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Abstract: During the Earth’s accretion process deep magma oceansewisaically
formed. Differentiation of iron took place within the mealteaone and small droplets
of iron were sinking to the base of the magma ocean due to tgtgeontrast. In the
present work we study the process of equilibration betwegpedsed metal droplets
and surrounding silicates that proceeds by the advectmsport and diffusion at the
rim. We allow for steady state flow of a spherical liquid blaitlihg in a host liquid
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Chapter 1

Introduction

Geophysics, geochemistry and geology interweave in omalidcover the Earth’s
history as well as history of other planetary bodies. Onéefhost challenging stories
involves the history of first tens of millions of years wheimpitive Earth experienced
the most dramatic event throughout its whole history, thee dormation. Relevant
models of the formation of the core were suggested for thigtiiing in late eighties by
Stevenson [23].

Formation of the core involved separation of dense iron fiighter silicates. How-
ever, extensive melting of the Earth’s interior is requis&tte solid silicate matrix is
impermeable for iron alloys within low pressure and tempegconditions. Recent
experimental and computational results indicate thaielamgpacts produced enough
heating to cause melting and formation of magma oceans dh R24&j.

As pointed out above, extensively melted part of Earth oetgd in metal sepa-
ration. Since the surface tension of iron is high (roughiy higher than the surface
tension of water at a temperaturefof C), small iron droplets are formed and fall due
to the density contrast taking other elements that conatenitn metal rather than in sil-
icates with them. The droplets fall until they reach the bEfdbe magma ocean where
the temperature is below the peridotite liquidus. Afteffisiéntly large volumes have
accumulated to overcome the viscous resistance, the roetta¢f percolates in a form
of large diapirs to form the core [20]. The rainfall of smatbglets and subsequent
storage on the rheological boundary are the dominant mesrharthat designate the
traces of core formation in today’s mantle composition [21]

Important chemical constraints are provided by abundaonfesderophile ele-
ments. The distribution of elements in the Earth can be wtded by measuring the
partition coefficient/’ defined as a ratio of concentration of an element between the
metallic phase and the silicate phase. For the partitiofficat of siderophile ele-
ments holdg< > 1. Further, different subclasses are introduced, incluthiegslightly
siderophile elements (SDE) for which holds< K < 10, moderately siderophile
elements (MSE) withl0 < K < 10* and highly siderophile elements (HSE) with
K > 10

Generally, siderophile elements are from one to three srdegrabundant in the
Earth’s upper mantle compared to predictions based on lessprre experiments [18].



Those discrepancies led many scientists to investigatesgiepartitioning within high
temperature and pressure ranges. From many papers congcHris topic let us men-
tion [3], [4] [12] and [19].

Changes in partitioning behaviour and subsequent chemdgalibration of metal
drops and/or equilibration of metal on the base of the magrearmis one of possible
models how to explain the so-called “excess siderophileetd problem”. Other
hypotheses of core formation that could lead to such sideleplements abundances
are the heterogeneous accretion and late veneers, theigm@fftore formation, the
addition of core material to the lower mantle and the equiiln partitioning between
sulfur-rich metal and silicate. The basic overview is pdad in [10], [21] and [24].
However, none of the hypotheses is able to explain all olasierns. For example, the
high temperature and pressure equilibration in the deeprmaagean solves excess of
MSE but still needs the late veneer in order to explain the HREhdances.

The thermodynamical properties of the magma ocean presaetappealing unan-
swered questions. Temperature, pressure and oxidatierestathe crucial parameters
of the early Earth. However, different conditions were sgjgd. Based on partition-
ing experiments, the temperature range varies between2000 K and the pressure
is estimated to be up to 60 GPa [3].

An important parameter which seems to significantly contiygiamic processes
in the magma ocean is the viscosity of silicates. Howeverythcosity of the magma
ocean is not well known, we can only say that it varies in a eoad range depending
mainly on temperature. Unfortunately, there are no expemtal data for the viscos-
ity within high temperature and pressure conditions andagxiation of experiments
within low conditions is misleading [22].

These questions provide great challenge to contributedcstbry of the primi-
tive Earth. We aim to focus the research on understandingttal “rainfall” by the
methods of numerical simulations. More precisely, we itigase the way of chemi-
cal equilibration of small droplets settling in the magmaam in order to derive the
scalings for the characteristic times of equilibration.

Numerical models play a crucial role in the core forming scers since there is
no direct record of this dramatic event and experimentaditmms corresponding to
the deep magma ocean are so far not possible to produce.

The model is presented and detailed in the second chapteisokork where we
present as well an analytical model of the chemical evatutibthe system based on
the boundary layer analysis.

In order to explore the dynamics of equilibration we builduanerical code that
allows to study the evolution of concentration of the eletpartitioning. Numerical
concepts are presented in the third chapter. We also giwletbidescription of the
finite volume method used in the spatial domain and the atexg direction implicit
(ADI) method used in the temporal domain.

In chapter 4 we present our results. In arranging numeriqa@ments we focus
on determining the role of silicate viscosity since the oty designates the dynamics
of the magma ocean.



Finally, in chapter 5 we analyse the attained results anclidgsthe implications
that we sum up in the last chapter 6.



Chapter 2
Physical Model

In this chapter we present our approach to the problem otdisl metal droplets and
their equilibration with the surrounding silicates in thagma ocean. Principal con-
cept of our model is based on the paper of Grasset and Albf@padbo were studying
the mingling of basaltic and felsic magmas, namely the& cdthomogenization.

We describe the model and introduce the governing equatidves analyse the
terms and envisage the boundary conditions at interfaces.d&kve an analytical
solution of velocity field for steady state motion of two insgible liquids and compare
it with the velocity field of solid sphere in a liquid medium.ufher, we write the
equations in dimensionless form and present an analyticdehof equilibration of the
drop. Finally, we give the plausible ranges of parametessrilging the drop settling
and bring an analysis of the velocity field within and outdige drop.

2.1 Model description

We consider a single metallic drop falling in a host silicatagma with a constant
terminal velocityU;, exploring thus a steady state motion reached after a nemae
passes. A drop neither sways nor rotates.

The two liquids are considered to be immiscible. Next, alia&@ns are derived
for incompressible matter, conservation of mass thus eltie non-divergence of
velocity v

V-v=0. (2.1)

Finally, we assume that the drop has a spherical shape anefodhtion occurs
in course of time evolution.

We aim to model the time evolution of concentration of a gigkemical element
in the silicate mantle and in the metal drop. Generally, eat@tionC' can vary due
to local production of concentratioH or due to transport across the interface. The
transport can proceed by a macroscopic advection flow or biceostopic diffusion.
Below we analyze both of these mechanisms.

Diffusion is a molecular transport that occurs when anyatan in concentration
is presented. Exchange of atoms by diffusion between twerniadd is then given by
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the same laws as those that describe the transfer of heatloyciion. Namely, the
diffusive flux F g4 follows the Fick’s law

Fat = —-DVC, (2.2)

where D is a diffusion coefficient. The minus sign indicates that flln@ proceeds
from regions of higher to regions of lower concentration.
Net rateF .4, at which concentration is flowing obeys the law

Fop = Cv. (2.3)

The total flux is then the sum of advective and diffusive i, = Fgi + F aqv.

Let us consider an arbitrary volumé& The number of particles entering and leav-
ing the volume per unit time that passes through the su§asaigrounding the volume
Vis

Q=-— / F.dS. (2.4)
S

Positive direction is chosen outward from the surface.

Change of the number of particles in the volumeer second i, 9,C'dV/, where
0, denotes time derivation. Equating this to the number emjehie volume through its
surface (2.4) and using the Gauss theorem to convert thecgurftegral to the volume

integral we obtain

@dV:—/V-FtOth. (25)
v ot v

Because the volumg was chosen arbitrarily and adding the volume concentration
sourced to the balance the general conservation equation for caratem leads to

%_f:_v-Ftot+HC:v.(DVC—UCHHC. (2.6)

Eg. (2.6) holds in both media but we allow for different diffan coefficientsD?,
D™ and velocity field!, v'!. Since there are no volume concentration sources,

BCI 1 I 1 I I
o =~V Fiq = V- (D'VC = '), (2.7)

holds for concentration! of an element in the metal drop. Likewise, we write for its
concentratiorC"! in the silicate magma,

acH
ot

Dynamical model of chemical equilibration is establisheaider to explore par-
titioning of elements between silicates and iron. Below wepidture applied spatial
alignment.

=-V.-Fl =v-(D'vc" —""ch). (2.8)

10



2.2 Geometry

The pattern of the task suggests using spherical coordinalte set the origin at the
center of the spherical drop, therefore the motionless isgeeing lighter magma
moving up. As there is an axial symmetry we have two indepetwriables describ-
ing the system, namely a radiusbeing the distance from the origin and an angle
measured anti-clockwise from the point of incidence of tigaids, cf. Figure 2.1.

The thickness of the diffusion boundary layem the surrounding silicates is of
order of~ (DY R/U;)"/?, whereR is the radius of the blob. Sindg" is a low order
number & 10~®m?2s~!) boundary layer is much smaller than the radius of the blob,
0 < R, that allows us to replace infinite space around the blob iphare with radius
2R. We thus assume no chemical influence by diffusion beyoad R, cf. Figure 2.1.

/
////9/?//9/ /

Figure 2.1: The model geometry. The lighter magma ocean isngaip around the
denser metal blob with the terminal velocity. The origin of the coordinate system is
at the centre of the dropl is measured anti-clockwise from the point of incidence of
two liquids. Diffusion-advection equations are solvedha sphere with radiuaR.

2.3 Boundary conditions

As we described above there are two boundaries. The firsabne; R, is a material
boundary between the silicates and the metallic blob. Therskone, at = 2R, is
an external no-material boundary. To complete the formanatve need to prescribe
boundary conditions.
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2.3.1 Boundary conditions at the metal-silicate interface

At the interface between the drop and the magma we imposénadgtof normal
component of the flux (2.9). No matter is thus accumulatecherbbundary

[F-e]"=0]_p, (2.9)

wheree, is a unit vector in the radial direction.

Secondly, we prescribe the partition coefficiégntof a compound, we thus define
the ratio of concentration of an element between metallesphand silicate phase at
chemical equilibrium

CI

KIW\T:R-

(2.10)

Because there is no radial velocity on the boundary (seeZ=8L ) below), condi-
tion (2.9) simplifies as

oCc1™"
{DE} =01 _p- (2.11)

2.3.2 Boundary conditions at the external boundary

The external boundary is not a material boundary, therdgf@eonditions imposed on
it should not depend on the chosen geometry.

At the front of the drop, fo# € (0, ), we keep concentration constant as there is
no interaction between blob and magma

€ = Coxt e (2.12)

At the leeward side, fof < (7, ), we impose the permeability of the boundary,
we thus allow chemical elements to be shifted out. Since istarter = 2R is far
from the diffusion boundary layerwe impose the condition of zero diffusion flux in
the direction of flow

v
( puY V(;) =0, ampoz - (2.13)

[v]

where|v| is a magnitude of velocity. We thus assume that elementsedbdbndary
are transported only by advection. After simplification ves g

(v-VC)=0 |7~=23,9>g . (2.14)

2.4 Velocity field

In order to solve Egs. (2.7) and (2.8) a velocity field withitdaoutside the drop for
steady state motion must be prescribed. Let us considemtwascible liquids with
different densities and viscosities. A drop that is not defed and keeps its shape is

12



falling down due to a gravity force at a certain terminal wityp U;. We assume motion
in a viscous regime, inertia force is thus neglected. Afteedain time it reaches a
steady motion, there is no acceleration.

To derive the velocity field of the liquid drop in the liquid atiem, we consider the
continuity equation for an incompressible fluid (2.1) and Mavier-Stokes equation
for steady motion [11].

2.4.1 Equation of motion
Because inertia force is neglected, equation of motion
V.-o+pg=0 (2.15)

represents balance between surface and volume forcesot#grdg are viscous stress
tensor and gravity acceleration, respectively. In a neiatomcompressible fluid the
rheological relation reads as

o=—PI+u[Vv+ (Vo) , (2.16)

wherel and P are an identical tensor and pressure, respectively,a dynamic vis-
cosity, and(.)” denotes tensor transposition.
Substituting Eqg. (2.16) into Eq. (2.15) we get for metal aifidages, respectively,

0 = —VP' + V¥, (2.17)
0 = —VP" 4+ "'V + (p' - pg. (2.18)

It is useful to reduce Eg. (2.18) to a form similar to (2.17hefefore we introduce
an additional effective pressureinstead of the external force satisfyiRg1 = (o' —
p)g. In silicates thus stands

0=—V(P"—1I) + x"VZ'. (2.19)

Finally, the velocities must satisfy the continuity eqoas
0 = V-, (2.20)
0 = V.ol (2.21)

2.4.2 Geometry

Assuming the axial symmetry of spherical coordinates, thgi®&-Stokes equations
have the form (differential operators in axi-symmetric espdal coordinates are listed

13



in Appendix A)

0 = _8_PI+ I ig + ! ﬁ 87;1
N or K 72 Or r2sin 6 00 00

I
_e 2 8 ’U@ sm@ } (2.22)

72 r2sin 6 &9

0 = _10_P1+ 01)9 + S sm@a—vI
n r 00 w r2 07“ r2sin 6 00 00

+2 ol vy }’ (2.23)

200  r2sin’f

and similarly in the silicates.
The continuity equation has the form

10 1 0
o (r*v,) + —— 020 (sinvyp) . (2.24)

2.4.3 Limit and boundary conditions

We prescribe five conditions at the metal-silicate intezfaicd one condition at infinity.

Far from the falling drop the effect of the blob is negligilaled the velocity field
in the silicates must approach the terminal velocity in tegigal directionv, = —U;.
In spherical coordinates

lim v!' = —U,cosf, (2.25)

lim v)) = Usinf. (2.26)
SinceU, is unknown, Egs. (2.25)—(2.26) provide only one indepehdenstraint.
At the interface between the drop and the surrounding liqui¢ R, the traction
T must be continuous

[T): =le,- o]t =0, (2.27)

ie.,
[o]T = 0, (2.28)
[o,6]7 = 0. (2.29)

Because we consider a newtonian rheology (2.16) we rewgise 2.28) and (2.29)

ovll ovl
—PH—H 2 m~"r — _PI 2 I¥%r
R o R bt 7 I

100 vt ol 1ov.  ov) v}
m(1ov.  Ovy Uy S Y B e ) (2
(7“ 00 * or r )T:R a (7’ 00 * or T’)T:R (2.30)
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At the surface of the drop, normal components of velocitiesinibe zero as no
mixing occurs, and tangential velocities must satisfy thate is no-slip between the
two liquids,

v = 0],_p, (2.31)
vl = 0l_p, (2.32)
vg = v |_p - (2.33)
2.4.4 Solution
Boundary conditions at infinity (2.25) and (2.26) suggestyahe solution in the form
L= fY(r)cos®, (2.34)
vy = g'(r)sind, (2.35)
P' = p'h}(r) cos b, (2.36)
in the metal blob. Likewise, we write the solution in silieat
v = f(r) cos b, (2.37)
vyt = g™ (r)sind, (2.38)
P™ = "R (r) cos . (2.39)

Substituting Eqgs. (2.34)—(2.36) to Eqgs. (2.22)—(2.24) elminating functionsy
andh we obtain an ordinary differential equation of the fourtdenrfor f

d'f d’f &?f L df
3 2 _et _
r e + 8r 08 + 8r 02 i 0. (2.40)
Next, we have for the functionsandh
1d,,
9= —5 (r f) , (2.41)
2 2 13
hoo oY g4 A (2.42)

dr " T2 A
The solution of Eq. (2.40) can be generally expressed indh@ ff ~ r" that
implies through Eqgs. (2.41) and (2.42) thaholdsg =~ —"T“r" and similarly forh
standsh ~ $n?(3 4 n)r" .
Substitutingf = " to Eq. (2.40) we find that must satisfy

nn—2)(n+1)(n+3)=0, (2.43)

that leads to. = {—3, —1,0, 2}.
Considering that the velocity must remain finite at all psintthin the drop as well
as outside, the general solution fgr v; and P! is thus expressed as

! (by + bar?) cos b, (2.44)
vy = (—by — 2byr?)sind, (2.45)
P! = 104 'byr cosh . (2.46)
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Similarly, it stands

ol = (% +24 c3) cos (2.47)
r T
c ¢ .
vy = (2—;3 - 2—i —¢3)sind, (2.48)
P = "2 cos, (2.49)
T

for the solution in silicates.
Using the conditions at infinity and at the boundary we ewvaltize unknown coef-
ficientscy, ¢, 3, b1, by and the terminal velocity/; obtaining the velocity field inside

the blob
2\ U cost
1o (o ) S €O8Y 250
v ( R2 ) 2(pt + ) * (2:50)
272 Uy piM sin 6
PR (puat ) [ 2.51
b= (1) s @5y

the velocity field in silicates

I R3 3 I 2 11 R

UiI = (—1 — %—3 %—) Ut COSQ, (252)
200t +p) 3 2+ ) 7

= (11— ' R_3 B 3u' 4 24" R

’ At + i) 73 A+t 7
and finally the terminal velocity

200" = pgR? p + 4t
3/,LH 2/,LH + 3,LLI ’
known as the Rybc#Zski-Hadamard formula [1]. Figure 2.2 shows the velocitidfie
using vectors and streamlines for one particular parancbtace.
In the solid limit, wheru! — oo, we get for the terminal velocity the well-known
Stokes equation

) U sin@ (2.53)

Uy = (2.54)

2 (P! = phgR?
9 p1 :
The velocity field outside the solid drop with no-slip boundeondition at the solid-
liquid interface is then [26]

Uy = (2.55)

R 3R
n ([ 4 Ho on
v, = ( 1 5,3 + 2r) U cos @, (2.56)
R 3R
o :
Vg = (1 - 47"3 - 47’) USt Slne . (2.57)

Comparing the Rybczski-Hadamard terminal velocity for a liquid drop in a ligui
medium with the Stokes terminal velocity for a solid drop ilcgid medium, we see
that the steady state fall of a liquid sphere is faster thahdha solid one in the same
gravity field. Figure 2.3 shows the ratio of the R-H velocitydahe Stokes velocity
Ry = U, /U as a function of the silicate viscosity for two differentnrgiscosities.

16



(a) Velocity field (b) Streamlines

Figure 2.2: Velocity field and streamlines for steady statgiom of liquid blob in
liquid medium in viscous regime. Used parameters d&e= 1m, U; = 1m/s and
viscositiesu! = p!! = 1 Pas.

15 : . .
o 125} -
pl=10"2Pas ——
1 . ' =10°Pas.
1076 1074 1072 10° 102 104 108

MII

Figure 2.3: Ratio of terminal velocitieR,, for liquid and solid sphere in a liquid
medium as a function of silicate viscosijty for two different iron viscositieg!.
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2.5 Dimensionless formulation

To reduce the number of parameters that characterize thensytss convenient to use
dimensionless variables. We introduce three scaling fectbe radius of the blo®
for r, the terminal velocityl; for v and the reference concentratiég for C. As a
reference concentration we use the initial concentrafiame is scaled with advective
factor R/U,. Equations (2.7) and (2.8) thus become

ac™ L (D1
o = V*. (mp—evcl — ’UI CI ) s (258)
1T 1
8;* - Vv*. (RVCH* o ’UH*CH*) 7 (259)

where index(.)* denotes the non-dimensional variables. We introduced duteP

number
RU,

DII ’
that relates the rate of advection to the rate of chemicalgldn in the silicates.
Since the non-dimensional velocity depends on the ratiosmosities, the system
is scaled by three dimensionless numbers, namely the ratidfosion coefficients
Rp = D'/D"U, the ratio of viscositie®,, = u!'/u!" and the Peclet number Pe.
From now on, we work with the dimensionless quantities and tiva asterisk.

Pe = (2.60)

2.6 Analytical model

In order to find an analytical model that could be comparedt #ie results of numer-
ical code established below in Chapter 3 we evaluate the malae of convective-
diffusion equation (2.58) within the drop

oty _ v. (Roger e : (2.61)
(o)~ (- (Rever =)

that leads with use of the divergence theorem to equation

oty [gFevetds
T - , (2.62)

where we exchanged the time derivation and the volume iakeigere,S is the surface
of the drop and/ = %w is its dimensionless volume. We considered that the radial
part of the advective flux is zero over the surface (2.31).
Further, we allow for no concentration accumulation on tbertdary (2.9), i.e.,
Rp

Rogetas = [ Lyenas, (2.63)
S Pe S Pe

and will search for analytical representation of the sugfategral for the concentration
outside the drop.

18



There are only few cases when the exact solution of the sunfegral (2.63) can
be obtained. Here, we present an approximative solutiosidering the boundary
layer equation for steady convective motion.

The equation of steady convection mass transfer in thegiiffuboundary layer
follows

,UH acH N v_gacﬂ _ i (82011 N gacﬂ)

"oor r 00 Pe \ 0r? r or )’
where we omitted the angular part of the Laplacian on the hghd side because the
derivatives along the surface of the sphere are small cadparthe derivatives along
the radius vector.

In order to solve Eq. (2.64), boundary conditions must bahkdisthed. Since the
change of concentration occurs in a thin layer near the dudiace, the condition on
constant concentratioft; far from the surface is taken (2.65). Next, at the surface
of the body, we impose the constant concentratigrthat can generally vary with
time (2.66). Boundary conditions are thus
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In order to integrate Eq. (2.64) we introduce the streamtfancl, related tov!!
andv} as follows

1 ov
oo
Ur T T2Gn6 00 (2.67)
1 ov
no_
Yo T Tsnéor (2.68)

Because we are interested in solutions only near the syriacéurther introduce
a new variabley
y=r—1, (2.69)

being the distance from the surface- 1.
Let us evaluate the order of magnitude of the concentratenivatives in the
boundary layer. For smal, i.e.y ~ § < 1, we have

8;—5; ~ g—:, (2.70)

a@c;l ~ %H (2.71)
and therefore Qo et

G > 2 5 (2.72)

Under these assumptions and by replacing) with new variablegV, ) we solve
Eq. (2.64),
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Next, one more condition must be given along with (2.65) a&h6q) since the
stream function is determined up to an arbitrary constamstr&uire that the concen-
trationC'(\W, #) has no singularity at the point of incidence of the flow on thkeese,
ie.,

C" = Ch ly_g g - (2.74)

Last of all, we allow for the tangential velocity at valugs- 0, i.e.,
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The solution of equation (2.73) can be found in [11] compleitd the evaluation
of the surface integral (2.63). We present here only the fiesult of the total flow
over the surface without its derivation. The total fldyy for the liquid sphere is then

7 pl /1
Iliq - 8 gm(cl - Cg) E . (276)

Next, we match the concentration at the surface of the dtowith the average
concentration within the drop as

sinf. (2.75)

Vo |y:0 =

()
Cy = 7 (2.77)

where we allow for the concentration discontinuity at thdaee given by Eq. (2.10)
produced by different partitioning of the elements. It iogerly as far as the diffusion
within the drop is sufficiently high or the mixing within theap is sufficient in order
to rapidly homogenize the concentration.

Using the evaluation of the total flux over the surface (2.7%@}h the average
concentration as a boundary condition, we integrate E§2j2oy way of variable
separation getting
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(CYY = (1 — KC})exp ( t) + KOy, (2.78)

wheret and(C") are dimensionless time and concentration, respectively.
For the time evolution of the mean concentration thus standsxponential law

t
(C"Y ~ exp (——) : (2.79)
T
where we introduced a characteristic timsatisfying
I
Tig = 4] = <“— + 1) K\/Pe. (2.80)
6 \ !
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We can proceed the same derivation for the rigid sphere iitiaddo the angular
velocity that is always zero at the surface. We thus exptessangential velocity;)
near the surface.

The total flowl,;, to the surface of the drop is then

Lig = 7.98(C} — Cy)(Pe)~2/3 (2.81)

where the factor of 7.98 comes from the integration constaising (2.81) the time
evolution of concentration is

5.985 1 _2
(C’I) = (1— KCy)exp <— —% (Pe) ™3 t) + KCy, (2.82)
with the characteristic time
T 2
Trig = %K(Pe) . (2.83)

2.7 Parameters of the model

In a liquid medium, dispersed small particles tend to growararer to reduce the surface
energy. On the other hand, large objects are subjected éateh breakups till they
settle down. The important question is thus the extent cfeglte/o mechanisms that
lead to establish the drops in a state when surface tenstsemis further breakup and
when surface energy reaches minimum.

The crucial forces in a moving liquid-liquid system are thertia and the surface
tension forces. The dimensionless number that reflectsréi@ is the Weber number
given as [15] I

We = 2 fUﬁ . (2.84)
The smaller the Weber number, the more stable the drop isbasie question is what
is the critical radius when the drop is still stable.

Considering the Kelvin-Helmholtz instability that is a s@guence of shear motion
between two liquids at the interface, it is possible to caistthe stable size of droplet.
Using numerical computing and theoretical investigatitwe, critical Weber number

We,, reflecting the instabilities is determined as [8]

1
We = dm(1+ ), (2.85)
S

wheres = p”—fl It is thus the ratio of densities that we consider to essaltlhe stable
radius of the drop. Using silicate and iron densitig's,= 7800 kgm~— and p!! =
3750 kg m~3, the critical Weber number i/e., = 19.

Equating the definition of Weber number (2.84) with the catiWeber number
(2.85) and using an analytical solution for the terminabeély (2.54) stable radiug,

of the drop is
) 14+ 1 I 9, I 2
R— ™(1+3) 3 plt 3t (2.86)
20 \(p" =ph)g p £t
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Figure 2.4 shows the stable size of drops, the terminal itgJ@nd the Peclet num-
ber as functions of silicate viscosity varying in a rangd @f® — 10° Pas (assuming
v = 1Nm~!andg = 10 ms~2). The stable size of the drop and the terminal velocity
are displayed for two iron viscosities.

The stable radius varies from 10 um for silicate viscosityl0=%Pas to ~ 1m
for silicate viscosityl0® Pas. Corresponding settling velocity varies in a range of
~ 1cm/s—10m/s (which could bel0x smaller due to the vigorous convection of the
magma ocean [2]). The higher the silicate viscosity, thgdathe stable radius and the
slower the terminal velocity.

The Peclet number varies in a rangel6f — 10*! for diffusion coefficientl0—% —
1072 m?/s. For one diffusion coefficient Peclet number changes absatdrders
within the viscosity range. The higher the viscosity, thgheir the Peclet number and
thus the more significant the advection is with respect taltfiesion.

Figure 2.5 shows the ratio of average velocities within tfepdind outsid& ) =
(v /(v™) as a function of the ratio of viscositi@y, for the stable size of the drop (cp.
with Figure 2.3).

The velocity ratio remains nearly constant when the s#icascosity is higher
than the viscosity of iron. On the other hand, for the irorcegty higher than the
silicate viscosity stirring within the blob starts to bedeficient and the velocity ratio
decreases rapidly.
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Figure 2.4: (A) Stable radius of the drdf and (B) terminal velocity/; as a function
of silicate viscosity for two different iron viscositiesté®le droplet size is estimated
using the critical Weber numbé¥e,, = 19. (C) Peclet number Pe as a function of
silicate viscosity for three different diffusion coeffiqies. Peclet number is computed
for stable size of the drop and corresponding terminal ¥gloc
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Figure 2.5: Ratio of average velocities within the blob ants@eR ) as a function
of viscosity ratioR,. Calculations are done for stable size of the drop.
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Chapter 3

Numerical Model

To solve the flux conservative equations (2.7) and (2.8) wh# boundary condi-
tions (2.10)-(2.12) and a velocity field governed by Eq. (2-&.53), we use a fi-
nite volume formulation in spatial domain and an alterr@tilirection implicit (ADI)
method in time domain. Both of them are of the second ordarracg.

3.1 Finite volume formulation

Generally, in the finite volume method [27] a partial diffietial equation is integrated
over the volume of an element. The divergence term is thewerted using the diver-
gence theorem to a surface integral. Then the balance aixrafid out-flux through
the faces of the element is prescribed. As the flux enteriagtid element must be
the same as that leaving the element, we are talking aboutseeo@tive method.

Given the discretization in the radial direction and thedat directiony; = (j —

DAr, j = ,JMAX, 0, = (kK —1)A0, k =1,..., KMAX, respectively, we eval-

uate vectors at p0|n(s~ + 1Ar, 6) and(r;, 6, + 1AF), whereAr andAd denote the
grid spacingsJMAX, KMAX € N are natural numbers. Scalar variables are consid-
ered piecewise constant over the mesh cells at each timeRiep are represented by
their values at discrete points; + %Ar, O+ %Ae). Taking into account the discretiza-
tion, we refer further t@”(r; + $Ar, 6, + 1A6) asC; . (likewise for other variables),
j=1,...,JMAX, k=1,..., KMAX.

Our aim is to solve Eqs (2.58) and (2.59). Because thesdiegaare formally
the same, we proceed a numerical analysis with general ntratienC, vector field
v and dimensionless consteRtbeeing eithefR /Pe in the domain | orl /Pe in the
domain II.

Applying approach described above we get

// —dV— //BQF-ndS, (3.1)

wheref is the finite volumes2 is the boundary of the finite volume amdis an outer
normal to the surface element.
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Figure 3.1: Balance of in-flux and out-flux across surfaceroirmer element in the
2-D spherical grid. Concentratiary; , is computed at the center of the cell. Fluxes are
calculated at the faces of the cell ; radial flux on the verfimees and tangential flux
on the horizontal faces.

Now, we balance the in-flux and the out-flux in each cell. Weoithice the flux
across faces of the cell in the griffi+z, Fi~z, F&+2 F*—2 cf. Figure 3.1. Similarly,
we write for particular surface elements of the cell’s fasész, S92, Sk+z, Gh-3,

Then we evaluate integrals of the normal components of tieaffioss borders of
the cell and the volume integral in (3.1)

0C;y,  F'+ights — phoagh—3  putagits — pi—igi-s

- 3.2
o e e ;o (32)

whereV;; is the element’s volume. The right hand side (RHS) is thususgpd to
radial and angular part.

As we described in Chapter 2 we use an axi-symmetrical Spgi@aordinates with
the origin at the center of the drop. For volume element thausds

2m  prj+Ar p0+A0
Vie = / / / r?sin Odrde¢dd
0

— 3 7(cos Oy, — cos(0 + AG))[(r; + Ar)® —rl]. (3.3)

The surface elements are expressed as follows,

. 2 O +A0
Sita = / / (r; + Ar)?sin 0dode
O

= 27(r; + Ar)?*(cos Oy — cos(0 + A0)), (3.4)
o O +A0
ST = / / T 2sin #dOde
O
= 27rr (cos Oy, — cos(br + AF)) (3.5)
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L 2 pri+Ar
Skts = / / rsin 6, drde
0 rj

= msiny(2r;dr + Ar?), (3.6)
L 2 prj+Ar
Sk = / / rsin(fy + df)drde
0 T
= msin(f + A0)(2r;Ar + Ar?). (3.7)

Changes of concentration can proceed by microscopic @ffusr macroscopic
advection flux as described in Chapter 2. Thus, we can write¢hi® flux across a
surface element

S o
Fi*s = _D (fg_c> + 0,073 (3.8)
T
k+ .
FHa = —g (%—g) + 0pCF 3 (3.9)

where concentration and derivatives of concentration gpeessed at the faces of the
cell in the grid as is denoted by indicgs- £ , k + 3.

The finite volume method provides high spatial accuracy déjng upon which
discretization we use. As we suppose that we don’t handle stibcks or sharp dis-
continuities, we assume a central discretization for cotrtaéion and central difference
scheme for derivatives that are of second order spatiafacgu

k41 Cjk+C5, k-1  Cjpt+Cj
C+2 — g,k 21k+1 , C 5 = gk 23k1
(3.10)
Cits  — Cj,k+2cj+1,k : 0i=3 = Cjak+§j*1,k :
Lyl Ci jy1—C b1 Cin—Ci
(8@0) +3 = J,k+A16 Jsk , (890) 5 = JkAGJk 1
y 1 C 1 k—C,- k y 1 C k_C 1.k (3.11)
(0,Cy s = Syt (9,0)mE = Sl
Although central difference scheme provides great acgui@csmooth solutions
. . . - - - - - - +1 +1
it is not total variation diminishing (TVD) scheme, i.e._;, |C7/}, ., — C/}7| <

ZM |C7y 1 ky1 — CFy| doesn't hold for each time step (time stepping is denotedhby t
superscript), and could introduce oscillations. In that case it is appaie to use
limiter functions, e.g. superbee, that limit the slope @& thecewise approximations
to avoid spurious oscillations. However, it is out of thepeof the thesis to use any
of these schemes.
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After introducing needed discretization, we can write foe angular and radial
part of the RHS of Eq. (3.2), respectively,

k+ Jk+l_ 7,k k—— Jk: CJk: 1
(RHS)@ - S Drj-i- Ar)Af -5 (rj-i- Ar)Af
Vik
Sk-ﬁ-%v Cjkt+Cjkt1 Sk—— CijktCjr—1
A 2 3.12
J.k
j+1Cit1.e—Clk =3 pYik=Ci-
(RHS)T — S 2D Ar S Ar
Vi
S]-{-— Jk-i-C +1,k Sj—%,u Cit+Ci_1k
— L2 (3.13)
Vik

3.2 Time-integration scheme

For time strategy we consider the alternating directionlicitpnethod. The method is
based on the Crank-Nicolson scheme that we derive in theseekbn.

3.2.1 Crank-Nicolson Scheme

We want to find solution of,C' = g, whereo, denotes a time derivation. Using Taylor
series

aC At? 9*C 3
Ct+ At) =C(t) + Em + > 2 + O(A), (3.14)
and substituting fo®,C' we get
A 2
C(t+ At) =C(t) + gAt + Tt% + O(AF) . (3.15)

Using Taylor series fog

dg gt + At) —g(t)

ot AL +O(A?), (3.16)
the Crank-Nicolson scheme [5] is obtained,
Ct+ At)—C(t 1
= Ai O _ 5 (gt + A1) +g(1) + O(AL) . (3.17)

The scheme is of the second order accuracy.

3.2.2 ADI

Further, we introduce the alternating direction implicietmod (ADI) based on the
Crank-Nicolson scheme derived above with a special formghitthand side),C =
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AC, whereA is a sum of linear differential operators. More precisebty, &n axi-
symmetrical problem in spherical coordinates stahids Ay + A,.. We write thus

At At At At
(1— — Mo - 7/\7«)0“1 = (1+ < Mo+ TAT)C" + O(AF) (3.18)
whereC™ denotes a concentration in timg, wheren = 1,...,N; N € N (spatial
indexing is omitted here).
By adding operatof AyA, we rewrite (3.18)

(1= 2= Saget = i Shaga+ Eane voar) . @19

since2E AgA, (C"*+! — C™) is included in erroO(AL).
Finally, we use the Peaceman-Rachford scheme, cf. [7] ajdtfLsolve (3.19)

At 1 At
(1= SA)C™E = 1+ SA)Cr,

A A 1
(1—7@\9)0““ _ (1+7’5Ar)cn+a. (3.20)

The scheme thus involves two distinct steps to gain solwdtdimet,, ., = (n +
1)At from the known solution at timg, = nAt. Obtaining the concentration at time
tr12 = (n+ %)At is solely of numerical nature and can be considered as ahayxi
solution without any physical meaning.

Considering that at each time step hold in spatial domain(&G2) and (3.13),

L
respectively, we write fof1 — %AT)CJ.;?

SIT3At (D w,
2V

At [D(S7+s + §973)  Sitiy, — S5, n+1
{1+ ( (572 +572) | 57 U) criE oy

2%& Ar 2
SitsAt (D Uy
2V g

iR (3.21)

Likewise, it stands for the angular pait — %Ag)Cﬁ,‘jl,

Sk+3 At D
- Q *W)Qfl+

2V \(r; +1Ar)A0 " 2 -
At [(D(S*3 4+ 8% 3) | Sh iy, — SFayg
1 Cn+1
{ * 2V} 1 ( (r; + A7) A0 - 2 o T
Sk_%At D Vo 11
- — ) omat 3.22
2Vix ((rj + IAPAG 2 ) Gl (3.22)
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To calculate the concentratiary ;. in the grid cell at time,, ., » we thus need the
concentration in two vertical adjoining cells;; , andC;_, ;. Likewise, to compute
concentratiorC; ;. in the grid cell at time,, we need concentration in two horizontal
adjoining cellsC; ;11 andC;;_,. The demi-steps are thus decoupled to radial and
angular part.

Considering all points in the mesh, a tridiagonal matrixesg. Finally, we use
subroutineTRI DI AG[17] to solve the equation system (3.20).

3.3 Discretization of the boundary conditions

When we want to evaluate the concentration next to the bayyalgrid cell outside the
domain is involved. We call such cells “imaginary cells” atehote the corresponding
C by an asterisk. Figure 3.3 shows imaginary cells within maeter and external part
of the computational domain. In the next subsections weuat@lthe concentration in
the imaginary cells in terms of the boundary conditions.

(a) boundary between the drop (b) external boundary
and magma

Figure 3.2: Imaginary concentrations (denoted by an a&iein the 2D spherical grid.
Vertical arrow designates interface.

3.3.1 Discretization at the metal-silicate interface

At the interface between the drop and the silicates we implsepartition coef-
ficient (2.10) and continuity of the radial flux (2.11). Usindgscretization (3.10)
and (3.11) we evaluate the concentration in the imagindty ase follows

2K, 1-KRp

e — = - 2 3.23

CJ,k 1+ KRD CJ,k 1+ KRD CJ—l,k? ( )
1— KRp 2Rp

IIx — 11 1 ] 324

Cilik 1+ KRp Cir+ 1L KR KRDCJ_M ( )
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3.3.2 Discretization at the external boundary

At the front of the drop, fo¥ < (0, 7), we impose constant concentration (2.12) that
results in

CE@AXk = 2Cext — CEV[AX—M ) (3.25)

for the concentration in the imaginary cell.

For¢ € (5, ) condition (2.14) and discretization (3.11) involves sigalete cells
Chhuax -1 Coivax—1h1r Clizax,e ANACT ax s, - HOWEVer, concentratiofy i .11
andC%} 11 5., are not known at the time of computig, _, ;. Itis thus neces-
sary to introduce one-side discretization for a gradierrodngular part

ex 1 ex ex ex
(0pC)" = ﬁ(:)’ o — A0+ CPL), (3.26)
with the second order accuracy. Inde¥** denotes that concentration is expressed on
the external boundary. Assuming further discretizatioh@Bwe get for the imaginary
cell

1_3A7"

a
CH* o 20y CH
IMAX k= T 3Ar. CJIMAX-1k
1+ 55«
2ae
11 11
+ 13 (Chrax -1 + Couax—16-1)
Ar 2
Lo
) 11 11
T w34 (Coaxp—2 + Chrax—15-2) » (3.27)
Ar 2

— Vo
wherea = A

Radial and angular part are thus no more independent thigqg(8.27).

3.4 Resolution

Number of grid cells in the radial direction is picked so tthestre are at least three cells
in the diffusion boundary layer, i.eJMAX = 6/6. Further, number of tangential grid
cells is identical to number of radial grid cells, i.éMAX = KMAX.

In order to estimate the time stéy we consider the Courant-Fridrichs-Lewy con-
dition. Since we use an implicit scheme in time domain we hseldrge time step
when the Courant number is greater than one 3, + 2i0vl 4 AD | _AD -

Despite the small values of the diffusion coefficients, tifusion times are gen-

erally faster than the advection times.

3.5 Benchmarking

Numerical resolution consists of solving two diffusivevadtive equations coupled
by boundary conditions at the interface. There are two uskémses, namely the
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central difference scheme and the central scheme, regggcsolving the diffusive
and the advective part of the equations. Below, we presst# ¢ each of them in the
numerical code.

3.5.1 Benchmark of the diffusion scheme

In order to test the spatial central difference scheme wangg an experiment of non-
moving drop in a non-moving liquidvf = v = 0). We compute a steady state
solution of diffusion equation with a unitary volume contration sources, unitary

diffusion coefficients and unitary partition coefficieft

oc
S =V 1. (3.28)

Boundary condition is zero external concentrationdfar (0, 7). Figure 3.3 shows
the analytical solution and the steady state limit of the etoal solution. Analytical
solutionC} is given byCy = ¢(1 —r?).

0-18 T T T T T . T I
analytical solution
0.16 | numerical solution

0.14 +
0.12 +

0.1
0.08 -

0.06 -
0.04 |
0.02 +

O 1 1 1 1 1 1 1 1 1
0O 01 02 03 04 05 06 07 08 09 1
r

Figure 3.3: Comparison of numerical and analytical steaalte solution of diffusion
equation with concentration sources. The experiment wagdaout with a mesh of
80 x 80 cells.

Discretization of all equations were done so as to attainrsgtorder spatial accu-
racy. Numerical solutiod'y is thus characterized by algebraic convergence

[|On — Callz, < AF2. (3.29)
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In order to test Eq. (3.29) we set up experiment as describedesand change a reso-
lution of the gridAr and Ad. Number of radial and tangential grid cells are identical
for all experiments. Figure 3.4 shows the root mean squars)(error as a function
of the grid element\r with the least squares fit05(Ar)*”. Acquired dependence
complies thus with Eqg. (3.29).

107! . :

1072 ¢ 1
S
o , 1
[%2] - L i
g 10 §
S

1074 1

rms error -+
fit ax
10—5 : I I
0.001 0.01 0.1 1

grid element Ar

Figure 3.4: Log-log graph of a spatial convergence for adststate solution of diffu-
sion equation with concentration sources. Root mean squas) error is displayed
as a function of a grid stefr. Fitted parameters are= 0.05, b = 2.00.

3.5.2 Benchmark of the advection scheme

The advection scheme was tested by calculating advectibiouticoncentration sources
in the velocity field given by Egs. (2.52) and (2.53). Theialitoncentration i$).2
except circular region of radius2 where concentration is This initial concentration
is advected by roughly /2, then the velocity field is inversed to shift the concentnati
anomaly to the initial condition. The final concentratiomsld be therefore identical
to the initial state.

Figure 3.5 shows the results. As discussed in the previottoae an implicit
scheme is used in time domain that allows to use Courant nugreater that 1.
Therefore the advection tests are performed for Courantoeurh and 10. The fi-
nal and initial states are in a good agreement. The root mgaares (rms) error for
Courant number 1 i8.01% ; the rms error for Courant number 100s%. No nu-
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merical diffusion appeared. However, numerical oscitlasi were presented within
experiments.

(a) initial concentration

1 0.0006

0.8 0.0004

0.6 0.0002
0

0.4 -0.0002

0.2 -0.0004

0 -0.0006

(b) final state (left fig.) and difference (final-initial) ¢t fig.) for Courant number
=1;rmserror=0.01%

1 0.006

0.8 0.004

0.6 0.002
0

0.4 -0.002

0.2 -0.004

0 -0.006

(c) final state (left fig.) and difference (final-initial) gt fig.) for Courant number
=10; rmserror=0.1%

Figure 3.5: Test of the advection scheme. (a) Initial cotre¢ion. (b) and (c) Con-

centration after the anomaly was advected aboi® and shifted back to the initial

position (left column) for two different Courant numbersigRt column shows the

difference of final and initial concentration distributioBalculations were done on a
grid of 400 x 400 cells.
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Chapter 4

Results

In this chapter we present the results of our numerical sitraris. We perform the
calculations for the constant partition coefficient witle tReclet numbers up t®.
We compute the characteristic times of equilibration fdfedent parameter sets in
order to determine the time scaling laws and estimate thefsignce of the viscosity
ratio.

4.1 Numerical experiments

We study the equilibration times of the heterogeneous sysiescribed in Chapter 2.
In order to compute the evolution of metal-silicate equdiion we use the code estab-
lished in Chapter 3.

We characterize the concentration within the drop by itsmvedue(C) = ¢ [, CdV,
whereV is the volume of the drop. Analytical analysis in Sectiongu§gests that the
evolution of concentration follows exponential law

{C) ~ exp <—£) , (4.1)
wherer is the characteristic time. It is thusthat controls how long does it take to
change the system from a non-equilibrium condition to elguim condition.

We initiate the experiment from non-equilibrium, impostancentratiorl within
the drop and outside, respectively. Figure 4.1 shows several snap$ioobsthe time
evolution of concentration for one particular setup. Noedepletion of concentration
in the blob and its advection through the upper boundary éuhe® computational
domain.

Acquired time evolution is then fitted by exponential curngng two free param-
eters, the pre-exponential factor and the characteristie.t The least squares fit is
computed using thénupl ot program. The relative standard deviations (RSD) don't
exceed 0.32% for the fitted parameters within all experismeakxponential regression
thus corresponds very well with the character of time evoitubf concentration.
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Figure 4.1: Snapshots of evolution of concentration for jpauicular run with follow-

ing parametersPe = 1.3-10°, R,, = 1072, Rp = 10, andK = 1. Initial concentration
is 1 within the drop and 0 outside. Characteristic time is 31. Computed on a grid
with 200 x 200 cells with the Courant number 100.

Once we have for several experiments we study its dependence on thetPecle
number in order to develop a predictive tool that could beldeethe Earth’s condi-
tions.

We have three dimensionless parameters that fully desttrébgystem as indicated
in Section 2.5. In order to establish the effect of viscosityset up a range of exper-
iments with the same diffusion ratiBp, and vary the Peclet number Pe and the ratio
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of viscositiesR,,.

Parameters of the system are listed in Table 4.1. All run&wemputed for the
stable size of the drop given by Eq. (2.86). We consider tiffaisibn is thousand times
faster in metal than in silicates, diffusion ratio is tHlgs = 103. Further, we impose
the unit partition coefficienf = 1.

guantity value
density of ironp! 7800 kg m—3
density of silicateg!! 3750 kg m—3
gravity g 10ms=2

surface tension ofiron 1 Nm™!

Table 4.1: Parameters of the system.

Figure 4.2 shows the dimensionless characteristic timefasaion of the Peclet
number for six different viscosity ratios varying froR), = 1073 to R, = 10®. The
final dependence is fitted by= «(Pe)” using two free parametersand3. Table 4.2
summarises the results of fitted parameters. The resultseeflaptora, of an ana-
lytical model established in section 2.6, see Eg. (2.80)sied in the same table as
well.

For the viscosity ratio less theR,, = 10~! the characteristic time is proportional
to ~ (Pe)'/? that is in a good agreement with the analytical model. Thegsc¥
the Peclet number rises with the rising viscosity ratio up'te: 0.65 for R, = 103,
Considering the ratio of velocities within the drop and adgs cf. Figure 2.5, the
mixing within the drop is more efficient for the low viscositgtio that speeds up
importantly the equilibration rate.

Figure 4.3 shows the characteristic time as a function afoggy ratio for the
Peclet numbePe = 10%. For low viscosity ratios the characteristic time remaimes t
same. For high viscosity ratios the significant increaseisfclearly visible reflecting
the inefficient stirring within the blob as noted above.

4.2 Liquid vs. rigid blob

The results of the previous section suggest to compare #racteristic times of lig-
uid and rigid blob. We thus arrange an experiment of rigidodiadling in a silicate
magma. The velocity field outside the drop is given by EqbgRand (2.57), the
Stokes terminal velocity is given by Eqg. (2.55).

Initial conditions are the unitary concentration withiretdrop and zero concen-
tration outside. Ratio of diffusion coefficients is kept stant within all experiments,
Rp = 103. Partition coefficient one is imposed.

Figure 4.4 shows the characteristic times as a function @fReclet number in
comparison with the results of falling liquid drop for twofférent viscosity ratios.
Final fitted parameters for liquid and rigid drop are listedable 4.3.
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(R o | B | an

1073
1072
101
10
102
103

0.72
0.72
0.75
1.10
0.68
0.62

0.50
0.50
0.50
0.56
0.64
0.65

0.72
0.73
0.76
2.40
7.27
22.89

Table 4.2: Fitted parametersand 5 of the equation
for the characteristic time = «(Pe)” for different
viscosity ratiosk,,. Diffusion ratio is kept constant
within all experiments ;Rp = 1000. Partition co-
efficient one is imposed. The pre-factor of analytical
modela, is listed in the fourth column.

The character of equilibration of the liquid sphere tendghequilibration char-
acter of the solid drop with increasing viscosity ratio aali®ady suggested by Fig-
ures 2.3 and 2.5 since the stirring within the blob becomeféantive for high viscosity

ratio.

The characteristic time of the rigid blob depends on the®euimber with the
power of 2/3 that is in a good agreement with the analyticalehproposed in Chap-
ter 2. Comparing the pre-factors of the scaling power law @t 2 for the analytical
model and 0.60 for the numerical model.

Ru| o | B8 |
102 ] 0.72] 0.50] liquid
102 || 0.68| 0.64| liquid

0.60| 0.66 | rigid

Table 4.3: Fitted parametersand of the equation
for the characteristic time = «(Pe)” for liquid and
rigid drop. Diffusion ratio is kept constantRp =

1000. Partition coefficient one is imposed.
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Figure 4.2: Non-dimensional characteristic timas a function of the Peclet number
Pe for different viscosity ratios. Ratio of diffusion coefénts is kept constant for all
experiments (a)-(f) Rp = 10°. Solid lines represent fits of function = « (Pe)”.
Parameters of the fits are displayed in the right bottom carheach figure.
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played. Ratio of diffusion coefficients and the partitioreffizient are kept constant ;
Rp = 10 and K = 1. Solid lines represent fits of functian= « (Pe)’.
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Chapter 5

Discussion

In the previous chapters we developed an analytical modeharumerical model for
time evolution of equilibration between an iron drop andeunding silicates. Numer-
ical simulations, performed for the Peclet numbers up0fg match the theoretically
predicted characteristic times. We thus validate our amallymodel and can use the
proposed scaling laws for high Peclet numbers correspgrditne Earth’s conditions.

The model is more accurate for the high diffusion ratios siwe match the con-
centration at the surface of the drop with the average cdratéan within the blob, see
Eq. (2.77), that is plausible for high metal diffusion or @&nt inner circulation.

The numerical model allowed us to determine two differentildsration regimes.
For low viscosity ratios the stirring within the blob efficigy accelerates the equili-
bration and the blob follows the dimensionless scalingtaw o, (Pe)'/2. For high
viscosity ratios mixing within the blob becomes less effiti@nd the equilibration rate
approaches the equilibration rate of the rigid drop andadlfor ther = ay(Pe)?/?
scaling law. The transition between the different regimesues in a window when
R, € (10°,102).

Considering the normalization of time by the advectivedaét/U we can formu-
late the scaling laws with physical dimensions whereby vegljot the dimensionat
for the primitive Earth as functions of magma ocean pararseted the droplet param-
eters. The results are displayed in Figure 5.1 where we aised0.72 andas, = 0.6.
Results won't change much with other pre-factagsor a;. What is important is the
power of the Peclet number. We allow for iron viscosify= 1 Pa s that corresponds
to high pressure conditions.

Allowing for the silicate viscosityl0? Pa s that corresponds to high pressure con-
ditions [13] the stable size of the drop i:m with the terminal velocity0.2 ms™.
Characteristic time of equilibration is then3 - 10*s and the equilibration distance
that the drop reaches within theis 3 km when we allowed for the silicate diffusion
coefficientD' = 10~ ?m? s .

For the silicate viscosity0~2 Pas that corresponds to high temperature condi-
tions [13] the drop radius i&.1 cm and it falls with velocityl m s—!. The characteristic
time of equilibration is3 - 10? s and the equilibration distanceigkm when we allowed
for the same silicate diffusion coefficient as before.
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Figure 5.1: Dimensional characteristic time (upper figunedl corresponding equili-
bration distance (bottom figure) as functions of the siécascosity for three different
diffusion coefficients. Iron viscosity ig' = 1 Pas, partition coefficient ig{ = 1. The
solid lines indicate two regimes. In the first regime, foicsite viscosities larger than
the iron viscosity, the stirring within the drop is efficierin the second regime, for
silicate viscosities less than one percent of the iron wggamixing within the blob is
inefficient. The transition in between is indicated by theldzd lines.

In these two cases the equilibrium of the drop sinking in tlEgma ocean with
depth abou00 km was attained. However, the characteristic times can befisign
cantly enhanced by several orders by the different paniitgp. E.g. partition coeffi-
cient K = 500 will 500x lengthen the characteristic times, see Egs. (2.80) an8)(2.8
Then, only for low silicate viscosity the metal-silicateuddprium was reached.
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Our numerical model is based on several simplifying assiongt We assume that
the infinite space of the magma ocean can be replaced by aesphieradiu2R. For
the runs with the lowest Peclet numbers, i.e., the highdstsiton rates, the thickness
of the boundary layer is five times smaller than the radiushefdrop. The boundary
layer is thus sufficiently thin to consider that our approaiion is accurate.

Next, we assume that magma ocean is in a regime of laminarectoa. The
metal segregates thus with the R-H terminal velocity givekq. (2.54). However, the
magma ocean could be in a regime of vigorous convection andrtdyg force should be
thus considered when estimating the terminal velocityesthe flow around the droplet
is likely turbulent. The terminal velocities are then abeut 0x smaller [2]. More-
over, because of high convection velocities {0 ms~!), iron droplets may remain
entrained for a significant time in the magma ocean instedallofg straightforward
to the bottom [21].

We also suppose that the drop doesn’t deform and keeps fte shrafact, “lentil”
like flattering likely occurs but it would be a different tagkinvestigate. Finally, we
didn’t consider the Rayleigh-Taylor instability causedthg inertia when estimating
the stable size of the drop.

Considering the numerical side of the task, the problemtensive in number of
iterations needed to achieve the equilibrium. The choicaurherical scheme then
becomes crucial. The implicit method in time domain enabket use large Courant
number and substantially shorten computation times.
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Chapter 6

Conclusions

In this thesis we developed a model for the chemical eqaifibn of small metal
droplets with surrounding silicates that likely occurredthe primitive Earth within
the core formation event.

In order to study the chemical evolution of metal dropletpdrsed in the magma
ocean we proposed an analytical and numerical models thatd=r the simple blob
sinking with a constant terminal velocity in the host liquid

The stable size of the drop is given by the critical Weber neinmtbat reflects the
density ratio of the two liquids. The size of the drop variesyf micrometers for low
silicate viscosity to meters for high silicate viscosityneTsmallest droplets sink with
the highest terminal velocity reaching up to tens of meterssgcond.

We studied the characteristic times of chemical equilibrat The rate of equili-
bration is given by the size of the drop and efficiency of ngxivithin the drop. There
are two regimes of equilibration: for low silicate viscgsftompared to the iron vis-
cosity), the droplet is small and though it falls with highnenal velocity, the stirring
within the blob is inefficient and the equilibration rate mntrolled either by the dif-
fusion in silicates or by the diffusion in metal. For highicilte viscosity (compared
to the iron viscosity), large, slow settling droplets areabbshed with efficient inner
circulation. The concentration is then rapidly homogediaad the equilibration rate
is thus controlled by the diffusion of silicates. The nurnaticode enabled us to de-
termine the transition between the two regimes which ocituasnarrow window for
silicate viscosity less than the iron viscosity and highantthe one percent of the iron
viscosity.

We proposed scaling laws for the characteristic time of ldgyation. The scaling
is based on the boundary layer analysis and confirmed by theunerical solution
of the advective—diffusive equations for the Peclet numipgrtol10°. Hence, we can
predict the characteristic times of the equilibration ofa#indroplets in the magma
ocean as functions of the magma ocean and droplet parameters

The higher the silicate viscosity the larger the charastieriime. The equilibration
times are short that supports the idea that the drops fullylibcpted while sinking.
That is in agreement with [20].
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Continuing in work will consist of running experiments widkepth-dependent par-
tition coefficient. In the reference system of the dropleis tase corresponds to time-
dependency of the partition coefficient. It will be also wseb incorporate the drag
coefficient into the equation of motion and include thus tifience of the drag force.
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Appendix A

Differential operators in
axi-symmetric spherical coordinates

For convenience of the reader we bring the list of the diffee¢ operators in axi-
symmetric spherical coordinates that were used within tegnted text. The complex
overview can be found e.g. in [14].

Gradient of scalar
of 10f

Vf(r,0) = <§, ;%) (A.1)

Divergence of vector

1 0(r?*F,) 1 O(Fysind)
VAFr0) = =5t e a0 (A.2)

Laplace of scalar

2p L0 (LOFN 10 (0
ViI=55 ") T rsmaan 0% (A3)
Laplace of vector
2 2 0
2 _ 2 = _ . 3
(V'F), = V°F = 5F = o=y (Fysing) (A.4)
) T 2 OF,
<V F)(’ = Vi r2sin?f "’ * r2 00 (A-5)
Curl operator
(VxF) = L Q(F in ) (A.6)
" rsinfod ¢S '
10
(VxF), = o (r£s) (A.7)
1 /0 oF,
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