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Introduction

Mantle convection is the mechanism accepted to explain the dynamics of the Earth’s
interior. To model mantle material that on geological time-scales flows like a viscous
fluid, two complementary approaches can be adopted. On the one hand, one can
solve self-consistently the equations of thermal convection, including parameters and
employing physical relationships derived from mineral physics. On the other hand,
to permit comparison with specific observables that are associated with the flow, one
can consider a more restricted problem. Instead of focusing on the time evolution of
mantle flow, if the density anomalies that drive the convection are known a priori, a
snapshot of the present-day flow pattern can be built, that is consistent with these
anomalies and that can successfully predict the observables. Our work is largely
motivated by the latter approach.

Since the pioneering work of Pekeris (1935), several authors recognized the possi-
bility of constraining mantle properties by modeling the non-hydrostatic geoid (e.g.
Runcorn, 1967; Ricard et al., 1984). The density anomalies of thermal origin that
are responsible for the mantle buoyancy can be retrieved through the seismic to-
mography (e.g. van der Hilst et al., 1997; Ritsema & van Heijst, 2000). Once the
lateral density heterogeneities of the mantle are known, the geoid can be computed
as the result of a static and a dynamic contribution. On one side, being the geoid a
measure of the gravitational potential, the Newton’s law can be used to integrate di-
rectly the density field delivered by seismic tomography. On the other side, the same
anomalies can be used to compute the present-day mantle flow and the additional
anomalies that arise at the Earth’s surface and at the CMB as a consequence of the
dynamic topography induced by the flow (see Fig. 1). It turns out that the static
and dynamic contributions have similar amplitudes and opposite signs. The total
geoid is then the result of these two different and opposing effects. Thus, even if we
were completely sure about the distribution of the density heterogeneities, the geoid
depends strongly upon the rheology of the mantle and a careful modeling of the
mantle flow is necessary. To this purpose, the partial differential equations (PDE)
that govern the dynamics of slow viscous flow (Stokes problem) must be solved.

To solve such equations, two approaches are considered. To treat problems with
radially symmetric viscosity distributions, we implement the technique of the matrix

propagator (Hager & Clayton, 1989), which, over the last twenty years, has been the
principal mathematical tool upon which models of present-day mantle convection
have been built. The matrix propagator, provides us with an analytical solution of
the Stokes problem that is used to benchmark a more general algorithm. In fact, to
treat problems that include lateral viscosity variations (LVV), no analytical solution
exist and a strictly numerical approach becomes mandatory. Therefore, we develop
and implement what we term the spectral finite element (SFE) method. After
converting the classical differential form of the problem to an equivalent integral
form (weak formulation), we introduce a combined parameterization consisting of
finite elements and spherical harmonics that allows us to treat models with lateral
variations of viscosity that span several orders of magnitude. In order to validate the
SFE approach when LVV are considered, we derive a semi-analytical solution of the
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Figure 1: A cartoon illustrating the basic physical mechanism that explains the non-
hydrostatic geoid. (a) Static geoid anomaly N δρ due to the primary contribution of inter-
nal density anomalies δρ: a positive (negative) geoid anomaly corresponds to a positive
(negative) density anomaly. (b) Mantle flow associated with primary density anomalies
causes boundary deformations and hence additional density anomalies, with which the
geoid N t (dashed line) is associated. The total geoid (green line) is the sum of the two
contributions.

Stokes problem in the presence of a particular axisymmetric distribution of viscosity.
Finally, the SFE method is applied to model the low-degree geoid associated with
axisymmetric models of subduction.
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1 Model equations and solution techniques

1.1 Equations and boundary conditions

On the global scale, mantle dynamics can be well approximated by modeling a
selfgravitating Newtonian viscous incompressible fluid under the infinite Prandtl
number approximation, i.e. with vanishing inertia (e.g. Hager & Clayton, 1989).
For such a fluid, the mass conservation equation, the constitutive relation and the
linear momentum equation read respectively as

div u = 0 (1)

τ = −pI + 2ηε̇ (2)

div τ − g0δρ + ρ0grad V = 0 (3)

where u is the Eulerian flow velocity, τ is the Cauchy stress tensor, I is the identity
tensor, p ≡ Tr(τ )/3 is the dynamic pressure (Tr is the trace operator), η is the shear
viscosity, ε̇ ≡ (gradu + grad tu)/2 is the strain-rate tensor, g0δρ is the buoyancy
force that drives convection through lateral density heterogeneities δρ, being g0 the
reference gravity acceleration, ρ0 is the reference density and V the gravitational
potential that can be obtained by solving the Poisson equation with the anomalies
δρ as source term:

∇2V = 4πGδρ, (4)

where G is the constant of gravitation.
Equations (1), (3) and (4) are to be satisfied within the mantle volume, which

we will indicate by B. On the boundary ∂B = ∂Ba∪∂Bc, where ∂Ba and ∂Bc denote
the Earth’s surface and the core-mantle boundary, respectively, suitable boundary
conditions must be specified. Equations (1) and (3) are typically solved by con-
sidering fixed, impermeable and free-slip boundaries (e.g. Thoraval et al., 1994), as
follows:

u · er = 0, (5)

τ · er − ((τ · er) · er)er = 0, (6)

where er is the radial unit vector of a spherical reference system. The imperme-
ability condition (5), guarantees that there is no mass flux across ∂B, which is then
fixed, while condition (6) requires the shear stresses to vanish on ∂B. The normal
component of the surface traction τrr = (τ · er) · er does not need to be zero. This
is rather interpreted like the force that produces the dynamic topography h of the
boundary ∂B:

h = −
τrr

∆ρ0 g0
, (7)

where ∆ρ0 is the change in the reference density across ∂B and g0 the reference
gravitational acceleration at ∂B. Equation (7) has a clear physical meaning: The
surface traction τrr balances the pressure force due to the displaced topography h.
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The Poisson equation (4) is not valid at points where the density is discontinuous
and in the presence of surface-mass density contrasts. Thus, it must be supplemented
by suitable boundary conditions. In eq. (7), the dynamic topography h is small
compared to the characteristic dimensions of the mantle. Therefore, we can define
a surface-mass density contrast induced by mantle flow at the boundary ∂B as

σh ≡ h ∆ρ0 = −
τrr

g0
. (8)

It can be shown (Dahlen, 1974) that, to account for density discontinuities and
surface-mass density contrasts, respectively, at ∂B, the gravitational potential and
gravitational intensity must satisfy the following conditions:

[V ]+
−

= 0, (9)

[er · grad V ]+
−

+ 4πGσh = 0, (10)

where the symbol [•]+− indicates the jump of the quantity between brackets on ∂B
and the super(sub)script + (−) denotes the evaluation of such a quantity on the
external (internal) side of ∂B.

Note that, in order to apply eqs (9) and (10), it is necessary to know the external
potentials V a+

and V c−, above the Earth’s surface and beneath the CMB, respec-
tively. In these regions there are no density anomalies (i.e., δρ=0) and V simply
satisfies the Laplace equation:

∇2V = 0. (11)

The solution to eq. (11) can be expressed in terms of a spherical harmonic series.
For a radius r larger than the Earth radius a, the potential reads as

V a+

(r, Ω) =
∑

jm

V a+

jm

(a

r

)j+1

Yjm(Ω), (12)

while at a radius smaller than the CMB radius c, we have

V c−(r, Ω) =
∑

jm

V c−

jm

(r

c

)j

Yjm(Ω), (13)

where the symbol Ω is used to denote the angular variables (ϑ, ϕ).

1.2 Matrix propagator technique

In the presence of radially symmetric viscosity distributions, the matrix propagator
technique (e.g. Gantmacher, 1990) allows us to construct an analytical solution
to the boundary-value problem (1)–(9). After expanding the field variables into
spherical harmonic functions, the PDE (1)–(4) are converted to a system of ordinary
differential equations (ODE) for each degree and order of the spherical harmonic
expansion.
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The flow vector u and the traction vector T ≡ τ · er are expanded into vector
spherical harmonics S

(`)
jm(Ω), ` = −1, 0, 1 (Phynney & Burridge, 1973):

u =
∑

jm

(ujmS
(−1)
jm + vjmS

(1)
jm + wjmS

(0)
jm), (14)

T =
∑

jm

(τrr,jmS
(−1)
jm + τrϑ,jmS

(1)
jm + τrϕ,jmS

(0)
jm), (15)

where ujm and vjm are the spheroidal components and wjm the toroidal component
of u. Similarly, the potential V and density anomalies δρ are expanded into scalar
spherical harmonics (Varshalovich et al., 1989)

V =
∑

jm

VjmYjm, (16)

δρ =
∑

jm

δρjmYjm. (17)

By transforming eqs (1)–(4) into spherical coordinates (Landau & Lifshitz, 1987)
and using the expansions (14)–(17), two decoupled systems of ODE are obtained for
toroidal and spheroidal variables respectively. On the one hand, as far as the first
are concerned, we have

dyT

dr
= B yT, (18)

where yT ≡
[

wjm, τrϕ,jm

]t
and B = B(η, r) is a matrix (see Sec. 2.3 of the thesis).

Since neither a toroidal forcing nor boundary conditions for toroidal flow are pre-
scribed, the vector yT satisfies a homogeneous system with homogeneous boundary
conditions for each j and m. Hence, it has only the trivial solution yT = 0. On the
other hand, as far as the spheroidal variables are concerned, we have

dy

dr
= Ay + b, (19)

where y ≡
[

ujm, vjm, τrr,jm, τrϑ,jm, rVjm, r2dVjm/dr
]t

, A = A(η, r) is the matrix of
the system (see Sec. 2.3 of the thesis) and b is the forcing vector:

b =
[

0, 0, g0δρjmr2, 0, 0, 4πGδρjmr3
]t

.

For each degree and order j and m, the system (19) is equivalent to eqs (1)-(4) (with
the assumption that η = η(r)).

If the solution to eq. (19) is known at an initial radius r0, the solution corre-
sponding to any radius r > r0, enclosing a shell in which the matrix A is constant,
can be obtained (Gantmacher, 1990) through the matrix propagator P as follows:

y(r) = P (r, r0)y(r0) +

N
∑

i=1

P (r, ri)b(ri). (20)

10



Here y(r0) is a known starting vector, while P (r, r0) is the matrix propagator
(Gilbert & Backus, 1966):

P (r, r0) = M(r)M−1(r0),

where M (r) is the fundamental matrix of the homogeneous system associated with
eq. (19) (i.e. with b = 0). In eq. (20) the continuous volumetric density pertur-
bations δρjm(r) are approximated by a series of N discrete sheets of surface-mass
density δσjm(ri) located at fixed depths ri. According to this, the load vector reads
now as

b =
[

0, 0, g0δσjm(ri)ri, 0, 0, 4πGδσjm(ri)r
2
i

]t
.

Equation (20) is only valid within a layer where the propagator is constant. To
account for radial changes of viscosity, and consequent changes in the propagator,
the property of the propagator matrix is be used according to which solution vectors
can be propagated through a series of different material layers by simply forming
the product of individual layer matrices. Finally, taking into account the boundary
conditions, it can be shown that the solution vector y at the surface has the following
form

y(a) =

[

0, ujm(a), τrr,jm(a), 0, Vjm(a),−(j + 1)Vjm(a) +
4πGa2τrr,jm(a)

g0

]t

, (21)

while, at the CMB we have:

y(c) =

[

0, ujm(c), τrr,jm(c), 0, Vjm(c), jVjm(c) +
4πGa2τrr,jm(c)

g0

]t

. (22)

Using eq. (20) with the boundary vectors (21) and (22) leads to solving a system
of six equations in the six unknowns ujm(a), τrr,jm(a), Vjm(a), ujm(c), τrr,jm(c),
Vjm(c). With this procedure, the starting solution y(c) is fully specified and can be
propagated, using eq. (20), to any additional radius.

1.3 Spectral–finite element approach

When mantle viscosity is not simply radially distributed but exhibits lateral vari-
ations, spherical harmonic modes are coupled and the matrix propagator solution
for individual degrees and orders is no longer applicable. To treat lateral viscosity
variations (LVV), we apply the finite element method to find the solution of the
Stokes-Poisson problem. The problem is first reformulated in a weak sense. Then,
the resulting integral equations are parameterized using spherical harmonics to dis-
cretize the angular coordinates and piecewise linear finite elements to discretize the
radial coordinate. This is the reason why we term our method the spectral–finite

element (SFE) approach.
Matyska (1996) showed that by choosing a suitable functional space S, the solu-

tion to the Stokes-Poisson problem (1)–(4) subject to boundary conditions (5)–(10)
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can be obtained by finding the set of variables (u, p, λ, V ) ∈ S such that, for any
set of corresponding test functions (δu, δp, δλ, δV ) ∈ S, the following variational
equalities are satisfied:

δE (u, p, λ, V, δu, δp, δλ, δV ) = δF (δu), (23a)

δG (V, λ, δV, δλ) = δH (δV ), (23b)

where λ ≡ τrr

∣

∣

∂B
, δE = δEε̇+δEp+δEλ+δEsg and the individual functional variations

read as

δEε̇ ≡ 2

∫

B

η(ε̇ : δε̇)dV, (24)

δEp ≡ −

∫

B

div u δp dV −

∫

B

p div δu dV, (25)

δEλ ≡ −

∫

∂B

er · u δλ dS −

∫

∂B

λ er · δu dS, (26)

δEsg ≡

∫

B

ρ0 gradV · δu dV, (27)

δF ≡

∫

B

δρg0 · δu dV, (28)

δG ≡

∫

B

gradV · grad δV dV +
4πG

g0

∫

∂B

λ δV dS

−

∫

∂B

er · gradV + δV dS,

(29)

δH ≡ 4πG

∫

B

δρ δV dV. (30)

The dynamic pressure p and the variable λ are used as Lagrange multipliers to
enforce incompressibility and to adjust the boundary conditions, respectively.

The variational equalities (23) are then discretized as follows. On the one hand,
the angular part of the solution and of the corresponding test functions is expanded
into spherical harmonics. On the other hand, piecewise linear finite elements are
employed to parameterize the radial part of the flow u and of the gravitational
potential V , while piecewise constant functions are used for the pressure p. In this
way, from eq. (23), a discrete system of linear equations is obtained that, at each
node of the radial discretization, is solved for each degree and order of the unknowns
by preconditioned conjugate gradient technique (Barrett et al., 1994).

1.4 Validation with 1D viscosity distributions

With the SFE approach both models with radially symmetric and laterally depen-
dent viscosity distributions can be handled. Nevertheless this numerical method
needs first to be validated. This is the main reason why the matrix propagator
technique was implemented. The SFE solution is benchmarked against the matrix

12
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Figure 2: Matrix propagator solution (black lines) versus SFE solution (red squares) for
a two-layer mantle. Green’s functions of surface dynamic topography (panels a, d, g),
CMB dynamic topography (panels b, e, h) and geoid (panels c, f, i) are plotted for degree
j = 2 (panels a, b, c), j = 8 (panels d, e, f) and j = 16 (panels g, h, i).

propagator solution by comparing Green’s functions for the geoid and dynamic to-
pography (Corrieu et al., 1995) in the presence of stratified viscosity distributions.
At several mantle depths, ‘delta–like’ unitary harmonic loads are prescribed and the
resulting geoid, surface and CMB topographies are computed with the two meth-
ods. As example, Fig. 2 shows the comparison between the Green’s functions for
dynamic surface topography, CMB topography and geoid obtained via matrix propa-
gator (black lines) and SFE technique (red squares) for a two–layers mantle, with the
lower mantle being 100–times more viscous than the upper mantle (ηlm/ηum = 100)
and load/response harmonic degrees j = 2, 8, 16. Surface and CMB topography
kernels are normalized by their own value at the Earth’s surface and at the CMB,
respectively, while the geoid is normalized by the factor 4πGa/(2j+1)g0. The agree-
ment agreement between the two solutions is very good and the error is always found
to be within 1%. In Fig. 2, the number of finite elements employed to plot the SFE
solution is 80. Nevertheless, it is interesting to show how the SFE solution converges
to the matrix propagator solution as the number of finite elements is increased. In
Fig. 3, we show the convergency test for the geoid kernel of degree j = 16. The
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Figure 3: Convergency of the SFE solution (red dashed line) to the matrix propagator
solution (black solid line) as the number N of finite elements is increased. The geoid
Green’s function of degree 16 with ηlm/ηum = 100 is shown. The SFE solution is plotted
for N =5, 10, 20 and 60.

numerical solution converges quite rapidly to the analytical one. We start with 5
finite elements and increase their number up to 60 with which the two curves are
practically indistinguishable.
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2 A semi-analytical solution for

axisymmetric viscosity

With the benchmark against the matrix propagator solution, the SFE approach
has proven to be correct when radially symmetric viscosity distributions are con-
sidered. In order to validate our approach in the presence of LVV, we derived a
semi-analytical solution for computing 2-D axisymmetric viscous Stokes flow in a
model consisting of two eccentrically nested spheres (ENS) of different viscosities.

2.1 Outline of the solution

The construction of the ENS solution is rather technical. Here we present a short
outline, referring the reader to Chapter 5 of the thesis for a more detailed derivation.
For the special geometrical configuration shown in Fig. 4, we derive a solution to
the Stokes equation (3) with the self-gravitation term neglected:

div τ + f = 0 in S, (31)

where S is now a full sphere and f is a general forcing term expressing an internal
load associated with lateral density anomalies. The flow is again considered as
incompressible (see eq. 1) and the boundary ∂S of the sphere impermeable and
free-slip (see eqs 5 and 6).

The first step of our derivation follows observing that the flow vector u can be
decomposed as the sum of a spheroidal vector us and a toroidal vector ut (e.g.
Chandrasekhar, 1968)

u = us + ut. (32)

Assuming that the viscosity η is axisymmetric, that is η = η(r, ϑ), and considering
an internal forcing f with no toroidal component, which is consistent with the
assumption of gravitational forcing, it can be shown that the linear momentum
equation and the incompressibility condition can be written separately for us and
ut as follows:

− grad p + grad η · (grad us + grad tus) − η rot rotus + f = 0 (33a)

div us = 0, (33b)

and

grad η · (gradut + grad tut) − η rot rotut = 0 (34a)

div ut = 0. (34b)

Since no surface toroidal forcing is prescribed, the homogeneous system of equations
(34) is supplemented by homogeneous boundary conditions and thus it has only
the trivial solution ut = 0. Therefore, we just deal with the system (33) for the
spheroidal flow us, which will be simply denoted by u.
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Figure 4: Geometry of the two eccentrically nested spheres. The outer sphere of radius
R1 and viscosity η1 is centered at O1, representing the origin of a spherical coordinate
system O1(r1, ϑ1). The grey sphere S2 of viscosity η2 is centered at O2, representing the
origin of a spherical coordinate system O2(r2, ϑ2) shifted by the vector d along the z-axis.

To solve the system of equations (33) in a sphere, a solution to eqs (33) is
expressed as the sum of two parts: the solution to the homogeneous problem with
f = 0 and a particular solution with f 6= 0:

p = p0 + p′, (35)

u = u0 + u′, (36)

where the labels 0 and ′ denote the homogeneous solution and a particular solution,
respectively. By suitably choosing the particular solutions and accordingly the load
f , it can be shown that the system (33) can be reduced to the biharmonic differential
equation for the toroidal vector potential A (implicitly defined by the relation u0 =
rot A):

∇4A = 0. (37)

The fact that toroidal vector spherical harmonics S
(0)
jm are eigenfunctions of the

Laplace operator, i.e. [∇2 + j(j + 1)]S
(0)
jm = 0, is used to show that the fundamental

solution to eq. (37) can be written as

A(r, ϑ) =
∑

j

(A1,jr
j + A2,jr

j+2 + A3,jr
−j−1 + A4,jr

−j+1)S
(0)
j (ϑ), (38)
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where Ai,j, i = 1, . . . , 4 are constant of integrations to be determined from the
boundary conditions.

In Fig. 4, a large sphere S1 contains a smaller sphere S2. Since the solution (38)
is valid for a homogeneous sphere, it can be used to write the solutions for the outer
and inner spheres separately. In the reference frame of S2, we then have

A(1)(r2, ϑ2) =
∑

j

(A3,jr
j
2 + A4,jr

j+2
2 + A5,jr

−j−1
2 + A6,jr

−j+1
2 )S

(0)
j (ϑ2), (39)

where the dependence on r2 and ϑ2 is written explicitely to emphasize that the
solution is expressed in the coordinate system O2. On the other hand, the toroidal
vector potential inside S2 is

A(2)(r2, ϑ2) =
∑

j

(A1,jr
j
2 + A2,jr

j+2
2 )S

(0)
j (ϑ2). (40)

Note that the expression (40) does not contain the harmonics r−j−1
2 S

(0)
j and r−j+1

2 S
(0)
j

because they are singular at the origin O2 where r2 → 0. The solution to our orig-
inal problem is then found once, for each degree j, the six constants of integration
Ai,j, i = 1, . . . , 6 are known. Four such constants are determined by connecting
continuously flow and stresses at the interface r2 = R2, i.e.:

u
(1)
j (r2 = R2) = u

(2)
j (r2 = R2) and v

(1)
j (r2 = R2) = v

(2)
j (r2 = R2)

τ
(1)
rr,j(r2 = R2) = τ

(2)
rr,j(r2 = R2) and τ

(1)
rϑ,j(r2 = R2) = τ

(2)
rϑ,j(r2 = R2),

while the remaining two constants are obtained by imposing the impermeability and
free-slip conditions at r1 = R1, i.e.:

u
(1)
j (r1 = R1) = 0 and τ

(1)
rϑ,j(r1 = R1) = 0.

Note that since the latter two conditions are expressed in the reference system O1,
the potential A(1)(r2, ϑ2) needs to be transformed to A(1)(r1, ϑ1). This can be accom-
plished by applying suitable transformation theorems that permit to translate spher-
ical harmonic functions employing particular combinations of the Clebsch-Gordan
coefficients (Tosi & Martinec, 2007).

2.2 Comparison with the SFE solution

Several test examples are considered to compare the SFE and ENS solutions. In
Fig. 5 the comparison is shown for an inner sphere 2000-times more viscous than
the outer sphere. The cut-off degree of the spherical harmonic expansions of the
SFE solution is 40 and the number of radial finite-elements employed 500. In all the
examples considered, the agreement between the two solutions is always satisfactory.

The accuracy of the SFE solution can be improved by increasing the number of
finite elements and/or the cut-off degree of the spherical harmonic expansion. For
specific angular and radial cross-sections, we show in Fig. 6 the Root Mean Square
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Figure 5: Comparison between SFE (squares) and ENS (solid line) solutions. Panel a:
Flow pattern and density anomaly; panel b: Total geoid (solid line for ENS and squares for
SFE), geoid due to internal anomaly (dashed-dotted line) and to boundary deformation
(dashed line); panel c: Radial cross sections for radial flow (in red) and tangential flow
(in blue); panel d: Angular cross section for for radial flow (in red) and tangential flow
(in blue); panel e: Radial cross section for pressure; panel d: Angular cross section for
pressure.

(RMS) error reduction for flow and pressure in models with increasing viscosity
contrast between the inner and outer sphere. Because of the different functional
space chosen to discretize the pressure (piecewise constant instead of piecewise linear
functions are used), it is not surprising that this variable exhibits a lager error than
that found for the flow. As expected, the RMS error increases along with the
viscosity contrast.
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Figure 6: RMS error reduction for radial (panels a, c and e) and angular (panels b, d and
f) cross sections for radial flow (red), tangential flow (blue) and pressure (green). Solid,
dashed and dashed-dotted lines indicate models where the inner sphere is 50-, 200- and
2000-times more viscous than the outer sphere.
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3 Low-degree geoid over subduction zones

Using the SFE approach, we perform numerical experiments to investigate in a
spherical axisymmetric geometry the effects of LVV on the low-degree geoid and
gravity anomalies over a typical subduction zone. We explore the parameters space,
testing several combinations of density, viscosity and geometry of a subducted slab
having a realistic lateral extent (∼ 100 km), with the aim of predicting the charac-
teristic broad positive highs that the low-degree geoid and gravity anomalies exhibit
over major subduction zones.

3.1 Model setting

At long-wavelengths (2 ≤ j ≤ 8), geoid and gravity anomalies generally exhibit
local maxima over convergent plate margins. For example, broad geoid maxima up
to 60 degrees wide range from slightly more than 20 m over the subduction zones
of South America and Japan up to 40 and 60 m over the Tonga and New Guinea
regions, respectively, while the amplitude of the highs of gravity anomalies ranges
between 15 and 25 mgal. To study such signals, we use a spherical axisymmetric
mantle model. We consider a model consisting of three viscosity layers: lithosphere
(ηlith) extending from the Earth’s surface to 100 km depth, upper mantle (ηum) from
the base of the lithosphere to 670 km depth and lower mantle (ηlm) from the base of
the upper mantle to the core-mantle boundary. The viscosity of the upper mantle
is kept fixed at the reference value of ηum = 1020 Pa s. At colatitude ϑ = 80◦, we
locate the trench where an oceanic plate subducts at a constant dip angle of 50◦.
The thickness of the subducting plate is 100 km everywhere. In those models that
incorporate LVV, the viscosity of the slab (ηslab) equals that of the lithosphere at
every depth. Figure 7 shows as an example 2D axisymmetric viscosity structure.

The model is loaded using four buoyancy structures that differ from each other
according to the depth of penetration of the slab as follows: (a) the slab is confined in
the upper mantle, (b) the slab reaches the middle lower mantle, (c) the slab reaches
the CMB, (d) the slab reaches the CMB and thickens in the lower mantle. For each
such density structures, several radially symmetric and axisymmetric configurations
of viscosity are tested and the resulting geoid and gravity anomalies are computed.

3.2 Results and discussion

The main goal of our analysis is to investigate which mantle models are able to
produce broad positive geoid and gravity anomalies over the subducting plate and,
at the same time, to assess the role played by LVV.

The first important result we obtained, that also confirms the conclusions emerg-
ing from other studies (e.g. Hager & Clayton, 1989; Corrieu et al., 1995), is that the
viscosity ratio ηlm/ηum is responsible for first-order effects and is crucial to obtain
the correct sign for the geoid and gravity anomalies. In fact, independently of the
buoyancy structure used and of the presence of LVV, all models where ηlm is less
than 50-times larger than ηum present negative geoid and gravity anomalies that are
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Figure 7: Typical viscosity structure. Here, a 2D viscosity model is shown for a slab
extending to the middle lower mantle (density model ‘d’) along with a zoom on the trench
region where a low viscosity zone is used to decouple the plates.

not compatible with the observations (Fig. 8). On the contrary, when ηlm ≥ 50 ηum,
independently again of the buoyancy structure used and of the presence of LVV, the
geoid and gravity induced by the slab are always characterized by broad highs, with
several viscosity configurations ensuring realistic amplitudes that are comparable
with the observations (Fig. 9)

Looking at Fig. 9, two further conclusions emerge. First, as far as the density
structure is concerned, we found that if the slab is confined in the upper mantle
(density models ‘a’), the peaks in the geoid and gravity are always extremely small.
Even though our models are not able to furnish indications about the depth that
a slab should reach to ensure a good signal in the long-wavelength gravity field,
they strongly suggest the need for the presence of well defined density anomalies
in the lower mantle. It seems then necessary that at least a portion of the slab
penetrates the 660 km discontinuity. Second, concerning the role of LVV, the largest
differences between 1D and 2D viscosity distributions arise in those models for which
the slab is confined in the upper mantle (density models ‘a’). Using LVV in the slab
region approximately doubles the moderate highs that appear over the subduction
zone when a 1D viscosity model is employed. However, this is not the case for
the other density models. When models ‘b’, ‘c’ or ‘d’ are used, the differences in
amplitudes of the geoid or gravity anomalies between 1D and 2D viscosity models are
definitely minor, though they tend to increase as the slab is assigned more excess
mass. Interestingly, the most evident effect caused by the introduction of LVV
into the models is to systematically shift the geoid and gravity profiles towards the
trench region in an inversely proportional manner to the slab degree of buoyancy.
On the one hand, profiles arising from 1D viscosity models all exhibit their maxima
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Figure 8: Geoid (a) and gravity anomaly (b) for a 1D viscosity model with ηlith = 5 ·1021

Pa s and ηlm = 5 · 1020 Pa s. Density models ‘a’, ‘b’, ‘c’ and ‘d’ are specified according
to the line style indicated in the legend. For all density structures geoid and gravity are
negative over the subduction zone.

approximately at 90◦ colatitude, i.e. 10◦ away of the trench. However, for 2D
viscosity models, the high viscosity assigned to the slab is able to better focus the
internal loading, with profiles obtained taking LVV into account having maxima
directly above the trench for ‘a’ models and progressively away from it for models
‘b’, ‘c’ and ‘d’. The differences between results obtained using 1D and 2D viscosity
models are clearly minor and seem to indicate that, at least in the lower mantle, the
presence of stiff slabs is not necessary when a fit to the long-wavelength slab geoid
is sought.
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Figure 9: As in Fig. 8 but with ηlith/slab = 1022 Pa s and ηlm = 5 · 1021 Pa s. Blue and
red lines refer here to 1D and 2D viscosity distributions, respectively.
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Conclusions

The main goal of this work has been the development of a reliable and efficient
numerical model for the solution of the present-day mantle convection problem. We
have implemented a solution scheme based on a weak formulation of the coupled
Stokes-Poisson problem. Although the finite element method is nowadays a standard
tool in geodynamics research, here it was used for the first time in combination with a
spectral parameterization based on spherical harmonics to treat viscous flow models
in a spherical geometry.

The classical technique based on propagator matrices provides us with an analyt-
ical solution of the Stokes-Poisson problem in the presence of laterally homogeneous
viscosity distributions. This has been derived and implemented in order to validate
the spectral finite element (SFE) method. The SFE and matrix propagator solu-
tions have been compared using Green’s functions obtained from simple internal
loads and a satisfactory agreement was always achieved.

The SFE method is designed to treat lateral viscosity variations (LVV). The
lack of well documented benchmark tests in the presence of LVV motivated us
to derive and implement a semi-analytical solution of the Stokes problem for a
special configuration consisting of two viscous eccentrically nested spheres (ENS).
After careful testing, evidence has been provided that the semi-analytical solution
is correct, and that our numerical code is accurate in solving problems with 2D
viscosity distributions.

An axisymmetric viscosity model has been used to investigate the low-degree
geoid signal induced by a typical subduction, with the aim of predicting the charac-
teristic broad highs observed over major subduction zones and estimating the role
played by very localized LVV. Several high resolution density and viscosity models
have been systematically analyzed. On the one hand, our case study has confirmed
that the viscosity contrast between upper and lower mantle is responsible for the first
order effects on geoid predictions. A lower mantle at least one order of magnitude
more viscous than the upper mantle is necessary to ensure a positive geoid signal of
realistic amplitude. On the other hand, LVV are not able to modify significantly the
amplitude of the low-degree geoid, suggesting then no need to consider stiff slabs
while modeling the long-wavelength geoid.

Unfortunately, although fully 3D viscosity models can be handled with our SFE
method, their demands in terms of computational power, along with the lack of
adequate hardware, made it not feasible to present here meaningful examples derived
from them.
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