress componentsσxz,σyz. The main difference appears,
however, in the bottom pressure difference∆p.

Results for ǫ = 1
10 . The SIA-I solution is computed with the relaxation parametersθ1 = 0.2 and

θ2 = 0.02. The resolution of the computational domain for both solutions was the same as inthe previous
case. The SIA-I solution, obtained now after 100 iterations to achieve the required tolerance (Fig. 3.2,
full lines), is again compared with the full-Stokes solution (dotted lines) which was obtained by the finite-
difference approach.

Inspecting Fig. 3.2, we can see a rather good agreement between both thesolutions, in particular for
the velocities. Again, the largest difference appears in the pressure difference∆p. It is noted that the SIA-I
solution is smoother than the finite-difference solution, indicating possibly somenumerical instabilities in
the finite-difference solver.

To estimate the order of improvement of the SIA-I solution compared to the SIA solution, Fig. 3.3 plots
the SIA solution forvx, vz at the surface (vy is identically zero) andσxz at the bottom (σyz and∆p identi-
cally zero). Comparing Fig. 3.2 with Fig. 3.3, we can see that the SIA-I solution differs significantly from
the SIA solution, demonstrating that the SIA-I approach is capable of providing a significantly improved
solution to the problem.

As demonstrated in the following section, the convergence of the SIA-I algorithm worsens with increas-
ing aspect ratioǫ. This can be to some extent overcome by choosing sufficiently small relaxation parameters
θ1, θ2, but a threshold aspect ratio value appears to exist for the practical usage of our method. For the
current geometry setting from the ISMIP-HOM experiment A, this value is1

10 . For an aspect ratio larger
thanǫ = 1

10 , and for the current geometry setting, the SIA-I algorithm fails to converge no matter how small
relaxation parametersθ1 andθ2 are chosen. We may thus say that there is a threshold of the aspect ratio
ǫ above which the SIA-I algorithm does not converge. Below this threshold, our numerical experiments
have demonstrated that the smaller the aspect ratio, the faster the convergence of the SIA-I algorithm for a
prescribed accuracy. This behavior resembles that of the SIA approach.

3.5.5 Results II - Comparison with the ISMIP-HOM benchmark

In Figs. 3.5-3.7, we display a comparison of the SIA-I output and a representative set of ISMIP-HOM
experiment A solutions published in the benchmark (our model participated aswell - is denoted asoso1).
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We plot values of six control quantities: surface velocity vector (vx, vy, vz), the stress componentsσxz,
σyz and the pressure difference∆p = p − Hρg at the glacier base. The data are displayed at the cross
section with a planey = 0.25. Results are shown for aspect ratiosǫ = 1

10 ,
1
40 ,

1
160 . We may observe

that our solution (light blue dots) for all the displayed cases lies in the regionof highest ”solution density”
representing, hopefully, the exact solution as the considered problem does not possess any known analytical
solution. The full-Stokes solutions are plotted with lines, and the other higher-order models with dots. The
discrepancy between the various full-Stokes solutions for the pressuredifference∆p (bottom-right panel)
is possibly only due to an erroneous sign convention of some of the solutions, as indicated by the symmetry
of the pattern with respect to thex-axis. In Fig. 3.4 we plot, for comparison, the surface velocityvx and
the bottom-stress componentσxz, as they would be obtained by the Shallow-Ice Approximation. These
two quantities are independent of the aspect ratio for the considered problem and may thus serve as a good
measure of the difference between the higher-order and full-Stokes solutions. Note that for high aspect
ratios, such asǫ = 1

10 , the difference in surface velocity is rather substantial.

3.5.6 Convergence of the SIA-I algorithm

In this section, we demonstrate how the convergence of the solutions is affected by varying the aspect ratio
ǫ, and the magnitudes of the relaxation parametersθ1, θ2. We perform all runs with the ISMIP-HOM
experiment A settings.

The convergence rate is inspected by checking the evolution of the errors of the linear momentum
balances, rheology equations and equation of continuity, respectively.These errors are defined as follows.
All equations are evaluated at the nodes using the discretisation of spatial derivatives by two-point symmetric
finite differences. If we had an analytical solution, that is a solution satisfying the equations exactly in the
limit of an infinitesimally small discretisation, such a procedure would provide theso-called discretisation
error. In the case of the SIA-I solution, there is an additional error, resulting from the fact that only an
approximate problem to the full-Stokes problem is solved at each SIA-I iteration. We divide the error by
the magnitude of the largest term in each particular equation and obtain the relative error at each node. For
conciseness, we first average these errors over the nodes and thancompute one average value from the three
linear-momentum balance errors, one from the five rheology equations errors, and finally one continuity
equation error.

In Fig. 3.8 we plot the total (discretisation plus approximation) errors of the SIA-I solution for various
combinations of the relaxation parametersθ1 = 0.2, 0.5, 0.8, θ2 = 0.2, 0.1, 0.05, and a fixed aspect ratio
ǫ = 1

80 and a spatial resolution31 × 31 × 31. For all cases, the overall error decreases and eventually
reaches a limit (except for the uppermost curves in the second and third panel where more iterations would
be needed to reach the limit). As documented forθ1 = 0.8 and θ2 = 0.2 (black triangles), when the
relaxation parameters are chosen to be too large, the solution is scattered bya persistent high-frequency
noise preventing the error from dropping below a certain value.

Observe that e.g. forθ1 = 0.5 andθ2 = 0.2, the error decreases relatively quickly and a sufficiently
accurate solution is obtained after 20 iterations. We also see that below a certain critical value of the
relaxation parameters, the convergence speeds up as the relaxation parameters grow, while above the critical
threshold the too-large relaxation parameters induce high-frequency scattering of the output. This may be
connected to the spatial resolution since the sequence of successive iterative solutions may formally be
viewed as a time-discretised evolution, and as the spatial dependency of field variables is also discretised by
finite differences, one may expect a criterion, analogous to the Courantcriterion (Press et al., 1992), to be
fulfilled to ensure stability of the algorithm. For a given spatial resolution, this criterion would constrain the
maximum values of the relaxation parametersθ1 andθ2 that control the evolution in ’time’.
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Figure 3.6: As for Fig. 3.5 but withǫ = 1
40

.
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Figure 3.7: As for Fig. 3.5 but withǫ = 1
160
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Next, in Fig. 3.9, we inspect the role of the aspect ratioǫ. Since the derivation of the SIA-I approach
requiresǫ be sufficiently small, there is a threshold value ofǫ above which the SIA-I algorithm will not
converge. Figure 3.9 plots the errors for aspect ratiosǫ = 1

5 , 1
10 , 1

20 , 1
40 , 1

80 , 1
160 for a fixed spatial resolution

31 × 31 × 31. The relaxation parameters areθ1 = 0.2 andθ2 = 0.02 for all computations. Figure 3.9
demonstrates well the key role of the aspect ratioǫ for convergence of the SIA-I algorithm. For the chosen
relaxation parametersθ1,θ2, the valueǫ = 1

10 is the threshold and for larger aspect ratios the algorithm fails
to converge.

In summary, whether the SIA-I algorithm converges and how fast is a matterof several coupled factors.
For a sufficiently small aspect ratioǫ, (less than1

10 for the ISMIP-HOM A experiment), the algorithm con-
verges by choosing relaxation parametersθ1, θ2 that are below certain threshold values, dependent on both
the aspect ratio and the spatial resolution, and the convergence of the algorithm improves by approaching
these critical values from below. Moreover, the critical values decrease with increasing aspect ratioǫ, as a
result, forǫ > 1

10 , it is impossible to reach convergence within the ISMIP-HOM A experimental setting.

3.5.7 Performance of the SIA-I for other than no-slip boundary condition, ISMIP-HOM
experiment C

The SIA-I algorithm as described above may easily be modified to allow a Dirichlet boundary condition for
velocity at the glacier bed, that is the condition~v(·, fb(·)) = ~v0(·). We only modify (3.55)-(3.57) as follows:

ṽ
k+ 1

2
x (·, z̃) = ṽ0x(·) + 2ǫ−1X

∫ z̃

f̃b(·)
ÃS̃k+ 1

2 (·, z̃′)σ̃k+ 1
2

xz (·, z̃′)dz̃′ ,

(3.139)

ṽ
k+ 1

2
y (·, z̃) = ṽ0y(·) + 2ǫ−1X

∫ z̃

f̃b(·)
ÃS̃k+ 1

2 (·, z̃′)σ̃k+ 1
2

yz (·, z̃′)dz̃′ ,

(3.140)

ṽ
k+ 1

2
z (·, z̃) = ṽ0z(·)−

∫ z̃

f̃b(·)





∂ṽ
k+ 1

2
x

∂x̃
+
∂ṽ

k+ 1
2

y

∂ỹ



 (·, z̃′)dz̃′ .

(3.141)

With this modification, the SIA-I algorithm was tested on real data from the Antarctic region, considering
in addition temperature-dependent viscosity (see Section 3.5.9), remembering that so far we have been
restricted to the isothermal case in the numerical examples, i.e. we had systematically setÃ = 1. It may
be stated that, for a reasonably smooth non-homogeneous Dirichlet condition on velocity at the glacier bed,
the performance of the SIA-I approach is comparable to the no-slip case.

To involve the sliding at the glacier bed, it is, however, necessary to switchfrom the Dirichlet boundary
condition to a Newton-type of boundary condition such as (1.68). Althoughwe did not participate in the
ISMIP-HOM C experiment which applies to this case, we may, however, compare our SIA-I solution with
the published results from the benchmark.

The problem is set up very similarly to experiment A, the difference being that the driving effect is,
instead of bed-geometry undulations, the spatial inhomogeneity in the basal-friction coefficient. The upper
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and lower surfaces are both inclined planes given (inm) by

fs(x1, x2) = −x1 tanα , α = 0.1◦, (3.142)

fb(x1, x2) = fs(x1, x2)− 1000 .

At the sides, periodic boundary conditions (3.137) and (3.138) are again prescribed for the velocity field. At
the glacier bed, the sliding law (1.68) is prescribed, i.e.

β2~tb · ~v = −~tb · σ · ~nb , (3.143)

where~tb and~nb are the tangent and downward normal vectors to the glacier basefb, respectively. The
sliding coefficient is given by

β2(x, y) = 1000 + 1000 sin(ωx) sin(ωy) , (3.144)

with

ω =
2π

Lsc
.

The Dirichlet condition on basal velocity, either homogeneous or non-homogeneous, is crucial in the
SIA-I algorithm, since it allows a straightforward computation of the velocities by integration along the
vertical coordinate, c.f. (3.139)-(3.141). That is why the sliding law (3.143), despite being a Newton-type
boundary condition, has to be transformed to a Dirichlet-type condition. Thiscan be done quite naturally
thanks to the iterative character of the problem. Forβ(·) 6= 0, the stress field from the previous half-step is
used to provide

~tb · ~v0 k+ 1
2 = −

~tb · σk+ 1
2 · ~nb

β2
. (3.145)

The sliding velocity~v0 k+ 1
2 is then substituted into (3.139)-(3.141) for~v0. Obviously, this approach can be

applied only to the region withβ 6= 0 and fails in the case of free-slip conditions, whereβ = 0. Such a
singularity, however, occurs in the experiment C, sinceβ = 0 at two points,(3Lsc

4 , Lsc
4 ) and(Lsc

4 ,
3Lsc
4 ). To

avoid the failure of the SIA-I approach, we add a small positive constantto β and successively decrease it
during the iterations.

The results are shown in Figs. 3.10 and 3.11. The plotted quantities are velocitiesvx, vy, vz, at the upper
surface (inma−1) and the stress componentsσxz,σyz and pressure difference∆p = p−Hρg at the bottom
(in kPa). As in the previous experiment, all quantities are mapped onto the scaled domain 〈0, 1〉 × 〈0, 1〉
and the solutions are plotted at the cross-section with the planey = 0.25. For the comparison, we also
plot some of the solutions from the ISMIP-HOM experiment C. Results are shown for two aspect ratios,180
in Fig. 3.10, and1

20 in Fig. 3.11. All solutions are computed with a resolution of31 × 31 × 31, and are
stopped after 200 iterations. The relaxation parameters areθ1 = 0.2, θ2 = 0.02 for aspect ratioǫ = 1

80 , and
θ1 = 0.1, θ2 = 0.01 for aspect ratioǫ = 1

20 . To compute each example takes approximately 50 seconds of
CPU time on a Intel Pentium 4 with 3.2GHz.

Figures 3.10 and 3.11 show that, in accordance with our assumption, the SIA-I algorithm fails to com-
pute the horizontal velocities correctly in the neighborhood of the point where the sliding friction coefficient
goes to zero (β = 0), that is at the point(0.75, 0.25) in our case. Moreover, also intuitively, the error in-
creases with the increasing aspect ratio. However, the error is localizedin a small region surrounding the
point with β = 0, and the stresses are well computed everywhere else, even for a relatively large aspect
ratio ( 120 ). In general, we may conclude that the Newton boundary condition at the glacier base, i.e. the
sliding law of the form (3.143), represents a restriction for the applicability of the SIA-I only in the case
where a region with a very small basal friction coefficientβ is present. To demonstrate the difference, the
Shallow-Ice Approximation solution is plotted in Fig. 3.11 (model SIA). Note thatthe surface velocityvx
for the SIA solution diverges at the point whereβ = 0.
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Figure 3.10: Comparison of the surface velocity fieldsvx, vy andvz (in m a−1), and the stress componentsσxz, σyz and the
pressure difference∆p = p − Hρg (in kPa) at the basefb, obtained by the SIA-I solver (model ”SIA-I” light blue points),
compared with several full-Stokes (lines) and higher-order (dots) solutions from the ISMIP-HOM C experiment, for the aspect
ratio ǫ = 1

80
. The displayed results are taken at an intersection of the scaled domain withthe planey = 0.25.
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Figure 3.11: As for Fig. 3.10, but forǫ = 1
20
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Figure 3.12: CPU-time demands of the SIA-I algorithm as a function of degreesof freedom for the ISMIP-HOM A setting with
ǫ = 1

80
and for 50 iterations, computed on a Intel Pentium 4, 3.2GHz computer.

3.5.8 Numerical performance

The essential feature of the presented SIA-I approach is its computational effectiveness. The algorithm is
designed such that the time cost spent at each iterative step is similar to that required for the SIA approach.
Using an Intel Pentium 4, 3.2GHz computer, we have performed 50 iterationsfor the ISMIP-HOM A setting
with ǫ = 1

80 , which is a sufficient number of iterations so that the SIA-I solution converges to the full-Stokes
solution. In Fig. 3.12, we plot the total CPU time for SIA-I as a function of the degrees of freedom, that is
the number of the computed velocity and stress variables stored in the computational grid. We can see that
the computational time increases linearly with the increasing number of degreesof freedom.

Since our full-Stokes solver is not optimized for numerical performance, we consider the CPU-time
demands for the professionally optimized finite-element solver Elmer (Gagliardini and Zwinger, 2008). For
the current ISMIP-HOM A setting the authors provide an analytical formulafor CPU-time costs in(s) as a
function of the number of degrees of freedom:y = 0.013x1.11. If we make a similar estimate for the SIA-I
solver, we obtainy = 0.00015x (see Fig. 3.12).

3.5.9 Performance of the SIA-I algorithm on real data

Thanks to Dr. Oleg Rybak (AWI) and Prof. Dr. Philippe Huybrechts (Vrije Universiteit Brussel), we could
perform a test of the SIA-I algorithm on more realistic data. We obtained surface velocities resulting from a
higher-order model (Pattyn, 2003) of a600× 400 km region in Dronning Maud Land, Antarctica.

The domain resolution was241×161 grid points in horizontal (corresponding to2.5 km resolution) and
101 in the vertical direction. The model input for the simulation is the bedrock topography, the free surface
elevation (Fig. 3.13), and basal velocities (Fig. 3.14). They appear strongly non-homogeneous due to the
presence of temperate-ice regions where a rapid sliding occurs opposed to cold-ice frozen-bed conditions in
the rest of domain.

We were also provided with the 3-D temperature field for the whole computational domain. Hence, we
can also incorporate the temperature dependence of ice viscosity. In particular, the rheology (1.17) was used
with

A(T ) = mA exp

(

− Q

RT ∗

)

(3.146)
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Figure 3.13: Bedrock topography (left) and surface elevation (right) in the Dronning Maud Land simulation.
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Figure 3.14: Input basal velocities,vx (left) andvy (right) used in the Dronning Maud Land simulation.

T ∗ < 263.15K : A = 1.14× 10−5 Pa−3 a−1 , Q = 60 kJmol−1 , (3.147)

T ∗ ≥ 263.15K : A = 5.47× 1010 Pa−3 a−1 , Q = 139 kJmol−1 , (3.148)

whereR is the universal gas constant (R = 8.314 Jmol−1K−1), Q is the activation energy of creep and
T ∗ is the absolute temperature corrected for the pressure melting-pointT ⋆ = T + CCl p andm is the
enhancement factor (in the comparison set asm = 1.061). The values of the prescribed physical parameters
are taken from Huybrechts (1992), and are the same for both comparedmodels.

The temperature and temperature rate factorÃ are plotted in Fig. 3.15. We may observe a relatively
strong temperature variability of viscosity both in the lateral and vertical directions. In total, the temperature
contribution to the viscosity variation reaches 3 orders of magnitude.

We solve a Stokes-flow problem looking for a steady-state solution with non-homogeneous boundary
conditions on velocity at the base, and free-surface conditions at the upper surface. At the sides of the
domain, we replace symmetric differences by one-sided differences, which enables us to avoid specifying
the boundary conditions there.
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Figure 3.15: Temperature (in◦ C) (left column) and the rate factor̃A(T̃ ) (right column) at the base (upper row), a middle-depth
layer (middle row), and at the surface (bottom row), for the Dronning Maud Land simulation.
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As an output to be compared, we choose the surface deformational velocities, i.e. the difference between
the velocity at the surface and the basal velocity at the underlying basal point. This choice is motivated by
the fact that such a quantity is not affected by the rapid changes in basalconditions and better reflects the
deformational contribution to glacier flow. In Fig. 3.16, we plot the SIA-I solution, which is compared
with the higher-order model, the so-called incomplete 2nd-order model in Pattyn (2003), which was used
as the fine-scale part of a two-component nested model described in Huybrechts (2007). We denote this
Higher-Order Model by the label ”HOM”. Finally, we also show the deformational velocities corresponding
to the Shallow Ice Approximation (SIA) to provide better insight into the contribution of the higher-order
dynamics.

In Fig. 3.16, we may observe a relatively good agreement between the higher-order model (HOM)
and our solution (SIA-I), and a distinct difference between these solutions and the much less smooth re-
sult coming from the Shallow-Ice Approximation (SIA) solution. A detailed quantitative analysis of the
differences is not performed since it may be misleading to some extent as none of the models provides a
truly full-Stokes solution. Thus, the differences in the solutions may be merelyartifacts of the different
approaches in handling the longitudinal stresses. We have already deduced from the ISMIP-HOM bench-
marks A and C that some of the higher-order (non-full Stokes) models may differ quite substantially among
themselves and from the full-Stokes solution.

Despite all the differences, this example serves as a demonstration that the SIA-I algorithm may be
successfully applied to real-nature conditions and provide reasonably accurate output. Concerning the nu-
merical performance, the displayed SIA-I output was obtained after 60 iterations with approximately 3.8
s of CPU time per iteration (performed on an Intel Pentium Core 2 Quad 2.4 x 4,8GB RAM, 800 MHz,
in non-parallel version), while the HOM model took approximately 5000 CPU seconds (on a NEC SX8 in
parallel mode using OMP and 8 CPUs, Rybak, pers. comm.).

3.6 Summary

The new iterative SIA-I algorithm is derived on the basis of the traditional scaling ”shallow-ice” property
by assuming that the aspect ratio of the vertical/horizontal dimensions of a glacier is sufficiently small. The
algorithm represents an iterative extension of the SIA approach, and, ingeneral, may provide an improved
solution of the Stokes-flow problem. The key parameters controlling the performance of the algorithm are
the aspect ratioǫ and relaxation parametersθ1, θ2. For the model example taken from the ISMIP-HOM
A experiment withǫ ≤ 1

10 , the SIA-I algorithm converges if sufficiently small relaxation parameters are
chosen, for example,θ1 = 0.2, θ2 = 0.05. The case withǫ = 1

10 is a threshold above which the SIA-I
algorithm fails to converge and thus gives inaccurate and noisy results.

Relative theoretical simplicity leads to faster computational speeds, since the numerical computations
consist of only numerical integration over the vertical coordinate and the differentiation of field quantities,
which are similar numerical operations as performed in the SIA approach. Moreover, the computational
demand grows only linearly with the number of degrees of freedom.

The performance of the SIA-I algorithm was also tested for the ISMIP-HOM experiment C, where a
Newton-type sliding law is applied at the glacier base. The SIA-I approachrequires the reformulation of the
sliding law as a Dirichlet boundary condition for velocity. This disables us to resolve the velocities correctly
in the regions with a small sliding friction coefficientβ and fails completely for free-slip conditions (β = 0).
However, the errors in the velocities are localized in the vicinity of the singularregion whereβ = 0. The
erroneous behavior of the SIA-I algorithm disappears with decreasingaspect ratio. For instance, in the case
whereǫ = 1

80 , the SIA-I converges everywhere in the solution domain and shows goodagreement with the
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Figure 3.16: Comparison of the horizontal deformational surface velocities -vx (left column),vy (right column) for the higher-
order model HOM (first row), our SIA-I output (middle row) and the Shallow-Ice Approximation (bottom row), for the Dronning
Maud Land simulation.
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numerical full-Stokes solution.

We also performed a test of the SIA-I approach on more realistic data fromDronning Maud Land,
Antarctica, which is a Stokes-flow problem characterized by strongly inhomogeneous Dirichlet boundary
conditions for velocity and the temperature dependence of ice viscosity. The comparison with output from
a higher-order model again shows a satisfactory performance of the SIA-I algorithm, both in accuracy and
computational effectiveness.



Chapter 4

Evolutionary numerical ice-sheet model
based on the SIA-I algorithm

4.1 Introduction

So far we have been dealing with the steady-state Stokes problem for ice flow. Its solution was found by a
novel computational algorithm (SIA-I) and we ran several tests inspecting its performance in comparison to
various higher-order or full-Stokes methods.

For more realistic modeling, the steady-state scenario will now be abandonedand a transient case allow-
ing temporal changes in the glacier geometry that captures the evolution of theglacier will be considered in
this section. The processes changing the glacier geometry are both the surface accumulation and ablation
and the deformational flow. As we have already seen in the scaling analysis, the Froude number in the ice
equation of motion (the balance of linear momentum) has a negligible value. This allows us to represent
the time evolution of ice-flow as a sequence of steady-state Stokes problems.The evolution is driven by
updating the surface ice geometry, temperature and possibly also the water-content distribution. This means
solving the corresponding kinematic equations for the boundary surfaces together with the heat and mass
transport equations.

We will start with an isothermal case, i.e. when the thermal equation is not considered. We assume
purely cold-ice conditions, however, with possible basal sliding. Under the assumption that the glacier base
does not evolve, this setting requires us to solve the kinematic condition for thefree surface evolution and,
in general, also to track the glacier margin. At a later stage, we will include the heat-transport equation and
inspect the role of the thermo-mechanical coupling.

We start with a brief summary of the most essential components of our numerical code developed for
ice sheet evolution modeling. However, particular parts will be discussed inmore detail in the following
sections.

The fundamental part of the model is the SIA-I algorithm, which, for a given ice sheet geometry, com-
putes the induced stress field together with the deformational and basal sliding velocities. The solution
of this problem is strongly coupled with the temperature conditions inside the glacier due to the relatively
strong temperature-dependence of ice viscosity. The computed velocity field, together with the independent
surface climatological inputs, that is the accumulation and ablation rates, allowsfor updating the free sur-
face geometry at each time by solving the kinematic equation for the surface function. In turn, the updated
geometry serves then as input data for a new steady-state Stokes problem,which is solved by the SIA-I

77
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Figure 4.1: Example of a computational grid with successive increased grid-point densification by a factor of 2.

algorithm, and, in addition, for the heat-transport equation.

Now, we will discuss the numerical implementation of the whole method. This consists of time and
spatial discretisations, the numerical solution of the kinematic equation, tracking the ice sheet margin and
solving the heat transport equation.

4.2 Spatial discretisation by finite difference grid

The SIA-I algorithm requires that, for spatially discretised velocity, temperature and stress fields, partial
spatial derivatives of these fields and a definite integral along the vertical coordinate are numerically com-
puted. For this reason, we apply the finite-difference discretisation for which partial spatial derivatives are
approximated by finite differences of a chosen accuracy and integrationis approximated by a weighted
summation of the nodal values of integrated field variable.

In order to achieve a better resolution in areas of a particular interest, we implement a non-regular grid
which can be locally densified in the following way. In the horizontal directions, we start with a regular
grid with a chosen∆x1 and∆x2 spacing and withN1 ×N2 nodes. This grid can then be locally densified
by a factor of 2 (see Fig. 4.1) in order to obtain a better resolution in areas of a particular interest. This
densification can be performed always only in such a way that the neighboring regions have either the same
grid-point densities or their grid-point densities differ by a factor of 2. This rule helps to avoid the problems
with data projection and interpolation between the grids of different grid-point densities.
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Figure 4.2: Example of the ”stretch” transformation of the computation domain - left: the original shape, right - the stretched shape
with uniform vertical node spacing.

In the vertical direction, a traditional approach in glaciology uses stretched coordinates (see Appendix
C), which is a non-orthogonal mapping that ”stretches” the vertical dimensions of the glacier to a layer of
uniform height (Fig. 4.2). This simplification results, however, in more complicated expressions for partial
spatial derivatives of field variables. The resulting shape with a uniformthickness is divided equidistantly
in the stretched coordinates intoN3 layers. We do not perform a local grid densification in the vertical
direction. Each node of the computational grid contains all the field variables. Hence, no staggered grid
is implemented a-priori, as we have done, for instance, in the case of a simple model for the ISMIP-HOM
experiment A. However, a staggered-grid approach can be implemented by interpolating appropriate nodal
values during the computation. It turns out that the computational performance and stability of the model
without applying the staggered-grid approach is satisfactory for all the model runs.

4.3 Updating geometry by solving kinematic equation

The kinematic equation (1.10) for free surface movement is an example of a transport equation, which, in
general, is of the form

∂ϕ(~x, t)

∂t
+ ~v · gradϕ(~x, t) = f , (4.1)

ϕ(~x, t0) = ϕ0(~x) , (4.2)

where a required quantityϕ moves with velocity~v andf is a source term. A numerical solution of this
equation is known to be a difficult problem, because most numerical schemeshave a tendency to induce
undesired numerical oscillations. In the case of the SIA or the SIA-I approaches, whereϕ = Fs is the
free-surface function, such numerical oscillations induce destructiveoscillations in the velocity field as the
surface-topography gradient is the main driving force for velocities. Apositive feedback from velocities as
a result of surface topography speeds up the failure of computations.

To avoid this, we adopted two approaches that handle the problem of instability in a manner satisfactory
for our purposes. The first one is a time-explicit method using special numerical schemes to evaluate the
gradient operator in a way that no oscillations are produced by it, as long as the Courant-Friedrichs-Lewy
(CFL) condition is satisfied. The second is an implicit method possessing a self-smoothing property similar
to the traditional shallow ice approach with respect to free-surface evolution.
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4.3.1 Time-explicit approach

The equation (4.1) may be expressed even more generally as

∂ϕ(~x, t)

∂t
= L(ϕ(~x, t)) ,

ϕ(~x, t0) = ϕ0(~x) , (4.3)

whereL is a spatial-differential operator, which may be already discretised. For an explicit time scheme, we
approximate the time derivative by a 3rd order Runge-Kutta scheme. Equation (4.3) at the(n + 1)th time
level reads as

ϕ̂n+1 = ϕn +∆t L(ϕn)

ϕ̂n+ 1
2 = ϕn +

∆t

4

(

L(ϕn) + L(ϕ̂n+1)
)

(4.4)

ϕn+1 = ϕn +
∆t

6

(

L(ϕn) + 4L(ϕ̂n+ 1
2 ) + L(ϕ̂n+1)

)

,

whereϕn := ϕ(t0+(n−1)∆t), and∆t is the time step. Keeping in mind thatL = f−~v ·gradϕ in our case,
assuming that the source termf is given and remembering that velocity~v at thenth time instant is obtained
by the SIA-I algorithm, we only need to discretisegradϕ in a convenient way. Note that equation (4.1) is a
hyperbolic partial differential equation, which is known to be problematic when numerically implementing
it as most of the standard discretisation schemes (e.g. Quarteroni & Valli (1994)) suffer from undesired
phenomena such as oscillations, geometrical spreading, and so on. In order to avoid such a behavior, we
choose a discretisation ofgradϕ by the so-called Essentially Non-Oscillatory (ENO) schemes.

• Essentially Non-Oscillatory (ENO) schemes
Here we briefly summarize the basic properties and construction of the ENO schemes following the
comprehensive paper by Shu (1998).

The ENO schemes are polynomial interpolation schemes, for which the interpolation stencil is not
prescribed a-priori, but it is chosen adaptively for each grid point according to the data values in the
neighborhood of this point and choosing automatically the locally smoothest variant. This avoids
crossing a discontinuity in the interpolation procedure, as its crossing leadsto an oscillatory behav-
ior of the interpolated function in the vicinity of the discontinuity. The ENO schemes are widely
used in applications such as aero-acustics, or turbulence simulations, in general in applications where
discontinuities (shocks) of the field variables appear and propagate.

For a 1D function, the ENO interpolation procedure may be described as follows. ConsiderN equally
spaced data pointsx1, . . . xN , xi = x1 + (i − 1)∆x, holding valuesy1, . . . , yN , whereyi = y(xi)
for a smooth functiony(x). By Ii we denote the intervalIi = (xi− 1

2
, xi+ 1

2
), wherexi+ 1

2
:= xi+xi+1

2 .
The aim is to find the so-called numerical fluxes, that is functions

ŷ−
i+ 1

2

= ŷ−
i+ 1

2

(yi−r, . . . , yi+s) , (4.5)

ŷ+
i− 1

2

= ŷ+
i− 1

2

(yi−r, . . . , yi+s) , (4.6)

such that the flux difference approximates the derivativey′(x) to k-th order accuracy:

ŷ−
i+ 1

2

− ŷ+
i− 1

2

∆xi
= y′(xi) +O(∆xk) , (4.7)



4.3. UPDATING GEOMETRY BY SOLVING KINEMATIC EQUATION 81

where∆xi := xi+ 1
2
− xi− 1

2
. Consider an auxiliary functionh(x) such that

y(x) =
1

∆x

∫ x+∆x
2

x−∆x
2

h(ξ) dξ . (4.8)

Then

y′(xi) =
h(xi+ 1

2
)− h(xi− 1

2
)

∆xi
, i = 1, . . . , N , (4.9)

and the sought after numerical fluxes may be obtained by a sufficiently high-order approximation of
the functionh(x). Since it is difficult to obtain the functionh(x) from the integral equation (4.8), the
following trick based on a primitive function is applied. LetH(x) be a primitive function ofh(x)

H(x) :=

∫ x

−∞
h(ξ)dξ , (4.10)

and letH(x) be evaluated at pointxi+ 1
2
:

H(xi+ 1
2
) =

∫ x
i+1

2

−∞
h(ξ) dξ =

i
∑

j=−∞

∫ j+ 1
2

x
j− 1

2

h(ξ) dξ =
i
∑

j=1

∆xj yj , (4.11)

whereyi is defined equal to0, yi = 0, outside the interval{1, . . . , N}. Having the point values
H(xi+ 1

2
) of H(x), the numerical fluxes are obtained by constructing a polynomial approximation

of an appropriate order ofH(x) using valuesH(xi+ 1
2
) and differentiating this approximation with

respect tox. Note that for a chosen order of approximation, there is a freedom in the choice of the
stencil, i.e. the set of points used for the polynomial reconstruction.

When the procedure is completed, the flux for a stencil{Ii−r, . . . , Ii+s} wherer + s + 1 = k, is
expressed as

ŷ−
i+ 1

2

=
k−1
∑

j=0

crjyi−r+j , (4.12)

ŷ+
i− 1

2

=
k−1
∑

j=0

c̃rjyi−r+j , (4.13)

where the constantscrj , c̃rj can be computed explicitly. Their table is given in Shu (1998).

When a polynomial interpolation scheme is constructed, the stencil is usually taken fixed, which
means that ther coefficient is fixed for all points, i.e. the shape of the stencil is the same. Anexample
is a central fourth-order reconstruction of the flux taken asŷ−

i+ 1
2

ŷ−
i+ 1

2

= − 1

12
yi−1 +

7

12
yi +

7

12
yi+1 −

1

12
yi+2 . (4.14)

Now if the functiony(x) is only piecewise smooth, such as a step function, the approximation property
in the vicinity of the jump is no longer valid. For fixed stencil schemes, we then obtain oscillations of
the interpolated function in the vicinity of the jump. A way to avoid this so-called Gibbs’ Phenomena
is to choose the stencil adaptively according to the data character. For ENO schemes, the choice of
the stencil is governed by a certain smoothness request.
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First, the Newton divided differences are defined recursively by

yi[xi] = yi , (4.15)

yi[xi, . . . , xi+j ] =
yi[xi+1, . . . , xi+j ]− yi[xi, . . . , xi+j−1]

xi+j − xi
. (4.16)

The ENO piecewise polynomial reconstruction of at most degreek − 1 for the intervalIi will be
constructed by the following algorithm.

◦ Compute the divided differences for degrees 1 tok using (4.15).

◦ Start with a one-point stencil
S1(i) = {Ii} (4.17)

◦ For l = 2, . . . , k − 1 the stencil

Sl(i) = {Ij , . . . , Ij+l−1} , (4.18)

is modified such that one of the two neighboring cellsIj−1, Ij+l is added to the stencil. If

|y[xj−1, . . . , xj+l−1]| < |y[xj , . . . , xj+l]| , (4.19)

add the cellIj−1 to the stencilSl and redefine it as

Sl+1(i) = {Ij−1, . . . , Ij+l−1} , (4.20)

else add the cellIj+l to the stencilSl and redefine it as

Sl+1(i) = {Ij , . . . , Ij+l} . (4.21)

◦ For the final stencilSk(i) = {Ii−r, . . . , Ii+s}, with r + s + 1 = k, a Lagrange interpolation
polynomial is constructed. After differentiation with respect tox, a polynomialp(x) of at most
degreek − 1 in Ii is obtained

pi(x) =
k
∑

m=0

m−1
∑

j=0

vi−r+j∆xi−r+j





∑k
l=0,l 6=mΠk

q=0,q 6=m,l(x− xi−r+q− 1
2
)

Πk
l=0,l 6=m(xi−r+m− 1

2
− xi−r+l− 1

2
)



 . (4.22)

Finally, the numerical flux̂yi+ 1
2

reads as

ŷ−
i+ 1

2

:= pi(xi+ 1
2
) , (4.23)

ŷ+
i− 1

2

:= pi(xi− 1
2
) , (4.24)

or

ŷ−
i+ 1

2

=
k−1
∑

j=0

crjyi−r+j , (4.25)

ŷ+
i− 1

2

=
k−1
∑

j=0

c̃rjyi−r+j . (4.26)
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Comparing (4.22) and (4.25)-(4.26), we obtain explicit expressions forthe coefficientscrj and
c̃rj

crj = ∆xi−r+j

k
∑

m=0





∑k
l=0,l 6=mΠk

q=0,q 6=m,l(xi+ 1
2
− xi−r+q− 1

2
)

Πk
l=0,l 6=m(xi−r+m− 1

2
− xi−r+l− 1

2
)



 , (4.27)

c̃rj = ∆xi−r+j

k
∑

m=0





∑k
l=0,l 6=mΠk

q=0,q 6=m,l(xi− 1
2
− xi−r+q− 1

2
)

Πk
l=0,l 6=m(xi−r+m− 1

2
− xi−r+l− 1

2
)



 . (4.28)

The expressions (4.22), (4.27) and (4.28) are valid for a non-uniform grid, which will be applied
in the vicinity of the boundaries with different grid-point densities. The accuracy estimates of
interpolation then differ from the uniform-grid case and are, in general, worse.

We now return to the discretisation of the term~v · gradϕ from (4.1). We will consider only the part
vx

∂ϕ
∂x , since they-counterpart can be discretised in an analogous way. In order to obtaina stable

numerical scheme, upwinding is used, that is, using spatial discretisation biased according to the
direction of the propagation speed.

◦ If vx(xi) ≥ 0, we use the ENO reconstruction of fluxesϕ̂−
i+ 1

2

andϕ̂−
i− 1

2

and estimate

vx
∂ϕ

∂x
(xi) ≃ vx(xi)

ϕ̂−
i+ 1

2

− ϕ̂−
i− 1

2

xi+ 1
2
− xi− 1

2

, (4.29)

whereϕ̂−
i− 1

2

is defined by

ϕ̂−
i− 1

2

:= ϕ̂−
(i−1)+ 1

2

. (4.30)

◦ If vx(xi) < 0, we use the ENO reconstruction of fluxesϕ̂+
i+ 1

2

andϕ̂+
i− 1

2

and estimate

vx
∂ϕ

∂x
(xi) ≃ vx(xi)

ϕ̂+
i+ 1

2

− ϕ̂+
i− 1

2

xi+ 1
2
− xi− 1

2

, (4.31)

whereϕ̂+
i+ 1

2

is defined by

ϕ̂+
i+ 1

2

:= ϕ̂+
(i+1)− 1

2

. (4.32)

With the use of the ENO flux reconstruction and the Runge-Kutta time-explicit discretisation, the prob-
lem of the free-surface evolution is resolved, provided that the ice sheet extends over the whole compu-
tational domain and the deglaciated regions are represented by a thin layer of ice of a small prescribed
thickness. This traditional and useful trick has the great advantage thatthere is no need not to ”switch on
and off” the computational nodes when they appear in and out of the glaciated area. An obvious price paid
for that is reduced computational effectiveness, since all nodes are active (equations solved in them) all the
time.

Nevertheless, the problem of determining and tracking the ice sheet margin may become important in
some situations. So far, we have been dealing only with the grounded ice sheets, i.e. glaciers being in
contact with the underlying bedrock, but, in nature, ice sheets typically endtheir journey at ocean shores
and as the ice starts floating, the flow regime and boundary conditions dramatically change. Neither the SIA,
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nor SIA-I approaches are convenient anymore in these transition regions, and a different type of scaling has
to be adopted. This leads typically to some kind of Shallow-Shelf Approximation (SSA), such as in Baral et
al. (2001). It is therefore an important, but non-trivial task to track the grounded-floating ice transition line
and capture its movement properly. In order to do this, we implement (only in thetime explicit formalism) a
possible way of tracking the ice sheet extent by the technique of a level-set function, which we now briefly
summarize following the paper by Peng et al. (2000).

• Level set function approach: Tracking the ice sheet extent.

The level-set approach is based on the following idea. Our aim is to describe a movement of a closed
curveΓ(t) in R2, for instance, whereΓ(t) is the margin of an ice sheet. LetΩ(t) be the region
enclosed by the curveΓ(t). We introduce the so-called level-set functionΦ(~x, t) by the conditions

Φ(~x, t) :







> 0 in Ω(t) ,
= 0 on Γ(t) ,
< 0 in R2 \ Ω̄(t) .

GivenΦ(~x, t), the position of the curveΓ(t) can be tracked by finding the zero contour ofΦ(~x, t),
that is the set of points inR2 satisfyingΦ(~x, t) = 0. The problem of the movement of the curve
Γ(t) is thus transformed into the problem of the evolution of the level-set functionΦ(~x, t). The
corresponding transport equation is obtained by differentiating the relation Φ(~x, t) = 0, holding for
all ~x ∈ Γ(t), with respect to time, which gives

∂Φ(~x, t)

∂t
+ ~v · gradΦ(~x, t) = 0 , ~x ∈ Γ(t) , (4.33)

where~v is the velocity of the material particles onΓ(t). This equation can be extended to the whole
R2, provided the velocity field~v is extended outside the curve. This can be done rather arbitrarily,
as the velocity~v has a specific physical meaning only for the particles onΓ(t). If Γ(t) is a material
curve dragged in a velocity field, it is natural to define the velocity of the level-setΦ(~x, t) by~v. In the
case thatΓ(t) represents a boundary of a material domain (such as a glacier), the material velocity is
well defined only in the domain̄Ω(t), and it needs to be extended outside this domain. The freedom
in the extension allows us to choose the velocity outsideΩ̄(t) such that it yields the best numerical
behavior of the functionΦ. It is, in particular, convenient that the level-set function resembles a
distance function fromΓ(t) (signed positive inΩ(t) and negative outsidēΩ(t)), that is when

|gradΦ| = 1 , (4.34)

at least, in the vicinity ofΓ. The velocity extension can be done such that (4.34) remains approxi-
mately satisfied for some period of the evolution ofΦ, after which, however, the functionΦ has to be
reinitialized. The process of reinitialization has to be performed in such way that the zero contour of
Φ, that is the position ofΓ(t), is not affected by the procedure.

Since the information about the position ofΓ(t) is maintained only by the zero contour of the function
Φ, it is unnecessary to compute the evolution ofΦ in R2, but rather it is sufficient to localize the non-
trivial support ofΦ in a neighborhood ofΓ(t) defined by a small prescribed distance fromΓ(t). This
results in the so-called local level-set approach (Peng et al., 2000) which can be characterized by the
following five steps:

◦ Initialize
Initialize the level-set functionΦ(~x, t = 0) as the signed distance from the initial position of
Γ(t = 0) (sign positive insideΩ(t), negative outsidēΩ(t)).
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◦ Compute velocity
Calculate the material velocity~v on Γ(t) by solving the physical problem associated with the
movement of particles onΓ(t) (in our case the Stokes problem for ice flow).

◦ Extend velocity
Provided the material velocity~v is not well-defined everywhere, extend the velocity field~v on
the neighborhood tubeTγ with a radiusγ

Tγ := {~x : |Φ(~x, t)| ≤ γ} . (4.35)

◦ Advance
Solve the transport equation (4.33) to update the level-set function.

◦ Reinitialize
Apply the reinitialization scheme on the tubeNγ (Tγ ⊂ Nγ), whereNγ is defined by

Nγ := {~x : |Φ(~x+ ~y)| ≤ γ for some |~y| < ∆x}. (4.36)

We must discuss the numerical implementation of these steps. The first one is straightforward to do.
The second one has been discussed for the situation of resolving the ice-flow problem by the SIA-I
algorithm in Chapter 3. The numerical implementation of the last three steps followthe approach
given in Peng et al. (2000).

Velocity extension
For an arbitrary (scalar) quantityqΓ defined on the curveΓ(t), a possible way to extend it outside the
curveΓ(t) is by solving the following partial differential equation (Peng et al., 2000)

∂q(~x, τ)

∂τ
+ S(Φ)

gradΦ

‖gradΦ‖ · grad q(~x, τ) = 0 , (4.37)

q(~x, 0) =

{

qΓ at Γ(t)
0 elsewhere

, (4.38)

with

S(Φ) =







−1 if Φ < 0
0 if Φ = 0
1 if Φ > 0

.

It is a transport (hyperbolic) equation with an artificial ”velocity”S(Φ) gradΦ
‖gradΦ‖ which, ifΦ is a signed

distance function, is normal to the curveΓ(t) and points outwards ofΓ on both sides. Note that the
equation (4.37) is a special type of transport equation (4.3), for which arobust implementation scheme
was introduced above in this section by utilizing the ENO schemes. Because ofthe freedom in the
velocity extension, the numerical accuracy for (4.37) is not crucial andinstead of the ENO approach,
a simple upwind scheme is applied, giving already a sufficient accuracy. ApproximatingS(Φ) by

Sδ(Φ) :=
Φ√

Φ2 + δ2
(4.39)

for a small constantδ, and denoting the nodal values ofSδ(Φ) by si,j , we compute the normal vector
~n = gradΦ

‖gradΦ‖ by central differencing and denote its nodal values by~ni,j = (nxij , n
y
ij). Then, we

discretise (4.37) as follows

qn+1
i,j = qni,j − ∆τ

{

(si,j n
x
i,j)

+ qi,j − qi−1,j

∆x
+ (si,j n

x
i,j)

− qi+1,j − qi,j
∆x

+ (si,j n
y
i,j)

+ qi,j − qi,j−1

∆y
+ (si,j n

y
i,j)

− qi,j+1 − qi,j
∆y

}

, (4.40)
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where
(x)+ := max(x, 0) , (x)− := min(x, 0). (4.41)

Advancing the level set
The transport equation for the level-set functionΦ(~x, t) given in (4.33) is discretised in the same way
as the free-surface kinematic equation (4.1) and (4.2). Namely, the time derivative is treated by the
Runge-Kutta scheme of the 3rd order according to (4.4), and the spatial discretisation of the term
~v · gradΦ is performed by constructing the upwind ENO reconstruction of the numerical fluxes ac-
cording to (4.29)-(4.32). The velocity field~v in (4.33) is taken after the extension to be defined at
least in the tubeTγ surrounding the zero level-set contourΓ(t).

Reinitialization
It is convenient to keep the level-set functionΦ close to a signed distance function in the vicinity of
Γ(t), since then the normal vector toΓ(t) is given as a gradient of the level-set functionΦ. Since
Φ deforms during the time evolution, it is necessary, after a few time steps, to reset Φ to a signed
distance function again. A possible way of doing this, without affecting the zero contour ofΦ during
its resetting, consists of solving an evolutionary partial differential equation for an auxiliary function
d(x, τ) in the form

∂d

∂τ
+ Sδ(d0)(‖grad d‖ − 1) = 0 , (4.42)

d(x, 0) = d0(x) = Φ(x, t) , (4.43)

whereSδ(d) approximates the Heaviside step function by

Sδ(d) =
d

√

d2 + δ2|Dd|2
, (4.44)

where the termDd approximatesgrad d andδ is a small constant. This approximation differs from
that given in Peng et al. (2000), but it has better numerical performance for the testing examples.

The steady-state solutiond(x) has the desired property, namely‖grad d‖ = 1, and, atΓ(t), d(x) =
Φ(x, t). Thus, the zero contour ofd is the same as ofΦ(x, t). We therefore taked for the resetting of
Φ. The numerical implementation is done by the following scheme for updating the nodal values of
d, which are denoted bydij :

dn+1
ij = dij − ∆τs+ij

(

√

(A+)2 + (B−)2 + (C+)2 + (D−)2 − 1
)

− ∆τs−ij

(

√

(A−)2 + (B+)2 + (C−)2 + (D+)2 − 1
)

, (4.45)

wheresij are nodal values ofSδ(d) defined by (4.44), withDd approximated by a central finite-
difference approximation ofgrad d, and

A :=
dij − di−1 j

xi − xi−1
, (4.46)

B :=
di+1 j − dij
xi+1 − xi

, (4.47)

C :=
dij − dij−1

yj − yj−1
, (4.48)

D :=
dij+1 − dij
yj+1 − yj

, (4.49)



4.3. UPDATING GEOMETRY BY SOLVING KINEMATIC EQUATION 87

Figure 4.3: The initial shape of the cross with the initial level-set function (left), a detail of the level-set function (middle) and the
rigid-body velocity field (right).
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Figure 4.4: A smooth extension of thex component of velocity~v to the vicinity of the cross margin (right). Compare withvx
before extension (left).

where(x)± are given by (4.41). The new local level-set is set as a restriction of thesolutiond:

Φ = max(−γ,min(γ, d)) . (4.50)

Finally, the tubesNγ andTγ are updated according to their definitions (4.36) and (4.35).

We demonstrate the whole time-explicit kinematic approach by visualizing it for a simple example of
a cross that rotates with a rigid-body material velocity and periodT . The initial shape, the initial level-set
function and the initial velocity field for this example are shown in Fig. 4.3. The extension of the rotational
velocity~v, defined originally only for the inner nodes whereΦ > 0, is shown for thevx-component in Fig.
4.4. In Fig. 4.5, we plot the initial shape of the cross, the shape afterT

4 , and afterT2 . We may observe that
the original shape is smoothed during the time evolution, as the corners are affected the most. An important
observation is that no oscillations occur as the cross moves, which, as mentioned before, is crucial with
respect to the SIA-I approach.

Figures 4.6-4.8 show the results for a similar numerical example as for the cross, but now for a gaussian
bell moving with a translational velocity. We can again observe very minor changes in the shape of the bell
with again no oscillations in the bell’s shape occurring when the bell moves.
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Figure 4.5: The initial shape (left), afterT
4

(middle) and afterT
2

(right).

Figure 4.6: The initial shape of the gaussian bell with the initial level-set function (left), a detail of the level-set function (middle)
and the rigid-body velocity field (right).
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Figure 4.8: The gaussian bell movement from the initial (left) to the final (right) positions.
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4.3.2 Time-implicit method.

When we move to a problem where surface accumulation is the dominant forcing for free-surface evolution,
the time-explicit approach tends to become unstable and an implicit approach is tobe adopted, which can
be implemented in the following way.

Let us recall that we are dealing with the free surface evolution equation (1.10), which can be appro-
ximated in the sense of SIA by (2.164) (for Cartesian coordinates). For the explicit description of the free
surface,F̃s := z̃ − f̃s(x̃, ỹ), and a purely cold ice (̃w = 0), it takes the following form:

∂f̃s

∂t̃
+ ṽx(·, f̃s(·))

∂f̃s
∂x̃

+ ṽy(·, f̃s(·))
∂f̃s
∂ỹ

− ṽz(·, f̃s(·)) = ãs(·, f̃s(·)) , (4.51)

where~̃v is the surface velocity. The SIA is only considered when evaluating the term
√

1 + ǫ2(), by ap-
proximating it by unity. Since this term originally multiplies the accumulationãs, (4.51) can be considered
as the exact equation even in ”non-shallow” regions, provided that this multiplication factor is included in
ãs. Assuming that basal melting is not present, (m̃b

w = 0), and applying the frozen-bed conditions, (~̃νb = ~0),
equation (4.51), with use of (2.60) and (2.176), is traditionally rewritten as

∂f̃s

∂t̃
+

∂

∂x̃

∫ f̃s

f̃b

ṽx(·, z̃′) dz̃′ +
∂

∂ỹ

∫ f̃s

f̃b

ṽy(·, z̃′) dz̃′ = ãs . (4.52)

We must also remember that, for Cartesian coordinates, the SIA provides semi-analytical expressions for
the velocity field (e.g. Greve (1997)), which, provided that no-slip basal conditions are applied, read as

ṽx(·, z̃) = −2K∂f̃s
∂x̃





(

∂f̃s
∂x̃

)2

+

(

∂f̃s
∂ỹ

)2




∫ z̃

f̃b(·)
Ã(T̃ )(f̃s − z̃′)3 dz̃′ , (4.53)

ṽy(·, z̃) = −2K∂f̃s
∂ỹ





(

∂f̃s
∂x̃

)2

+

(

∂f̃s
∂ỹ

)2




∫ z̃

f̃b(·)
Ã(T̃ )(f̃s − z̃′)3 dz̃′ . (4.54)

These expressions allows us to rewrite equation (4.52) as

∂f̃s

∂t̃
− ∂

∂x̃

(

D̃
∂f̃s
∂x̃

)

− ∂

∂ỹ

(

D̃
∂f̃s
∂ỹ

)

= ãs , (4.55)

with a diffusivity D̃ defined by

D̃(·) := 2K





(

∂f̃s
∂x̃

)2

+

(

∂f̃s
∂ỹ

)2




∫ f̃s

f̃b

∫ z̃

f̃b

Ã(T̃ )(f̃s − z̃′′)3 dz̃′′ dz̃′. (4.56)

Provided that, in a numerical scheme, the diffusivity is computed from the previous time-step, (4.55) be-
comes a parabolic equation for the free-surface functionf̃s, possessing much better numerical properties
than the original hyperbolic transport equation (4.51).

Even if the SIA is not applied, the evolution equation (4.51) may still be transformed to (4.55). Following
Pattyn (2003), we introduce artificial diffusivities:

D̃x :=

∫ f̃s
f̃b
ṽx dz̃

′

∂f̃s
∂x̃

, D̃y :=

∫ f̃s
f̃b
ṽy dz̃

′

∂f̃s
∂ỹ

. (4.57)
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Then, (4.52) reads as
∂f̃s

∂t̃
+

∂

∂x̃

(

D̃x
∂f̃s
∂x̃

)

+
∂

∂ỹ

(

D̃y
∂f̃s
∂ỹ

)

= ãs . (4.58)

We then discretise this equation as follows:

f̃n+1
s i,j − f̃ns i,j

∆t
+ D̃n

x i+ 1
2
,j

f̃n+1
s i+1,j − f̃n+1

s i,j

(∆x)2
− D̃n

x i− 1
2
,j

f̃n+1
s i,j − f̃n+1

s i−1,j

(∆x)2

+ D̃n
y i,j+ 1

2

f̃n+1
s i,j+1 − f̃n+1

s i,j

(∆y)2
− D̃n

y i,j− 1
2

f̃n+1
s i,j − f̃n+1

s i,j−1

(∆y)2
= (ãs)ni,j , (4.59)

where thei, j subscripts and superscriptn denote the nodal values and the value at time stepn, respectively.
We thus see that the linear terms are expressed implicitly in time, whereas the nonlinear diffusivities are
expressed explicitly in time. The diffusivities at midpoints are defined by

D̃x i± 1
2
,j :=

D̃x i±1,j + D̃x i,j

2
, D̃y i,j± 1

2
:=

D̃y i,j±1 + D̃y i,j

2
. (4.60)

The semi-implicit equation (4.59) results in a band sparse system of equationswhich we store in a sparse
storage mode as described in Press (1992). Its solution is found by an iterative solver taken from Ralph
Greve’s SICOPOLIS code (http://sicopolis.greveweb.net). This solver updates a solution~x of the system of
equationsA~x = ~b, by a scheme

~xn+1 = ~xn + ωD−1(~b−A~xn) , (4.61)

where a relaxation parameterω is typicallyω ∈ (0, 1), andD the diagonal of matrixA. This easy numerical
technique is sufficient, because of a good initial guess of the solution fromthe previous time-step. There
is no necessity to improve it by a more advanced iterative solution technique such as the SOR method or
Gauss-Seidel (e.g. Press (1992)).

4.4 Numerical tests

In this section, we present results and performance tests of the evolutionary numerical model described in
the previous section. The first is again taken from the ISMIP-HOM intercomparison and concerns finding
the steady-state profile of ice flow for ice treated as a Newtonian fluid. We then extend this experiment for
ice flow with non-linear rheology and compare the outputs of our model with a finite-element model. The
third experiment deals with the flow of an axisymmetric ice sheet under its own weight. The results are
again compared with a finite-element simulation. For all three experiments, the time-explicit scheme of the
evolution equation is applied. Over the whole computational domain, a minimal nonzero ice thickness is
prescribed in order to avoid the necessity of tracking the glacier margin.

4.4.1 ISMIP-HOM experiment F

The setting of the ISMIP-HOM experiment F is as follows (Pattyn, 2008). Anice slab, with an initially flat
surface slope of3◦, is flowing over a parallel inclined bed perturbed by a Gaussian bump. Thehorizontal
dimensions of the slab areLsc × Lsc, with Lsc = 105m, and the mean ice thickness isHsc = 103m. The
coordinate system is chosen such that thex − y plane is parallel with the initial surfacefs, x increases
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downslope, and thez-axis is perpendicular to the initial surface, directed upwards. In such asystem, we
have

fs(x, y, 0) = 0 , fb(x, y, t) = −Hsc +
Hsc

10
exp

(

−x
2 + y2

σ2

)

, (4.62)

with σ = 10Hsc = 104m. Periodic boundary conditions on velocity are applied at the sides of the compu-
tational domain, i.e.

∀t : ∀x ∈ 〈−Lsc/2,Lsc/2〉, ∀z ∈ 〈fb(·), fs(·)〉 : ~v(x,−Lsc/2, z) = ~v(x,Lsc/2, z) , (4.63)

∀t : ∀y ∈ 〈−Lsc/2,Lsc/2〉, ∀z ∈ 〈fb(·), fs(·)〉 : ~v(−Lsc/2, y, z) = ~v(Lsc/2, y, z) . (4.64)

The flow exponent in rheology (1.17) is chosenn = 1, which corresponds to Newtonian (linear) rheology.
Ice is considered isothermal with the ice-flow parameterA(T ) = A = 2.140373 × 10−7 Pa−1 a−1. The
sliding law (1.68) is considered with

β2 =
1

cAHsc
, (4.65)

and two cases are distinguished:c = 0 (no-slip conditions) andc = 1 (sliding).

• c = 0 (no slip)
The results for this case are shown in Fig. 4.9, where the panel in the firstrow shows the contour of the
steady-state surface elevation and surface velocity magnitude. The middle and bottom panels show
the SIA-I solution, which is compared with the published results of the ISMIP-HOM experiment F.
The full-Stokes solutions and the higher-order models are plotted with lines and points, respectively,
at an intersection with planey = 0. Note that the SIA-I solution is closer to the full-Stokes solutions
than the higher-order models.

• c = 1 (sliding)
The results for this case are shown in Fig. 4.10. We can see the basal velocities are of the same
order as the deformational velocities and the SIA-I solution agrees very closely with the full-Stokes
solutions, and, it is of a significantly higher accuracy than most of the otherhigher-order models.

Numerical performance

The computations for both cases,c = 0 andc = 1, were performed for a model resolution60× 60× 40
and the solution was considered as steady state when the surface profile had not changed within a specified
tolerance (maximal relative change of thickness of5× 10−5) for two successive time steps. Approximately
200 time-steps (1 step = 1 year) were needed to reach steady-state. Each steptook approximately3s on
an Intel Core i7 Quad-Core 2.6x4GHz. This is considerably faster than the full-Stokes FEM model (oga1
in Fig. 4.9 and 4.10), where time costs per time step vary between 2 and 0.5 CPU hours (see Fig. 11 in
Gagliardini, 2008).

4.4.2 Transient simulation with non-linear rheology.

The only reason why the ISMIP-HOM experiment F was set up for linear rheology was to reduce compu-
tational demands, as they increase substantially when transient simulations are run instead of steady-state
ones. The computational costs of the SIA-I algorithm are, however, by the character of the technique rather
independent of the rheology used. This allows us to perform an evolutionary ”ISMIP-HOM - like” ex-
periment, in which a steady-state surface elevation is found by running a transient simulation, but with a
non-linear rheology, which is more appropriate for the description of ice behavior.
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Figure 4.9: The computed steady-state surface elevation profilefs (m) (top left) and surface-velocity magnitude|~v| (m a−1) (top
right). Below we see the steady-state surface elevationfs in m and the steady-state surface velocity componentsvx, vy andvz
(ma−1) obtained by the SIA-I solver (red points), the ISMIP-HOM F solutions for the casec = 0 (no-slip at the base ) by full-
Stokes (red and blue lines) and higher-order approximations (dots). The results are shown at the intersection of the computational
domain with the planey = 0. Abbreviations used: FS = full Stokes, HO = higher-order approximation.
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Figure 4.10: As for Fig. 4.9 but forc = 1, i.e. basal sliding is included.
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The model was set up as follows. We chose a geometry similar to the ISMIP-HOM experiment A-
setting, i.e square-base ice slab of sizeLsc × Lsc, Lsc = 80 km, with an initially flat surface flowing over an
inclined parallel bed perturbed by sinusoidal bumps. The upper and lower surfaces at the beginning of the
simulation are given (inm) by

fs(x, y) = −x tanα , α = 0.5◦, (4.66)

fb(x, y) = fs(x, y)− 1000 + 300 sin(ωx) sin(ωy) ,

(4.67)

with

ω =
2π

Lsc
.

At the sides, the periodic boundary conditions are prescribed:

∀t : ∀x ∈ 〈0,Lsc〉, ∀z ∈ 〈fb(·), fs(·)〉 : ~v(x, 0, z) = ~v(x,Lsc, z) , (4.68)

∀t : ∀y ∈ 〈0,Lsc〉, ∀z ∈ 〈fb(·), fs(·)〉 : ~v(0, y, z) = ~v(Lsc, y, z) . (4.69)

In addition, no-slip and no traction were prescribed at the glacier bed andthe upper free surface, respectively.
The rheology is described by Glen’s flow law (1.17). Our model was run until the upper surface was
moving not more than a specified tolerance (the same as for the ISMIP-F experiment above). Such a stage,
considered as steady state, was reached after approximately200 time-steps (1 time-step = 1 year).

To check our simulations, we implemented this model setting into the open-source finite-element code
Elmer (http://www.csc.fi/english/pages/elmer). Since the time demands for the non-linear rheology given by
Glen’s flow law (1.17) are too large to run the whole transient simulation, we confined ourselves to compare
the SIA-I and full-Stokes FEM solutions only at several time instants. For each of these times we substituted
the SIA-I computed geometry into a steady-state finite-element simulation as inputdata and obtained the
corresponding full-Stokes velocity field. This was compared with our SIA-I velocities. In Fig. 4.11, we plot
the results for three snapshotst = 50, 100, 200 years. The left panels show the surface undulation (in m),
the right panels compare the surface velocity magnitude, with the solid line for SIA-I and dotted lines for the
full-Stokes by Elmer. We can see a very good agreement between the computed velocity fields, indicating
that our SIA-I solution of the steady-state surface profile is close to the full-Stokes solution.

The time costs of the SIA-I solver do not differ from the ISMIP-HOM experiment F, that is they are of
the order of seconds per a time-step, depend linearly on the model resolution (number of nodes).

4.4.3 Axisymmetric ice-sheet spreading

In this numerical experiment, we compute the flow of an axisymmetric ice cap under its own weight. We
compare the SIA-I solution for several aspect-ratios with a finite-element transient simulation by the Elmer
code.

The initial shape of the glacier is a spherical cap with maximum thickness100m lying on a5m thick
ice layer. The horizontal dimensions (diameter) of the studied domain are chosen as 1 km, 2 km, 5 km
and 10 km, which corresponds to aspect ratiosǫ = 1

10 , 1
20 , 1

50 , 1
100 . Ice rheology is modelled by Glen’s

flow law rheology (1.17) for non-linear fluids. At the glacier bed, the sliding law is prescribed by (1.68)
with β2 = 106 Pa am−1. The upper surface is considered traction-free. The finite-element mesh for the
Elmer simulation is depicted in Fig. 4.12. In Fig. 4.13, we plot the surface profiles computed by Elmer for
the full-Stokes model and compare them with the SIA-I results for the four aspect ratios. The geometry is
scaled to unity and the given times are non-dimensional. The correspondingtime steps differ according to
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Figure 4.11: The SIA-I computed surface elevation (left panels) and corresponding velocity field (right panels). The full Stokes
velocities by FEM (dotted) are compared with the SIA-I velocities (solid line).The last row represents the steady-state solution.
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Figure 4.12: The triangular finite-element mesh for the full-Stokes simulation by Elmer.
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Figure 4.13: A comparison of the free surface profiles obtained by the FEM code Elmer for the full-Stokes model and by our
SIA-I-based code, for several time snapshots and four aspect ratios.

the aspect ratios, and are∆t = 0.1a, and∆t = 1a, for ǫ = 1
10 , andǫ = 1

20 , respectively, and∆t = 100a,
for ǫ = 1

50 andǫ = 1
100 . A very satisfactory agreement between the finite-element full-Stokes computation

and our results is observed even for the large aspect ratio ofǫ = 1
10 .

4.5 Heat-transport equation

If a more realistic case is to be considered, the effect of thermo-mechanical coupling for ice flow cannot
be neglected, because of a strongly temperature-dependent viscosity via the temperature rate-factorA(T ),
see (1.21). It is therefore necessary to involve the heat-transport equation (1.28) into our model. For the
cold-ice model, we implement the shallow-ice version of the heat-transport equation, which, in Cartesian
coordinates, is given by (2.140). Rewriting this equation in stretched coordinates (Appendix C), we arrive
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This equation is discretised by a semi-implicit way. The implicit scheme is chosen for the vertical deriva-
tives, all the remaining terms are discretised explicitly in time. This approach results in a tri-diagonal system
of equations for each(i, j):
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where
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and
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At the upper free surface, temperature is prescribed as a boundary condition:

T̂n+1
i,j,N3

= T̂ s n+1
i,j , (4.78)

while at the base, the energy condition (2.208) is considered, which, forno basal melting (̂mb
w = 0), is

discretised as follows
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C
D (σ̂xz v̂

sl
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sl
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)

. (4.79)

The resultant set of tri-diagonal systems is solved by thetridag routine from Press (1992).
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Table 4.1: Values of physical parameters.

Symbol Constant Value Units
ρ Ice density 910 kg m−3

g Gravitational acceleration 9.81 m s−2

qgeo Geothermal heat flux 4.2× 10−2 W m−2

CCl Pressure dependence of melting temperature9.7008× 10−8 K Pa−1

cv Specific heat capacity of ice 2009 J kg−1 K−1

k Thermal conductivity of ice 2.1 W m−1 K−1

4.6 EISMINT benchmarks - effects of thermomechanical coupling

The performance of the heat-equation solver was checked in the comparison with the EISMINT benchmark
experiments which contains examples for testing the thermo-mechanical coupling in ice-flow problem. In
all numerical experiments, two prognostic equations are solved: (i) The heat-transport equation, and (ii) the
free-surface evolution resulting from ice deformation and surface accumulation and ablation. The nonlinear
rheology of ice is given by Glen’s flow law (1.17) with the rate factor of the dependence (1.22). Ice is
assumed to be cold, i.e. its temperature is not allowed to exceed the pressure melting point (1.48). For all
numerical experiments, the accumulation-ablation function and the surface temperature are prescribed at
the free-surface. At the glacier base, the no-slip boundary condition for velocity is assumed and a constant
geothermal heat flux is specified. No melting is taken into account, neither at the base, nor inside the glacier.
The constants and parameters used are prescribed in Table 4.1. The surface accumulation–ablation function
as

ρ is given as a function of position (in ma−1) as

as

ρ
:= min[Mmax, Sb(Rel −

√

(x− xsummit)2 + (y − ysummit)2)] , (4.80)

whereMmax is the maximal accumulation rate andSb is the gradient of the accumulation-ablation function
with respect to the distance from the glacier’s summit. The accumulation-ablationfunction is positive in the
circle with the origin at(xsummit, ysummit) and radiusRel and it is negative outside this circle.

The surface temperature (in K) is parametrized as

T s := Tmin + ST
√

(x− xsummit)2 + (y − ysummit)2 , (4.81)

whereTmin is the minimal surface air temperature andST is the gradient of surface air temperature with
horizontal distance.

The model domain is a square1500km × 1500km with the summit located at(xsummit, ysummit) =
(750 km, 750 km). The model resolution of25 km is prescribed in both horizontal directions, i.e.61 × 61
grid points in the horizontal plane and 61 layers in vertical. The bedrock is flat, meaning that the effect of
isostasy is not considered. As all the models in the intercomparison are Shallow-Ice models, we perform
only the first iteration of the SIA-I algorithm, resulting in the solution in the Shallow-Ice Approximation.

• EISMINT experiment A.
In this experiment, an equilibrium shape is sought, if we start from initially ice-free conditions on a
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flat bedrock topography with the climatic forcing described by

Mmax = 0.5 ma−1 ,

Sb = 10−2 ma−1 km−1 ,

Rel = 450 km ,

Tmin = 238.15 K ,

ST = 1.67× 10−2 K km−1 .

The temperature dependence of the rheology (1.22) is specified by

A =

{

3.61× 10−13 Pa−3 s−1 if T ⋆ < 263.15 K
1.73× 103 Pa−3 s−1 if T ⋆ ≥ 263.15 K

, (4.82)

Q =

{

6.0× 104 J mol−1 if T ⋆ < 263.15 K
13.9× 104 J mol−1 if T ⋆ ≥ 263.15 K

, (4.83)

whereT ⋆ is the absolute temperature corrected for the pressure melting point:T ⋆ := T + CClp.

The climatic forcing, that is the surface temperature and accumulation-ablationfunction, are depicted
in Fig. 4.14, where the resultant basal temperature and ice sheet geometryare also displayed. The
steady-state temperature and velocity field are visualized in Fig. 4.15.

We compare our model output with the published results of the EISMINT benchmark (Payne et al.,
2000). The compared quantities are the final volume of the ice sheet, the glaciated area, the fraction
of glaciated area with the basal temperature at the pressure-melting point, themaximal ice thickness
(at the ice-divide), and the ice-divide basal temperature. The published 10 numerical models differ
quite substantially in several parameters (mainly in the melt-fraction). We therefore show both the
mean value and the range of each output parameter. The results are summarized in Table 4.2. We may
observe a good agreement in the total volume of the steady-state glacier andthe glaciated area, which
can be explained by the fact that the glacier is well constrained by the accumulation-ablation function,
and also the ice-thickness at the divide. A good agreement is also obtainedfor the basal temperature
at the ice divide. Quite different is, however, our result for the fraction of the glacier bed with the
temperature at the pressure-melting point. In fact, our result is just within theedge of the interval of
published solutions. Note, however, that there is a large variability in this parameter between all other
models, since the range is equal to40% of the mean value.

• EISMINT experiment B.
This experiment is initiated from the steady-state solution (obtained after200 ky) of experiment A
and applies an altered temperature condition:

Tmin = 243.15 K , (4.84)

i.e. the surface temperature undergoes a5 K warming, while all the remaining parameters are kept
fixed as in exp A. A new steady-state solution is found, and a change in volume, basal melting fraction,
divide thickness and divide basal temperature is evaluated and given in Table 4.3. We see again a
satisfactory agreement to a sudden surface warming model response between our and the EISMINT
result.

• EISMINT experiment C.
In this experiment, the effect of accumulation and ablation is inspected. Starting from the steady-state
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Figure 4.14: Upper row: Surface temperature (left) and accumulation-ablation function (right), Bottom row: Resultant steady-state
basal temperature (left) and ice sheet surface elevation (right).

Figure 4.15: Temperature (K) (left) and magnitude of velocity (m a−1) (right) in the steady-state solution of EISMINT experiment
A.
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Table 4.2: EISMINT exp. A results.

Quantity Our result EISMINT mean EISMINT range

Ice volume (106 km3) 2.074 2.128 0.145
Glaciated area (106 km2) 1.031 1.034 0.086

Melt fraction 0.582 0.718 0.290
Divide thickness (m) 3710.386 3688.342 96.740

Divide basal temperature (K) 254.538 255.605 2.929

Table 4.3: Differences between exp B and exp A.

Quantity Our result EISMINT mean EISMINT range

Ice volume change (%) −2.956 −2.589 1.002
Melt fraction change (%) 12.614 11.836 18.669

Divide thickness change (%) −5.457 −4.927 1.316
Divide basal temperature change (K) 4.587 4.623 0.518

Table 4.4: Differences between exp C and exp A.

Quantity Our result EISMINT mean EISMINT range

Ice volume change (%) −27.884 −28.505 1.204
Glaciated area change (%) −20.376 −19.515 3.554
Melt fraction change (%) −21.964 −27.806 31.371

Divide thickness change (%) −12.678 −12.928 1.501
Divide basal temperature change (K) 3.680 3.707 0.615

Table 4.5: Differences between exp D and exp A.

Quantity Our result EISMINT mean EISMINT range

Ice volume change (%) −11.943 −12.085 1.236
Glaciated area change (%) −10.188 −9.489 3.260
Melt fraction change (%) −2.309 −1.613 5.745

Divide thickness change (%) −2.049 −2.181 0.532
Divide basal temperature change (K) −0.179 −0.188 0.060

solution of experiment A, the boundary conditions are altered as follows:

Mmax = 0.25 m a−1 ,

Rel = 425 km ,

but the other parameters the same as in experiment A. The equilibrium changes of volume, area, melt-
fraction, divide thickness and divide basal temperature are given in Table 4.4. A very good agreement
can be seen in all the quantities, a difference can be observed for the melt-fraction change, for which,
however, the range in EISMINT results is huge.
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• EISMINT experiment D.
In the last EISMINT experiment the altered boundary condition

Rel = 425 km ,

is applied to the final steady-state solution of experiment A, while all other parameters are kept un-
altered. The changes of steady-state characteristics of the glacier as thereaction to this reduction of
accumulation area are summarized in Table 4.4. We may observe that, all parameters agree satisfac-
torily with the EISMINT mean. The melt-fraction change for the EISMINT solutions shows again a
great variability, including the change in sign. Payne et al. (2000) concluded, that there is no clear
pattern in change of this parameter.

We may say that our model is able to reproduce the results of the EISMINT benchmarks with a sufficient
accuracy, and conclude that the implementation of the heat-transport equation and the thermo-mechanical
coupling in our model performs correctly.

4.7 Summary

In this section we have extended our model for a transient case by implementing the evolution equation
for the free surface. Two approaches were presented. A time-explicitapproach for free-surface evolution
equation is based on expressing the spatial gradient of the free-surface function by the ENO schemes. Such
an explicit discretization does not, for a sufficiently small time step, suffer from numerical oscillations,
which is crucial when either the SIA or the SIA-I technique is employed to compute the velocity field.
A level-set function technique was implemented for tracking the ice-sheet margin, being able to capture
complex changes in the ice-margin shape and topology.

The second approach was time-implicit. By introducing auxiliary diffusivities,we arrived at the ”SIA-
like” discretization of the free-surface evolution equation, possessing for the SIA-I approach much better
numerical properties than the original transport equation.

Both approaches were tested in a series of numerical experiments. In particular, we performed the
prognostic ISMIP-HOM experiment F with a satisfactory result both in terms of the accuracy and numerical
effectiveness. To demonstrate the performance of our model, we also extended the experiment for non-
liner rheology following Glen’s flow law, which is in contrast to the original setting, where only a linear,
Newtonian, model was used in order to reduce the computational demands. By comparing the SIA-I velocity
field with the corresponding FEM full-Stokes velocity solution by Elmer for several time snapshots, we have
shown that the SIA-I based model is able to successfully perform the prognostic run even for the non-linear
rheology.

The third experiment involved also a FEM simulation by Elmer and compared the SIA-I and full-Stokes
solution for an axisymmetric ice-cap spreading under its own weight. A good match in the accuracy of the
SIA-I solution was again observed.

Finally, the heat-transport equation was implemented in the stretched coordinates, allowing us to com-
pute also the evolution of temperature field. The effect of thermo-mechanical coupling was evaluated in
a series of the EISMINT benchmarks. The results indicate that the implementation of the heat-transport
equation into the numerical model for ice flow has been successful.



Chapter 5

Greenland Ice Sheet simulation

In this chapter, we apply our numerical model to a realistic simulation. Inspiredby the EISMINT intercom-
parison, in particular by the EISMINT Greenland models benchmark, we willrun three different simula-
tions. First, a steady state of the Greenland Ice Sheet (GIS) is sought if the present-day climatic forcing is
kept constant during a transient response of the model. The second simulation aims at reconstructing the
Greenland Ice Sheet behavior during last250 thousand years, i.e. approximately two glacial cycles. The
third simulation is a prognostic experiment of modeling a short term (500 years) response of the GIS to a
prescribed warming forcing. All experiments will now be described in full detail.

5.1 Steady-state Greenland Ice Sheet simulation

We perform the EISMINT Greenland Ice Sheet steady-state experimentas described by Huybrechts (1998).
The summary of this experimental setup is as follows. The bedrock and surface topography of the Greenland
region is given by a data set compiled by Anne Letreguilly (Letreguilly, 1991). We choose a variant with a
20 km spatial resolution. The accumulation rates on the same grid are provided for the EISMINT experiment
by Huybrechts (1998), who compiled data from Ohmura & Reeh (1991). The employed parametrization is
described as follows.

• Mean annual temperature (in◦ Celsius)

Ta = 49.13− 0.007992 · Z− 0.7576 · latitude , (5.1)

with
Z := max(surface elevation, 20 · (latitude− 65)), (5.2)

• Summer temperature (in◦ Celsius)

Ts = 30.38− 0.006277 · surface elevation− 0.3262 · latitude . (5.3)

• Standard deviation of the daily temperatureσT = 5◦C .

• The ice rheological law is given by Glen’s flow law (1.17) with parametersA andQ taken as

A =

{

10.83× 10−13 Pa−3 s−1 if T ⋆ < 263.15 K
5.19× 103 Pa−3 s−1 if T ⋆ ≥ 263.15 K

, (5.4)
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Q =

{

6.0× 104 J mol−1 if T ⋆ < 263.15 K
13.9× 104 J mol−1 if T ⋆ ≥ 263.15 K

. (5.5)

This setting corresponds to the parameters in the EISMINT experiments fromthe previous chapter
(4.82), (4.83), but with the right-hand side of (1.17) multiplied by an enhancement factormenh = 3.
Other physical parameters are taken as in Table 4.1, except for the geothermal heat flux, which is now
prescribed by a higher value ofqgeo = 5× 10−2W m−2.

• The ablation is parametrized by the positive degree-day method (van der Veen, 2007), which can be
briefly summarized as follows. Given the surface mean annual and summer temperaturesTa andTs
by (5.1) and (5.3), respectively, a cosine annual cycle for surfacetemperature is assumed, which is, in
addition, perturbed by random Gaussian noiseψ with the prescribed standard deviationσT , and zero
mean

Tsurf (t) = Ta + (Ts − Ta) cos(2πt) + ψ . (5.6)

The ablation during anM -day period{ti}Mi=1 is then parametrized by

abl = kabl ·
M
∑

i=1

H(Tsurf (ti))Tsurf (ti), (5.7)

where

H(T ) =

{

1 if T ≥ 0◦ C
0 if T < 0◦ C

, (5.8)

and the constantkabl in (5.7) is chosen as

kabl =

{

8.0 mm d−1 ◦C−1 for ice
3.0 mm d−1 ◦C−1 for snow

, (5.9)

since the albedo is, in general, higher for snow than for ice. The melt-rate iscomputed according
to the snow and ice model of Reeh (1991), where, in the first moment, all accumulation is assumed
to be in the form of snowfall. When surface melting occurs, the snow layer isfirst melted with the
meltwater refreezing again to a form of the super-imposed ice, until its amountexceeds60% of the
annual snowpack. From that moment on, all meltwater is assumed to leave the glacier as runoff. The
same scenario holds for the meltwater from melted glacier ice.

The initial geometry of the Greenland Ice Sheet and the initial accumulation-ablation function are depicted in
Fig. 5.1 (top). Assuming the problem possesses a unique steady-state solution for the given climatic forcing,
we have a freedom in the choice of the initial temperature. We chose a simple downward continuation of
the surface temperature field. The model was run for150 thousand years, with a time step of 5 years, which
was sufficiently long to reach the steady-state, as seen from Fig. 5.2, where the ice volume and glaciated are
shown. In Fig. 5.1, we display the final steady-state geometry of the GIS (bottom left) and the difference
between the steady-state and the initial geometry (bottom right).

We see that the effect of present climatic forcing mainly influences the coastal regions, where the extent
of the GIS is increased. On the other hand, the topography of the Greenland’s interior does not change much
and slightly decreases the maximum ice thickness.
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Figure 5.1: The initial (present-day) surface topography of the GIS (top left,dark blue=ice, yellow=ground, light blue = ocean),
and the initial accumulation-ablation function (top right). The bottom panel shows the result of the steady-state simulation after 150
thousand years, namely the final topography (bottom left) and the difference between the steady-state and the initial topography
(bottom right).
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Figure 5.2: The evolution of the GIS volume and glaciated area during the steady-state simulation (see also Fig. 5.1).

5.2 Climatic cycle experiment

This simulation starts from the steady-state obtained by the first experiment. A climatic forcing for a period
of approximately250 thousand years is imposed, consisting of temperature and sea-level contributions. The
temperature changes are derived from theδ18O content of the GRIP ice core (Dansgaard et al., 1993) by the
simple conversion

∆T (K) = 1.5(δ18O + 35.27) . (5.10)

Sea-level change constrains the maximal extent of the ice sheet, becauseimmediate calving is assumed
whenever the ice sheet reaches the ocean (i.e. no ice-shelf formation is considered). It is again correlated
directly to theδ18O content by the formula (Imbrie et al., 1982)

∆Sea level (m) = −34.83(δ18O + 1.93) . (5.11)

Both the forcing data-sets are shown in the top row of Fig. 5.3, while the bottompanels show the evolution
of areal extent and volume of the GIS, computed with the time step of 5 years. Fig. 5.4 reprints the result
of the benchmark published in Huybrechts (1998), where, however, the modelers had more freedom in their
model setup choice and thus their results are not perfectly comparable. InFig. 5.5, we display the surface
topography for several snapshots during the last glacial cycle, i.e since approximately 150 thousand years
ago, to the present, showing the quite substantial reduction in the GIS extentapproximately 125 thousand
years ago, which is followed by gradual regrowth of the Greenland IceSheet towards the present state - see
bottom row in Fig.5.5.

The previous glacial cycle, that is period from 250 k – 150 k years ago isexcluded from the benchmark
because of lower accuracy of the climatical forcing data.

We may state that our results are in satisfactory agreement with other solutions. A similarity among
all other model outputs is mainly a consequence of the fact that the surfacemass balance, rather than the
ice dynamics, plays the major role in controlling large-scale characteristics such as the ice sheet’s volume
or its extent. Using the same or similar parametrizations of the surface mass balance therefore leads to the
same or at least quite similar behavior of the models in terms of these control variables. On the other hand,
when the details in topography are compared, significant differences occur between the various models (see
Huybrechts, 1998).



5.2. CLIMATIC CYCLE EXPERIMENT 107

-14
-12
-10
-8
-6
-4
-2
 0
 2
 4
 6

-250 -200 -150 -100 -50  0

∆ 
T

 (
K

)

time (ka)

-140

-120

-100

-80

-60

-40

-20

 0

 20

-250 -200 -150 -100 -50  0

∆ 
S

ea
 le

ve
l (

m
)

time (ka)

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

-250 -200 -150 -100 -50  0

G
la

ci
at

ed
 a

re
a 

(1
06  k

m
2 )

time (ka)

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

-250 -200 -150 -100 -50  0

Ic
e-

sh
ee

t v
ol

um
e 

(1
06  k

m
3 )

time (ka)

Figure 5.3: Temperature (top left) and sea-level (top right) forcing of the climatic cycle experiment and the evolution of the GIS
areal extent (bottom left) and volume (bottom right).

Figure 5.4: The evolution of glaciated area in the climatic experiment, reprinted figure from Huybrechts (1998). The differences in
results are partially due to a not-entirely unique set up of the benchmark. Compare with our solution in Fig. 5.3 (bottom left panel).
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Figure 5.5: Several snapshots of the evolution of our model topography forthe climatic cycle experiment, covering approximately
the last 150 thousand years.
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5.3 Greenhouse warming scenario

This experiment aims at evaluating the effect of one of the possible greenhouse-warming scenarios on the
GIS. On the contrary to the EISMINT benchmark setting, where the final state of the climatic simulation
is used as input, our simulation is started from the steady-state result of the first simulation (steady-state
scenario). We prefer this choice, as the sea-level and topography data are closer to the actual state of the
GIS, and thus the outputs are to be of higher relevance.

The model is run for 500 years into the future, with the climatic forcing based solely on surface tem-
perature increase. Hence, no sea-level forcing is considered. Thesurface temperature is increased annually
by 0.035◦ C for the first 80 years (total2.8◦ C increase) and then by0.0017◦ C for the remaining 420 years
(0.714◦ C), resulting in a total temperature increase of3.514◦ C after 500 years. This model temperature
forcing is based on the proposed scenario by Manabe & Stouffer (1994).

The initial and final topography, the topography difference and the evolution of the glaciated area and
ice volume are depicted in Fig. 5.6. The reduction of the GIS volume is approximately by0.135×106 km3.

5.4 Summary

In this chapter, we have presented the output of our numerical model forthree runs based on the benchmark
setting for European Ice Sheet Model INiTiative (EISMINT) - Greenland Ice Sheet Models. The first one is a
steady-state simulation initiated from the present-day topography and climatic conditions for the Greenland
Ice-Sheet, and an arbitrarily prescribed initial temperature. A transient simulation was run until a steady-
state was reached. The steady-state and present-day topographies differ only slightly in the interior of the
ice-sheet, more pronounced differences appear in the vicinity of the ice-sheet margin, where the extent of
the steady-state GIS is systematically larger than the extent of the present-day GIS.

In the second simulation, the present-day topography is subject to a climatic and sea-level forcing based
on the ice-core reconstruction of the past climate over the last two glacial cycles. The glacial-isostatic
adjustment is not taken into account in order to restrict the modelled physicalprocesses only to the response
to climatic and sea-level forcing. The reconstructed GIS history shows a clear minimum in the total volume
and areal extent approximately 125 thousand years ago, which was thenfollowed by a slow regrowth and
finally deglaciation to the present-day state.

The third simulation is prognostic and applies a simply-parametrized global-warming scenario to the
steady-state shape of the GIS resulting from the first, steady-state, simulation. We evaluate the changes in
the areal extent and volume and observe an enhanced melting confined mostly to the south margin areas of
the GIS.

The EISMINT benchmarks have proved a good applicability of our model for long-term large-scale GIS
modeling. To make the paleoclimatic simulations however more realistic, it remains to implement the glacio-
isostatic adjustment of the Earth, that is, the visco-elastic response of the lithosphere and upper mantle to
the glacial surface load. Although the effect of the ice-sheet evolution tothe GIA is straightforward, with
the ice-sheet evolution being the main driving force for the GIA, the converse is not true. The evaluation of
the effect of the GIA on the GIS evolution is a more puzzling question, which remains to be answered by
numerical modeling of the two processes, GIA and GIS evolution, simultaneously in a coupled model.
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Figure 5.6: The initial surface topography of the GIS (top left), the final surface topography att = 500 a (top right), the topography
difference (bottom left) and the evolution of the glaciated area volume (bottom right) in the greenhouse-warming scenario.



Chapter 6

Concluding remarks

In this work, we have been dealing with several aspects of the large-scale numerical modeling of ice sheets,
both from the theoretical and numerical perspective.

First in Chapter 1, we have formulated the equations that govern the time evolution of grounded ice
sheets in a form that allows us to capture and incorporate liquid water and estimate the effects induced by its
presence, such as an enhanced ice deformation, increased basal sliding caused by lubrication of the bedrock
till, thermal effects connected with latent heat release, and so on. Based on the principles of rational mixture
thermodynamics, in Chapter 2, we rederived the traditional Shallow-Ice Approximation, that is a scaling
approximation which makes use of the fact that, in nature, the vertical-to-horizontal aspect ratio is often a
small number. This fact allows a perturbation analysis in terms of this ratio. Ourmain contribution is that we
have extended the SIA apparatus by considering general orthogonalcurvilinear coordinates and obtained a
whole class of shallow-ice approximations whose particular form dependson the chosen coordinate system,
and may be easily specified by evaluating associated geometrical quantities.

We then, in Chapter 3, designed a novel computational algorithm denoted asSIA-I, which iteratively
improves the ”shallow-ice” solution by including longitudinal stresses in a computationally effective way
compared to other approaches. The convergence of the algorithm was investigated numerically but also
theoretically, leading to the observation that the iterations converge the faster the ”shallower” the problem,
that is the smaller the scaling parameterǫ. Although we did not provide an exhaustive and rigorous mathe-
matical analysis of the convergence properties of the SIA-I procedure, a number of numerical examples and
tests have clearly demonstrated the applicability of the algorithm in practise. We proved, however, that if
the procedure converges, the limiting solution satisfies the rheological equation exactly and results in errors
in the first two momentum equations, that are of the order ofǫ2 and can be evaluated explicitly.

We performed comprehensive numerical testing by the verification with othernumerical methods such as
finite-element, and by computing a number of benchmark examples. We participated in one of the recently
designed benchmarks, the Ice-Sheet Model Intercomparison Project- Higher-Order Models (ISMIP-HOM),
which was mainly oriented towards non-shallow, higher-order effects in glacier dynamics. This benchmark
reported the very good performance of the SIA-I technique, both in accuracy and computational speed.

We also compared our model with a higher-order solution for the region of Dronning Maud Land in
Antarctica, by (i) considering realistic topography for both the ice sheet surface and the underlying bedrock
surface, (ii) the strongly non-homogeneous basal sliding conditions, and (iii) spatially varying temperature
field. The comparison was very satisfactory, as the achieved accuracywas comparable with other higher-
order models but the results were obtained with a substantially increased computational speed.
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In Chapter 4, we finally developed a finite-difference thermo-mechanicalevolutionary ice sheet numer-
ical model based on the SIA-I algorithm, which models the evolution of ice sheet geometry due to the
processes of internal deformation, described by a model of viscous non-Newtonian fluid, and due to surface
processes such as accumulation, ablation and basal sliding. For most simplesetups, with only one iteration
of the SIA-I algorithm performed at each time step, this model gave similar results to other existing large-
scale SIA models such as e.g. SICOPOLIS (http://sicopolis.greveweb.net/), or GRISLI (Ritz et al., 2001).
With more than one iterations of the SIA-I algorithm, our model, however, provides (also locally if neces-
sary) an improved solution to the ice-flow problem by capturing the higher-order dynamics by including the
longitudinal stresses, which are neglected in the ”shallow” approximation.

The performance of the code was tested in Chapter 5 for four of the European Ice-Sheet Modelling
INiTiative (EISMINT) benchmarks that are focused on the effects of thermo-mechanical coupling within an
ice sheet while considering the shallow-approximation, with the conclusion that our outputs are in a good
agreement with the published results.

In Chapter 6, we finally carried out three benchmarks whose level of complexity fully corresponds to the
original purpose of our model, that is, modeling long-term large-scale evolution of large ice sheets. Three
EISMINT scenarios of the Greenland Ice Sheet with realistic topographical data, energy and mass fluxes
were considered: a steady-state simulation, a paleoclimatic simulation for the period of last two glacial
cycles and a500 year prognostic simulation modeling the possible effects of a prescribed global-warming
prognosis.

All numerical results show that we succeeded in developing an applicable numerical tool for simulating
large-scale ice sheet evolution. Thanks to the computational effectiveness of the SIA-I approach, the code
is capable of capturing also the ”non-shallow”, i.e. higher-order effects of the ice sheet dynamics.

Finally, we should remind ourselves the original motivation for the development of our code. A nu-
merical model of ice sheet dynamics was meant to be coupled with an existing numerical model for the
visco-elastic response of the Earth’s lithosphere. By coupling the two models, a more consistent approach
was to be achieved for the numerical modeling of glacial-isostatic adjustment, that is response of the Earth’s
lithosphere to time-dependent surface-load changes caused by the advance and retreat of the ice sheets
during glacial cycles. Although this final goal has not yet been achieved, we will concentrate on the com-
pletion of such coupled model in the future. We believe that the amount of time and effort spent by testing
the model, that is the subject of this work, was necessary and important, since the great complexity of the
studied problem allows possible errors to remain unnoticed and contaminate any future outputs. Also, the
fact that a novel algorithm for the Stokes problem for ice-flow was proposed, made all the testing inevitable
to assess and evaluate its performance and applicability properly.



Appendix A

Convergence proof for the SIA-I algorithm
with linear rheology and uniform viscosity

We have undertaken several attempts to provide a deeper mathematical analysis of the SIA-I iterative
scheme. The main goal we were trying to reach was to prove a contractivity of the mapping induced by
the SIA-I algorithm in some reasonable sense. While we were unsuccessful for the most general situation
with non-linear ice rheology, certain basic insights could still be gained for rather simplified conditions,
considering only the linear (Newtonian) rheology with uniform viscosity. Despite loosing much of the gen-
erality, we still find it interesting to investigate this case as it might provide a goodstarting point for further
analysis.

Let us recall the whole iterative scheme and rewrite it for the purpose of this section in a slightly different
manner. First let us observe that pressurep̃ serves in the whole procedure as an independent variable in the
sense that it does not appear in formulae for deviatoric stress-tensor updates (3.48), (3.49) as for the first
half-step, and nor in the rheology equations (3.22)-(3.29) used in the second half-step. We may therefore
exclude it now from our considerations. In the SIA-I algorithm, the velocitycomponents are computed from
the deviatoric stress components according to (3.55)-(3.57), or (3.62),(3.63) and (3.59), which enables us to
consider only five independent field variablesσ̃xx, σ̃xy, σ̃yy, σ̃xz, σ̃yz. We arrange these deviatoric-stress
components to a vector denoted~u by

~u := (σ̃xx, σ̃xy, σ̃yy, σ̃xz, σ̃yz) . (A.1)

One iteration of the SIA-I scheme will be represented by a mapping~T , that is

~uk+1 = ~T (~uk) . (A.2)

Recalling (3.64), we may write

~T (~uk) = (1− θ2) ~A(~u
k) + θ2 ~B( ~A(~uk)) , (A.3)

where we introduced ”formal” operators (the appropriate functional spaces will be defined later)~A and ~B
to capture the two half-steps of the iterative procedure. Operator~A stands for the first half step, that is,
according to (3.50),

~A(~uk) := ~uk+
1
2 = ~uk + θ1δ~u

k+ 1
2 . (A.4)

While operator~B expresses the update of the field according to rheology, that is, in the notation from (3.64),

~B( ~A(~uk)) = ~u⋆k+
1
2 . (A.5)

113



114 CHAPTER A. CONVERGENCE PROOF FOR THE SIA-I ALGORITHM WITH LINEAR
RHEOLOGY AND UNIFORM VISCOSITY

We confine ourselves to a single step of the SIA-I iteration, and for simplicity omit everywhere the super-
scriptsk, k + 1

2 , k + 1. Since we aim at demonstrating the contractivity of the mapping~T , we evaluate the

difference~T (~u)− ~T (~v) for two arbitrarily chosen (stress) vectors~u, ~v.

First let us recall the definition of~A. Using (A.4), (3.48) and (3.49), together with (3.51), we can see
that

A1(~u) = u1 , (A.6)

A2(~u) = u2 , (A.7)

A3(~u) = u3 , (A.8)

A4(~u) = (1− θ1)u4 − ǫθ1
∂f̃s
∂x̃

(f̃s − z̃)

+ ǫθ1

(

2
∂

∂x̃

∫ f̃s

z̃
u1 dz̃

′ +
∂

∂ỹ

∫ f̃s

z̃
u2 dz̃

′ +
∂

∂x̃

∫ f̃s

z̃
u3 dz̃

′

)

, (A.9)

A5(~u) = (1− θ1)u5 − ǫθ1
∂f̃s
∂ỹ

(f̃s − z̃)

+ ǫθ1

(

∂

∂ỹ

∫ f̃s

z̃
u1 dz̃

′ +
∂

∂x̃

∫ f̃s

z̃
u2 dz̃

′ + 2
∂

∂ỹ

∫ f̃s

z̃
u3 dz̃

′

)

. (A.10)

If we introduce a vector
~ϕ := ~u− ~v , (A.11)

the difference~A(~u)− ~A(~v) can be expressed by means of a linear operator∆ ~A(~ϕ) as follows

∆A1(~ϕ) := A1(~u)−A1(~v) = ϕ1 , (A.12)

∆A2(~ϕ) := A2(~u)−A2(~v) = ϕ2 , (A.13)

∆A3(~ϕ) := A3(~u)−A3(~v) = ϕ3 , (A.14)

∆A4(~ϕ) := A4(~u)−A4(~v)

= (1− θ1)ϕ4 + ǫθ1

(

2
∂

∂x̃

∫ f̃s

z̃
ϕ1 dz̃

′ +
∂

∂ỹ

∫ f̃s

z̃
ϕ2 dz̃

′ +
∂

∂x̃

∫ f̃s

z̃
ϕ3 dz̃

′

)

=: (1− θ1)ϕ4 + ǫθ1∆C4(~ϕ) , (A.15)

∆A5(~ϕ) := A5(~u)−A5(~v)

= (1− θ1)ϕ5 + ǫθ1

(

∂

∂ỹ

∫ f̃s

z̃
ϕ1 dz̃

′ +
∂

∂x̃

∫ f̃s

z̃
ϕ2 dz̃

′ + 2
∂

∂ỹ

∫ f̃s

z̃
ϕ3 dz̃

′

)

=: (1− θ1)ϕ5 + ǫθ1∆C5(~ϕ) , (A.16)

where the auxiliary linear operators∆C4 and∆C5 were introduced.

Let us now focus on the second half-step of the SIA-I, to express the operator~B. First, the stress field,
which was already updated in the first half-step, is used to compute the velocity field. Then, this velocity
field provides a new stress field by rheological equations. For Newtonianrheology with uniform viscosity,
as considered here, we haveη = const. In this case, the differences between the forward (3.22)-(3.26) and
the inverse rheological equations (3.30)-(3.34) vanish, provided thatwe setÃ = S̃ = Ṽ = 1 and replace
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(3.27) and (3.28) by

η̃ =
1

2ǫ−1X , (A.17)

X =
[A]ρgHsc

3

[vh]Lsc
. (A.18)

Then formulae (3.62), (3.63) and (3.59) can be rewritten as

ṽ
k+ 1

2
x (·, z̃) =

1

η̃

(

∫ z̃

f̃b(·)
σ̃
k+ 1

2
xz dz̃′ +

ǫ

2

∫ z̃

f̃b(·)

∂

∂x̃

∫ z̃′

f̃b(·)
(σ̃k

xx + σ̃
k
yy)dz̃

′′ dz̃′

)

, (A.19)

ṽ
k+ 1

2
y (·, z̃) =

1

η̃

(

∫ z̃

f̃b(·)
σ̃
k+ 1

2
yz dz̃′ +

ǫ

2

∫ z̃

f̃b(·)

∂

∂ỹ

∫ z̃′

f̃b(·)
(σ̃k

xx + σ̃
k
yy)dz̃

′′ dz̃′

)

, (A.20)

ṽ
k+ 1

2
z (·, z̃) = − 1

2ǫη̃

∫ z̃

f̃b(·)
(σ̃k

xx + σ̃
k
yy) dz̃

′ . (A.21)

Now, by evaluating (3.22)-(3.26) at thek + 1
2 half-step, with the notation (A.5), we arrive at the following

definition of ~B

B1( ~A(~u)) = 2ǫ
∂

∂x̃

∫ z̃

f̃b

A4(~u) dz̃
′ + ǫ2

∂

∂x̃

∫ z̃

f̃b

∂

∂x̃

∫ z̃′

f̃b

(A1(~u) +A2(~u)) dz̃
′′ dz̃′ , (A.22)

B2( ~A(~u)) = ǫ
∂

∂ỹ

∫ z̃

f̃b

A4(~u) dz̃
′ + ǫ

∂

∂x̃

∫ z̃

f̃b

A5(~u) dz̃
′

+
ǫ2

2

∂

∂ỹ

∫ z̃

f̃b

∂

∂x̃

∫ z̃′

f̃b

(A1(~u) +A2(~u)) dz̃
′′ dz̃′

+
ǫ2

2

∂

∂x̃

∫ z̃

f̃b

∂

∂ỹ

∫ z̃′

f̃b

(A1(~u) +A2(~u)) dz̃
′′ dz̃′ , (A.23)

B3( ~A(~u)) = 2ǫ
∂

∂ỹ

∫ z̃

f̃b

A5(~u) dz̃
′ + ǫ2

∂

∂ỹ

∫ z̃

f̃b

∂

∂ỹ

∫ z̃′

f̃b

(A1(~u) +A2(~u)) dz̃
′′ dz̃′ , (A.24)

B4( ~A(~u)) = A4(~u) , (A.25)

B5( ~A(~u)) = A5(~u) . (A.26)

Let us now define a difference operator∆ ~B by

∆B1(~ϕ) := B1( ~A(~u))−B1( ~A(~v))

= 2ǫ
∂

∂x̃

∫ z̃

f̃b

∆A4(~ϕ) dz̃
′ + ǫ2

∂

∂x̃

∫ z̃

f̃b

∂

∂x̃

∫ z̃′

f̃b

(∆A1(~ϕ) + ∆A2(~ϕ)) dz̃
′′ dz̃′

=: ǫ∆D1(~ϕ) , (A.27)
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∆B2(~ϕ) := B2( ~A(~u))−B2( ~A(~v))

= ǫ
∂

∂ỹ

∫ z̃

f̃b

∆A4(~ϕ) dz̃
′ + ǫ

∂

∂x̃

∫ z̃

f̃b

∆A5(~ϕ) dz̃
′

+
ǫ2

2

∂

∂ỹ

∫ z̃

f̃b

∂

∂x̃

∫ z̃′

f̃b

(∆A1(~ϕ) + ∆A2(~ϕ)) dz̃
′′ dz̃′

+
ǫ2

2

∂

∂x̃

∫ z̃

f̃b

∂

∂ỹ

∫ z̃′

f̃b

(∆A1(~ϕ) + ∆A2(~ϕ)) dz̃
′′ dz̃′

=: ǫ∆D2(~ϕ) , (A.28)

∆B3(~ϕ) := B3( ~A(~u))−B3( ~A(~v))

= 2ǫ
∂

∂ỹ

∫ z̃

f̃b

∆A5(~ϕ) dz̃
′ + ǫ2

∂

∂ỹ

∫ z̃

f̃b

∂

∂ỹ

∫ z̃′

f̃b

(∆A1(~ϕ) + ∆A2(~ϕ)) dz̃
′′ dz̃′

=: ǫ∆D3(~ϕ) , (A.29)

∆B4(~ϕ) := B4( ~A(~u))−B4( ~A(~v))

= A4(~u)−A4(~v) = ∆A4(~ϕ) , (A.30)

∆B5(~ϕ) := B5( ~A(~u))−B5( ~A(~v))

= A5(~u)−A5(~v) = ∆A5(~ϕ). (A.31)

The differences∆Bi, together with the auxiliary operators∆Di, are again linear in~ϕ.

We now define the functional space for the solution~u. Consider a space of polynomialsP (3)
k , k ≥ 1,

defined as a set of all polynomials inR3 of the form

P
(3)
k :=







p(x̃, ỹ, z̃); p(x̃, ỹ, z̃) =
∑

kx+ky+kz≤k

akx,ky ,kz x̃
kx ỹky z̃kz







,

and introduce a spaceX :=
(

P
(3)
k

)5
. For each~u ∈ X, operators~A and ~B are well defined, but un-

fortunately the images~A(~u) and ~B(~u) do not generally lie in X anymore. The reason is that the terms
∫ f̃s(x̃,ỹ)
z̃ ul(·, z̃′) dz̃′, in (A.9) and (A.10) which, even for polynomial representation of the free surfacef̃s,

are generally not polynomials of the proper degree. In order to overcome this difficulty, we introduce a
strong assumption on the representation of the surface functionsf̃s, f̃b. We will assume that both are rep-
resented by piecewise linear functions. This simplification may be to some extentjustified concerning the
numerical realisation of the algorithm, meaning then that only piecewise linear triangulation is used to cap-
ture the surfaces. Moreover, we will assume that the triangulations for both f̃s and f̃b, are defined on the
same grid in the horizontal plane. Let us order the faces of the triangulationof f̃s by integers and denote the
volume beneath thei-th face byΩi. The restriction of the spaceX to Ωi will be denotedXi. Analogously,
for all introduced operators and functions, let us denote their restrictionto Xi andΩi, respectively, by a
superscript(i). With the assumption of linearity of̃fs, f̃b, it holds: ~A(i) : Xi → Xi, ~B(i) : Xi → Xi. Now
we define the space where solutions will be looked for as

X̂ :=
{

~u; ~u(i) ∈ Xi

}

, (A.32)

which is a linear vector space of vectors~u, whose componentsuj , j = 1...5, are piecewise polynomial.

Let us now, for any~w(i) ∈ Xi, introduce the norms

‖w(i)
j ‖ := max

~x∈Ωi

|w(i)
j (~x)| , j = 1, . . . , 5 , (A.33)
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i.e. theC∞(Ωi) norm and

‖~w(i)‖max := max
j=1,...,5

‖w(i)
j ‖ . (A.34)

Before we finally investigate the difference~T (i)(~u) − ~T (i)(~v) for some~u,~v ∈ X̂, realize that, for arbitrary

k in the choice ofP (3)
k , the spaceX and, of course also allXi, are finite dimensional spaces. While we

have already shown that∆Aj , ∆Bj , ∆Cj and∆Dj , are linear operators, the same holds also for their
restrictions toXi. Using the fact that on finitely-dimensional spaces, all linear operators are bounded (and
thus also continuous) (e.g. Lukeš, 2003), we thus have the following estimates

∆A
(i)
j (~ϕ(i)) ≤ ‖∆A(i)

j ‖‖~ϕ(i)‖max , (A.35)

∆B
(i)
j (~ϕ(i)) ≤ ‖∆B(i)

j ‖‖~ϕ(i)‖max , (A.36)

∆C
(i)
j (~ϕ(i)) ≤ ‖∆C(i)

j ‖‖~ϕ(i)‖max , (A.37)

∆D
(i)
j (~ϕ(i)) ≤ ‖∆D(i)

j ‖‖~ϕ(i)‖max , (A.38)

where operator norms were introduced as usual by

‖∆A(i)
j ‖ := max

~ϕ(i)∈Xi,~ϕ(i) 6=~0

‖∆A(i)
j (~ϕ(i))‖

‖~ϕ(i)‖max
. (A.39)

Finally, using (A.3), (A.12)-(A.16) and (A.27)-(A.31), and also recalling that1 ≥ θ1 > 0, 1 ≥ θ2 > 0,
we obtain the estimates

‖T (i)
1 (~u)− T

(i)
1 (~v)‖ ≤ (1− θ2)‖∆A(i)

1 (~ϕ)‖+ θ2‖∆B(i)
1 (~ϕ)‖

≤ (1− θ2)‖ϕ(i)
1 ‖+ ǫθ2‖∆D(i)

1 ‖‖~ϕ(i)‖max

≤ (1− θ2 + ǫθ2‖∆D(i)
1 ‖)‖~ϕ(i)‖max ,

‖T (i)
2 (~u)− T

(i)
2 (~v)‖ ≤ (1− θ2)‖∆A(i)

2 (~ϕ)‖+ θ2‖∆B(i)
2 (~ϕ)‖

≤ (1− θ2)‖ϕ(i)
2 ‖+ ǫθ2‖∆D(i)

2 ‖‖~ϕ(i)‖max

≤ (1− θ2 + ǫθ2‖∆D(i)
2 ‖)‖~ϕ(i)‖max ,

‖T (i)
3 (~u)− T

(i)
3 (~v)‖ ≤ (1− θ2)‖∆A(i)

3 (~ϕ)‖+ θ2‖∆B(i)
3 (~ϕ)‖

≤ (1− θ2)‖ϕ(i)
3 ‖+ ǫθ2‖∆D(i)

3 ‖‖~ϕ(i)‖max

≤ (1− θ2 + ǫθ2‖∆D(i)
3 ‖)‖~ϕ(i)‖max ,

‖T (i)
4 (~u)− T

(i)
4 (~v)‖ = ‖∆A(i)

4 (~ϕ)‖
≤ (1− θ1)‖ϕ(i)

4 ‖+ ǫθ1‖∆C(i)
4 ‖‖~ϕ(i)‖max

≤ (1− θ1 + ǫθ1‖∆C(i)
4 ‖)‖~ϕ(i)‖max ,

‖T (i)
5 (~u)− T

(i)
5 (~v)‖ = ‖∆A(i)

5 (~ϕ)‖
≤ (1− θ1)‖ϕ(i)

5 ‖+ ǫθ1‖∆C(i)
5 ‖‖~ϕ(i)‖max

≤ (1− θ1 + ǫθ1‖∆C(i)
5 ‖)‖~ϕ(i)‖max .

Consider now an arbitrary but fixed small positive constantδ > 0. Then providedǫ < ǫmin
2 , with ǫmin :=

mini

(

1

‖∆D
(i)
1 ‖

, 1

‖∆D
(i)
2 ‖

, 1

‖∆D
(i)
3 ‖

, 1

‖∆C
(i)
4 ‖

, 1

‖∆C
(i)
5 ‖

)

and provided that1 ≥ θ1 ≥ 2δ, 1 ≥ θ2 ≥ 2δ, it holds

that
∀i : ‖~T (i)(~u)− ~T (i)(~v)‖max < (1− δ)‖~u(i) − ~v(i)‖max , (A.40)
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which is the desired contractivity of the mapping~T . Sinceδ was an arbitrary (small) positive, the relaxation
parameters are actually not constrained for this simple case with uniform constant viscosity and the only
restriction is given by a certain ”flatness” condition, i.e. by necessity of sufficiently small aspect ratioǫ.

To finish the procedure, provided the assumptions for contractivity of themapping~T are satisfied, we
can use the Banach fixed-point theorem (e.g. Lukeš, 2003), as the finite-dimensional spacesXi are complete.
Thus, the operator~T possesses a unique fixed point, that is, there exists a vector~uF ∈ X̂ (composition of
appropriate~uF (i) ∈ Xi), such that it holds

∀i : ~T (i)(~uF ) = ~uF (i) . (A.41)

The relation of the fixed point~uF to the exact full-Stokes solution of the considered ice-flow problem is
discussed in the following section.



Appendix B

Properties of the fixed point of the SIA-I
algorithm

In the previous section, we presented an attempt to demonstrate, at least in some limited sense, the con-
tractivity of the mapping~T , which is induced by each iteration step of the SIA-I algorithm. Let us now
investigate the relation of the fixed-point of the mapping~T and the full-Stokes solution of the original prob-
lem. For this purpose, we return to the original general case with ice described by a model of fluid with
non-linear rheology given by Glen’s flow law (1.17). We will assume that, for certain values of the pro-
jection parametersθ1 andθ2, the contractivity of the mapping~T representing the SIA-I algorithm holds in
some sense. That is, we assume that the procedure from previous section can be reasonably extended to
capture also the non-linear rheology, possibly after reformulation of the mappings~T , ~A, ~B in a generalized
(e.g. weak) sense for some appropriate complete functional spaces. Under these assumptions, a unique fixed
point~uF of the mapping~T exists, and according to (A.3), using the notation from previous section, itholds
that

~uF = ~T (~uF ) = (1− θ2) ~A(~u
F ) + θ2 ~B( ~A(~uF )) . (B.1)

We intent to show that this implies even a stronger conclusion that~uF = ~A(~uF ) = ~B(~uF ). Also these
relations, as will be revealed in the subsequent text, correspond to both the momentum balance equations
and rheology being satisfied. To demonstrate this fact, we first observe,that, by definition,

A1(~u
F ) = uF1 , (B.2)

A2(~u
F ) = uF2 , (B.3)

A3(~u
F ) = uF3 . (B.4)

as onlyu4 andu5 are updated by the operator~A in the first half-step of the SIA-I (see (3.52)). When the
first, second and third components of equation (B.1) are taken, (B.2)-(B.4) give

uF1 = A1(~u
F ) = B1( ~A(~u

F )) , (B.5)

uF2 = A2(~u
F ) = B2( ~A(~u

F )) , (B.6)

uF3 = A3(~u
F ) = B3( ~A(~u

F )) . (B.7)

To interpret these relations, let us recall what operator~B stands for. Back in the ”stress” and ”velocity” no-
tation, from the stress field~uF = (σ̃F

xx, σ̃
F
xy, σ̃

F
yy, σ̃

F
xz, σ̃

F
yz), the first half-step produces~A(~uF ) = ~uF+ 1

2 =

(σ̃F
xx, σ̃

F
xy, σ̃

F
yy, σ̃

F+ 1
2

xz , σ̃
F+ 1

2
yz ), from which the velocity components̃v

F+ 1
2

x , ṽ
F+ 1

2
y andṽ

F+ 1
2

z are computed
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according to (3.62), (3.63) and (3.59). We remind the reader here of these formulae:

ṽ
F+ 1

2
x (·, z̃) = 2ǫ−1X

∫ z̃

f̃b(·)
ÃS̃F+ 1

2 σ̃
F+ 1

2
xz dz̃′ + X

∫ z̃

f̃b(·)

∂

∂x̃

∫ z̃′

f̃b(·)
ÃS̃F+ 1

2 (σ̃F
xx + σ̃

F
yy)dz̃

′′ dz̃′ ,

(B.8)

ṽ
F+ 1

2
y (·, z̃) = 2ǫ−1X

∫ z̃

f̃b(·)
ÃS̃F+ 1

2 σ̃
F+ 1

2
yz dz̃′ + X

∫ z̃

f̃b(·)

∂

∂ỹ

∫ z̃′

f̃b(·)
ÃS̃F+ 1

2 (σ̃F
xx + σ̃

F
yy)dz̃

′′ dz̃′ ,

(B.9)

ṽ
F+ 1

2
z (·, z̃) = −ǫ−2X

∫ z̃

f̃b(·)
ÃS̃F+ 1

2 (σ̃F
xx + σ̃

F
yy) dz̃

′ . (B.10)

This velocity field is inserted into the rheological equations (3.22)-(3.29), toprovide the vector~B( ~A(~uF )) =

~u⋆F+ 1
2 = (σ̃⋆F

xx , σ̃
⋆F
xy , σ̃

⋆F
yy , σ̃

⋆F+ 1
2

xz , σ̃
⋆F+ 1

2
yz ). Also the inverse rheological equations (3.30)-(3.35) are satis-

fied, in particular (3.30) and (3.31), which read as

∂ṽ
F+ 1

2
x

∂x̃
= ǫ−2XÃS̃⋆F+ 1

2 σ̃
⋆F
xx , (B.11)

∂ṽ
F+ 1

2
y

∂ỹ
= ǫ−2XÃS̃⋆F+ 1

2 σ̃
⋆F
yy . (B.12)

Using the incompressibility condition (3.15), we obtain

∂ṽ
F+ 1

2
z

∂z̃
= −ǫ−2XÃS̃⋆F+ 1

2 (σ̃⋆F
xx + σ̃

⋆F
yy ) , (B.13)

and by inserting (B.10) into the left-hand side of (B.13), using the fact thataccording to (B.5) and (B.7)
σ̃
⋆F
xx = σ̃

F
xx, andσ̃⋆F

yy = σ̃
F
yy, we finally obtain

S̃⋆F+ 1
2 = S̃F+ 1

2 . (B.14)

Using this fact we will now prove also thatuF4 = B4( ~A(~u
F )), uF5 = B4( ~A(~u

5)), or σ̃F
xz = σ̃

⋆F+ 1
2

xz ,

σ̃
F
yz = σ̃

⋆F+ 1
2

yz . To see this, let us recall the rheological equations (3.33) and (3.34), which now read:

∂ṽ
F+ 1

2
x

∂z̃
+ ǫ2

∂ṽ
F+ 1

2
z

∂x̃
= 2ǫ−1XÃS̃⋆F+ 1

2 σ̃
⋆F+ 1

2
xz , (B.15)

∂ṽ
F+ 1

2
y

∂z̃
+ ǫ2

∂ṽ
F+ 1

2
z

∂ỹ
= 2ǫ−1XÃS̃⋆F+ 1

2 σ̃
⋆F+ 1

2
yz , (B.16)

where we insert̃v
F+ 1

2
x , ṽ

F+ 1
2

y andṽ
F+ 1

2
z from (B.8)-(B.10), using (B.14), which gives

A4(~u
F ) = u

F+ 1
2

4 = σ̃
F+ 1

2
xz = σ̃

⋆F+ 1
2

xz = B4( ~A(~u
F )) , (B.17)

A5(~u
F ) = u

F+ 1
2

5 = σ̃
F+ 1

2
yz = σ̃

⋆F+ 1
2

yz = B5( ~A(~u
F )) . (B.18)

Together with (B.5)-(B.7), we thus obtained

~A(~uF ) = ~B( ~A(~uF )) , (B.19)
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and from (B.1) also immediately

~uF = ~A(~uF ) , (B.20)

~uF = ~B(~uF ) . (B.21)

The second of these relations states that the fixed point stress solution is consistent with the rheological
equations, because it confirms that, if the stress field~uF is first used to compute the velocities according to

(B.8)-(B.10) (withS̃F+ 1
2 = S̃F , σ̃

F+ 1
2

xz = σ̃
F
xz, σ̃

F+ 1
2

yz = σ̃
F
yz by (B.20)), by inserting this velocity field

into the rheology equations (3.22)-(3.29), we obtain the same stress field.

The first condition (B.20) implies according to (A.4) thatδ~uF+ 1
2 = ~0. In view of (3.48) and (3.49), we

thus obtain

0 = −σ̃
F
xz − ǫ

∂f̃s
∂x̃

(f̃s − z̃) + 2ǫ
∂

∂x̃

∫ f̃s

z̃
σ̃
F
xx(·, z̃′)dz̃′

+ ǫ
∂

∂ỹ

∫ f̃s

z̃
σ̃
F
xy(·, z̃′)dz̃′ + ǫ

∂

∂x̃

∫ f̃s

z̃
σ̃
F
yy(·, z̃′)dz̃′ , (B.22)

0 = −σ̃
F
yz − ǫ

∂f̃s
∂ỹ

(f̃s − z̃) + ǫ
∂

∂ỹ

∫ f̃s

z̃
σ̃
F
xx(·, z̃′)dz̃′

+ ǫ
∂

∂x̃

∫ f̃s

z̃
σ̃
F
xy(·, z̃′)dz̃′ + 2ǫ

∂

∂ỹ

∫ f̃s

z̃
σ̃
F
yy(·, z̃′)dz̃′ . (B.23)

If we take an arbitrary initial pressure field̃p0 and compute the incrementδp̃ for ~uF according to (3.47) and
denote the sum as̃pF := p̃0 + δp̃F , from (3.47) we obtain

0 = −p̃F − σ̃
F
xx − σ̃

F
yy + (f̃s − z̃)− ǫ

∫ f̃s

z̃

∂σ̃F
xz

∂x̃
dz̃′ − ǫ

∫ f̃s

z̃

∂σ̃F
yz

∂ỹ
dz̃′ . (B.24)

Taking thez̃-derivative of (B.22) and (B.23) gives

0 = −∂σ̃
F
xz

∂z̃
+ ǫ

∂f̃s
∂x̃

− 2ǫ
∂σ̃F

xx

∂x̃
− ǫ

∂σ̃F
xy

∂ỹ
− ǫ

∂σ̃F
yy

∂x̃
, (B.25)

0 = −
∂σ̃F

yz

∂z̃
+ ǫ

∂f̃s
∂ỹ

− ǫ
∂σ̃F

xx

∂ỹ
− ǫ

∂σ̃F
xy

∂x̃
− 2ǫ

∂σ̃F
yy

∂ỹ
. (B.26)

Now, evaluating thẽx, ỹ andz̃-derivative of (B.24) with the use of (B.25) and (B.26) gives

ǫ2
∂

∂x̃

∫ f̃s

z̃

(

∂σ̃F
xz

∂x̃
+
∂σ̃F

yz

∂ỹ

)

dz̃′ = −ǫ∂p̃
F

∂x̃
+ ǫ

∂σ̃F
xx

∂x̃
+ ǫ

∂σ̃F
xy

∂ỹ
+
∂σ̃F

xz

∂z̃
, (B.27)

ǫ2
∂

∂ỹ

∫ f̃s

z̃

(

∂σ̃F
xz

∂x̃
+
∂σ̃F

yz

∂ỹ

)

dz̃′ = −ǫ∂p̃
F

∂ỹ
+ ǫ

∂σ̃F
xy

∂x̃
+ ǫ

∂σ̃F
yy

∂ỹ
+
∂σ̃F

yz

∂z̃
, (B.28)

1 = −∂p̃
F

∂z̃
+ ǫ

∂σ̃F
xz

∂x̃
+ ǫ

∂σ̃F
yz

∂ỹ
−
∂(σ̃F

xx + σ̃
F
yy)

∂z̃
,

(B.29)

which would be, when compared with (3.12)-(3.14), the linear-momentum balance equations if the left-hand
side ”ǫ2” terms in (B.27) and (B.28) vanished.
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It remains to show how the fixed-point solution meets the boundary conditions. The no-slip condition
at the base (~vF+ 1

2 = ~0), which has been assumed throughout this paragraph, is automatically satisfied
by (B.8)-(B.10). To check the stress-free conditions at the upper surface, let us first evaluate the stress
conditions there according to (B.22)-(B.24), where we obtain

0 = −σ̃
F
xz + 2ǫ

∂f̃s
∂x̃

σ̃
F
xx + ǫ

∂f̃s
∂ỹ

σ̃
F
xy + ǫ

∂f̃s
∂x̃

σ̃
F
yy , (B.30)

0 = −σ̃
F
yz + ǫ

∂f̃s
∂ỹ

σ̃
F
xx + ǫ

∂f̃s
∂x̃

σ̃
F
xy + 2ǫ

∂f̃s
∂ỹ

σ̃
F
yy , (B.31)

0 = −p̃F − σ̃
F
xx − σ̃

F
yy , (B.32)

at z̃ = f̃s(x̃, ỹ). Equations (B.30) and (B.31) can be rewritten with the use of (B.32) and wecan write the
stress conditions at the upper surface as follows

0 = ǫ
∂f̃s
∂x̃

p̃F − ǫ
∂f̃s
∂x̃

σ̃
F
xx − ǫ

∂f̃s
∂ỹ

σ̃
F
xy + σ̃

F
xz , (B.33)

0 = ǫ
∂f̃s
∂ỹ

p̃F − ǫ
∂f̃s
∂x̃

σ̃
F
xy − ǫ

∂f̃s
∂ỹ

σ̃
F
yy + σ̃

F
yz , (B.34)

0 = p̃F + σ̃
F
xx + σ̃

F
yy , (B.35)

at z̃ = f̃s(x̃, ỹ). We may now compare these equations with the stress-free conditions (3.17)-(3.19) and
observe that (B.33) and (B.34) coincide with (3.17) and (3.18), while (B.35) differs from (3.19). The differ-
ence can be evaluated if we add the missing terms to both sides of (B.35) and evaluate them on the left-hand
side with the use of (B.33) and (B.34). We then obtain

ǫ2E = p̃F + σ̃
F
xx + σ̃

F
yy + ǫ

∂f̃s
∂x̃

σ̃
F
xz + ǫ

∂f̃s
∂ỹ

σ̃
F
yz , (B.36)

where

E =
∂f̃s
∂x̃

(

−∂f̃s
∂x̃

p̃F +
∂f̃s
∂x̃

σ̃
F
xx +

∂f̃s
∂ỹ

σ̃
F
xy

)

+
∂f̃s
∂ỹ

(

−∂f̃s
∂ỹ

p̃F +
∂f̃s
∂x̃

σ̃
F
xy +

∂f̃s
∂ỹ

σ̃
F
yy

)

. (B.37)

To sum up, the relation of the fixed-point of the SIA-I algorithm and the exact full-Stokes solution is as
follows. We have shown that the fixed-point solution satisfies the rheological equation and thez-component
of momentum equation exactly, the horizontal components of the momentum equation, that is (3.12) and
(3.13), are satisfied only approximately where the errors can be expressed by the left-hand sides of (B.27)
and (B.28) and are of the order ofǫ2. The free-surface boundary condition (3.17) and (3.18) are satisfied
exactly, the third equation (3.19) is only approximated, with the error expressed by the left-hand side of
(B.36) and is also of the order ofǫ2.



Appendix C

Stretched coordinates

It is very common in glacier-flow modeling (see e.g. Pattyn, 2003) to transform the computational domain
to a new one with uniform height by a generally non-orthogonal mapping. In order to do this also for the
SIA-I algorithm, all the formulae have to be transformed. We will substitute the spatial coordinates(x̃, ỹ, ξ)
for (x̃, ỹ, z̃) by a mapping

z̃ = f̃b(x̃, ỹ) + ξ(f̃s(x̃, ỹ)− f̃b(x̃, ỹ)) . (C.1)

All physical fields considered in the stretched coordinates will be marked by a ”hat”, that is

f̃(x̃, ỹ, z̃) → f̂(x̃, ỹ, ξ) , (C.2)

or, in the abbreviated form,

f̃(·, z̃) → f̂(·, ξ) . (C.3)

The partial derivatives transform as follows

∂

∂x̃

∣

∣

∣

∣

ỹ,z̃

→ ∂

∂x̃

∣

∣

∣

∣

ỹ,ξ

− ax(·, ξ)
∂

∂ξ

∣

∣

∣

∣

x̃,ỹ

, (C.4)

∂

∂ỹ

∣

∣

∣

∣

x̃,z̃

→ ∂

∂ỹ

∣

∣

∣

∣

x̃,ξ

− ay(·, ξ)
∂

∂ξ

∣

∣

∣

∣

x̃,ỹ

, (C.5)

∂

∂z̃

∣

∣

∣

∣

x̃,ỹ

→ 1

H̃(·)
∂

∂ξ

∣

∣

∣

∣

x̃,ỹ

, (C.6)

where

ax(·, ξ) :=
1

H̃(·)

(

∂f̃b(·)
∂x̃

+ ξ
∂H̃(·)
∂x̃

)

, (C.7)

ay(·, ξ) :=
1

H̃(·)

(

∂f̃b(·)
∂ỹ

+ ξ
∂H̃(·)
∂ỹ

)

, (C.8)

H̃(·) := f̃s(·)− f̃b(·) . (C.9)

We rewrite the individual steps of the SIA-I algorithm in the stretched coordinates, such that the formulae
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(3.47)-(3.49) for stress increments transform as

δp̂k+
1
2 (·, ξ) = H̃(·)(1− ξ)− p̂k(·, ξ)− σ̂

k
xx(·, ξ)− σ̂

k
yy(·, ξ)

− ǫ

(

∂

∂x̃
− ax(·, ξ)

∂

∂ξ

)(

H̃(·)
∫ 1

ξ
σ̂
k
xz(·, ξ′)dξ′

)

− ǫ

(

∂

∂ỹ
− ay(·, ξ)

∂

∂ξ

)(

H̃(·)
∫ 1

ξ
σ̂
k
yz(·, ξ′)dξ′

)

+ ǫ
∂f̃s(·)
∂x̃

σ̂
k
xz(·, 1) + ǫ

∂f̃s(·)
∂ỹ

σ̂
k
yz(·, 1) , (C.10)

δσ̂
k+ 1

2
xz (·, ξ) = −ǫ∂f̃s(·)

∂x̃
H̃(·)(1− ξ)− σ̂

k
xz(·, ξ)

+ 2ǫ

(

∂

∂x̃
− ax(·, ξ)

∂

∂ξ

)(

H̃(·)
∫ 1

ξ
σ̂
k
xx(·, ξ′)dξ′

)

+ ǫ

(

∂

∂x̃
− ax(·, ξ)

∂

∂ξ

)(

H̃(·)
∫ 1

ξ
σ̂
k
yy(·, ξ′)dξ′

)

+ ǫ

(

∂

∂ỹ
− ay(·, ξ)

∂

∂ξ

)(

H̃(·)
∫ 1

ξ
σ̂
k
xy(·, ξ′)dξ′

)

, (C.11)

δσ̂
k+ 1

2
yz (·, ξ) = −ǫ∂f̃s(·)

∂ỹ
H̃(·)(1− ξ)− σ̂

k
yz(·, ξ)

+ ǫ

(

∂

∂ỹ
− ay(·, ξ)

∂

∂ξ

)(

H̃(·)
∫ 1

ξ
σ̂
k
xx(·, ξ′)dξ′

)

+ 2ǫ

(

∂

∂ỹ
− ay(·, ξ)

∂

∂ξ

)(

H̃(·)
∫ 1

ξ
σ̂
k
yy(·, ξ′)dξ′

)

+ ǫ

(

∂

∂x̃
− ax(·, ξ)

∂

∂ξ

)(

H̃(·)
∫ 1

ξ
σ̂
k
xy(·, ξ′)dξ′

)

, (C.12)

and (3.52) remain unaltered.

Formulae (3.55)-(3.57) for velocity increments transform as

v̂
k+ 1

2
x (·, ξ) = 2ǫ−1XH̃(·)

∫ ξ

0
ÂŜk+ 1

2 (·, ξ′)σ̂k+ 1
2

xz (·, ξ′)dξ′

− ǫ2H̃(·)
∫ ξ

0

(

∂

∂x̃
− ax(·, ξ′)

∂

∂ξ′

)

ṽ
k− 1

2
z (·, ξ′) dξ′, (C.13)

v̂
k+ 1

2
y (·, ξ) = 2ǫ−1XH̃(·)

∫ ξ

0
ÂŜk+ 1

2 (·, ξ′)σ̂k+ 1
2

yz (·, ξ′)dξ′

− ǫ2H̃(·)
∫ ξ

0

(

∂

∂ỹ
− ay(·, ξ′)

∂
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)

ṽ
k− 1

2
z (·, ξ′) dξ′ , (C.14)

v̂
k+ 1

2
z (·, ξ) = −H̃(·)

∫ ξ

0

(
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∂
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2
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− H̃(·)
∫ ξ

0

(

∂

∂ỹ
− ay(·, ξ′)

∂

∂ξ′

)

v̂
k+ 1

2
y (·, ξ′)dξ′ , (C.15)
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with
Ŝ = σ̂

2
xx + σ̂

2
yy + σ̂xxσ̂yy + σ̂

2
xy + σ̂

2
xz + σ̂

2
yz , (C.16)

or alternatively, when (3.62), (3.63) and (3.59) are used, are written as

v̂
k+ 1

2
x (·, ξ) = 2ǫ−1XH̃(·)

∫ ξ

0
ÂŜk+ 1
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dξ′ ,

(C.17)
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2
y (·, ξ) = 2ǫ−1XH̃(·)

∫ ξ

0
ÂŜk+ 1

2 (·, ξ′)σ̂k+ 1
2

yz (·, ξ′)dξ′
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0
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0
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dξ′ ,

(C.18)

v̂
k+ 1

2
z (·, ξ) = −ǫ−2XH̃(·)

∫ ξ

0
ÂŜk+ 1

2 (σ̂k
xx + σ̂

k
yy)(·, ξ′) dξ′ . (C.19)

Finally, formulae (3.22)-(3.29) for the rheological equations transformas

σ̂xz(·, ξ) = η̂(·, ξ)
(

∂v̂x(·, ξ)
∂ξ

+ ǫ2
(

H̃(·) ∂
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− axH̃(·, ξ) ∂
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)

ṽz(·, ξ)
)

, (C.20)

σ̂yz(·, ξ) = η̂(·, ξ)
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, (C.21)

σ̂xy(·, ξ) = η̂(·, ξ)
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, (C.22)
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∂x̃

− axH̃(·, ξ) ∂
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)

v̂x(·, ξ) , (C.23)

σ̂yy(·, ξ) = 2η̂(·, ξ)
(

H̃(·) ∂
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∂ξ

)

v̂y(·, ξ) , (C.24)

η̂(·, ξ) =
(

2H̃(·)ǫ−1AXH2V̂(·, ξ)
)− 1

3
, (C.25)
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where

H2V̂(·, ξ) = 4ǫ2
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. (C.26)

When time is also taken into account, the mapping actually reads as

f̃(x̃, ỹ, z̃, t̃) → f̂(x̃, ỹ, ξ, t̃) , (C.27)

and the partial time derivative has to be transformed as

∂

∂t̃

∣

∣

∣

∣

x̃,ỹ,z̃

→ ∂

∂t̃

∣

∣

∣

∣
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− at(·, ξ, t̃)
∂

∂ξ
, (C.28)

with

at(·, ξ, t̃) :=
1

H̃(·, t̃)

(

∂f̃b(·, t̃)
∂t̃

+ ξ
∂H̃(·, t̃)
∂t̃

)

. (C.29)



Appendix D

Basic spatial differential operators in
general orthogonal curvilinear coordinates

Bellow we summarize the most important formulae for basic differential operators expressed in the general
orthogonal curvilinear coordinates. We will follow the lecture notes by Martinec (http://geo.mff.cuni.cz/vyuka)
and also Brdǐcka et al. (2000). Given the Cartesian coordinates of a point in the 3D space(y1, y2, y3) and
given a coordinate transformation, i.e. a mapping

xk = xk(y1, y2, y3), k = 1, 2, 3, (D.1)

which isC1 (continuous partial derivatives) with a non-vanishing Jacobian

j = det

(

∂xk
∂yl

)

6= 0 almost everywhere , (D.2)

we define the unit base vectors of a new coordinate system by

~ek :=
1

hk

∂~p

∂xk
, (D.3)

where~p is the position vector andhk is a scale factor (Lame coefficient)

hk :=

√

√

√

√

3
∑

l=1

(

∂yl
∂xk

)2

=

√

∂~p

∂xk
· ∂~p
∂xk

, (D.4)

with no summation over indexk. We will assume that the new curvilinear coordinatesxk are orthogonal
and form a right-hand system, i.e. the new basis vectors satisfy

~ek · ~el = δkl , ~ek × ~el = ǫklm~em , (D.5)

whereǫklm is the Levi-Civita permutation symbol. The basis vectors~ek are now generally varying in space
and we define the Christoffel symbolsΓm

kl by

∂~ek
∂xl

=
3
∑

m=1

Γm
kl~em , (D.6)
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thus

Γm
kl =

∂~ek
∂xl

· ~em . (D.7)

The Christoffel symbols can be expressed by means of the Lame coefficients by

Γm
kl =

1

hk

∂hl
∂xk

δlm − 1

hm

∂hk
∂xm

δkl , (D.8)

from which it follows that fork 6= l 6= m

Γm
kl = Γk

kk = Γk
kl = 0 , (D.9)

and also
Γl
kl = −Γk

ll , (D.10)

as a result of which only six Christoffel symbols are independent. With the use of Christoffel symbols, we
may now rewrite the basic invariant differential operators in the general curvilinear orthogonal coordinates.
Gradient of a scalar

gradφ =
∑

k

1

hk

∂φ

∂xk
~ek (D.11)

Divergence of a vector

div~v =
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 (D.12)

Gradient of a vector

grad~v =
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k l
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(D.13)

Divergence of a tensor

divT =
∑

kl

1

hk

(

∂Tkl
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mkTml +

∑

m

Γl
mkTkm

)

~el

=
∑

l

{

1

h1h2h3

[

∂

∂x̃1
(h2h3T1l) +

∂

∂x̃2
(h1h3T2l) +

∂

∂x̃3
(h1h2T3l)

]

+
∑

k

1

hkhl
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Price, M. Rckamp, F. Saito, O. Souček, S. Sugiyama, and T. Zwinger, T., 2008. Benchmark experiments
for higher-order and full Stokes ice sheet models (ISMIP-HOM),The Cryosphere Discuss., 2, 111-151.

Pattyn, F., 2003. A new three-dimensional higher-order thermomechanical ice-sheet model: basic sensitivity,
ice-stream development and ice flow across subglacial lakes.J. Geophys. Res., 108-B8 2382.

Pattyn, F., 2002. Transient glacier response with a higher-order numerical ice-flow model,J. Glaciol., 48,
467-477.

Payne, A.J. , Ph. Huybrechts, A. Abe-Ouchi, R. Calov, J.L. Fastook,R. Greve, S.J. Marshall, I. Marsiat, C.
Ritz, L. Tarasov, and M.P.A. Thomassen, 2000. Results from the EISMINT model intercomparison: the
effects of thermomechanical coupling.J. Glaciol., 46 (153), 227-238.

Peng, D., B. Merriman, S. Osher, H.K. Zhao, and M. Kang, 1999. A PDEbased fast local level set method,
J. Comp. Phys., 155, 410-438.

Press W.H. et al., 1992. Numerical Recepies in FORTRAN: The Art of Scientific Computing, Second edi-
tion, Cambridge University Press.

Price, S. F., E. D. Waddington, and H. Conway, 2007. A full-stress, thermomechanical flow band model
using the finite volume method,J. Geophys. Res., 112, F03020.

Quarteroni, A., A. Valli, 1994. Numerical Approximation Of Partial Differential Equations (Springer Series
In Computational Mathematics), Springer-Verlag Berlin Heidelberg.

Reeh, N. 1991. Parameterization of melt rate and surface temperature on theGreenland ice sheet.Polar-
forschung, 59 (3), 113-128.



BIBLIOGRAPHY 131

Ritz, C., V. Rommelaere and C. Dumas, 2001. Modelling the evolution of the Antarctic ice sheet over the
last 420 000 years: implications for altitude changes in the Vostok region,J. Geophys. Res., 109, 31943-
31964.

Saito, F., A. Abe-Ouchi, H. Blatter, 2003. Effects of first-order stressgradients in an ice sheet evaluated by
a three-dimensional thermomechanical coupled model.Ann. Glaciol.37, 166-172.

Shu, C.-W., 1998. Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyper-
bolic conservation laws, in Advanced Numerical Approximation of NonlinearHyperbolic Equations,
edited by A. Quarteroni, Lecture Notes in Mathematics, Springer-Verlag, Berlin/New York, Vol.1697, p.
325.
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Soǔcek O., Z. Martinec, 2008. Iterative improvement of the shallow-ice approximation.J. Glaciol., 54, 188,
812-822.

van der Veen, C.J., 1999. Fundamentals of Glacier Dynamics, A.A. Balkema,Rotterdam, Netherlands, 462
pp.

Zwinger, T., R. Greve, O. Gagliardini, T. Shiraiwa, M. Lyly, 2007. A FullStokes-flow Thermo-mechanical
Model for Firn and Ice applied to the Gorshkov Crater Glacier, Kamchatka. Ann. Glaciol., 45, 29-37.


