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Preface

Ice sheets are masses of grounded ice that evolve in regions where ctioradiions allow for the long-
term deposition of snow cover. Through a complex process of sueeessmpaction inducing internal
structure changes, glacier ice is formed, being one of the many knowtaliiye phases of solid water. At
sufficiently long time scales, due to internal creep, glacier ice behavea@slewtonian fluid. This fact
enables us to describe and explain the evolution of ice sheets over sucltdile® sy means of continuum
thermomechanics, constructing a nonlinear-fluid model with geometry thahisoted by gravitationally
driven creep flow, and by the surface processes of accumulatilatiomband basal sliding.

Ice sheets represent a major part of the Earth’s cryosphere anamplayportant role in the global
climate system, affecting it both directly, for instance by creating specifid ®icaatic conditions in the
glaciated areas, or constraining ocean circulation, or indirectly by \@qutyie total Earth’s albedo, being
one of the key parameters controlling the total insolation. Last but not tbagtare the biggest reservoirs
of freshwater on the Earth, holding more than 76% of its total supplies.

From a geophysical point of view, they provide an important sourcefofrimation about the Earth’s
lithosphere and mantle rheological properties through the process dlgtmstatic adjustment (GIA),
which deals with the viscoelastic response of the Earth to long-term variatioces-sheet load distribution
caused by glacial cycles. Over the past several million years, the Easthden subject to approximately
periodic changes in global glaciation with a period of about 100 thousaardsyconsidered to be caused
by variations in the Earth’s orbital parameters (Milankovich cycles). EFsafod comprises of a longer
period of gradual glaciation, during which the ice masses are concehingtelar regions, and deform the
underlying lithosphere and mantle. A relatively short (10 thousand yparsd of deglaciation is too fast
for the mantle material to relax in time with the change in surface load, thus resultingoing present-day
motions (mostly uplift) in the formerly glaciated regions. These surface motitwes\wroperly measured
by either modern GPS methods, or indirectly by satellite measurements of dialdtyariations, represent
valuable data sets for constraining the rheological parameters of thesHitinttephere and mantle.

The growth and retreat of ice sheets is the main forcing in the GIA. To modedtieet dynamics
is thus of key importance, and has motivated us to develop a numerical nuwdatde-scale ice-sheet
evolution. Since ice sheets are typically flat, with a vertical-to-horizont@aspatio smaller tham /100, a
scaling approximation utilizing this fact is often adopted in the glaciological conitguesulting in the so-
called "shallow-ice” approximation. This approximation of ice flow enablewgiickly compute the ice-
sheet velocity field, induced by gravity, semi-analytically, which repressam effective computational tool
compared to more accurate but more time-expensive approaches. herlagt several years, however, the
shallow-ice approximation has been slowly abandoned, as the effedtgheftorder dynamics or even the
exact solution to the ice-flow problem are looked for, typically, by mear&lehnced numerical techniques
such as finite-elements or spectral methods. The increase of computdtomahds is, however, enormous
compared to the SIA, making it problematic to implement these techniques fordeadge evolutionary
ice-sheet models.



2 PREFACE

We have therefore designed an iterative algorithm capable of suoeésgirovements of the SIA so-
lution towards the exact solution, while still possessing the SIAs computdidieztiveness. After being
intensively tested, the algorithm was incorporated into a large-scale ést-stodel, providing thus an al-
ternative numerical tool between the two extremes - fast but inaccurallevshice approximation on the
one hand and accurate but slow advanced numerical techniques dheheQur approach provides the SIA
solution in regions where it is sufficiently accurate, and enables us to saymtiff improve the solution in
regions where the assumption of "shallowness” becomes violated.

To give some insight into the origin of the algorithm, in Chapter 1 we first outlihged summary of
the ice-sheet continuum thermodynamics, based on the theory of ratiemaldtlynamics of mixtures. For
the presented equations we provide their "shallow-ice” counterpartsapt€h2 by deriving systematically
their leading-order (in the scaling flatness parameter) form. A novelty ingheation is that we consider
general curvilinear orthogonal coordinates, obtaining thus a whole ofashallow-ice approximations -
its realization for any particular coordinate system is given just by evafyagntain geometrical quanti-
ties. This can be useful for large-scale models where the effects ofatik’€surface curvature cannot
be neglected. In Chapter 3, we introduce a novel SIA-I iterative algorithich successively improves
the shallow-ice solution. We verify its performance via several benchsrsargh as the ISMIP-HOM (Ice-
Sheet Model Intercomparison Project - Higher-Order Models) baack, which focused on evaluating the
"higher-order” (non-shallow) effects in ice-sheet dynamics, angdxforming a realistic simulation using
the field data from Antarctica. A simplified convergence analysis for thel&§orithm is presented in
the Appendix A. In Chapter 4, we provide a detailed description of thelieetsaumerical model, focusing
on the free-surface evolution and the implementation of the heat transpati@n in an ice sheet. Both
numerical features are validated by the benchmarks - geometry evolutiperfiyyming a reference run
with an "exact” finite-element model and the heat transport together withfibetseof thermomechanical
coupling by going through some of the EISMINT (European Ice SheateéMiog INiTiative) simulations.
In Chapter5, the numerical model is run for a series of three benchmarks for Grekida-Sheet models,
including a paleo-climatic simulation over the two last glacial cycles and a pstigraveenhouse warming
scenario.



Chapter 1

Glacier Continuum Thermomechanics

1.1 Introduction

In this section, we briefly outline the mathematical apparatus used to dese&ibesmtial features of glacier
physics within the framework of continuum mechanics and thermodynamiassued, when dealing with a
real-world physical phenomena, the presented model must be undkastoaly an idealized simplification
with its relevance and validity restricted to certain limits in spatial and time scales.

In terms of macroscopic glaciology, the problem of ice-sheet evolutiorflandmay be viewed as a
gravitationally driven flow of a fluid with a nonlinear viscosity, generally elegiing on both the strain-rate
and temperature. In addition, it is a problem with a free-boundary, théteglacier's geometry itself is a
part of the solution.

A delicate question arises whether to consider ice as a single-componentm#iat is dealing with
pure ice only, or to take into account the presence and effects of soreestréor instant percolating liquid
water in the so-called temperate-ice zones, or the salinity transport in magisbaétves. Both effects re-
quire us to adopt a more complex approach of mixture continuum mechaditisemodynamics. In either
case, we may, however, formulate the mass-balance equation, lineargrndranomentum balance equa-
tions and balance of energy, together with appropriate boundary corsl{timth dynamic and kinematic)
at the upper free surface, at the glacier’'s base and at all intercalntiisuities.

In the following theoretical summary, we confine ourselves to a model ofyh@omal ice sheet, which
is defined by the presence of two types of regions: temperate-ice zomegftned by the presence of a
certain amount of liquid water, and the cold-ice zones, where only puie amsidered.

1.2 Coldice sheet

Consider first a simpler case, where the whole ice sheet is assumed tmpesanl only of pure glacier ice.
The glacier’s geometry will be captured by prescribing two intersectinfases — the upper free surface
and lower glacier bed, given e.g. in Cartesian coordinates#i.ero, x3, wherex, xo are the horizontal
coordinates andl is the vertical), by

r3 = fs(w1,22,1), (1.1)
r3 = fo(r1,22,1) , (1.2)
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wheref,; and f;, represent the upper free surface and the lower glacier bed, tesheor, more generally,
by implicit functions for the glacier surface and bed, respectiviel{z1, x2, x3,t) and Fy(z1, z2, x3, t):

Fy(x1,29,23,t) =0, (1.3)
Fy(z1,22,23,t) =0, (1.4)

Where:Fs(xl,xg,xg,t) =3 — fs(.%'l, xg,t), Fb<l’1,$2,x3,t) = X3 — fb(acl, .fg,t) . Taking the total time

derivative of (1.3), we obtain
OF

ot
wherer is the velocity of surface movement. It is convenient to rewrite this equatidantbyducing the
material (ice) surface velocity

+V-gradF, =0, (1.5)

OF
ot

or, alternatively, by the (upward-oriented) surface normal vegior

+ U - gradFs = (U — V) - grad F , (1.6)

grad F
Mg 1= ——— , .7
lgrad F |
such that
oFs; L L
5 + U gradFs = (U — 7) - iis||grad F|| . (1.8)

The term(v — ©) - 7i5 is the normal flow of material through the upper free surface, and septe the
mass production or loss at the free surface by climatological processesusually prescribed by the
accumulation-ablation conditions. We define the accumulation-ablation fur{psitive for ablation) as

S

a®:= (U—"70)- s, (1.9)
and finally express the kinematic condition as

OF;
ot

If, for instance, the explicit (Cartesian) description of the free-s@rfa used, the evolution equation for the
free surface reads as:

Ofs | . [ Ofs 0fs ofs\* | (0f:\*

— - = — 1) =a%/1 . 1.11
8t v ( 8%17 8372, ) “ \/ + (81’1 + 8:62 ( )
We will assume that the glacier bed evolution, i8,(x, x2, x3,t) is known, with the glacier bed either

being rigid and not moving, hendg, stands for the prescribed glacier-bed topographyf;ois given by

the solution of the equations for viscoelastic deformational response ohttexlying bed to ice-mass load
changes.

+ ¥ - gradFs = o||grad Fy|| . (1.10)

1.2.1 Field equations

The behavior of a cold ice-sheet may be derived from the single-coemp@onservation laws that read in
the Eulerian description as follows (Hutter, 2004).
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General balance laws

0
8—2) +div(pd) = 0 e mass balance , (1.12)
pi7 = divr + pg . linear momentum balance , (2.13)
T = 77 e angular momentum balance , (1.14)
pe = T:d—divg+ ph e internal energy balance , (1.15)

where the quantities used are: density,7 - velocity vector,r - Cauchy stress tensar.- internal energy
density,d - strain-rate tensog - heat flux vectorh - heat supply. The dot operatOrstands for the material
. . . : o _
time derivative ) := % + 7 - grad().

In order to make the above system of general balance laws solvableg@dssary to specify the partic-
ular material by prescribing appropriate constitutive equations.

Therheology is specified as follows. Despite even pure ice is a very complex substawicgyl13 known
phases and several dislocation mechanisms that contribute to the finatstram-rate constitutive equa-
tion (Hutter, 1983), for glaciological modeling, an idealization by a non-tdaeian incompressible fluid
with uniform density is mostly used. To specify this fluid, the stress tensoliisrgp an isotropic and a
deviatoric part:

T=-pl+o, (1.16)
where the deviatoric part is described®ien’s flow law (e.g. Paterson, 1981):
1 —n)/n
o=2nd, n= §A(T)—1/nd§1[ n n =3, (1.17)
or, inversely,
d=AT)o}; o, (1.18)

where the second invarianis;, o7 are given by

dldl O;i0;;
dllZ\/#, JII:\/#a (1.19)

and the strain-rate tensdris defined as
1
d= (gradv + grad’v) . (1.20)

The (absolute) temperature dependence of the rate-fa¢toy is of the Arrhenius type

_ _Q
A(T) = Aexp < k:BT> , (1.21)
often corrected for the pressure-dependence of the melting tempe(saargl .48)):
A(T,p) = Aexp | — ¢ (1.22)
’ k‘BT* )

with kp the Boltzmann constant, artt the absolute temperature corrected for the pressure melting point,
T* = (T + Ccip), Cey is the constant from (1.48), andis the pressure. The activation paramegeand
the constand may, in general, depend on the considered temperature range.

1The Einstein’s summation convention is used if not otherwise stated.
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Note that, in some applications such as in planetary science, a simple Newtoedogical model of
ice with only temperature-dependent viscosity is considered.

The constitutive equation for internal energy densityis specified by a simple, only temperature-
dependent model of the form .
(T)=c,(T)T, (2.23)

wherec, (T') is the heat capacity at a constant volume. Fortibat flux, we assume the traditional Fourier
law
qd= —k(T)gradT , (1.24)

with the heat conductivity:(7"). For ice sheet flow, we do not consider any internal heat sourndspua
h =0in(1.15).

By these constitutive relations, the general balance laws may be rewrittelfoas.
Themass balancaunder the assumption of uniform ice density is expressed as
divi =0. (1.25)
Thelinear momentum balanceis written as
pU = —gradp + dive + o7, o =2n(d, T)d, (1.26)
where the inertial term can be neglected due to a very small Froude nuseleeBéction 2.3 on scaling):
0 = —gradp + dive + pg . (1.27)
Theenergy balances given by

pe,T =0 d+ div(k(T)gradT) . (1.28)

1.2.2 Boundary conditions

The boundary conditions closing the system of equations are foundfoipier free surface and the glacier

bed. The uppeiree surface(zs = fs(x1, zo,t) Or Fs(x1, xo, x3,t) = 0), is assumed traction-free, giving
*patmﬁs = 7p7_is +o- ’r_is’ (129)

wherer; := %, is by definition positive upwards and’™ is the atmospheric pressure. Typically, the

temperature is prescribed at the upper surface as climatological inpubdataer with the accumulation
ablation functioru® (defined by (1.9)):

T:TS<$1,x2,fs(ZC1,$2,t),t) ) CLS:CLS(ZCl,l'Q,fS(ZE‘l,ZCQ,t),t) . (130)

At the glacier bed (z3 = fy(x1,x9,t) OF Fy(z1, 22, 23,t) = 0), eitherno-slip is assumed in the case of
frozen bed condition§T" < T,,(p)), with T,,,, the pressure-dependent melting temperature given by (1.48),
ie.

T—0=0, (1.31)

or asliding law is specified for the sliding velocity*’, defined by

Tl = (T — ) — (T — ) - 7y (1.32)
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where the surface velocity, equals the bedrock material velocity at the glacier base. Usually the sliding
law may be written in the form (Blatter et al., 1998)

B, - = —ty, o -7y, (1.33)
wheret;, is a vector tangent to the glacier bei,is the normal to the glacier bet), := —% (positive
downwards) and(7i,- -7y, T, ...) is the sliding coefficient which is, typically, a function of the total normal
stress, temperature, and the roughness of the underlying bedraddition, the normal component of the
relative velocity is assumed to vanish

(U—1p) -1 =0, (1.34)

which expresses the impermeability of the bedrock to ice.

Theenergy equationis completed by prescribing the geothermal heat flux at the glacier bed
7= (1, 72, fo(r1,72,1),1) . (1.35)

It still remains to be discussed possible melting at the glacier's bed (we askatrtbe rest of the glacier
has a temperature below the melting temperature of ice), which requires ussidexthe energy balance of
a melting surface. This case will be obtained as a limiting case of a polythernsieet with an infinitely
thin temperate-ice layer above the glacier bed. This general situation mssaddrbelow.

1.3 Polythermal ice sheet

The presence of liquid water in a glacier cannot, in certain cases, beetysorce its effect on both the
rheology of the ice and the subglacial environment (roughness) becompertant. Typical examples are
small alpine glaciers at lower altitudes, or fast-flowing ice streams in ice shdétsugh the modeling of
glacial drainage systems remains an open challenge due to its enormousxigngplé time variability,
some basic insights may be gained by treating water content as a diluted corpotige ice matrix.
This topic has been studied and modelled by e.g. Hutter & Greve (1983@uidk & Martinec (2005).
The approach of the latter is new in terms of the formulation of the governingtiegs by means of
rational thermodynamics. The diffusive water flux is expressed reltditiee ice velocity, contrary to the
traditional treatment (e.g. Greve, 1997) where barycentric velocity tbinséead. Our approach provides a
better insight in the generalizations appearing in the constitutive equatiotesriperate ice, and allows the
possibility of further extension. For example, the diffusive water flux igioled as a limit of the equation
of motion for the water component.

We first summarize our treatment of temperate-ice physics. The detailedta®riand explanations of
the presented approach can be found int@&w& Martinec (2005). We assume that, in the interior of an ice
sheet, there are two types of regionsold-ice zonesndtemperate-ice zoned he former is formed by a
pure glacier ice and the latter contains a small amount of liquid water. A skétpalythermal ice sheet
is presented in Fig. 1.1.

We assume that each zone of temperate ice is separated from the singocwld ice by a smooth
surface {ts = cold-temperate ice transition surface) given by implicit or explicit equations

Fcts(xlax%x%t) =0, or €r3 = fcts(fpla:EZat) .

The problem of a so-called polythermal (containing both cold and tempem#®ies) ice sheet therefore
comprises not only additional temperate ice-physics, but also the evolutiblem for the contact surfaces.
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AZ

Atmosphere Cold ice

Temp. ice
xt) =0

X,y

Figure 1.1: A sketch of a polythermal ice sheet.

As in the case of a cold ice sheet, the upper free surface is described by
Fy(z1,x2,23,t) =0, or x3 = fs(z1,22,1),

and the glacier base by
Fy(z1,29,23,t) =0, or x3 = fp(x1,x2,1) .

For all the surfaces, the unique correspondence between the {@artegplicit and implicit forms are
assumed

Fs($17$27x37t) = .leg—fs(.%'l,.%'Q,t) ) (136)
Fy(w1, 20, 23,t) = a3 — fy(21,22,1) (1.37)
Fus(x1,22,23,t) = x3— fas(v1,22,t) . (1.38)

1.3.1 Field equations

For thecold-ice zone the balance laws listed in the previous section for cold ice sheets remaiangszh
However, they must now be accompanied by the boundary conditions edriect with the temperate ice.
Additional details are given below.

In thetemperate-ice zoneice is treated as a two-component mixture of ice and water and the conti-
nuum mixture approach is adopted to formulate the balance laws for mass,dimeangular momentum
and energy. As was pointed out by Hutter (2004), various subcla$seixture theories exist which differ
in their treatment of particular balance laws, where one may prescribetiautsr balance law for each
mixture component or take one global balance law for the mixture as a whete, e adopt an approach
between the two limiting strategies, namely, the balance laws of mass and momertasidered for each
component separately, whilst the energy balance is considered foethater mixture as a whole.

The mass balancds derived as follows. Ice-water mixture is considered incompressiblashvis justi-
fied by the fact that (i) the water content does not exceed few peaoel(ii) the relatively small difference
between the pure-ice and the pure-water densities. The uniform mixtséyis denoteg. Ice and water
are moving with velocitieg’ and,,, respectively. Water transport is then described by a relative diffusi
water flux;,

j = pw(Ty — 1), (1.39)
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wherew is the water mass fraction (mass concentration).

Despite the mixture as a whole and the ice specifically remaining incompressiblmatss fraction
of ice can be altered due to the process of melting or refreezing. Carsfguhe ice-velocity field is
no-longer divergence-free and tivass balance for icaeads as

divi = —div (]> : (1.40)
P

Themass balance for watercan be given in terms of the water mass fractign
pu + divj = my, , (1.41)

where() := %—(t) + ¢~ grad() is the material time derivative with respect to ice velocity, andis the water
production rate (positive for melting and negative for refreezinglltieg) from the balance of energy below.

Thelinear momentum balance for icecan be written in the form

F(w)

p(1 — w)pt + pwil®) = —gradp + dive + pg (1.42)
where on the left-hand sidé’fvw) = % + U, - gradv,,. The inertial forces will be omitted, as they are
very small (which we will justify later by evaluating the corresponding Feondmber) and the balance law
takes the form

0 = —gradp + dive + pg . (1.43)

Thelinear momentum balance for the water componentan then be written as
j = —aqgradw + ag(pwg — grad(pw)) , (1.44)

which is, in fact, a constitutive equation for the diffusive water ffuhe termpw can be thought of as one
possible realization of the partial water pressure. A reasonable extangiht be to replacew by a more
general partial water pressysg, defined by the appropriate constitutive equation. Then, (1.44) woattl re
as

j = —angradw + as(pwg — gradpy,) - (1.45)

Such a generalization would require modifying the energy balance equatdd). Nevertheless, we will
not consider this more general case here.

The angular momentum balance for icestates the symmetry of the partial Cauchy stress tensor devia-
toro:
oc=ol. (1.46)

There is no need to consider this equality forwegter component, because for water the only stress contri-
bution that remains in the equations comes from the partial water pressiod, i symmetric already by
definition.

The energy balanceis considered for the mixture as a whole. Contrary to the cold-ice zonee# dot
have a form of an evolution equation for the temperaturd, &sno longer an independent field variable in
this case. In the temperate-ice zone, ice is, by definition, at the prassltieg point and the temperature
is obtained by solving the Clausius-Clapeyron equation

T=T,(p), (1.47)
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where a linear relationship is often assumed (Greve, 1997):

Tm(p) = TmO - CClp ) (148)
with C¢; andT,,,o constants.

The role of temperature is now replaced by the water conteas the energy release is associated with
melting or refreezing of ice and water, respectively. The energy equtien specifies the rate of water
production by

—

Lmy =0 d— div§ — pey T, + L. (pg — gradp) , (1.49)
P

wherelL is the latent heat of melting of ice armtlis the strain-rate tensor of ieé = %(gradq?Jr grad? 7),
and the heat flug'is given by the Fourier law

7= —k(Tm(p)) gradTpm(p) - (1.50)

The rheology is specified as follows. Glen's flow law as outlined in (1.17) is again consitifor ice
with the rate factor depending on the water fractionsince the lubricating effect of water enhances the
deformational flow rate

o=2nd, n= %A(w)_l/nd%—n)/n ,n=3, (1.51)
or, inversely,
d=A(w)ol; o . (1.52)
The water-content dependence of the rate-fadtar) is usually assumed to be linear
A(w) = A(1 + yw)exp <— @ ) ) (1.53)
kBTOm

where( is the activation parametetg the Boltzmann constanl and~ constants, anfl;,,¢ the constant
from (1.48).

1.3.2 Boundary conditions

Apart from the boundary conditions at the upper free surface anlattem of the glacier, for polythermal
ice sheets, we need to also prescribe appropriate interface conditithves @intact between the cold and
temperate zones. Séek & Martinec (2005) derived these conditions with the help of the mixturershe
assuming that (i) all mixture components are present at both sides of tHadeteaind (ii) by limiting the
appropriate concentrations to zero.

Free surface

The upper surface is the contact surface of either cold or temperatélicainvA sketch of the geometry
of the free surface is depicted in Fig. 1.2. Describing the free surfaea mplicit equation,

FS(SL'1,$2,1'3,t) =0 s (1.54)
its evolution is governed by a kinematic equation

O0F
ot

+ U-gradFy = (U — ) - is ||grad Fs|| , (1.55)
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Atmosphere (+)

Cold or temperate ice(-)

Figure 1.2: The free-surface geometry.

grad Fs
llgrad Fs ||’

wherev; is the velocity of the free surface (generally non-material), dnd= is the surface

normal being positive upwards.

The dynamic boundary conditions following from the general mixture baldags are as follows:
e Cold ice - air boundargwater is not present)

This case was discussed in the previous section about single-comjmment
e Temperate ice - air boundatyater present)

o Mass-jump condition
The ice component is given by
(1—w)(U—0s) s = ——, (1.56)
wherea® is the surface accumulation-ablation function, prescribed by climatologital d
a® = a’(x1, xa, fs(x1,x2,1),1) (1.57)

The water component is given by
J-ms = =P, (1.58)
whereP? is the surface-melted water and liquid precipitation that enters the glacier volume
again assumed to be given as an independent input information by climatology
P = Ps(xl,xg,fs(atl,xg,t),t) . (1.59)

o Linear-momentum jump condition

—patmﬁs = —pﬁs + o ‘ﬁs, (160)

wherep,,, is theatmospheric pressure is the sum of partial pressures of ice and water, and
o is the ice Cauchy stress deviator.

o Energy-jump condition
Since the temperature in the temperate part of a glacier is fully determined byessupe

according to the Clausius-Clapeyron equation (1.48), an appropriatelbny condition is (ne-
glecting the surface friction)

0 = my,(ew —ei) + [@T 7, (1.61)
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The base

Cold or temperate ice (-)

Figure 1.3: The base geometry.

which relates the discontinuity in the heat fllg" at the surface with the surface melting rate
ms,, wheree; ande,, are internal-energy densities of ice and water, respectively. We will,
however, assume the melting rate is given by climatological input data (inclaldeady in

the ice-accumulation functiom® and water precipitation rate®), therefore we do not need to
specify any boundary condition, neither for the temperature, nor faneaeflux.

The base geometry is depicted in Fig. 1.3. Similarly, as for the cold-ice gla@eassume that the base
geometry is given a-priori, either it is rigid and does not change in time, or itseirakition is influenced
by independent geophysical processes, such as the glacial-isodfattneent or tidal loading. We thus
assume to know the function

Fy(z1,22,23,t) =0. (1.62)

In the case of the dynamic conditions, we again distinguish between the t@s, aadd ice — bedrock
boundary and temperate ice — bedrock boundary.

e Cold ice — bedrock interfadgvater is not present)
This situation has been discussed in the section about single-componbatiicek conditions (Sec-
tion 1.2).

e Temperate ice — bedrock interface

o Mass-jump condition

The ice component is expressed by

(I —w) (V= 1p) -7l = —, (1.63)
P
wherem? is the rate of surface meltwater production at the glacier base, and the Inorma

~ . —gradFy ; e . . .
Tib *= Taradfy 1S NOW pointing downwards ang, is the velocity of the glacier base.

The water component is described by

b m

b
w (1.64)

Loy, = o —
J I—w’

where thewater-outflow functiom® has been introduced to describe the rate of the water-mass

flow penetrating into the bedrock, and has to be prescribed indepenetity/form

0" = o"(z1, 2, fo(w1, 22, 1), 1) . (1.65)
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o The linear-momentum jump conditi@expressed as
T Tl = —pﬁb + o1y, (166)
wherep is the sum of the partial pressures of ice and watas, the deviator of Cauchy stress of
ice, andr;, is the Cauchy stress tensor in the underlying bedrock.
o Sliding law

Setting naturally the surface velocify equal to the bedrock velocity at the glacier base, the
sliding velocity is defined as

Tl = (T — ) — (T — ) - 7y (1.67)
while the sliding law typically has the form
B2y 0 = ~ty - o - il (1.68)

wheret, is a vector tangent to the glacier bet, is the normal to the glacier bed amds,, -

T - iy, w, T (p), -..) is the sliding coefficient, now also dependent on the water contefihe
termii, - T - 71, Stands for the total normal pressure at the glacier base, which is egbalgom
of partial pressures and, - o - 7.

o The energy-jump conditicas derived by Satek & Martinec (2005), reads as

(=

0= mw(éw*&) + U'Ti~ﬁb+5;'T;~ﬁb*17b-Tb~ﬁb+[(ﬂt~ﬁb, (1.69)

whereTr; and T, are partial stress-tensors of ice and water, respectively. This reldiohe
further rewritten with the use of the linear momentum jump condition (1.66). Ifeeplonly the
partial water pressure contribution to the water partial stress tensdhat is writer,, ~ —p.,I,
and again, by denote the sum of partial pressuggsand p,,, and neglect the friction work
associated with the diffusion of water in ice, that is, omit the térmn — o) - T, - 7i,, we arrive

at
0= mb(cw—¢i) + (T— ) (—pl+ao) -7y + [qF . (1.70)
Employing the definition of sliding velocity (1.67), together with (1.63) gives
. o
0 =md <z~:w—z~:i+nb (=pL+o) nb) + oy + g (1.71)
p(1—w)

It is convenient to express the difference of specific internal eredfiece and water by means
of latent heat of melting of icé&. Considering simple equilibrium thermodynamics, it holds that
(Sowtek & Martinec, 2005):

1 1
Ew —E&; = L —p ( mat - Trmt) 5 (172)
Pw pz

where the second term corresponds to the work done during the phersgecdue to different
specific volumes of the two phases, and whefé’ andp!l® are material densities of pure ice
and pure water. In a large ice sheet, this term is considerably smaller thiatethieheat, and so
it may be neglected, with the energy jump condition simplified to

] (L+ ity - (—pl+ o) 7
p(l —w)
with the geothermal heat flux prescribed by independent information

0=m )+ﬁsl-a.ﬁb+[(ﬂi-ﬁb, (1.73)

q" =7z, 2, fo(z1, 22, 1),1) . (1.74)
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Cold ice (+) Y%

Temperate ice (-)

Figure 1.4: The cold-temperate ice transition surface (cts) geometry.

The cold-temperate ice transition surface
The kinematic equation at the cold-temperate ice transition sutfacésee Fig. 1.4) is

aFcts
ot

where the superscript$™ and ()~ denote the value of a quantity at the corresponding side of the oriented
surface (the sign convention is shown in Fig. 1.4).

+ U -gradFys = (U — ﬁds) - Tets |lgrad Fogsl| (1.75)

The dynamic transition conditions are as follows:

e Mass-jump condition
For the ice component the ice velocity is assumed to be continuous acrass tree

Tt=0" =7, (1.76)

hence the ice-mass jump condition reads

mcts

w_(ﬁ_ ljcts) : ﬁcts = — pw s (177)
wherev,, is the velocity of thects surface and th@,;; := % is the unit normal, aneh<% is
the rate of meltwater production at thés.

The water component is given by
J" s = 0. (1.78)
e The linear-momentum jump conditi@expressed as
P Tlets + O s = —p Aes + 0 7 (1.79)
D Nets o Nets D Nets o Nets .

with p~ the sum of partial pressures of ice and water in the temperate region.
e Forthe energy-jump conditigrthe temperature is continuous,
T =T, (1.80)
and the rate of ice surface production is given by
0 = mi®(ew —&i) + [@F - ets - (1.81)

Performing the same simplification as in the case of (1.72), we may rewrite thi#tioorusing the
latent heat of meltind. as
0 = mg°L + [@1F - fless - (1.82)
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1.4 Traditional approach

We briefly summarize the main differences between the above presentedetpand the traditional ap-
proach and comment on advantages and disadvantages of both. Inditierteh approach (e.g. Greve,
1997), a barycentric velocityj, is introduced by

pﬁb = piﬁi + pwﬁw ) (183)

where the ice and water densitips p.,, express the mass of particular component in a unit-volume of
the mixture, and thus do not coincide with the usual material densities of @isx and ice. The mixture
densityp is thus defined by

p = pi+ puw - (1.84)
The transport of water moving with velocity, and a concentration := %w is then considered and ex-
pressed by the water flux relative to the baryceptér

7O = pw (T, — &) . (1.85)

Then the balance of mass for the mixture and for water reads as:
dive, = 0, (1.86)
pr = —divi® +my,, (1.87)

where() := %—(2 + 0 - grad() is now the material time derivative in the barycentric velocity field, ang

is the water-production due to melting.

We find it more convenient to consider the ice-velocity rather then the éamyc velocity as the prin-
ciple variable because water transport in ice generally occurs over siacter time-scales than deforma-
tional ice flow. For certain types of processes, such as water rundffjacial lake bursts, the barycentric
velocity might be greatly affected by the water transport, and then the nelea barycentric velocity and
its relation to the ice-flow speed becomes questionable. Our approackydrean handle such situations,
just by prescribing a proper form of the water fljixHowever, the price paid for choosing the ice velocity
as the principle variable is that the ice flow is not divergence-free.

The remaining balance laws are formulated in the classical approach assf¢Breve, 1997). The
balance of linear-momentum, or equation of motion, is considered only for themmixs a whole and reads
as

pUy = —gradp + dive + pg , (1.88)

with the balance of energy given by
Lmy =1 dyp — divq§ — pcT, | (1.89)

and the system is closed by specifying theology as follows

T = —pl+o, (1.90)

d, = Aw)o} o, n=3, (1.91)

j = —agradw, (1.92)
1

dy, = 5(gmdﬁb+g1«ade7b). (1.93)

This presented set of equations is in good agreement with our formulationtfre previous section. It
should be noted, however, that the traditional approach, as admittedeye @r997), is a result of more
physical intuition than consistent and systematic derivations from firstiptes.
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Chapter 2

Shallow Ice Approximation

2.1 Introduction

In this chapter, we will follow the systematic procedure precisely formulayeBdral et al. (2001). The
previously derived equations will first be made non-dimensional by intring) appropriate scales and di-
mensionless numbers. Then a formal polynomial expansion series ofdigddbles in terms of the flatness
ratio e will be performed which enables us to carry out a perturbation analyssibgessively including
higher-order terms in the expansion. In this chapter, we will restrictebues merely to the first step of
this expansion, that is the(<”) degree terms, and obtain the traditional Shallow Ice Approximation (SIA)
(Hutter, 1983).

The SIA is formulated in Cartesian coordinates. However, for largkesnadeling, it is appropriate
to use more general coordinates, such as spherical, polar or opphagralo avoid multiple derivations
for each particular case, we derive the SIA in general orthogomallicear coordinates. Performing ge-
neralisations of the scaling procedure for Cartesian coordinates, ta@ @whole class of Shallow Ice
Approximations, whose particular realization is given only by evaluatingngsidcal quantities related to
the chosen coordinate system. The resultant equations for the basimabdesystems - Cartesian, spherical
and cylindrical - are listed out explicitly.

2.2 Curvilinear orthogonal coordinate system

The equations of motion and evolution of a glacier listed in the previous chemgtexpressed in an invariant
form by means of invariant differential operators. Hence, they cagxpeessed in a particular coordinate
system. For the purpose of glaciological modeling and also with respect sz#étiag analysis, it is con-
venient to consider only orthogonal curvilinear coordinates, for wthiehbase vectors remain orthogonal
in almost all points in the geometrical spaBé. Moreover, for the purpose of scaling, it is convenient to
consider only such orthogonal coordinates, in which the first two doates,x, x5, refer to "horizontal”
dimensions and the third coordinate stands for the "vertical” dimension. This convention is necessary
when introducing the flatness scaling parametessential for the Shallow Ice Approximation.

In particular, three curvilinear orthogonal coordinate systems will beidened as examples (see Fig.
2.1):

e Cartesian coordinates

17
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(.%'1,.%'2,.%’3) = ($7yaz) ) (21)
Wherel’,y S <_Lsc,Lsc>; S <_HSC7HSC> ’

e Spherical coordinates

(1'1,162,1‘3) = (19, 2 C) ’ (22)

where( := r — R, for r the radial distance an& some mean radius (of the Earth), atfide
(—Hge, Hoe), ¥ € (0, 7), ¢ € (0,27). The relation to Cartesian coordinates is

x = rsindcos ¢, y = rsindsin p, z=rcost. (2.3)
e Cylindrical coordinates

(l’l,i‘g,l‘g) = (Q? 2 Z) ) (24)
wherep € (0, Lg.), ¢ € (0,27), 2 € (—Hg., Hse) . The relation to Cartesian coordinates is

T = 0COoS P, y = osinp, z=2z. (2.5)

2.3 Scaling

We perform the scaling analysis for a general polythermal ice sheetsifrtpder case of a purely-cold ice
sheet is obtained by letting the cold-ice zone extend throughout the whalaeof the ice sheet.

As the first step of the scaling analysis, we non-dimensionalize the gogergirations and the boundary
conditions by introducing representative scales for the field quantitiesa fleld quantityy, we define its
non-dimensional counterpaft by introducing the scalg)| (not to be mixed with a jump of quantity at the
discontinuity surface, which is denotég| *)

=[], (2.6)
where the quantity), if properly scaled, is without a physical unit and its magnitude is of theralenity.

We start by scaling the geometry. As already noted, we assume thaid x5 are "horizontal” co-
ordinates, whilers is "vertical”. Geometrical scaling is now done by specifying the scales il #dme
coefficientgh,],[h2],[h3], and for the typical scale of change of a particular coordinate, defnatgdd[A,],
[As]. These two requirements follow from the expression for a length of adatate line element

dSk = hk dxk. = [hk”Ak] ilk d.ik s k= 1, 2,3 . (2.7)

Note that, in general, neithét;], nor[A;], but only their product has the dimension of length. We assume
that the typical "horizontal” lengths of line elements are equal, i.e.

[h][A1] = [h2][As] . (2.8)
We then introduce the typical vertical-to-horizontal ratio as a first dimefesemumber, denoted lay

[hslAs] [hsllA
= Ay~ Al (9)

Examples for the scales within the possible coordinate systems are given belo
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Figure 2.1: Cartesian and cylindrical coordinate system (left) and sphedcatimate system (right).

o Example (1) - for Cartesian coordinates (2.1), we have

>

he = [ha] = hy = 1, hy = [hy] = hy = 1, h.,=[h.]=h.=1, (2.10)

and
[Az] := Lge, [Ay] == Lgc, [A.] := Hge . (2.11)

o Example (2) - for spherical coordinates (2.2), we define the scales
[Ay] =1, Ay =1, [A¢] = Hge s (2.12)

leading to

Hsc e . Hsc = .
hg:r:R—i-C:R(l—FRC) , hy = (R+C)81n19:R<1+ 7 C) sind, he =1, (2.13)
and, therefore, we set

and 3 3 ) 3 )
hyg =1+ €C, hy = (1 +€Q)sin?, he=1. (2.15)

e Example (3) - for cylindrical coordinates (2.4), we define the scales

[A,] = L, [Ag] =1, [A.] = Hge (2.16)
which gives
he =1, hy = 0 = Lgc0, h,=1, (2.17)
and, therefore, we set
[hol =1, [he] = Lsc, [h.] =1, (2.18)

and ) ) .
he =1, h, = 0, h,=1. (2.19)
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Introducing the time scal&] and non-dimensional timéby (2.32), we will always assume that the
scaled field quantities are defined in the scaled time-space, i.e. the scalinggalé as

(a1, 22,23, 1) = [Y](F1, T2, 3, 1) - (2.20)

It will be convenient to choose the shape of the implicit surface functionthe free surface, glacier
bed and cold-temperate ice transition surface, such that they poskes sca

(F57Fb)Fcts) - [h3”A3] (FS)FbuFCtS) ; (221)

or, in the explicit representation,

fo = flfi=109]fs, (2.22)
fcts = [fcts]Nfcts = [AN?;] fcts s (223)
fo = [fol fo=1[A3] fo (2.24)

For the horizontal and vertical velocities, we introduce the sdajgsand[v,] as

(vi,v2) = [vp] (91,02) , (2.25)
v = [v] B, (2.26)
asserting the relation
o] _ (2.27)
[vn]

which means thdt, | and|[v,] are not independent scales. Provided that all the surface non-rhaéboic:
ities are assumed to be small, the relative velocities at the discontinuities will leel scaording to

(Ul — V1,V — I/2> = [Uh] (171 — 171, 172 — 172) N (228)
vg—v3 =[] (03— 13), (2.29)

and the sliding basal velocities can be reasonably scaled in the same manner:

(Wit vsh) = [v] (85, 95, (2.30)

vl =[]0y, (2.31)

Having introduced scales for geometry and velocities, it is straightforteardroduce the time scale as

[n[Aa] - _ [ha]As] - _ [hs][As] -

L= 1t= o] 0

(2.32)

A crucial essence of the Shallow Ice Approximation lies in one particulaicehaf scaling of the stress-
tensor components. Following on from observations and measuremewts) as from theoretically based
deductions (Hutter, 1983), the scaling is traditionally chosen to be

p = pglhs][As]p, (2.33)
(013,023) = epg[hs][As](G13,523) , (2.34)
(0'11, g2, 0'12) = Eng[hg] [A;ﬂ (6’11, 5’22, 5‘12) . (235)

Because the typical aspect ratifor real ice sheets is a small numb&6{2-10—3, Baral et al., 2001), this
scaling specifies that the dominant stress component in the ice sheet iistér®overburden pressure. The
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vertical shear stressess, ooz are then one order efsmaller, and the longitudinal stresges , o2> (and, of
coursegss = —o11 — 092, by definition), together with the horizontal shear sti@gsare even two orders
of e smaller. These scaling assumptions are typically valid in large ice sheets witkctyation of ice sheet
margins or regions of massively undulated bedrock topography, or iyhigbricated regions such as ice
streams. That is, in regions where the longitudinal stresses become eduepar even dominant over the
shear stresses. This particular scaling thus mainly concerns largeéssbaldor of grounded ice masses and
completely different stress-scaling assumptions must be introduced whéndlice is investigated. Then, a
procedure analogous to the one that follows may be performed, resultiri§allow-Shelf” approximation
(Greve, 1997). We will, however, restrict ourselves to grounded lieets where the considered scaling
(2.33)—(2.35) is the most convenient and appropriate for the pertuntetialysis.

It remains to introduce scales also for the following quantities:

w = [w]w, (2.36)

(T, T,,) = [T]N(:,Tm), (2.37)

k(T) = [KkT), (2.38)

(A(T), A(T,p), A(w)) = [A](A(T), A(T,p), A(w)) (2.39)
(a®,P%,0°) = pluy (@, P%,3"), (2.40)
(my,,mb,m3*) = ploy] (0, b, me°) | (2.41)
(01,40, 42, 3°) = ny] [[2] (@,d G2, 3°°) (2.42)
() = A @), (243)

B(ity -1 - iy, Tyw,...) = [B] By 77y, T,10,...) (2.44)
e(T) = [e]é(T), (2.45)

ar = [ai]ay, (2.46)

az = [ag]ay. (2.47)

To scale the water flux, we introduce a scale for the water velocity magnitidg, and assuming that the
water flow is governed by relation (1.44), we set the following

(j1. j2) eplw]vw] (1, J2) » (2.48)

jz3 = plw[ve] j3 (2.49)
(Vw1,0w2) = €[] (Dwi, Du2) , (2.50)
Vs = [V Ows - (2.51)

Now, an elementary scaling analysis can be performed in order to rewriggjttagions in a dimensionless
form. We have introduced 12 basic independent sdalggv.,|, [h1][A1] = [he][A2], [hs][As], [w], [T],

[k], [A], [c], [B], [@1], [ae]. Scalegh;],[A;] are taken as a couple and count for one quantity only because
in all equations they appear only as a product.

Together with 8 physical constanisg, L, v, Cci, Tino, % p®™, we have in total 20 quantities, whose
physical dimensions consist of the basic physical units: meter, kilograondend Kelvin. The dimension

matrix can be shown to have the rank four, and thus according to BuckimghPi Theorem (e.g. Hutter,
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2004),20 — 4 = 16 independent dimensionless numbers can be introduced. These are

<= s - R o T
K = Mg 8 = misle P = mitnae b
To = %, T = Ccmg[[jfj]:s][ﬁs}, 5, Q:%[T]’
M = i Ne = 2t T T o
(2.52)

To gain some insight into the importance of various terms in the following deriatise find it useful
to evaluate the dimensionless numbers in (2.52) for a typical large ice shestim& we are inspecting
an ice sheet with a horizontal extent of hundreds of kilomeférg[(\1] = 100 km) with typical thickness
reaching units of kilometers, we thus sgts{[A3] = 1 km). Using previously applied values of the physical
properties for ice e.g. in Payne et al. (2000) or Greve (1997), wesg@d'| = T,,0 = 237.15 K, g =
9.81 ms2, p = 910 kgm~3, [¢,] = 2000 Jkg ! K1, [w] = 0.01, [v] = 1ma~!, L = 3.35 x
10°J kg™, [Al = 1 x 107 Pa3a"l, [k] =2Wm K™, Oy = 9.7 x 1078 KPa™!, v = 184,
% = 7216 K, p®™ = 100 k Pa, [3?] = 10'2 kg m~? s~L. Unfortunately, we lack reasonable estimates
for the values ofv,|, a1, as, therefore the dimensionless numbgrs\i, N>, remain unevaluated. For the
rest, we arrive at:

e~10"2, C~0018, J ~10~*x % £ ~209,

K ~ 7114, B ~ 281, D ~ 3.44, [w] ~ 0.01,
(2.53)

To ~ 1, T ~ 0.0032, v~ 184, Q ~ 26.42,

N ~ 7, Ny ~ 72, F ~ 1.1x1072, £ ~0.011.

2.4 Shallow Ice Approximation

In this section we present the resultant form of the governing equatiores folythermal ice sheet. The
procedure is as follows. In the previous section, we introduced apptefscales for the field quantities.
Now, we perform a first step of the perturbation analysis in terms of tHingqaarametee (aspect ratio),
reflecting the fact that typically in nature, the valués small (typically varying betweeh0~3-10=2 for
large ice sheets), thus allowing for such a perturbation procedureeHenany (already non-dimensional)
field quantity, we consider an expansion

p=> ¢Mer. (2.54)
n=0

Inserting this expansion into the non-dimensionalized equations and kempintpe leading terms in, we
obtain in the limite — 0+ the zero-order scaling approximation, the so-called Shallow Ice Apprdxima
To give some insight into this procedure, we will present several maeelel® examples of the required
derivations, but for the sake of brevity, most of the resultant SIA fdasare presented without detailed
derivations, which are nonetheless quite straightforward.
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We present only results for a polythermal ice sheet. The special caspwtly-cold ice sheet can be
obtained by simply excluding the temperate-ice zone and letting the cold-iceextared throughout the
whole glacier volume.

2.4.1 Field equations — Cold-ice zone

Themass balancdor ice (1.25) reads in the general curvilinear coordinates (D.12) as:

0 = divv
3
. 1 8vk 1 8hk
N th (8$k + Z hom, 8$mvm
k=1 m,m#*k
_ o Lo 1 O
= T 0my | Tahy 0ms 2 b 0s
N i% 1 8h2 1 E)hQ
hg 8x2 thg 8:63 h2h1 8%1
4 i% 1 8h3 1 ahg
hg 6x3 h3h1 8:61 h3h2 81‘2
. [?}h} i(%l [Uh] 1 8h11~} [’Uv] 1 %QNJ
[P][A1] by 021 [ho][Aa] hyhy 05 ° " [h3][As] hyhy OF5
+ [Uh} i&f@ v] 1 8526 [’Uh] 1 %f}
[h][Aa] hy 025 [hs][As] hohg 05 ' [][A1] hghy 031
Ll 100 [ve] 1 37;131j [on] 1 Ohy 5
[hs][Aa] hy 0Fs * [M][A1] hghy 031" [ho][Ag] hghy 0F2
which, after dividing by[h“]’[’g ] and realizing thafh,][A4] = [h2][A2] and [h[][A]l] [hs[][A] T leads to
0 1 95y 1 ai}lﬁ N 1 Ohy .
= = = == = == U
h1 071 hiho 0 2 hihs 03 s
N 1 9%, 1 aﬁzﬁ 1 ah%
]~12 aj? BQ;L?, a%S K ;Lgill 8«%1 !
b L0 L Oy L Ol (2.55)
hg 03 hghy 01, h3h2 0%
This is the non-dimensional version of the ice mass balance (1.25). Nowgl&mit is obtained by
expanding
5 = 30+ 5N+ 5P 4
hi = ~(0)+iL(1)€+iL(2)62+
N -\ (0 - 2
or. (0w \"" [ oh ”H oh ”62+
or; \ 07 0% 0% ’
i,y = 1,23,
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Inserting these expansions to (2.55), letting> 0+, and keeping only the zero-ord(e)rm) terms, while

introducing new symbols

HZ' = lim ;Ll = BZ(O) y
e—0+
- -\ (0)
I lim Oh; Oh;
;5 = 1 =
K e—0+ aifj 856]' ’
and omitting the()(o) superscript in the resultant form, we arrive at
1 0u; His . Hyz
0 = ——
Hoom  HH 2 HH
1 9o H H
+ 77} 2 U3 + 21 U1
Hg 8952 H2H3 H2H1
1 9o Hs . Hzy
" 8 L sl He

H;3 0i3  HszHy v H3H2U

e Example (1) - Cartesian coordinates
For Cartesian coordinates (2.1), according to (2.10), we have

Hizla Hl]:()a iaj:1a2337
and (2.58) reads
_ov, ov, O,

0_85:+6g+62’

o Example (2) - Spherical coordinates
For spherical coordinates (2.2), following (2.15), we obtain

Hy= lim hy =1, H, = lim hy, =sind ., H- = lim hs = 1
0= D ho =1, He= g he = sind, He= g he =1

where the only non-zero derivativg% are
J

Ohy
¢
oh,
8}9
oh,
a¢

= € 5

= (14€)cos?,

= esind.

Taking the limite — 0+ results in the only non-zerH;; being
Hgy = cos?,
thus, (2.58) in spherical coordinates reads as

) . 1 0o, 0Ot
0 = 99 +Cot§vg+sinﬁaw+8é.

(2.56)

(2.57)

(2.58)

(2.59)

(2.60)

(2.61)

(2.62)

(2.63)

(2.64)

(2.65)

(2.66)
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e Example (3) - Cylindrical coordinates
In view of (2.19),

H,= lim hy,=1, H,= lim hp =0, H, = lim h, =1 2.67
o= B he = Mo = g he =0, M= D R =1 267

hence, the only non-zero derivatigé: is
J

dh,,
90

1. (2.68)

By taking the limite — 0+, the only non-zerdd;; is
Hyp=1, (2.69)

leading to (2.58) in cylindrical coordinates reading as
00, U, 1 % 07,

0 = + 2+

— . 2.7
5 "% ooy oz (2.70)

Thelinear-momentum balanceequations (1.26) when rewritten in the non-dimensional form with the use
of (D.11) and (D.14) read as:

F 1 op . [ 2 ohy 1 0hy\ 1061 @
?() = T 0 o (M%—i—m@j?))—i—hgajg —i-%—l—O(e),

(2.71)
F 1 op . (1 0k 2 0hy\ 1069 g
b = _%3f2+023<51ﬁ3%3+%%> R 035 Teg PO

2.72)
F.) = L9 9 o, 2.73)

h3 0T3 g

where the left-hand sides are not expressed explicitly, becausepvas Bh(2.53), the typical magnitude of
the Froude numbeF and the fraction§ are very small. We may therefore safely assume that, in the SIA
limit, together withe — 0+, both F, { — 0+. Thus, the SIA limit of the momentum equations reads as

1 0p His Hos 1 9613
- 9 — 2.74
0 H, 0 +”13< HiH, | HoHy) T Hy 05, OV (2.74)
1 0p His Hos 1 9693
0 = —— 2 9 — 2.75
I 00y 7% (H1H3 i, ) T 0, G0 (2.75)
1 0p
_ 2.76
0 T 0 €93 (2.76)

where

e—0+

1 /7 ~
eg; = lim — (g) ,1=1,2, eg3 = lim <g> . (2.77)
% 3
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e Example (1) - Cartesian coordinates
Taking naturally the-axis parallel with the vector of the gravitational field, orienteg as (0,0, —g),
with the use of (2.59), gives the SIA form of the linear-momentum equatioBaitesian coordinates
as follows (see also e.g. Greve, 1997):

0p 064

0 = ~35 FERE (2.78)
op 00,

0 — —£+ gy , (2.79)

0 = —22—1. (2.80)

e Example (2) - Spherical coordinates
Choosing again the orientation of the coordinate axes suclytsat0, 0, —¢g), and using (2.61) and
(2.65), results in

9 95

= — = 2.81

0 59 + ik (2.81)
1 0 06,

_ L o 95, 2.82
0 sin ¥ oc (2.82)
0 = -2y (2.83)

o¢

e Example (3) - Cylindrical coordinates
Again, provided tha§f = (0,0, —g), and using (2.67) and (2.69), results in the cylindrical coordinate

form
B 0p 0o,
0 = a§+ CER (2.84)
 10p  Ooy
0 = éangr 55 (2.85)
__op
0 = —5—1. (2.86)

Therheologyis specified as follows. We give the SIA form of both (1.17) and (1.18 five independent
equations (1.17) in the SIA approximation read as

- _( 1 0 Hys

_ _ 2.87
a3 g <H3 03 Hngvl ’ ( )
- _{ 1 00y Hos .

72 g <H3 0T3 H2H3U2 ’ (2.88)
- ~ 1 8171 H12 ~ H13 -

_ ‘ 2.89
a1 g <H1 0% + H1H2U2 + Hngv‘3 ’ ( )
- (1 00y Hyy Hos

= 20| ——==— 2.90
722 K <H2 0o + HyH, vt H2H3U3 ’ ( )

(2.91)

H, 0%, HiHy ' Hy 08y HiHy >

- ~< 1 07y Hiy _ 1 001 Ho ~>
g12 = 1N +
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where
1-n
N 1 106,  Hpg _\° 1 95y Hy _\2\ ™"
— 7 . A =3. 2.92
T Kk <<H3 B H1H3v1> * <H3 1 H2H3v2> ’ n=3. (292)
The temperature dependence4(T’) (1.21) is given by
L A Q
J4(]U —-[;ﬂfexp <——j;> 5 (2.93)
or, if the pressure-melting point correction is considered as in (1.22):
L A Q
A(T,p) = —=exp <—~~> , (2.94)
[A] (T +Tp)

andQ, 7 andK are given in (2.52).

e Example (1) - Cartesian coordinates

- _O0v
Oy. = 1 8; , (2.96)
xXr
- _Ov
Ty = 21 8; ) (2.98)
- _ (00, 00,
Oy = 1) ( B + 83}) , (2.99)
where .
1 5. \>  [05,\*\
— —3. 2.100
! (QJUC)i<<85> +(02)> ’ n=d (2.100)
e Example (2) - Spherical coordinates
Gy = ﬁi?, (2.101)
Go = ﬁ%%", (2.102)
- _ Oy
Oy9y9 — 2”255’, (2.103)
- _( 1 00 -
Opp = 21) (siné’@l;o + cot 1)19> , (2.104)
- _ [0 1 9o .
Gy, = 1 ((91;0 + sinﬂ@ig — cot ¥ up) , (2.105)

where

1—n

~ 2 ~ 2\ 2n
PR <8”ﬂ) +<6”3’) , n=3. (2.106)
(24K)% \\ ¢ ¢
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e Example (3) - Cylindrical coordinates

Toz = 776:91;@7 (2.107)
Tpr = ’78;; : (2.108)
Too = 2772;2 : (2.109)
Top = 2 <;%§f + v;) : (2.110)
Gop = 1] (8;5 - é%% — U;) : (2.111)
where .
i ((aﬁf)>2+ (8%)2)2” ,  n=3. (2.112)
(2AK)n \\ 92 GE
The inverse relation (1.18) in the SIA reads as
1;22— Hlf;?}fl = 2KAGy o, (2.113)
hlrgg;z_ HZQ}?}?@ = 2KAG] o, (2.114)
hlhgﬁ + H}f?IQﬁQ * Hfflfz)@?’ = KAgo} 6, (2.115)
5222 H}Eﬂ HZZJ’S = KAs} 62, (2.116)
f-zgz B Hffffg@l }11[222 - Hle[f? = 204571612, (2.117)
where

G =1\/0%+ 33 (2.118)

e Example (1) - Cartesian coordinates

0y

5 = 2KAG 6y (2.119)
Wy _ oxisns,. . (2.120)
0z
Oy nls
5 = KA&") a0 (2.121)
5D nl-
8; = KAG} 'y, , (2.122)
Ovy Oy R,
8; 5 - 2KAG 6y (2.123)
where
G =1\/63. +6,, (2.124)
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o Example (2) - Spherical coordinates

0% _ A" Ggc (2.125)
a¢
We _ oxdan s, (2.126)
a¢
Dy -
59 = KA Pagg (2.127)
1 0o, _ o
) - n 2.12
Snd 9y + cot ¥ vy KAG 04, , (2.128)
v, 1 Oy _ -
it ° = 2KAe" 2.129
50 + S0 9y cot ¥ U, KAc; "0y, , ( )

where
G1r=1\/Gh + 05 - (2.130)

e Example (3) - Cylindrical coordinates

o,

;= 2KAG 6, (2.131)
Pe _ okisne,. (2.132)
0z
v P
a@Q = KA&I'6,,, (2.133)
100, ¥,  ne1 -
St = KA& 6y, , (2.134)
o 6(,0 o 11 pP
v, 100, T, P
— P = KA 6, (2.135)
ag Qa@ 0 11 o
where
Gir=1\/60 +62, . (2.136)

Theenergy balance(1.28) in the SIA limit reads as

Y\ ot  H, 0%, Hy0iy Hs0is

- 0T [ His Hos 1 0 [k oT
— == 2.137
1D (kﬁazg (H1H§ + H2H§> + H; 075 (H5 agz3>> ’ ( )

with C, andD given in (2.52) and

) — 9 (&13&13 + &23&23)

. 1/ 106, Hys .

3. - 1L _ 2.138
13 2 (Hg O3 H1H3”1> ’ ( )
~ 1 1 009 Hss

dyy = - [—22_ . 2.139
23 2 <H3 O3 H2H3”2> ( )
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e Example (1) - Cartesian coordinates

oT oT oT oT - - o (-0T
~U AT ~x7~ v A~ ~z7~ =2 ~a:z Tz o ALV DT < 5
‘ <0t v 8x+vy6y+v 82) C(U dzz + 0y dy)+ 0z <k8z>
and

~ 1 07,
dzz = S a<
2 0z
~ 18%
b = 5%z

e Example (2) - Spherical coordinates

_(oT _oT ©, T _ AT o~ - o (-0T
o | —= —_— — — | =2 d d D—|k— ],
¢ ((% +vﬁ819+sin196g0+vcag> C<Uﬂ< 9T ‘p<)+ 8C< 6()
and
- 1 90y
dyc = 200
~ 100

o Example (3) - Cylindrical coordinates

_(oT _oT  ©,0T _ 0T o~ - o (-0T
&, <a£ st Lo vzag> =20 (6pdys + Gpudy) + D (kaz> :
and
- 104,
do: = 355
. 100,
b= = 58z

2.4.2 Field equations — Temperate-ice zone

Themass balance for the ice componer(tL.40) in the SIA limit reads as

1 0vy | Hig Hyz 1 0vy  Has Hyy
TN v + V3t 75+ U3 + 1
H1 8:1:1 H1H2 H1H3 H2 8:1/‘2 H2H3 H2H1
1 9% H3 . Hsy 1953 -~ (H H
+77~3+ 31 oy + 32 9 :*J L z3 +]3 13 23 7
Hgal'g H3H1 H3H2 H36£L’3 H1H3 H2H3

where7 is listed among the dimensionless nhumbers in (2.52).

(2.140)

(2.141)

(2.142)

(2.143)

(2.144)

(2.145)

(2.146)

(2.147)

(2.148)

(2.149)
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o Example (1) - Cartesian coordinates

b, O, 0, 0.
05 o7 to: T ez

e Example (2) - Spherical coordinates

o5y 1 0, _ o 0be 0
819+sin08g0 —|—C0t’l9’019+8<~— Jag.
e Example (3) - Cylindrical coordinates
9o, 100, v, 0v, 9.
a§+§a¢ o 0z T 9z -

The mass balance for the water componenfl.41) with the water production term,, derived from the
energy balance (1.49) with (1.50), takes the SIA limit in the form

ow B 0w | Ty 0w U3 0w T 1 0js - ( Hi LT
oi | Hy 0%,  H,0%, Hs0is [w] \ Hs0Fs °° \HHs; HyHs
. - . - DE( 1 0 [ k T, - Hy3 8T,, - Hy 0T,
= 28(613dy: dog) + — | ——— | =
(F1adis + Fzads) + <H3 073 (Hg agz3> H H3 035 | HyHZ 0

C

(2.150)

E. (0T, o1 0T, g Ty, U3 Iy,

- 5cC = — — — | -
c”\ o  Hy 0% Hy 0%y Hsz 0is
This form can be further simplified by inserting the Clausius-Clapeyrotioal§2.161) and subsequent
partial integration of the linear momentum equations, which results in an expiliniula for pressure. We,

however, will not perform this simplification here.

e Example (1) - Cartesian coordinates

ow ow  _ow J 97, - -

E+Ux%+vyaig+ﬂzg [U}] 82
DED (;OTy ) &, (0Tn o 0Tn o 0Tn - T
Cc 9z \ 0z c\ ot T 0% Y oy oz )

(2.151)

o Example (2) - Spherical coordinates

ow oW b, 0w 0w T Ojc ... - . -
EﬂmajfrSiW%JrvcaTerafg—25(0ﬂ<dﬁc+%cd<p<)

DE 0 (kafm) £ (aTm O O OTm 8Tm)

coac\"ac ) e\ ot T Tamo ap TC

(2.152)
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e Example (3) - Cylindrical coordinates

ot o5 b op  Foz | 0
DE 0 (kafm> £ (afm T T 0T aTm>

Ccoz\ o0z | c”

= 28(6p2dy, + G pndyy)

ot "o "o op Yoz
(2.153)

Thelinear momentum balance for the ice componenis given by (1.42). We have seen that, in the SIA-I
limit for cold-ice, the linear momentum balance can be simplified such that the iteartia on the left-hand
sides of (2.71)-(2.73) related to the ice component may are omitted due tayhewall Froude numbeF.
Now, in (1.42), the same argumentation applies and enables us to negledrtieetarm corresponding to
the ice component. The resultant relation in the SIA limit reads as

- I;(§ZZ+&13 <2HI§33 + HZ§3> +;8£;’+egl, (2.154)
lim (eF.7) @ <62§2 N [i] <%%@g n @wggw%ﬁ% — Tas gﬁg))

The symbollimg; 4 stands for the SIA limit, which is nhow more difficult to evaluate, because the tilded
terms on the left-hand sides of (2.154)-(2.156) are not of the ordemityf Namely, we should, in general
assume that the typical spatial and time scales of the water transportggecedstantially differ from the
scales appropriate for the ice flow. We will, however, still assume that tingarierce of the water compo-
nent, i.e. the left hand sides of (2.154)-(2.156) can be omitted and the fimaentum equations then take
the same form as for a cold ice, i.e. (2.74)-(2.76).

We need not consider all thrdieear momentum balance equations for the water componentbecause
only the vertical component of water flux appears in the SIA limit. The thirdagqo in (1.44) in the SIA
limit reads as

~ a1 ow - 1 d(pw) .
il _ 2.157
j3 = =N . 5%, Naodo <H3 % wey 3 | , (2.157)

whereN71, N> are listed among the dimensionless numbers in (2.52).

e Example (1) - Cartesian coordinates - (2.157) reads as
jo= a2 - Aay (8(7”“) ; w) . (2.158)
z 0z

o Example (2) - Spherical coordinates - (2.157) reads as

je = —Ma Z? — Nadp <8(§gb) +’LTJ> : (2.159)
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e Example (3) - Cylindrical coordinates - (2.157) reads as

j. = —Nldla—zf) — Nodo (a(ﬁfb) + u?) . (2.160)
0z 0z

The energy balance(1.49) in the SIA limit was already used in the mass balance for water compo-
nent (2.150) and need not be considered separately. The tempgrassere relation given by Clausius-
Clapeyron equation (1.48) in the SIA limit reads as

Tn(p) =To— TP, (2.161)

with the dimensionless numbefs, 7 defined in (2.52).
The rheology for the temperate-ice zone as seen from a comparison of (1.51) and il thé same as
for the cold-ice zone, except that the rate factrv) depends on the water content The same applies

for the SIA limit. Thus, (2.87)-(2.136) are the correct SIA rheologietions with.A now depending on
w, e.g. for (1.53) through an expression

N—i w|w) ex _L
A—[A](1+7[ Jw) p< To>‘ (2.162)

2.4.3 Boundary conditions - Free surface

Thekinematic condition (1.55) at the free surface which is a temperate-ice — air interface, witrsthefu
the mass balance for ice component (1.56), takes the SIA limit in the form

OF, 1 0F, 0 0F, #30F, a |1 0F, (2.163)
87? H1 8571 H2 8532 H3 6553 N 1-— [w]ﬁ) H3 81'3 ’ '
while for the cold-ice — air interface, we only sét= 0 in (2.163).
e Example (1) - Cartesian coordinates
OF, OF, OF, OF, a  |OF;
=+ Uy v Uy s = — ~ | == 2.164
ot "oz Ty Tz T 1w | o2 (2.164)
o Example (2) - Spherical coordinates
oF, _ OF, ¥, OF, _ OF, a  |OF;
= = = — R 2.165
ot o oY +simﬁ Oy T ¢ 1 —[w]w | §¢ ( )
e Example (3) - Cylindrical coordinates
OF, _ OF, ©,0F, _ OF, a  |OF;
“hs s ¥ . = — 2.166
ot "Yos Yo 00 e 1 [w]a | 92 (2.166)

Thewater flux boundary condition for the case of temperate-ice — air interface (1.583 i8Itk limit reads
as -

~ Ps

J3 = 7 )
and, of course, need not be considered for cold-ice — air interface.

(2.167)
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e Example (1) - Cartesian and cylindrical coordinates

i, = —7; . (2.168)
e Example (2) - Spherical coordinates
jo = —7;3 . (2.169)
The linear momentum boundary condition (1.60) takes the SIA form as
p=L, o13=0, G23=0, (2.170)
where the dimensionless numh@is listed in (2.52).
e Example (1) - Cartesian coordinates
p=L, Gpr =0, F,.=0. (2.171)
e Example (2) - Spherical coordinates
p="L, F9c=0, Goe=0. (2.172)
e Example (3) - Cylindrical coordinates
p=L, 0,. =0, 0,.=0. (2.173)

Theenergyboundary condition for the cold-ice free surface takes the form ofialidat boundary condition
for surface temperature, c.f. (1.30), i.e.

T = T(i1, Zo, fs(Z1, %2, 1),1) (2.174)

while for the temperate-ice free surface, the energy boundary congitiald be a condition constraining
the melting-refreezing rate, but since we assume this rate to be a part oétueilped climatological inputs
P* anda?, it need not be explicitly taken into account.

2.4.4 Boundary conditions - Glacier base

Thekinematic condition is not considered, as the base geometry is assumed to be prescribdd62y, (
i.e. Fy(Z1, &2, 43,1) is given.

Theice mass balanceondition (1.63) takes the SIA limit form as

(0 — )1 0F, (0 — )2 OF, (0 —i%)3 OF, m? 1 OF,
— —= — =——2" | — : 2.175
H1 6921 + H2 81‘2 + H3 8%;), 1-— [w]ﬁ) H3 8533 ( )
o Example (1) - Cartesian coordinates
. OF, _. OF, oF, Wb |0F,
=Pz ¥ 0= Mgy + O =) = 1Ll | 02 (2.176)
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o Example (2) - Spherical coordinates

. _ . OF,  (0-m),0F, . _.  0F mb | OF
- — — — = . 2.177
(@ = 2)a 09 + sind  Jy (0= ) ¢ 1 —[wlw | 9¢ ( )
o Example (3) - Cylindrical coordinates
L O0F,  (0-m),0F . _. 0F mb | OF,
O=mlege ¥ 5 oy TG T T | 0z | (2.178)
Thewater mass balancecondition (1.64) reads now as
L1 mb b
g = — | —%— —5") . 2.17
= (e ) (2479)
e Example (1) - Cartesian and cylindrical coordinates
S G L
e Example (2) - Spherical coordinates
-1 ml b
c=—|—""%—=-0") . 2.181
=7 () (2180

The linear momentum boundary condition (1.66) will not be considered in the SIA limit as, firstly we
would have to prescribe a scaling for the stress tensor in the lithosphewvehich is not convenient, and
secondly, this condition is necessary only for computing lithospheremeatmns, which we do not explic-
itly discuss here. The proper boundary condition for the ice flow is eitlizriahlet condition for velocity

in the case of no-slip frozen-bed conditions at the base or a Newtoretypttion when sliding occurs and
the sliding law is specified, combined with the normal-flux condition resulting fiftuenice-mass balance
(2.175).

The no-slip boundary condition (1.31) is required for the frozen-bed conditionsatehe contact of the
cold-ice and bedrock, when the ice temperature is below the pressure npeltmgand reads as

- T<T,,. (2.182)

Sy
Su

Thesliding-law has to be specified for the ice-bedrock interface at the pressure madintg.p. 7' = T}y,.
Considering the particular type of sliding law as (1.68), the SIA limit takes tima fo

35y = Bés, (2.183)

Bl = Béas, (2.184)
1 0k, 1 0F,

52~sl ~ H; 0% ~ Hs 07>

I3 vy = Bl o3 1 ok, +023’18ﬁ‘b , (2185)
Hs 03 Hs 03

where the dimensionless numligis defined in (2.52).
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e Example (1) - Cartesian coordinates

Bl = Bé,., (2.186)

3o = Béy., (2.187)
an %Fjb

n2~sl ~ oz ~ Y

gy = B U“TFL + 0y, oF, . (2.188)
0z 0z

e Example (2) - Spherical coordinates

3o = Béy, (2.189)

B2 = Béy, (2.190)
B, P

22~sl ~ 99 ~  sin %)

’BUC = B Uﬂg‘apj’—i-(f(pg o, . (2.191)
¢ ¢

e Example (3) - Cylindrical coordinates

Bt = Bé,., (2.192)

B°o = B6y., (2.193)
2% 1o

22~sl ~ 0 ~ 0 Jyp

B7v; = B o, %Fjb +0,. 68}) (2.194)

Thesliding velocity (1.67) in SIA reads

uho= o — i, (2.195)

B o= Oy — iy, (2.196)
Laﬁ'}, Laﬁb

~§l — ~ Hy 071 ~ Hs 0o 2 197

U3 (01 =P) g+ (B2 = ) T e (2.197)
Hs 0%3 H3 073

e Example (1) - Cartesian coordinates

5l = by — Dy (2.198)

U= by — Dy, (2.199)
OF, oLy

i = (O = ) oy + (O - ﬁby)‘;% : (2.200)
0z 0z

e Example (2) - Spherical coordinates

W= by — Dy, (2.201)

T = T — s (2.202)
OF, 1 AF,

= (g~ o) (B — ) T (2.203)

QD
Ty

Q
Ty

E
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e Example (3) - Cylindrical coordinates
= Ty — iy, (2.204)
0= By — iy, (2.205)
% 192
02 = (T~ D), 77 (B = o) o (2.206)
E E
Theenergy jump condition (1.73) in the SIA limit reads as
~ W 1 ﬁ ~ ~8 ~ ~S D ~geo ~—
0= (g~ g )+ Gt Fom H GE ). @20
o Example (1) - Cartesian coordinates
- 1 D o~ sy, P -
— W _ - S . S - eo ) 2.2
0 my <g[w] 1_[w]u~)> +(0 Vg +0'y Uy)+ C(qz Qz) ( 08)
e Example (2) - Spherical coordinates
W 1 p ~ ~sl ~  ~sl D ~geo ~—
0=—my <£[w] 1 [w]ﬁ;) + (Gocly + O ucty) + E(qC —q:) - (2.209)
o Example (3) - Cylindrical coordinates
~w 1 P ~  ~sl ~ sl D, _ €o ~—
0= —my <S[w} 1 [w]u?) + (G psTy + 0p:03,) + g(qg -q,) . (2.210)

2.4.5 Boundary conditions - Cold—temperate ice transitionwwrface (CTS)

Thekinematic condition (1.75) with the use of thze-mass jumpcondition (1.77) in the SIA reads as

8Fct5 E 6Fcts 2 aﬁcts '[)73 8Fcts _ 7i mgis 1 8Fcts
8t~ H1 6:%1 HQ 8572 H3 8:2‘3 [w] w— H3 afg
e Example (1) - Cartesian coordinates
8Fcts ~ aﬁ‘cts ~ aFcts ~ 8Fcts o 1 mlcli)fs 6Fcts
of " ar "oy "oz T [ww- | 03
e Example (2) - Spherical coordinates
aﬁ’cts ~ aFN’cts TN)cp aﬁ’cts ~ 8I}cts o 1 mg{fs aFN‘cts
= +’U19 + — UC =~ = — T = =
ot o sind Oy ¢ [w] W ¢
o Example (3) - Cylindrical coordinates
aﬁ’cz‘/s o aﬁ’cz‘/s 6750 8ﬁ’cts o 8Fcts _ _i Th}ﬁgs 8}?101‘/8
ot ¢ 90 o Oy ® 0z [w] W= | 0%

(2.211)

(2.212)

: (2.213)

(2.214)
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Theice velocity continuity condition (1.76) is given by

t=9 =3. (2.215)
Thewater mass jumpcondition (1.78) reads now as
jz3 =0. (2.216)
e Example (1) - Cartesian and Cylindrical coordinates
- =0. (2.217)
e Example (2) - Spherical coordinates )
je =0. (2.218)
Thelinear-momentum jump condition (1.79) is written as:
pr=p, 613 =013, G35 =033 - (2.219)

e Example (1) - Cartesian coordinates

pr=p, ol =6,,, Gy =6, (2.220)
e Example (2) - Spherical coordinates
pr=p, Ghe = Tc s G =0 (2.221)
e Example (3) - Cylindrical coordinates
ﬁ+ = ﬁ_ ) &gz = &Ez 9 &;z = &;z . (2222)
Theenergy jump condition (1.82) is expressed as:
—w DE|w] , . .
0= Mers + C[](Qj — 43 ) . (2223)
e Example (1) - Cartesian and Cylindrical coordinates
w DEw] , . -
0= Mets + C[ ] (q; —4q, ) . (2224)
e Example (2) - Spherical coordinates
~w Dg[w] ~t A
0= Mets + C (QC - QC ) . (2225)

2.5 Summary

We introduced appropriate scales for both the geometric and physiaatitipgappearing in the equations
for ice sheet evolution in Chapter 1. After introducing several dimensisrparameters we arrived at the
dimensionless version of these equations. We then derived the Shalldyppeceximation for the system
of equations by rewriting them in general orthogonal curvilinear coatds) expanding all field quantities
into power series in the scaling flatness paramegtand finally keeping only the leading-order terms of the
expansion. The improvement compared to the standard SIA approacls émmethe fact that instead of
any particular coordinate system, general orthogonal coordinatesused. This resulted to a whole class
of Shallow Ice Approximations, its realization for any particular choice tfagonal coordinate system can
be obtained just by evaluating certain geometric quantities. As an examplepliatly listed out the SIA
form for three important coordinate systems, nhamely the Cartesian, thecsplaed the cylindrical.



Chapter 3

lterative improvement of the Shallow-Ice
Approximation - SIA-I algorithm

3.1 Introduction

Increasing demands on the accuracy of the solutions for glacier flovingmdving computational possi-
bilities are pushing the glaciological community to leave the traditional Shallovwdbpeoximation (SIA)
(Hutter, 1983) and include the computation of longitudinal stresses in thaierncal models. This is essen-
tial when the scaling assumptions of the SIA approach (Greve, 199Y)ada¢ed, such as for small alpine
glaciers, ice streams, floating ice shelves, grounding line dynamics andushelly small-scale, examples
of ice dynamics.

A number of theoretical and numerical approaches has been propasgetsted, including several
higher-order approximations of the Stokes problem by "multilayer” meth8dgd et al., 2003; Pattyn,
2003; Blatter, 1995). For their classification and discussion, see Histini2004). Also, a number of exact
full-Stokes solvers have been developed, based on various nuntegbaiques such as finite-difference
(e.g. Pattyn, 2003), spectral (Hindmarsch, 2004), finite-volume (Rtica., 2007) and finite-element
methods (Zwinger, 2007; Gagliardini and Zwinger, 2008; Le Meur eRab4).

However, making a step from the SIA approach to more advanced modistastially increases compu-
tational demands that subsequently complicates the embedding of theseuestintq large-scale models.
We have developed a computational algorithm that provides an approxiotaties of the Stokes problem
that is more accurate than the SIA solution, but still applies the traditional &lng assumption to the
aspect ratio of a glacier. The primary criterion for the construction of gwealgorithm is its computational
efficiency.

The content of this section is a transcription of the author’s article {&o& Martinec, 2008), with a
few minor changes in the text and with the extension of Section 3.4 dealing witBl & algorithm in
general orthogonal curvilinear coordinates.

3.2 The Stokes problem for ice flow

Let us recall the physical problem we are dealing with and the assumptionsiaplifications we apply.
Our aim is to solve the boundary-value problem that allows us to model ampressible Stokes flow with

39
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non-linear viscous rheology in Cartesian geometry. We are looking fasdhsion of the Stokes equation
with the acceleration term neglected, that is, the linear momentum equation ofte f

divr 4+ pg=0, (3.2)

wherep is the ice densityy is the gravity acceleration at the Earth’s surface and the stress teiisgiven
by

T=-pl+0, (3.2)
wherep ando are the isotropic and deviatoric partsmfrespectively, and is the identity tensor. Since the
ice flow is assumed to be incompressible and ice density homogeneous, dlgedie-free constraint on

the ice velocityv is to be satisfied:
divi=0. (3.3)

We consider only cold-ice glacier with geometry captured by two continudaliiBrentiable surfaces
(i.e. explicit description)
z = fs(x,y) (free surface) , (3.4)
z = fo(z,y) (bed), (3.5)

wherezx, y, z are the Cartesian coordinates, and time is not explicitly considered now.

The scaling analysis corresponding to the Shallow-lce Approximation,hwies performed in the
previous chapter, has to be slightly altered to allow the consideration of lolingfustresses. Considering
the typical horizontall(s. = [h1][A1] = [he][A2]) and vertical Hs. = [h3][A3]) dimensions of a glacier,
and the typical horizontdb;,| and verticalv,] velocities of the glacier flow with the aspect ratio

o Hge . [Uv]
e w) (36
the following scaling is introduced

(z,y,2) = (Lsc,Lscy, HseZ) s (3.7)
(Umvya Uz) = (['Uh}'lzzv [Uh]@yl [Uv]ﬁz) , (3-8)
(fs(xv y)? fb(xa y)) = HSC(fS('%a g)v fb('fz'a g)) ) (39)
A = [A]A. (3.10)

The scaling of the stress tensor is chosen as
(p,0ij) = pgHsc (D, 045) 4,7 € {z,y,2}. (3.11)

Such a scaling only non-dimensionalizes the stresses, without requirirsgdled quantities to be of the
order of unity, for which case the more appropriate scaling would be tt{at38)-(2.35).

The Stokes equation (3.1) for the scaled quantities reads as

op 00 34 n 00 1y n 00

0= m et e o
8]5 a&azy a&yy 8&yz

0 <t ame T et ar (3.13)

) 0p | 06u:, | 06y: _ 0(Gu 46y (3.14)

"9z " oz - oy B
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where the symmetry of the deviatoric stresegs was used ana@ .. was eliminated from the system of
equations by making use of the trace-free constraint on the deviatorssesrén such a way that only six
independent stress unknowns remained. The incompressibility condit@®nf¢8 scaled quantities then

reads as ~ ~ ~
0v, 0vy 00,

=0. 3.15
oz "oy oz (3.15)
Boundary conditions.
We assume stress-free conditions at the surface, i.e.
T-i=0, at z = fs(z,y), (3.16)

whereri is the unit outer normal. In the scaled form, (3.16) reads as

0 = ﬁ(%?)ﬁ_&mm (?{;)6—5’1'5/ (%f;)ﬁ—‘r&mz, (317)

0 =1»p (%g‘i) € — Oy (%) €— Oyy (%) €+ 0y, (3.18)
atz = fo(%,7) -
At the glacier bed, we first for simplicity assume no-slip conditions, i.e.
7 = 0, at z = fy(z,y) (3.20)
or, in the scaled form,
i = 0, at z = f,(%,7) . (3.21)

Rheology.

The rheology is expressed by Glen'’s flow law (1.17) and after applyimgdhling forms (3.7)-(3.11), it
becomes

~ o ~ 877;r 28{)2
- _ [0V 00,
Oy = 1 <8; + 6261}) ) (3.23)
- _ (00, 00y
Ozy = €] < B + 8:i’> ) (3.24)
Gow = 2720 (3.25)
0z
ov
= — 2¢p Y 2
Tyy €n Bk (3.26)
1
n = —, (3.27)
(21X AV)3
315
v = Al (3.28)

[Uh] Lsc
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S (00, L00,\ (0, ,00.\°
v <82+68§:>+<82+68gj
O, 09, > Dty \ 2 a5, 2
2 [ YUz y 4e? T 42 [ L
+e<ag+8§:>+6 55 | tae 5
v ol
4e? | == g . 3.29
-2 (5) (5) @29
The inverse relation (1.18) expressed by the scaled quantities therefoieas
O _ ¥ iS5y, . (3.30)
0z
%yy = X485, . (3.31)
v, Oy Lo, iax
= 22X 32
95 0z € XASTay (3.32)
0% 2% _ 91y iSs.. | (3.33)
0z 0%
o o0, 1 an
8; e 5 = 2¢ X AS6 ., (3.34)
S = G, + 0L, +6ubyy+062,+62, +60..
(3.35)

3.3 The SIA-I algorithm

In this section, we derive an iterative algorithm for updating the velocitystmeds fields. The iterations start
with the SIA-derived stress and velocity fields, which are then updatedlving an approximate problem

that has more convenient numerical properties compared to the origitnadsé crucial issue, convergence
of the iterative algorithm, i.e. existence of a fixed point of the solution opeiatensured if the contractivity

of the iterations holds. A detailed theoretical analysis in full detail has yee torlalertaken, although in

Appendix A, we present a sketch of the convergence proof for thelestihgase - Newtonian rheology with
uniform viscosity. The numerical examples presented in the following indibatehe algorithm converges
for a wide range of ice-model parameters if the relaxation parameterobimgtithe iterations are chosen
to be sufficiently small.

To derive the algorithm, let us consider the system of equations (3.12)}(8nd assume that there is
an approximate solution in thgh iterative step, i.e. the field

sk _ (~k ~k =~k ~k =k =k
U = (D", 0 5 O gy Togyyy Oy T ) - (3.36)

The solution in thék + 1)th iteration is constructed in a two-step procedure. In the first half-stefind
@+ as follows.

Denoting the exact solution of (3.12)-(3.14) tiwnd defining the incremendt** as
Sty =g — a* (3.37)

the system of equations (3.12)-(3.14) fémay be rewritten as a system of equations for the increment
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5u’”%, assuming thai* is known. We therefore obtain

aspts . 0565 asstle . 956"+
9F ¢ 9F g BE
- 9rc er o 8y ¢ oz (3.38)
1
P A s 28607
a5 ¢ Er a5 ¢ B
o _ 0ay,  0ay,  Oay.
- - 3.39
a7 o7 ag < 9z (3.39)
1 1 1 1
Qo 006wi7 005y | 005, " Ge?)
9z ¢ 9r a5 ¢ BE
opf  osk, 96y, 0(ak, +°'yy)

We now retain only the stresséﬁ’“*é,éég% and 5&5:% in (3.38) and (3.39) and the stre&ﬁ’”% in
(3.40), and neglect all other terms on the left-hand sides of the equalibissapproximation exactly cor-
responds to the traditional SIA approach, assuming that only the retaingsg somponents are dominant.
Here, this approach is, however, applied to the stress incred@oidy, instead of the complete stress field
as in the SIA (e.g. Greve, 1997). Hence, none of the stress compdrentthe previous:th iterative step
are omitted on the right-hand sides of (3.38)-(3.40). The SlA-like appration results in the equations for
the stress increments as follows

. 1
oop*t:  ddeni:  opb  ask,  0gk,  ask,
ot T T T e e ¢ o (3.41)
o5t aseiie opF  aek,  osk, &k,
_ _ _ _ _ 42
o <t o5 5 ox ¢ oy ¢ oz (3.42)
aopkt2 opt | ook, | 06y,  0(Gh, +ay)
- 1 zz _ . 4
BB 2z " T oy BB (3.43)

Equation (3.43) is now integrated along the vertical coordiatem the computatlon pointz, g, Z) to

the boundary pointz, , fs(#, 7)), which yields the pressure mcremeiﬁ‘f*z at the computation point

(Z,9,2). This result is then substituted into (3. 41) and (3.42) which, after the integralong the vertical

coordinatez, gives the mcrement&ri€+2 50532 at the computation pointz, g, Z2). The values of the

integrands afz, 7, f(i, 7)) are determined from the boundary conditions (3.17)-(3.19). To find theen,
same procedure as above is applied. The exact solution is decomposibeé iitoiterative-step solutiofi®

and the mcremeniu’”z and only increments ifi, .., 6. are retained to compensate for the discrepancy
in adjusting the boundary conditions in thth iterative step. After some algebraic manipulation, we obtain
the boundary conditions for the increments in the form

(L f () = =BG () - &k, (-, f(- (3.44)
Rl T ~ f Ofs
50 ( fs()) - _o.]azz('afs(')) + 20 m:r S ( ~> )) (ag>

+ o, (. fs() (%i) ... (3.45)
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ST RO) = —oh (L RO) + LA (%’;) -+ 6%, ( () (%’;) e
+ 265, (- fs() <%{j) et+el ., (3.46)

where (-, f,(-)) stands for(z, 7, f(Z1, #2)) for brevity and we do not explicitly write the terms witR,
because they will be excluded from the computations in the algorithm. Stric@ksjg this cannot be jus-
tified by the introduced scaling because we do not assume the scaled gsaniitiheir spatial derivatives
to be of the order of unity. What we present may hence be viewed as naefetynal procedure, which
will be justified only by the final performance of the algorithm. However, ora recognize that what
we are performing is nothing else but the SIA applied only to the incremengaissts rather than the full
stress-field solution.

The integration of (3.43), followed by the integration of (3.41) and (3 4B) the use of (3.44)-(3.46),

~k 1
now results in the following formulae for the stress |ncremépf§z 6%2 2 andéoc + :

I D) = =M 2) = k(- 2) — o, (B + () - 2)

9 50 iy 9 50 e
- 689%/2 or. (-, 2)dZ _683// oy, (2")dz

A0 Lt f ) e 347

8fs() r ~
() - 2)

1
ohi?(2) = —&h (-2) -

o (7
- 2e[ ek (-, 2)d7
4

+ 6856/5 &];y( dZ + € , (3.48)

k+1, - -
06y 2(5) = —65,(2) —¢

fs
- e&%/g ah, (-, 2)d?

fs
+ 268[ ep (L, 2)dE + €, (3.49)

where the dot in-) stands for the pai(z, 7) for brevity and again, terms witk? are not considered any
further and are therefore not explicitly written.

We now define the updated solution in the- % step as

TLa R L W vy (3.50)
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where#; € (0,1) is the first relaxation parameter of the iterative scheme. Note that, by thepsev
derivations, we consider ) )

S = (55547,0,0,0,0601 %, 6602 2) | (3.51)
that is, only these three stress components are updated in the first padfaste

k+1 5~k+2 6~k+2

56t 0. (3.52)

In the second half-step, the consistency of the stress field with the vel@tityrfust be ensured, that is,
the rheological equation must be adjusted.

In order to obtain the velocity field from the rheological equations, wedpkt the equations (3.33) and
(3.34) in the following manner:

1

k+2 o 2
00 * gty jgk+hetts - 20” , (3.53)
0z o0x

kt1 k=3
Oy * _ gty igh+ights 200 (3.54)
0z 0y

that is, the terms with? on the left-hand sides in (3.33) and (3.34) are taken from the previous tape s
The result can now be integrated along the vertical coordiadtem the glacier bedz, g, f,(Z,7)) to
the computation pom(mc 7, Z). Making use of the no-slip boundary condition (3.21) and considering the

updated stress flelal , We obtain

1

z z g-k—3
s = eetx [ ASSTIsay —2 [ 9 L mar, (355
7o) fo(y 0T
ket z kel 2 gphe
o 2(.75) — 2671){ ASkJrf 2( /)di/—GQ _ (-,§/>dil. (3.56)
! 70 i) 0F
b (-

1 ~
The velocity@];’dr2 is then obtained by the integration of the incompressibility condition (3.15) frofy(-))
to (-, 2). Making use of the no-slip boundary condition (3.21), we obtain

. _kt1 k+1

~k+% B /’Z 8 2 a 2 i o

v, 2(,2)=— [ + (,2")dz" . (3.57)
() ( oz ay

This completes the determination of the velocity fighd .

We also propose an alternative to the treatment othterms in (3.33) and (3.34) and tlie compo-
nent. If rheology equations (3.30) and (3.31) are combined with the inaasipility condition (3.15) and
evaluated at thé + % step, we obtain

k+1
0v, 2

0z

-3 k k
= —e2XASM (01:2 —|—0'y;_ )

= e 2XASMI(eh, + 5t (3.58)
This relation can be integrated along the vertical coordinate from the babke fmint(-, Z). Using the
1
no-slip boundary condition at the base, a formula@ﬁif?2 is obtained

1 z
ot 5) = —e X f()ASk+ (&%, + &%), 2 dz . (3.59)
b
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Now equations (3.33) and (3.34) may be evaluated ak:ﬂﬂe% step:

K+ o k+3
00 - = ey ASH iR 28%96 , (3.60)
~k+2 _k+3
aaz = 2 lx A8k 24, 55t —62‘%5@, (3.61)
leading to alternative formulae to (3.55) and (3.56):
1 Z .
FE) = ecla [ ASME(L e (L 2)as
fo()
+ X / 9 / ASH 3 (6k, + &k ))(, 2")dZ" dZ (3.62)
b 8:1: b
1 2.
by (2 = 27t | ASH%( #)euTE (-, )7
fb()
+ X AS’” 2 (6%, + 65, (- 2)dZ" dZ' . (3.63)

() 39 7o)

By either way described above, we obtained the velocity field akﬂﬂe% time step. This field is now
used to update the stress components according to the rheological egtatieduce the inconsistency of

the updated velocity field with stresses. The substitution of the velﬁ'ﬁﬁy%' into the rheological equations
(3.22)-(3.29), with all the variables evaluated at the % step, yields the stress components that forms a

stress vector denoted "+ 3,
The newi**1 is finally defined as a convex combination of the previous estimate given.5§)(a8nd
the rheologically-consistent estimz{té(”%, i.e. we define

@ = @3 (1 — 0y) + Oyt e (3.64)

wheref;, € (0,1) is the second relaxation parameter of the iterative scheme.

We call the presented approach that iteratively improves the SIA solutioBlé algorithm. Its
computational steps may symbolically be depicted by the following scheme (Tables@urting frome*:

2 (3.47) — (3.49) R I T
k4 d (3.50)
1 (3.55) — (3.57) or (3.62), (3.63), (3.59) — > +1

(3.64) P (3.22) — (3.29)

=

Table 3.1: SIA-I scheme
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3.4 SIA-lin general curvilinear orthogonal coordinates

In accordance with our previous approach, we also present theateni of the SIA-I algorithm in general
orthogonal curvilinear coordinates as introduced in Section 2.2.

In the first half-step of the iterative procedure, the balance equatiomofentum (equation of motion)
(1.27) is updated. With the scaling introduced by (3.7)-(3.11), and with xpesssions for gradient of
scalar and divergence of tensor operators in general orthogonadlimear coordinates (see Appendix D),
the linear momentum equations (3.1) may be rewritten in the following manner:

0 = _751‘;)51 + hli;hg (,31 (hahsé11) + ~1£2}~13 8?52 (h1haé12) + ~1}~112}~13 8?63 (h1ho613)

+ 7116712 g;;(}u - E:il?ggj522 + illlflgggzi&m + hfhg (;Zj (011 +022) +é1, (3.65)
0 = _i;(gfi + hﬂ;h;;ail (hah3é12) l~11i~;h3 882(h1h3022) 711;2}13 8?53 (h1ha&23)

" Efﬁzggi&” - Efﬁgggl& ! hglhg ghi e h:hg ghg Guton)té, (3.69)
0 = —i;(;zi + 1317162&;,3?31 (hah3613) + i 712}}3 882 (hih3éas) — ~1}~112}~13 8?53 (hiha (611 + G22)

Lo O 1 O ¢ Ohs . 1 0hy Oha vy, (3.67)

== - 013 — == - 011+ == - 0923 — ==
hihs 01, hihs 013 hohs 0T h2h3 013
with ¢; := ”%’”. As in the Cartesian case, we introduce the stress increments for grassidlominant shear

1 1
stressespt 3, d6,a 2, 56 2, updating in the first half-step of tHeth iteration the stress field. Keeping

1 1
SpEtE, 66012, 5&5;2 in (3.65), (3.66) and only"*> in (3.67), the equations (3.65)-(3.67) are rewritten

as explicit equations for the increments, starting with the last one:

0sp*t: _ op* 05t 06k, | hs0oly | hs 05l
0¥3  0iz O0iz 03 hy 0F1  hy O
+ edlzan3 + €6hza03 — G a1t — Ghyann + E3hs (3.68)
where
1 O(hghs) 1 Ohs 1 9(hihs) 1 Ohs
a13 = = = — ==, 93 1= == =
hiho 01 h1 01 hiho 0% h2 6902
1 9(hih 1 Oh 1 d(hh 1 Oh
Q11 = = (12)4-7 ~1, Q22 1= == (32)4-7 ~2.
h1h2 03 h1 T3 hiho 03 ho 073
(3.69)
For a3 andéaas in (3.65) and (3.66), we first notice that it holds that
1 a 1 8h1 . 1 0 (797 -
hihyG +~~ = =—=—=—— |hihoo , 3.70
1 o /- - . 1 8112~ 1 0 (7 9.
——— (h1hoo — -0 = ————(h1h50 , 3.71
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which allows us to postulate the equation for increments in the following manner:

0 ket 5pk+2 0 opF o6t
o (h2h250132)+eh1h2h3 m = o —— (h2hy6%s) — ehyhohs— % + ehyhohs o
2y Dol
+ eh3hg 07 + (61 811 + 655812 + G55 22)
+ élﬁ%ﬁgﬁg , (3.72)
and
0 T Y 0 opF -~ 9&k
5% ——(h1h3086 43 *) + ehihahs 5 = ——(h1h36%,) — ehyhohs— 3es + eh3hs agzlf
- . - 06 } ~ ~
+ 6h1h2h3ﬁzj + €(65 711 + Fhyv12 + Ghyy22)
+ égillilgilg , (3.73)
where
- O(hahs) - - Ohg dhy dhs
= h h = —hohs—— + hih
Bi1 T + oz Y11 2hs gz + tha=
B Ohs Ohs d(hihs) 5 5 Ohg
Bo2 = h1h38 h1h28x1 Yog := ha 07 +h1h2(%2 ;
- 9(hh - - 9h - 3(hah - - 9h
B2 = M ( ! ) + hihg=— Y12 1= ho (h3hs) + hohg=—> .
O0T9 0T 071 0T

Before we solve the approximate system for stress increments, we atgat/ the stress condition at
the upper surface (1.29). Neglecting the atmospheric preggyre which is small compared to typical

hydrostatic pressures in ice sheets, and expressing (1.29) in the @avitioordinates by using the explicit
description of the free surface, this condition reads as:

BS 6fs~ BS afs~ ilg afs~

0 = e=———p— = 1— €=———012+ 013, 3.74
hlaﬂflp hla o111 Tty 07+ 12 13 ( )
BI} 8fs~ hd 8fs~ hd afs~
0 = e=— — €= — €= 3.75
€h2 a@P ﬁhl i, 012 — €= 1y 02 022 + 0923, ( )
hs Of hs Of
0 = —N—Efsaf 6’13—6~38f 5’23—0’11—0’22, (376)

9 0T

atis = fs(jl, Z9). We again expect that for each iteration step of the SIA-I procedusesehof boundary
conditions need not be fulfilled exactly and we again compensate the pogisibiepancy by the stress
incrementsop, da 13, d623. We may explicitly express the increments by solving the algebraic system
(3.74)-(3.76), which, after omitting the terms multiplied by the small faetpreads to

L) =~ ah + ) ) (3.77)
k+2 s hs Ofs & h3 fs h3 3fs~

doy3 2 (- fs) = < 0'13+2€;L 81‘10 1t+e€ s 10' 5 te€ 8 % )( fs), (3.78)

50“2(-,12) _ < 023+e’f32f8~ 26@3226 +e h‘”’gf“ )( ). (379
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Equation (3.68) can now be integrated along the "vertical” coordingfeom (-, #3) to (-, f,(-)). With the
use of (3.76), we obtain:

fs fs
ST (Ey) = —(15k+&lfl+&]§2)('7553)+/~ (5T1@11+&§2a22)df§—[ eshs di;
xs3 x3
Fs (b 06%,  hs o0&k, 3 N
— ¢ / <h3 893113 +773 a;’; + 603 + Ghsa03 | dif. (3.80)
x3 1 2

This expression can be inserted into (3.72) and (3.73), which againiatiégration along the "vertical”
coordinatets from (-, Z3) to (-, fs(+)), with the use of (3.78), (3.79) and after neglecting the terms multiplied
by the factore?, finally gives

o fs o fs s
h2h260k+2(-,£3) = —h%hg&’fg,(-,azg)ﬂ[ hthhga‘?ﬁ é3h3d£’§di§+/ é1h3hohs dly
fs ’“k fs k
+ e 2/ hihohs OTIL gz 4 / hihohs 002 gzt 4 / h2h38"}2d

35 0y 53 Dy 53 Do
s == Ofs = =2 Ofs  _p =o: OFf. .
k s s 2 s

h2h3=== | (-, fs

fs
+ e[ G171 811 + 655802 + 6o B12) dithy
x

3

fS 8 JFS
_ 6/ h1h2h38~/ (&lflall + &’52@22) dfig di‘g , (381)

I3 T :ié
and

o fs o . . fs . P
h1h250'k+2( ,i‘g) = —hlh%&%(-,fg) +6/ h1h2h36:8f}/ é3h3 d-%gdi{g‘i‘/ é2hlh‘%h3 di{;
T 2Jz z

/
3 3 x3

fs oot s o5 —y: 067
i hahs ST g7 2/ hihsh 22d /h2h 12 g7
+6</55 1238 T3+ i 1238 +x3233f1 T3

3 3

of, ofs O fs
+ &k hihohs === Is + &5yhihohy === Is + ¥y h3hs == f (-, fs)
07y OF 2 071

f
+ 6[ ahim + 65570 + G5ym10) dih
T

3
fooo s 9 fs ~k ~k I 3t

- € hlhghga—jn2 3 (11001 + O5a02) dTs dTs . (3.82)
T3 zh

For the standard choice of Cartesian coordinates with the venticakis, we have, according to (2.10),
hi = hy = hy = 1, andés = —1, & = é = 0. Formulae (3.80)-(3.82) then reduce to the form (3.47)-
(3.49) from the previous section. As another example, let us considgpliegical coordinates as introduced
in (2.2). Then, according to (2.15), we have

hi = (1+€), (3.83)

hy = (1+€()sin®, (3.84)
hs = 1, (3.85)
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13 = f(j:g , a3 =0,
__3e . 3e
0411—1+€§1~ a22_1+e(~’
Bi1 = (1+eC)*cos, Y11 =0,
Bao = —(1 4 €()%cos Y22 =0, .
B2 =0, 12 = 2(1 + €()?sin cos ¥ .

andée = (0,0, —1).

Now, we insert these expressions to (3.80)-(3.82), neglect terms multiptiedand arrive at the fol-
lowing:

fs
ft L - ~ ~ ~ = - F _
5pk+2 = —pk—agﬁ—dilp—k?)é/é (Ugg—FUZ@)d("‘(fs_C)
Fooso 5 e [T oo o
- ¢’ — o8 4 — m/ 59c dC’ 3.86
6/5 5 ¢ sinﬁ/g 9 (" —€co : oycdg ( )
ki ~ 8fs 3 =
(50’1%2 = —Ugg_faﬁ(fs_o

frogh, ., rflosk, 1 rfoek,
2 A% dc’ Py dc’ / Yo dc’
- E(/C o0 © ) ey “tane s ap ©

~ afs ~ 8f~ &1]2 afs = fs - - ~

+ € <2U§19 99 +U]:,¥, 8195 + sin% D0 (',fs)+ecot19/§ (Ufw—aﬁ@)dcl,
ks . € 8f5 ;o z
5US0C = O'Wﬂ 7811119 8@ (fs C)

1 (fhosk, o, 2 losk, o fosk,
d / pp d / / Y /
e <sin79/§ o 2 +sinﬁ/g oo ) ey &

O 99 afs o'gonp afs ~k 8fs 3 / ~k <
2 o | (s fs)+2 .
6<sin'l9 dp sin Oy T, oV (- fs) + 2ecoty : T, d¢

The computed stress updates are added to the stress field accordin@}o (3.5

In the second half-step, the stress field is updated in order to be consigtethe rheology. Taking
the Glen’s flow law (1.18) and inspecting the "13” and "23” components i3f tdnsorial relation, using
the general orthogonal coordinates (Appendix D), and applying tiingd3.7)-(3.11) from the previous
section, we obtain

~ 2 ~
v h v ~h3 ~
0 (“) e (M) 2 (“3) — 2 XA 86,5, (3.87)
013 h1 h1 071 hs h1
-\ 2 -
v h v ~hs =
0 <”2> e () 2 <“3> = 26 X A2 86, (3.88)
03 ho ho 0T hs ho
where ~
S=6% 4634611620 +6%+ 5’%3 + 5'33 . (3.89)

Now, as in the previous section, we have two possibilities of treatingdtetérms in (3.87) and (3.88).
In the first case, we take these terms frofm- %)—th iteration and integrate both equations along the "ver-
tical” coordinatezs from the basd-, fb) to the computational point, z3). Assuming the basal velocity
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5’”%(', fb) is either prescribed independently or given by the sliding law as a functiér’fb%, (see Sec-
tion 3.5.7), we arrive at the updated velocity field:

1 ha(-. 7 1 - ha ~ ~
ey = OB b ety [ B A S (3 a5
hl('7fb) b hl
- ~ 2 k—1
- s o (o2 o
- 62711('@3)/f~ (;) o1 (%) (-, %) dzy (3.90)
b 1 3
kel ho(-, @3) _ktl, = N I k e
Ty 2(-,E3) = ;(( fj))v2+2(-,fb)+26 1Xh2(~,x3)/ B—?’As“lazg (-, %) d#}
2\ b 2

~ ~ 2 k—1

- s (h o (o, 2
— Ehy(-, 7 / S 2| () di, . 3.91
€ ha(-, 3) : \7) 95\ i (-, 73) diy (3.91)

1
The "vertical” velocity componerﬁ§+2 can be obtained from the mass balance (continuity) equation (1.25),
which, with the use of (D.12) and the scaling (3.7)-(3.11) reads as

0 0 0
0= (hlhg’Ug) + 7(h2h3’[)1) + 7(h1h31}2) (392)
03 0%y 0%9
After integration along the vertical coordinate as in the cagg of,, we arrive at the final expression:
kvd oG foha(o fo) kvl -
v (',.1‘3) = NS v ('afb)
’ hi(c,@3)ho(-, @5)
1 39 k+1 0 - - ~k+1> N ey
- = = hohs® + ——(h1h3t, 2 -, Tq) dIs .(3.93
s ) (el ™ bt ™) (. 34) % 399

In the previous sections, we have discussed only the case of no-stiiioos at the base. The case pre-
sented here is slightly more general, as non-zero basal velocities calnealaken into account. This is
crucial for the implementation of either non-homogeneous Dirichlet boynetamditions for velocity or
even a sliding law, as will be presented in Section 3.5.7.

However, for no-slip conditions and Cartesian geometry, we obtain tmeutae (3.55)-(3.57). For
spherical coordinates, introduced in (2.2), we have

N T 1+ k+2 ; 1 o ¢ ket k+2 TN
B0 = rgRt ek v [ As el
S 1 200, 2 _
_ 2 ¢ LA /
i) [ () SO (394)
. ) E 1 kel o
LG = 11:2, S ) 42 (1 4 ) /f L dseaa
¢ 2 grE
- e+ [ (55) g O (3.95)
Rty on (14 efy)? k+2 . 1 ¢ [ O g ktd 817?_% N
UC (7<) - (1+6<)2 C ( fb) (1—'—65)2Sin’l9/fb (1+6C) (aﬁ(srﬂ,ﬁv'ﬁ )+ 890 (7C)dc .
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The second possibility of treating the?” terms in (3.87) and (3.88), lies in first computing the vertical
velocity 73, which is then inserted into (3.87) and (3.88) and again these equatioimsegy@ted along the
vertical coordinate in order to obtain the velocity componénis,. The procedure starts from expressing
"33"” component of the rheological equation (1.18). When scaled, dtidws expressed bygss = —o11 —
o9 (Sinceo is traceless), it reads as

&33 = —672.)(./215'(5'11 + 6‘22) , (397)

which, with the use of the definition af;3 in curvilinear coordinates (3.118), can be taken atthe %)-th
iteration as follows

k3 k—1 = k=i
vy 2 v, *0hs Uy 2 Ohs 2 L k+1 k+1
= — — = Xh3AS +3 2 . 3.98
5953 ( hy 01 * hy OZ2 sASHE (01 46 7) (3.98)

1
Now this form allows us to obtaiﬁg+2 by vertical integration, considering again the value at the base from
the k-th iteration as

1 . 1

kL kt+i, oz /‘%3 v, *0hz Uy 8Bb’ I\ gl
0 X = 0 ° — — —— + —= — -, T3) dT
3 ( 3) 3 ( fb) f~b hl 833'1 h2 6132 ( 3) 3

=2y [ A CRERT a1

o

i) di . (3.99)

1
Substituting nomﬁ§+2 into (3.87) and (3.88) fobs, and integrating along the vertical coordinate from the
base(-, f»(+)) to the computational poirit, z3), we arrive at

1 hy(:, @ 30 F 7 hs ;s
W5 = Nl(’9{3>f;lf+2(-,fb)+26_1Xh1(',i‘3)/ 3A5k+701§ (- &3) i
hl(‘?fb) b hl
s\ 2 _k+1
- 3 [ p a [0y 2 .
- [ (h> (52 (. (3.100
b 1 3
1 h *hy za
6§+2(~,i3) _ ~2(, N) k+ 2 (., fy) + 26 L X R (-, &) 3,48’“*’0'5; (-, 7%) daly
h2('7 b) fb h2
N k1
- 3 [ p o [0, 2
2 ~ 3 Ys ~/ ~/
— iy F Bl L T dih . 3.101
A7) [ <h> o | o | (s, (3101

In particular, for Cartesian coordinates (2.1) due to (2.10), and nastipe base, we obtain (3.62), (3.63)
and (3.59). For spherical coordinates (2.2), due to (2.15), we obtain

1 1 ¢ Y
B0 = R e AT e v a0, 02
b
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T 1+¢C k—i—l ¢ R TS B
R0 = R v <+e<>/ +65,A8’“+2% (&)

¢ 1 28~k+2 o
62<1+ec>/ <1+€§,> 55 (¢had, (3.103)
00 = Py e [ L st
®» ’ ].—|-6fb fb1+6</ er )
- ~k+l
S 1 2 1 900, % L
2 ¢ / /
¢ (1+eg)/b <1+€&> 7 5 (. dC (3.104)
(3.105)

The computed velocity fields (3.90), (3.91), and (3.93) are used to ¢edhmauxiliary stress field* =
(611,059, 019, 073, 053) Using the rheology (1.17). In orthogonal coordinates with the scaling-(3.11)
and with the help of (D), we obtain:

where

and
di3
das
CNill
CNl22
dss

di2

G13 = 2ijdys,
G2z = 2ijdas,
G111 = 2eijdy,
G2 = 2eidss,
612 = 2eqidi2,
5 1

n= )

(21X AV)3

~ ~2 ~2 ~ ~ ~ o~ ~2
V = 4(d13 + d23 + 62(d11 + d22 + d11d22 + d12)) N

3 — HAllpg) ([hs)[Aq])°
[al[][Ad]
1{1 00 1 0hy . o[ 1 003 1 0Ohs
== =0+ ————
2 h3 03 hihs 073 h1 01 hihs 0%y
1(1 00 1 0hy. o[ 1 003 1 0Ohs
— —_ — _—— +€ —_ — — T ——
2 hs 0T3 hohs T3 ho 0T hohs )
100, 1 8E1~ 1 @6
iLl 1 ]Nllilg 81'2 iLlilg 03 o)
100 1 Ohy 1 Ok
ilg To ;Llilg (9.1‘1 iLQiLg 03 o)
Lot | 1 Ohy 1 Ohy
= == —‘I— o~ + == = 5
<h3 013 hihs 8«'Ul hohs 0o 2)
V(10w 1ok 10m 1 O
2 iLQ 85'2 illilz ai? ! ibl a-%1 iLliLQ 85%1 2 '

(3.106)
(3.107)
(3.108)
(3.109)
(3.110)

(3.111)

(3.112)

(3.113)

(3.114)

(3.115)

(3.116)

(3.117)

(3.118)

(3.119)
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For Cartesian coordinates, these formulae reduce to (3.22)-(3.289,fahspherical coordinates we arrive
at:

Goc = 2idyc, (3.120)
Goe = 277&?4, (3.121)
Go9 = 2eidyy (3.122)
Gop = 26€iidyy,, (3.123)
Gy, = 2eidy, , (3.124)
and ~ ~9 ~9 9,2 ~9 ~ o~ ~9
V = 4A(dy; + d e + € (dyy + d, + dygdy, + dy,)) | (3.125)
where
- 1 [ 9y e = a@<>
dye = - (=2 - g + s I 3.126
e 2<ag 1+ " 14eC (3.126)
~ 1 /00 2 v
dye = = (a”f R I ”<> : (3.127)
2\ ¢ (1+¢€0) (1+ €C)sing Oy
~ 1 (91719 € ~ )
dgg = S AN ¢ ) 3.128
» <1+e<az9 i (3.128)
- 1 oD t 0
dpy = ( - Yo ST Gy 4 ~17<> , (3.129)
(1+€C)sing 9p  1+¢ 1+ €
~ 1 1 0y 1 0v cot v
dg, = ——— 2+ =2 Js) . 3.130
i 2<(1+e()sin19 Op  1+e 99 14¢€ v ( )

The SIA-I scheme itself may then again be depicted a scheme analogousftorthaable 3.1:

i (3.80) — (3.82) AR TN Tl
|
L (3.50)
|
kL (3.90), (3.91), (3.93) or (3.100), (3.101), (3.99) — > h+1
T |
(3.64) e+ (3.106) — (3.110)

Table 3.2: SIA-I scheme in general orthogonal curvilinear coordinates.

3.5 Numerical simulations

In this section, we present numerical results obtained by the SIA-I appifor thelce-Sheet Model Inter-
comparison Project — Higher Order Models (ISMIP-HOM) (Pattyn, 2007, http://homepages.ulb.ac.be/
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~fpattyn/ismip/). This benchmark experiment aimed to demonstrate the effectghafrtorder solutions
of various ice-flow model problems compared to the solution by the Shallowgpeoximation, where by
"higher-order” all such solutions are meant that take into account thgtiatinal stresses.

Our approach has been incorporated into experiments A and B (roedglsee Pattyn et al. (2008),
for a discussion of the results and model outputs). Since experiment Byis @D (flowline) version of
experiment A, we present here only the results for the more challengihgxperiment A.

Although we did not participate in experiment C, we now discuss the perfarenaf the SIA-I algorithm
for this case, where basal sliding with a prescribed sliding law is considereontrast to A and B where
no-slip was considered at the glacier base.

3.5.1 Numerical implementation of the SIA-1 algorithm

For the examples shown below, a rather elementary approach was aftwpghednumerical implementation
of the SIA-I algorithm. After inspecting the particular steps of the iterativeeswe shown in Table 3.1, one
realizes that the whole algorithm is relatively simple from the numerical powitef, as the only operations
to be applied are

e Data storage
We have chosen a staggered grid with two types of alternating nodes ainetype of node contains
the velocity vector components;, v, 0., While the other nodes contain the stress-tensor compo-
Nentse .., 0y, Oy, Oz, Oy, aNd pressurg. Such a choice provides better stability of the iterative
scheme.

o Numerical differentiation
This is performed by a two-sided symmetrical finite difference scheme, i.app®ximate

<6S0> (SUi,yj,Zk) ~ So(xiJrlayjaZk) - ‘P(l‘i—l,yjazkz) ’ (3131)

ox Tit1 — Ti—1

(W) (265, 2) (T, Yjt1, 2K) — P(Tis Yj—1, 2k) 7 (3.132)
Jy Yj+1 — Yj—1

890 Qp(xiaijzlﬁkl) - Sp(xlﬁyjazkfl)
a_ EXCAE . 3133
<8z> (i, yj» 24) Zk41 — Zk—1 ( )

Q

e One-dimensional numerical integrationis performed by the simple extended trapezoidal rule (e.g.
Press, 1992):

b —a
[ otertz = T o) +20(a1) + 26(e) + o 2olen) () - (3134)

The application of more sophisticated methods such as a higher-ordeeiif&tion scheme or higher-order
integration approach is possible, but the overall effect was found teegkgible. Moreover, the relative
simplicity of the numerical realization of the SIA-I algorithm in the following dentoatsons results in its
efficiency in terms of computational speed and lower computer memory demands

3.5.2 ISMIP-HOM experiment A

This experiment is set up as follows. It involves a Stokes flow problem,lipcasthe bed, stress-free
conditions at the surface and the ice is considered isothermal. The véliresphysical parameters used
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Symbol Constant Value Units
A Ice-flow parameter 10°16 Pa=3a~!
p Ice density 910 kg m—3
g Gravitational acceleration 9.81 m s~ 2

Table 3.3: Values of the physical parameters used in experiment A.

are given in Table 3.3.

The glacier has a square base of dizex Ls.. The upper and lower surfaces are givenriinby

fs(x,y) = —ztana, a =05 (3.135)
fo(z,y) = fs(z,y) — 1000 + 500 sin(wz) sin(wy) ,
(3.136)
with
o
YT L
At the sides, the periodic boundary conditions are prescribed:
Va € <O’LSC>’VZ € <fb()7f8()> : 17(1‘,0, Z) = E(vaSCwZ) ) (3137)
Yy € (0,Lge),Vz € (fp(+), fs(+)) : ¥(0,y,2) = U(Lge,y,2) - (3.138)

The plotted quantities are the velocities vy, v, at the upper surface (im a~') and the stress components
Oz, Oy, Ap = p — Hpg at the bottom (irkPa), H = fs — f,. All quantities are mapped onto the scaled
domain(0, 1) x (0, 1).

The numerical implementation includes the transformation of the problem intorstcetoordinates, as
usual in glaciology (e.g. Pattyn, 2003). The SIA-I algorithm in stretchaddSian coordinates is outlined
in Appendix C.

The glacier flow computed by the SIA-I approach is first checked agaifisite-difference full-Stokes
solver that we developed and that is briefly described in the next se@®also present comparisons with
other ISMIP-HOM participants, based on the published ISMIP-HOMItegsu Pattyn et al. (2008), where
a detailed description of the benchmark and the comparisons betweenfoiib&sed results and other
solvers can be found.

3.5.3 The finite-difference full-Stokes solver

To carry out the benchmarks against which the SIA-1 solution can bekeldewe developed a simple full-
Stokes solver. The governing equations (3.12)-(3.14), (3.15) aB@)(83.29) are rewritten in the stretched
coordinates (see e.g. Pattyn, 2003) or Appendix C.

The spatial derivatives are approximated by two-point symmetric difteeand the resulting system
of non-linear algebraic equations is solved on the staggered grid with tves tyfpalternating nodes, first
for the rheology equations and the equation of continuity, the others fantileentum balance equations.
For a fixed viscosity, the linear system of equations is solved by a PAR[Paf2llel Sparse Direct Linear
Solver) routine (http://www.intel.com), and the viscosity is iteratively updated éyctimvex combination
of the previous and updated velocity fields. The convergence is ctidgkimspecting the evolution of the
maximal difference between two successively computed velocity fields.



3.5. NUMERICAL SIMULATIONS 57

3.5.4 Results | - Comparison with a finite-difference full-Sokes solver

The ISMIP-HOM benchmark was performed for aspect raties, ., 55, &, &, and ;. As one might
expect, the higher the aspect ratio, the worse the performance of theggidrithm. Bellow, we display
the comparison of the SIA-I solution and the full-Stokes solution by a finiferdifice solver, described in
the previous section, for the most interesting cases:o% and%. Fore = % the SIA-I algorithm already
fails to converge for this particular problem.

Results fore = 2—10 The SIA-I solution is computed with the relaxation parametgrs= 0.2 and
6, = 0.05. The results are stored in a staggered grid of dimensians 41 x 41. The SIA-I solution,
obtained after 60 iterations, is shown in Fig. 3.1 (full lines). The computatas performed on an Intel
Pentium 4, 3.2GHz computer and took approximately 52s. The full-Stokesogolidotted lines in Fig.
3.1) was obtained by the finite-difference code from Section 3.5.3 by ati#emupdating of the nonlinear
viscosity until the convergence criterion was fulfilled. The computation waages from the SIA-I solution

interpolated to a stagger@d x 20 x 20 grid.

Fig. 3.1 shows almost perfect agreement between the SIA-I and thetdkisSsurface velocities and
a minor quantitative mismatch for the bottom stress componeptso,.. The main difference appears,
however, in the bottom pressure differenkg.

Results fore = %0 The SIA-I solution is computed with the relaxation parametgrs= 0.2 and
6y = 0.02. The resolution of the computational domain for both solutions was the samehespnevious
case. The SIA-I solution, obtained now after 100 iterations to achieveeti@red tolerance (Fig. 3.2,
full lines), is again compared with the full-Stokes solution (dotted lines) whiab @btained by the finite-

difference approach.

Inspecting Fig. 3.2, we can see a rather good agreement between bstiutens, in particular for
the velocities. Again, the largest difference appears in the presstesedifeAp. It is noted that the SIA-I
solution is smoother than the finite-difference solution, indicating possibly smmmeerical instabilities in
the finite-difference solver.

To estimate the order of improvement of the SIA-I solution compared to the @lAian, Fig. 3.3 plots
the SIA solution forv,, v, at the surfaceq, is identically zero) andr . at the bottomd,. andAp identi-
cally zero). Comparing Fig. 3.2 with Fig. 3.3, we can see that the SIA-I soldiifers significantly from
the SIA solution, demonstrating that the SIA-1 approach is capable oigingva significantly improved
solution to the problem.

As demonstrated in the following section, the convergence of the SIA-tiigpworsens with increas-
ing aspect rati@. This can be to some extent overcome by choosing sufficiently small relaxystiameters
61, 02, but a threshold aspect ratio value appears to exist for the practiagé g our method. For the
current geometry setting from the ISMIP-HOM experiment A, this vaIu%isFor an aspect ratio larger
thane = % and for the current geometry setting, the SIA-I algorithm fails to corevemgmatter how small
relaxation parameters, andd, are chosen. We may thus say that there is a threshold of the aspect ratio
¢ above which the SIA-I algorithm does not converge. Below this threstmld numerical experiments
have demonstrated that the smaller the aspect ratio, the faster the cowecofi¢the SIA-1 algorithm for a

prescribed accuracy. This behavior resembles that of the SIA agproa

3.5.5 Results Il - Comparison with the ISMIP-HOM benchmark

In Figs. 3.5-3.7, we display a comparison of the SIA-I output and a septative set of ISMIP-HOM
experiment A solutions published in the benchmark (our model participateglasis denoted assol).
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v, (ma™)atf, o,, (kPa) at f,

Figure 3.1: Comparison of the surface velocity fields fina "), the stress components,., o,. and the pressure difference
Ap = p — Hpg at the bottom (ink Pa), obtained by the SIA-I solver (full line labelled diagonally) and the fulk&® solver
(dotted line labelled horizontally), respectively, for the aspect ratio s .
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Figure 3.2: As for Fig. 3.1 but foe = & .
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Figure 3.3: The SIA solution for aspect ratio= %

. Note that the field quantities not shown here, that,ist f; andAp, o . at
fv, are identically equal to zero in this case.

v, (m &Y at
oy, [kPa] at f,

30 1 1 1 1

Figure 3.4: The SIA solution for surface velocity, at f; and the bottom stress component. at f3, at the cross-section with the
planey = 0.25. These two quantities are independent of the aspectdatio
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We plot values of six control quantities: surface velocity vectay, ¢,,v.), the stress components,.,

o,. and the pressure differendsp = p — Hpg at the glacier base. The data are displayed at the cross
section with a plang/ = 0.25. Results are shown for aspect ratios= -5, 4, 1t5. We may observe
that our solution (light blue dots) for all the displayed cases lies in the regjibighest "solution density”
representing, hopefully, the exact solution as the considered proloesmdt possess any known analytical
solution. The full-Stokes solutions are plotted with lines, and the other hyider- models with dots. The
discrepancy between the various full-Stokes solutions for the predsfeenceAp (bottom-right panel)

is possibly only due to an erroneous sign convention of some of the solwi®iralicated by the symmetry

of the pattern with respect to theaxis. In Fig. 3.4 we plot, for comparison, the surface veloeityand

the bottom-stress componedt,.., as they would be obtained by the Shallow-lce Approximation. These
two quantities are independent of the aspect ratio for the considerblprand may thus serve as a good
measure of the difference between the higher-order and full-Stolatoss. Note that for high aspect

ratios, such as = % the difference in surface velocity is rather substantial.

3.5.6 Convergence of the SIA-I algorithm

In this section, we demonstrate how the convergence of the solutionsdtedftey varying the aspect ratio
¢, and the magnitudes of the relaxation paramefers)s. We perform all runs with the ISMIP-HOM
experiment A settings.

The convergence rate is inspected by checking the evolution of thesefdhe linear momentum
balances, rheology equations and equation of continuity, respectMedge errors are defined as follows.
All equations are evaluated at the nodes using the discretisation of sgavaltives by two-point symmetric
finite differences. If we had an analytical solution, that is a solution satgfyne equations exactly in the
limit of an infinitesimally small discretisation, such a procedure would providesthealled discretisation
error. In the case of the SIA-I solution, there is an additional errayltieg from the fact that only an
approximate problem to the full-Stokes problem is solved at each SIA-LiieraWe divide the error by
the magnitude of the largest term in each particular equation and obtain ttieerelaor at each node. For
conciseness, we first average these errors over the nodes amdthpuate one average value from the three
linear-momentum balance errors, one from the five rheology equationis eand finally one continuity
equation error.

In Fig. 3.8 we plot the total (discretisation plus approximation) errors of tAel Solution for various
combinations of the relaxation parametéys= 0.2,0.5,0.8, 85 = 0.2,0.1,0.05, and a fixed aspect ratio
€ = % and a spatial resolutioBl x 31 x 31. For all cases, the overall error decreases and eventually
reaches a limit (except for the uppermost curves in the second and #miedl\where more iterations would
be needed to reach the limit). As documentedépr= 0.8 andf, = 0.2 (black triangles), when the
relaxation parameters are chosen to be too large, the solution is scatteaegebsistent high-frequency
noise preventing the error from dropping below a certain value.

Observe that e.g. fat; = 0.5 andfy = 0.2, the error decreases relatively quickly and a sufficiently
accurate solution is obtained after 20 iterations. We also see that belowaan agitical value of the
relaxation parameters, the convergence speeds up as the relaxatioefas grow, while above the critical
threshold the too-large relaxation parameters induce high-frequeattgrseg of the output. This may be
connected to the spatial resolution since the sequence of successatwateplutions may formally be
viewed as a time-discretised evolution, and as the spatial dependendd gfiables is also discretised by
finite differences, one may expect a criterion, analogous to the Cocnitarion (Press et al., 1992), to be
fulfilled to ensure stability of the algorithm. For a given spatial resolution, tiitisreon would constrain the
maximum values of the relaxation parametg&randd, that control the evolution in 'time’.
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Figure 3.5: Comparison of the surface velocity fields, v, andwv, (in m a~'), and stress componernds,., o,. and pressure
differenceAp = p — Hpg at the basef;, (in k Pa), obtained by the SIA-I solver (light blue dots - modio] and several
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displayed results are taken at an intersection of the scaled domain with tiegpta0.25.
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Figure 3.6: As for Fig. 3.5 but withe = 5.
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Figure 3.8: The evolution of the averaged relative error of the linear momeiaiances, rheology equations and equation of
continuity, for various combinations of the relaxation parametemndd,. The labels read as, for example "0.2-0.08{:= 0.2,
02 = 0.05. The results apply to the case of a spatial resoluibrx 31 x 31 and aspect rati%.
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Figure 3.9: The evolution of the averaged relative error of the linear momeiaiamces, rheology equations and equation of

continuity, for various aspect raties= 1, %, 55, 5. 55, 185 and for a fixed spatial resolutichi x 31 x 31. The results apply
to6; = 0.2 andf; = 0.02.
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Next, in Fig. 3.9, we inspect the role of the aspect rati&ince the derivation of the SIA-I approach
requirese be sufficiently small, there is a threshold valuecadbove which the SIA-I algorithm will not
converge. Figure 3.9 plots the errors for aspect raties;, <&, 5, 7, 9. 105 for a fixed spatial resolution
31 x 31 x 31. The relaxation parameters ate = 0.2 andf, = 0.02 for all computations. Figure 3.9
demonstrates well the key role of the aspect rafior convergence of the SIA-1 algorithm. For the chosen
relaxation parametets 02, the values = % is the threshold and for larger aspect ratios the algorithm fails

to converge.

In summary, whether the SIA-I algorithm converges and how fast is a nwdtseveral coupled factors.
For a sufficiently small aspect ratio (less than}0 for the ISMIP-HOM A experiment), the algorithm con-
verges by choosing relaxation parametgrsd, that are below certain threshold values, dependent on both
the aspect ratio and the spatial resolution, and the convergence of tghalgimproves by approaching
these critical values from below. Moreover, the critical values deeradth increasing aspect ratip as a
result, fore > % it is impossible to reach convergence within the ISMIP-HOM A experimesetiing.

3.5.7 Performance of the SIA-I for other than no-slip bounday condition, ISMIP-HOM
experiment C

The SIA-I algorithm as described above may easily be modified to allow a Etibbundary condition for
velocity at the glacier bed, that is the conditi@df, f,(-)) = @°(-). We only modify (3.55)-(3.57) as follows:

1 z 1
B8 = W) 2ty [ ASME( )6 (L)
fo ()
(3.139)
1 z 1
f]5+2 ('72) = {)2() + 27X () ASk+%('72,)&Z;’—2('72/)d%, )
(-
(3.140)
. _k+1 _k+1
N -0 z 0 * Ovy * NEY
Vz ('7Z) = ,Uz()_/; — ~ (-,Z)dZ ’
Ao\ 0T 9y
(3.141)

With this modification, the SIA-I algorithm was tested on real data from the Atitaregion, considering
in addition temperature-dependent viscosity (see Section 3.5.9), remegb®inso far we have been
restricted to the isothermal case in the numerical examples, i.e. we had sysaéiynaéitd = 1. It may
be stated that, for a reasonably smooth non-homogeneous Dirichlet caratitieelocity at the glacier bed,
the performance of the SIA-I approach is comparable to the no-slip case.

To involve the sliding at the glacier bed, it is, however, necessary to sWwanhthe Dirichlet boundary
condition to a Newton-type of boundary condition such as (1.68). Althaughlid not participate in the
ISMIP-HOM C experiment which applies to this case, we may, however, agangur SIA-1 solution with
the published results from the benchmark.

The problem is set up very similarly to experiment A, the difference beingtkieadriving effect is,
instead of bed-geometry undulations, the spatial inhomogeneity in the biatiakfcoefficient. The upper
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and lower surfaces are both inclined planes givem{)rby
fs(x1,29) = —zxitana, a=0.1°, (3.142)
fo(z1,22) = fs(x1,29) — 1000 .

At the sides, periodic boundary conditions (3.137) and (3.138) aiia pgescribed for the velocity field. At
the glacier bed, the sliding law (1.68) is prescribed, i.e.

B2y, U=ty -0, (3.143)

wheret, and i, are the tangent and downward normal vectors to the glacier hasespectively. The
sliding coefficient is given by

B2 (x,y) = 1000 + 1000 sin(wz) sin(wy) , (3.144)
with
2m
w=-—".
LSC

The Dirichlet condition on basal velocity, either homogeneous or non-geneous, is crucial in the
SIA-I algorithm, since it allows a straightforward computation of the velocitigsnbegration along the
vertical coordinate, c.f. (3.139)-(3.141). That is why the sliding law43)1despite being a Newton-type
boundary condition, has to be transformed to a Dirichlet-type condition. cémnishe done quite naturally
thanks to the iterative character of the problem. Fo) # 0, the stress field from the previous half-step is
used to provide
k+i
52
The sliding velocityz? k+3 is then substituted into (3.139)-(3.141) fdr. Obviously, this approach can be
applied only to the region witls # 0 and fails in the case of free-slip conditions, whére= 0. Such a
singularity, however, occurs in the experiment C, sifice 0 at two points,(3&s, L) and (e, 3ks) To
avoid the failure of the SIA-I approach, we add a small positive constafitand successively decrease it
during the iterations.

; 7. >
D U S A L (3.145)

The results are shown in Figs. 3.10 and 3.11. The plotted quantities ardieslog, v,, v, at the upper
surface (inm a~') and the stress componeats., o, and pressure differengep = p — Hpg at the bottom
(in kPa). As in the previous experiment, all quantities are mapped onto the scalednd@mg x (0, 1)
and the solutions are plotted at the cross-section with the plase0.25. For the comparison, we also
plot some of the solutions from the ISMIP-HOM experiment C. Results aesiior two aspect ratio%
in Fig. 3.10, andzl—0 in Fig. 3.11. All solutions are computed with a resolution3éfx 31 x 31, and are
stopped after 200 iterations. The relaxation parameterg ate0.2, §; = 0.02 for aspect ratie = 8—10 and
0, = 0.1, 8, = 0.01 for aspect ratia = QLO To compute each example takes approximately 50 seconds of
CPU time on a Intel Pentium 4 with 3.2GHz.

Figures 3.10 and 3.11 show that, in accordance with our assumption, thlea®jérithm fails to com-
pute the horizontal velocities correctly in the neighborhood of the pointevine sliding friction coefficient
goes to zerof = 0), that is at the poinf0.75,0.25) in our case. Moreover, also intuitively, the error in-
creases with the increasing aspect ratio. However, the error is locaizedmall region surrounding the
point with 8 = 0, and the stresses are well computed everywhere else, even for eetgligige aspect
ratio (2—10). In general, we may conclude that the Newton boundary condition atlélceegbase, i.e. the
sliding law of the form (3.143), represents a restriction for the applicabifith® SIA-I only in the case
where a region with a very small basal friction coefficign present. To demonstrate the difference, the
Shallow-Ice Approximation solution is plotted in Fig. 3.11 (model SIA). Note thatsurface velocity,
for the SIA solution diverges at the point whete= 0.
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Figure 3.10: Comparison of the surface velocity fields v, andv. (in m a~'), and the stress componets .., o,. and the
pressure differencd\p = p — Hpg (in kPa) at the basef,, obtained by the SIA-I solver (model "SIA-I" light blue points),
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Figure 3.12: CPU-time demands of the SIA-I algorithm as a function of degré&gedom for the ISMIP-HOM A setting with
€= % and for 50 iterations, computed on a Intel Pentium 4, 3.2GHz computer.

3.5.8 Numerical performance

The essential feature of the presented SIA-1 approach is its computaditetiveness. The algorithm is
designed such that the time cost spent at each iterative step is similar taginatdefor the SIA approach.
Using an Intel Pentium 4, 3.2GHz computer, we have performed 50 iterdtiotiee ISMIP-HOM A setting

with e = 8—10 which is a sufficient number of iterations so that the SIA-I solution cajesto the full-Stokes
solution. In Fig. 3.12, we plot the total CPU time for SIA-I as a function of tegrdes of freedom, that is
the number of the computed velocity and stress variables stored in the commaitgtid. We can see that

the computational time increases linearly with the increasing number of degfrisesdom.

Since our full-Stokes solver is not optimized for numerical performaneecensider the CPU-time
demands for the professionally optimized finite-element solver Elmer (Gagliarttd Zwinger, 2008). For
the current ISMIP-HOM A setting the authors provide an analytical forrfarl&PU-time costs irfs) as a
function of the number of degrees of freedom:= 0.013z!-!. If we make a similar estimate for the SIA-I
solver, we obtainy = 0.00015z (see Fig. 3.12).

3.5.9 Performance of the SIA-I algorithm on real data

Thanks to Dr. Oleg Rybak (AWI) and Prof. Dr. Philippe Huybrechtsij@/dniversiteit Brussel), we could
perform a test of the SIA-I algorithm on more realistic data. We obtaindd@ivelocities resulting from a
higher-order model (Pattyn, 2003) o680 x 400 km region in Dronning Maud Land, Antarctica.

The domain resolution waxt1 x 161 grid points in horizontal (corresponding2d km resolution) and
101 in the vertical direction. The model input for the simulation is the bedrock t@pity, the free surface
elevation (Fig. 3.13), and basal velocities (Fig. 3.14). They appeargjroon-homogeneous due to the
presence of temperate-ice regions where a rapid sliding occurs apjoosald-ice frozen-bed conditions in
the rest of domain.

We were also provided with the 3-D temperature field for the whole computhtionzain. Hence, we
can also incorporate the temperature dependence of ice viscositytitufzar the rheology (1.17) was used
with

A(T) = mAexp (—RC%*> (3.146)
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Figure 3.13: Bedrock topography (left) and surface elevation (right) in thenBing Maud Land simulation
v, (ma™)atf,

T

v, (ma™)atf,
| | 3 |
230 % - 230 %ﬂ
225 - 225 -
> >
220 R - 220 w
A5\ ]
s Tela <& (7
o) | U L ff
215 | %4 2 6 Q CR_? 215 «H m}
-6 i o _4
, = ‘ éﬁ.l_
130 140 150 160 130 140
X

160
X
Figure 3.14: Input basal velocities,. (left) andv, (right) used in the Dronning Maud Land simulation
T* < 263.15K A=114x10""Pa3a"!,Q = 60kJmol™* (3.147)
T* > 263.15K A=547%x10"Pa3a"!,Q = 139kJ mol ™~ (3.148)
whereR is the universal gas constar (= 8.314 J mol~* , Qi [
T* is the absolute temperature corrected for the pressure melting-poiet T' + Cc;p andm is the

1), Q is the activation energy of creep and
enhancement factor (in the comparison setias 1.061). The values of the prescribed physical parameters
are taken from Huybrechts (1992), and are the same for both compaeels

The temperature and temperature rate fagtare plotted in Fig. 3.15. We may observe a relatively
strong temperature variability of viscosity both in the lateral and vertical tities: In total, the temperature
contribution to the viscosity variation reaches 3 orders of magnitude.

We solve a Stokes-flow problem looking for a steady-state solution withhemomsgeneous boundary

conditions on velocity at the base, and free-surface conditions at {her gprface. At the sides of the
the boundary conditions there

domain, we replace symmetric differences by one-sided differencesh whables us to avoid specifying
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As an output to be compared, we choose the surface deformationatiesigce. the difference between
the velocity at the surface and the basal velocity at the underlying baisal @his choice is motivated by
the fact that such a quantity is not affected by the rapid changes in ¢c@sditions and better reflects the
deformational contribution to glacier flow. In Fig. 3.16, we plot the SIAJuson, which is compared
with the higher-order model, the so-called incomplete 2nd-order model innR@DHY3), which was used
as the fine-scale part of a two-component nested model described brét¢hys (2007). We denote this
Higher-Order Model by the label "THOM”. Finally, we also show the defational velocities corresponding
to the Shallow Ice Approximation (SIA) to provide better insight into the contidiouof the higher-order
dynamics.

In Fig. 3.16, we may observe a relatively good agreement between thertdgler model (HOM)
and our solution (SIA-I), and a distinct difference between these sohiod the much less smooth re-
sult coming from the Shallow-Ice Approximation (SIA) solution. A detailedrgitative analysis of the
differences is not performed since it may be misleading to some extent asoficime models provides a
truly full-Stokes solution. Thus, the differences in the solutions may be maréfacts of the different
approaches in handling the longitudinal stresses. We have alreadgedkefiom the ISMIP-HOM bench-
marks A and C that some of the higher-order (non-full Stokes) models iffayglite substantially among
themselves and from the full-Stokes solution.

Despite all the differences, this example serves as a demonstration thdAthal§orithm may be
successfully applied to real-nature conditions and provide reasonatilyade output. Concerning the nu-
merical performance, the displayed SIA-I output was obtained after 6tidas with approximately 3.8
s of CPU time per iteration (performed on an Intel Pentium Core 2 Quad 2.8&B,RAM, 800 MHz,
in non-parallel version), while the HOM model took approximately 5000 Cétdsds (on a NEC SX8 in
parallel mode using OMP and 8 CPUs, Rybak, pers. comm.).

3.6 Summary

The new iterative SIA-1 algorithm is derived on the basis of the traditiocalirsy "shallow-ice” property
by assuming that the aspect ratio of the vertical/horizontal dimensions ofiaigksufficiently small. The
algorithm represents an iterative extension of the SIA approach, agdniral, may provide an improved
solution of the Stokes-flow problem. The key parameters controlling thenpesthce of the algorithm are
the aspect ratie and relaxation parametefs, 6. For the model example taken from the ISMIP-HOM
A experiment withe < 1% the SIA-I algorithm converges if sufficiently small relaxation parametegs a
chosen, for examplé); = 0.2, 65 = 0.05. The case withk = % is a threshold above which the SIA-|

algorithm fails to converge and thus gives inaccurate and noisy results.

Relative theoretical simplicity leads to faster computational speeds, sinceitierical computations
consist of only numerical integration over the vertical coordinate andiffezehtiation of field quantities,
which are similar numerical operations as performed in the SIA approadredver, the computational
demand grows only linearly with the number of degrees of freedom.

The performance of the SIA-I algorithm was also tested for the ISMIRMH®periment C, where a
Newton-type sliding law is applied at the glacier base. The SIA-| approemphires the reformulation of the
sliding law as a Dirichlet boundary condition for velocity. This disables ussolve the velocities correctly
in the regions with a small sliding friction coefficiefitand fails completely for free-slip condition8 € 0).
However, the errors in the velocities are localized in the vicinity of the singalgion where5 = 0. The
erroneous behavior of the SIA-I algorithm disappears with decreasipgct ratio. For instance, in the case

wheree = % the SIA-I converges everywhere in the solution domain and shows agegment with the
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Figure 3.16: Comparison of the horizontal deformational surface velocitigs(teft column),v, (right column) for the higher-
order model HOM (first row), our SIA-I output (middle row) and thieaiow-Ice Approximation (bottom row), for the Dronning
Maud Land simulation.
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numerical full-Stokes solution.

We also performed a test of the SIA-I approach on more realistic data Banning Maud Land,
Antarctica, which is a Stokes-flow problem characterized by stronglynmigeneous Dirichlet boundary
conditions for velocity and the temperature dependence of ice viscosigycdmparison with output from
a higher-order model again shows a satisfactory performance of faeadgorithm, both in accuracy and
computational effectiveness.



Chapter 4

Evolutionary numerical ice-sheet model
based on the SIA-I algorithm

4.1 Introduction

So far we have been dealing with the steady-state Stokes problem fonicdt8solution was found by a
novel computational algorithm (SIA-1) and we ran several tests insgeitsiperformance in comparison to
various higher-order or full-Stokes methods.

For more realistic modeling, the steady-state scenario will now be abandondexdtransient case allow-
ing temporal changes in the glacier geometry that captures the evolutiongiathier will be considered in
this section. The processes changing the glacier geometry are both fdmesaccumulation and ablation
and the deformational flow. As we have already seen in the scaling andheisroude number in the ice
equation of motion (the balance of linear momentum) has a negligible value. Thissalbto represent
the time evolution of ice-flow as a sequence of steady-state Stokes problémsvolution is driven by
updating the surface ice geometry, temperature and possibly also thecaatent distribution. This means
solving the corresponding kinematic equations for the boundary ssrtagether with the heat and mass
transport equations.

We will start with an isothermal case, i.e. when the thermal equation is noideved. We assume
purely cold-ice conditions, however, with possible basal sliding. Undeaisumption that the glacier base
does not evolve, this setting requires us to solve the kinematic condition fénetheurface evolution and,
in general, also to track the glacier margin. At a later stage, we will includeghetransport equation and
inspect the role of the thermo-mechanical coupling.

We start with a brief summary of the most essential components of our nuinedm developed for
ice sheet evolution modeling. However, particular parts will be discussatbie detail in the following
sections.

The fundamental part of the model is the SIA-I algorithm, which, for amgice sheet geometry, com-
putes the induced stress field together with the deformational and basaf) slelocities. The solution
of this problem is strongly coupled with the temperature conditions inside theegthge to the relatively
strong temperature-dependence of ice viscosity. The computed veloldtytdigether with the independent
surface climatological inputs, that is the accumulation and ablation rates, dlowpdating the free sur-
face geometry at each time by solving the kinematic equation for the surfiacgdio. In turn, the updated
geometry serves then as input data for a new steady-state Stokes proilieim,is solved by the SIA-I

77
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Figure 4.1: Example of a computational grid with successive increased giid-gensification by a factor of 2.

algorithm, and, in addition, for the heat-transport equation.

Now, we will discuss the numerical implementation of the whole method. This d¢erafisime and
spatial discretisations, the numerical solution of the kinematic equation, toattiénice sheet margin and
solving the heat transport equation.

4.2 Spatial discretisation by finite difference grid

The SIA-I algorithm requires that, for spatially discretised velocity, tentpegaand stress fields, partial
spatial derivatives of these fields and a definite integral along the Vartioedinate are numerically com-
puted. For this reason, we apply the finite-difference discretisation iazhnpartial spatial derivatives are
approximated by finite differences of a chosen accuracy and integiatigpproximated by a weighted
summation of the nodal values of integrated field variable.

In order to achieve a better resolution in areas of a particular interest, wenmapt a non-regular grid
which can be locally densified in the following way. In the horizontal directjome start with a regular
grid with a choser\z; andAx4 spacing and withV; x Ns nodes. This grid can then be locally densified
by a factor of 2 (see Fig. 4.1) in order to obtain a better resolution in afeaparticular interest. This
densification can be performed always only in such a way that the neigbbvegions have either the same
grid-point densities or their grid-point densities differ by a factor of RisTule helps to avoid the problems
with data projection and interpolation between the grids of different gridtgensities.
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Figure 4.2: Example of the "stretch” transformation of the computation domait: -thee original shape, right - the stretched shape
with uniform vertical node spacing.

In the vertical direction, a traditional approach in glaciology uses strétcberdinates (see Appendix
C), which is a non-orthogonal mapping that "stretches” the vertical dimes®f the glacier to a layer of
uniform height (Fig. 4.2). This simplification results, however, in more coraf#it expressions for partial
spatial derivatives of field variables. The resulting shape with a unifbickness is divided equidistantly
in the stretched coordinates infé; layers. We do not perform a local grid densification in the vertical
direction. Each node of the computational grid contains all the field variablesce, no staggered grid
is implemented a-priori, as we have done, for instance, in the case of a simgét foothe ISMIP-HOM
experiment A. However, a staggered-grid approach can be implementetéipolating appropriate nodal
values during the computation. It turns out that the computational perfaeram stability of the model
without applying the staggered-grid approach is satisfactory for all thieehrans.

4.3 Updating geometry by solving kinematic equation

The kinematic equation (1.10) for free surface movement is an example afisptrt equation, which, in
general, is of the form

dp(Z,1)
ot

+ U - gradp(Z,t) = f, (4.1)
©(%,t0) = po(T) , (4.2)

where a required quantity moves with velocityy and f is a source term. A numerical solution of this
equation is known to be a difficult problem, because most numerical scheamesa tendency to induce
undesired numerical oscillations. In the case of the SIA or the SIA-laggbres, where = Fj is the
free-surface function, such numerical oscillations induce destruasigilations in the velocity field as the
surface-topography gradient is the main driving force for velocitieposgitive feedback from velocities as
a result of surface topography speeds up the failure of computations.

To avoid this, we adopted two approaches that handle the problem ofilitgiata manner satisfactory
for our purposes. The first one is a time-explicit method using special icahechemes to evaluate the
gradient operator in a way that no oscillations are produced by it, as btlgeaCourant-Friedrichs-Lewy
(CFL) condition is satisfied. The second is an implicit method possessingsnsetfthing property similar
to the traditional shallow ice approach with respect to free-surface témolu
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4.3.1 Time-explicit approach

The equation (4.1) may be expressed even more generally as

9p(7,1)
ot

= L(p(Z,1)),
o(Z,t0) = ¢o(Z) , (4.3)
wherelL is a spatial-differential operator, which may be already discretised.rFexg@licit time scheme, we

approximate the time derivative by a 3rd order Runge-Kutta scheme. Eqat8) at the(n + 1)th time
level reads as

gMtt = P ALL(e")

AN 1 n At n AT

e = "+ (L) + L 1) (4.4)
n n At n An+1 NG

"t = + 5 (LW ) +4L(¢""2) + L($ *1)) ,

wherep™ := p(to+(n—1)At), andAt is the time step. Keeping in mind that= f — - gradyp in our case,
assuming that the source teyfris given and remembering that velocityat thenth time instant is obtained
by the SIA-I algorithm, we only need to discretigeadyp in a convenient way. Note that equation (4.1) is a
hyperbolic partial differential equation, which is known to be problematiemwumerically implementing

it as most of the standard discretisation schemes (e.g. Quarteroni & \@dl#Lsuffer from undesired
phenomena such as oscillations, geometrical spreading, and so ordemt@iavoid such a behavior, we
choose a discretisation gfady by the so-called Essentially Non-Oscillatory (ENO) schemes.

e Essentially Non-Oscillatory (ENO) schemes
Here we briefly summarize the basic properties and construction of the ENgIngs following the
comprehensive paper by Shu (1998).

The ENO schemes are polynomial interpolation schemes, for which the itggomostencil is not
prescribed a-priori, but it is chosen adaptively for each grid poicb@ting to the data values in the
neighborhood of this point and choosing automatically the locally smootheasnta This avoids
crossing a discontinuity in the interpolation procedure, as its crossing teadsoscillatory behav-
ior of the interpolated function in the vicinity of the discontinuity. The ENO scheare widely
used in applications such as aero-acustics, or turbulence simulationsgirab@ applications where
discontinuities (shocks) of the field variables appear and propagate.

For a 1D function, the ENO interpolation procedure may be describedlas$o ConsiderV equally

spaced data points,, ... xy, z; = x1 + (i — 1)Az, holding valueg, ..., yn, whereyi = y(a;)
for a smooth functiony(x). By I; we denote the intervdl, = (xz,_ N ) wherez; 1 = L;”“

The aim is to find the so-called numerical fluxes, that is functlons

U1 = y;r%(yi_,«, s Yis) s (4.5)

N[

Z);’__ = gj__%(yl—’la . e 7yi+s) 3 (46)

wl=

such that the flux difference approximates the derivajiye) to k-th order accuracy:

2 — ol (x;) + O(Axk) , 4.7)
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whereAz; := z;, 1 —z; 1. Consider an auxiliary functioh(z) such that
1y
= — h(§) d§ . 4.8
v =5, [ mee @9)
Then n -y )
T, 1) —n(x,_1
Y (@) = —2 2L i=1,...,N, (4.9)
Az,

and the sought after numerical fluxes may be obtained by a sufficientlyondgr approximation of
the functionk(z). Since it is difficult to obtain the functioh(z) from the integral equation (4.8), the
following trick based on a primitive function is applied. LEtx) be a primitive function ofi(x)

H(z) = / " e (4.10)

— 00

and letH (z) be evaluated at poimpr%:

Tl i j+% i
H(z;, 1) =/ Th©de= ) / ) de =Y Azjy;, (4.12)
- j=—00 ¥4 j=1
wherey; is defined equal t®, y; = 0, outside the interva{l,..., N}. Having the point values

H(miJr%) of H(z), the numerical fluxes are obtained by constructing a polynomial approximatio
of an appropriate order off () using vaIuesH(xH%) and differentiating this approximation with
respect tar. Note that for a chosen order of approximation, there is a freedom inhthieec of the
stencil, i.e. the set of points used for the polynomial reconstruction.

When the procedure is completed, the flux for a stefEil,, ..., I;+s} wherer + s+ 1 = k, is
expressed as

k—1

@;é = CriYi—r+j » (4.12)
7=0
k—1

g;r_% = CrijlYi—r+j 5 (4.13)
j=0

where the constants;, ¢,; can be computed explicitly. Their table is given in Shu (1998).

When a polynomial interpolation scheme is constructed, the stencil is usuadly feded, which
means that the coefficient is fixed for all points, i.e. the shape of the stencil is the samexample
is a central fourth-order reconstruction of the flux takery as

2

1 7 7 1
LT I R S 4.14
ler% 12yz 1+ 12yz + 12yz+1 12yz+2 ( )

Now if the functiony(z) is only piecewise smooth, such as a step function, the approximation property
in the vicinity of the jump is no longer valid. For fixed stencil schemes, we th&irobscillations of

the interpolated function in the vicinity of the jump. A way to avoid this so-called &iBbhenomena

is to choose the stencil adaptively according to the data character. Korseihemes, the choice of

the stencil is governed by a certain smoothness request.
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First, the Newton divided differences are defined recursively by

yz[ﬂﬁz] = Y, (4.15)
YilTiv1, - Tig]l — yilTi, -, Tig 1]

yi[SCZ',...,:L‘iJrj] = e . (416)
i+J %

The ENO piecewise polynomial reconstruction of at most degreel for the intervall; will be
constructed by the following algorithm.

o Compute the divided differences for degrees & tesing (4.15).

o Start with a one-point stencil
S1(1) =A{1L;} (4.17)

o Forl =2,...,k— 1the stencil
Si(d) ={L,.... Ljsi—1} (4.18)
is modified such that one of the two neighboring céjls;, I;., is added to the stencil. If
ylzj—1, - @]l <yl @]l (4.19)
add the celll;_; to the stencilS; and redefine it as
St (@) = {I—1,.. ., L1}, (4.20)
else add the cell; |, to the stencilS; and redefine it as
Sip1(8) ={I;, ..., Iju}. (4.21)

o For the final stencilS (i) = {Li—,,..., Liys}, withr + s + 1 = k, a Lagrange interpolation
polynomial is constructed. After differentiation with respect:ta polynomialp(z) of at most
degree: — 1 in I; is obtained

— k k
_ LA Zl:o’l;ém quo’q7ém7l (x B xi_r‘i‘q_%)
pi(x) = Z Uz'frJrjAmifrJrj T (4.22)
m=0 j=0 l:O,lim(mi7T+m7% - xifrJrlf%)
Finally, the numerical fluxj; 1 reads as
U = PilEgl), (4.23)
gt = i), (4.24)
2 2
or
k—1
Ur = CriYfi—rtj » (4.25)
2 =0
k—1
Z)j__ = Erjyi—r—i-j . (426)

<.
Il
o
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Comparing (4.22) and (4.25)-(4.26), we obtain explicit expressionthéocoefficients:,; and

Erj
k(o 11 (« 1)
1=0,1£m 11q=0,g2m | \Tit+1 = Lioriq
Crj = Aliry Z o _2 2 @2
l= Ol7ém( i— ’I‘+m—% Ly T+l——)
~ l 0,l#m tq=0,q#m |\ Ti— L i—rtq—2
Crj = Aricrej ) ; 2 (4.28)
II (z 1 — 1)
m=0 = Olgém i—r+m—3 1—7"+l—5

The expressions (4.22), (4.27) and (4.28) are valid for a non-umifwid, which will be applied
in the vicinity of the boundaries with different grid-point densities. Theuaacy estimates of
interpolation then differ from the uniform-grid case and are, in genexaisev

We now return to the discretisation of the tetimgradp from (4.1). We will consider only the part
Uwa , since they-counterpart can be discretised in an analogous way. In order to abistizble

numerical scheme, upwinding is used, that is, using spatial discretisatisadbgccording to the
direction of the propagation speed.

o If vy(z;) > 0, we use the ENO reconstruction of flux,é§+1 andg. , and estimate
i+5 =3

) Pirl P
v 0 (@) 2= v () 22, (4.29)
g xi—i—l — L1
2 2
whereg” , is defined by
2
D D 4.30
QDZ_% w(z—l)-ﬁ-% ( )
o If v.(z;) < 0, we use the ENO reconstruction of fluxg$ , andg™ | and estimate
5t S+
0 Yirl ~Pi1
Vg —(p(xl) ~ vy () 2 z (4.31)
oz Tyl — @ 1
2 2
wherecﬁ;jrl is defined by
2
pr =g 4.32
SOer% ('0(1—0—1)—% ( )

With the use of the ENO flux reconstruction and the Runge-Kutta time-explicitetisation, the prob-
lem of the free-surface evolution is resolved, provided that the icet ixéends over the whole compu-
tational domain and the deglaciated regions are represented by a thin tagerad a small prescribed
thickness. This traditional and useful trick has the great advantagéhthratis no need not to "switch on
and off” the computational nodes when they appear in and out of the gld@aea. An obvious price paid

for that is reduced computational effectiveness, since all nodestwe éequations solved in them) all the
time.

Nevertheless, the problem of determining and tracking the ice sheet margiheoame important in
some situations. So far, we have been dealing only with the grounded ietsshe. glaciers being in
contact with the underlying bedrock, but, in nature, ice sheets typicallytaidjourney at ocean shores
and as the ice starts floating, the flow regime and boundary conditions draltyatitange. Neither the SIA,
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nor SIA-I approaches are convenient anymore in these transitiomsegind a different type of scaling has
to be adopted. This leads typically to some kind of Shallow-Shelf Approxima8&a\j, such as in Baral et
al. (2001). Itis therefore an important, but non-trivial task to track tieengded-floating ice transition line
and capture its movement properly. In order to do this, we implement (only iimtleeexplicit formalism) a
possible way of tracking the ice sheet extent by the technique of a leviirgtion, which we now briefly
summarize following the paper by Peng et al. (2000).

e Level set function approach: Tracking the ice sheet extent.

The level-set approach is based on the following idea. Our aim is to descrifbvement of a closed
curveI'(t) in R?, for instance, wherd'(¢) is the margin of an ice sheet. LEX(t) be the region
enclosed by the cunié(t). We introduce the so-called level-set functi®(z, t) by the conditions

>0 in Q(t)
O(Z,t) : { =0 onI'(t),
<0 in R2\ Q(t) .

Given ®(Z,t), the position of the curv&(t) can be tracked by finding the zero contourddfz, ¢),
that is the set of points i? satisfying®(z,¢) = 0. The problem of the movement of the curve
I'(t) is thus transformed into the problem of the evolution of the level-set funaigh¢). The
corresponding transport equation is obtained by differentiating the nel&tid, ¢) = 0, holding for
all # € T'(¢), with respect to time, which gives

0d(Z,t)
ot

where is the velocity of the material particles dt{t). This equation can be extended to the whole
R?, provided the velocity field’ is extended outside the curve. This can be done rather arbitrarily,
as the velocityt’ has a specific physical meaning only for the particle’6n. If T'(¢) is a material
curve dragged in a velocity field, it is natural to define the velocity of thdleseb (%, t) by 7. In the
case thaf’(¢) represents a boundary of a material domain (such as a glacier), the inagkrtity is
well defined only in the domaifd(¢), and it needs to be extended outside this domain. The freedom
in the extension allows us to choose the velocity out§lde such that it yields the best numerical
behavior of the functionb. It is, in particular, convenient that the level-set function resembles a
distance function fronf'() (signed positive if2(¢) and negative outsid@(t)), that is when

lgrad®| =1, (4.34)

+ U - grad®(Z,t) =0, Zel(t), (4.33)

at least, in the vicinity of. The velocity extension can be done such that (4.34) remains approxi-
mately satisfied for some period of the evolutionigfafter which, however, the functioh has to be
reinitialized. The process of reinitialization has to be performed in such veyhh zero contour of

®, that is the position oF (¢), is not affected by the procedure.

Since the information about the positionltft) is maintained only by the zero contour of the function
®, itis unnecessary to compute the evolutiorbah R2, but rather it is sufficient to localize the non-
trivial support of® in a neighborhood of (¢) defined by a small prescribed distance frbfa). This
results in the so-called local level-set approach (Peng et al., 20000 waitbe characterized by the
following five steps:

o Initialize
Initialize the level-set functio®(Z,¢ = 0) as the signed distance from the initial position of
['(t = 0) (sign positive insidé(t), negative outsid€(t)).



4.3. UPDATING GEOMETRY BY SOLVING KINEMATIC EQUATION 85

o Compute velocity
Calculate the material velocity on I'(¢) by solving the physical problem associated with the
movement of particles ofi(¢) (in our case the Stokes problem for ice flow).

o Extend velocity
Provided the material velocity is not well-defined everywhere, extend the velocity figldn
the neighborhood tubg, with a radiusy

T, = {7 |0 )] < 7} - (4.35)

o Advance
Solve the transport equation (4.33) to update the level-set function.
o Reinitialize
Apply the reinitialization scheme on the tubg, (7, C N,), wherelV, is defined by

Ny = {Z:|®(Z+ )| <~ for some |y] < Az}. (4.36)

We must discuss the numerical implementation of these steps. The first oreeghtétirward to do.
The second one has been discussed for the situation of resolving tfiewgeroblem by the SIA-I
algorithm in Chapter 3. The numerical implementation of the last three steps fillapproach
given in Peng et al. (2000).

Velocity extension
For an arbitrary (scalar) quantity defined on the curvE(t), a possible way to extend it outside the
curvel'(¢) is by solving the following partial differential equation (Peng et al., 2000)

0q(%, 1) grad® .
BHACT rad — 0 4.37
. . qr at F(t)
¢(7,0) = { 0 elsewhere ’ (4.38)
with

-1 ifd <0

S@={0 =0

1 if® >0

Itis a transport (hyperbolic) equation with an artificial "velocity{®) Iéiggll which, if @ is a signed

distance function, is normal to the curl/ét) and points outwards df on both sides. Note that the
equation (4.37) is a special type of transport equation (4.3), for whichwst implementation scheme
was introduced above in this section by utilizing the ENO schemes. Becatise fséedom in the
velocity extension, the numerical accuracy for (4.37) is not crucialisstéad of the ENO approach,
a simple upwind scheme is applied, giving already a sufficient accurgprokimatingS(®) by
_®
V&2 + 52
for a small constant, and denoting the nodal values &f(®) by s; ;, we compute the normal vector

grad® hy central differencing and denote its nodal valuesihy = (n%,n%). Then, we

Ss(®) = (4.39)

o=
. [[grad®|
discretise (4.37) as follows

ntl _ n Cox+ % —di-1,5 e =i+l — Qi
%G =iy — AT{(SW n; ;) T Ar + (8,515 ;) A

ooy n+%ig i1 oy =g+ — iy
+  (sijn; ;) Ay + (i ni ;) Ay } ) (4.40)
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where
()" := max(x,0) , ()™ := min(z,0). (4.41)

Advancing the level set

The transport equation for the level-set functibfx, ¢) given in (4.33) is discretised in the same way
as the free-surface kinematic equation (4.1) and (4.2). Namely, the timatieziis treated by the
Runge-Kutta scheme of the 3rd order according to (4.4), and the spaiiattisation of the term

v - grad® is performed by constructing the upwind ENO reconstruction of the nundlicas ac-
cording to (4.29)-(4.32). The velocity fieldin (4.33) is taken after the extension to be defined at
least in the tubd’, surrounding the zero level-set contdu).

Reinitialization

It is convenient to keep the level-set functi®nclose to a signed distance function in the vicinity of
I'(t), since then the normal vector ig¢) is given as a gradient of the level-set functidn Since

® deforms during the time evolution, it is necessary, after a few time steps,abdde a signed
distance function again. A possible way of doing this, without affecting ¢éne zontour ofb during

its resetting, consists of solving an evolutionary partial differential equdtioan auxiliary function
d(z,T) in the form

ad
==+ 55(do)([lgrad d| = 1) =0, (4.42)

or
d(z,0) = do(z) = ®(z,t), (4.43)
whereS;(d) approximates the Heaviside step function by
d
VA2 +82Dd?’
where the ternD d approximategrad d andé is a small constant. This approximation differs from
that given in Peng et al. (2000), but it has better numerical perforenfanthe testing examples.

The steady-state solutiaf{x) has the desired property, naméyrad d|| = 1, and, atl’(¢), d(x) =
®(xz,t). Thus, the zero contour @fis the same as db(x, t). We therefore take for the resetting of
®. The numerical implementation is done by the following scheme for updating tted malues of
d, which are denoted hy;;:

Ss(d) =

(4.44)

dtt =iy — Arsl (VAT (B F (CTF (D)2 1)

— Ars; (VA P+ (B (C P+ (DF2-1) (4.45)

wheres;; are nodal values of;(d) defined by (4.44), withD d approximated by a central finite-
difference approximation gfrad d, and

4 dij‘ - di‘flj 7 (4.46)
T — Ti—1
disr; — di

B = 24 (4.47)
Titl — X4
di; — dij

C = LUl (4.48)
Yj —Yj—1

p = dunzdy (4.49)

Yji+1 — Y5
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Figure 4.3: The initial shape of the cross with the initial level-set function (left)etill of the level-set function (middle) and the
rigid-body velocity field (right).
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Figure 4.4: A smooth extension of the component of velocity’ to the vicinity of the cross margin (right). Compare with
before extension (left).

where(z)* are given by (4.41). The new local level-set is set as a restriction efalaéiond:
® = max(—v, min(v,d)) . (4.50)

Finally, the tubesV,, andT’, are updated according to their definitions (4.36) and (4.35).

We demonstrate the whole time-explicit kinematic approach by visualizing it fonples example of
a cross that rotates with a rigid-body material velocity and pefiod he initial shape, the initial level-set
function and the initial velocity field for this example are shown in Fig. 4.3. Htersion of the rotational
velocity 7, defined originally only for the inner nodes whebe> 0, is shown for they,,-component in Fig.
4.4. In Fig. 4.5, we plot the initial shape of the cross, the shape #ftand afterL . We may observe that
the original shape is smoothed during the time evolution, as the cornerdentedfthe most. An important
observation is that no oscillations occur as the cross moves, which, as neehbefore, is crucial with
respect to the SIA-I approach.

Figures 4.6-4.8 show the results for a similar numerical example as for tb®, tnat now for a gaussian
bell moving with a translational velocity. We can again observe very minarggsin the shape of the bell
with again no oscillations in the bell's shape occurring when the bell moves.
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YV oo

Figure 4.5: The initial shape (left), aftef (middle) and afte (right).

& B

Figure 4.6: The initial shape of the gaussian bell with the initial level-set functidt) (ke detail of the level-set function (middle)
and the rigid-body velocity field (right).
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Figure 4.7: A smooth extension of the, velocity component to the vicinity of the glacier margin (right) and befortersion
(left).
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Figure 4.8: The gaussian bell movement from the initial (left) to the final (righgifons.
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4.3.2 Time-implicit method.

When we move to a problem where surface accumulation is the dominantgféocifiee-surface evolution,
the time-explicit approach tends to become unstable and an implicit approachasattopted, which can
be implemented in the following way.

Let us recall that we are dealing with the free surface evolution equati@)( which can be appro-
ximated in the sense of SIA by (2.164) (for Cartesian coordinates). Eaxplicit description of the free
surface Fs := Z — f4(Z,y), and a purely cold iceif = 0), it takes the following form:

f. 2\ Ofs 2\ Ofs . .

G HEC RO GE B RO G B F0) = A). (4.51)

whered is the surface velocity. The SIA is only considered when evaluating the {étnﬂr €2(), by ap-
proximating it by unity. Since this term originally multiplies the accumulatién(4.51) can be considered
as the exact equation even in "non-shallow” regions, provided that thigpiraation factor is included in
a*. Assuming that basal melting is not present’(= 0), and applying the frozen-bed conditions, & 0),
equation (4.51), with use of (2.60) and (2.176), is traditionally rewritten as

afs a fs ~ 5 ~ a ,fs B B 5 s
o tar ) mee e g [ae e —a (4.52)

We must also remember that, for Cartesian coordinates, the SIA providessalytical expressions for
the velocity field (e.g. Greve (1997)), which, provided that no-slip bamaditions are applied, read as

~ ~ N\ 2 ~\ 2 -
~ (3 _ afs afs afs ? AT\ £ _ 31\3 75/
Ba(:2) = —2K ((&) +<ag>) | ADE=E (4.53)
of, ((07\" (i )"\ 7
S s s s A(TNFf _ 3\3 g5/
Ty(, 2) 2K 95 ((850) + <8§> ) » A(T)(fs — 2')° dz". (4.54)
These expressions allows us to rewrite equation (4.52) as
Ofs 0 ([H0fs\ _ 0 (0fs) _ .

with a diffusivity D defined by

- 2 ~ 2 7 =
- Ofs ofs L SIN3 g=it 3=t
D(-):=2K ((ag) + (ag) )/b - AT)(fs — 2")3az" dz'. (4.56)

Provided that, in a numerical scheme, the diffusivity is computed from theque time-step, (4.55) be-
comes a parabolic equation for the free-surface funcfigrpossessing much better numerical properties
than the original hyperbolic transport equation (4.51).

Evenifthe SIAis not applied, the evolution equation (4.51) may still be tramsfd to (4.55). Following
Pattyn (2003), we introduce artificial diffusivities:

i I 5, d i fs 5. d3!
j j Y

D=t =7 Dy ="t 1"

Ofs Ofs

B Bh

(4.57)
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Then, (4.52) reads as

0fs = 0f\ 0[5 0f) .
~ | D, ~ D =a°. 458
8t+8:1:< a:z>+ag<yag o (4.58)

We then discretise this equation as follows:
rn+1 n rn—+1 rn+1 rn+1 rn+1
fsz,]_ s 1,5 + Dn fsz—l—l,]_ s 1,j ~n ) fsz,j f si—1,5
At ity (Aa:) T i=5.] (Az)?
I T /I f!‘f} et

T Dy 17J+2 (Ay) - Dy 1, — (Ay) = (CL )i,jv (459)

where thei, j subscripts and superscriptienote the nodal values and the value at time stepspectively.
We thus see that the linear terms are expressed implicitly in time, whereas theeaowiffusivities are
expressed explicitly in time. The diffusivities at midpoints are defined by

~ Dy ix1 i+ D, i

Dac ikl = 2 ’ D

o Dyigm 4 Dy
ROV 9 :

(4.60)

The semi-implicit equation (4.59) results in a band sparse system of equatiicis we store in a sparse
storage mode as described in Press (1992). Its solution is found by ativéesolver taken from Ralph
Greve’s SICOPOLIS code (http://sicopolis.greveweb.net). This soldgites a solutior of the system of
equationsAx = b, by a scheme

=7 4 wD b — AT, (4.61)

where a relaxation parameteiis typicallyw € (0, 1), andD the diagonal of matriX\. This easy numerical
technique is sufficient, because of a good initial guess of the solutiontilemrevious time-step. There
is no necessity to improve it by a more advanced iterative solution technigheasuthe SOR method or
Gauss-Seidel (e.g. Press (1992)).

4.4 Numerical tests

In this section, we present results and performance tests of the evohytimmaerical model described in
the previous section. The first is again taken from the ISMIP-HOM intaparison and concerns finding
the steady-state profile of ice flow for ice treated as a Newtonian fluid. Weetktend this experiment for
ice flow with non-linear rheology and compare the outputs of our model withitaflement model. The
third experiment deals with the flow of an axisymmetric ice sheet under its owghtveThe results are

again compared with a finite-element simulation. For all three experiments, thexptieit scheme of the

evolution equation is applied. Over the whole computational domain, a minimaermice thickness is

prescribed in order to avoid the necessity of tracking the glacier margin.

4.4.1 |ISMIP-HOM experiment F

The setting of the ISMIP-HOM experiment F is as follows (Pattyn, 2008)icarslab, with an initially flat
surface slope 08°, is flowing over a parallel inclined bed perturbed by a Gaussian bump ha@tizontal
dimensions of the slab aife,. x Lg., with L, = 10°m, and the mean ice thicknessHs. = 10°m. The
coordinate system is chosen such thatithe y plane is parallel with the initial surfacg,, x increases
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downslope, and the-axis is perpendicular to the initial surface, directed upwards. In sugfstem, we
have

HSC 2 2
Lo 0) =0, fymyt) = —He + 0 o (—“’” Y ) , 4.62)

with o = 10 H,, = 10*m. Periodic boundary conditions on velocity are applied at the sides of thpwo
tational domain, i.e.

Vt: Vo € (—Lge/2,Ls./2),Vz € (fp(+), fs(+)) : U(x, —Lge/2,2) = U(x,Lsc/2,2), (4.63)
Vt: Yy € (—Lge/2,Lsc/2),Vz € (fo(:), fs(*)) : U(—Lsc/2,y,2) = U(Lse/2,y,2). (4.64)

The flow exponent in rheology (1.17) is choser= 1, which corresponds to Newtonian (linear) rheology.
Ice is considered isothermal with the ice-flow parametér) = A = 2.140373 x 10~7 Pa~la~!. The

sliding law (1.68) is considered with
1

2 _
p = cAHg.’
and two cases are distinguished= 0 (no-slip conditions) and = 1 (sliding).

(4.65)

e ¢ =0(noslip)
The results for this case are shown in Fig. 4.9, where the panel in thefirshows the contour of the
steady-state surface elevation and surface velocity magnitude. The midbltom panels show
the SIA-I solution, which is compared with the published results of the ISMIOM experiment F.
The full-Stokes solutions and the higher-order models are plotted with lirepaints, respectively,
at an intersection with plarg= 0. Note that the SIA-I solution is closer to the full-Stokes solutions
than the higher-order models.

e ¢ =1 (sliding)
The results for this case are shown in Fig. 4.10. We can see the basatieslare of the same
order as the deformational velocities and the SIA-I solution agrees {esglg with the full-Stokes
solutions, and, it is of a significantly higher accuracy than most of the bijber-order models.

Numerical performance

The computations for both casess 0 andc = 1, were performed for a model resolutiéf x 60 x 40
and the solution was considered as steady state when the surface @ofiletichanged within a specified
tolerance (maximal relative change of thickness of 10~°) for two successive time steps. Approximately
200 time-steps (1 step = 1 year) were needed to reach steady-state. Eatbokte@pproximately3s on
an Intel Core i7 Quad-Core 2.6x4GHz. This is considerably faster trafuthStokes FEM model (ogal
in Fig. 4.9 and 4.10), where time costs per time step vary between 2 and 0.5 @r&J(kee Fig. 11 in
Gagliardini, 2008).

4.4.2 Transient simulation with non-linear rheology.

The only reason why the ISMIP-HOM experiment F was set up for lineeology was to reduce compu-
tational demands, as they increase substantially when transient simulatons anstead of steady-state
ones. The computational costs of the SIA-I algorithm are, however,dghhracter of the technique rather
independent of the rheology used. This allows us to perform an evauichSMIP-HOM - like” ex-
periment, in which a steady-state surface elevation is found by runningsidra simulation, but with a
non-linear rheology, which is more appropriate for the description oféteior.



92

CHAPTER 4. EVOLUTIONARY NUMERICAL ICE-SHEET MODEL BASEI®N THE SIA-I

ALGORITHM
v (mahat fg
50
40
30 1
20 1
10 1
> 0 >
_lo .
_20 .
-30 ]
_40 .
_50 T T 1T 1 T T 7 _50 L L DL LA L LA LA IR B B
-50-40-30-20-10 0 10 20 30 40 50 -50-40-30-20-10 0 10 20 30 40 50
X
%0 ‘ cmal (FS)—— % T gece, cmal (FS)——
cma2 (HO) N cma2 (HO)
40 1 fpal (HO) x 9 &y » 1 fpal (HO) x
e Ty i
r x 3% | mbr
30t 1 Mk (HO) 9T A / mtk1 (HO)
20 + g SIA-I" e 96| «\i / g SIA-L e
© ® i.
E 10t 1 @ o5t \ 1
- £
0r f S 94r 1
-10 | 1 93 f ) x 1
201 ] 92t ]
.30 ‘ ‘ ‘ ‘ ‘ o1 ‘ ‘ ‘ ‘ ‘
60 -40  -20 0 20 40 60 60 -40  -20 0 20 40 60
X X
1 ‘ 0.6
x X cmal (FS)—— cmal (FS)——
o8l | cma2 (HO) cma2 (HO)
: % fpal (HO) x fpal (HO) x
x fsal (HO) 0.4 fsal (HO)
0.6 - 1 mbrl (HO) x mbrl (HO)
x mtk1 (HO) ;/\ mtk1 (HO)
04l 1 ogal (FS)-ww-= 02k # o 1 ogal (FS)-ww-=
o x SIA-IT . ) » SIA-l
B o2} x 1 hid Jv&? o et
s x o o 8 i T
E 0 e ] E ’
> x x XX N
02f 1 02f 1
04 f . % 1
x 04 1
06| . X ,
08 ‘ ‘ ‘ ‘ ‘ 06 ‘ ‘ ‘ ‘ ‘
60  -40  -20 0 20 40 60 60 -40 20 0 20 40 60
X X

Figure 4.9: The computed steady-state surface elevation prafien) (top left) and surface-velocity magnitugig (m a~') (top
right). Below we see the steady-state surface elevafioim m and the steady-state surface velocity components, andv.
(ma~') obtained by the SIA-I solver (red points), the ISMIP-HOM F solutionstf@ case: = 0 (no-slip at the base ) by full-
Stokes (red and blue lines) and higher-order approximations (ddis)results are shown at the intersection of the computational
domain with the plang = 0. Abbreviations used: FS = full Stokes, HO = higher-order approximatio
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Figure 4.10: As for Fig. 4.9 but for = 1, i.e. basal sliding is included.
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The model was set up as follows. We chose a geometry similar to the ISMIR-edperiment A-
setting, i.e square-base ice slab of dizex L., Ls. = 80 km, with an initially flat surface flowing over an
inclined parallel bed perturbed by sinusoidal bumps. The upper and Bw#ces at the beginning of the
simulation are given (im) by

fs(z,y) = —ztana, a=0.5° (4.66)
fo(z,y) = fs(x,y) — 1000 4 300 sin(wz) sin(wy) ,
(4.67)
with
o
“ 7 L
At the sides, the periodic boundary conditions are prescribed:
Vi Vo e <07LSC>7VZ € <fb()afs()> : 27(377072) = 77(51;7Lsc72) ) (4.68)
Vit vy € <07LSC>7VZ € <fb(>7fs()> : 17(073/72) = H(LSCJ/az) . (469)

In addition, no-slip and no traction were prescribed at the glacier bethangbper free surface, respectively.
The rheology is described by Glen’s flow law (1.17). Our model was mtil the upper surface was
moving not more than a specified tolerance (the same as for the ISMIPeFiragmt above). Such a stage,
considered as steady state, was reached after approxirdatetiyne-steps (1 time-step = 1 year).

To check our simulations, we implemented this model setting into the open-sauiteeefement code
Elmer (http://www.csc.fi/fenglish/pages/elmer). Since the time demands for the ean+lireology given by
Glen’s flow law (1.17) are too large to run the whole transient simulation, wéred ourselves to compare
the SIA-I and full-Stokes FEM solutions only at several time instants. Fadr eBthese times we substituted
the SIA-I computed geometry into a steady-state finite-element simulation asdatauand obtained the
corresponding full-Stokes velocity field. This was compared with our Siélocities. In Fig. 4.11, we plot
the results for three snapshets= 50, 100, 200 years. The left panels show the surface undulation (in m),
the right panels compare the surface velocity magnitude, with the solid liné4ar&hd dotted lines for the
full-Stokes by Elmer. We can see a very good agreement between the teahwelocity fields, indicating
that our SIA-I solution of the steady-state surface profile is close to th&€tokes solution.

The time costs of the SIA-I solver do not differ from the ISMIP-HOM esipeent F, that is they are of
the order of seconds per a time-step, depend linearly on the model resdlutimber of nodes).

4.4.3 Axisymmetric ice-sheet spreading

In this numerical experiment, we compute the flow of an axisymmetric ice cap itadmvn weight. We
compare the SIA-I solution for several aspect-ratios with a finite-elemamsgient simulation by the Elmer
code.

The initial shape of the glacier is a spherical cap with maximum thickb@$m lying on a5 m thick
ice layer. The horizontal dimensions (diameter) of the studied domain aserlas 1 km, 2 km, 5 km
and 10 km, which corresponds to aspect ratics %0 % % 1—(1)0 Ice rheology is modelled by Glen’s
flow law rheology (1.17) for non-linear fluids. At the glacier bed, the stidew is prescribed by (1.68)
with 32 = 10° Paam~!. The upper surface is considered traction-free. The finite-elemerit faeshe
Elmer simulation is depicted in Fig. 4.12. In Fig. 4.13, we plot the surface pafdenputed by Elmer for
the full-Stokes model and compare them with the SIA-I results for the fquecgatios. The geometry is

scaled to unity and the given times are non-dimensional. The correspdirdmgteps differ according to
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fs(m), t=50a vimaYatf,t=50a

.0

Figure 4.11: The SIA-I computed surface elevation (left panels) and sparding velocity field (right panels). The full Stokes
velocities by FEM (dotted) are compared with the SIA-1 velocities (solid lii&e last row represents the steady-state solution.
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Figure 4.12: The triangular finite-element mesh for the full-Stokes simulationlimeE
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Figure 4.13: A comparison of the free surface profiles obtained by the FEdé &imer for the full-Stokes model and by our
SIA-I-based code, for several time snapshots and four aspax.ra

the aspect ratios, and afe = 0.1a, andAt = 1a, fore = %0 ande = % respectively, and\t = 100a,
fore = % ande = ﬁ A very satisfactory agreement between the finite-element full-Stokesutatign

and our results is observed even for the large aspect rati&o{%.

4.5 Heat-transport equation

If a more realistic case is to be considered, the effect of thermo-mechanigaling for ice flow cannot
be neglected, because of a strongly temperature-dependent viséagltg vemperature rate-facta(7),
see (1.21). It is therefore necessary to involve the heat-transpoatieq (1.28) into our model. For the
cold-ice model, we implement the shallow-ice version of the heat-transpeatieq, which, in Cartesian
coordinates, is given by (2.140). Rewriting this equation in stretchedlowies (Appendix C), we arrive



4.5. HEAT-TRANSPORT EQUATION 97

at

0T 9T N - or . aT
Cy <H2~ —H— (vxax’}-[—f-vyay?-[ @z-l-at’H) + 72 <@x+ N ~>>

ot a¢ 0z oy
8 (0T\ -0 . o . -
- Da—g <k8§> = 2CH* (612l + 62y (4.70)

This equation is discretised by a semi-implicit way. The implicit scheme is choséhdwertical deriva-
tives, all the remaining terms are discretised explicitly in time. This approaglisé@sa tri-diagonal system
of equations for eacty, j):

no ko AR no(fn k™ AL
el ik At i B”j’k ikt 3 |l (7:[71)2 B %k( igk+3 T i,5,k— é)
1,7,k+1 2A§ (A§)2 4,7,k 1,7 (Ag)
ot AT BR Rk AT .
fm1 i.g.k Ay _ 27 -
T " A T ez ) T ) Tk At (4.71)
where
ofyp = A (e H)E s — (0o + 00— (@A) (4.72)
D
Tk T T (4.73)
Cv ik
N2 n . _Tn Tn. —1n
'Y’Lnk — (HIL ) ﬁgz " i+1,5,k - i—1,5.k + ’[)nl " 1,j+1,k - i,j—1,k
5Js s3J 5J» 2Ax Y1), 2Ay
CH?. O =T o —on
+ _ 1,J (a_gz ik x 1,7,k+1 x 1,7,k—1 + &ZZ ik y 1,7,k+1 y 1,7,k 1> : (474)
v ik s 2A¢ 7> 2AE
and
- FPoit i — HE L —H
n i+1,5 bi—1,5 i+1,5 i—1,7
L— 4.75
(aIH)z,j,k AL + gk A7 ) ( )
- i —fno HE . — H
n i,7+1 bi,j—1 i,j+1 i,j—1
= 4.76
(ayH)z N 2Ay + fk 2Ay ) ( )
fgll. — 21,—.1 ¢ VISR Vil
a H _ 5] - 1,] + ] _ 1,] ) 477
( t ) 7,k A7 gk A7 ( )
At the upper free surface, temperature is prescribed as a bourafadifion:
e, =1 (4.78)

,7,N3 )

while at the base, the energy condition (2.208) is considered, whicmoftyasal meltings¢%, = 0), is
discretised as follows

. HP AL [ c, . . o
T’f;“; T{f;rll = 7% (qig;o + E(szvf:l + ayzv;l)iij) . (4.79)
i,5,1

The resultant set of tri-diagonal systems is solved bytrildag routine from Press (1992).
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Table 4.1: Values of physical parameters.

Symbol Constant Value Units
p Ice density 910 kg m~—3
g Gravitational acceleration 9.81 m s 2
qI¢° Geothermal heat flux 4.2 x 1072 W m—2
Coy Pressure dependence of melting temperatud&r008 x 10~8 K Pa~!
Cy Specific heat capacity of ice 2009 Jkg 1K1
k Thermal conductivity of ice 2.1 Wm ! K!

4.6 EISMINT benchmarks - effects of thermomechanical coupling

The performance of the heat-equation solver was checked in the compaith the EISMINT benchmark
experiments which contains examples for testing the thermo-mechanical @uploe-flow problem. In
all numerical experiments, two prognostic equations are solved: (i) Tdtettasport equation, and (ii) the
free-surface evolution resulting from ice deformation and surfacemactation and ablation. The nonlinear
rheology of ice is given by Glen’s flow law (1.17) with the rate factor of tepehdence (1.22). Ice is
assumed to be cold, i.e. its temperature is not allowed to exceed the pres#ing pwnt (1.48). For all
numerical experiments, the accumulation-ablation function and the surfapeitature are prescribed at
the free-surface. At the glacier base, the no-slip boundary conddiovefocity is assumed and a constant
geothermal heat flux is specified. No melting is taken into account, neither batie, nor inside the glacier.
The constants and parameters used are prescribed in Table 4.1. fHte siwcumulation—ablation function
% is given as a function of position (in ar!) as

S

a .
? = min[Mqz, Sp(Rep — \/(13 = Zsummit)? + (Y — Ysummit)?)] ; (4.80)

whereM,, .. IS the maximal accumulation rate afglis the gradient of the accumulation-ablation function
with respect to the distance from the glacier’'s summit. The accumulation-abfatiotion is positive in the
circle with the origin atz summit, Ysummit) @nd radiusk,; and it is negative outside this circle.

The surface temperature (in K) is parametrized as

T° = min + ST \/(1: - l'summit)2 + (y - ysummit)2 s (4-81)

whereT,,;, is the minimal surface air temperature afig is the gradient of surface air temperature with
horizontal distance.

The model domain is a squaté00km x 1500km with the summit located &trsummit, Ysummit) =
(750 km, 750 km). The model resolution df5 km is prescribed in both horizontal directions, iG. x 61
grid points in the horizontal plane and 61 layers in vertical. The bedrocktisnfleaning that the effect of
isostasy is not considered. As all the models in the intercomparison aregthedianodels, we perform
only the first iteration of the SIA-I algorithm, resulting in the solution in the ShalloevApproximation.

e EISMINT experiment A.
In this experiment, an equilibrium shape is sought, if we start from initially iee-Eonditions on a
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flat bedrock topography with the climatic forcing described by

Mpmee = 05ma™!,
S, = 102ma tkm™!,
Ry = 450km,

Trin = 238.15K,
Sp = 1.67x107?2Kkm™!.

The temperature dependence of the rheology (1.22) is specified by

3.61 x 1071 Pa=3 57! if T* < 263.15 K
4= { 1.73 x 10% Pa~? s if 7% > 263.15 K (4.82)
6.0 x 10* J mol ™! if T* < 263.15 K
@= { 13.9 x 10* J mol ! if 7% >263.15K (4.83)

whereT™ is the absolute temperature corrected for the pressure melting point 7' + Cc;p.

The climatic forcing, that is the surface temperature and accumulation-atiatiction, are depicted
in Fig. 4.14, where the resultant basal temperature and ice sheet geametdgo displayed. The
steady-state temperature and velocity field are visualized in Fig. 4.15.

We compare our model output with the published results of the EISMINTHmeak (Payne et al.,
2000). The compared quantities are the final volume of the ice sheet, thatetharea, the fraction
of glaciated area with the basal temperature at the pressure-melting poimaxiraal ice thickness
(at the ice-divide), and the ice-divide basal temperature. The publisBeumerical models differ
quite substantially in several parameters (mainly in the melt-fraction). We trerehow both the

mean value and the range of each output parameter. The results are @ednmafable 4.2. We may
observe a good agreement in the total volume of the steady-state glactbeagidciated area, which
can be explained by the fact that the glacier is well constrained by thenatation-ablation function,

and also the ice-thickness at the divide. A good agreement is also obfairtbd basal temperature
at the ice divide. Quite different is, however, our result for the fracbbthe glacier bed with the
temperature at the pressure-melting point. In fact, our result is just withiedge of the interval of

published solutions. Note, however, that there is a large variability in thaeter between all other
models, since the range is equalifyt of the mean value.

e EISMINT experiment B.
This experiment is initiated from the steady-state solution (obtained 2fteky) of experiment A
and applies an altered temperature condition:

Trnin = 243.15 K , (4.84)

i.e. the surface temperature undergoéskawarming, while all the remaining parameters are kept
fixed asin exp A. A new steady-state solution is found, and a change imephasal melting fraction,
divide thickness and divide basal temperature is evaluated and giveabla 4.3. We see again a
satisfactory agreement to a sudden surface warming model respansebeur and the EISMINT
result.

e EISMINT experiment C.
In this experiment, the effect of accumulation and ablation is inspected. §thdin the steady-state
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Figure 4.14: Upper row: Surface temperature (left) and accumulation-ablatietion (right), Bottom row: Resultant steady-state
basal temperature (left) and ice sheet surface elevation (right).

Figure 4.15: Temperature (K) (left) and magnitude of velocity £ ') (right) in the steady-state solution of EISMINT experiment
A.
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Table 4.2: EISMINT exp. A results.

Quantity Ourresult EISMINT mean EISMINT range
Ice volume (06 km?) 2.074 2.128 0.145
Glaciated areal()® km?) 1.031 1.034 0.086
Melt fraction 0.582 0.718 0.290
Divide thickness (m) 3710.386 3688.342 96.740
Divide basal temperature (K) 254.538 255.605 2.929

Table 4.3: Differences between exp B and exp A.

Quantity Ourresult EISMINT mean EISMINT range
Ice volume change (%) —2.956 —2.589 1.002
Melt fraction change (%) 12.614 11.836 18.669
Divide thickness change (%) —5.457 —4.927 1.316
Divide basal temperature change (K) 4.587 4.623 0.518

Table 4.4: Differences between exp C and exp A.

Quantity Ourresult EISMINT mean EISMINT range
Ice volume change (%) —27.884 —28.505 1.204
Glaciated area change (%) —20.376 —19.515 3.554
Melt fraction change (%) —21.964 —27.806 31.371
Divide thickness change (%) —12.678 —12.928 1.501
Divide basal temperature change (K) 3.680 3.707 0.615

Table 4.5: Differences between exp D and exp A.

Quantity Ourresult EISMINT mean EISMINT range
Ice volume change (%) —11.943 —12.085 1.236
Glaciated area change (%) —10.188 —9.489 3.260
Melt fraction change (%) —2.309 —1.613 5.745
Divide thickness change (%) —2.049 —2.181 0.532
Divide basal temperature change (K) —0.179 —0.188 0.060

solution of experiment A, the boundary conditions are altered as follows:

Mpmawe = 025ma !,
Ry = 425km,

but the other parameters the same as in experiment A. The equilibrium stangdume, area, melt-
fraction, divide thickness and divide basal temperature are giverbie 7a4. A very good agreement
can be seen in all the quantities, a difference can be observed for th&aaétin change, for which,
however, the range in EISMINT results is huge.



102 CHAPTER 4. EVOLUTIONARY NUMERICAL ICE-SHEET MODEL BASE ON THE SIA-I
ALGORITHM

e EISMINT experiment D.
In the last EISMINT experiment the altered boundary condition

R, = 425 km ,

is applied to the final steady-state solution of experiment A, while all othempeters are kept un-
altered. The changes of steady-state characteristics of the glacierrasdtien to this reduction of
accumulation area are summarized in Table 4.4. We may observe that, all pasaggee satisfac-
torily with the EISMINT mean. The melt-fraction change for the EISMINT solasichows again a
great variability, including the change in sign. Payne et al. (2000) cdediuthat there is no clear
pattern in change of this parameter.

We may say that our model is able to reproduce the results of the EISMINGhb®arks with a sufficient
accuracy, and conclude that the implementation of the heat-transpottoeqaiad the thermo-mechanical
coupling in our model performs correctly.

4.7 Summary

In this section we have extended our model for a transient case by implemémtirevolution equation
for the free surface. Two approaches were presented. A time-exggipipbach for free-surface evolution
equation is based on expressing the spatial gradient of the freeestufaction by the ENO schemes. Such
an explicit discretization does not, for a sufficiently small time step, suffanfnumerical oscillations,
which is crucial when either the SIA or the SIA-I technique is employed to ecaenphe velocity field.
A level-set function technique was implemented for tracking the ice-shegiméieing able to capture
complex changes in the ice-margin shape and topology.

The second approach was time-implicit. By introducing auxiliary diffusivitres arrived at the "SIA-
like” discretization of the free-surface evolution equation, possessinthé SIA-I approach much better
numerical properties than the original transport equation.

Both approaches were tested in a series of numerical experiments. ticulaay we performed the
prognostic ISMIP-HOM experiment F with a satisfactory result both in teritisecaccuracy and numerical
effectiveness. To demonstrate the performance of our model, we &ksadexi the experiment for non-
liner rheology following Glen’s flow law, which is in contrast to the originattis®), where only a linear,
Newtonian, model was used in order to reduce the computational demandamparing the SIA-I velocity
field with the corresponding FEM full-Stokes velocity solution by Elmer foesaktime snapshots, we have
shown that the SIA-I based model is able to successfully perform tlggpstic run even for the non-linear
rheology.

The third experiment involved also a FEM simulation by EImer and compared Ae&id full-Stokes
solution for an axisymmetric ice-cap spreading under its own weight. A goachnrathe accuracy of the
SIA-1 solution was again observed.

Finally, the heat-transport equation was implemented in the stretched cdesliablowing us to com-
pute also the evolution of temperature field. The effect of thermo-mechamigpling was evaluated in
a series of the EISMINT benchmarks. The results indicate that the implemaentdittbe heat-transport
equation into the numerical model for ice flow has been successful.



Chapter 5

Greenland Ice Sheet simulation

In this chapter, we apply our numerical model to a realistic simulation. Inspiré¢de EISMINT intercom-
parison, in particular by the EISMINT Greenland models benchmark, werwilthree different simula-
tions. First, a steady state of the Greenland Ice Sheet (GIS) is sougatgfébent-day climatic forcing is
kept constant during a transient response of the model. The secondtgim@aims at reconstructing the
Greenland Ice Sheet behavior during 1250 thousand years, i.e. approximately two glacial cycles. The
third simulation is a prognostic experiment of modeling a short t&i®0 years) response of the GIS to a
prescribed warming forcing. All experiments will now be described in fatbdl.

5.1 Steady-state Greenland Ice Sheet simulation

We perform the EISMINT Greenland Ice Sheet steady-state experamatgscribed by Huybrechts (1998).
The summary of this experimental setup is as follows. The bedrock arateudpography of the Greenland
region is given by a data set compiled by Anne Letreguilly (Letreguilly, J9%% choose a variant with a
20 km spatial resolution. The accumulation rates on the same grid are providée EISMINT experiment
by Huybrechts (1998), who compiled data from Ohmura & Reeh (19918.eémployed parametrization is
described as follows.

e Mean annual temperature (irCelsius)
T, =49.13 — 0.007992 - Z — 0.7576 - latitude , (5.1)

with
Z := max(surface elevation, 20 - (latitude — 65)), (5.2)

e Summer temperature (hCelsius)
Ts = 30.38 — 0.006277 - surface elevation — 0.3262 - latitude . (5.3)

e Standard deviation of the daily temperature= 5°C .

e The ice rheological law is given by Glen’s flow law (1.17) with paramefeend() taken as

—13 -3 .—1 : *
A:{ 10.83 x 1078 Pa=3s if T* < 263.15 K (5.4)

5.19 x 103 Pa—3 s ! if T >263.15 K’

103
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6.0 x 10* J mol ! if T* < 263.15 K
Q- { (5.5)

13.9 x 10* J mol~! if T >263.15 K

This setting corresponds to the parameters in the EISMINT experimentstifi@mprevious chapter
(4.82), (4.83), but with the right-hand side of (1.17) multiplied by an enénent factom.,, = 3.
Other physical parameters are taken as in Table 4.1, except for thegeattheat flux, which is now
prescribed by a higher value g#° = 5 x 1072 W m—2.

e The ablation is parametrized by the positive degree-day method (van ey 2@07), which can be
briefly summarized as follows. Given the surface mean annual and sunmgeragures, andT;
by (5.1) and (5.3), respectively, a cosine annual cycle for sutéanperature is assumed, which is, in
addition, perturbed by random Gaussian najssith the prescribed standard deviation, and zero
mean
Tourf(t) = To + (Ts — T,) cos(2mt) + 1. (5.6)

The ablation during ad/-day period{t;}}., is then parametrized by

M

abl = k'abl : Z H(Tsurf<ti))Tsurf(ti)7 (57)
i=1

where

1 ifT>0°C
H(T) —{ 0 ifT<0°C" (5-8)

and the constari,; in (5.7) is chosen as

(5.9)

[ 8 0mmd-1°C! for ice
@l =Y 3.0mmd-!°C! for snow ’

since the albedo is, in general, higher for snow than for ice. The melt-ratamputed according
to the snow and ice model of Reeh (1991), where, in the first moment, aliradation is assumed
to be in the form of snowfall. When surface melting occurs, the snow layessiamelted with the
meltwater refreezing again to a form of the super-imposed ice, until its anesxared$50% of the
annual snowpack. From that moment on, all meltwater is assumed to leavadler gs runoff. The
same scenario holds for the meltwater from melted glacier ice.

The initial geometry of the Greenland Ice Sheet and the initial accumulatiatieabfunction are depicted in
Fig. 5.1 (top). Assuming the problem possesses a unique steady-stéitdoluthe given climatic forcing,
we have a freedom in the choice of the initial temperature. We chose a simpiavdod continuation of
the surface temperature field. The model was ruri $orthousand years, with a time step of 5 years, which
was sufficiently long to reach the steady-state, as seen from Fig. 5.8 tiesice volume and glaciated are
shown. In Fig. 5.1, we display the final steady-state geometry of the @b left) and the difference
between the steady-state and the initial geometry (bottom right).

We see that the effect of present climatic forcing mainly influences théal@agions, where the extent
of the GIS isincreased. On the other hand, the topography of the Gnélémilaterior does not change much
and slightly decreases the maximum ice thickness.
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Figure 5.1: The initial (present-day) surface topography of the GIS (topdefitk blue=ice, yellow=ground, light blue = ocean),
and the initial accumulation-ablation function (top right). The bottom par®ishhe result of the steady-state simulation after 150
thousand years, namely the final topography (bottom left) and the alifferbetween the steady-state and the initial topography
(bottom right).
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Figure 5.2: The evolution of the GIS volume and glaciated area during the sgtatl/simulation (see also Fig. 5.1).

5.2 Climatic cycle experiment

This simulation starts from the steady-state obtained by the first experimetimatic forcing for a period
of approximatel\250 thousand years is imposed, consisting of temperature and sea-levédaiootis. The
temperature changes are derived fromH& content of the GRIP ice core (Dansgaard et al., 1993) by the
simple conversion

AT (K) = 1.5(6"80 + 35.27) . (5.10)

Sea-level change constrains the maximal extent of the ice sheet, bacemediate calving is assumed
whenever the ice sheet reaches the ocean (i.e. no ice-shelf formatiomsidered). It is again correlated
directly to thes'80 content by the formula (Imbrie et al., 1982)

ASea level (m) = —34.83(6'0 +1.93) . (5.11)

Both the forcing data-sets are shown in the top row of Fig. 5.3, while the bgt#omals show the evolution
of areal extent and volume of the GIS, computed with the time step of 5 yeiars5 B reprints the result
of the benchmark published in Huybrechts (1998), where, howeemtdelers had more freedom in their
model setup choice and thus their results are not perfectly comparali@y. 16.5, we display the surface
topography for several snapshots during the last glacial cycle, i.e ajmgroximately 150 thousand years
ago, to the present, showing the quite substantial reduction in the GIS apfemtximately 125 thousand
years ago, which is followed by gradual regrowth of the Greenlan&he®t towards the present state - see
bottom row in Fig.5.5.

The previous glacial cycle, that is period from 250 k — 150 k years agedsided from the benchmark
because of lower accuracy of the climatical forcing data.

We may state that our results are in satisfactory agreement with other soluficsimilarity among
all other model outputs is mainly a consequence of the fact that the sunfas® balance, rather than the
ice dynamics, plays the major role in controlling large-scale characteristitsasuthe ice sheet’s volume
or its extent. Using the same or similar parametrizations of the surface maseetilarefore leads to the
same or at least quite similar behavior of the models in terms of these coniaillear On the other hand,
when the details in topography are compared, significant differences between the various models (see
Huybrechts, 1998).
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Figure 5.3: Temperature (top left) and sea-level (top right) forcing of the ¢lm@ycle experiment and the evolution of the GIS
areal extent (bottom left) and volume (bottom right).
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Figure 5.4: The evolution of glaciated area in the climatic experiment, reprintetefigom Huybrechts (1998). The differences in
results are partially due to a not-entirely unique set up of the benchmarkp&re with our solution in Fig. 5.3 (bottom left panel).
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Figure 5.5: Several snapshots of the evolution of our model topographthéaclimatic cycle experiment, covering approximately
the last 150 thousand years.
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5.3 Greenhouse warming scenario

This experiment aims at evaluating the effect of one of the possible grasetwarming scenarios on the
GIS. On the contrary to the EISMINT benchmark setting, where the fintd sfathe climatic simulation
is used as input, our simulation is started from the steady-state result ofghsifiulation (steady-state
scenario). We prefer this choice, as the sea-level and topograpdnaacloser to the actual state of the
GIS, and thus the outputs are to be of higher relevance.

The model is run for 500 years into the future, with the climatic forcing baséadyson surface tem-
perature increase. Hence, no sea-level forcing is consideredsurfage temperature is increased annually
by 0.035° C for the first 80 years (tot&.8° C increase) and then y0017° C for the remaining 420 years
(0.714° C), resulting in a total temperature increase3afl4° C after 500 years. This model temperature
forcing is based on the proposed scenario by Manabe & Stouffed{199

The initial and final topography, the topography difference and theugon of the glaciated area and
ice volume are depicted in Fig. 5.6. The reduction of the GIS volume is apprtedinsy 0.135 x 10° km?.

5.4 Summary

In this chapter, we have presented the output of our numerical modélésm runs based on the benchmark
setting for European Ice Sheet Model INiTiative (EISMINT) - Greeudlé(ce Sheet Models. The firstone is a
steady-state simulation initiated from the present-day topography and climaditioas for the Greenland
Ice-Sheet, and an arbitrarily prescribed initial temperature. A transianiation was run until a steady-
state was reached. The steady-state and present-day topograpeiesrdyf slightly in the interior of the
ice-sheet, more pronounced differences appear in the vicinity of thehieet margin, where the extent of
the steady-state GIS is systematically larger than the extent of the preye@tSla

In the second simulation, the present-day topography is subject to a climadtearevel forcing based
on the ice-core reconstruction of the past climate over the last two glagbdscy The glacial-isostatic
adjustment is not taken into account in order to restrict the modelled phpsa@@sses only to the response
to climatic and sea-level forcing. The reconstructed GIS history shovesmaminimum in the total volume
and areal extent approximately 125 thousand years ago, which wafotloeved by a slow regrowth and
finally deglaciation to the present-day state.

The third simulation is prognostic and applies a simply-parametrized global-wgusnanario to the
steady-state shape of the GIS resulting from the first, steady-state, simuMtgoevaluate the changes in
the areal extent and volume and observe an enhanced melting confintyl tovtise south margin areas of
the GIS.

The EISMINT benchmarks have proved a good applicability of our mamtébhg-term large-scale GIS
modeling. To make the paleoclimatic simulations however more realistic, it remains tonmpiéhe glacio-
isostatic adjustment of the Earth, that is, the visco-elastic response of tteplitr@ and upper mantle to
the glacial surface load. Although the effect of the ice-sheet evolutidinet@s1A is straightforward, with
the ice-sheet evolution being the main driving force for the GIA, the asevis not true. The evaluation of
the effect of the GIA on the GIS evolution is a more puzzling question, whéatains to be answered by
numerical modeling of the two processes, GIA and GIS evolution, simultaheimua coupled model.
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Figure 5.6: The initial surface topography of the GIS (top left), the final stsef@mpography at = 500 a (top right), the topography
difference (bottom left) and the evolution of the glaciated area volume ¢hattght) in the greenhouse-warming scenario.



Chapter 6

Concluding remarks

In this work, we have been dealing with several aspects of the lar¢eaoaerical modeling of ice sheets,
both from the theoretical and numerical perspective.

First in Chapter 1, we have formulated the equations that govern the timetienoddi grounded ice
sheets in a form that allows us to capture and incorporate liquid water anhtsthe effects induced by its
presence, such as an enhanced ice deformation, increased basglcslicsed by lubrication of the bedrock
till, thermal effects connected with latent heat release, and so on. Baskd principles of rational mixture
thermodynamics, in Chapter 2, we rederived the traditional Shallow-IggoXpmation, that is a scaling
approximation which makes use of the fact that, in nature, the vertical-treimbal aspect ratio is often a
small number. This fact allows a perturbation analysis in terms of this ratiom@umr contribution is that we
have extended the SIA apparatus by considering general orthogandinear coordinates and obtained a
whole class of shallow-ice approximations whose particular form depmmntiee chosen coordinate system,
and may be easily specified by evaluating associated geometrical quantities.

We then, in Chapter 3, designed a novel computational algorithm deno®idswhich iteratively
improves the "shallow-ice” solution by including longitudinal stresses in a coatipnally effective way
compared to other approaches. The convergence of the algorithm vessigated numerically but also
theoretically, leading to the observation that the iterations converge the thastishallower” the problem,
that is the smaller the scaling parameteAlthough we did not provide an exhaustive and rigorous mathe-
matical analysis of the convergence properties of the SIA-I procedumember of numerical examples and
tests have clearly demonstrated the applicability of the algorithm in practise.révedy however, that if
the procedure converges, the limiting solution satisfies the rheologicai@yeaactly and results in errors
in the first two momentum equations, that are of the ordef @ind can be evaluated explicitly.

We performed comprehensive numerical testing by the verification with nthmerical methods such as
finite-element, and by computing a number of benchmark examples. We paditipane of the recently
designed benchmarks, the Ice-Sheet Model Intercomparison Préjegier-Order Models (ISMIP-HOM),
which was mainly oriented towards non-shallow, higher-order effecttariay dynamics. This benchmark
reported the very good performance of the SIA-I technique, both iaracg and computational speed.

We also compared our model with a higher-order solution for the regionrefiing Maud Land in
Antarctica, by (i) considering realistic topography for both the ice shaéice and the underlying bedrock
surface, (ii) the strongly non-homogeneous basal sliding conditiods(iigrspatially varying temperature
field. The comparison was very satisfactory, as the achieved acowescgomparable with other higher-
order models but the results were obtained with a substantially increasedtztimpal speed.

111
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In Chapter 4, we finally developed a finite-difference thermo-mechaeicdlitionary ice sheet numer-
ical model based on the SIA-I algorithm, which models the evolution of icetgfmmmetry due to the
processes of internal deformation, described by a model of viscoudlaatonian fluid, and due to surface
processes such as accumulation, ablation and basal sliding. For most s@typs, with only one iteration
of the SIA-I algorithm performed at each time step, this model gave similaltsdswther existing large-
scale SIA models such as e.g. SICOPOLIS (http://sicopolis.greveweb.neBRIGLI (Ritz et al., 2001).
With more than one iterations of the SIA-I algorithm, our model, however,igeav(also locally if neces-
sary) an improved solution to the ice-flow problem by capturing the higrderaynamics by including the
longitudinal stresses, which are neglected in the "shallow” approximation.

The performance of the code was tested in Chapter 5 for four of thepEBamolce-Sheet Modelling
INiTiative (EISMINT) benchmarks that are focused on the effects efrtto-mechanical coupling within an
ice sheet while considering the shallow-approximation, with the conclusidrtinautputs are in a good
agreement with the published results.

In Chapter 6, we finally carried out three benchmarks whose levelplaxity fully corresponds to the
original purpose of our model, that is, modeling long-term large-scalkeitoo of large ice sheets. Three
EISMINT scenarios of the Greenland Ice Sheet with realistic topograptiata, energy and mass fluxes
were considered: a steady-state simulation, a paleoclimatic simulation for tloe pédast two glacial
cycles and &00 year prognostic simulation modeling the possible effects of a prescribedlgl@vming
prognosis.

All numerical results show that we succeeded in developing an applicabiental tool for simulating
large-scale ice sheet evolution. Thanks to the computational effects@fiehe SIA-1 approach, the code
is capable of capturing also the "non-shallow”, i.e. higher-order tffetthe ice sheet dynamics.

Finally, we should remind ourselves the original motivation for the developwfeour code. A nu-
merical model of ice sheet dynamics was meant to be coupled with an existimgrical model for the
visco-elastic response of the Earth’s lithosphere. By coupling the two Isyadenore consistent approach
was to be achieved for the numerical modeling of glacial-isostatic adjustmetris teaponse of the Earth’s
lithosphere to time-dependent surface-load changes caused by tecadwnd retreat of the ice sheets
during glacial cycles. Although this final goal has not yet been actlijeve will concentrate on the com-
pletion of such coupled model in the future. We believe that the amount of ticheféort spent by testing
the model, that is the subject of this work, was necessary and importard,temgreat complexity of the
studied problem allows possible errors to remain unnoticed and contamiryatetare outputs. Also, the
fact that a novel algorithm for the Stokes problem for ice-flow was gsed, made all the testing inevitable
to assess and evaluate its performance and applicability properly.



Appendix A

Convergence proof for the SIA-I algorithm
with linear rheology and uniform viscosity

We have undertaken several attempts to provide a deeper mathematicaisanélthe SIA-I iterative

scheme. The main goal we were trying to reach was to prove a contractiuitg onapping induced by
the SIA-I algorithm in some reasonable sense. While we were unsugctssthe most general situation
with non-linear ice rheology, certain basic insights could still be gaineddibrer simplified conditions,
considering only the linear (Newtonian) rheology with uniform viscositysjie loosing much of the gen-
erality, we still find it interesting to investigate this case as it might provide a gtating point for further

analysis.

Let us recall the whole iterative scheme and rewrite it for the purposésafestion in a slightly different
manner. First let us observe that pressuserves in the whole procedure as an independent variable in the
sense that it does not appear in formulae for deviatoric stress-tepdates (3.48), (3.49) as for the first
half-step, and nor in the rheology equations (3.22)-(3.29) used in tumddalf-step. We may therefore
exclude it now from our considerations. In the SIA-I algorithm, the velamitywponents are computed from
the deviatoric stress components according to (3.55)-(3.57), or (83%6&3) and (3.59), which enables us to
consider only five independent field variabes,, 6.y, 6y, 6.., 6,.. We arrange these deviatoric-stress
components to a vector denotgdby

U= (O gz, Oy, Oyy, Opzy Oy ) - (A1)
One iteration of the SIA-I scheme will be represented by a mappirthat is
@t = T(@) . (A.2)
Recalling (3.64), we may write
T(@") = (1 - 62) A(@*) + 6. B(A(i)) , (A3)

where we introduced "formal” operators (the appropriate functionatep will be defined Iatelzi and B
to capture the two half-steps of the iterative procedure. Operatstands for the first half step, that is,
according to (3.50),

A(@) = @2 = @ + 60tz (A.4)

While operator§ expresses the update of the field according to rheology, that is, in théeondtam (3.64),

B(A(@)) = @tz . (A.5)
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We confine ourselves to a single step of the SIA-I iteration, and for simpliaitly everywhere the super-
scriptsk, k + % k 4+ 1. Since we aim at demonstrating the contractivity of the mapfinge evaluate the

differenceT (i) — T(¥) for two arbitrarily chosen (stress) vectatsy.

First let us recall the definition of. Using (A.4), (3.48) and (3.49), together with (3.51), we can see
that

A1 (ﬁ) = ui, (AG)
As(@) = g, (A7)
Az(u) = wug, (A.8)
AT = (=0 — by 2y~ 2)
fs fs s
+ 691 22 / Ul dz’ + i / U9 dz’ + i / us dz’ R (Ag)
oz 3 ay 3 0% 3
B ofs =
As@) = (1= b2)us — 61 2 (F. - 2
fS ~S fS
+ 691 i / U1 dz’ + i / U dz’ =+ 22 / us dz' | . (A.lO)
0y J; 0T J3 0y Js
If we introduce a vector
F=u—17, (A.11)

the differenced (@) — A(%) can be expressed by means of a linear operat(g) as follows

AA(P) = Ai(d) — Ai(T) = o1, (A.12)
AAy (@) = Ag(d) — Az (V) = 2, (A.13)
AAs3(g) = Az(d) — A3(0) = 3, (A.14)
AAL(P) = Ag(d) — Ay(0)
0 fs fs

= (1 — 91)@4 + €6 (2651 / p1 a7 + — / %p) dz + — / ©3 d,%/)

=t (1= 01)ps + eth ACL(P) , (A.15)
Ads(@) = As(@) — A5(D)

a f~s B a f~s B 8 .fs _
= (1—61)ps+€br (E)gj/g 01 dz’—i—(%L ©2 dZ/+28gj/2 <p3dz’>
=1 (1 —6h)ps + €01 AC5(P) , (A.16)

where the auxiliary linear operatofsCy and AC’; were introduced.

Let us now focus on the second half-step of the SIA-I, to expresspbmtor. First, the stress field,
which was already updated in the first half-step, is used to compute thatydield. Then, this velocity
field provides a new stress field by rheological equations. For Newtoh&ology with uniform viscosity,
as considered here, we haye= const. In this case, the differences between the forward (3.22)-(3.26) and
the inverse rheological equations (3.30)-(3.34) vanish, providedueaetd = S = V = 1 and replace
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(3.27) and (3.28) by

Then formulae

k+3
Vg 2

k+3
U, 2

(

S|
e
3
v - [AlpgHs”
[Uh]Lsc

(3.62), (3.63) and (3.59) can be rewritten as

z 1 zZ z
7) = 1(/ &§:2d~'+6/ 97 6k, 4 &% Vaz dz )
1 \JF,0) 2 5,00 9T J g
Z) = i / &5:2d~’+5 i i (&%, —|—0' yaz"dz' |,
1 \JF,0) 2 J5,0) 99 J 0
1 z
5 o= - / "+ &k yaz .
2en fo () W

(A.17)

(A.18)

(A.19)

(A.20)

(A.21)

Now, by evaluating (3.22)-(3.26) at the+ % half-step, with the notation (A.5), we arrive at the following

definition of B
Bi(A(q)

By (A(4)

Bs(A(

£

)
Bi(A(@)

B (A(1)

£

Let us now define

AB1(p)

) = 2688/10 A4 dZ +€ — f 83:/f A1 +A2 ))dZ”dil
b b b
9 o .
) = 8y fb A4( i) dz’ +68—x A5( i) dz
2o (Fo [7 o
o (7o (7 I gt
+ 505 s Og/f (A1(@) + Ag()) dz" dZ",
o z
) — ng/f d~/—|— 8y/f 8y/f A1 —‘y—AQ ))dzlldgl
b b
) = Aua),
) = As(4)

a difference operatd by
— By (A(%))
z b Z 9 z
2e— | AAP)dZ 2// AA1(F) + AA(P)) dZ" dF
o J;, @) dz + o= | oo ~b( 1(P) + AAs(p)) dz" dz

eAD1(P),

—

Bi(A())
0

(A.22)

(A.23)

(A.24)

(A.25)
(A.26)

(A.27)
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ABy(@) = Ba(A(ii)) — By(A(%))
o [* g0 o
= ea—g - AA4(P) dz —l—ea— fb AA5( p)dz
62 zZ z
N 25@ ;885?/]%, (AAL(G) + Ado(@)) d3" d5'
0 [0 N 3
¥ 28x/ay/f (AAL(P) + Ado()) d" d2
=: eADy(P), (A.28)
ABy(@) = By(A(d) - B3(A(7))
0 z = " 3~
= QEa—g fbA 5(f) dz’ 8y /fb % : AA1 )+ AAx(P))dz" dz
=: eAD3(P), ) (A.29)
ABy(@) = Ba(A(#i)) — Ba(A(7))
= Ay(d) — Aqg(V) = AA4(P) , (A.30)
AB5(@) = Bs(A(ii)) — Bs(A())
= As(u) — As(v) = AA5(9). (A.31)

The differenceg\ B;, together with the auxiliary operatofsD;, are again linear ip.

We now define the functional space for the solutibnConsider a space of polynomiaﬂés), k>1,
defined as a set of all polynomials ¥ of the form

3 ~ o~ o~ ~ o~ o~ ko o~k o~
P = {p(x,% Dip(E,§,2) = Y akz,ky,kzwkzykyzkz} :

ke+ky+k. <k

5 o o
and introduce a spack¥ := (P,E?’)) . For eachi € X, operatorsA and B are well defined, but un-

fortunately the imagesf(ﬁ) and E(U) do not generally lie in X anymore. The reason is that the terms

fgf's(:“y) w (-, 2")dz’, in (A.9) and (A.10) which, even for polynomial representation of the garfacef,,
are generally not polynomials of the proper degree. In order to onexdbis difficulty, we introduce a
strong assumption on the representation of the surface funcftiorfs. We will assume that both are rep-
resented by piecewise linear functions. This simplification may be to some @x$éfied concerning the
numerical realisation of the algorithm, meaning then that only piecewise lineagttation is used to cap-
ture the surfaces. Moreover, we will assume that the triangulations fhrfhand f;, are defined on the
same grid in the horizontal plane. Let us order the faces of the trianguttifyrby integers and denote the
volume beneath thieth face by();. The restriction of the spack to 2; will be denotedX;. Analogously,
for all introduced operators and functions, let us denote their restrittidty and(;, respectively, by a
superscript?). With the assumption of linearity of;, f,, it holds: A® : X; — X;, B® : X, — X;. Now
we define the space where solutions will be looked for as

X::{“()ex} (A.32)
which is a linear vector space of vectarswhose components;, j = 1...5, are piecewise polynomial.
Let us now, for anyD'(") € X;, introduce the norms

[ = gé%f\w](.’)(f)] : j=1,...,5, (A.33)
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i.e. theC*°(Q2;) norm and
1T | = max_[|w”]] . (A.34)
j=1,...,5 " J

Before we finally investigate the differen@&? (@) — 7)) (%) for someii, v € X, realize that, for arbitrary
k in the choice ofP,gg’), the spaceX and, of course also alX;, are finite dimensional spaces. While we
have already shown thaA;, AB;, AC; and ADj, are linear operators, the same holds also for their

restrictions toX;. Using the fact that on finitely-dimensional spaces, all linear operatersainded (and
thus also continuous) (e.g. Luke2003), we thus have the following estimates

AAPE) < IAAP NI e (A.35)
ABY(@D) < (IABY1ED lmas , (A.36)
ACT (D) < HACQ ED ma - (A.37)
ADV (D) < ADIGD |maa - (A.38)

where operator norms were introduced as usual by

@y ._
1AAD] =

@) g
2470 39

X
Fex; g0 P )Hmaa:

Finally, using (A.3), (A.12)-(A.16) and (A.27)-(A.31), and also recglithatl > 6; > 0,1 > 63 > 0,
we obtain the estimates

1@ - 1@ < (1= 0)|AAY @) +6:|AB ()]
< (1 -0l + | ADP[1FD | mac
< (1= O+ | ADP ] s
IT°@ - @ < (1= )AL @) + 60|28 ()]
< (1 - 0)le8 + b2 ADS [11ED | mac
< (1= 02 + | ADS D ED flmaz
1T (@) - T (@) < (1—92)\\AA <>|r+ez||AB”< ]|
< (1= 0)]e5 ) + b2 |ADS D lmaa
< (1= 02+ e ADY N ED s
I @ -1 @) = I1AAP (@)
< (1= )l N + B IAC NI maa
< (1= 01+ et | ACIDIFD mas

1T (@) - T @) = |aAP (@)
(1= 0l + 01| ACS 13D | mac
(1= 01+ 01| ACE DD |l maz -

Consider now an arbitrary but fixed small positive constant 0. Then provided < <=, with ey, =

IN

IA

min; ( L Ll e, e, > and provided that > 6; > 26,1 > 6, > 24, it holds
H IAD;”|l " [[ADS || |AD3” || [JAC || [|ACE ]
that

Vi : |TO@) — TOD) |l maz < (1= 0)||?D — 7D maz , (A.40)



118 CHAPTER A. CONVERGENCE PROOF FOR THE SIA-I ALGORITHM WHITLINEAR
RHEOLOGY AND UNIFORM VISCOSITY

which is the desired contractivity of the mapptﬁg Sinced was an arbitrary (small) positive, the relaxation
parameters are actually not constrained for this simple case with uniforstacrviscosity and the only
restriction is given by a certain "flatness” condition, i.e. by necessity ffitgntly small aspect ratie.

To finish the procedure, provided the assumptions for contractivity omzlqmpingf are satisfied, we
can use the Banach fixed-point theorem (e.g. BuR803), as the finite-dimensional spadgsre complete.
Thus, the operatdf possesses a unique fixed point, that is, there exists a viéter X (composition of
appropriatei” ) € X;), such that it holds

Vi : TO@Fy = af @ (A.41)

The relation of the fixed point? to the exact full-Stokes solution of the considered ice-flow problem is
discussed in the following section.



Appendix B

Properties of the fixed point of the SIA-I
algorithm

In the previous section, we presented an attempt to demonstrate, at leastarimited sense, the con-
tractivity of the mappingf, which is induced by each iteration step of the SIA-1 algorithm. Let us now
investigate the relation of the fixed-point of the mappihgnd the full-Stokes solution of the original prob-
lem. For this purpose, we return to the original general case with iceideddry a model of fluid with
non-linear rheology given by Glen’s flow law (1.17). We will assume that,certain values of the pro-
jection parameterg; andd,, the contractivity of the mappinﬁ representing the SIA-1 algorithm holds in
some sense. That is, we assume that the procedure from previous sectibe reasonably extended to
capture also the non-linear rheology, possibly after reformulation of trprp'mgsf’, A Bina generalized
(e.g. weak) sense for some appropriate complete functional spacést tiase assumptions, a unique fixed
point " of the mappindl’ exists, and according to (A.3), using the notation from previous sectibalds
that

@ = T(@") = (1 — ;) A(a@") + 6, B(A(a")) . (B.1)

We intent to show that this implies even a stronger conclusionifiat A(@) = B(a). Also these
relations, as will be revealed in the subsequent text, correspond to leothdimentum balance equations
and rheology being satisfied. To demonstrate this fact, we first obgkateby definition,

A(@") = wf, (B.2)
Ap(d@") = g, (B.3)
Az(@)y = b . (B.4)

as onlyu, andus are updated by the operaﬁrin the first half-step of the SIA-I (see (3.52)). When the
first, second and third components of equation (B.1) are taken, (B.2)-¢gi&e

uf = A(@") = Bi(A@@")) (B.5)
uy = As(@") = By(A(@")), (B.6)
uj = As(@") = Bs(A(i")) . (B.7)

To interpret these relations, let us recall what oper&tstands for. Back in the "stress” and "velocity” no-
; : ~F ~F ~F ~F _~F ; e SF41
tation, from the stre?s flelﬂf = (64460 Oy Ous 0., the first haIf;step plroduc%(%F) =qtte =

~ ~ - ~F+5 _F+3 . . F+5 _F+3 F+s
s afy, agy, Fas 2, ay;rQ ), from which the velocity components tz Ty *2 ando. T2 are computed

Tx?
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according to (3.62), (3.63) and (3.59). We remind the reader here s¢# tbemulae:

gits (,2) = 2t ASF+367 2d~'+x/ / ASFr2(6F, &y, dZ" dz’
A0) .0 07 Jiiq
(B.8)
1 z ~ ~
o, (5 = 27 [ ASTHigy, 2d~’+X/ / AS"V3 (6], + &1),)d2" d
() 200 97 J 7
(B.9)
1 z
FE) = e f()As“ (&F, +&E)dz . (8.10)
b

This velocity field is inserted into the rheological equations (3.22)-(3.2@rdade the vectoé(/f(ﬁF)) =

1 ~ ~ ~ *F+ _xF+1 . . . .
Fts = (agg,agg,agﬁj,am ,ay. 2). Also the inverse rheological equations (3.30)-(3.35) are satis-

fied, in particular (3.30) and (3.31), which read as

31}F+7
L = X AST gl (B.11)
o

81}F+2 f 1
o = e PXAS T2 (B.12)

Using the incompressibility condition (3.15), we obtain
32}F+2
e —2XAS T3 (6 + 5 (B.13)
z

and by inserting (B 10) into the left-hand side of (B.13), using the factdabebrding to (B.5) and (B.7)

oih =&k, andg;, = &), we finally obtain
Sy = §Fts (B.14)
Using this fact we will now prove also thaty = B,(A(@")), ul = By(A(@®)), or 6%, = Pt

1
&52 = &Zf“. To see this, let us recall the rheological equations (3.33) and (3.8Hhwow read:

6’Uf+7 26U5+7 1 *F+* *F+*
+e = XAS ) (B.15)
0z 0T
_F+1 F+3
a”’t + € a“i = 21X AS TG, 5t , (B.16)
0z oy
1 1 1
where we inserfﬁfﬂ , 135+2 andeimrz from (B.8)-(B.10), using (B.14), which gives
1 1 1 S
A@) =u, T = Ga P =6 = By(A@")), (B.17)
" F+l ~ P43 F+3 T
As(@) =ug 2 = &, 2 =6, *=Bs(A@@")). (B.18)

Together with (B.5)-(B.7), we thus obtained

A@ly = B(A®@") , (B.19)
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and from (B.1) also immediately

a’ = A@"), (B.20)

at = B@). (B.21)

The second of these relations states that the fixed point stress solutiomsistent with the rheological

equations, because it confirms that, if the stress fiélds first used to compute the velocities according to
~ ~ 1 1

(B.8)-(B.10) (WithS" 2 = SF, 6,72 = 6T, 5,2 = &L, by (B.20)), by inserting this velocity field

into the rheology equations (3.22)-(3.29), we obtain the same stress field.

The first condition (B.20) implies according to (A.4) tat” 2 = 0. In view of (3.48) and (3.49), we
thus obtain

0 = —&fz—e%%(fs—é)—1—26(%/556596(-,2’)&’

+ Eaag /f &fy(.,z’)dz’jue%/; 5L (- 7)dz (B.22)
0 = -l - ‘ZJ; (Fo-2+eg | P or (e

+ e% /f &fy(-,z’)dz’me% /f oL (7). (B.23)

If we take an arbitrary initial pressure figll and compute the incremefii for %" according to (3.47) and
denote the sum g8 := 3° + 6p’, from (3.47) we obtain

- fs a&F fs 86-F
~F ~ ~F I~ TZ J3 Z gz
O:—p —O'zz—Uyy_}'(fs—Z)—ﬁ/g a;fdz,_e/g ngzl. (824)
Taking thez-derivative of (B.22) and (B.23) gives
0 5z €% — 2e 95 35 — €5 (B.25)
ok, of, osf ~ 0al oal
_ Yz s T Yy 9 vy B.2
0 22 95 oy “ar oy (826)

Now, evaluating the&:, ¢ and Z-derivative of (B.24) with the use of (B.25) and (B.26) gives

i (o5F 05T F  osl, o6k, 0sl

9% 9z 9 oz T o5 T ez
o I (oL o9&l opf oL osf  oek
2 Y Tz Yz Az = = Yy vy Yz B.28
eag/g<a:z~+8g ‘ “o0 "oz "oy "oz (B.28)
Lo " N 063, 68&52 (65 +ay,)
3 9% i EE ’

(B.29)

which would be, when compared with (3.12)-(3.14), the linear-momentumdakquations if the left-hand
side "¢” terms in (B.27) and (B.28) vanished.
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It remains to show how the fixed-point solution meets the boundary conditiites no-slip condition
at the baseﬂF+% = (), which has been assumed throughout this paragraph, is automaticalfiedatis
by (B.8)-(B.10). To check the stress-free conditions at the uppéacrlet us first evaluate the stress
conditions there according to (B.22)-(B.24), where we obtain

Ofsgr | Ofssr | Oisr
0 = 0' L+ 2e Crid . te 8~U —l—e&%ayy, (B.30)
. afs~ 0fs - ofs
F F F
0 = -6, —kea~ +€8:E Oy t+ 26 95 Ty s (B.31)
0 = " —65, Gy, (B.32)

atz = f‘s(:z,g;). Equations (B.30) and (B.31) can be rewritten with the use of (B.32) anckwanvrite the
stress conditions at the upper surface as follows

_ O e Oir  or
0 - al' 8~ 8~ ry + Urz ) (833)
— afs ~F afs ~ afs ~
0 = a~ T e r ol (B.34)
0 = pr+6f + O'yy ) (B.35)

atz = fs(ﬁc, 7). We may now compare these equations with the stress-free conditions-(3.19) and
observe that (B.33) and (B.34) coincide with (3.17) and (3.18), whilexBd8fers from (3.19). The differ-
ence can be evaluated if we add the missing terms to both sides of (B.35)anatexthem on the left-hand
side with the use of (B.33) and (B.34). We then obtain

Ofs v Ofs r
eE =pt +am+a'yy +68:E m+€6ﬂ Gy s (B.36)
where
_ afs _afs ~F af~5~F aJFS~F afs _afs ~F afS~F 8f~s~F
FE = 9% ( &%p + EF: o, + 35 Oy | + 35 8gjp + EF: azy+—ag Oy | - (B.37)

To sum up, the relation of the fixed-point of the SIA-1 algorithm and theceftdl-Stokes solution is as
follows. We have shown that the fixed-point solution satisfies the rhea@lbgiiation and the-component
of momentum equation exactly, the horizontal components of the momentum equh#bis (3.12) and
(3.13), are satisfied only approximately where the errors can be eegrby the left-hand sides of (B.27)
and (B.28) and are of the order ef. The free-surface boundary condition (3.17) and (3.18) are saltisfie
exactly, the third equation (3.19) is only approximated, with the error egpdeby the left-hand side of
(B.36) and is also of the order ef.



Appendix C

Stretched coordinates

It is very common in glacier-flow modeling (see e.g. Pattyn, 2003) to tramstfioe computational domain
to a new one with uniform height by a generally non-orthogonal mappim@rder to do this also for the
SIA-1 algorithm, all the formulae have to be transformed. We will substitutephéa coordinateéz, 7, &)
for (z, 9, Z) by a mapping

2= Jo(&,9) + &(fo(&,9) — [o(E,0)) - (C.1)
All physical fields considered in the stretched coordinates will be marked’bat”, that is
f(#.9.2) — @3, (C2)
or, in the abbreviated form,
f2) = J.9). (C3)
The partial derivatives transform as follows
0 0 0
% i — % i a:p('v‘f) 875 . ) (C4)
0 0 0
87(7; 5.3 - aig 5e ay(',g) 876- . ) (CS)
0 1 0
il = = C.6
0z z,9 - 7-[(.)85 &, 7 (€0
where
1 (af() | LOH()
1 [of() | LOH()
HC) = [() =) (C.9)

We rewrite the individual steps of the SIA-I algorithm in the stretched doatds, such that the formulae
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(3.47)-(3.49) for stress increments transform as

5pFTI(LE) = H)1 - &) — (&) — 65 (,6) — 6k (-, €)

8fs() ~ 8fs() ~
+ GWJQZ(~,1)+6TQUSZ(-,1), (C.10)
skt = a0 -6 - shi0

+ e(%ayc,&);) (”F«-) /g 1 &ﬁy(-,5’>ds’> : (C.11)
T —eagym-)(l—g)—&’;z«,s)

+ (5 - at05 ) (A0 / l&g’zmc,g’)de)

+ 2 (aag ay(-,£)§§> ~(-)/;U'qjy(,f’)al€’>

+ e(%%(wé)i) (M-) /E 1 &§y<-,f’>d5’> : (C.12)

and (3.52) remain unaltered.

Formulae (3.55)-(3.57) for velocity increments transform as

1 ~ 3 N 1 1
'[)]a:+§('7§) = 26_1‘)(7—[()/0 A8k+§('7§/>&’;ﬁj2('7€/)d§/
N £€/70 o 1
= e [ (g - o€ ) e e (C13)

L k+3

- & ..
WL = aclXA() /0 ASH(,€)ehTE (L enae
217 ¢ 0 ! 0 Jf—% / /
= 20 [ (- )i (C.14)

#00 = A0 [ (& -at.m) b e

7 ) n 0 N NS
= A0 [ (5 - ) T e (.15)
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with
S=62, + a y T 220y + &2 g T 2 + O'yZ , (C.16)

or alternatively, when (3.62), (3.63) and (3.59) are used, are wrigten a

k+

1 - & ..
L6 = 20 AH() /0 AS ()6 TE (e

)/ ¢ 9 k " " /
+ X?—[(-)/O (&i_am 65’)( / .ASJr (&F +0' )(,§)d§>d§,
(C.17)

k+2

1 - € .
by 2,8 = 26_1?CH(')/0 A3 (-, €)Gy 2 (&) de!

+ X?—l(-)/j (%—ay a€,>< / ASHHE (5%, + & )(,5”)d§”> de’ |

(C.18)
e = —e () / ASHH 6k, + 68 )(- ) de (C.19)
Finally, formulae (3.22)-(3.29) for the rheological equations transfasm
6nn8) = 00,0 (P e (RO a0 ) i00) . ©20
Gye(n6) = () (ag(f)ﬂ (M-)%—ayﬂ(',@fg) @(-,5)), (c.21)
Gan(16) = ﬁ(-,@((#(-)%—aﬂ(-,f); ba(€)
(A0 - a0 5 ) 00) | ©22)
Gua§) = 20:6) (A g~ a8 ) 0.0.6) 23
Fn8) = 200, (A - a5 ) 1), (c.24)

i,6) = (2RO AXHV(Q) (C.25)
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where

H2]>(,£) - 462

+ {%a(é@ + ¢ <¢z<-)§g - aﬂ(-,é)§§> @Z(-,fS)}2
o LY e (0L —ascol)eto) - 2

When time is also taken into account, the mapping actually reads as

f@§.20 = [(#&35,61), (C.27)
and the partial time derivative has to be transformed as

9
ot

0

~ 0
s = — (- £ D= C.28
. ot at( 757 ) ( )

o€’

z,9,€

with

N 1 8f~b(7t~) 67:[(75)
at(.f,t).—?:l(.’f)( e ) (C.29)



Appendix D

Basic spatial differential operators in
general orthogonal curvilinear coordinates

Bellow we summarize the most important formulae for basic differential opsratgpressed in the general
orthogonal curvilinear coordinates. We will follow the lecture notes bytMac (http://geo.mff.cuni.cz/vyuka)
and also Brdika et al. (2000). Given the Cartesian coordinates of a point in the 8Beép, y2, y3) and
given a coordinate transformation, i.e. a mapping

Tk :xk(y17y25y3)a k= 172737 (Dl)
which isC? (continuous partial derivatives) with a non-vanishing Jacobian

j =det <gxk) #0 almost everywhere , (D.2)
Yl

we define the unit base vectors of a new coordinate system by

€k == ]jk;i , (D.3)
wherep'is the position vector antl,, is a scale factor (Lame coefficient)
Loy _ |op op
i\ Y (m) =\ an on ©

=1

with no summation over indek. We will assume that the new curvilinear coordinatgsare orthogonal
and form a right-hand system, i.e. the new basis vectors satisfy

€= Ol €k X €] = €imEm , (D.5)

wheree,, is the Levi-Civita permutation symbol. The basis vect@rare now generally varying in space
and we define the Christoffel symbadl§; by

3
oey, Z "o
7817 = Fk’l €m , (D6)
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thus 5
m €k
The Christoffel symbols can be expressed by means of the Lame caeffibie
m 1 Ol 5 1 Ohy 5 (D.8)

kl_hikaixklm_aaxm kl »
from which it follows that fork # [ £ m
M=Th=T5=0, (D.9)

and also
Ty =—Tj, (D.10)

as a result of which only six Christoffel symbols are independent. With skeofiChristoffel symbols, we
may now rewrite the basic invariant differential operators in the genarailinear orthogonal coordinates.
Gradient of a scalar

gradg = ) iai’ék (D.11)
k

Divergence of a vector
divi = ) L
= i

1 [ Ov 1 Ohyg
= — | =— — —Unm D.12
zk:hk (&rk * Z;k hm&vmv ) ( )

Gradient of a vector
. 1 [ Oy . L
gradv. = Z - <8$ + ernk:”m> €r ® e
YL k —

B 1 oy, 1 Ohy . R 1 /oy 1 Ohy, . .
= Zk:hk a—xk—i- Zkhmaxmvm €k®€k+zzhk< hil@il‘lvk er ® e

m,m#

Divergence of a tensor
. 1 Oy k l ~
divT = ; h7k (axk + ; Lok Tomt + ; Lk Tem | €1

1 0 ) 9
; {h1h2h3 [81’1 (hahsTq;) + iy (h1hsTop) + %5 (h1hoT3;)

1 Ohy Ohy, .
g Tl <8xk Ty, — oz, Tkk> } €l (D.14)

_l’_
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