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Overview

Ice-sheets and their dynamics

Continuum thermo-mechanical model of a glacier
The Shallow Ice approximation

The SIA-I iterative algorithm

Numerical benchmarks

@ ISMIP-HOM A exp. - steady-state
@ ISMIP-HOM F exp. - prognostic
@ EISMINT - Greenland lce Sheet models
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Ice sheets and their dynamics

Scheme of an ice sheet
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Ice sheets and their dynamics

Transport processes in an ice sheet
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Continuum thermo-mechanical model of a glacier

Simplified ice sheet model

AZ

Atmosphere Cold ice

@ Cold-ice zone (pure ice only)
@ Temperate-ice zone (liquid water present)
@ Free surface and glacier base represented by differentiable surfaces
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Continuum thermo-mechanical model of a glacier

Modelled problem - cold ice zone

@ Stokes' flow problem Rheology
divr 4 pg = 0 Ti = —pdj+aoj
. . oij = 2ng;
@ Equation of continuity (Constant 1 /0v v
homogeneous ice density) i = = (83 + 82)
j i
divi =0 n = ( N 3 %
@ Energy balance — Heat transport AT = A ( >
= ex
equation () o exp To + T
. EkIEKI
ey = 5

pc(T)T = div(k(T)gradT)+7 : €

Ondrej Soucek Ph.D. defense



Continuum thermo-mechanical model of a glacier

Boundary conditions

Free surface

D Ki b dary dies
of,
f’ﬁ»\?-gradf,:as
ot

@ Dynamic boundary condition

@ Traction-free
T - hs = 0

@ Surface temperature

@ Accumulation-ablation function

a® = a°(%,t)
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Glacier base
[+ ] Ki b ] y i

f,(%, t) given

o Dy L d y dis,
@ Frozen-bed conditions, T < Tpy:

v=20

® Sliding law T = Tpy:
v=g(r )

@ Geothermal heat flux

q ==z 1)
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Shallow Ice Approximation (SIA)

Scaling Approximation — plausibility and motivation

@ Glaciers and ice sheets are typically very flat features, with the aspect
(height:horizontal) ratio less than 3 for small valley glaciers and one
order less for big ice sheets (15)
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Shallow Ice Approximation (SIA)

Scaling Approximation — plausibility and motivation

@ Natural scaling may be introduced:
kinematic quantities

([L]%1, [L]%2, [H]%3)
([Ve]n, [Vo ]z, [V4]7s)
[H](F (%4, %2), fu(52, %2))

(x1, X2, x3)

(V17 V2, V3)

(fs(x1, x2), fo(x1, x2))

Sl
(L] [Ve]
dynamic quantities -
p = pglH]p
(013,023) = pg[H](G13,523)

(011,022, 012) pg[H1(511, 622, 512)
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Shallow Ice Approximation (SIA)

Scaling Approximation — plausibility and motivation

@ Natural scaling may be introduced:
kinematic quantities

(x1,x2,x3) = ([L]%, [L]%2, [H]%s)
(vi,v2,vs) = ([Veli, [Vo]ie, [V4]is)
(B, %), folxa, %)) = [HI(h(%, %), fo(5a, %2))
. - H_ vl
(L] [Ve]

dynamic quantities - Shallow lce Approximation SIA

p = pglH]p
(013,023) = £pg[H](613,523)
(0'11,0'22,0'12) = Eng[H](5'1175'22,5'12)
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Shallow Ice Approximation (SIA)

Scaling Approximation — plausibility and motivation

Standard scaling perturbation series constructed: all field unknowns
(Vi, &, fs, f) are expressed by a power series in the aspect ratio €

2.(2)

a:a(0)+ga(1)+e g +...

and inserting these expressions into governing equations (eq. of motion,
continuity, rheology) leads to separation of these equations according to the
order of . (Implicit assumption: not only g is now scaled to unity but also its
gradient (777))
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Shallow Ice Approximation (SIA)

Scaling Approximation — plausibility and motivation

Keeping only lowest-order terms, we arrive at the Shallow lce Approximation,
which can be explicitly solved

pPO%x) = fO0) —xs
(0)

O B S ALOR
(0),

B = EE0

where (+) = (x1, x2)
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Shallow Ice Approximation (SIA)

Scaling Approximation — plausibility and motivation

Also the velocities may be expressed semi-analytically as

3 2 2
B0 = AOut [ AT (o8 407 o e
o,
X3
W(x) = v2<°>(«)s,+/f(°)()A(T’(-,x§)) (o1 +087) o8 x4) g
o).

vz from equation of continuity

x3 @ , VLo ,
W) =20 - [ (g;l(~,x3) G (%) )

70

Ondrej Soucek Ph.D. defense



Shallow Ice Approximation (SIA)

Problems of SIA

@ Zeroth order model — looses validity in regions where higher-order terms
become important:

@ Regions of high curvature of the surface
S -
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Shallow Ice Approximation (SIA)

Problems of SIA

@ Zeroth order model — looses validity in regions where higher-order terms
become important:
@ Regions of high curvature of the surface
o Regions where a-priori dynamic scaling assumptions are
violated (floating ice — SSA, ice streams)
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Shallow Ice Approximation (SIA)

Problems of SIA

@ Zeroth order model — looses validity in regions where higher-order terms

become important:
@ Regions of high curvature of the surface
o Regions where a-priori dynamic scaling assumptions are
violated (floating ice — SSA, ice streams)
,‘ a0 i

o

Figure: RADARSAT Antarctic Mapping Project



Shallow Ice Approximation (SIA)

Solution?

@ Higher-order models — continuation of the expansion procedure and
solving for higher-order corrections (Pattyn F., Rybak O.)
@ Full Stokes Solvers — Finite Elements Methods (Elmer - Gagliardini O.),
Spectral methods (Hindmarsch R.)
PROBLEM is the speed of full-Stokes and higher-order techniques, the
computational demands disable usage of these techniques in large-scale
evolutionary models
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SIA-| Iterative Improvement Technique

Any ideas?

Aim:
@ Find an "intermediate" technique that would exploit the scaling

assumptions of flatness of ice but would provide "better" solution than
SIA:

@ KEY IDEA: Apply the scaling assumptions of smallness not on the
particular stress components but only on their deviations from the
full-Stokes solution
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SIA-| Iterative Improvement Technique

SIA-I

=n 1 ES 1
u 5a»n+2 L—jn+2 — Un+€16un+2

- 1 1 1 1
0™ = (1 - €)i""2 + e2i*""2 it 7ta
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Benchmarks

lce-Sheet Model Intercomparison Project - Higher Order
Models (ISMIP-HOM) - experiment A

fe(x1,x2) = —xitana, a=0.5",
fs(x1, x2) — 1000

+  500sin(wxy) sin(wx2)

fp(x1, x2)
@ Ice considered isothermal

i @ Boundary conditions
with
w 2m @ Free surface

L @ Frozen bed
@ At the sides, periodic boundary

conditions are prescribed:

(X17 [L]’X3)
([L]7X27X3)

V(xa,0,x3) v
4

V(0, x2, x3)
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Benchmarks

ISMIP - HOM experiment A
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Benchmarks

ISMIP - HOM experiment A
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Figure: Pattyn F., ISMIP-HOM results preliminary report
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ISMIP

Benchmarks

- HOM experiment A

Computational details

Resolution: 41 x 41 X 41

Number of iterations: ¢ = % ~ 40 iter., € = % ~ 100 iter.

Each iter. step took approximately 0.22 s at Pentium 4, 3.2.GHz

For comparison Elmer (Gagliardini) Full-Stokes solver ~ 10 CPU s
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Benchmarks

ISMIP-HOM experiment F

@ Experiment description - ice slab flowing
downslope (3°) over a Gaussian bump

@ Linear rheology!

@ Output: Steady state free surface profile
and velocities

@ Comparison with ISMIP-HOM
full-Stokes finite-element solution
(Olivier Gagliardini computing by Elmer)
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Benchmarks

ISMIP-HOM experiment F

Free surface (left - Elmer, right- SIA-I)
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Benchmarks

ISMIP-HOM experiment F

Numerical performance

Surface velocities
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Benchmarks

ISMIP-HOM experiment F

Surface velocities (left-Elmer,
right-SIA-I)
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Benchmarks

Extension for non-linear rheology

@ We take setting from ISMIP-HOM
experiment A (L=80) - flow of an
inclined ice slab over a sinusoidal bump,
periodically elongated

@ Evolution of free surface, steady state
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Impossible to compare with evolution in
Elmer (too CPU time demanding)

Time demands of the SIA-I algorithm
practically the same as for the linear
case !

Let's compare only velocities at
particular time instants
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Benchmarks

Extension for non-linear rheology

t = 50a (left - Elmer, right - SIA-I) t = 100a (left - Elmer, right - SIA-I)
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Benchmarks

EISMINT benchmark - Greenland Ice Sheet Models

@ Paleoclimatic simulation

@ Prognostic experiment - global warming scenario
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Benchmarks

EISMINT Greenland - Paleoclimatic experiment

® Two glacial cycles (cca 250 ka)
@ Temperature + sea-level forcing based on ice-core 58O isotope record
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EISMINT Greenland - Paleoclimatic experiment

Surface topography (km), age = 150 ka
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EISMINT Greenland - Paleoclimatic experiment

Surface topography [km], age = 135 ka

y [103 km]
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Benchmarks

EISMINT Greenland - Paleoclimatic experiment

Surface topography (km), age = 125 ka
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Benchmarks

EISMINT Greenland - Paleoclimatic experiment

Surface topography (km), age = 115 ka
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EISMINT Greenland - Paleoclimatic experiment

Surface topography (km), age = 75 ka

y (108 km)
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Benchmarks

EISMINT Greenland - Paleoclimatic experiment

Surface topography (km), age =0 a
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Benchmarks

EISMINT Greenland - Paleoclimatic experiment

Glaciated area (10° km?)
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Benchmarks

EISMINT Greenland - Paleoclimatic experiment
(Huybrechts, 1998)

Glaciated area (10° km?)
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Benchmarks

Prognostic experiment

@ Model response to an artificial warming scenario

@ temperature increase by 0.035° C per year for the first 80 years (total
2.8° C increase)

@ by 0.0017° per year C for the remaining 420 years (0.714° C)
@ In total temperature increase of 3.514° C within 500 years
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Benchmarks

Prognostic experiment

Surface topography (km), t=0a

y (103 km)
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Benchmarks

Prognostic experiment

Surface topography (km), t=0a Initial accumulation-ablation function (m a )
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Benchmarks

Prognostic experiment

Surface topography (km), t=0 a

y (103 km)

X (103 km)

Surface topography (km), t = 500 a

y (10° km)
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Benchmarks

Prognostic experiment

y (103 km)

Surface topography (km), t=0a

X (10° km)

Surface topography (km), t = 500 a

y (10° km)
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y (108 km)

Topography difference (m)
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Thank you for your attention!
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