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1 Abstract
Partial melting and migration of melts play an important role in the formation and
evolution of the Earth. Transport of heat, rock rheology and distribution of major,
minor, as well volatile chemical species are all affected by the presence and migration of
magmas. Partial melting and melt extraction are central processes for the formation of
the oceanic crust and are responsible for the depletion in incompatible elements of the
mantle part of the lithosphere. Migration of molten material played a major role in the
dynamical evolution of the early Earth and even now plays a fundamental role in the
transport of matter as well as heat in partially molten regions of deeper mantle (e.g, at
the core–mantle boundary).

The separation of the denser metal from the lighter silicates is the most extensive
differentiation process in the course of Earth’s evolution – and the evolution of terrestrial
planetary bodies in general. This process also implies the presence of distinct phases,
in solid and liquid states. Gravitational energy which is released upon differentiation
is a major source of heat that must be considered when assessing the thermal history
of a forming planet. It is therefore essential to properly take into account the energy
exchange that takes place in a multiphase medium on a large spatial scale in order to
investigate early planetary evolution and to constrain the differentiation time scales.

Theoretical analyses and numerical modeling are essential tools for the study of the
planetary dynamics at global scale. We present a new general model of two-phase flow
and deformation in a two-phase medium. Our model is a modification of a recent set of
equations presented by Bercovici et al. (2001a), extended so that it allows for the mass
exchange between phases (that is, phase change – melting/solidification). The model
offers a self-consistent description of the mechanics and thermodynamics of a mixture of
two viscous fluids in the form of continuum mechanical equations, in the limit of a slow
creeping flow. The difference in pressures that exists between the two phases is generated
i) by the surface tension at the interfaces between the phases which are included in the
description, and ii) by the isotropic deformation (i.e., compaction or dilation) of the
individual phases upon flow.

In all the geologic applications considered, one of the phases (named the ‘liquid’
phase) is much less viscous than the other phase (the ‘solid’ phase), which largely sim-
plifies the equations. In the modeling of differentiation of a terrestrial planet, the ‘solid’
phase represents the silicates of the mantle and the ‘liquid’ phase is the iron alloy of the
core. Depending on the temperature, the iron phase can itself be either molten or in its
solid state. There is no mass transfer between the silicate and the iron phase. First we
study the compaction in a layer and of a spherically symmetric body (1-D models). A
numerical code and various simulation in 2-D are then presented. For a protoplanet of a
radius of ∼ 2000 km, we obtain characteristic time scales of the core segregation of the
order of 0.1Myr.

The careful treatment of the phase change in the two-phase model, based of the
fundamental principles of thermodynamics in a non-equilibrium case, allows us to study
the coupling between the viscous deformation and melting. We present an analysis of the
pressure release melting of an upwelling mantle below a spreading center. The volumetric
deformation of the matrix skeleton generates a dynamic pressure difference between the
solid and the melt: the magma is submitted to a lower pressure than the compacting
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solid matrix. This effect is particularly important at incipient melting and can move the
base of the melting zone by few km. The effect of the surface tension on the initiation
of melting is also discussed; it depends on the energetic balance of the solid–solid and
solid–melt interfaces on the grain scale, and consequently on the geometry of the first
melt to appear. The magma extraction velocities reach at most ten times the upwelling
velocity of the solid. The porosity (melt volume fraction) remains small (few percent)
even at high degree of meting, and has a roughly parabolic profile in the entire melting
zone.

2 Introduction
Two-phase flow is a phenomenon of capital importance in the Earth’s interior. The
two main contexts involving two-phase dynamics that we discuss are partially molten
regions of the mantle and the process of differentiation of the Earth’s metallic core from
the silicate mantle.

The most extensive magma production in the Earth’s interior is related to accre-
tion of tectonic plates at mid ocean ridges. The space between the spreading plates is
continuously being filled with material ascending from deeper parts of the mantle. The
pressure release upon this roughly adiabatic ascent causes the temperature to increase
above the solidus of the mantle rock and partial melting occurs. The lighter magma
moves through the solid towards the surface where is resolidifies, thus creating a new
oceanic crust. The solid residue after melting forms the mantle part of the lithosphere.
Other major settings of near surface melting include island arcs and volcanic arcs at
subduction zones, and melting at hot spots. Presence of partially molten regions deeper
in the Earth’s mantle has also been proposed (for example, at the top of the transition
zone or at the bottom of the mantle). Melting and partially molten zones involve the
presence of two distinct phases, both of which move – each phase at its own velocity –
and deform and where mass is transfered from one phase to the other upon melting and
freezing.

The Earth has a dense metallic core overlain by a lighter silicate mantle. Such first
order layering is also inferred for other terrestrial bodies in the Solar System. This struc-
ture is readily explained in terms of minimization of gravitational potential energy but
it is not clear by what mechanism and on what time scales the differentiation occurred;
the building material of a terrestrial planet in the solar nebula is thought to have had
homogeneous distribution of metal and silicates. Geochemical arguments suggest that
the differentiation was contemporaneous or only happened shortly after the planetary
accretion process. The separation of metal from the silicates probably involved several
mechanisms, depending on the actual size of the growing planet, its thermal state and
the depth within the planet. It also implied the presence of two (or more) phases –
potentially both silicates and metal in their solid and liquid state. Geodynamical model-
ing of these two-phase (multi-phase) phenomena gives us insight into the dynamics and
evolution of a young Earth.
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3 Two-phase model
Both of the two processes discussed above involve flow and deformation of a two-phase
medium. An appropriate theoretical model is needed in order to investigate the evolu-
tion and the dynamics of the deforming two-phase medium. The approach we take is
one based on the classical averaging theory (e.g., Drew & Passman, 1998). The actual
distribution of the two phases as well as various physical quantities are averaged over a
“control volume” on a mesoscopic scale. It is assumed that the two phases are present
everywhere with continuously varying concentrations. A set of coupled equations is writ-
ten in the two-phase region. This approach is justified by the fact that in geophysics,
the typical size of the region of study is much larger than the characteristic grain/pore
size in the two-phase mixture. An alternative approach would be to solve a separate
set of equations in each single-phase domain and match appropriate quantities along the
interface between the phases; this is the preferred method if one studies the evolution of
a small number of large isolated blobs and requires an often cumbersome tracking of the
interfacial surface.

We seek a set of continuum mechanical equations that express the basic conservation
laws – of mass, momentum and energy, combined with the constitutive equations and
other necessary phenomenological relations. The first geophysical models of two-phase
flow appeared in the 1970’s (Sleep, 1974; Turcotte & Ahern, 1978; Ahern & Turcotte,
1979). McKenzie (1984) formulated a general model of a partially molten rock which
has been widely used in modeling of partially molten zones and magma migration. The
mechanical interaction between the solid rock and the magma corresponds to percolation
of a viscous liquid through a porous solid matrix – that is, a "Darcy-type" flow (Darcy,
1856). In addition, the solid itself is a viscous fluid (with much higher viscosity than the
magma) and deforms.

In a recent series of articles, Bercovici et al. (2001a,b) and Ricard et al. (2001) revis-
ited the two-phase modeling problematics and presented a model that is more general
than McKenzie’s equations in several aspects:

1. The ratio of viscosities of the two phases is arbitrary; one of the phases is not
necessarily much less viscous than the other. In fact this free choice of viscosity
values makes the set of equations invariant to the permutation of phases which is
exploited in the model development.

2. The presence of the interface between the phases is accounted for. The interface
has its surface energy and the two-phase mixture is acted upon by an interfacial
surface force.

3. One of the principal motivations for this new model was to create a formalism that
also includes "damage". Damage is generated by the deposition of energy on the
interface. It is manifested as the creation, growth and propagation of micro-cracks
and cavities (Bercovici et al., 2001a,b; Bercovici & Ricard, 2003) and the change
in grain size (Bercovici & Ricard, 2005). Damage is one possible mechanism for
focusing the deformation in the lithosphere, therefore it offers a possible model for
the generation of tectonic plates.

The equations proposed by McKenzie (1984) permit phase change from solid to liquid
and vice versa (melting/freezing). However the rate of phase change is not predicted
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by the model and has to be prescribed; the flow and the phase change are effectively
decoupled in McKenzie’s equations. But the deformation of the two-phase mixture upon
melt extraction creates local pressure perturbations and in consequence the melting
rate, which is necessarily pressure- and temperature-dependent, will be modified. A
non-uniform melting rate can then lead to heterogeneity in magma distribution and may
give rise to porosity instabilities.

We extend the new model of Bercovici et al. (2001a) so that it is applicable to
problems of partial melting and magma extraction. We introduce the phase change in
the equations and obtain a relation for the melting rate in a self-consistent way using
the principles of non-equilibrium thermodynamics. We thus obtain a general model that
includes the coupling between phase change, two-phase flow, viscous deformation and
interfacial effects. In the following paragraphs we summarize the common points and the
differences between the McKenzie’s model (McKenzie, 1984) and our new model (Šrámek
et al., 2007).

Common points of McKenzie (1984) and our new model

• Both models describe the two-phase flow by continuum mechanical partial differen-
tial equations for quantities that are averaged on a mesoscopic scale (that is, over
a domain that contains a large number of grains/pores but that is much smaller
than the region of interest).

• Inertia and kinetic energy are neglected. In this creeping flow approximation the
acceleration is zero and forces are always in balance.

• Isotropy of the spatial distribution and orientation of pores/grains is assumed.

• The two phases are viscous liquids; elastic deformation is not considered.

• In the case of a rigid matrix, the flow of the low viscosity liquid is a classical Darcy
percolation.

Differences between McKenzie (1984) and our new model

• In terms of rheology, in McKenzie (1984) the solid matrix is a compressible fluid
and its rheological relation contains two viscosities (bulk viscosity and shear vis-
cosity), and the liquid phase is an incompressible fluid with negligible viscosity.
In our model both phases are viscous fluids of arbitrary viscosities, individually
incompressible. The geophysical limit of a large viscosity difference is made a pos-
teriori.

• McKenzie (1984) neglects surface tension. In our model the surface tension and
interfacial effects are considered. In particular the surface tension affects the phase
change (i.e., the Gibbs-Thomson effect). The extension of our model so that it
includes damage (that is, in the lines of Bercovici et al., 2001a) is possible but not
done here.

• The consideration of interfaces and surface tension implies the difference in pressure
between the phases. Moreover, this pressure difference has a static contribution due
to surface forces on a curved interface as well as a dynamical contribution related
to compaction or dilation of the skeleton of each phase. The pressure difference
is therefore non-zero even if surface tension is negligible as long as the two-phase
medium is deforming.
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• The melting rate (or an equivalent quantity that describes the mass transfer be-
tween phases) is an external (prescribed) quantity in McKenzie (1984). In our
model the proper coupling between the equation for the melting rate and the flow
equations permits us to study the effect of the dynamical deformation on the phase
change. On the other hand, unlike McKenzie, we limit our study to a univariant
phase change.

New two-phase model with phase change coupled to deformation

Here we present the equations of our new model in the geophysical limit where one
phase, called the “fluid” phase, is much less viscous than the other phase, named the
“matrix” phase; mathematically µf ¿ µm, where µ is the shear viscosity and the indices
f and m denote the fluid and the matrix, respectively. This approximation largely
simplifies the equations. In the following the model will be applied to problems of
melting and melt migration and planetary differentiation. The fluid phase is either a
basaltic magma (µf ∼ 10Pa s) or liquid iron alloy (µf ∼ 0.1Pa s) and the matrix phase
is silicate rock (µm ∼ 1020 Pa s). The approximation of a large viscosity difference is
therefore justified. The general set of equations as well as the detailed derivation can be
found in the thesis manuscript.

The conservation of mass in each of the phases writes

∂φ

∂t
+ ∇ · (φvf ) =

∆Γ

ρf

, (1)

−∂φ

∂t
+ ∇ · [(1− φ)vm] = −∆Γ

ρm

, (2)

where φ is porosity, the volume fraction of the fluid phase, ρf and ρm are the densities
which are uniform and constant, and vf and vm are the averaged velocities of the fluid
and matrix phase. The source terms on the right-hand sides are proportional to the
melting rate ∆Γ.

The equations that express the balance of forces acting on each of the phases are the
generalized Darcy’s law

−∇Pf + ρfg +
c∆v

φ
= 0, (3)

and the equation of matrix deformation

−(1− φ)(∇Pm − ρmg) + ∇ · [(1− φ)τm]− c∆v + ∆P∇φ + ∇(σα) = 0, (4)

where Pf and Pm are the fluid and matrix pressures, ∆P = Pm − Pf is the pressure
difference, g is the acceleration of gravity, and ∆v = vm−vf is the difference in average
velocities. In the limit of inviscid fluid the interfacial surface force ∇(σα) acts only on
the matrix; σ is the coefficient of surface tension and α is the interfacial area density
(interfacial surface per unit volume).

The coefficient c that scales the friction between the two phases moving at different
velocities, is related to the porosity-dependent permeability of the Darcy’s law (Darcy,
1856) by

c =
φ2µf

k(φ)
. (5)
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The deviatoric stress in the matrix is

τm = µm

(
∇vm + [∇vm]T − 2

3
∇ · vmI

)
, (6)

where I is the identity tensor and [ ]T denotes a tensor transpose. We need to emphasize
that even though the matrix (as well as the fluid) are individually incompressible, the
divergence of the average matrix velocity is not identically equal to zero. A non-zero
∇ · vm reflects a rate of isotropic deformation – that is, the dilation (if positive) or
compaction (if negative) of the matrix skeleton. Even with only one viscosity present in
equation (6), τm is not a stress tensor of an incompressible fluid but a deviatoric stress
proportional to the rate of shear (non-isotropic) deformation.

The non-equilibrium thermodynamics considerations on the entropy production, in
particular the requirements of the second law of thermodynamics, the use or Onsager’s
relations and consideration of various micro-mechanical pore/grain deformation models,
constrain two phenomenological relations. One of them is an equation for the pressure
difference

∆P = −σ
dα

dφ
− µm

φ
∇ · vm. (7)

The first term on the right is the static pressure difference due to surface tension on a
curved interface (the derivative dα/dφ represents the sum of the principal curvatures;
Bercovici et al., 2001a). The second term is the dynamic pressure difference due to
compaction/dilation of the matrix. The porosity dependent factor µm/φ plays the role
of the bulk viscosity of some previous two-phase models (e.g., Schmeling, 2000).

The other phenomenological relation is an equation for the melting rate in a univari-
ant system (i.e., one containing a single component in two phases)

∆Γ = −χ

[
(T − T0)∆s + Pf

∆ρ

ρfρm

+
σ

ρm

dα

dφ

]
, (8)

where T is temperature (we assume local thermal equilibrium, therefore the same tem-
perature in both phases) and ∆s = sm − sf is the difference in specific entropies. The
melting curve is given by its slope dT/dPf |fus = −∆ρ/(ρfρm∆s) and is fixed at a tem-
perature T0 at ambient pressure in the absence of surface tension. This is a kinetic
relation where the melting is proportional to the departure from thermodynamic equi-
librium (the big bracket on the right) through a kinetic coefficient χ. Alternatively, one
can consider an equilibrium phase change. This corresponds to a very large (“infinite”)
coefficient χ and the expression in the big bracket equal to zero, together giving a finite
melting rate.

The energy equation is

ρfφC
DfT

Dt
+ ρm(1− φ)C

DmT

Dt
− T∆s∆Γ

= Q−∇ · q +
∆Γ2

χ
+ c∆v2 + K0µm

1− φ

φ
(∇ · vm)2 + (1− φ)τm : ∇vm, (9)

where Cf and Cm are specific heats, Q is the power of volumetric heat sources, q is the
heat flux (q = −kT ∇T , kT is the coefficient of thermal conductivity).
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The third term on the left is the energetic contribution of phase change; −T∆s is
the specific latent heat which is multiplied by the melting rate in equation (9). On the
right-hand side, aside from the trivial heat sources, there are three dissipative sources:

• due to friction between the phases which move at different velocities (the term
proportional to ∆v2),

• due to the isotropic deformation of the matrix (the term proportional to (∇·vm)2),

• due to the shear deformation of the matrix (the last term),

and another heat source proportional to the square of the melting rate; this last one
disappears if melting takes place in equilibrium.

We now have a consistent set of coupled two vector equations (3, 4) and five scalar
equations (1, 2, 7–9), for two velocity fields (vf and vm) and five scalar quantities (φ,
Pf , Pm, T and ∆Γ), supplemented with the rheological relation (6). To our knowledge
this is the first geophysical model where two-phase flow and deformation and melting
are properly coupled.

4 Metal–silicate differentiation
We use the two-phase model to investigate the dynamics of metal–silicate differentiation
on a planetary scale, which took place in the young terrestrial planets. The differentiation
is primarily driven by the density contrast between the lighter silicate component and
the more dense metallic components (Fe–FeS alloy). The release of gravitational energy
by differentiation contributes an important heat source to the energy balance and is
accounted for in our model. We investigate the case where the silicate component is in
the solid state and the metallic component may be molten. Such a situation is a plausible
intermediate physical state between the cases of both components in molten state (i.e.,
the presence of a magma ocean) and a solid–solid phase separation, as the melting
temperature of the metallic component is lower than that of the silicates (Agee et al.,
1995). There is no transfer of mass between the metallic and the silicate components in
our current model.

First we present the equations for compaction, phase separation and two phase con-
vection in a way that is appropriate to develop a numerical code. We discuss the modifi-
cation for a case where the metallic component is either in the solid or in the liquid state.
Calculations of a compaction in a layer and self-gravitating spherically symmetric body
are presented. These 1-D calculations suggest a rather short time scale of differentiation.
For a protoplanet of 1600 km of radius and assuming that the metallic phase is molten,
the protocore can form in ∼ 10 kyr.

We then develop a numerical model of two-phase convection and phase separation in
two-dimensional case in Cartesian geometry. In 2-D, we cannot take into account the
self-gravitation (i.e., the fact that gravity changes during differentiation) and we simply
assume the gravity to be uniform and constant. The velocity field contains both the
incompressible flow component and the compressible (irrotational) flow; the interaction
between convection and compaction is therefore included.

We show simulations of metal–silicate segregation triggered by an impact which was
a common event during the late stage of planetary accretion (Wetherill, 1985): at the
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initial time, we increase the temperature in a circular zone close to the surface so that the
temperature becomes higher than the melting temperature of iron, while it is below the
melting temperature elsewhere. Figure 1 shows the evolution of the metal volume frac-
tion for one calculation. Several stages of different prevailing segregation mechanisms can
be identified in the simulation run. Initially the circular zone, containing molten metallic
phase, segregates by a roughly 1-D porous flow. The molten metal concentrates and the
iron content increases to a value close to 1. The dense metallic blob eventually descends
in a diapir-like fall while the light residual silicate mantle rises and starts spreading along
the surface. When the metal reaches the bottom it spreads as a gravity current and forms
a protocore. Along the cusp-like channel that connects the differentiated silicates to the
core pockets of metal form and descend to the protocore. The gravitational energy re-
leased by the formation of the increasingly layered differentiated structure is converted
into heat and increases the temperature. The local temperature rise can induce further
melting of the metallic phase and thus facilitate further segregation. At the interface be-
tween the differentiated silicate and the remaining undifferentiated mantle new metallic
ponds are formed that trigger new instabilities. These secondary instabilities follow the
same kind of dynamics that the initial one with cusp-like channel connecting them to
the surface. The same process (creation of metallic ponds and descent of diapirs) occurs
again. Large undifferentiated islands survive for some time and are slowly eroded until
the whole planet is differentiated. During the whole process various compaction waves
are visible in both the silicates and the core.

Our model accounts for a spectrum of proposed planetary differentiation mechanisms.
The increase of temperature due to segregation (release of gravitational energy) is com-
parable to the initial heat delivered by the impact so that the process of segregation,
once started, is more or less self maintained. The first diapir that crosses the mantle
leaves a cusp-like trail that connects the protocore to the near surface silicates across
the undifferentiated material. Melting occurs continuously both in the shallow and in
the deep mantle. The sinking of metallic diapirs is very fast (of order of 10 kyr for a
protoplanet of 1600 km in radius) as instead of deforming the surrounding material as
in a usual Stokes flow, the undifferentiated material desegregates on the bottom side
of the diapir, the silicates cross the metallic phase, and accumulate behind the sinking
diapir. The first impact that melts the iron phase is therefore potentially able to trigger
the whole core–mantle segregation. For a protoplanet of 1600 km in radius the whole
differentiation process is completed in few hundred kyr.

5 Coupling between compaction and melting
With our novel set of equations of two-phase flow where deformation and melting are
coupled, we can investigate the effect of viscous deformation on the phase change. We
have shown how the compaction of the matrix induces a difference of pressures between
the solid and the melt (equation 7). The pressure dependent melting temperature is
therefore modified when the solid deforms. We analyze a simple 1-D melting problem.
Similar problems were discussed by McKenzie (1984), Ribe (1985) and Turcotte & Phipps
Morgan (1992). Although some of these studies described simultaneous melting and
compaction, they did not account for the feedback between the viscous deformation and
the thermodynamics of melting.
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t = 4 kyr t = 9 kyr t = 16 kyr

t = 26 kyr t = 35 kyr t = 53 kyr

t = 76 kyr t = 97 kyr t = 114 kyr

t = 173 kyr

0.000.05 0.30 0.70 1.00

porosity φ

Figure 1: Evolution of the volume fraction of metal (porosity) after an impact in a square
box calculation with an initially uniform metal distribution. A circular zone of radius
equal to 1/6 of the box size is initially heated above the melting temperature of the iron
phase. The color scale is such that the pure metallic phase is yellow, the pure silicate
phase is cyan and the undifferentiated mantle is black. The box is mass conserving,
thermally insulated, with free slip condition at the boundary.
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In our model we consider melting in a univariant system. In the melting region
temperature follows the Clapeyron slope, which describes the equilibrium between the
phases. Melt extraction, which occurs simultaneously with melting, leads to viscous
deformation of the matrix and consequently to different pressure fields in the two phases.
The matrix material initially ascends with an upward velocity V . No heat is supplied
to the ascending matrix; before melting begins, the solid ascends adiabatically, and in
fact isothermally as the matrix is incompressible. The melting starts when the ascending
solid reaches the melting pressure. From this point on two phases coexist until all the
matrix has melted (we consider complete melting). Above the melting zone, melt is
transported isothermally again. We are primarily interested in the effect of deformation
on melting and neglect surface tension. We investigate the steady-state solution of this
problem.

In the partially molten zone three forces are in balance:

δ2φ
d

dz

(
1− φ2

φ

dvm

dz

)
−∆v = VBφ(1− φ); (10)

this equation is obtained by a linear combination of (3) and (4). The first term represents
the viscous forces due to matrix deformation; it is scaled by the square of the compaction
length δ =

√
4µm/(3c). The second term on the left is the Darcy drag due to friction

between the solid and the melt moving at a different velocity. The term on the right is
the buoyancy forcing of the melt extraction; VB = ∆ρg/c is the buoyancy velocity.

In magmatic settings the compaction length is typically much smaller than the thick-
ness of the melting zone. On this basis, most previous studies used the so called “Darcy
approximation” where the compaction length is put equal to zero. In that case there is
a simple balance between the buoyancy and the Darcy friction in the melting zone, and
the whole system of equations greatly simplifies. We show however, that the Darcy equi-
librium approximation is not valid near the incipient melting (that is, at a very small
porosity). In fact, we have identified various possible regimes of force balance in the
melting zone. Figure 2 summarizes these various domains. Near the incipient melting
there is a region where the buoyancy is weak and where the Darcy friction is counter-
acted by the viscous forces. The Darcy equilibrium is only valid at certain distance above
the depth of first melting. With parameters appropriate for melting under an oceanic
spreading center (δ ∼ 10 km, VB ∼ 100V ; V is the initial upwelling velocity below the
melting zone) the thickness of this boundary domain is few kilometers. If the compaction
length is comparable to the melting zone size (not the case for melting beneath oceanic
spreading centers, though), a different regime is possible where the Darcy drag can be
neglected.

Figure 3 shows the porosity and velocity profiles in the melting zone. The porosity is
an increasing function of the vertical coordinate and the porosity remains much smaller
than the degree of melting, which is roughly linear between 0 and 1 across the melting
zone. Even at a degree of melting close to 1, porosity remains below 10%. This
contradicts the batch melting models where the porosity and the degree of melting are
comparable. At the end of the melting zone the melt accumulates rapidly and porosity
reaches 1. The matrix velocity monotonically decreases as melting proceeds. The velocity
of the lighter magma increases and reaches about 10V (ten times the initial velocity of
the upwelling). We find that the deformation of the solid matrix at the incipient melting
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Figure 2: Graphical representation of the various regions along the melting zone as a
function of the dimensionless compaction length δ′ = δ/H =

√
4µm/(3cH2) (on hori-

zontal axis with logarithmic scaling; H = 115 km is the vertical extent of the partially
molten zone). The dimensionless vertical coordinate z′ = z/H is plotted on the vertical
axis in logarithmic scale, melting starts at z = 0. Plotted for dimensionless buoyancy
velocity V ′

B = VB/V = ∆ρg/(cV ) = 60. The compaction length appropriate for melting
under a ridge is indicated by an arrow.

results in elevation or depression of the melting zone with respect to predictions based
on the average pressure. The model suggests that for VB & V , melting begins deeper
than standard Clapeyron slope predicts; likewise for VB . V , melting does not begin
until lower pressure is reached. Below an oceanic ridge, melting can begin a few km
deeper than what one would infer from the average pressure. The pressure difference
due to matrix deformation exists all along the melting zone and is of the order of 5MPa.

6 Summary and conclusion
The presented thesis is concerned with the mechanical and thermodynamical modeling
of two-phase flow, an important phenomenon in the Earth’s interior. In the thesis we
derive in a rigorous fashion a set of equations describing the two-phase dynamics in the
presence of phase change. Our model properly accounts for the feedback between the
viscous deformation of the phases and the thermodynamic conditions of melting/freezing.
Following previous work (Bercovici et al., 2001a; Ricard et al., 2001; Bercovici & Ricard,
2003), we account for the presence of surface tension on the interface between the two
phases which imposes a clear distinction between the properties of each phase and those of
the interface (pressures, velocities and densities). The conditions of equilibrium between
the two phases are naturally deduced from the second law of thermodynamics. The usual
Clapeyron slope is affected by the presence of the surface tension (Gibbs-Thomson effect)
and by the dynamic pressure difference between the phases. This pressure difference is
proportional to the rate of matrix compaction and to the inverse of porosity. It is only
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Figure 3: Porosity φ, matrix velocity vm and fluid (magma) velocity vf in the melting
zone. Velocities are scaled with the initial upwelling velocity V . Calculated with δ =
30 km and VB = 100V . Porosity in Darcy equilibrium (δ = 0) is shown as thin dotted
line.

in the case of motionless mixture without surface tension that the usual Clapeyron slope
is recovered. In the motionless case with surface tension, the pressure difference between
the phases verifies the Laplace’s condition but the phase equilibrium is affected by the
Gibbs-Thomson effect. The model also allows for non-equilibrium situations, in which
case a kinetic relation links the melting rate to the departure from equilibrium.

We present models of planetary core–mantle differentiation. In particular we have
developed a 2-D Cartesian model of two-phase circulation and compaction that accounts
for the conversion of gravitational energy into heat. Our simulations show that the tem-
perature increase upon impact on a growing planet can trigger a segregation instability
that results in the differentiation of the initially uniform body. Several differentiation
mechanisms are observed in the simulations (quasi-1D segregation, Rayleigh-Taylor in-
stability, diapiric flow, gravity current spreading) where molten metal separates from
solid silicates.

We studied the effect of the solid matrix compaction on melting in a 1-D model
of equilibrium pressure release melting. The matrix deformation generates a dynamic
pressure difference between the solid and the melt; the magma is submitted to lower
pressure than the compacting matrix. This effect is particularly important at the incip-
ient melting where it depresses the base of the melting zone by few km. The effect of
surface tension on melting is also discussed and depends on the energy balance of the
interfaces at the grain scale, and consequently on the geometry of the first melt. The
magma extraction velocities reach up to ten times the initial upwelling velocity and the
porosity remains small (. 10 %) in the entire melting zone.

The present theory offers a framework for treatment of physical situations where two-
phase flow with phase change is concerned. Although our focus was on geological settings,
the description is relevant to much wider spectrum of applications (such as, for example,
various problems involving granular media, transport of water/oil/gas in porous media,
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metal alloys, mechanics of soils and sediments). The presented applications represent a
work in progress. Several obvious extensions to what is discussed in the present thesis
are possible, including more realistic simulations of planetary differentiation and thermal
evolution, melting of multivariant material, non-equilibrium time-dependent melting,
and 2-D (3-D) flow modeling in specific geological settings.
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