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lujeme chemický vývoj tohoto heterogenního systému pomocívytvořeného nume-
rického kódu v axisymetrických sférických souřadnicích. Zam̌ěrujeme se na stanovení
časových škál, pro které předkládáme analytický model založený na analýze hraniční
vrstvy. Získané charakteristickéčasy jsou p̌redevším pro nízké viskozity silikátů velmi
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of iron were sinking to the base of the magma ocean due to the density contrast. In the
present work we study the process of equilibration between dispersed metal droplets
and surrounding silicates that proceeds by the advection transport and diffusion at the
rim. We allow for steady state flow of a spherical liquid blob falling in a host liquid
and establish the numerical code in axisymmetric sphericalcoordinates computing the
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Chapter 1

Introduction

Geophysics, geochemistry and geology interweave in order to discover the Earth’s
history as well as history of other planetary bodies. One of the most challenging stories
involves the history of first tens of millions of years when primitive Earth experienced
the most dramatic event throughout its whole history, the core formation. Relevant
models of the formation of the core were suggested for the first time in late eighties by
Stevenson [23].

Formation of the core involved separation of dense iron fromlighter silicates. How-
ever, extensive melting of the Earth’s interior is requiredsince solid silicate matrix is
impermeable for iron alloys within low pressure and temperature conditions. Recent
experimental and computational results indicate that large impacts produced enough
heating to cause melting and formation of magma oceans on Earth [25].

As pointed out above, extensively melted part of Earth originated in metal sepa-
ration. Since the surface tension of iron is high (roughly15× higher than the surface
tension of water at a temperature of50◦C), small iron droplets are formed and fall due
to the density contrast taking other elements that concentrate in metal rather than in sil-
icates with them. The droplets fall until they reach the baseof the magma ocean where
the temperature is below the peridotite liquidus. After sufficiently large volumes have
accumulated to overcome the viscous resistance, the metal further percolates in a form
of large diapirs to form the core [20]. The rainfall of small droplets and subsequent
storage on the rheological boundary are the dominant mechanisms that designate the
traces of core formation in today’s mantle composition [21].

Important chemical constraints are provided by abundancesof siderophile ele-
ments. The distribution of elements in the Earth can be understood by measuring the
partition coefficientK defined as a ratio of concentration of an element between the
metallic phase and the silicate phase. For the partition coefficient of siderophile ele-
ments holdsK > 1. Further, different subclasses are introduced, includingthe slightly
siderophile elements (SDE) for which holds1 < K < 10, moderately siderophile
elements (MSE) with10 < K < 104 and highly siderophile elements (HSE) with
K > 104.

Generally, siderophile elements are from one to three orders overabundant in the
Earth’s upper mantle compared to predictions based on low pressure experiments [18].
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Those discrepancies led many scientists to investigate element partitioning within high
temperature and pressure ranges. From many papers concerning this topic let us men-
tion [3], [4] [12] and [19].

Changes in partitioning behaviour and subsequent chemicalequilibration of metal
drops and/or equilibration of metal on the base of the magma ocean is one of possible
models how to explain the so-called “excess siderophile element problem”. Other
hypotheses of core formation that could lead to such siderophile elements abundances
are the heterogeneous accretion and late veneers, the inefficient core formation, the
addition of core material to the lower mantle and the equilibrium partitioning between
sulfur-rich metal and silicate. The basic overview is provided in [10], [21] and [24].
However, none of the hypotheses is able to explain all observations. For example, the
high temperature and pressure equilibration in the deep magma ocean solves excess of
MSE but still needs the late veneer in order to explain the HSEabundances.

The thermodynamical properties of the magma ocean present more appealing unan-
swered questions. Temperature, pressure and oxidation state are the crucial parameters
of the early Earth. However, different conditions were suggested. Based on partition-
ing experiments, the temperature range varies between 2000-4000 K and the pressure
is estimated to be up to 60 GPa [3].

An important parameter which seems to significantly controldynamic processes
in the magma ocean is the viscosity of silicates. However, the viscosity of the magma
ocean is not well known, we can only say that it varies in a verybroad range depending
mainly on temperature. Unfortunately, there are no experimental data for the viscos-
ity within high temperature and pressure conditions and extrapolation of experiments
within low conditions is misleading [22].

These questions provide great challenge to contribute to the story of the primi-
tive Earth. We aim to focus the research on understanding themetal “rainfall” by the
methods of numerical simulations. More precisely, we investigate the way of chemi-
cal equilibration of small droplets settling in the magma ocean in order to derive the
scalings for the characteristic times of equilibration.

Numerical models play a crucial role in the core forming scenarios since there is
no direct record of this dramatic event and experimental conditions corresponding to
the deep magma ocean are so far not possible to produce.

The model is presented and detailed in the second chapter of this work where we
present as well an analytical model of the chemical evolution of the system based on
the boundary layer analysis.

In order to explore the dynamics of equilibration we build a numerical code that
allows to study the evolution of concentration of the element partitioning. Numerical
concepts are presented in the third chapter. We also give detailed description of the
finite volume method used in the spatial domain and the alternating direction implicit
(ADI) method used in the temporal domain.

In chapter 4 we present our results. In arranging numerical experiments we focus
on determining the role of silicate viscosity since the viscosity designates the dynamics
of the magma ocean.
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Finally, in chapter 5 we analyse the attained results and discuss the implications
that we sum up in the last chapter 6.

8



Chapter 2

Physical Model

In this chapter we present our approach to the problem of dispersed metal droplets and
their equilibration with the surrounding silicates in the magma ocean. Principal con-
cept of our model is based on the paper of Grasset and Albarede[9] who were studying
the mingling of basaltic and felsic magmas, namely their rate of homogenization.

We describe the model and introduce the governing equations. We analyse the
terms and envisage the boundary conditions at interfaces. We derive an analytical
solution of velocity field for steady state motion of two immiscible liquids and compare
it with the velocity field of solid sphere in a liquid medium. Further, we write the
equations in dimensionless form and present an analytical model of equilibration of the
drop. Finally, we give the plausible ranges of parameters describing the drop settling
and bring an analysis of the velocity field within and outsidethe drop.

2.1 Model description

We consider a single metallic drop falling in a host silicatemagma with a constant
terminal velocityUt, exploring thus a steady state motion reached after a certain time
passes. A drop neither sways nor rotates.

The two liquids are considered to be immiscible. Next, all equations are derived
for incompressible matter, conservation of mass thus reduces to non-divergence of
velocityv

∇ · v = 0 . (2.1)

Finally, we assume that the drop has a spherical shape and no deformation occurs
in course of time evolution.

We aim to model the time evolution of concentration of a givenchemical element
in the silicate mantle and in the metal drop. Generally, concentrationC can vary due
to local production of concentrationHC or due to transport across the interface. The
transport can proceed by a macroscopic advection flow or by a microscopic diffusion.
Below we analyze both of these mechanisms.

Diffusion is a molecular transport that occurs when any variation in concentration
is presented. Exchange of atoms by diffusion between two materials is then given by
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the same laws as those that describe the transfer of heat by conduction. Namely, the
diffusive fluxF dif follows the Fick’s law

F dif = −D∇C , (2.2)

whereD is a diffusion coefficient. The minus sign indicates that theflux proceeds
from regions of higher to regions of lower concentration.

Net rateF adv at which concentration is flowing obeys the law

F adv = Cv . (2.3)

The total flux is then the sum of advective and diffusive fluxF tot = F dif + F adv.
Let us consider an arbitrary volumeV . The number of particles entering and leav-

ing the volume per unit time that passes through the surfaceS surrounding the volume
V is

Q = −
∫

S

F totdS . (2.4)

Positive direction is chosen outward from the surface.
Change of the number of particles in the volumeV per second is

∫

V
∂tCdV , where

∂t denotes time derivation. Equating this to the number entering the volume through its
surface (2.4) and using the Gauss theorem to convert the surface integral to the volume
integral we obtain

∫

V

∂C

∂t
dV = −

∫

V

∇ · F totdV . (2.5)

Because the volumeV was chosen arbitrarily and adding the volume concentration
sourcesHC to the balance the general conservation equation for concentration leads to

∂C

∂t
= −∇ · F tot + HC = ∇ · (D∇C − vC) + HC . (2.6)

Eq. (2.6) holds in both media but we allow for different diffusion coefficientsDI,
DII and velocity fieldsvI, vII. Since there are no volume concentration sources,

∂CI

∂t
= −∇ · F I

tot = ∇ · (DI∇CI − vICI) , (2.7)

holds for concentrationCI of an element in the metal drop. Likewise, we write for its
concentrationCII in the silicate magma,

∂CII

∂t
= −∇ · F II

tot = ∇ · (DII∇CII − vIICII) . (2.8)

Dynamical model of chemical equilibration is established in order to explore par-
titioning of elements between silicates and iron. Below we depicture applied spatial
alignment.
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2.2 Geometry

The pattern of the task suggests using spherical coordinates. We set the origin at the
center of the spherical drop, therefore the motionless dropis seeing lighter magma
moving up. As there is an axial symmetry we have two independent variables describ-
ing the system, namely a radiusr being the distance from the origin and an angleθ
measured anti-clockwise from the point of incidence of two liquids, cf. Figure 2.1.

The thickness of the diffusion boundary layerδ in the surrounding silicates is of
order of∼ (DIIR/Ut)

1/2, whereR is the radius of the blob. SinceDII is a low order
number (∼ 10−8 m2s−1) boundary layer is much smaller than the radius of the blob,
δ ≪ R, that allows us to replace infinite space around the blob by a sphere with radius
2R. We thus assume no chemical influence by diffusion beyondr = 2R, cf. Figure 2.1.

Ut

R

2R

θθ = 0

II
I

r = 0

Figure 2.1: The model geometry. The lighter magma ocean is moving up around the
denser metal blob with the terminal velocityUt. The origin of the coordinate system is
at the centre of the drop.θ is measured anti-clockwise from the point of incidence of
two liquids. Diffusion-advection equations are solved in the sphere with radius2R.

2.3 Boundary conditions

As we described above there are two boundaries. The first one,at r = R, is a material
boundary between the silicates and the metallic blob. The second one, atr = 2R, is
an external no-material boundary. To complete the formulation we need to prescribe
boundary conditions.
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2.3.1 Boundary conditions at the metal-silicate interface

At the interface between the drop and the magma we impose continuity of normal
component of the flux (2.9). No matter is thus accumulated on the boundary

[F · er]
+
− = 0 |r=R , (2.9)

whereer is a unit vector in the radial direction.
Secondly, we prescribe the partition coefficientK of a compound, we thus define

the ratio of concentration of an element between metallic phase and silicate phase at
chemical equilibrium

K =
CI

CII
|r=R . (2.10)

Because there is no radial velocity on the boundary (see Eq. (2.31) below), condi-
tion (2.9) simplifies as

[

D
∂C

∂r

]+

−

= 0 |r=R . (2.11)

2.3.2 Boundary conditions at the external boundary

The external boundary is not a material boundary, thereforethe conditions imposed on
it should not depend on the chosen geometry.

At the front of the drop, forθ ∈ (0, π
2
), we keep concentration constant as there is

no interaction between blob and magma

C = Cext |r=2R,θ< π
2

. (2.12)

At the leeward side, forθ ∈ (π
2
, π), we impose the permeability of the boundary,

we thus allow chemical elements to be shifted out. Since the distancer = 2R is far
from the diffusion boundary layerδ we impose the condition of zero diffusion flux in
the direction of flow

(

DII v

|v| · ∇C

)

= 0 |r=2R,θ> π
2

, (2.13)

where|v| is a magnitude of velocity. We thus assume that elements at the boundary
are transported only by advection. After simplification we get

(v · ∇C) = 0 |r=2R,θ> π
2

. (2.14)

2.4 Velocity field

In order to solve Eqs. (2.7) and (2.8) a velocity field within and outside the drop for
steady state motion must be prescribed. Let us consider two immiscible liquids with
different densities and viscosities. A drop that is not deformed and keeps its shape is
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falling down due to a gravity force at a certain terminal velocity Ut. We assume motion
in a viscous regime, inertia force is thus neglected. After acertain time it reaches a
steady motion, there is no acceleration.

To derive the velocity field of the liquid drop in the liquid medium, we consider the
continuity equation for an incompressible fluid (2.1) and the Navier-Stokes equation
for steady motion [11].

2.4.1 Equation of motion

Because inertia force is neglected, equation of motion

∇ · σ + ρg = 0 (2.15)

represents balance between surface and volume forces. Hereσ andg are viscous stress
tensor and gravity acceleration, respectively. In a newtonian incompressible fluid the
rheological relation reads as

σ = −PI + µ
[

∇v + (∇v)T
]

, (2.16)

whereI andP are an identical tensor and pressure, respectively,µ is a dynamic vis-
cosity, and(.)T denotes tensor transposition.

Substituting Eq. (2.16) into Eq. (2.15) we get for metal and silicates, respectively,

0 = −∇P I + µI∇2vI , (2.17)

0 = −∇P II + µII∇2vII + (ρI − ρII)g . (2.18)

It is useful to reduce Eq. (2.18) to a form similar to (2.17). Therefore we introduce
an additional effective pressureΠ instead of the external force satisfying∇Π = (ρI −
ρII)g. In silicates thus stands

0 = −∇(P II − Π) + µII∇2vII . (2.19)

Finally, the velocities must satisfy the continuity equations

0 = ∇ · vI , (2.20)

0 = ∇ · vII . (2.21)

2.4.2 Geometry

Assuming the axial symmetry of spherical coordinates, the Navier-Stokes equations
have the form (differential operators in axi-symmetric spherical coordinates are listed
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in Appendix A)

0 = −∂P I

∂r
+ µI

{

1

r2

∂

∂r

(

r2∂vI
r

∂r

)

+
1

r2 sin θ

∂

∂θ

(

sin θ
∂vI

r

∂θ

)

−2vI
r

r2
− 2

r2 sin θ

∂

∂θ

(

vI
θ sin θ

)

}

, (2.22)

0 = −1

r

∂P I

∂θ
+ µI

{

1

r2

∂

∂r

(

r2∂vI
θ

∂r

)

+
1

r2 sin θ

∂

∂θ

(

sin θ
∂vI

θ

∂θ

)

+
2

r2

∂vI
r

∂θ
− vI

θ

r2 sin2 θ

}

, (2.23)

and similarly in the silicates.
The continuity equation has the form

0 =
1

r2

∂

∂r

(

r2vr

)

+
1

r sin θ

∂

∂θ
(sin θvθ) . (2.24)

2.4.3 Limit and boundary conditions

We prescribe five conditions at the metal-silicate interface and one condition at infinity.
Far from the falling drop the effect of the blob is negligibleand the velocity field

in the silicates must approach the terminal velocity in the vertical directionvz = −Ut.
In spherical coordinates

lim
r→∞

vII
r = −Ut cos θ , (2.25)

lim
r→∞

vII
θ = Ut sin θ . (2.26)

SinceUt is unknown, Eqs. (2.25)–(2.26) provide only one independent constraint.
At the interface between the drop and the surrounding liquid, r = R, the traction

T must be continuous
[T ]+− = [er · σ]+− = 0 , (2.27)

i.e.,

[σrr]
+
− = 0 , (2.28)

[σrθ]
+
− = 0 . (2.29)

Because we consider a newtonian rheology (2.16) we rewrite Eqs. (2.28) and (2.29)
[

−(P II − Π) + 2µII∂vII
r

∂r

]

r=R

=

[

−P I + 2µI∂vI
r

∂r

]

r=R

,

µII

(

1

r

∂vII
r

∂θ
+

∂vII
θ

∂r
− vII

θ

r

)

r=R

= µI

(

1

r

∂vI
r

∂θ
+

∂vI
θ

∂r
− vI

θ

r

)

r=R

. (2.30)
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At the surface of the drop, normal components of velocities must be zero as no
mixing occurs, and tangential velocities must satisfy thatthere is no-slip between the
two liquids,

vI
r = 0 |r=R , (2.31)

vII
r = 0 |r=R , (2.32)

vI
θ = vII

θ |r=R . (2.33)

2.4.4 Solution

Boundary conditions at infinity (2.25) and (2.26) suggest totry the solution in the form

vI
r = f I(r) cos θ , (2.34)

vI
θ = gI(r) sin θ , (2.35)

P I = µIhI(r) cos θ , (2.36)

in the metal blob. Likewise, we write the solution in silicates

vII
r = f II(r) cos θ , (2.37)

vII
θ = gII(r) sin θ , (2.38)

P II = µIIhII(r) cos θ . (2.39)

Substituting Eqs. (2.34)–(2.36) to Eqs. (2.22)–(2.24) andeliminating functionsg
andh we obtain an ordinary differential equation of the fourth order forf

r3 d4f

dr4
+ 8r2 d3f

dr3
+ 8r

d2f

dr2
− 8

df

dr
= 0 . (2.40)

Next, we have for the functionsg andh

g = − 1

2r

d

dr

(

r2f
)

, (2.41)

h = 2
df

dr
+ 3r

d2f

dr2
+

r2

2

d3f

dr3
. (2.42)

The solution of Eq. (2.40) can be generally expressed in the form f ≈ rn that
implies through Eqs. (2.41) and (2.42) thatg holdsg ≈ −n+2

2
rn and similarly forh

standsh ≈ 1
2
n2(3 + n)rn−1.

Substitutingf = rn to Eq. (2.40) we find thatn must satisfy

n(n − 2)(n + 1)(n + 3) = 0 , (2.43)

that leads ton = {−3,−1, 0, 2}.
Considering that the velocity must remain finite at all points within the drop as well

as outside, the general solution forvI
r, vI

θ andP I is thus expressed as

vI
r = (b1 + b2r

2) cos θ , (2.44)

vI
θ = (−b1 − 2b2r

2) sin θ , (2.45)

P I = 10µIb2r cos θ . (2.46)
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Similarly, it stands

vII
r = (

c1

r3
+

c2

r
+ c3) cos θ , (2.47)

vII
θ = (

c1

2r3
− c2

2r
− c3) sin θ , (2.48)

P II = µII c2

r2
cos θ , (2.49)

for the solution in silicates.
Using the conditions at infinity and at the boundary we evaluate the unknown coef-

ficientsc1, c2, c3, b1, b2 and the terminal velocityUt obtaining the velocity field inside
the blob

vI
r =

(

1 − r2

R2

)

Utµ
II cos θ

2(µI + µII)
, (2.50)

vI
θ =

(

2r2

R2
− 1

)

Utµ
II sin θ

2(µI + µII)
, (2.51)

the velocity field in silicates

vII
r =

(

−1 − µI

2(µI + µII)

R3

r3
+

3µI + 2µII

2(µII + µI)

R

r

)

Ut cos θ , (2.52)

vII
θ =

(

1 − µI

4(µI + µII)

R3

r3
− 3µI + 2µII

4(µII + µI)

R

r

)

Ut sin θ , (2.53)

and finally the terminal velocity

Ut =
2(ρII − ρI)gR2

3µII

µII + µI

2µII + 3µI
, (2.54)

known as the Rybczýnski-Hadamard formula [1]. Figure 2.2 shows the velocity field
using vectors and streamlines for one particular parameterchoice.

In the solid limit, whenµI → ∞, we get for the terminal velocity the well-known
Stokes equation

Ust =
2

9

(ρII − ρI)gR2

µII
. (2.55)

The velocity field outside the solid drop with no-slip boundary condition at the solid-
liquid interface is then [26]

vII
r =

(

−1 − R3

2r3
+

3R

2r

)

Ust cos θ , (2.56)

vII
θ =

(

1 − R3

4r3
− 3R

4r

)

Ust sin θ . (2.57)

Comparing the Rybczýnski-Hadamard terminal velocity for a liquid drop in a liquid
medium with the Stokes terminal velocity for a solid drop in aliquid medium, we see
that the steady state fall of a liquid sphere is faster than that of a solid one in the same
gravity field. Figure 2.3 shows the ratio of the R-H velocity and the Stokes velocity
RU = Ut/Ust as a function of the silicate viscosity for two different iron viscosities.

16



(a) Velocity field (b) Streamlines

Figure 2.2: Velocity field and streamlines for steady state motion of liquid blob in
liquid medium in viscous regime. Used parameters are:R = 1 m, Ut = 1 m/s and
viscositiesµI = µII = 1 Pa s.

1

1.25

1.5

10−6 10−4 10−2 100 102 104 106

R
U

µII

µI = 10−2 Pa s
µI = 100 Pa s

Figure 2.3: Ratio of terminal velocitiesRU for liquid and solid sphere in a liquid
medium as a function of silicate viscosityµII for two different iron viscositiesµI.
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2.5 Dimensionless formulation

To reduce the number of parameters that characterize the system it is convenient to use
dimensionless variables. We introduce three scaling factors: the radius of the blobR
for r, the terminal velocityUt for v and the reference concentrationC0 for C. As a
reference concentration we use the initial concentration.Time is scaled with advective
factorR/Ut. Equations (2.7) and (2.8) thus become

∂CI∗

∂t∗
= ∇∗ ·

(

DI

DII

1

Pe
∇CI∗ − vI∗CI∗

)

, (2.58)

∂CII∗

∂t∗
= ∇∗ ·

(

1

Pe
∇CII∗ − vII∗CII∗

)

, (2.59)

where index(.)∗ denotes the non-dimensional variables. We introduced the Peclet
number

Pe =
RUt

DII
, (2.60)

that relates the rate of advection to the rate of chemical diffusion in the silicates.
Since the non-dimensional velocity depends on the ratio of viscosities, the system

is scaled by three dimensionless numbers, namely the ratio of diffusion coefficients
RD = DI/DII, the ratio of viscositiesRµ = µI/µII and the Peclet number Pe.

From now on, we work with the dimensionless quantities and omit the asterisk.

2.6 Analytical model

In order to find an analytical model that could be compared with the results of numer-
ical code established below in Chapter 3 we evaluate the meanvalue of convective-
diffusion equation (2.58) within the drop

〈

∂CI

∂t

〉

=

〈

∇ ·
(RD

Pe
∇CI − vICI

)〉

, (2.61)

that leads with use of the divergence theorem to equation

∂〈CI〉
∂t

=

∫

S
RD

Pe
∇CIdS

V
, (2.62)

where we exchanged the time derivation and the volume integral. Here,S is the surface
of the drop andV = 4

3
π is its dimensionless volume. We considered that the radial

part of the advective flux is zero over the surface (2.31).
Further, we allow for no concentration accumulation on the boundary (2.9), i.e.,

∫

S

RD

Pe
∇CIdS =

∫

S

1

Pe
∇CIIdS , (2.63)

and will search for analytical representation of the surface integral for the concentration
outside the drop.
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There are only few cases when the exact solution of the surface integral (2.63) can
be obtained. Here, we present an approximative solution considering the boundary
layer equation for steady convective motion.

The equation of steady convection mass transfer in the diffusion boundary layer
follows

vII
r

∂CII

∂r
+

vII
θ

r

∂CII

∂θ
=

1

Pe

(

∂2CII

∂r2
+

2

r

∂CII

∂r

)

, (2.64)

where we omitted the angular part of the Laplacian on the right hand side because the
derivatives along the surface of the sphere are small compared to the derivatives along
the radius vector.

In order to solve Eq. (2.64), boundary conditions must be established. Since the
change of concentration occurs in a thin layer near the drop surface, the condition on
constant concentrationC1 far from the surface is taken (2.65). Next, at the surface
of the body, we impose the constant concentrationC2 that can generally vary with
time (2.66). Boundary conditions are thus

CII = C1 |r→∞ , (2.65)

CII = C2 |r=1 . (2.66)

In order to integrate Eq. (2.64) we introduce the stream function Ψ, related tovII
r

andvII
θ as follows

vII
r = − 1

r2 sin θ

∂Ψ

∂θ
, (2.67)

vII
θ =

1

r sin θ

∂Ψ

∂r
. (2.68)

Because we are interested in solutions only near the surface, we further introduce
a new variabley

y = r − 1 , (2.69)

being the distance from the surfacer = 1.
Let us evaluate the order of magnitude of the concentration derivatives in the

boundary layer. For smally, i.e. y ∼ δ ≪ 1, we have

∂2CII

∂y2
∼ CII

δ2
, (2.70)

∂CII

∂y
∼ CII

δ
, (2.71)

and therefore
∂2CII

∂y2
≫ 2

∂CII

∂y
. (2.72)

Under these assumptions and by replacing(y, θ) with new variables(Ψ, θ) we solve
Eq. (2.64),

∂CII

∂θ
=

1

Pe
sin θ

∂

∂Ψ

[

sin θvII
θ

∂CII

∂Ψ

]

. (2.73)
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Next, one more condition must be given along with (2.65) and (2.66) since the
stream function is determined up to an arbitrary constant. We require that the concen-
trationC(Ψ, θ) has no singularity at the point of incidence of the flow on the sphere,
i.e.,

CII = C1 |θ=0 ,Ψ=0 . (2.74)

Last of all, we allow for the tangential velocity at valuesy = 0, i.e.,

vθ |y=0 =
µII

2(µI + µII)
sin θ . (2.75)

The solution of equation (2.73) can be found in [11] completewith the evaluation
of the surface integral (2.63). We present here only the finalresult of the total flow
over the surface without its derivation. The total flowIliq for the liquid sphere is then

Iliq = 8

√

π

6

µII

µI + µII
(C1 − C2)

√

1

Pe
. (2.76)

Next, we match the concentration at the surface of the dropC2 with the average
concentration within the drop as

C2 =
〈CI〉
K

, (2.77)

where we allow for the concentration discontinuity at the surface given by Eq. (2.10)
produced by different partitioning of the elements. It is properly as far as the diffusion
within the drop is sufficiently high or the mixing within the drop is sufficient in order
to rapidly homogenize the concentration.

Using the evaluation of the total flux over the surface (2.76), with the average
concentration as a boundary condition, we integrate Eq. (2.62) by way of variable
separation getting

〈CI〉 = (1 − KC1) exp

(

−
√

6

π

µII

µI + µII

1

K

1√
Pe

t

)

+ KC1 , (2.78)

wheret and〈CI〉 are dimensionless time and concentration, respectively.
For the time evolution of the mean concentration thus standsan exponential law

〈CI〉 ∼ exp

(

− t

τ

)

, (2.79)

where we introduced a characteristic timeτ satisfying

τliq =

√

π

6

(

µI

µII
+ 1

)

K
√

Pe . (2.80)
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We can proceed the same derivation for the rigid sphere in addition to the angular
velocity that is always zero at the surface. We thus express the tangential velocityvII

θ

near the surface.
The total flowIrig to the surface of the drop is then

Irig = 7.98(C1 − C2)(Pe)−2/3 , (2.81)

where the factor of 7.98 comes from the integration constant. Using (2.81) the time
evolution of concentration is

〈CI〉 = (1 − KC1) exp

(

−5.985

π

1

K
(Pe)−

2

3 t

)

+ KC1 , (2.82)

with the characteristic time

τrig =
π

5.985
K(Pe)

2

3 . (2.83)

2.7 Parameters of the model

In a liquid medium, dispersed small particles tend to grow inorder to reduce the surface
energy. On the other hand, large objects are subjected to repeated breakups till they
settle down. The important question is thus the extent of these two mechanisms that
lead to establish the drops in a state when surface tension prevents further breakup and
when surface energy reaches minimum.

The crucial forces in a moving liquid-liquid system are the inertia and the surface
tension forces. The dimensionless number that reflects their ratio is the Weber number
given as [15]

We =
2ρIIRU2

t

γ
. (2.84)

The smaller the Weber number, the more stable the drop is. Thebasic question is what
is the critical radius when the drop is still stable.

Considering the Kelvin-Helmholtz instability that is a consequence of shear motion
between two liquids at the interface, it is possible to constrain the stable size of droplet.
Using numerical computing and theoretical investigation,the critical Weber number
Wecr reflecting the instabilities is determined as [8]

Wecr = 4π(1 +
1

s
) , (2.85)

wheres = ρI

ρII . It is thus the ratio of densities that we consider to establish the stable
radius of the drop. Using silicate and iron densities,ρI = 7800 kg m−3 andρII =
3750 kg m−3, the critical Weber number isWecr = 19.

Equating the definition of Weber number (2.84) with the critical Weber number
(2.85) and using an analytical solution for the terminal velocity (2.54) stable radiusRs

of the drop is

Rs =
5

√

πγ(1 + 1
s
)

2ρII

(

3µII

(ρII − ρI)g

2µII + 3µI

µII + µI

)2

. (2.86)

21



Figure 2.4 shows the stable size of drops, the terminal velocity, and the Peclet num-
ber as functions of silicate viscosity varying in a range of10−6 − 106 Pa s (assuming
γ = 1 Nm−1 andg = 10 ms−2). The stable size of the drop and the terminal velocity
are displayed for two iron viscosities.

The stable radius varies from∼ 10 µm for silicate viscosity10−6 Pa s to ∼ 1 m
for silicate viscosity106 Pa s. Corresponding settling velocity varies in a range of
∼ 1 cm/s−10 m/s (which could be10× smaller due to the vigorous convection of the
magma ocean [2]). The higher the silicate viscosity, the larger the stable radius and the
slower the terminal velocity.

The Peclet number varies in a range of104 − 1011 for diffusion coefficient10−8 −
10−12 m2/s. For one diffusion coefficient Peclet number changes about two orders
within the viscosity range. The higher the viscosity, the higher the Peclet number and
thus the more significant the advection is with respect to thediffusion.

Figure 2.5 shows the ratio of average velocities within the drop and outsideR〈v〉 =
〈vI〉/〈vII〉 as a function of the ratio of viscositiesRµ for the stable size of the drop (cp.
with Figure 2.3).

The velocity ratio remains nearly constant when the silicate viscosity is higher
than the viscosity of iron. On the other hand, for the iron viscosity higher than the
silicate viscosity stirring within the blob starts to be less efficient and the velocity ratio
decreases rapidly.
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Figure 2.4: (A) Stable radius of the dropRs and (B) terminal velocityUt as a function
of silicate viscosity for two different iron viscosities. Stable droplet size is estimated
using the critical Weber numberWecr = 19. (C) Peclet number Pe as a function of
silicate viscosity for three different diffusion coefficients. Peclet number is computed
for stable size of the drop and corresponding terminal velocity.
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Figure 2.5: Ratio of average velocities within the blob and outsideR〈v〉 as a function
of viscosity ratioRµ. Calculations are done for stable size of the drop.
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Chapter 3

Numerical Model

To solve the flux conservative equations (2.7) and (2.8) withthe boundary condi-
tions (2.10)-(2.12) and a velocity field governed by Eq. (2.50)-(2.53), we use a fi-
nite volume formulation in spatial domain and an alternating direction implicit (ADI)
method in time domain. Both of them are of the second order accuracy.

3.1 Finite volume formulation

Generally, in the finite volume method [27] a partial differential equation is integrated
over the volume of an element. The divergence term is then converted using the diver-
gence theorem to a surface integral. Then the balance of in-flux and out-flux through
the faces of the element is prescribed. As the flux entering the grid element must be
the same as that leaving the element, we are talking about a conservative method.

Given the discretization in the radial direction and the lateral direction,rj = (j −
1)∆r, j = 1, . . . , JMAX, θk = (k − 1)∆θ, k = 1, . . . , KMAX, respectively, we eval-
uate vectors at points(rj + 1

2
∆r, θk) and(rj , θk + 1

2
∆θ), where∆r and∆θ denote the

grid spacings.JMAX, KMAX ∈ N are natural numbers. Scalar variables are consid-
ered piecewise constant over the mesh cells at each time step. They are represented by
their values at discrete points(rj +

1
2
∆r, θk + 1

2
∆θ). Taking into account the discretiza-

tion, we refer further toC(rj + 1
2
∆r, θk + 1

2
∆θ) asCj,k (likewise for other variables),

j = 1, . . . , JMAX, k = 1, . . . , KMAX.
Our aim is to solve Eqs. (2.58) and (2.59). Because these equations are formally

the same, we proceed a numerical analysis with general concentrationC, vector field
v and dimensionless constantD beeing eitherRD/Pe in the domain I or1/Pe in the
domain II.

Applying approach described above we get
∫∫∫

Ω

∂C

∂t
dV = −

∫∫

∂Ω

F · ndS , (3.1)

whereΩ is the finite volume,∂Ω is the boundary of the finite volume andn is an outer
normal to the surface element.
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Cj,k

F j+ 1

2

F j− 1

2

F k− 1

2F k+ 1

2

Figure 3.1: Balance of in-flux and out-flux across surface of an inner element in the
2-D spherical grid. ConcentrationCj,k is computed at the center of the cell. Fluxes are
calculated at the faces of the cell ; radial flux on the vertical faces and tangential flux
on the horizontal faces.

Now, we balance the in-flux and the out-flux in each cell. We introduce the flux
across faces of the cell in the grid:F j+ 1

2 , F j− 1

2 , F k+ 1

2 , F k− 1

2 , cf. Figure 3.1. Similarly,
we write for particular surface elements of the cell’s facesSj+ 1

2 , Sj− 1

2 , Sk+ 1

2 , Sk− 1

2 .
Then we evaluate integrals of the normal components of the flux across borders of

the cell and the volume integral in (3.1)

∂Cj,k

∂t
= −F k+ 1

2 Sk+ 1

2 − F k− 1

2 Sk− 1

2

Vj,k

− F j+ 1

2 Sj+ 1

2 − F j− 1

2 Sj− 1

2

Vj,k

, (3.2)

whereVj,k is the element’s volume. The right hand side (RHS) is thus separated to
radial and angular part.

As we described in Chapter 2 we use an axi-symmetrical spherical coordinates with
the origin at the center of the drop. For volume element thus stands

Vj,k =

∫ 2π

0

∫ rj+∆r

rj

∫ θk+∆θ

θk

r2 sin θdrdφdθ

=
2

3
π(cos θk − cos(θk + ∆θ))[(rj + ∆r)3 − r3

j ] . (3.3)

The surface elements are expressed as follows,

Sj+ 1

2 =

∫ 2π

0

∫ θk+∆θ

θk

(rj + ∆r)2 sin θdθdφ

= 2π(rj + ∆r)2(cos θk − cos(θk + ∆θ)) , (3.4)

Sj− 1

2 =

∫ 2π

0

∫ θk+∆θ

θk

r2
j sin θdθdφ

= 2πr2
j (cos θk − cos(θk + ∆θ)) , (3.5)
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Sk+ 1

2 =

∫ 2π

0

∫ rj+∆r

rj

r sin θk drdφ

= π sin θk(2rjdr + ∆r2) , (3.6)

Sk− 1

2 =

∫ 2π

0

∫ rj+∆r

rj

r sin(θk + dθ)drdφ

= π sin(θk + ∆θ)(2rj∆r + ∆r2) . (3.7)

Changes of concentration can proceed by microscopic diffusion or macroscopic
advection flux as described in Chapter 2. Thus, we can write for the flux across a
surface element

F j± 1

2 = −D
(

∂C

∂r

)j± 1

2

+ vrC
j± 1

2 , (3.8)

F k± 1

2 = −D
r

(

∂C

∂θ

)k± 1

2

+ vθC
k± 1

2 , (3.9)

where concentration and derivatives of concentration are expressed at the faces of the
cell in the grid as is denoted by indicesj ± 1

2
, k ± 1

2
.

The finite volume method provides high spatial accuracy depending upon which
discretization we use. As we suppose that we don’t handle with shocks or sharp dis-
continuities, we assume a central discretization for concentration and central difference
scheme for derivatives that are of second order spatial accuracy,

Ck+ 1

2 =
Cj,k+Cj,k+1

2
, Ck− 1

2 =
Cj,k+Cj,k−1

2
,

Cj+ 1

2 =
Cj,k+Cj+1,k

2
, Cj− 1

2 =
Cj,k+Cj−1,k

2
,

(3.10)

(∂θC)k+ 1

2 =
Cj,k+1−Cj,k

∆θ
, (∂θC)k− 1

2 =
Cj,k−Cj,k−1

∆θ
,

(∂rC)j+ 1

2 =
Cj+1,k−Cj,k

∆r
, (∂rC)j− 1

2 =
Cj,k−Cj−1,k

∆r
.

(3.11)

Although central difference scheme provides great accuracy for smooth solutions
it is not total variation diminishing (TVD) scheme, i.e.

∑

j,k |Cn+1
j+1,k+1 − Cn+1

j,k | ≤
∑

j,k |Cn
j+1,k+1 −Cn

j,k| doesn’t hold for each time step (time stepping is denoted by the
superscriptn), and could introduce oscillations. In that case it is appropriate to use
limiter functions, e.g. superbee, that limit the slope of the piecewise approximations
to avoid spurious oscillations. However, it is out of the scope of the thesis to use any
of these schemes.
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After introducing needed discretization, we can write for the angular and radial
part of the RHS of Eq. (3.2), respectively,

(RHS)θ =
Sk+ 1

2D Cj,k+1−Cj,k

(rj+
1

2
∆r)∆θ

− Sk− 1

2D Cj,k−Cj,k−1

(rj+
1

2
∆r)∆θ

Vj,k

− Sk+ 1

2 vθ
Cj,k+Cj,k+1

2
− Sk− 1

2 vθ
Cj,k+Cj,k−1

2

Vj,k

, (3.12)

(RHS)r =
Sj+ 1

2DCj+1,k−Cj,k

∆r
− Sj− 1

2DCj,k−Cj−1,k

∆r

Vj,k

− Sj+ 1

2 vr
Cj,k+Cj+1,k

2
− Sj− 1

2 vr
Cj,k+Cj−1,k

2

Vj,k
. (3.13)

3.2 Time-integration scheme

For time strategy we consider the alternating direction implicit method. The method is
based on the Crank-Nicolson scheme that we derive in the nextsection.

3.2.1 Crank-Nicolson Scheme

We want to find solution of∂tC = g, where∂t denotes a time derivation. Using Taylor
series

C(t + ∆t) = C(t) +
∂C

∂t
∆t +

∆t2

2

∂2C

∂t2
+ O(∆t3) , (3.14)

and substituting for∂tC we get

C(t + ∆t) = C(t) + g∆t +
∆t2

2

∂g

∂t
+ O(∆t3) . (3.15)

Using Taylor series forg

∂g

∂t
=

g(t + ∆t) − g(t)

∆t
+ O(∆t) , (3.16)

the Crank-Nicolson scheme [5] is obtained,

C(t + ∆t) − C(t)

∆t
=

1

2
(g(t + ∆t) + g(t)) + O(∆t2) . (3.17)

The scheme is of the second order accuracy.

3.2.2 ADI

Further, we introduce the alternating direction implicit method (ADI) based on the
Crank-Nicolson scheme derived above with a special form of right hand side∂tC =
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ΛC, whereΛ is a sum of linear differential operators. More precisely, for an axi-
symmetrical problem in spherical coordinates standsΛ = Λθ + Λr. We write thus

(1 − ∆t

2
Λθ −

∆t

2
Λr)C

n+1 = (1 +
∆t

2
Λθ +

∆t

2
Λr)C

n + O(∆t3) , (3.18)

whereCn denotes a concentration in timetn, wheren = 1, . . . , N ; N ∈ N (spatial
indexing is omitted here).

By adding operator∆t2

4
ΛθΛr we rewrite (3.18)

(1 − ∆t

2
Λθ)(1 − ∆t

2
Λr)C

n+1 = (1 +
∆t

2
Λθ)(1 +

∆t

2
Λr)C

n + O(∆t3) , (3.19)

since∆t2

4
ΛθΛr (Cn+1 − Cn) is included in errorO(∆t3).

Finally, we use the Peaceman-Rachford scheme, cf. [7] and [16], to solve (3.19)

(1 − ∆t

2
Λr)C

n+ 1

2 = (1 +
∆t

2
Λθ)C

n ,

(1 − ∆t

2
Λθ)C

n+1 = (1 +
∆t

2
Λr)C

n+ 1

2 . (3.20)

The scheme thus involves two distinct steps to gain solutionat timetn+1 = (n +
1)∆t from the known solution at timetn = n∆t. Obtaining the concentration at time
tn+1/2 = (n+ 1

2
)∆t is solely of numerical nature and can be considered as an auxiliary

solution without any physical meaning.
Considering that at each time step hold in spatial domain Eq.(3.12) and (3.13),

respectively, we write for(1 − ∆t
2

Λr)C
n+ 1

2

j,k

−Sj− 1

2 ∆t

2Vj,k

( D
∆r

+
vr

2

)

C
n+ 1

2

j−1,k +

{

1 +
∆t

2Vj,k

(

D(Sj+ 1

2 + Sj− 1

2 )

∆r
+

Sj+ 1

2 vr − Sj− 1

2 vr

2

)}

C
n+ 1

2

j,k +

−Sj+ 1

2 ∆t

2Vj,k

( D
∆r

− vr

2

)

C
n+ 1

2

j+1,k . (3.21)

Likewise, it stands for the angular part(1 − ∆t
2

Λθ)C
n+1
j,k ,

−Sk+ 1

2 ∆t

2Vj,k

( D
(rj + 1

2
∆r)∆θ

+
vθ

2

)

Cn+1
j,k−1 +

{

1 +
∆t

2Vj,k

(

D(Sk− 1

2 + Sk+ 1

2 )

(rj + 1
2
∆r)∆θ

+
Sk− 1

2 vθ − Sk+ 1

2 vθ

2

)}

Cn+1
j,k +

−Sk− 1

2 ∆t

2Vj,k

( D
(rj + 1

2
∆r)∆θ

− vθ

2

)

Cn+1
j,k+1 . (3.22)
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To calculate the concentrationCj,k in the grid cell at timetn+1/2 we thus need the
concentration in two vertical adjoining cellsCj+1,k andCj−1,k. Likewise, to compute
concentrationCj,k in the grid cell at timetn we need concentration in two horizontal
adjoining cellsCj,k+1 andCj,k−1. The demi-steps are thus decoupled to radial and
angular part.

Considering all points in the mesh, a tridiagonal matrix is set up. Finally, we use
subroutineTRIDIAG [17] to solve the equation system (3.20).

3.3 Discretization of the boundary conditions

When we want to evaluate the concentration next to the boundary, a grid cell outside the
domain is involved. We call such cells “imaginary cells” anddenote the corresponding
C by an asterisk. Figure 3.3 shows imaginary cells within inner, outer and external part
of the computational domain. In the next subsections we evaluate the concentration in
the imaginary cells in terms of the boundary conditions.

CI∗
J,k

CII
J,k

CI
J−1,k

CII∗
J−1,k

CI
J−2,k

r = 1

(a) boundary between the drop
and magma

CII∗
JMAX,k

CII
JMAX−1,k

CII
JMAX−2,k

(b) external boundary

r = 2

Figure 3.2: Imaginary concentrations (denoted by an asterisk) in the 2D spherical grid.
Vertical arrow designates interface.

3.3.1 Discretization at the metal-silicate interface

At the interface between the drop and the silicates we imposethe partition coef-
ficient (2.10) and continuity of the radial flux (2.11). Usingdiscretization (3.10)
and (3.11) we evaluate the concentration in the imaginary cells as follows

CI∗
J,k =

2K

1 + KRD
CII

J,k −
1 − KRD

1 + KRD
CI

J−1,k , (3.23)

CII∗
J−1,k =

1 − KRD

1 + KRD
CII

J,k +
2RD

1 + KRD
CI

J−1,k . (3.24)
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3.3.2 Discretization at the external boundary

At the front of the drop, forθ ∈ (0, π
2
), we impose constant concentration (2.12) that

results in
CII∗

JMAX,k = 2Cext − CII
JMAX−1,k , (3.25)

for the concentration in the imaginary cell.
For θ ∈ (π

2
, π) condition (2.14) and discretization (3.11) involves six discrete cells

CII
JMAX−1,k, CII

JMAX−1,k±1, CII∗
JMAX,k andCII∗

JMAX,k±1. However, concentrationCII∗
JMAX,k+1

andCII
JMAX−1,k+1 are not known at the time of computingCII

JMAX−1,k. It is thus neces-
sary to introduce one-side discretization for a gradient ofan angular part

(∂θC)ext =
1

2dθ
(3Cext

j,k − 4Cext
j,k−1 + Cext

j,k−2) , (3.26)

with the second order accuracy. Index(.)ext denotes that concentration is expressed on
the external boundary. Assuming further discretization (3.10) we get for the imaginary
cell

CII∗
JMAX,k =

1 − 3∆r
2vr

α

1 + 3∆r
2vr

α
CII

JMAX−1,k

+
2α

vr

∆r
+ 3

2
α

(

CII
JMAX,k−1 + CII

JMAX−1,k−1

)

−
1
2
α

vr

∆r
+ 3

2
α

(

CII
JMAX,k−2 + CII

JMAX−1,k−2

)

, (3.27)

whereα = vθ

2∆θrJ
.

Radial and angular part are thus no more independent throughEq. (3.27).

3.4 Resolution

Number of grid cells in the radial direction is picked so thatthere are at least three cells
in the diffusion boundary layer, i.e.,JMAX = 6/δ. Further, number of tangential grid
cells is identical to number of radial grid cells, i.e.,JMAX =KMAX.

In order to estimate the time step∆t we consider the Courant-Fridrichs-Lewy con-
dition. Since we use an implicit scheme in time domain we use the large time step
when the Courant number is greater than one, i.e,∆t|v|

∆r
+ ∆t|v|

r∆θ
+ ∆tD

∆r2 + ∆tD
r∆r∆θ

> 1.
Despite the small values of the diffusion coefficients, the diffusion times are gen-

erally faster than the advection times.

3.5 Benchmarking

Numerical resolution consists of solving two diffusive-advective equations coupled
by boundary conditions at the interface. There are two used schemes, namely the
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central difference scheme and the central scheme, respectively, solving the diffusive
and the advective part of the equations. Below, we present tests of each of them in the
numerical code.

3.5.1 Benchmark of the diffusion scheme

In order to test the spatial central difference scheme we arrange an experiment of non-
moving drop in a non-moving liquid (vI = vII = 0). We compute a steady state
solution of diffusion equation with a unitary volume concentration sources, unitary
diffusion coefficients and unitary partition coefficientK,

∂C

∂t
= ∇2C + 1 . (3.28)

Boundary condition is zero external concentration forθ ∈ (0, π). Figure 3.3 shows
the analytical solution and the steady state limit of the numerical solution. Analytical
solutionCA is given byCA = 1

6
(1 − r2).

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C

r

analytical solution
numerical solution

Figure 3.3: Comparison of numerical and analytical steady state solution of diffusion
equation with concentration sources. The experiment was carried out with a mesh of
80 × 80 cells.

Discretization of all equations were done so as to attain second order spatial accu-
racy. Numerical solutionCN is thus characterized by algebraic convergence

||CN − CA||L2
≤ ∆r2 . (3.29)
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In order to test Eq. (3.29) we set up experiment as described above and change a reso-
lution of the grid∆r and∆θ. Number of radial and tangential grid cells are identical
for all experiments. Figure 3.4 shows the root mean square (rms) error as a function
of the grid element∆r with the least squares fit0.05(∆r)2.00. Acquired dependence
complies thus with Eq. (3.29).
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10−1

0.001 0.01 0.1 1

%
rm

s
er
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r

grid element ∆r

rms error
fit axb

Figure 3.4: Log-log graph of a spatial convergence for a steady state solution of diffu-
sion equation with concentration sources. Root mean square(rms) error is displayed
as a function of a grid step∆r. Fitted parameters area = 0.05, b = 2.00.

3.5.2 Benchmark of the advection scheme

The advection scheme was tested by calculating advection without concentration sources
in the velocity field given by Eqs. (2.52) and (2.53). The initial concentration is0.2
except circular region of radius0.2 where concentration is1. This initial concentration
is advected by roughlyπ/2, then the velocity field is inversed to shift the concentration
anomaly to the initial condition. The final concentration should be therefore identical
to the initial state.

Figure 3.5 shows the results. As discussed in the previous section, an implicit
scheme is used in time domain that allows to use Courant number greater that 1.
Therefore the advection tests are performed for Courant number 1 and 10. The fi-
nal and initial states are in a good agreement. The root mean square (rms) error for
Courant number 1 is0.01% ; the rms error for Courant number 10 is0.1%. No nu-
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merical diffusion appeared. However, numerical oscillations were presented within
experiments.

(a) initial concentration

(b) final state (left fig.) and difference (final-initial) (right fig.) for Courant number
= 1 ; rms error=0.01%

(c) final state (left fig.) and difference (final-initial) (right fig.) for Courant number
= 10 ; rms error=0.1%

Figure 3.5: Test of the advection scheme. (a) Initial concentration. (b) and (c) Con-
centration after the anomaly was advected aboutπ/2 and shifted back to the initial
position (left column) for two different Courant numbers. Right column shows the
difference of final and initial concentration distribution. Calculations were done on a
grid of 400 × 400 cells.
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Chapter 4

Results

In this chapter we present the results of our numerical simulations. We perform the
calculations for the constant partition coefficient with the Peclet numbers up to105.
We compute the characteristic times of equilibration for different parameter sets in
order to determine the time scaling laws and estimate the significance of the viscosity
ratio.

4.1 Numerical experiments

We study the equilibration times of the heterogeneous system described in Chapter 2.
In order to compute the evolution of metal-silicate equilibration we use the code estab-
lished in Chapter 3.

We characterize the concentration within the drop by its mean value〈C〉 = 1
V

∫

V
CdV ,

whereV is the volume of the drop. Analytical analysis in Section 2.6suggests that the
evolution of concentration follows exponential law

〈C〉 ∼ exp

(

− t

τ

)

, (4.1)

whereτ is the characteristic time. It is thusτ that controls how long does it take to
change the system from a non-equilibrium condition to equilibrium condition.

We initiate the experiment from non-equilibrium, imposingconcentration1 within
the drop and0 outside, respectively. Figure 4.1 shows several snapshotsfrom the time
evolution of concentration for one particular setup. Note the depletion of concentration
in the blob and its advection through the upper boundary out of the computational
domain.

Acquired time evolution is then fitted by exponential curve using two free param-
eters, the pre-exponential factor and the characteristic time. The least squares fit is
computed using theGnuplot program. The relative standard deviations (RSD) don’t
exceed 0.32% for the fitted parameters within all experiments. Exponential regression
thus corresponds very well with the character of time evolution of concentration.
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(a) t = 0 (b) t = 4

(c) t = 8 (d) t = 31

Figure 4.1: Snapshots of evolution of concentration for oneparticular run with follow-
ing parameters:Pe = 1.3·103,Rµ = 10−2,RD = 10, andK = 1. Initial concentration
is 1 within the drop and 0 outside. Characteristic time isτ = 31. Computed on a grid
with 200 × 200 cells with the Courant number 100.

Once we haveτ for several experiments we study its dependence on the Peclet
number in order to develop a predictive tool that could be used for the Earth’s condi-
tions.

We have three dimensionless parameters that fully describethe system as indicated
in Section 2.5. In order to establish the effect of viscositywe set up a range of exper-
iments with the same diffusion ratioRD, and vary the Peclet number Pe and the ratio
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of viscositiesRµ.
Parameters of the system are listed in Table 4.1. All runs were computed for the

stable size of the drop given by Eq. (2.86). We consider that diffusion is thousand times
faster in metal than in silicates, diffusion ratio is thusRD = 103. Further, we impose
the unit partition coefficientK = 1.

quantity value

density of ironρI 7800 kg m−3

density of silicatesρII 3750 kg m−3

gravityg 10m s−2

surface tension of ironγ 1 N m−1

Table 4.1: Parameters of the system.

Figure 4.2 shows the dimensionless characteristic time as afunction of the Peclet
number for six different viscosity ratios varying fromRµ = 10−3 to Rµ = 103. The
final dependence is fitted byτ = α(Pe)β using two free parametersα andβ. Table 4.2
summarises the results of fitted parameters. The results of pre-factorαA of an ana-
lytical model established in section 2.6, see Eq. (2.80), islisted in the same table as
well.

For the viscosity ratio less thenRµ = 10−1 the characteristic time is proportional
to ∼ (Pe)1/2 that is in a good agreement with the analytical model. The power of
the Peclet number rises with the rising viscosity ratio up toβ = 0.65 for Rµ = 103.
Considering the ratio of velocities within the drop and outside, cf. Figure 2.5, the
mixing within the drop is more efficient for the low viscosityratio that speeds up
importantly the equilibration rate.

Figure 4.3 shows the characteristic time as a function of viscosity ratio for the
Peclet numberPe = 104. For low viscosity ratios the characteristic time remains the
same. For high viscosity ratios the significant increase ofτ is clearly visible reflecting
the inefficient stirring within the blob as noted above.

4.2 Liquid vs. rigid blob

The results of the previous section suggest to compare the characteristic times of liq-
uid and rigid blob. We thus arrange an experiment of rigid drop falling in a silicate
magma. The velocity field outside the drop is given by Eqs. (2.56) and (2.57), the
Stokes terminal velocity is given by Eq. (2.55).

Initial conditions are the unitary concentration within the drop and zero concen-
tration outside. Ratio of diffusion coefficients is kept constant within all experiments,
RD = 103. Partition coefficient one is imposed.

Figure 4.4 shows the characteristic times as a function of the Peclet number in
comparison with the results of falling liquid drop for two different viscosity ratios.
Final fitted parameters for liquid and rigid drop are listed in Table 4.3.
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Rµ α β αA

10−3 0.72 0.50 0.72
10−2 0.72 0.50 0.73
10−1 0.75 0.50 0.76
101 1.10 0.56 2.40
102 0.68 0.64 7.27
103 0.62 0.65 22.89

Table 4.2: Fitted parametersα andβ of the equation
for the characteristic timeτ = α(Pe)β for different
viscosity ratiosRµ. Diffusion ratio is kept constant
within all experiments ;RD = 1000. Partition co-
efficient one is imposed. The pre-factor of analytical
modelαA is listed in the fourth column.

The character of equilibration of the liquid sphere tends tothe equilibration char-
acter of the solid drop with increasing viscosity ratio as isalready suggested by Fig-
ures 2.3 and 2.5 since the stirring within the blob becomes ineffective for high viscosity
ratio.

The characteristic time of the rigid blob depends on the Peclet number with the
power of 2/3 that is in a good agreement with the analytical model proposed in Chap-
ter 2. Comparing the pre-factors of the scaling power law we get 0.52 for the analytical
model and 0.60 for the numerical model.

Rµ α β

10−2 0.72 0.50 liquid
102 0.68 0.64 liquid

0.60 0.66 rigid

Table 4.3: Fitted parametersα andβ of the equation
for the characteristic timeτ = α(Pe)β for liquid and
rigid drop. Diffusion ratio is kept constant ;RD =
1000. Partition coefficient one is imposed.
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Figure 4.2: Non-dimensional characteristic timeτ as a function of the Peclet number
Pe for different viscosity ratios. Ratio of diffusion coefficients is kept constant for all
experiments (a)-(f) ;RD = 103. Solid lines represent fits of functionτ = α (Pe)β.
Parameters of the fits are displayed in the right bottom corner of each figure.
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Figure 4.3: Characteristic timeτ as a function of viscosity ratioRµ for Pe = 104 and
K = 1. Dashed vertical lines depict areas with different efficiency of stirring within
the blob.
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Figure 4.4: Non-dimensional characteristic timeτ as a function of the Peclet number
Pe for liquid and rigid drop. Comparison for two different viscosity ratiosRµ is dis-
played. Ratio of diffusion coefficients and the partition coefficient are kept constant ;
RD = 103 andK = 1. Solid lines represent fits of functionτ = α (Pe)β.
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Chapter 5

Discussion

In the previous chapters we developed an analytical model and a numerical model for
time evolution of equilibration between an iron drop and surrounding silicates. Numer-
ical simulations, performed for the Peclet numbers up to105, match the theoretically
predicted characteristic times. We thus validate our analytical model and can use the
proposed scaling laws for high Peclet numbers corresponding to the Earth’s conditions.

The model is more accurate for the high diffusion ratios since we match the con-
centration at the surface of the drop with the average concentration within the blob, see
Eq. (2.77), that is plausible for high metal diffusion or efficient inner circulation.

The numerical model allowed us to determine two different equilibration regimes.
For low viscosity ratios the stirring within the blob efficiently accelerates the equili-
bration and the blob follows the dimensionless scaling lawτ = α1(Pe)1/2. For high
viscosity ratios mixing within the blob becomes less efficient and the equilibration rate
approaches the equilibration rate of the rigid drop and allows for theτ = α2(Pe)2/3

scaling law. The transition between the different regimes occurs in a window when
Rµ ∈ (100, 102).

Considering the normalization of time by the advective factor R/U we can formu-
late the scaling laws with physical dimensions whereby we predict the dimensionalτ
for the primitive Earth as functions of magma ocean parameters and the droplet param-
eters. The results are displayed in Figure 5.1 where we usedα1 = 0.72 andα2 = 0.6.
Results won’t change much with other pre-factorsα1 or α2. What is important is the
power of the Peclet number. We allow for iron viscosityµI = 1 Pa s that corresponds
to high pressure conditions.

Allowing for the silicate viscosity102 Pa s that corresponds to high pressure con-
ditions [13] the stable size of the drop is7 cm with the terminal velocity0.2 m s−1.
Characteristic time of equilibration is then1.3 · 104 s and the equilibration distance
that the drop reaches within theτ is 3 km when we allowed for the silicate diffusion
coefficientDII = 10−12m2 s−1.

For the silicate viscosity10−2 Pa s that corresponds to high temperature condi-
tions [13] the drop radius is0.1 cm and it falls with velocity1 m s−1. The characteristic
time of equilibration is8 ·102 s and the equilibration distance is1 km when we allowed
for the same silicate diffusion coefficient as before.
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Figure 5.1: Dimensional characteristic time (upper figure)and corresponding equili-
bration distance (bottom figure) as functions of the silicate viscosity for three different
diffusion coefficients. Iron viscosity isµI = 1 Pa s, partition coefficient isK = 1. The
solid lines indicate two regimes. In the first regime, for silicate viscosities larger than
the iron viscosity, the stirring within the drop is efficient. In the second regime, for
silicate viscosities less than one percent of the iron viscosity, mixing within the blob is
inefficient. The transition in between is indicated by the dashed lines.

In these two cases the equilibrium of the drop sinking in the magma ocean with
depth about700 km was attained. However, the characteristic times can be signifi-
cantly enhanced by several orders by the different partitioning. E.g. partition coeffi-
cientK = 500 will 500× lengthen the characteristic times, see Eqs. (2.80) and (2.83).
Then, only for low silicate viscosity the metal-silicate equilibrium was reached.
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Our numerical model is based on several simplifying assumptions. We assume that
the infinite space of the magma ocean can be replaced by a sphere with radius2R. For
the runs with the lowest Peclet numbers, i.e., the highest diffusion rates, the thickness
of the boundary layer is five times smaller than the radius of the drop. The boundary
layer is thus sufficiently thin to consider that our approximation is accurate.

Next, we assume that magma ocean is in a regime of laminar convection. The
metal segregates thus with the R-H terminal velocity given by Eq. (2.54). However, the
magma ocean could be in a regime of vigorous convection and the drag force should be
thus considered when estimating the terminal velocity since the flow around the droplet
is likely turbulent. The terminal velocities are then about∼ 10× smaller [2]. More-
over, because of high convection velocities (∼ 10 m s−1), iron droplets may remain
entrained for a significant time in the magma ocean instead offalling straightforward
to the bottom [21].

We also suppose that the drop doesn’t deform and keeps its shape. In fact, “lentil”
like flattering likely occurs but it would be a different taskto investigate. Finally, we
didn’t consider the Rayleigh-Taylor instability caused bythe inertia when estimating
the stable size of the drop.

Considering the numerical side of the task, the problem is intensive in number of
iterations needed to achieve the equilibrium. The choice ofnumerical scheme then
becomes crucial. The implicit method in time domain enablesus to use large Courant
number and substantially shorten computation times.
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Chapter 6

Conclusions

In this thesis we developed a model for the chemical equilibration of small metal
droplets with surrounding silicates that likely occurred in the primitive Earth within
the core formation event.

In order to study the chemical evolution of metal droplets dispersed in the magma
ocean we proposed an analytical and numerical models that consider the simple blob
sinking with a constant terminal velocity in the host liquid.

The stable size of the drop is given by the critical Weber number that reflects the
density ratio of the two liquids. The size of the drop varies from micrometers for low
silicate viscosity to meters for high silicate viscosity. The smallest droplets sink with
the highest terminal velocity reaching up to tens of meters per second.

We studied the characteristic times of chemical equilibration. The rate of equili-
bration is given by the size of the drop and efficiency of mixing within the drop. There
are two regimes of equilibration: for low silicate viscosity (compared to the iron vis-
cosity), the droplet is small and though it falls with high terminal velocity, the stirring
within the blob is inefficient and the equilibration rate is controlled either by the dif-
fusion in silicates or by the diffusion in metal. For high silicate viscosity (compared
to the iron viscosity), large, slow settling droplets are established with efficient inner
circulation. The concentration is then rapidly homogenized and the equilibration rate
is thus controlled by the diffusion of silicates. The numerical code enabled us to de-
termine the transition between the two regimes which occursin a narrow window for
silicate viscosity less than the iron viscosity and higher than the one percent of the iron
viscosity.

We proposed scaling laws for the characteristic time of equilibration. The scaling
is based on the boundary layer analysis and confirmed by the full numerical solution
of the advective–diffusive equations for the Peclet numbers up to105. Hence, we can
predict the characteristic times of the equilibration of small droplets in the magma
ocean as functions of the magma ocean and droplet parameters.

The higher the silicate viscosity the larger the characteristic time. The equilibration
times are short that supports the idea that the drops fully equilibrated while sinking.
That is in agreement with [20].
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Continuing in work will consist of running experiments withdepth-dependent par-
tition coefficient. In the reference system of the droplet, this case corresponds to time-
dependency of the partition coefficient. It will be also useful to incorporate the drag
coefficient into the equation of motion and include thus the influence of the drag force.
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Appendix A

Differential operators in
axi-symmetric spherical coordinates

For convenience of the reader we bring the list of the differential operators in axi-
symmetric spherical coordinates that were used within the presented text. The complex
overview can be found e.g. in [14].

Gradient of scalar

∇f(r, θ) =

(

∂f

∂r
,
1

r

∂f

∂θ

)

(A.1)

Divergence of vector

∇ · F (r, θ) =
1

r2

∂(r2Fr)

∂r
+

1

r sin θ

∂(Fθ sin θ)

∂θ
(A.2)

Laplace of scalar

∇2f =
1

r2

∂

∂r

(

r2∂f

∂r

)

+
1

r2 sin θ

∂

∂θ

(

sin θ
∂f

∂θ

)

(A.3)

Laplace of vector

(

∇2F
)

r
= ∇2Fr −

2

r2
Fr −

2

r2 sin θ

∂

∂θ
(Fθ sin θ) (A.4)

(

∇2F
)

θ
= ∇2Fθ −

1

r2 sin2 θ
Fθ +

2

r2

∂Fr

∂θ
(A.5)

Curl operator

(∇× F )r =
1

r sin θ

∂

∂θ
(Fφ sin θ) (A.6)

(∇× F )θ = −1

r

∂

∂r
(rFφ) (A.7)

(∇× F )φ =
1

r

(

∂

∂r
(rFθ) −

∂Fr

∂θ

)

(A.8)
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