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Katedra geofyziky MFF UK
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Katedra geofyziky MFF UK
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1 Introduction

Ice sheets are masses of grounded ice that evolve in regions where climatic conditions allow for
the long-term deposition of snow cover. At sufficiently long time scales, due to internal creep,
glacier ice behaves as a non-Newtonian fluid. This fact enables us to describe and explain
the evolution of ice sheets over such time scales by means of continuum thermomechanics,
constructing a nonlinear-fluid model with geometry that is controlled by gravitationally driven
creep flow, and by the surface processes of accumulation, ablation and basal sliding.

To study the ice-sheet dynamics various numerical modeling techniques may be employed.
Since ice sheets are typically flat, with a vertical-to-horizontal aspect ratio smaller than1/100, a
scaling approximation utilizing this fact is often adopted in the glaciological community, result-
ing in the so-called Shallow Ice Approximation (SIA). This approximation allows us to easilly
compute the ice-sheet velocity field, induced by gravity, semi-analytically, and thus provides an
effective computational tool compared to more accurate but also more time-expensive computa-
tional approaches. During the last several years, however, the SIA has been slowly abandoned,
as the effects of higher-order dynamics or even the exact solution to the ice-flow problem are
looked for, typically, by means of advanced numerical techniques such as finite-elements or
spectral methods. The increase of computational demands is, however, enormous compared
to the SIA, making it problematic to implement these techniques for large-scale evolutionary
ice-sheet models.

We have therefore designed an iterative algorithm capable of successive improvement of the
SIA solution towards the exact (so called full-Stokes) solution, while still possessing the SIA’s
computational effectiveness. After being thoroughly tested, the algorithm was incorporated
into a large-scale ice-sheet model, providing an alternative numerical tool between the two
mentioned extremes - fast but inaccurate SIA on the one hand and accurate but slow advanced
numerical techniques on the other. Our approach provides the SIA solution in regions where
it is sufficiently accurate, and enables us to significantly improve the solution in regions where
the assumption of ”shallowness” becomes violated.

2 Theory

2.1 Continuum thermomechanical model

In terms of macroscopic glaciology, the problem of ice-sheet evolution and flow may be viewed
as a thermomechanically coupled gravitationally driven flow of a fluid with a nonlinear viscos-
ity, generally depending on both the strain-rate and temperature. In addition, it is a problem
with a free-boundary, that is, the glacier’s geometry itself is a part of the sought solution.

The ice rheology is specified by an idealized model of a non-Newtonian incompressible
fluid with uniform density where the deviatoric part of the Cauchy stress tensor is given by
Glen’s flow law (e.g. Paterson, 1981):

σ = 2ηd, η =
1

2
A(T )−1/nd

(1−n)/n
II , n = 3 ,

or, inversely,
d = A(T )σn−1

II σ ,
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wheredII , σII are the second invariants of the strain tensord, and the stress deviatorσ, respec-
tively. The temperature dependence of the rate-factorA(T ) is of the Arrhenius type

A(T ) = Aexp

(
− Q

kBT

)
.

Under the assumption of the uniform ice density and after applying an appropriate scaling
of the field quantities, the field equations to be solved read (Hutter, 1983):

div~v = 0 ,

−gradp + divσ + ρ~g = ~0 ,

σ = 2η(dII , T )d ,

ρcvṪ = σ .. d + div(k(T )gradT ) .

These field equations are accompanied by boundary conditions at the upper free surface and at
the glacier base, and also by kinematic conditions (Greve, 1997)

∂Fs,b

∂t
+ ~v · gradFs,b = as,b , (1)

describing the evolution of the free surfaces (given by implicit equationsFs,b = 0) as a result of
both the ice flow and the accumulation-ablation processes (given by the accumulation-ablation
functionsas,b).

2.2 Shallow Ice Approximation

The Shallow Ice Approximation (SIA) as given in Baral et al. (2001), is an approximation of the
equations governing the ice-flow obtained as a leading-order limit of the perturbation expansion
in the flatness parameterε which is defined as a fraction of the typical vertical-to-horizontal
scales of the ice-sheet geometry. The equations are first made dimensionless by introducing
appropriate scales and dimensionless numbers, then a formal polynomial expansion series of
any field variableϕ is performed in terms of the flatness ratioε

ϕ =
∞∑

n=0

ϕ(n)εn ,

and only leading-order form of the final equations is kept, reflecting the fact that typically in
nature, the valueε is small (typically varying between10−3-10−2 for large ice sheets), thus
allowing for such a perturbation procedure.

Traditionally, the SIA is considered in Cartesian coordinates, however, for large-scale mod-
eling, it is appropriate to use more general coordinates, such as spherical, polar or orthographic.
To avoid multiple derivations for each particular case, we derived the SIA in general orthogo-
nal curvilinear coordinates. Performing generalisations of the scaling procedure for Cartesian
coordinates, we obtain a whole class of SIAs, whose particular realization is given only by
evaluating geometrical quantities related to the chosen coordinate system.

The most important feature of the SIA is the applied scaling of the stress tensor components
which obey the following hierarchy. The dominant stress is the hydrostatic pressurep. One
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order of magnitude smaller in the flatness scaling parameterε are the vertical shear stresses
σxz, σyz and two orders of magnitude smaller inε are the remaining stress tensor components,
the longitudinal stressesσxx, σyy, σzz, and the horizontal shear stressσxy. This fact, when
employed in the SIA perturbation procedure, allows us to resolve the mechanical part of the ice-
flow problem semi-explicitly, namely for a simple Cartesian setting the horizontal components
of the velocity field~vH := (vx, vy) can be derived as

~vH(x, y, z) = −(gradHfs) F(‖gradHfs‖)
∫ z

fb

A(T )(fs − z′)3 dz′ ,

wheregradH := ( ∂
∂x

, ∂
∂y

) and fs is the function describing the elevation of the upper free
surface. The vertical component of velocity is then easily obtained from the divergence-free
condition. It is crucial from the numerical point of view that the numerical effort necessary to
evaluate the above formula is several orders of magnitude smaller compared to the numerical
complexity of the original problem.

For a realistic ice-sheet, the SIA approach, however, fails in many regions. Namely close to
the ice margin where the typically steep slopes of the ice-sheet surface would in the SIA produce
unrealistically high deformational velocities, or e.g. in the so-called ice streams, in regions
where basal sliding becomes dominant over the deformational flow and the SIA assumptions
are no longer valid as the longitudinal stresses become important or even dominant over the
vertical shear stresses.

2.3 Iterative improvement of the SIA solution - the SIA-I algorithm.

To overcome the difficulties with the inherent inaccuracy of the SIA, aware of the extreme
increase of computational costs when the SIA is abandoned, we designed an iterative algorithm
that successively improves the SIA solution (Souček & Martinec, 2008). The iterations start
with the SIA-based stress and velocity fields, which are then updated by solving an approximate
problem that has more convenient numerical properties compared to the original setting. The
derivation is based on the idea of applying the SIA assumptions not on the whole stress tensor
but rather only on the correction increments. One of the main results are the following formulae
for the increments of principal stressesδp, δσxz, δσyz:

δp(·, z) = −p(·, z)− σxx(·, z)− σyy(·, z) + (fs(·)− z)

− ε
∂

∂x

∫ fs(·)

z

σxz(·, z′)dz′ − ε
∂

∂y

∫ fs(·)

z

σyz(·, z′)dz′

+ εσxz(·, fs(·))∂fs(·)
∂x

+ εσyz(·, fs(·))∂fs(·)
∂y

,

δσxz(·, z) = −σxz(·, z)− ε
∂fs(·)

∂x
(fs(·)− z) + 2ε

∂

∂x

∫ f̃s

z̃

σxx(·, z′)dz′

+ ε
∂

∂y

∫ f̃s

z̃

σxy(·, z′)dz′ + ε
∂

∂x

∫ f̃s

z̃

σyy(·, z′)dz′ ,
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δσyz(·, z) = −σyz(·, z)− ε
∂fs(·)

∂y
(fs(·)− z) + ε

∂

∂y

∫ f̃s

z̃

σxx(·, z′)dz′

+ ε
∂

∂x

∫ f̃s

z̃

σxy(·, z′)dz′ + 2ε
∂

∂y

∫ f̃s

z̃

σyy(·, z′)dz′ ,

where(·) stands for the pair(x, y) for brevity. By these formulae, we define stress increments
in the first half-step of the iterative procedure which we call theSIA-I . In its second half step,
the updated stress field is forced to better consistency with the rheology by applying the forward
and inverse rheological relations.

The proposed iterative procedure, though not as straightforward as the SIA, still possesses
the basic features of the original SIA setting. Most importantly its locality, since all the ne-
cessary numerical operations consist of only evaluating the horizontal spatial derivatives of
the field quantities and one-dimensional integration, both being computationally rather cheap.
This implies that the improvement provided by the SIA-I algorithm is numerically effective and
fast. A deeper mathematical analysis of the properties of the SIA-I mapping has not been fully
achieved yet, our conclusions regarding its the performance mainly follow from the extensive
numerical testing.

3 Results - steady-state experiments

3.1 ISMIP-HOM benchmark

With a simple numerical implementation of the SIA-I approach we participated in theIce-Sheet
Model Intercomparison Project – Higher Order Models (ISMIP-HOM) (Pattyn, 2007,
http://homepages.ulb.ac.be/∼fpattyn/ismip/). This benchmark experiment aimed to demon-
strate the effects of higher-order solutions of various ice-flow model problems compared to the
solution by the SIA, where by ”higher-order” all such solutions are meant that take into account
the longitudinal stresses.

Our approach has been incorporated into experiments A and B (modeloso1, see Pattyn et
al. (2008)). We also performed the experiment C, where basal sliding with a prescribed sliding
law is considered in contrast to A and B where no-slip was considered at the glacier base.

ISMIP-HOM experiment A
This experiment involves a Stokes flow problem with no slip at the bed, stress-free con-

ditions at the surface and the ice is considered isothermal. Realistic values of the physical
parameters for ice are considered. The glacier has a square base, the upper surface is inclined
and flat whilst the glacier base contains sinusoidal bumps. At the sides, the periodic bound-
ary conditions are prescribed. For various aspect ratiosε the surface velocities and basal shear
stresses are computed and compared at a specified intersection. In Fig. 1 we display an exam-
ple of the benchmark output, a comparison of the surface velocitiesvx along a given profile,
for aspect ratios1

10
(left) and 1

40
(right). Our solution (light blue dots) is compared with other

full-Stokes solutions (plotted with lines), and several higher-order models (dots) as published
in Pattyn et al. (2008).
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Figure 1: Surface velocitiesvx from ISMIP-HOM experiment A, forε = 1
10

(left) andε = 1
40

(right).

ISMIP-HOM experiment C
The problem is set up very similarly to experiment A, the difference being that the driving

effect is, instead of bed-geometry undulations, the spatial inhomogeneity in the basal-friction
coefficient. At the glacier bed, the sliding law is prescribed in the form

β2~tb · ~v = −~tb · σ · ~nb ,

where~tb and~nb are the tangent and downward normal vectors to the glacier basefb, respec-
tively. The sliding coefficientβ2 has sinusoidal pattern in both horizontal directions. The SIA-I
algorithm was successfully adopted also for this situation and a good convergence was observed
unless a region with strictly zero sliding (free-slip) is present.

Numerical performance
The essential feature of the presented SIA-I approach is its computational effectiveness.

The algorithm is designed such that the time cost spent at each iterative step is similar to that
required for the SIA approach. Using an Intel Pentium 4, 3.2GHz computer, we have performed
50 iterations for the ISMIP-HOM A setting withε = 1

80
, which is a sufficient number of

iterations so that the SIA-I solution converges. The computational time increases linearly with
the increasing number of degrees of freedom. Considering the CPU-time demands for the
professionally optimized finite-element solver Elmer (Gagliardini and Zwinger, 2008), for the
current ISMIP-HOM A setting the authors provide an analytical formula for CPU-time costs
in (s) as a function of the number of degrees of freedom:y = 0.013x1.11. Making a similar
estimate for the SIA-I solver, we obtainy = 0.00015x, which represents a significant speed-up.

3.2 Dronning Maud Land simulation

Thanks to Dr. Oleg Rybak (AWI) and Prof. Dr. Philippe Huybrechts (Vrije Universiteit Brus-
sel), we could perform a test of the SIA-I algorithm on more realistic data. We obtained surface
velocities resulting from a higher-order model (Pattyn, 2003) of a600 × 400 km region in
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Dronning Maud Land, Antarctica. We were also provided with the 3-D temperature field for
the whole computational domain. Hence, we can also incorporate the temperature dependence
of ice viscosity, which is quite strong, in total, the temperature contribution to the viscosity
variation reaches 3 orders of magnitude.

We solve a Stokes-flow problem looking for a steady-state solution with non-homogeneous
boundary conditions on velocity at the base, and free-surface conditions at the upper surface.
In Fig. 2, we compare the surface deformational velocities from the SIA-I solution (SIA-I), the
2nd-order model by Pattyn (2003) (HOM) and also the solution corresponding to the Shallow
Ice Approximation (SIA). We may observe a relatively good agreement between the higher-
order model (HOM) and our solution (SIA-I), and a distinct difference between these solutions
and the much less smooth result coming from the SIA solution. Concerning the numerical
performance, the displayed SIA-I output was obtained after 60 iterations with approximately
3.8 s of CPU time per iteration (performed on an Intel Pentium Core 2 Quad 2.4 x 4, 8GB
RAM, 800 MHz, in non-parallel version), while the HOM model took approximately 5000
CPU seconds (on a NEC SX8 in parallel mode using OMP and 8 CPUs, Rybak, pers. comm.).

3.3 Summary

The new iterative SIA-I algorithm is derived on the basis of the traditional scaling ”shallow-ice”
approach by assuming that the aspect ratio of the vertical/horizontal dimensions of a glacier is
sufficiently small. The algorithm represents an iterative extension of the SIA approach, and,
in general, may provide an improved solution of the ice-flow problem. The key parameter
controlling the performance of the algorithm is the aspect ratioε. For the model examples taken
from the ISMIP-HOM A experiment withε ≤ 1

10
, the SIA-I algorithm converges, the case with

ε = 1
10

is however a threshold above which the SIA-I algorithm fails.
The relative simplicity of the SIA-I leads to a computational effectiveness, since the nu-

merical computations consist of only numerical integration over the vertical coordinate and the
spatial differentiation of field quantities, which are similar numerical operations as performed
in the SIA approach. Moreover, the computational demand grows only linearly with the number
of degrees of freedom.

The performance of the SIA-I algorithm was also tested for the ISMIP-HOM experiment C,
where a Newton-type sliding law is applied at the glacier base. The SIA-I approach requires the
reformulation of the sliding law as a Dirichlet boundary condition for velocity. This disables
us to resolve the velocities correctly in the regions with a small sliding friction coefficientβ
and fails completely for free-slip conditions (β = 0). However, the errors in the velocities are
localized in the vicinity of the singular region whereβ = 0. The erroneous behavior of the
SIA-I algorithm disappears with decreasing aspect ratio. For instance, in the case whereε = 1

80
,

the SIA-I converges everywhere in the solution domain and shows good agreement with the
published numerical full-Stokes solution.

We also performed a test of the SIA-I approach on more realistic data from Dronning Maud
Land, Antarctica, which is a Stokes-flow problem characterized by strongly inhomogeneous
Dirichlet boundary conditions for velocity and the temperature dependence of ice viscosity.
The comparison with output from a higher-order model again shows a satisfactory performance
of the SIA-I algorithm, both in accuracy and computational effectiveness.
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Figure 2: Results of the Dronning Maude Land simulation, deformational surface velocities
from the higher-order model (top), SIA-I (middle) and the SIA (bottom).
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Figure 3: The steady-state geometry profiles for the ISMIP-HOM experiment F, without (left)
and with (right) the basal sliding.

4 Results - prognostic experiments

The SIA-I algorithm was implemented into an evolutionary thermo-mechanically coupled nu-
merical ice-sheet model by incorporating also the kinematic equations for the free-surface evo-
lution and the ”shallow” limit of the heat-transport equation. We experimented with various
numerical approaches towards the kinematic equations and both time-explicit and time-semi-
implicit methods have been implemented, the former introduced with the use of Essentially
Non-Oscillatory (ENO) Schemes (Shu, 1998) and higher-order Runge-Kutta method, the latter
designed in a SIA-like fashion providing a parabolic kinematic equation. In addition, to allow
for more advanced determining and tracking the ice sheet margin, a level-set method has been
implemented following Peng et al. (2000).

4.1 ISMIP-HOM experiment F

The setting of the ISMIP-HOM experiment F is as follows (Pattyn, 2008). An ice slab, with an
initially flat surface slope of3◦, is flowing over a parallel inclined bed perturbed by a Gaussian
bump. Periodic boundary conditions on velocity are applied at the sides of the computational
domain. The flow exponent in rheology is chosenn = 1, which corresponds to Newtonian
(linear) rheology. Ice is considered isothermal and sliding law is adopted with two possible
constant sliding parameters, the first corresponding to no-slip conditions and the second allow-
ing for basal sliding. The steady-state surface geometry and velocities are looked for.

The resultant steady-state geometry profiles are shown in Fig. 3. Our solution (SIA-I -
red dots) is compared with the published full-Stokes solutions (lines) and other higher-order
solutions (points). Note that the SIA-I solution is systematically closer to the cluster of full-
Stokes solutions than the most of the remaining higher-order models.

Numerical performance
The computations for both cases, were performed for a model resolution60× 60× 40 and

the solution was considered as steady state when the surface profile had not changed within a
specified tolerance (maximal relative change of thickness of5× 10−5) for two successive time

9



steps. Approximately200 time-steps (1 step = 1 year) were needed to reach the steady-state.
Each step took approximately3s on an Intel Core i7 Quad-Core 2.6x4GHz. This is considerably
faster than the full-Stokes FEM model (oga1 in Fig. 3, where the time costs per time step vary
between 2 and 0.5 CPU hours (see Fig. 11 in Gagliardini, 2008).

4.2 Transient simulation with non-linear rheology.

The speed-up achieved by employing the SIA-I algorithm allows us to extend the experimen-
tal setting of the ISMIP-HOM experiment F and perform an ”ISMIP-HOM - like” experiment
also for a more realistic non-linear rheology following the Glen’s flow law, which is more
appropriate for the description of ice behavior. The model was set up as follows. We chose
a geometry similar to the ISMIP-HOM experiment A setting, i.e square-base ice slab of size
Lsc × Lsc, Lsc = 80 km, with an initially flat surface flowing over an inclined parallel bed
perturbed by sinusoidal bumps. At the sides, the periodic boundary conditions are prescribed
and no-slip and no traction were prescribed at the glacier bed and the upper free surface, re-
spectively. Our model was run until the upper surface was moving not more than a specified
tolerance (the same as for the ISMIP-F experiment above). Such a stage, considered as steady
state, was reached after approximately200 time-steps (1 time-step = 1 year). To check our
simulations, we implemented this model setting into the open-source finite-element code Elmer
(http://www.csc.fi/english/pages/elmer). Since the time demands for the non-linear rheology
given by Glen’s flow law are too large to run the whole transient simulation, we confined
ourselves to compare the SIA-I and full-Stokes FEM solutions only at several time instants.
For each of these times we substituted the SIA-I computed geometry into a steady-state finite-
element simulation as input data and obtained the corresponding full-Stokes velocity field. This
was compared with our SIA-I velocities. The results show a good agreement between the com-
puted velocity fields, indicating that our SIA-I solution of the steady-state surface profile is
close to the full-Stokes solution.

The time costs of the SIA-I solver do not differ from the ISMIP-HOM experiment F, that
is they are of the order of seconds per a time-step, depend linearly on the model resolution
(number of nodes).

4.3 Axisymmetric ice-sheet spreading

In this numerical experiment, we compute the flow of an axisymmetric ice cap under its own
weight. We compare the SIA-I solution for several aspect-ratios with a finite-element transient
simulation performed by the Elmer code. The initial shape of the glacier is a spherical cap
and aspect ratiosε = 1

10
, 1

20
, 1

50
, 1

100
are examined. Ice rheology is modelled by Glen’s flow

law, at the glacier bed a sliding law is prescribed with a constant sliding parameter and the
upper surface is taken as traction-free. A satisfactory agreement between the evolutionary finite-
element full-Stokes simulation and the SIA-I result was observed even for the largest considered
aspect ratio ofε = 1

10
.
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4.4 EISMINT benchmarks - effects of thermomechanical coupling

The performance of the heat-equation solver was checked in the comparison with the European
Ice Sheet Modeling INiTiative (EISMINT), a series of benchmark experiments designed for
testing the role of thermomechanical coupling in the ice-flow problem. Two prognostic equa-
tions are solved: (i) the heat-transport equation, and (ii) the free-surface evolution resulting
from ice deformation and surface accumulation and ablation. The nonlinear rheology of ice is
given by Glen’s flow law with the rate factor of the Arrhenius dependence. Ice is assumed to be
cold, i.e. its temperature is not allowed to exceed the pressure melting point. For all numerical
experiments, the accumulation-ablation function and the surface temperature are prescribed at
the free-surface. At the glacier base, the no-slip boundary condition for velocity is assumed and
a constant geothermal heat flux is specified. No melting is taken into account, neither at the
base, nor inside the glacier. Realistic physical parameters are considered. The bedrock is flat,
meaning that the effect of isostasy is not considered. As all the models in the intercomparison
are SIA-based models, we perform only the first iteration of the SIA-I algorithm, resulting in
the SIA solution.

We performed four experiments A, B, C and D. In experiment A, an equilibrium shape is
sought, starting from initially ice-free conditions on a flat bedrock topography when a climatic
forcing is specified. The experiments B, C and D are initiated from the steady-state solution (ob-
tained after200 ky) of experiment A and apply altered temperature or accumulation-ablation
conditions. We compare our model output with the published results of the EISMINT bench-
mark (Payne et al., 2000). The results are summarized in Tables 1–4. Our model is capable of
reproducing the results of the EISMINT benchmarks with a sufficient accuracy.

4.5 Greenland Ice Sheet simulation

We applied our numerical model to a realistic simulation. Inspired by the EISMINT inter-
comparison, in particular by the EISMINT Greenland models benchmark, we have run three
different simulations. First, a steady state of the Greenland Ice Sheet (GIS) is sought if the
present-day climatic forcing is kept constant during a transient response of the model. The se-
cond simulation aims at reconstructing the Greenland Ice Sheet behavior during the last250
thousand years, i.e. approximately two glacial cycles. The third simulation is a prognostic ex-
periment of modeling a short term (500 years) response of the GIS to a prescribed warming
forcing.

4.5.1 Steady-state Greenland Ice Sheet simulation

We perform the EISMINT Greenland Ice Sheet steady-state experiment as described by Huy-
brechts (1998). The summary of this experimental setup is as follows. The bedrock and surface
topography of the Greenland region arew given by a data set compiled by Letreguilly (1991).
The accumulation rates on the same grid are provided for the EISMINT experiment by Huy-
brechts (1998), and are compiled from data by Ohmura & Reeh (1991). The ablation is para-
metrized by the positive degree-day method (van der Veen, 2007). The model was run for150
thousand years, with a time step of 5 years, which was sufficiently long to reach the steady-state.
We observed that the effect of present climatic forcing mainly influences the coastal regions,
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Table 1: EISMINT exp. A results.
Quantity Our result EISMINT mean EISMINT range

Ice volume (106 km3) 2.074 2.128 0.145
Glaciated area (106 km2) 1.031 1.034 0.086

Melt fraction 0.582 0.718 0.290
Divide thickness (m) 3710.386 3688.342 96.740

Divide basal temperature (K) 254.538 255.605 2.929

Table 2: Differences between exp B and exp A.
Quantity Our result EISMINT mean EISMINT range

Ice volume change (%) −2.956 −2.589 1.002
Melt fraction change (%) 12.614 11.836 18.669

Divide thickness change (%) −5.457 −4.927 1.316
Divide basal temperature change (K) 4.587 4.623 0.518

Table 3: Differences between exp C and exp A.
Quantity Our result EISMINT mean EISMINT range

Ice volume change (%) −27.884 −28.505 1.204
Glaciated area change (%) −20.376 −19.515 3.554
Melt fraction change (%) −21.964 −27.806 31.371

Divide thickness change (%) −12.678 −12.928 1.501
Divide basal temperature change (K) 3.680 3.707 0.615

Table 4: Differences between exp D and exp A.
Quantity Our result EISMINT mean EISMINT range

Ice volume change (%) −11.943 −12.085 1.236
Glaciated area change (%) −10.188 −9.489 3.260
Melt fraction change (%) −2.309 −1.613 5.745

Divide thickness change (%) −2.049 −2.181 0.532
Divide basal temperature change (K)−0.179 −0.188 0.060

where the extent of the GIS is increased. On the other hand, the topography of the Greenland’s
interior does not change much and slightly decreases the maximum ice thickness.
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4.5.2 Climatic cycle experiment

This simulation starts from the steady-state achieved in the first experiment. A climatic forcing
for a period of approximately250 thousand years is imposed, consisting of temperature and sea-
level contributions. The temperature changes are derived from theδ18O content of the GRIP ice
core (Dansgaard et al., 1993) by the simple conversion

∆T (K) = 1.5(δ18O + 35.27) .

Sea-level change constrains the maximal extent of the ice sheet, because immediate calving is
assumed whenever the ice sheet reaches the ocean (i.e. no ice-shelf formation is considered). It
is again correlated directly to theδ18O content by the formula (Imbrie et al., 1982)

∆Sea level (m) = −34.83(δ18O + 1.93) .

In Fig. 4, we display the surface topography for several snapshots during the last glacial cycle,
i.e since approximately 150 thousand years ago, to the present, showing the quite substantial
reduction in the GIS extent approximately 125 thousand years ago, which is followed by gradual
regrowth of the Greenland Ice Sheet towards the present state - see bottom row in Fig. 4. Our
results are in satisfactory agreement with the published benchmark solutions.

4.5.3 Greenhouse warming scenario

This experiment aims at evaluating the effect of one of the possible greenhouse-warming sce-
narios on the GIS. Started from the steady-state result of the first simulation, the model is run
for 500 years into the future, with the climatic forcing based solely on surface temperature in-
crease. Hence, no sea-level forcing is considered. The surface temperature is increased annually
by 0.035◦ C for the first 80 years (total2.8◦ C increase) and then by0.0017◦ C for the remaining
420 years (0.714◦ C), resulting in a total temperature increase of3.514◦ C after 500 years. This
model temperature forcing is based on the proposed scenario by Manabe & Stoufer (1994).

Given the initial and final topography, the topography difference and the evolution of the
glaciated area and ice volume are computed, the reduction of the GIS volume is approximately
by 0.135× 106 km3.

5 Conclusions

We have been dealing with several aspects of the large-scale numerical modeling of ice sheets,
both from the theoretical and numerical perspective.

First, we have formulated the equations that govern the time evolution of grounded ice
sheets in a form that allows us to capture and incorporate liquid water and estimate the effects
induced by its presence, such as an enhanced ice deformation, increased basal sliding caused
by lubrication of the bedrock till, thermal effects connected with latent heat release, and so
on. Based on the principles of rational mixture thermodynamics, we rederived the traditional
Shallow-Ice Approximation, that is a scaling approximation which makes use of the fact that,
in nature, the vertical-to-horizontal aspect ratio is often a small number. This fact allows a
perturbation analysis in terms of this ratio. Our main contribution is that we have extended the
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Figure 4: The GIS topography for several snapshots during the climatic cycle experiment.
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SIA apparatus by considering general orthogonal curvilinear coordinates and obtained a whole
class of SIAs whose particular form depends on the chosen coordinate system, and may be
easily specified by evaluating associated geometrical quantities.

We designed a novel computational algorithm denoted as SIA-I, which iteratively improves
the ”shallow-ice” solution by including longitudinal stresses in a computationally effective way
compared to other approaches. The convergence of the algorithm was investigated numerically
but also theoretically, leading to the observation that the iterations converge the faster the ”shal-
lower” the problem, that is the smaller the scaling parameterε and a threshold value ofε seems
to exist for each particular setting, above which the algorithm need not converge. Although the
rigorous mathematical analysis of the convergence properties of the SIA-I procedure remains to
be completed, a number of numerical examples and tests have clearly demonstrated the applica-
bility of the algorithm in practise. We also proved theoretically that if the procedure converges,
the limiting solution satisfies the rheological equation exactly and results in errors in the first
two momentum equations, that are of the order ofε2 and can be evaluated explicitly.

We performed comprehensive numerical testing by the verification with other numerical
methods such as finite-elements, and by computing a number of benchmark examples. We
participated in one of the recently designed benchmarks, the Ice-Sheet Model Intercompari-
son Project - Higher-Order Models (ISMIP-HOM), which was mainly oriented to evaluate the
non-shallow, higher-order effects in glacier dynamics. This benchmark reported the good per-
formance of the SIA-I technique, both in accuracy and computational speed.

We also compared our model with a higher-order solution for the region of Dronning Maud
Land in Antarctica, by (i) considering realistic topography for both the ice sheet surface and
the underlying bedrock surface, (ii) the strongly non-homogeneous basal sliding conditions,
and (iii) spatially varying temperature field. The comparison was satisfactory, as the achieved
accuracy was comparable with other higher-order models but the results were obtained with a
substantially increased computational speed.

We employed the SIA-I technique into a finite-difference thermo-mechanical evolutionary
ice sheet numerical model, capable of modeling the evolution of ice sheet geometry due to
the processes of internal deformation, described by a model of viscous non-Newtonian fluid,
and due to surface processes such as accumulation, ablation and basal sliding. For most sim-
ple setups, with only one iteration of the SIA-I algorithm performed at each time step, this
model gave similar results to other existing large-scale SIA models such as e.g. SICOPOLIS
(http://sicopolis.greveweb.net/), or GRISLI (Ritz et al., 2001). With more than one iterations
of the SIA-I algorithm, our model, however, provides (also locally if necessary) an improved
solution to the ice-flow problem by capturing the higher-order dynamics by including the lon-
gitudinal stresses, which are neglected in the SIA.

The performance of the code was tested for four of the European Ice-Sheet Modelling INi-
Tiative (EISMINT) benchmarks that are focused on the effects of thermo-mechanical coupling
within an ice sheet while considering the SIA, with the conclusion that our outputs are in a good
agreement with the published results.

We also carried out three benchmarks whose level of complexity fully corresponds to the
original purpose of our model, that is, modeling long-term large-scale evolution of large ice
sheets. Three EISMINT scenarios of the Greenland Ice Sheet with realistic topographical data,
energy and mass fluxes were considered: a steady-state simulation, a paleoclimatic simulation
for the period of last two glacial cycles and a500 year prognostic simulation modeling the
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possible effects of a prescribed global-warming prognosis.
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