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Preface

Both the forward and inverse modeling play an important nollearning about the pro-
cesses in the Earth’s interior. The tomographic inversitowa us to map its structure.
Since the late nineties, the high resolution tomographages have provided a detailed
information about the Earth’s mantle structure especiallthe subduction zones (e.g.
Masters et al. 1996, Grand et al. 1997, van der Hilst et al.71Bgwaard et al. 1998,
Fukao et al. 2003). From these images, we can estimate the ahd the dip angle of the
plate or its behavior in the transition zone. The tomographages suggest different sce-
narios of the subduction process. In some zones (e.g. Jan&raCAmerica, Kermadec)
the slabs seem to penetrate into the lower mantle while ierabnes the plates may be
deflected (Tonga, Izu-Bonin). Further, in most regions.(€gntral America, Java) the
significant thickening of the subducted plate is observat@lower mantle.

For years, geodynamicists have been attempting to reeoti@ke results of seismic
tomography inversion and the images arising from numernuwadieling of thermal and
thermo-chemical convection. By varying the parametersi@igeodynamic models, they
aim at obtaining the convection patterns and their chaiatites similar to those arising
from the seismic tomography. To be able to make this comparisis essential to know
the resolution and the characteristics of the tomograptviersion. Especially, the dis-
crimination between the real anomalies and artificial fesgticaused by the inversion is
an important issue.

Problems of the resolution of the kinematic seismic tomplgyaare subject of the
first part of the thesis. Here we aim to assess the ability miography to resolve the
different geodynamical models of the mantle evolution.ha second part of this thesis,
we concentrate on the forward geodynamical modeling. Wesiden the lithospheric
subduction process in models with strongly non-linear ibgp We try to find such
parameters that yield the slab morphology similar to thatfthe tomographic images.

The structure of the thesis is as follows. Part | (chapter®) Heals with the res-
olution tests of the global geodynamic models by travektimmography. Chapter 1
gives a short introduction to the travel-time tomograpts/résolution and the synthetic
problem. In chapter 2, we describe our parametrizatiorh(begular and irregular), the
adopted damping method and the procedure we use to get dilnvetigrdata. In chap-
ter 3, we show the results of the inversion for the synthefput based on both low and
high Rayleigh numbers and for both regular and irregulaaipatrizations. Here we also
discuss the dependence of the results on damping. Chaptenarizes the advantages
and disadvantages of both (regular vs. irregular) appesmahd discusses the resolution
of global geodynamic models by travel-time seismic tomphya

Part Il of the thesis (chapters 5-8) deals with numerical elind of mantle convec-
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6 PREFACE

tion applied to the regional problem of the slab deformatiothe transition zone and in
the upper part of the lower mantle. In chapter 5, we give amase of the governing
equations, the boundary conditions, the equation of dteéeheology and the phase tran-
sition implementation. In chapter 6, we describe the methesed on finite differences
and marker advection which is used to solve the equationssiwfes here also several
tests of our numerical code. In chapter 7, we discuss thdtsesithe parametric study
aimed at obtaining thick slabs in the lower mantle. In che®teve summarize the results.



Part |

Resolution of global geodynamic models
by seismic tomography






Chapter 1

Introduction

1.1 Motivation

Interpretation of the lateral heterogeneities of seismawevvelocities in the mantle is
one of the most important issues in the geodynamical apicaf the results of seis-
mic tomography. In particular, distinguishing betweenr@ and chemical origins of
the heterogeneities is critical because the dynamicaifgignce of the heterogeneity has
different implications on the mode of the Earth’s conveetieat transfer. It has been
well known from the early asymptotic analysis (Turcotte &wxburgh 1967) that for
high Rayleigh number, convection is characterized by thémrhal anomalies (horizontal
boundary layers, upwellings and downwellings). Thus, itdsy important for the inver-
sion procedure to determine their thickness, how they ditealed by phase transitions,
whether potential layering of mantle convection and/or ¢iestence of small mantle
plumes can be determined, what are characteristic wavien§temperature anomalies
at different depths, etc. The kinematic seismic tomograplaysuitable method to reveal
the mode of the convection. However, it is very importantnow what the resolution of
particular tomographic techniques is to answer these iqunsst

In this part of thesis, we investigate the resolution of thabgl geodynamic models
by kinematic seismic tomography. We employ both regulariemedular parametrization.
We study the influence of the explicit regularization on tesults. Since we know both
input and output models, we can compute the correlationdetwthem and compare their
spectra.

1.2 Kinematic seismic tomography and resolution

Kinematic seismic tomography can provide us with the snajpshthe thermo-chemical
evolution in the Earth. The use of the travel-time data fadudbéng the lateral varia-
tions of seismic velocities in the mantle has a long histasing back to paper by Aki
et al. (1977). This technique has been called travel-timeotgraphy (Aki and Richards

Part of the results discussed in chapters 1-4 were publist&hounkova, M.Cizkova, H., Matyska,
C., Yuen, D., Wang, M., 2007, Resolution tests of 3-D coneectnodels by travel-time tomography:
Effects of Rayleigh number and regular vs. irregular pataaation,Geophys. J. Int. 17101-416.
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10 CHAPTER 1. INTRODUCTION

1980) in contrast to tomography based on waveform analy¢®({house and Dziewon-
ski 1984, Li and Romanowicz 1995, Li and Romanowicz 1996).ofparison of these
two approaches can be found e.g. in Dziewonski (2000).

To solve the tomographic inverse problem, the parameimizdtinctions have to be
chosen. In the global tomography, the parametrizationtfons with either global or
local support are usually taken into account. The functieitk the global support are
typically spherical harmonic functions in horizontal aitien combined with polynomial
or spline function in the radial direction (e.g. Dziewon4ki84, Su et al. 1994, Li and
Romanowicz 1996). The functions with local support are ligisplines, wavelets or
piecewise constant functions (e.g. Inoue et al. 1990, vamdst et al. 1997, Bijwaard
et al. 1998, Karason and van der Hilst 2001, Vasco et al. 20880 and Liang 2003,
Montelli et al. 2004a). Due to the uneven distribution of thgs in the mantle, the
functions with the irregular local support are also taken account. These functions can
reflect the uneven distribution of sources and receivegs &akman and Bijwaard 2001,
van der Hilst et al. 2004, Nolet and Montelli 2005). For comgan of the tomographic
models see e.g. Becker and Boschi (2002).

To solve the tomographic inverse problem, the Choleskyfétion is usually used
for the basis functions with the global support. For the $&snctions with the local
support, the iterative numerical solvers suitable for thare matrix are used — e.g.
Simultaneous Iterative Reconstruction Technique (SIR®hjugate gradients or LSQR
method (Paige and Saunders 1982a, Paige and Saunders.1R&2t)mparison of these
numerical methods see e.g. Boschi (2001).

Another important issue in seismic tomography is the choicthe regularization
since the tomographic problems are usually ill-condittbdee to the uneven distribu-
tion of sources and receivers in the Earth’s mantle. Add#iconditions (model norm
or model roughness minimization) are usually added with mhte This weight is tra-
ditionally called damping coefficient or damping factor.e€Blk additional conditions are
rather artificial stabilization of the inversion and the ieoof the optimal damping can
be tricky. If the value of the damping factor is underestimdathe inversion results are
still damaged by oscillations. On the other hand, if the gadfithe damping factor is
overestimated, not only the oscillation but even the amgét of the real structures are
suppressed. Therefore, the optimal value of the dampinfjiceeat has to be chosen to
get reasonable solution. For determination of this optivadile, the trade-off analysis
(Hansen 1992) is used (e.g. Montelli et al. 2004b, Bosch6200

As we mentioned above, itis very important to know the retsotuof the tomographic
technique to discuss the geodynamical questions such dkitk@ess of the boundary
layers, deformation of slabs, plume evolution, etc. Theltd®on is best shown by the
resolution matrix (e.g. Lévéque et al. 1993, Vasco et @03, Soldati and Boschi 2005).
However, the computation of the resolution matrix is conepdemanding and time con-
suming (Boschi et al. 2007). This is one of the reasons whyeragynthetic resolution
tests like checker-board test (e.g. Inoue et al. 1990, Su €t994, Vasco et al. 1995,
Karason and van der Hilst 2001, Fukao et al. 2003) or lagke test (e.g. Bijwaard et al.
1998) are used. In these tests, the artificial seismic wglstiuctures are used to obtain
the synthetic travel-time data. These input syntheticcstings are often constructed by
means of particular parametrizations and then this sans@rization is employed in
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the inversion of the synthetic data. It is clear that thisrapph can reveal only a part of
the resolution problems, as it neglects mainly the prapecérror (see the next chapter
for a detailed explanation).

Detailed resolution tests should thus start from modelsisnsic velocity structures
containing a broader variety of wavelengths than thoselgaby tomography parametri-
zation and, simultaneously, these input models should lagieement with the physics
of mantle dynamics. Here we assume that the heterogenieities mantle are generated
only by thermal convection. The ability of travel-time tography to resolve thermal
anomalies developed in mantle convection simulations bas mvestigated by "seismic
tomographic” filtering (Johnson et al. 1993, Mégnin et &91, Tackley 2002). How-
ever, it can be shown that the short-wavelength anomalie$eed into long-wavelength
(Trampert and Snieder 1996), if the wavelength of the anm® & underestimated. Thus,
the tomographic inversion should be employed (Honda 1996gB and Davies 2001,
Béhounkova et al. 2005).

Following the work by Bunge and Davies (2001), we use thentiaéanomalies from
3-D spherical-shell convection to construct a synthetputrmodel of seismic velocity
anomalies, and to compute the differential travel-timedayk) for a series of synthetic
earthquake events and an array of stations positioned osptierical model. We use
the synthetic delays computed in the model for two Rayleigminer$, Ra = 3 - 10°
and Ra = 10°. We solve a travel-time tomography problem using P and pResiaVhe
addition of other phases would improve the resolution insoegions (see Lei and Zhao
2006). However, the total number of P waves used for the maabgraphic inversion
strongly exceeds the total number of other phases. Therefioe characteristics of the
travel-time inversion should not be changed essentially.

We employ the parametrization functions with the local sarpp/Ve take into account
both regular and irregular parametrizations to describentbdel and we use the LSQR
algorithm to solve the inversion. In case of regular paraizegion, L-curve analysis is
used to obtain an optimal value of the damping coefficient.wistake into account a
linear tomographic problem, we do not assume the errorsgrisom the non-linearity
of the tomographic problem (the path of the rays dependirth@structure itself). More-
over, we neglect picking error, mislocation error and eafostations corrections. Hence,
we analyse only errors arising from the projection of thd staicture on the adopted
parametrization. In the synthetic tomography, contrarthtoreal data tomography, both
the input and output structures are known. Therefore, wecoarpare them and we can
evaluate the efficiency of the inversion. We employ speetnal correlation analyses of
the results to compare the synthetic input models with tkalte for both regular and
irregular parametrizations.

For definition of Rayleigh number, see paragraph 5.5.
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Chapter 2
Theory and Method

2.1 Linearized delays

In the travel-time tomography, the image of the seismic aiglq(slowness) structure in
the Earth can be obtained by the analysis of the field of ttawesT;, i = 1,..., V:

ﬂ = / Gi(r)s(r)dr + &4, (21)
\%

whereV denotes the integration domaif; is a ray characteristic function of thé ray,
s(r) is slowness ang; is the error of the'® travel time. This error includes the picking
error, the mislocation error, the error of origin time and #@rror of station correction.
The ray characteristic functiod; (also known as the travel-time sensitivity function or
the sampling function) is given by
oT;

Gi(r) = 5]’ (2.2)
It describe the sensitivity of the travel-times to the sleasdistribution (7). In principle,
the travel-times are sensitive to the slowness in the whaleti®, not only along the ray
path. These rays are called "thick” (e.g. Coates and Cha@f80, Woodward 1992,
Marquering et al. 1998, Dahlen et al. 2000, Tromp et al. 2@ken et al. 2007, Peter
et al. 2007). In this work, we use the high-frequency asymnptay theory, where the
travel-time sensitivity functioi-; is described by the two-dimensional Dirac distribution
d(q1,q2). Here(qi, ¢2, g3) denotes ray-centered coordinatgsgndg, are local Cartesian
coordinates in the plane perpendicular to the tgy= [ is the arc-length). Therefore
the travel-time depends only on the slowness along the rdyttas type of ray is called
"thin”. In this approximation the equation (2.1) takes form

1= [ s w)striar +-<. 2.3)
\%
This equation can be then rewritten using the integral atbagay as follows:

7—;‘ = / S('r’)dli + &;, Li = LZ(S) (24)
L;

13



14 CHAPTER 2. THEORY AND METHOD

L; denotes the'" ray, di; is the integrational step along th#& ray. Similarly to the
equation (2.4), we define the field of the reference traveesily;, i =1,..., N

Toi = / so(r)dlos, Loi = Loi(50), (2.5)
Lo;

where the subscrifit denotes the reference model quantities.
In the travel-time tomographic inversion, the field of dalay is usually defined as
the difference between the travel-tifhieand the reference travel-tinig;:

di = TZ — TOi = / S(T)dlz — / So(T)dl()i + &;. (26)
L; Lo:

We assume that the difference between slowrg@ssand the reference slownesggr) is
low compared to the reference velociy(r), i.e.

S — 8o

< 1. (2.7)
S0

Then the equation (2.6) can be linearized as follows:
di= [ st~ [ sulr)dio + 5+ 28)
Los Loi

Here quantityt; describes the error arising from approximating the rayrpatby the
reference ray pathy,. Thanks to the Fermat principl€; is a higher-order error. If we
define the absolute slowness perturbancA&3) = s(r) — so(7), the relation (2.8) can
be simplified into form

Lo:

2.2 Parametrization

To solve an inverse problem, a continuous seismic velotitizgire has to be represented
by discrete set of model parameters:

M
As(r) = Asje;(r) +((r). (2.10)
j=1

HereAs; is j** parameter) is number of parameters;(r) is the ;™ base function and
((r) is a parametrization error. In this thesis, we use piecegasstant functions; with
non-overlapping cell support:

L b
e(r) = C; 2 if risinthej*™ cell, (2.11)
0 elsewhere
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whereC; denotes the volume of thé" cell. If we define the scalar product of the real
functionsf(r) andg(r) on the area of interedt

(f,g9) = /Vf(r)g('r)dv, dV = r?sin 9drddde (2.12)

then the baséc; }}Z, is orthonormal (c;, ¢;) = d;, whered;,, is Kronecker delta). The
supports of the base functions in regular parametrization are usually represented by
equi-angular (EA), equi-surface area (ESA) or equi-volUyB¥) cells. On the other
hand, the support of the base function can be also irregnthuaeven distribution of the
rays can be taken into account.

Here we use the irregular parametrization proposed by AdaidRoecker (1991) and
Spakman and Bijwaard (2001). The irregular basis functias constructed from basic
base function$, (k = 1,..., My, Mg is number of basis function antdf < M3g) by
joining. The supports of basic base functidpsare non-overlapping and equi-angular
cells with constant depth. The basic basis functiors defined as

b(ry=) B ifrisinthek® cel. (2.13)
0 elsewhere '

ol

B, is a volume of k" basic cell
and the base functions are orthonormal

o

((bj,by) = 6jx). As we mentioned :
above, the irregular basic;}., is 0
constructed from basic (regular) basig —| - 01 0010 é 010001 -
Mg .
{bk}k:Br A= 0
My 0
G = ijkbk’v 8
k=1
B E
0
ij = (Cj,bk) = —iAjk, (214)
j2 vector p(k) = j
- heme of th d
o ' Figure 2.1 Scheme of the projection matrix and con-
G = ;AjkBk’ struction of projection vectgp.
=1

where P;;, is a projection matrix and
Aji, can be written as:

{ 1 if by is part of base function;,
Ajk —

0 otherwise (2.15)

We assume that both resulting irregular base functions asit lbbase functions are non-
overlapping. Therefore, a given support of the basic basetifon is part of only one
irregular cell. The scheme of the matidx and construction of the projection vecfoiis
illustrated in Fig. 2.1. The suitable (memory-saving) eggntation of the matrid is a
projection vectop(k) = j, k =1,..., Mg (b is part of ac;, i.e. Ajy, = 1 < p(k) = j).
We construct the projection vector by the hit equalizingatfm.
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2.3 Hit equalizing algorithm

To construct the irregular basis, we use the hit equaliziggrahm based on van der
Hilst et al. (2004). The principle of this algorithm is denstrated in a schematic 2-
D case in Fig. 2.2. First, we divide the domain into regulguieangular basic (small)
cells (see Fig. 22 number in each cell gives corresponding hit count — numbeays
crossing given cell). Then we have to choose two paramédtatcharacterize our target
irregular parametrization: a) minimum number of raygs, demanded in each resulting
parametrization cell and b) the size of largest admissiblampetrization cell (in terms
of small basic cells). In the example shown in Fig. Zu2;, is 500 and largest irregular
parametrization cell can contain maximunx44 basic cells (see Fig. 202 The number
of basic cells in each direction (9, ¢) has to satisfy the conditionk, = L, - 2=,
wheree denotes directions, 9 or ¢. K, defines the number of basic cells ahg is
the number of the largest cells in each direction affd defines number of basic cells
in each largest cell in each direction. If the number of raythe largest cell is higher
thann,;,, this cell is a candidate for recursive splitting. That ise tsy to divide each
cell containing at least,,,;, rays into halves. If both halves still contain at least, rays
and the ratio of the sides does not exceed 2:1, the cell idetivi If there is more than
one option how to make division, the one with the lowest hitrdadifference between
the halves is chosen. The loop ends, either when we reaclagiedell or when the cells
cannot be divided anymore, because the new cells after #i&ati would not contain
enough {..;,) rays. In Fig. 2.2, resulting parametrization is shown. While in the regular
basic cells, Fig. 2.2, the hit count varies from zero in some parts of the domain0® 8

509

319

Figure 2.2 Two dimensional sketch of the hit equalizing algoritl@hbasic cells and hit countb) basic
cells (thin line) and largest possible target cells (thiok), ¢) irregular cell parametrization and hit counts,
L, =3,L, =3, Mg =2, aminimum hit count of 500 rays per cell.
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rays per cell in other parts, after applying the hit equaizlgorithm the number of rays
in cells ranges from about 300 rays to 800 rays. Therefoih parametrization cell is
constrained by approximately the same amount of data. itldio® noted, that due to the
a priori choice of the largest irregular cell, there may reansmme cells, which contain
less than the required 500 rays (see the cell in the lowet cigimer in Fig. 2.2).

2.4 Definition of the inverse problem

By substituting (2.10) into (2.9), we get

M

di =) As; </L _Cj(r)dlm') +ea+&+G (2.16)

i=1 1=2

where(; denotes the integral of the pa-
rametrization errorl(r) along the:®
ray G = [, ((r)dl;). The integral of
the basis function along th&" refer-
ence ray is equal to the arc-length of the
i ray in thej*™ cell (/;;, see schematic
Fig. 2.3) e>§cept for the normalization

ConStanth_?- SQ the equation (2.16)rigure 2.3 The arc-length oft" ray in the;™ irregular
can be rewritten into cell.

M
di = As;iC %l +ei+&+ (2.17)
j=1

If we define model parametet;

m; = C; 2 As, (2.18)
then the equation (2.17) reads:
M
d; = Z mili; + & + &+ G (2.19)
j=1

and the model parametet; has a simple physical interpretation — it is the absolute
slowness perturbation in thg" cell. The equation (2.19) can be also rewritten into the
matrix form

d=G m+e, (2.20)

WhereG,-j = lij and€i =¢g; + &' + CZ
The arc-lengths in the irregular cell;§ are calculated as follows. First, we com-
pute the arc-lengths in the basic base function (the elesrannatrix G®). From these
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elements, we obtain the elements of the mattixwe substitute (2.14) into (2.16)

M My

di = Y As; / (Z ijbk> dlo; | + &4+ & + G, (2.21)
j=1 Loi \ k=1
M L Ms
j=1 k=1 Log
M . Mg

di = ) AsiC;F Y Apli +eit&+ G (2.23)
Jj=1 k=1

wherelZ is the arc-length of*® ray in thek™ basic cell. By comparing equations (2.17)
and (2.23), we get

Mg

Li = Y Aulj (2.24)
k=1

G = GP.AT (2.25)

It is obvious from the equation (2.24) that we can computmels of matrix;; by
the summation of arc-lengths in the basic cells (the elesnehmatrix/Z). The main
advantage of this method is that the arc-length in the basjai{angular) cells can be
easily computed and they can be used for different projecsteztors.

2.5 Solution

Problem (2.20) is usually solve
as an overdetermined one. Wi

have more datad{, i = (m) Tl e
1,...,N) then the unknown Mot
parameters(;, j =1,..., M)
N > M (see Fig. 2.4). If the
error vectore Is non zero, I.e. Figure 2.4 Scheme of the overdetermined problem.
e # 0, the data cannot be ex-
actly explained by the model
vectorm. Therefore, we consider the solution of the inverse problesing Ly-norm
— the solutionmP™? is the model vectom which describes the data vecidrithe best
using thel.,-norm. We minimize the misfit functiof:

Nx1 NxM Nx1

S =]||d— G- ml}, = min, (2.26)
It can be shown (e.g. Tarantola 1987) that the solutit¥f? of the problem (2.26) is
m”! = (GT.G) " -GT -4, (2.27)

Where((}T . G)_l is the generalised inversion of the matfik However, the matrix
(G' - G) can be singular or close to the singular (the matrix is iltditioned) due to
the uneven distribution of the rays in the Earth. And the iisi@ of this matrix may not
exist. This problem can be essential mainly for the regudaametrization.
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2.6 Regularization

Some strategy has to be adopted if the problem (2.26) isititioned which is mostly
the case, especially in the global inversions. For exangigular value decomposition
(SVD) can be used to find the eigenvalues and cut-off low arv eegenvalues (e.g. Press
et al. 1992). However, this method is rather time-demandifige problem can be also
stabilized if we have some a priori information about thedire (e.g. from a previous
inversion) of the model (e.g. Tarantola 1987). If there isampyiori information about the
model, another a priori information can be chosen. Thissmttion should arise from the
physics of the given problem. We assume that the additi@tplirements are described
by a set of the linear equatiod3 - m = c. Then the inverse problem with additional
requirements is represented by

(o)== )+ (5): (2.28)

This method is often called "damping” or "regularizatiorseg e.g. Menke 1989). Ana-
logically to (2.26), we define the solutiamP™! of the problem (2.28). This predicted
model vector represents the best fit of the data vettamd the additional condition with
weight A using thel.,-norm

S=]|d- G- -ml|}, +\|c—D-mlf}, =min. (2.29)
Analogically to (2.27), we can write
m” = (GT- G+ A’DT-D) - (GT-d+A’D7 - ¢). (2.30)

If the matrix D is chosen suitably and # 0, the inversion of the matri)(GrT -G+
+A’D" - D) exists.

There are many possibilities, how to choose the dampingndha of the gradient of
vectorm (roughness minimization — Inoue et al. 1990, Boschi and Wareski 1999) is
typically used. Another possibility is the minimizationtbe norm of the model vectan.
For comparison of these two approaches see e.g. Boschi)(2idhes (2002) proposes
using minimization of Sobolev norm of model vecio. Here we use the minimization
of the model vectoim (D = I andc = 0, wherel is the identity matrix). Then the
equations (2.28) and (2.29) take the forms

(§)ne($)eG) e

S=|d- G -m|, + I -m|;, =min. (2.32)

For the ill-conditioned problems, the choice of the propam@ing factor\ is another
crucial issue. For this purpose, the L-curve criterion isduge.g. Hansen 2000). L-curve
shows the trade-off between the norm of the model vefiat|;, and residual norm
||G - m — d||, in the log-log scale. Such curve is L-shaped (it has comer A\ e

and
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— see schematic Fig. 2.5). FAr< Acomer, the 10°
minimization of the residual norm dominates.

For A > Acomer, the minimization of the model o
norm outweighs the minimization of the resid-&
ual norm; at\ = Aeomer these two trends inter- E 107 A=Ay e
sect. This point can be computed using the max XE
imum curvaturex of the L-curve (see Hansen :

2000):

Solutlon

10—2,

[Im(N)[E, ||Gr m(A) — dJ|f,
O‘Zl g(e) ’ - log () 10* 10° 106
KJ()\) = 25/—~Nﬁ//2’ Residual norm ||Gm-d]|,,

(( )2+ (5’)2)

g
b=

(2.33) Figure 2.5 Schematic figure of the L-curve.
where ¢’ and ¢” denotes the first and second
derivatives with respect ta.

2.7 Synthetic inversion

In this thesis, we study the resolution of the travel-timmography using the synthetic
data. We take into account a linear problem: theray and the** reference rays are
identical, i.e. & from the equation (2.31) is equal to zey & 0, Vi). Moreover, we
neglect all non-projection error, i.e. picking error, roishtion error and error of stations
corrections £; = 0, Vi). We concentrate only on the role played by the projectioarer
¢(r) (the whole unpredictable part of the equation (2.31) is edusy projection error).
Therefore, our obtained resolution should be considereahnaspper limit. In reality,
where non-projection errors are of course present, théutaso would be worse.

The scheme of our synthetic tomography inversion is follmycf. Fig. 2.6). First, we
choose the sources and receivers and compute the raysrggardy7.1). Then the input

synthetic seismic choice of sources and receivers
velocity anomalies év ray-tracing
[}
[}
[}
i
g1 forward problem - choice of parametrization,
o= | . . .
=N - computation of delays d computation of matrix G
=
Q1
©
[}
[}
[}
[}

inverse problem -
- computation of model vector m

Figure 2.6 Scheme of the synthetic problem.
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Figure 2.7 Distributions ofa) sources and) receivers.

model of seismic velocity structures is chosen based omisleconvection (paragraph
2.7.2). Then we solve the forward problem — we compute théovext delaysd — our
synthetic data (paragraph 2.7.2). To solve the inversd@molwe parametrize our model
(paragraph 2.7.3) and compute the maf@x(paragraph 2.7.3). Finally, we solve the
inverse problem (paragraph 2.7.3). After obtaining theitsoh of the inverse problem,
we visualize the results and further we compare the inpuhgyic model and the output
tomographic model (paragraph 2.7.4).

2.7.1 Sources, receivers and ray tracing.

The distributions of sources and receivers is chosen frei3Sk (1964-2001) database.
From this database, we use 2500 randomly chosen locatia&afs withmn, > 5.5 and
462 stations. Chosen stations are not closer #ian avoid linearly dependent rows in
the matrixG. The distributions of sources and receivers are given inEig

The program CRTCerveny et al. 1988) is employed for the ray-tracing. Siwee
assume a linear problem, the rays are calculated only oheg'{tray is identical to
the i'" reference ray). The rays are traced through the depth depentbdel PREM
(Dziewonski and Anderson 1981) where the ocean layer istedhior simplicity (see
Fig. 2.8). We take into account only teleseismic P (epi@nlistance between the given
source and receiver is greater th#i) and for sources in the depth greater théa km
also pP waves. The total number of ray915, 054.

2.7.2 Synthetic velocity model and delays

Synthetic seismic velocity anomalies are derived from tloel@bs of basally-heated ther-
mal convection of Zhang and Yuen (1996) for the Rayleigh nemmka = 3 - 10° and
Ra = 10° with constant viscosity and thermal expansivity. The difitdegree of the
spherical harmonic expansion of the model is 256 and thusahizontal resolution of
the model i$).7°. The vertical resolution has 128 points. We suppose thaitydmearly
depends on temperature

Ap(r) = —pyaAT(r), (2.34)
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wherepy; = 4500 ke/ms is the reference density of the convection model and 1.4 -
10-° K~1. Relative density and seismic velocity anomalies areedlay

Ap(r)
po(r)

Av(r)

Ok (2.35)

= Pk(T)

wherep, () andwy(r) are the reference depth [km]
density and velocity models (Dziewon- ~ ,,9 500 1000 1500 2000 2500
ski and Anderson 1981, see Fig. 2.8),
P, is the proportionality factor (Karato 12 |
1993, Fig. 2.9) which depends on radius
r, Av is seismic velocity anomaly and
Ap describes the density anomalies in
the convection model.

The delays are computed by inte-
grating of the seismic slowness anoma-
lies As (As = —Av/2) along the rays.

10

vp [kmE™]

4 2000

0 500 1000 1500 2000 2500

. . . depth [km]

2.7.3 Parametrization, matrix Figure 2.8 PREM (Dziewonski and Anderson 1981) P-

G and inversion velocity (solid line) and density (dashed line) in the man-
tle.

We use both r.egular (equal surfgce.area depth (k]
— ESA) and irregular parametrization. 0 500 1000 1500 2000 2500

In the regular parametrization model,  ®°° 0-55
we employ36, 428 cells 07 km x 4° x

4° cell size on equator). The ESA ba- ] 050
sis is constructed from the regular basic | o045
cells (2, xny xn, = 14x45x 720, size . -
~ 207km x 4° x 0.5°). The projection 0.40 - | 0.40
vectorp is constructed by, x iy X i, =

1x1x f(9) basic cells, i.e. the number (35 035
of basic cells creating ESA cell is con-

stant for direction and and it is de- 0.30 ‘ : : ‘ : 0.30
pendent on latitude for directian (lon- 0 5% loodoepi:?fm]zooo 2500
gitudinal direction). Figure 2.9 Proportionality factoP, (Karato 1993).

In the irregular parametrization
model, the size of cells are defined by = 3, Ly = 10, L, = 20, Mg = 4 (see
section 2.3), which yield$8 x 160 x 320 basic cells with sizé0 km x 1.125° x 1.125°.
After applying hit equalizing algorithm with a minimum af 000 rays per cell, we get
35, 886 cells. The resolution of the regular parametrization medesd chosen to produce
approximately the same number of parameters as the irregn& That allows us to
compare these two methods with similar computer costs.

The matrix of the arc-lengths in the basic cé&llg is computed by integration of basic
base function along the rays equation (2.22). The arc4eimgihe ESA or irregular cells
G is computed from equation (2.24). Both matfx and Gy are sparse due to base
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functions with the local support. The non-zero elementhefrhatrixG are in order of
0.1 per cent for both regular and irregular parametrization.u&the CSR (compressed
sparse row) format to store the matfikand we use the package SPARSKIT to perform
the operation with the matrié.

We suppose the inverse problem in the form (2.32) and we u§R &gorithm by
Paige and Saunders (1982a) and its numerical implementaftdtp://www.
stanford.edu/group/SOL/software/lsgr.html ) to find a solution.

2.7.4 Characteristics and visualizations of input and outpt model

Large parametrization cells demanded in some parts of tmlenay the poor ray cover-
age are unable to resolve relatively small-scale convedtiatures. And in these regions,
high projection error could be expected. In order to estmit amplitude and spatial
distribution, we calculate the projection of an input modescribed by functiod\s(r)
onto the parametrization bagis; }jf‘il (see equation 2.10):

As; = / As(r)e;dV = Cj_l/Q/ As(r)dV. (2.36)
v c

J

When comparing this equation with the definition of the ageras; of the input model
As in thejth cell
fcj As(r)dV

and using the equation (2.18), we get
A5 = C; P As; =my (2.38)

We define the projection (also called average) model of thetimodel
A3(r) = AS;, (2.39)

if r is in the;j** cell. Using the projection of the input model onto the basis can write
for the projection erro¢(r):

C(r) = As(r) — A3(r). (2.40)

In the seismic tomography, the relative velocity anomaligser centyv(r) are usu-
ally visualized. From now on, we also display the results @&l characteristics using
the percent of velocity anomaliés(r) instead of slowness anomalies:

Su(r) = U(TLO;(;;O(T) - 100%, (2.41)

wherewv(r) = 1/s(r) is velocity andv,y(r) is the reference velocity. This quantity can be
computed from the model parameter by

dv(r) = —mjvo(r) - 100%, if risin the;*™ cell. (2.42)
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This equation can be derived by the Taylor expansion unaecdhdition (2.7).

In the synthetic problem, we know both input and output sastructures. Conse-
guently, we can compare the input synthetic model and inve@results and thus assess
the resolving power of the inversion. For this purpose, weethe spectral decomposition
of the input, average and output model. We compute theirtspbyg integration

Jim (T / / sinf(r, 9, )Y (9, p)ddde (2.43)

with integrational step equal to size of the basic cell @& km x 4° x 0.5° for regular
parametrization and0 km x 1.125° x 1.125° for irregular parametrization). In equation
(2.43), they;,, is a fully normalized spherical harmonic function (see Yatevich et al.
1989),* denotes complex conjugate function afigl(r) are expansion coefficients of a
function f(r, 9, ¢). Using the spherical harmonic expansion coefficient, wepmamthe
power spectra of functions(r, v, ¢) = >, Zm__l Jim (1) Y1 (9, ¢) depending on degree
and depth:

l
= > i) fin(r): (2.44)
m=—1
The correlation coefficient is another way how to compare the input models with the
inversion results. We define the global correlation coeffitp as follows:

e 2
P = 1 ln - Nl (2.45)

wheref andg are slownesses of the input, average or output model. Toamntpe match
between the input and output model depending on the wavtd!iemgi depth, we use the
correlation coefficienp;(r) between functiong (r, 9, p) = >, Zm_ } Fim (7)Y (0, )

andg(r, 19, QO) Zl Zm_—l glm( )Em@% @)
Zin_—[ flmglm
\/Zm——l flmflm \/Zm——l glmglm

The correlation coefficient reflects only the pattern fit of two function and not the
amplitude. Hence, we use also comparison of root mean sqRM&) of the input,
average and output models dependent on radius

(2.46)

1/2
RMS(r < / f(r ) sin( )dﬁdgp) . (2.47)
As another characteristic of the inversion resolution, e the percentage fitas:
d— dpred 2

whered”™ ™ = G - m"™* are data predicted by output model ahds a synthetic vector
of the input delays. The percentage fit describes per cetieofiata vectod which can

be explained by the modeh*™d. It can be evaluated not only for our synthetic inversion
but also in the real data inversion, where the input stredsinot known.



Chapter 3

Results

In this chapter, we show hit count (humber of rays in a ceficiency of the hit equalizing
algorithm and the results of the synthetic tomographicrisiea for two different Rayleigh
numbers Ra = 3-10° andRa = 10°) and for both regular and irregular parametrizations.

3.1 Hitcount

First let us have a look at the hit count (number of rays pd) aal efficiency of the hit
equalizing algorithm. Fig. 3.1 shows resulting hit counfaatr depths 200 km — first
row, 600 km — second row], 000 km — third row and2, 500 kmm — fourth row).

In the first column, there is the hit count per the basic (snealls (equi-angular cells
with size60 km x 1.125° x 1.125°) which are used to construct the irregular parametri-
zation. Here we demonstrate the non-uniformity of the ragiution. In the regions
close to sources and receivers, we may find well covered. c@ltsthe other hand, the
areas having very low ray coverage can be found especidibwitbe Pacific. The hit
count ranges between 0 ard7, 000, 86.2% cells has hit count between 0 and 100 and
only 0.2% cells are covered by more thR®00 rays.

The hit count distribution is more uniform after applyingégualizing algorithm with
parameters., = 3, Ly = 10, L, = 20, Mg = 4 and the condition of, 000 rays per cell
(see paragraph 2.7.3). Small parametrization cells canuredfin the well-covered parts
of the mantle. In poorly-covered regions, rather largescedin be found. In the second
column of Fig. 3.1, the hit count for irregular cells is padt The histogram of hit count
in cells is shown in Fig. 3& The hit count ranges between 63 and 9992. Hence the cells
(16 cells which is 0.04% of the total amount of cells) with emage lower thari, 000
rays still exist due to a priori choice of the largest possi#ll. Approximatel\20% cells
have hit count betweeh 000 and1, 100, 19.9% of cells range betweeh 100 and1, 200
hit count. Then the relative number of cells descends rapiath increasing hit count.
Only 4% of cells reach hit count higher thar000. Clearly, the hit equalizing algorithm
is effective but it is limited by the a priori choice of the pareters. We may expect a
relatively well-conditioned matriG* - G from equation (2.27) and the inversion of the
matrix G™ - G should exist.

Hit count for the regular cells (ESA cells with si287km x 4° x 4° cell size on

25
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hit count
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Figure 3.1 Hit count for basic cells (first column), irregular (sedocolumn) and regular (equal surface
area cells, third column) cell parametrization for depah km (first row), 600 km (second row)1, 000 km

(third row) and2, 500 km (fourth row).
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Figure 3.2 Histogram of hit count foa) irregular andb) regular parametrization.
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equator) is plotted in the third column of Fig. 3.1. As exgegtthe hit count is uneven
because the cell distribution does not reflect the unevecoagrage. The histogram of
the hit count is plotted in Fig. 32 The hit count ranges between 0 and 32,200 rays,
15% of cells have the hit count between 0 and 100 rays. Therethtive number of cells
decreases with increasing hit count. 70% cells have the agrage lower than, 000
rays. However, the number of cells with coverage higher thano rays is also relatively
high (11% cells). Therefore we can expect an ill-condittbpeoblem and the damping
would be necessary to obtain the acceptable solution.

3.2 Irregular parametrization

3.2.1 Results forRa = 3 - 10°

In this paragraph, we discuss the results for irregularmpatazation and for the Rayleigh
numberRa = 3 - 10°. In Fig. 3.3, the results of tomographic inversion for savealues
of the damping coefficients are plotted. We show here thezbotal cross-section at the
depthh = 450 km. The cross-section through the input model is in Figa3tBe average
model (cf. Eq. 2.37) is in Fig. 38 The inversion results for damping coefficients- 0,
100, 1,000 and 10* are shown in Fig. 38-f. The wavelengths of the input anomalies
(Fig. 3.3) are relatively long in comparison with the size of the pagtnimation cells even
in the poorly-covered regions. Therefore, the average in@dlg 3.30) shows that the
input model can be resolved quite successfully by this patapation even in the poorly-
covered regions. The correlation between the input andwbege model is relatively
high, pinputxaverage = 0.82 and the projection error is rather low. Results do not differ
signicantly between the model without damping (Fig.c3.8nd models with damping
factors100 (Fig. 3.3) and1, 000 (Fig. 3.3). These results have small-scale oscillations
which are suppressed with increasing damping coefficienghét damping X = 10%,
Fig. 3.¥) already reduces the amplitude of resulting velocity an@a&onsiderably.

Another way how to discuss the inversion results is to comphe spectra of the
input and output models. Fig. 3.4 shows the spectra of thetimpdel, average model
and results for four values of the damping coefficiantThe decadic logarithm of the
power spectra as a function of the spherical harmonic degmneethe depth is plotted
there for the input model (Fig. 3, the average model (Fig. 3tand the output models
for damping coefficients\ = 0, 100, 1,000 and 10* (Figs. 3.4—f). The input model
(Fig. 3.4) has relatively long-wavelength spectrum. It has two maxaorresponding to
the convection boundary layers « 700 km andh > 2,100 km). The spectrum of the
average model (Fig. 303 reflects the input quite well. However, the width of the dpac
maxima corresponding to the boundary layers in the vertigaiction is wider than in
the input model. This leakage is caused by averaging ovelatiye cells in the badly-
covered regions. Hence the boundary layers seem to be vhderfor the input model.
The spectrum of the output model without damping (FigcBt¥as slightly higher power
on the short-wavelengths than the average model (Fidp) ddcause of the small-scale
oscillations of the result. The power of the oscillationsr@@ses with increasing damping
coefficient (Fig. 3.d-f).
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irregular parametrization7a = 3 - 10°, h = 450 km
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Figure 3.3 Results of the inversion for the irregular parametigraéind for Rayleigh numbeka = 3 - 10°.
Relative seismic velocity anomalies (in percents of refeeavelocity) are shown. Figures are plotted at a
depth of450 km, a) input modelp) average over irregular cell parametrizationf) results for the damping

coefficienth = 0, 100, 1,000 and10.
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Figure 3.4 Results of the inversion for the irregular parametigzeéind for Rayleigh numbeka = 3 - 10°.
Decadic logarithm of the power spectra (shown as a functfahe spherical harmonic degree and the
depth, see Eq. 2.44) fa) input model,b) average over irregular cell parametrizationf) results for the

damping coefficienA = 0, 100, 1,000 and10*.
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Figure 3.5 Characteristics of results for irregular parametitaaénd for Rayleigh numbeRa = 3 - 10°,
a) percentage fit, b) correlationp andc) Lo-norm of the model vectom as a function of a damping
coefficient\.

In Fig. 3.5, we summarize the characteristics of the resi@ending on the damping
coefficient\. Fig. 3.5a shows the percentage fitas a function of damping coefficient
A in log-scale. Without damping or with damping< 3, 000 the percentage fit is high
(r ~ 97.9%) and it is almost constant. For higher lambdax 3,000), the minimiza-
tion of the model normm, see equation (2.32), dominates over the minimization ef th
data misfitd — G - m and the percentage fit decreases. The correlation coefficiee+
tween the input and output model is shown in Fig.l3.®nly a weak trend is observed
for the damping coefficienk in the range betweeh = 0 and\ ~ 3,000. The corre-
lation without damping iinput xoutput(x=0) = 0.745. Then the value of the correlation
coefficient slightly increases with increasing it reaches its maximum fok = 1,000
(Pinput xoutput(rx=1,000) = 0.753). Then the correlation coefficient decreases rather steepl
The relation between the,-norm of the model vectom and the damping coefficient
is monotonous (Fig. 3d. For A < 500, Ls-norm of the model vector is almost con-
stant. Only weak decrease could be observed if we look glogelr higher lambda, the
minimization of the norm of the model vectgim||;, (equation (2.32) overweighs the
minimization of data misfit norm/{d — G - m||.,). Therefore, the norm of model vector
||ml||, falls.

The damping improves the inversion results only slightlge(sveak maximum in
Fig. 3.%). Therefore, from now on, we restrict ourselves to the isvar without the
damping @ = 0). The improvement caused by regularization is hardly {ésand we
avoid artificial damping procedure.

In Fig. 3.6, there are the details of solution without dangpior the depth200 km
(first column),600 km (second column)l, 000 km (third column) and2, 500 km (fourth
column). In the first row of Fig. 3.6, there are the horizomi@ss-sections of the input
model. The wavelengths of the anomalies are long due to theRayleigh number.
The projection of the input model is shown in the second rowigt 3.6. The shape
of the anomalies is resolved quite successfully. However,amplitude of anomalies
is underestimated in both the upper part (cross-section -at 200 km) and the lower
part (cross-section dt = 2,500 km) of the mantle. This effect is caused by averaging
over the cells in the parts of the mantle where the amplitasddanging rapidly with the
depth. Further, we introduce the projection error — the @atage of the absolute value
of the difference between the input and average normaligedBMS at the given depth.



30 CHAPTER 3. RESULTS

irregular parametrization7a = 3 - 10°
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Figure 3.6 Results for the irregular parametrization for RayleigimberRa = 3 - 10°. Relative seismic
velocity anomalies (in percents of reference velocity) sivewn. Horizontal cross-section at the depth of
200 km (first column),600 km (second column)i, 000 km (third column) and, 500 km (fourth column).
The first row — cross-section of input model, the second rowverage over irregular cells, the third row
— results of the inversion fak = 0, the fourth row — absolute value of difference between inpatiel
and average normalized kyrRMS of the input model at given depth, the fifth row — the norized
difference between input and output£ 0) model.
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This error is shown in the fourth row of Fig. 3.6. This cleaitlystrates that the error is
relatively large for the depth = 200 km andh = 2,500 km due to averaging over the
cells. At all depths, the error is mostly concentrated adotine major anomalies in the
part of the mantle with the large parametrization cells.

For the inversion without damping (the third row of Fig. 3.6)e major features of
the output are similar to the average model. The correldieveen the result with-
out damping and average modebiSc;agexoutput(x=0) = 0.91. However, the small-scale
oscillations occur mainly in the regions with the high regimn (small parametrization
cells). Further, the anomalies are overestimated in tlyeleells (cf. red "square” in the
center of the output velocity distribution 600 kmm — Fig. 3.6, third row). In the fifth
row of Fig. 3.6, the error of the resulting model without dangpis plotted there. The
error is represented by the percentage of the absolute ghthe difference between the
input model and result normalized ByRMS at the given depth. The amplitude of this
error (the fifth row of Fig. 3.6) is higher than for the project error (the fourth row of
Fig. 3.6) due to the oscillations of the output model. Moeothis error clearly illustrates
the over-estimation of the amplitudes in the large cells.

The resolving power of the tomographic inversion is also destrated in two ver-
tical cross-sections in Fig. 3.7. We choose the verticasssections through the up-
welling in the poorly covered region Fig. &#e We show here the cross-section loca-
tion (Fig. 3. @), the hit count (Fig. 3.1), the input model (Fig. 34}, the average model
(Fig. 3.d) and the inversion output without damping (Fig.&.7Due to poor ray cover-
age, this region is discretized by large cells (Figb3.7The input model (Fig. 3G can-
not be resolved in details by the irregular parametrizaggbnaverage model Fig. 3d7.
Hence the inversion output (Fig. &)7is only able to resolve the main features of the
upwelling and rather strong oscillations occur.

The other cross-section is chosen through the downwelhinige well covered region
Fig. 3.7—j. We show here the cross-section location (Figf)3the hit count (Fig. 3.d),
the input model (Fig. 317), the average model (Fig. 3)and the result without damping
(Fig. 3.7). Thisregionis well covered (see the hit count in Figg}. Therefore, the input
model (Fig. 3.1) is described quite successfully by the average model &#). Even
the weak upwelling in the left part of the cross-section carrdsolved. The inversion
output without damping (Fig. 3jY resolves the strong downwelling easily. The weak
upwelling is detectable but its shape is disturbed by thélasons.

The ability of the inversion to reveal the amplitude of thentraphic inversion is
demonstrated in Fig. 3.8. Fig. &i8hows the root mean square of the input model (black
line), the average model (green line) and the output modilont damping (blue line).
Fig. 3.& shows the RMS of the differences between the input and ageraglel (black
line), between the input and output model without dampirrgég line) and between the
average and output model (blue line). Both RMS in Figa&Bd Fig. 3.8 are computed
in per cent of the velocity anomalies.

The RMS of the input model (Fig. 3a8black line) has two maxima corresponding
to the boundary layers of the convection. Due to the low Rgkl@umber, the bound-
ary layers are relatively wide. The RMS of the average moligl. 3.8, green line) is
underestimated in most parts of the mantle as could be eeghe€n the other hand, the
RMS of the average model is overestimated at the upper aner ledges of the bound-
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Figure 3.7 Two vertical cross-sections in the model wila = 3 - 10° and irregular parametrization.
Vertical cross-sectionai-¢ through upwellinga) location of the cross-sectiob) hit count,c) input, d)
averagee) result of the inversion foA = 0. Vertical cross-sectiorf{j) through downwellingf) location
of the cross-sectiomg) hit count,h) input,i) averagej) result of the inversion foh = 0. Relative seismic
velocity anomalies (in percents of reference velocity)sirewn.
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ary layers (depth range betwe@and120 km, betweerir20 and960 km, betweenl, 920
and2, 160 km and for depths greater th@n640 km). This smearing of the amplitudes is
caused by averaging of the input model over the large celie RMS of the difference
between the input and the average model (Figo,&ck line) can be interpreted as RMS
of the projection error. The error has rather large ampdituaind also sharp jumps at the
depths corresponding to the boundaries of the large cells.

The RMS output model (Fig. 3a88blue line) has similar characteristics as RMS of the
average model (cf. Fig. 3a3green line). The RMS of the difference between the input
and output models (Fig. 38 green line) can be interpreted as the RMS of the error of
the inversion. It has similar shape as the difference betile=input and average models
(Fig. 3.&, green line), however, it has higher amplitudes. The RMSefdifference
between the average and output models is plotted in Fi@p. @®Be line). This curve is
more-or-less constant except for the depths up 600 km, where higher amplitudes are
observed.

3.2.2 Results forRa = 10°

In Fig. 3.9, the result foRRa = 10° and four damping coefficientsare shown. The wave-
lengths of the input anomalies (Fig. &8)%re shorter in comparison with the anomalies
based onRa = 3 - 10°. Hence, the average model fits the input model (FigbBdhly
with difficulties in most of the mantle. The input anomaliegs aesolvable only in the
well-covered regions. Elsewhere, the anomalies are smhedige correlation between
the input and average model 4§ putxaverage = 0.60. The results of the inverse prob-
lem are again rather insensitive on damping coefficient up te 1,000 (Fig. 3.c—8.
For the damping coefficient)*, the amplitudes are already significantly underestimated
(Fig. 3.9).

The spectrum of the input model (Fig. 3@&hows the maxima of the power corre-
sponding to the boundary layers. Compared to the caseRvitk 3 - 10°, the spectrum
decays slower (it has higher power on higher degrees) andahedary layers are nar-
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Figure 3.9 Results of the inversion for the irregular parametiteaand for Rayleigh numbeRa = 10°.
Relative seismic velocity anomalies (in percents of refeeavelocity) are shown. Figures are plotted at a
depth of450 km, a) input modelp) average over irregular cell parametrizationf) results for the damping
coefficienth = 0, 100, 1,000 and10.
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Figure 3.11 Characteristics of results for irregular parametigraand for Rayleigh numbeRa = 106,
a) percentage fit,, b) correlationp andc) Lo-norm of the model vectom as a function of a damping
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rower (c.f. Fig. 3.4). The spectrum of the average model (Fig. ®)1Bas faster decay
in comparison with the input model (Fig. 340 The maxima of power observed at the
boundary layers are smeared due to the averaging over tfeedalls even stronger than
for the average model witRa = 3 - 10° (cf. Fig. 3.4). The spectra of the output models
with no damping or with low damping (Fig. 3.&06€ have higher power on the high de-
gree than the average model due to the oscillations. Thevlueltd the power spectra of
the output model foi < 1,000 (Fig. 3.1@-€) is similar to the output models for the low
Rayleigh numberza = 3 - 10° (cf. Fig. 3.4-€) — the spectra do not change essentially
for different damping coefficients. For higher damping ¢icefnt (Fig. 3.1), the power

is significantly lower on high degrees.

In Fig. 3.11, we show the characteristics of the results amaetion of the damping
coefficient\. The shapes of these characteristics are similar to thesiioveresults for the
Rayleigh numbeRa = 3 - 10° (c.f. Fig. 3.5). Fig. 3.14 shows the percentage fiof the
results as a function of a damping coefficientFor the damping coefficient lower than
A = 3,000, the percentage fit is high~ 93.4%. This value is lower than the value of the
percentage fit for the Rayleigh numbin = 3 - 10° (r ~ 98%). As expected, the results
for the long-wavelength modeRa = 3 - 10°) are explained better than for the model
with short-wavelengthRa = 10°) if the same parametrization is used. The correlation
coefficientp (Fig. 3.1D) does not change dramatically for the damping factor lowant
3,000. The correlation without damping is equal fQ,utxoutput(x=0y = 0.45. Then
the correlation slightly increases and reaches its maxirfarmthe damping coefficient
A = 2,000 (Pinput xoutput(r=2,000) = 0.47). For the damping coefficient higher tharnoo,
the value of correlation coefficient decreases. These satithe correlation coefficient
are considerably lower than for the model witla = 3 - 10°. The relation between the
L,-norm of the model vectam and the damping coefficient is plotted in Fig. 3x1Only
low decrease is observed far< 500. For higher), the norm of the model vector fall
steeply again (cf. Fig. 3d).

In the figure Fig. 3.12, we demonstrate the resultsifor= 10° without damping on
four horizontal cross-sections taken at the depths 200 km, 650 km, 1,000 km and
2,500 km. Inthe firstrow of Fig. 3.12, there are the cross-sectiotk@input model. The
wavelengths of the anomalies are rather short due to thigvedighigh Rayleigh number.
The downwelling anomalies in the top part of the mantle andeliing anomalies at the



36 CHAPTER 3. RESULTS

irregular parametrization7a = 10°
h = 200 km h = 600 km h = 1,000 km h = 2,500 km

'I 7 AN “, A
(7FFA T ™D

R — [ -
S

average

VUK
RS
L=

|input—average|
ATRMS i put 100%

T g
L PN 2T

Figure 3.12 Results for the irregular parametrization for RayleigimberRa = 10°. Relative seismic
velocity anomalies (in percents of reference velocity) sivewn. Horizontal cross-section at the depth of
200 km (first column),600 km (second column)i, 000 km (third column) and, 500 km (fourth column).
The first row — cross-section of input model, the second rowverage over irregular cells, the third row
— results of the inversion fak = 0, the fourth row — absolute value of difference between inpatiel
and average normalized biyrRMS of the input model at given depth, the fifth row — the norimed
difference between input and output£ 0) model.
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bottom part of the mantle are of linear character. The aweofthe input model is plotted
in the second row of Fig. 3.12. In the upper mantle, the lis@ped anomalies can be
fitted by the parametrization cells only in the well-coveredions. On the other hand,
the resolution in the well-covered parts is relatively high the lowermost parts of the
mantle & = 2,500 km), the linear features are relatively well detected. At thepth,
the distribution of rays is more even than in the upper marilewever, the maximum
resolution is lower than in the upper part of the mantle. Tineref the average model is
plotted in the fourth row of Fig. 3.12. At the depith= 200 km, the normalized projection
error is rather high near the anomalies with large amplgudebadly covered regions,
whereas the lowest amplitudes of the error are observed liresgolved (well-covered)
region. At the depths = 650 km andh = 1, 000 km, the amplitudes of the error seem to
be rather large. This effect is caused by the normalizingeftrror by the low amplitude
of input anomalies at a given depth. For the depth 2, 500 km, the maximum error is
found in the vicinity of the major features.

The output of the tomographic inversion without dampingdthidepths is similar to
the average model. The correlation between output and @wenamodels is
Paveragexoutput(A\—0) = 0.76. However, the oscillations appear in the whole mantle. &hes
oscillations influence the output pattern negatively emahe well-covered regions mainly
at the depths where the input anomalies have low amplitudibs. error of the inverse
problem without damping is in the fifth row of Fig. 3.12. In thwell-covered regions,
the characteristic features of this error are similar tortbemalized projection error (cf.
Fig. 3.12, the fourth row). However, the amplitudes of theeare larger than for the
normalized parametrization error. This effect is causeddwillations and it dominates
mainly in the mid-mantle (cross-sections at the dejathkm and1, 000 km).

Two vertical cross-sections illustrating the resolutidrthe inversion are plotted in
Fig. 3.13, one through an upwelling and one through downmgllThe position of the
cross-section is in the same place (for an upwelling) oraatlelose to the region (for a
downwelling) where we selected the cross-sections for thdedRyh numbeiRa = 3 - 10°
(cf. Fig. 3.7).

The first vertical cross-section is taken through the upnglin the poorly-covered
region Fig. 3.18—e The hit count (Fig. 3.18) shows that this region is parametrized
by large parametrization cells. Hence, the input upwellsge Fig. 3.18) cannot be
resolved (Fig. 3.18. The second vertical cross-section is taken through thendelling
structure in the relatively well-covered region Fig. 343 The hit count (Fig. 3.19
demonstrates fine resolution in the area of the cross-seditte input model (Fig. 3.18
shows the narrow vertical anomaly with the high amplitudearrthe surface and core-
mantle boundary and with significantly lower amplitudesha mid-mantle. The figure
of the average model (Fig. 3.03llustrates that the chosen parametrization is able to
describe this particular upwelling as a continuous naremitfre. Nevertheless, the output
of the inversion without damping (Fig. 3.j)3hows a structure damaged by the oscillation
in the mid-mantle.

The amplitudes fit of the inversion problem is illustratedmig. 3.14. The RMS of
the input model (Fig. 3.1a black line) has two maxima corresponding to the boundary
layers. The boundary layers are more narrow than for the hvaitte Rayleigh number
Ra = 3-10° (c.f. Fig. 3.&, black line). The RMS of the average model (Fig. &green
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line) has also two maxima, however, the amplitudes are @stierated for all depths.
Due to averaging over the cells, the sharp changes of the RM8bserved. Therefore,
the width of the boundary layers seem to be close to the wititheoboundary layer of
the output model for low Rayleigh number. (cf. Fig. 8.8reen line). The RMS of the
output model without damping (Fig. 3.44blue line) has similar character as the RMS
of the average model (Fig. 3.44green line), nevertheless, the value of RMS is higher
than the RMS of the average model. The RMS of the output md€gl 8.14, blue
line) is comparable to the RMS of the input model (Fig. & ldack line) except for the
boundary layers. At depth < 300km and” > 2,600km, the output anomalies are
underestimated. Further, at the depth range betwéehm and 960 km, the RMS is
higher than the RMS of the input model. Hence, the boundamriaeems to be wider
than the boundary layer of the input model. The RMS of theedéifices between the
input, average and output models are in Fig. B.1Zhe characteristics of the RMS of
these differences has similar character as the RMS of diffags for the low Rayleigh
number (cf. Fig. 3.B).

3.3 Regular parametrization

In this section, we discuss the results of the inverse prohising the regular parametri-
zation which does not reflect the uneven distribution of thherses and receivers in the
model. We represent the regular parametrization by equiarea cells (ESA). The

construction of these cells is described in the paragrapB.2The regularization is essen-
tial for this parametrization as we mentioned before and@ppate value of the damping

coefficient\ has to be found.

3.3.1 Results forRa = 3 - 10°

Fig. 3.15 shows the inversion results for four damping coeffits \. Fig. 3.1% shows
the horizontal cross-section of the input model at the deptb0 km. The anomalies
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are long-wavelengths and their size is larger than the dizeeoparametrization cells.
Therefore, the average model (Fig. )l%®an explain the input model successfully —
the correlation between the input and the average modelghs(f,put xaverage = 0.92).
The results of the inversion for damping coefficiant 0, 100, 1,000 and10* are plotted

in Figs. 3.1%5-f. Black color marks the cells with no information, i.e. no fEgssing
through the cell. We set the seismic slowness anomaly equarb in these cells when
we calculate the correlation, root mean square and powetrspel he inversion output
without damping (Fig. 3.1¢) indicates that the regularization will be necessary t@iobt
reasonable solution. The output model oscillates stromgtire badly covered regions.
The iterative solution (using LSQR, paragraph 2.7.3) of thodel converges very slowly
and the stopping-criterion of the maximum number of itenagi(we se20, 000 iterations)

is reached. For the output model with damping coefficient 100 (Fig. 3.19l) the
oscillation are still observed. However, the solution @nges more rapidly than for the
inversion without damping. For comparison, it is necessargompute2; 300 iterations
for the same convergence criterion as for the solution witltamping. The damping
factor A = 1,000 (Fig. 3.1%) seems to be optimal, the oscillations almost disappear. If
we increase the value of the damping coefficient even mbore: (104, Fig. 3.15), the
minimization of the model vectaim overweighs the minimization of vectek — G - m
and the amplitudes of the anomalies are suppressed.

Fig. 3.16 shows the spectra of the inversion results. Thetspa of the input model
is shown in Fig. 3.18 The spectrum of the average model (Fig. ®)lbas faster de-
cay compared to the spectrum of the input model. Howeverergdly their character
is quite similar. The spectrum of the output model withoungang (Fig. 3.16) is flat
and it has high power on high degrees abevé, 000 km due to the oscillations. Under
the ~ 1,000 km the spectrum is rather similar to the average one thoughceaydesig-
nificantly slower. Clearly the inversion is more successifisre — most probably due
to the relatively uniform ray coverage in the lower mantlé (Eig. 3.1, third column,
depthh = 2,500km). With increasing the damping coefficient & 100 and 1, 000,
Fig. 3.18l-e) the strong oscillations are more and more suppressed. femspectral
point of view, the optimal value of the damping coefficientid, 000 — the strong oscil-
lations disappear and only low small-scale oscillatior&l{yv color for the high degree)
occur. For higher increase of the damping coefficient 10), not only high degree
oscillations are suppressed — even a part of the "real” strads filtered out and the
spectrum is significantly shorter than the average one.

The characteristics of the inversion output as a functiothefdamping coefficient
are summarized in Fig. 3.17. The explained datlepending on the damping coefficient
A in the log-scale are displayed in Fig. 3al7The shape of the curve is similar to the
shape of the curve for the irregular parametrization (cfg. B.5a). The value of the
explained data is more-or-less constant & 96.8%) up toA < 3,000. For\ > 3,000,
the value of explained datadecreases. The character of the correlation and the norm
of the model vector differs between the irregular (Fig.bi3atd Fig. 3.8) and regular
(Fig. 3.1 and Fig. 3.1¢) parametrizations. The correlation coefficient as a fuomctf
the damping coefficient in the log-scale is shown in Fig. B.Ithe correlation between
input and output model is very low if no damping is appligd {.c xoutput(x=0) = 0.11).
Then the correlation coefficient steeply increases withiticeesasing damping factox
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a depth of450 km, a) input model,b) average through regular cell parametrizationf) results for the
damping coefficienh = 0, 100, 1,000 and10%, black color means no information (no rays) in the cell.
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Figure 3.16 Results of the inversion for the regular parametigzedind for Rayleigh numbeta = 3 - 10°.
Decadic logarithm of the power spectra (shown as a functfothe spherical harmonic degree and the
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damping coefficienh = 0, 100, 1,000 and10%.
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Figure 3.18 Characteristics of results for regular parametiizedind for Rayleigh numbeka = 3 - 10°,
a) L-curve,b) curvature of the L-curve.

as the oscillations are being filtered out. The correlatiesches maximum fok =
1,000 pinputxoutput(x=1,0000 = 0.80. If we increase the damping factor even more, the
correlation coefficient decreases again. The norm of theetnagttorm depending on
the damping factor in the log-scale is in Fig. 31 The curve is monotonous, it decreases
with increasing damping coefficient in the whole studiedyeanf \.

In the case of the regular parametrization the results oinversion are strongly af-
fected by the adopted damping, therefore the choice of prd@@ping is an important
issue. To determine the most suitable value of damping, weéhesL-curve analysis (sec-
tion 2.6). We plot the L-curve in Fig. 3.48 We compute the inversion for 34 different
values of the damping coefficient (Fig. 3d.&lots). Then we interpolate these points by
the natural cubic splines (Press et al. 1992) (Fig. &.58lid line). We determine the
corner damping factok.,.... from the position of the maximum curvature of the interpo-
lated curve, see equation (2.33). The curvature as a funofithe damping coefficient
in the log-scale is plotted in Fig. 3.b8It reaches maximum for the damping coefficient
between2, 000 and 3, 000. This value corresponds quite well to the maximum correla-
tion between the input and output models reached in syethatersion (which cannot
be computed in the real inversion). For the corner valuerdeted by L-curve analysis,
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the correlation is still very higho{upus xoutput(2,000) = 0.78 @nd pinput xoutput(3,000) = 0.76)
though it is not the absolute maximum of the correlation ficieht (which was obtained
for A = 1, 000).

From now on, we restrict ourselves to the inversion outpti walue of the damping
coefficient A\ = 2,000 which was determined by L-curve criterion. Several hortabn
cross-sections for the results with the damping coefficient 2,000 are displayed in
Fig. 3.19. The projection (cf. average model in Fig. 3.18psel row) of the input model
(Fig. 3.19, first row) on the regular basis is quite succéggftits the input quite well).
The amplitude of the projection error (Fig. 3.19, fourth jag highest at the depth of
200 km. The amplitude of input velocity anomalies grows rapidlyhie vertical direction
at this depth. The size of parametrization cells in the galtdirection is not able to
describe such steep changes. Therefore, the input modeltisally smeared. At the
depthsh = 600 km andh = 1,000 km, the highest error is located in the vicinity of
the high-amplitude anomalies. Above the core-mantle bapn¢h = 2,500 km), the
anomalies are stronger in long-wavelengths, so the projeetror is very low there.

The input model is predicted successfully by the output rhedt A\ = 2,000
(Fig. 3.19, third row). However, the weak oscillations alserved for all depths. The
cells with no information ("unpredictable cells”) can beufa at the depth200 km,
600 km and 1,000 km. At the shallow depth200 km), the cells with no information
are scattered — they reflect the areas with no sources/ezseit the depth of 600 km,
four large regions with no information occur due to the sesfreceivers geometry. The
ray distribution becomes more uniform with increasing tieptt the depth ofl, 000 km,
there is a rather small region with no information. The celith no information do not
occur anymore at the depth f500 km. The long-wavelength features of the inversion
error (Fig. 3.19, fifth row) copying the projection error imst of the mantle. As we
mentioned above, we assume that the slowness anomaly is1zeeregions with no in-
formation (no rays). Hence, the inversion errors arisingifregions with no-information
appear at the depth @b0 km, 600 km and1, 000 km. The short-wavelength inversion er-
ror correspond to the oscillations. In the cross-sectidhatepti2, 500 km, we observe
that the inversion error is higher than the projection efFog. 3.19, fourth row). The
inversion output slightly underestimates the amplituddsmg-wavelength anomalies at
this depth.

Further, we again display two vertical cross-sections @ Bi20. The cross-sections
are the same as in the case of irregular parametrizationamdRbyleigh number (cf.
Fig. 3.7). The vertical cross-section through the upwglimthe poorly covered region
is in Fig. 3.2@—e This region is covered unevenly by the rays (Fig. B,2rale ranges
between) and2,000). Since we use the regular parametrization, the projeaifaihe
input model is able to describe the upwelling (Fig. pBetter than in the corresponding
case with irregular parametrization (Fig. 8)7 The inversion output (Fig. 3.2)detects
the upwelling, however, the feature is strongly deterinldiy the oscillations. The other
cross-section passes through the downwelling in the wekia region (Fig. 3.240)).
The input feature (Fig. 3.2() can be easily described by the average model (Figi3.20
The downwelling is successfully resolved also in the inagrsutput (Fig. 3.2[). Both
the strong downwelling and weak upwelling can be resolvealwvéver, the resolution is
lower than for model with irregular parametrization (FigZj3
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Figure 3.19 Results for the regular parametrization for RayleighnberRa = 3 - 10°. Relative seismic
velocity anomalies (in percents of reference velocity) slrewn. Horizontal cross-section at the depth of
200 km (first column),600 km (second column)i, 000 km (third column) and, 500 km (fourth column).
The first row — cross-section of input model, the second rowverage through regular cells, the third
row — results of the inversion fox = 2, 000, the fourth row — absolute value of difference between input
model and average normalizedbyRMS of the input model at given depth, the fifth row — the norized
difference between input and output+£ 2,000) model.
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Figure 3.20 Two vertical cross-sections in the model with = 3-10° and regular parametrization. Vertical
cross-sectionad—6 through upwellinga) location of the cross-sectioh) hit count,c) input,d) averagee)
result of the inversion foh = 2,000. Vertical cross-sectiorf{j) through downwellingf) location of the
cross-sectiong) hit count,h) input, i) averagej) result of the inversion foA = 2,000. Relative seismic
velocity anomalies (in percents of reference velocity)sirewn.
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Figure 3.21 Root mean square (RMS) for regular parametrizatiori@ra) the input model Ra = 3-10°),
average and inversion result £ 2, 000) andb) their differences.

0

The amplitude resolution of the inversion for the dampingficient A = 2,000 is
illustrated in Fig. 3.21 where the RMS of the anomalies idtptbas a function of depth.
The RMS of the input (Fig. 3.24 black line) is reproduced successfully by the average
model (Fig. 3.24, green line). In the RMS of both average (Fig. &a2dreen line) and
output models (Fig. 3.2 blue line), the jumps caused by the boundaries of the cedls a
observed. The RMS of the output model (Fig. &2hlue line) is underestimated in the
regions of the boundary layers. In the upper mantle, the nastienation of the RMS of
the output model is also affected by the cells with no raysef@hwve set the anomaly
equal to zero). On the other hand, the width of the boundargrtais predicted quite
successfully. Fig. 3.2 shows the RMS of differences between the input and average
models (Fig. 3.2f, black line), input and output models (Fig. 3l hreen line), average
and output models (Fig. 3.B1blue line). All curves have similar character, they have
two maxima corresponding to the boundary layers.

3.3.2 Results forRa = 10°

In this paragraph, we describe the results for the RayleighberRa = 10° and regular
parametrization. The inversion output for four values ofmgang coefficient is illus-
trated in Fig. 3.22. The input anomalies have linear shapelaey are relatively short-
wavelengths (Fig. 3.28. The average model (Fig. 3.BRis able to describe the main
features, though they are slightly smeared. The correldigtween the input and the
average model i®iyputxaverage = 0.77. Similarly to the previously discussed case with
Ra = 3 -10° and regular parametrization, the inversion output is gfiyaffected by
damping factor, with "optimal” result obtained far= 1, 000 (cf. Fig. 3.1%—).

The spectra are plotted in Fig. 3.23. The spectrum of thetimmael (Fig. 3.23) has
two maxima, one in the upper and the other in the lower manterelatively high power
on the high degrees. The spectrum of the average model (Ri&h)3lescribes the input
quite successfully. However, it has slightly lower poweth&thigh degrees in comparison
with the spectra of the input model (Fig. 383 The spectra of the output are flat for
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Figure 3.22 Results of the inversion for the regular parametaratind for Rayleigh numbega = 10°.
Relative seismic velocity anomalies (in percents of refeesvelocity) are shown. Figures are plotted at
a depth of450 km, a) input model,b) average through regular cell parametrizationf) results for the
damping coefficienh = 0, 100, 1,000 and10%, black color means no information (no rays) in the cell.
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Figure 3.23 Results of the inversion for the regular parametaratind for Rayleigh numbega = 10°.
Decadic logarithm of the power spectra (shown as a functfoihe spherical harmonic degree and the

depth, see Eq. 2.44) fai) input model b) average through regular cell parametrizatiosf) results for the
damping coefficienh = 0, 100, 1,000 and10%.
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Figure 3.24 Characteristics of results for regular parametozatind for Rayleigh numbeRa = 109,
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Figure 3.25 Characteristics of results for regular parametigzaesind for Rayleigh numbeka = 106, a)
L-curve,b) curvature of the L-curve.

A = 0andX = 100 (Figs. 3.28-d). For the output model with the damping coefficient
A = 1,000 (Fig. 3.23), the oscillations are mostly suppressed and the spectesorides
the input and the average successfully. If we use too highevafl the damping coefficient
A = 10* (Fig. 3.23), the spectrum is short. Not only the oscillations but atsinput
structures are suppressed.

The characteristics of the output models as a function ofillaping coefficient in
the log-scale are resumed in Fig. 3.24. The shapes of thesdosnot differ significantly
from the curves for the regular parametrization and low Bigyl number. The percentage
of the explained data (Fig. 3.d8%is rather constant = 93.6% for A < 3,000. For
higher ), it decrases rapidly. The correlation coefficigrivetween the input and output
model has low valui,putxoutput(x=0) = 0.11 for the inversion without damping. The
value of the correlation increases with increasing dampaggficient. And it reaches the
maximum for the damping coefficient = 2,000 pinput xoutput(rz=2,0000 = 0.63. Hence,
slightly higher value of damping is necessary to obtain tla@&mum correlation than for
the inversion with the low Rayleigh number (cf. Fig. 30).7 For higher value of the
damping coefficiend > 2,000, the value of the correlation coefficient decreases again.
The norm of the model vector (Fig. 3.@4s monotonous, it decreases with increasing the
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damping coefficient. We use the L-curve analysis to obtagnptitoper damping. The L-
curve is plotted in Fig. 3.2 We again compute the curvature of this curve (Fig. B)26
get the proper damping. The highest value of the curvatuagasm obtained for damping
betweem = 2,000 and\ = 3, 000 (cf. Fig. 3.18). This value of the damping coefficient
corresponds well to the inversion output with the maximumedation.

From now on, we again restrict ourselves to the most suadassidel (using the L-
curve criterion). We display four horizontal cross-seetibrough the model in Fig. 3.26.
The input anomalies (Fig. 3.26, first row) have a linear shapethey are short-wave-
lengths, and in the mid-mantle at the deptld00 km, they have rather low amplitudes.
The average model (Fig. 3.26, second row) describes thelrmodeessfully even though
the anomalies are slightly smeared. This is reflected in thenalized projection error
(Fig. 3.26, fourth row) — the biggest error is concentratethe vicinity of the features.
The amplitude of the projection error seems to be relatitied at the depth, 000 km.
This effect is caused by the low amplitude at this depth amt&éy the low normalizing
factor.

The output anomalies are shown in Fig. 3.26, third row. Tkerigsion with the damp-
ing coefficient\ = 2,000 is able to detect the main features in the well-covered regio
most parts of the mantle, however, the oscillations stidiuwc The characteristic features
of the output anomalies are the most deteriorated in themadtle ¢ = 1,000 km) by
the oscillation — the amplitudes of the input anomalies aragarable to the amplitudes
of oscillations at this depth. The normalized inversioroes(Fig. 3.26, fifth row) arise
from three main contributions — the projection error, th®ecaused by oscillations and
disability to describe the input anomalies in the badlyered regions.

Further, we show two vertical cross-sections through theealipng in the badly cov-
ered region (Figs. 3.2746 and through the downwelling (Figs. 312y) in relatively well
covered region. For Rayleigh numhin = 109, the cross-sections locations are the same
for both regular (Fig. 3.27) and irregular parametrizaiibig. 3.13).

The uneven distribution of the rays is demonstrated by theduint (Fig. 3.2B, scale
ranges betweefi and 2,000). The input anomalies (Fig. 3.2y can be described by
the average model (Fig. 3.@yonly partly. The regular parametrization does not re-
cover the continuity of the upwelling through the whole nt@ntThe inversion output
(Fig. 3.2%®) roughly detects the position of the upwelling. Howeveg tipwelling im-
age is strongly deteriorated by the oscillations. The locadf the vertical cross-section
through well covered region is in Fig. 3R27he density of rays in this region is demon-
strated in Fig. 3.2F (the scale ranges betwe@rand 6, 000 rays per cell). The input
feature (Fig. 3.2f) is passing through the whole mantle and can be resolvedegtit-
sen parametrization quite well (average model, Fig. i3.Hven though the oscillations
disturb the output, the inversion output for the dampingfft@ent A = 2,000 predicts
the input anomaly quite successfully. However, the outpinaaly seems to be broken
around the depth = 1, 700 km.

The amplitude resolving power is illustrated in Fig. 3.28e $how the RMS of the
input model (Fig. 3.28, black line), average model (Fig. 328jreen line) and of the
inversion output forx = 2,000 (Fig. 3.2&, blue line). The RMS of the input model
(Fig. 3.2&, black line) has two maxima corresponding to the boundamrka These two
maxima can be observed also for the RMS of the average moigel3R8&, green line)
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Figure 3.26 Results for the regular parametrization for Rayleigmbher Ra = 10°. Relative seismic
velocity anomalies (in percents of reference velocity)glvewn. Horizontal cross-section at the depth of
200 km (first column),600 km (second column)i, 000 km (third column) and, 500 km (fourth column).
The first row — cross-section of input model, the second rowverage through irregular cells, the third
row — results of the inversion fox = 2, 000, the fourth row — absolute value of difference between input
model and average normalizedbyRMS of the input model at given depth, the fifth row — the norized
difference between input and output+£ 2,000) model.
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Figure 3.27 Two vertical cross-sections in the model with = 10° and regular parametrization. Vertical
cross-sectiong—6 through upwellinga) location of the cross-sectioh) hit count,c) input, d) averagee)
result of the inversion foh = 2,000. Vertical cross-sectiorf<j) through downwellingf) location of the
cross-sectiong) hit count,h) input, i) averagej) result of the inversion foA = 2,000. Relative seismic
velocity anomalies (in percents of reference velocity)sdrewn.
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Figure 3.28 Root mean square (RMS) for regular parametrizatiorf@anal) the input model Ra = 10°),
average and inversion result £ 2, 000) andb) their differences.

and for the RMS of the output model (Fig. 3&®lue line). The width of the boundary
layers of the inversion output describes quite well the kviot the boundary layers of
the input model. But they have considerably lower amplitu@iee curves of the RMS
of the average model (Fig. 3.28green line) and RMS of the output model (Fig. 328
blue line) have similar shape. However, the RMS of the outpaodel is higher than the
RMS of the average model in most of the mantle. The RMSs oéugifices are plotted
in Fig. 3.2&. For all curves, the RMS of differences have maxima of thelduges at
depths corresponding to the both boundary layers.

3.4 Discussion

The upper limit of the resolution of the irregular paranedttion model is given by the
size of basic cells which is 1.12% horizontal andv 60 km in vertical direction. On the
other hand, the lowest resolution is very rough — the sizédneflargest possible cell is
18° in horizontal and~ 960 km in vertical direction. In order to have approximately the
same number of parameters (and comparable computer dentdnedssed regular para-
metrization grid is coarser — its best possible resolutsofi in horizontal andv 207 km
in vertical direction. Therefore, we cannot reach the bestlution of the irregular pa-
rametrization model in well covered regions under the saomepuitational cost. On the
other hand, in the poorly covered regions, where the low ditnt demands large ir-
regular parametrization cells, the regular model has betsolution (provided we use
proper damping). By using finer regular grid, we could red@hresolution comparable
to the resolution in well covered regions of irregular modbelt at the cost of consider-
ably higher number of model parameters and, therefore, mamory-demanding and
time-consuming requirements.

The results for irregular parametrization without dampngin Fig. 3.6 and Fig. 3.12
(horizontal cross-sections), in Fig. 3.7 and Fig. 3.13t{galcross-sections) and in Fig. 3.4
and Fig. 3.10 (power spectra). The results for regular patapation for optimal damp-
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irregular parametrization
Ra =3-10° Ra = 10°
PINPUT x AVERAGE = 0.82 PINPUTx AVERAGE = 0.60
A r [%] PINxOUT POUT x AV r [%] PINxOUT POUTx AV
0 97.92 0.74 0.91 93.41 0.45 0.76
100 97.92 0.74 0.91 93.41 0.46 0.76
103 97.86 0.75 0.92 93.32 0.46 0.78
10* 88.58 0.68 0.83 79.07 0.43 0.72
10° 11.66 0.48 0.59 7.75 0.26 0.44
regular parametrization
Ra =3-10° Ra = 10°
PINPUTxAVERAGE = 0.92 PINPUTxAVERAGE = 0.77
A r (%] PINxOUT POUT x AV r [%)] PINXOUT POUTx AV
0 96.80 0.11 0.12 93.60 0.11 0.15
100 96.80 0.65 0.71 93.59 0.47 0.61
103 96.74 0.80 0.87 93.46 0.63 0.82
10* 93.20 0.64 0.70 85.33 0.54 0.71
10° 29.00 0.38 0.42 14.88 0.43 0.44

Table 3.1 Comparison of the irregular and regular parametrinatie- correlationg and percentage fit

ing are in Fig. 3.19 and Fig. 3.26 (horizontal cross-sesfipim Fig. 3.20 and Fig. 3.27
(vertical cross-sections) and in Fig. 3.16 and Fig. 3.23v@respectra).

If we compare the spectra for the inversion results for lowl&gh number Ra =
3 - 10°) for the irregular parametrization without damping (Figdc3 and results for the
regular parametrization with damping= 1,000 (Fig. 3.1&) with the spectrum of the
input model (Fig. 3.4), we get that both parametrization can predict the inputtspm
quite successfully. However, the boundaries correspgnttirthe edges of the biggest
cells occur for the spectrum of the output model parameti®arregular cells (Fig. 34).
For higher Rayleigh numbeRa = 10°, the spectra of the inversion results with the
optimal damping are in Fig. 3.t(irregular parametrization, without damping) and in
Fig. 3.2 (regular parametrization\ = 1,000). Both spectra corresponds to the input
one (Fig. 3.1@) again quite well. However, the influence of the large celtdfie irregular
parametrizations is even more obvious than for the invansith Rayleigh numbeFRa =
3 - 10°. The width of boundary layers in model using the irregulaiapzetrization seems
to be wider than the width of the boundary layers in the inpatei.

The negative influence of the large parametrization cella tase of the irregular
parametrization also explains values of the correlaticeffeament. The correlatiop and
the explained dataare summarized in the Tab. 3.1. The regular parametrizaems to
reflect the input model better than the irregular parametion — the correlation between
the input and average model is higher for the regular oneftirathe irregular one. Even
the correlation between the input and the inversion outpubptimal damping X =
2,000 for regular and\ = 0 for irregular parametrization) reaches higher valuestier t
regular parametrization.

However, we should keep in mind that the correlation and p@pectra are global
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Figure 3.29 Correlation between the input and the output modlek(0 first column,\ = 100 second
column,A = 1,000 third column) depending on the depth and degree of sphdraahonics coefficient;
results fora—c)irregular parametrization anBla = 3 - 10°, d—f) regular parametrization arfgla = 3 - 10°,
g—i) irregular parametrization anla = 106, j-I) regular parametrization anfda = 10°.
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characteristics. Apparently, globally the regular paraima&tion gives better results than
the irregular one. But as we already mentioned above, tha athiantage of the irreg-
ular parametrization is that we can obtain higher resafuiiothe well-covered regions

at the same computational costs. Moreover, the inversideti®r conditioned and the
explicit regularization is not necessary. If we compareitiversion results for the irreg-
ular and regular parametrization in the well-covered negif-ig. 3.7— vs. Fig. 3.20-

and Fig. 3.18+ vs. Fig. 3.27-), we see that the irregular parametrization has better
resolution there.

Another important question is, how tomography can revealdgeamic models
(Mégnin and Romanowicz 2000; Becker and Boschi 2002). Thiktyaof our kine-
matic tomographic inversion to retrieve geodynamic (catiea) models is illustrated in
Fig. 3.29. Here the correlation between the inversion iamgt output of seismic velocity
distributions is shown as a function of depth and spheriaahionic degree, see equation
(2.46). We display here the correlation for three differesities of the damping coeffi-
cientA = 0, 100 and1,000. For Rayleigh numbeRa = 3 - 10°, the correlation of the
input and output models is in Fig. 3.29cfor irregular parametrization and in Fig. 329
f for regular parametrization. For irregular parametrasi, the correlation is relatively
high up to degree- 20 for irregular parametrization. It has, however, a minimurtha
depthh ~ 900 km where is the lower edge of the large cells. Moreover, as dgdec
the correlation is independent on the damping coefficienhéeranged — 1,000. For
the regular parametrization, the correlation is ratherdspecially abové, 000 km if the
damping is not used (Fig. 3.8R For higher value of lambda = 100 (Fig. 3.2%) and
A = 1,000 (Fig. 3.29), the correlation increases abovg00 km. For the damping co-
efficient A = 1,000, the correlation is relatively high up to the degree25 for depths
h = 0—400km andh > 1,200 km. At the depth of100 —1, 200 km, the high correlation
can be found up to the degrees5.

The correlation between the input and output models for &glyinumbera = 10°
is in Fig. 3.29—i for irregular and in Fig. 3.39l for regular parametrizations. As ex-
pected, the value of the correlation is considerably lowebbth parametrization than for
the lower Rayleigh number due to the shorter-wavelengthacier of the input anoma-
lies. The correlation for the irregular parametrizationgs not depend on the value of
the damping coefficient. However, the amplitude of correfais rather low in most parts
of the mantle. Only abové ~ 200 km and under ~ 2,400 km, the correlation coef-
ficient is relatively high up to the degree 15. The correlati@tween the input model
for Rayleigh numberRa = 10° and the output model using the regular parametriza-
tion depends on the value of the damping factor. For the ¢utymael without damping
(Fig. 3.29), the correlation is low especially betwe¢f0 km and1, 600 km. If we in-
crease the value of damping coefficient= 100 (Fig. 3.2%), the correlation increases.
For the optimal damping = 1,000 (Fig. 3.29), correlation is relatively high up to de-
gree~ 30 at depthg) < 400 km andh > 1,600 km. However, it is rather insignificant at
depth range&00 —1, 600 km.

This means that on global scale the regular parametrizaiormore successful if an
optimal damping is applied. In irregular parametrizatiood®l, the global correlation is
lower because of the large parametrization cells in poayeced areas, however, it gives
more detailed results in well covered areas.
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Chapter 4

Conclusions

We have found differences between the inversion outpueigular and irregular parame-
trization due to the uneven distribution of rays. For thegular parametrization, the input
structures are resolved successfully in the well-coveggibns. In the poorly-covered ar-
eas, where the distribution of rays is very sparse, rathigelparametrization cells can
occur and the projection error can be significant there. Hewehe explicit regulariza-
tion is not needed in our inversion unless the data errocisded (Montelli et al. 2004a).
The inversion results are rather independent on the danypng\ ~ 1,000. The power
spectra of the inversion output decays reasonably even damoping is applied. The
widths of the boundary layers seem to be wider in the vertizaktion especially for the
high Rayleigh numbeRa = 10° in the upper part of the upper mantle and in the lower-
most mantle. At the surface and CMB boundary layer and in gpeupart of the lower
mantle, the inversion results are negatively influencedhieyidarge parametrization cells
in the poorly covered regions.

The regular parametrization produces much lower parapagiton error in the badly
covered regions than the irregular one. However, the ievpreblem is unstable and
oscillations occur unless explicit regularization is aggl Without damping, the spectra
of inversion output are flat due to high degree oscillati@specially in the upper mantle.
On the other hand, if a proper damping is used, the outputspedés much closer to the
input one than in any irregular parametrization model. Tés fit of the input and output
spectra is obtained for the damping parameater 1,000 for both considered Rayleigh
numbers Ra = 3 - 10° and Ra = 10°). This value of damping coefficient corresponds
well to the maximum of correlation. In the real data invensibowever, we do not know
the input structure and, therefore, some strategy how tosmha proper damping factor
is needed. We use the L-curve and the curvature of the L-ciongeetermine optimal
damping. We find that the optimal value of the damping coefficis A\ ~ 2,000 by
L-curve criterion. This value also corresponds quite welihte values for the maximum
correlation between the input and the output model.

In this study, we have restricted ourselves purely on thecefdf parametrization
error. Therefore, we get the best possible resolution foptetl parametrization. If the
picking error and error arising from mis-determination ofisces would be included, the
resolution would be even worse. Hence, some extra dampintpMae necessary for both
types of parametrization to eliminate the effect of thesersr
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Synthetic tests discussed in this thesis are carried ouR&yteigh numbersia =
3 -10° and Ra = 10°. Although the Rayleigh number estimates based on the umstrm
mantle values of viscosity, thermal expansivity and themoaductivity are higher than
Ra =10 (e.g. Turcotte and Schubert 2002) for whole mantle coneaaind may reach
even Ra =10® (Yanagisawa and Yamagishi 2005), an effective Rayleighbrris much
lower due to the material variability throughout the man#e increase of viscosity in
the lower mantle can be more than one order of magnitude@adek and Fleitout 2003,
Mitrovica and Forte 2004), decrease of thermal expansiaiy reach one order of mag-
nitude (Katsura et al. 2005) and thermal conductivity carstiestantially increased by
its component corresponding to the radiative transfer @agiro et al. 2004, Hofmeister
2005). Thus the convection simulations with Rayleigh nunthaging from3 - 10° to
10° should provide a reasonable approximation of the mantletstre wavelengths ex-
cept for the shallow upper mantle, where the plate-like e hard to simulate unless
complex rheological description is used.

The main advantage of the inversion using irregular paramagion is that we are able
to resolve relatively fine structures in well covered aréagreover, the explicit damping
is not necessary if only the projection error is included wewer, in the poorly covered
regions the large projection error causes extremely badutsn. Large parametrization
cells negatively influence the overall resolution and pospectra of the output model.
Therefore, on a global scale, the inversion with regulaapeatrization is generally more
successful in resolving the input seismic velocity stroetyprovided that a proper damp-
ing is chosen to suppress the oscillations caused by tleenidlitioned inverse problem.
On the other hand, the irregular parametrization is mortaklg to obtain better resolution
in well-covered regions at the same computational costs.
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Chapter 5

Mantle convection

The thermal/thermo-chemical convection in the Earth’s theas described by the equa-
tions based on conservation laws, rheology descripti@etiuation of state and material
advective transport equation. These equations togetltleithn initial and boundary con-
ditions describe the motion of the fluid driven by thermadftho-chemical buoyancy.

Further, the flow within the mantle is influenced by the maplrdssolid phase tran-
sitions. At the depth ofl00 km, the exothermic phase transition in mantle material is
observed (Bina and Helffrich 1994), which tends to increthsevertical flow. At the
depth of670 km, there is an endothermic phase transition which reducegetttieal flow
and may even prevent the subducting plates to penetratéhmiower mantle. Recently,
a new phase transition has been discovered in the deepésf plae lower mantle (Mu-
rakami et al. 2004, Tsuchiya et al. 2004, Oganov and Ono 2@8Ka et al. 2004). This
exothermic change of perovskite to post-perovskite mayngly influence the dynamics
of the core-mantle boundary region and the deformation@fttibducted material in the
lowermost mantle. However, the deformation of the slabsienttansition zone and in
the upper part of the lower mantle are the main focus of tresith therefore we do not
include the post-perovskite phase transition in our catowhs.

Rheological properties represent another important igsube mantle convection.
Viscous rheology is expected for the long period processdéba mantle. Three main
deformation mechanisms (diffusional creep, dislocatiep and Peierl’'s mechanism)
are supposed (Ashby and Verrall 1977, Frost and Ashby 19823t and Wu 1993, Ya-
mazaki and Karato 2001) in the Earth’s mantle. The diffusiceep (Newtonian flow)
describes the material behavior at high temperatures angdtlesses. The strain rate in
this case depends linearly on the stress. Further, the st depends on temperature,
pressure and the grain size. The dislocation (non-Newtopiawer-law) creep describes
the material behavior at intermediate stresg&s — 102 MPa. Strain rate depends on
temperature, pressure and approximatety® power of the stress. The Peierl's mech-
anism (low temperature plasticity) describes materialavedr at low temperatures and
high stresses. For numerical simulations, this mecharssasually approximated by a
power-law stress limiting mechanism (e @izkova et al. 2002, van Hunen et al. 2004).
Further, it is generally accepted that the viscosity inseseaby a factor of0 — 1000 in
the lower mantle (e.g. Hager and Richards 1989, Peltier 188 and Cadek 1997,
Cizkova et al. 1997, Lambeck and Johnston 1998, Mit@wicd Forte 2004). This vis-
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cosity increases together with the phase transitioéi7tkm can provide a significant
barrier to the vertical fluxes and significantly influence tbavection pattern within the
Earth’s mantle.

In this part of the thesis, we concentrate on the convectiodating. We use the
method introduced by Gerya and Yuen (2003) to solve the gawgrequation of the
mantle convection. Further, we take into account phassitrans and strongly non-linear
viscosity. We employ our code to perform the simulation efsnbduction processes. We
focus on the problem of the slabs thickening in the lower heant

5.1 Governing equations

We use the incompressible extended Boussinesq approgimwitih infinite Prandtl num-
ber (Ita and King 1994). Therefore, the density is assumdxktoconstant except for the
buoyancy term and the inertia is neglected. Moreover, theitg field is divergence-free
(incompressible flow). Further, we neglect the self-giian.

Inside the model domain excluding boundaries, the laws $éenvation have Eulerian
form (used symbols are explained in Tab. 5.1):

V-v = 0, (5.1)

—Vr+V.o+Apg = 0, (5.2)
Pon%_:: = V- (kVT) = pocy(v - V)T + pooTv - g +

+o: Vv + QL+ Hg, (5.3)

) (5.4)

Eq. (5.1) is continuity equation for incompressible fluidheTmomentum equations is
given in (5.2). Eq. (5.3) is the conservation of the energgafrequation). It describes
the temperature changes with time at given point (left-hsidé (lhs) term) caused by
heat diffusion (right-hand side (rhs), first term), heatextion (rhs, second term), adia-
batic heating/cooling (rhs, third term), viscous dissipai(rhs, fourth term), latent heat
(rhs, fifth term) and radioactive heating (rhs, last term@r Fulticomponent (thermo-
chemical) convection, another additional equation dbsayithe composition advection
has to be solved, Eq. (5.4).

5.2 Rheology

Beside the conservation laws, it is necessary to specifyttbelogical description of the
mantle material. Here we define the strain rate teisas follows (see e.g. Ashby and
Verrall 1977)

. 1 T _1 8’02‘ 8vj
€= 5 (VV+ (VV) )7 62] - 9 (ax] + axl) (55)
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and its second invariagt;

1/2
én=(26:¢)" = <QZéijéij> : (5.6)
]

We use viscous rheology in the form

o = 2n(En)é = nEn) (Vv + (VVv)'), 0y = 2n(En)éi; = n(én) (avi + 3Uj) :

8.7}]' 8@
(5.7)
We assume that the relationship between the deviatoric pérthe stress tenser
and the strain rate tenséicould be non-linear: the viscosity can depend on the stedén r
n = n(én). The second invariant of the deviatoric part of the stressdery; is defined

as follows:
1/2

1 e
o1 = (50' . O') = (5 %:O’UO'U> . (58)

5.3 Equation of state

The buoyancy forces in the thermo-chemical convectiveesysire caused by the ther-
mally induced density variations, chemical density vasiad and density variations due
to the phase changes:

Ap(Tvpv C) = —pPoc (T - Tref) + Apc + Z 5pkrk (59)
k

We assume simple linear relation between the density angdaeature variations (rhs,
first term). The second term describes the compositionaifeanomalies in the mul-
ticomponent convection system. The last term on right-reaidd expresses the density
changes associated with the phase transitibdsnotes thé'" phase transition and; is
phase function (see next paragraph).

5.4 Phase transitions

The k' phase transition is characterized by the Clapeyron sigpe- g—:’; and by the
density jumpdp, in the passing material. The uplift/depression of the titaomsdepth
together with the phase-transition density jump define thesp-change related density
anomalies. To describe the effect of phase transitiongthse function’, is often used

(Christensen and Yuen 1985). Here we use following parapa¢itn (van Hunen 2001):

Z — Zk
T, = % (1 + sin <WTP:(T)>> . (5.10)
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The phase functio',, varies betwee and1, d’gh is a parameter defining the width of
the phase transition, is the depth. The transition depth dependence on the tempera
T is described by, (T) using following formula:

1
2 = 20 + — (T (=) = TE"), (5.11)
Podo

Herez} is a reference transition depth of at a reference temperajlir*.

Phase transitions influence also the heat equation (5@)ghrthe latent heat. The la-
tent heat per unit volume for thé" phase;’ (see e.g. Christensen 1998) can be expressed
as

opiT
gt = JROPRT (5.12)
Po
Then the total latent hedp;, release from Eq. (5.3) can be rewritten into (see e.g. van
Hunen 2001)

TDr
QL= Z 7’“5’; ek (5.13)

5.5 Dimensionless variables

In this thesis, we use dimensionless formulation of the gung equations. The scaling
parameters are following:

d2
z=da/, t=—t, v= %v’, T = ”Od’;%’, T=Ts+ (T - T5)T  (5.14)
0

The used symbols are explained in Tab. 5.1. Hence, the caigar laws (5.1)—(5.4)
together with the equation of state (5.9) and rheology egudb.7) yield following set
of equations:

V.v = 0, (5.15)
—w+v.ﬁ(vV+(vv)T) -
Mo
(6%
— (a—ORa(T Tret) ZRbka—RcC> o (5.16)
a_c+(v v)C = 0. (5.17)
ot
or el Ts g Raq
- = . ™ —(v- VT +Di— (T e
= VD)~ (v V)T zao( *TB—TS)V £ By

Din Ty DFk
R <VV+(VV ) VV+Z—DZ< TS) . (5.18)
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In these equations, all variables and operators are dilmissis. However, we omat for
simplicity. Ra, Rbx, Rc, Raq and Di are dimensionless numbers:

po(Ts — Ts)aod?go

Toko ’
Sprd®go
Toko ’

» . Ap.d?
compositional Rayleigh number Rc = M,
Toko

apgoH, Rdspo

Nokoko

N d
dissipation number: Di — 209
Cp

thermal Rayleigh number. Ra =

phase Rayleigh number Rb, =

Rayleigh number for heat sources Raq =

5.6 Boundary and initial conditions

To be able to solve the system (5.15-5.18), we have to pbestiie boundary and ini-
tial conditions. For the equations (5.15-5.16), we use abioation of the following
boundary conditions:

prescribed velocity v = v5¢, (5.19)
free-slip v-n=0, 7-n—((7-n)-n)n=20 (5.20)
normal-free-flux (7-n) - n=0, v—(v-nn=20 (5.21)

free-flux (7 n) n=0, 7-n—((7-n)-nn=0 (5.22)

The first boundary condition (5.19) means that we descridgelocity in both normal and
tangential directions on the boundaries. For the secoee-lip) condition (5.20), the
normal component of the velocity is prescribed to be zere iftfout flux is not possible)
and there are no stresses in the tangential directions.hEardrmal-free-flux condition
(5.21), the in/out flux is permitted only in the normal diiect (tangential components
of velocity are zero) and no stress is prescribed in the nlodimection. For the free-flux
condition (5.22), the in/out flux is permitted in all diremtis and no stress condition is
prescribed in normal and tangential direction.
For the heat equation (5.18), we use the following boundangitions

prescribed temperature T = T8¢, (5.23)
or prescribed heat flux ¢, = —kV7T -n = ¢°°. (5.24)

Hence, we prescribe either the temperature (5.23) or thealdneat flux (5.24) on the
boundaries.

The initial conditions differ for various problems and vk specified for each model
separately.
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D=2t (v-V)e

Cp

Hyr

material time derivative operator
time

density

reference density

density variation

density variation arising from the multicomponent coniatt
vector of velocity

temperature

surface temperature

bottom temperature

reference temperature (geotherm)

strain rate tensor

second invariant of the strain rate tensor
dynamic pressure
stress tensor

second invariant of the stress tensor
deviatoric part of stress tensor

second invariant of the deviatoric part of the stress tensor
composition parameter

vector of the gravity acceleration

the gravity acceleration

thexz-component of the gravity acceleration
the z-component of the gravity acceleration
viscosity

reference viscosity

characteristic dimension of the system
thermal conductivity

reference thermal conductivity

thermal diffusivity

reference thermal diffusivity

thermal expansion coefficient

reference thermal expansion coefficient
heat capacity

radiogenic heat production

Table 5.1 Used symbols
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Dq

total latent heat release

latent heat per unit volume for thig" phase transition
density change for the'" phase transition
Clapeyron slope for the'? phase transition
phase function for thé'® phase transition
depth of thek'" phase transition

reference depth of the" phase transition
width of thek'" phase transition

reference temperature of th&€ phase transition
thermal Rayleigh number

k" phase Rayleigh number

compositional Rayleigh number

Rayleigh number for heat sources

dissipation number

normal vector to the boundary

Table 5.1 Continuation.
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Chapter 6
Method

We use the method of Gerya and Yuen (2003) to solve equatmresigng the thermal/
thermo-chemical convection in a two-dimensional Cartesi@main. This method com-
bines the Eulerian and Lagrangian approaches. The systé&16) is solved by the
finite difference method on a staggered (Eulerian) grid. e equation (5.18) without
advection and latent heat is also solved by the finite diffees on the Eulerian grid. The
heat advection term plus latent heat part of the equatid8)=nd compositional advec-
tion Eq. (5.17) are solved using the marker technique (eleep&d 1968, Christensen
and Yuen 1984, Hockney and Eastwood 1988, Birdsall and Lam@891, Weinberg and
Schmeling 1992, Gerya et al. 2000). The markers are pastodataining the informa-
tion about properties of the fluid. We use two kinds of markersnarkers carrying the
temperature and markers containing the compositionatnmgtion.

The scheme of the method is following:

0. We take the temperature field—*!, distribution of the chemical markers, density
variation (Ap) and scalar properties (e.g, &, «) of the fluid from the previous
time-stepi — 1 (or the initial conditions).

1. We solve two-dimensional equations (5.15) and (5.16gttogy with the boundary
conditions using the finite differences scheme on the stagggrid, we gev* and
7 (see section 6.3).

2. We compute the adiabatic heatiflg and shear heatinffs (see section 6.4).
3. We compute the time stept (see section 6.5).

4. We solve implicitly the heat equation (5.18) without treahadvection and latent
heat terms, we géf® (see section 6.6).

5. We advect markers using velocity fielland compute the latent heat (see section
6.8).

6. We interpolate the temperature from the markers on thertaml grid, we gefl™
(see section 6.9).

7. We calculate the chemical concentrations and scalaeptiep on the Eulerian grid
(section 6.10).

0. We repeat the procedure in time siep 1.

69



70 CHAPTER 6. METHOD

6.1 Staggered grid

For solving the continuity (5.15) and momentum (5.16) equist we use the finite dif-
ference scheme on the staggered grid (Fornberg 1995)witk nz nodal points. The
scheme of the used grid is in Fig. 6.1. The primary (non-steg) grid is marked by
solid lines and their cross-sections are denoted by thd sqliares. In these nodes, the
temperaturd{;,,;.), zz-component of the strain rate tenger.);, ;., andzz-component
of deviatoric part of the stress-tensr,.),, ,., and scalar properties of the fluid (e.g.
Niz,iz)» Qiz,iz)r K(iz,iz) €1C.) are prescribed. The staggered grid is marked by ddistesd

In nodal points of half-staggered grid marked by open triesghex-component of the
velocity v (iz,i-+1/2) @ndz-component of the heat flux (;; ;.+1,) are prescribed. In the
nodal points denoted by open circles, the theomponent of the velocity, (,41/.:)
andxz-component of the heat flux, (;,11.,:-) are computed. In the nodal points of stag-
gered grid marked by open squares, the dynamic pressureramhdzz-components of
the strain rate and deviatoric part of the Stress tenSQI(11/.iz41/2), €2z (iv41/2,iz41/2)
O (in41/2,iz+1/2)1 Oz (in1/2,i2+1/2)) are prescribed. To express the derivatives in nodal
points, we use following formulas:

e derivatives in points;;,, z;. (solid squares)

0A A(l’m+1/2, Ziz) - A(l’m_1/2, Ziz)
8x (x “ ) O.5(AJIZ’I+1/2 -+ Al’im_l/Q) ( )
0A A(%m, Ziz+1/2) - A(%m, Ziz—l/Q)
a2 = 2
82 (xlz’y ZZZ) 0.5(AZiz+1/2 _|_ AZZ'Z_l/Q) (6 )

1z —1

¥

z+1

. T) é1327 O—-’BZ7 ,,77 p7 k’ Oé, C7 A
o A vz, g
1z + O v ¢

O

ﬂ—? eII) eZZ? O—II7 UZZ

Figure 6.1 Scheme of the staggered grid.
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e derivatives in pointr;, 1/, z;. (0pen circles)

0A A(«Ti:p-i-la Ziz) - A(xzm Ziz)

a_ \Liz+1/25 iz = 6.3
ox (Tiz sz 2i2) AZip i1 (6.3)
0A A(Tigy1ja; Zizgry) = AlTizyrja, Ziz1y2)

. \Liz+1/25 iz = 6.4
0z <x /2 % ) 0-5(Aziz+1/2 + AZz’z—l/2) ( )

e derivatives in points;;,, z;.11, (Open triangles)

0A A(.Tix+1/2, Ziz-i—l/z) - A<xix—1/27 Ziz+1/2>

o (Zias Zizt12) = 6.5
ox (Tiz, 2izt / ) 0.5(A$m+1/2 + Axim_l/Q) (6-5)
814 A Lixy Ziz - A Ligs Ziz

A ey = AT ) +1/ e (6.6)

e derivatives in pointsy;, 1., 2i.+1/, (Open squares)

0A A(%‘xﬂ, ziz+1/2) - A(fm Zz’z+1/2)
a_ \Liz+1/2; fiz41 = 6.7
Oz (‘T +1/25 Riz+ /2) Al'ix-i-l/z ( )
814 A(xzx 1/2, Rz 1) - A(xzx 1/2, Zzz)
E(xi:p+1/2a Ziz+1/2) = £ £2i2+1/2 £ (6.8)

If the Eulerian staggered grid is regular (i.&\z;, ., = Az = const,, Az, =
Az = const,), all these formulas are second order of accuracy. Howévere use
the irregularly-spaced staggered grid (i&z;, 11/, # const,, Az, 41, # const.), only
formulas (6.3), (6.6), (6.7) and (6.8) are second order ofigy. The error of formulas
(6.1), (6.2), (6.4) and (6.5) is kept under control by thediban

1 S Axix—l/z S c \V/'LZIZ'7 1 S AZiz—l/z

c Axix+1/2 (& AZ’iz+1/2
This condition means, that we allow only limited shrinkieggpanding of the grid. For the
details concerning the Eulerian grid see Gerya and Yuen3)200

<c Vigz, 1 <e<1.05. (6.9)

6.2 Interpolation between the Eulerian grid and markers

Another important issue, if the Eulerian grid and markeesigged, is interpolation from
the staggered grid to the markers. We use the bilinear ioltipn

A m A m
Asz':(:—|—1/2 AZi:c—l—l/2 7
Ax; Az
+ - 11— - A T 12 +
<A$ix+1/2) ( AZi:c-H/2) Gt

Axix-l,-l/z Azfix+1/2 (2x712+1)

+ < ) ( ) Aliatiz+1)5 (6.10)

Al’z’m+1/z Azi:p+1/2
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a) i i ir+1

iz+1

A»T:ﬁ%

Figure 6.2 Scheme of the interpolati@) to the markers and) from the markers.

whereAz;,, andAz;,, are distances of then'" marker to the grid (see Fig. 6.2). Ana-
logically to this interpolation from non-staggered grick wse also the interpolation from
half-staggered grids and staggered grid.

For interpolation from the markers to the Eulerian grid, vse tormula

Zim Aimwim (ix,iz)

(i) D im Wim (iz,i2)
1 Ax; Az;
Wim, (ix,iz) — 1- 2 1- - ’ 6.12
( ) Axix-i—l/zAZiz-l—l/z < Axix-‘rl/z ) < AZiz-l—l/2 ) ( )

where we sum up variable$;,,, over all markers in the cells surrounding the nodal point
Tz, Zi- (S€€ Fig. 6.8).

6.3 Solving continuity and momentum equations

The continuity and momentum equations (5.15 and 5.16) davedon the Eulerian stag-
gered grid. The unknown quantities in these equations arardic pressure i, 11/ i-+ 1)

foriz =1,...,nz —1andiz = 1,...,nz — 1, z-components of the velocity, (i i-+ 1)
foriz = 1,...,nx andiz = 0,...,nz, z-components of the velocity, (i, .) for
iz = 0,...,nzv andiz = 1,...,nz. The quantities, (i;.1/5), Uz (iz,nz11/2)s V= (1/2,i2) and

V. (mz+1/2,iz) are calculated in the virtual points (they lie outside of shedied area) and
they are used to prescribe the boundary conditions (segaata6.3.4). Hence, we have
3-nx-nz+ 1unknowns f: (nx — 1)(nz — 1) unknownsy,: nx(nz + 1) unknownsy,:
(nx 4+ 1)nz unknowns).

6.3.1 Derivatives, strain rate and stress tensor on the stggred grid

To formulate the continuity and momentum equations athe zz- andxz- components
of the deviatoric part of the stress tensor and their devieatand the derivatives of the
velocity components and dynamic pressure have to be exgate3fier- andz- deriva-
tives of the velocityz-components, are computed in nodal poinis, 1/, 2,41/, (Open
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squares) and,,, z;. (solid squares) using (6.7) and (6.2)

(avx) _ Uz (iwtlizt1/2) — U (imizt1/2) (6.13)
O (ix+1/2,iz+1/2) Axi:v+1/2 ’
(%) _ Un GuiztYs) = Un Gimietfe) (6.14)
0z (iz,iz) 0.5 (Aziz+1/2 + Aziz—1/2)

The z- and z-derivatives ofv, are expressed in nodal points,, z;. (solid squares) and
Tiz41/2, Ziz1/> (OPEN SQUares). Using (6.1) and (6.8), we can write

<0vz> _ Uz (atY2iz) T Uz (im—1/2i2) (6.15)

Ox (iz,iz) 0.5 (A$ix+1/2 + Axm_l/Q) ’

(8112) _ Uz lnjaizt)) = Vs atifaiz) (6.16)
0z (iz+1/2,iz+1/2) AZz'z+1/2

The z- and z-derivatives of the dynamic pressuteare computed in the nodal points
Tiz, Ziz1/> (OPEN triangles) and im;,.1/., 2. (Open circles) using (6.5) and (6.4)

(8_7r) _ Miwt1f2izt1/2) — Tiz—1/2i2+1/2) (6.17)
(8_7r) _ Matrpistyfs) — Miat1fiz=1/2) (6.18)
Oz (it 1/2,i2) 0.5 (Az,-z+1/2 + Aziz—1/2)

The components of the deviatoric part of the stress tensoegpressed in nodal
poINtS ;. 11/, 241/, (OPEN squares) farz- and zz-components. Thez-component is
computed in the nodal points,, z;. (solid squares). The rheological relation (5.7) for
dimensionless variables can be written on staggered gffollag/s:

2 v,
(02) i iz = —ﬁ%x iz <—) ) (6.19)
(ix+1/2,iz+1/2) o (iz+1/2,iz+1/2) or (o412 iz41/2)
2 ov,
(iz+1/2,52+1/2) o (iz+1/2,i2+1/2) Oz otz 1))
1 0v, ov,
@ )(m’w) 77077( ) [( 0z ) * (893 )] (iw,iz) ( )

Where’r/(siq;+1/2’iz+1/2) = Va(N(iz,iz) + Nizyiz41) F Niz+1,i2) + Niz+1,i241)) IS Viscosity in the
POINtSZ;; 11/, 2i2417, (OPEN SCUArES).

The z- derivatives ofo,, and z-derivatives ofo .. are expressed in the nodal points
Tiz, Zizt1> (OPEN triangles) and,, ..., z;. (0pen circles). Using formulas (6.5) and (6.4),
we can write

(8%) _ sz = (o) amyaistys (6.22)
83: (im,iz+1/2) 05 (Axim_l,.l/g + Axim_l/g) 7

(8022) Y Pl G [ PO (6.23)
0z ) (iui1/nin) 0.5 (Azizrr + Aziys)
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The z- and z-derivatives of ther,. are computed in the nodal points, ./, z;. (open
circles) andr;,, .41/, (open triangles). Using formulas (6.3) and (6.6), we get

(8%2) _ (002) (it 1,i2) = (T22) (1202) (6.24)

Ox (iz+1/2,iz) AZipiryy 7 .

(80352) _ (022) (i izs1) — (O-SCZ)(z’:ch). (6.25)
0z (izsizt1/2) Azizyy,

The components of the strain rate tensare expressed analogically éo compo-
nents. Then for the equation (5.5), we get

01};0)

o _ 7 (6.26)

( )( +1/2,i24+1/2) (0x (iz41/2,i241/2)

v,

(iz+1/2,iz+1/2) 0z (iz41/2,i2+1/2)

Y ov
.xZ ‘ ‘ _ 1 xX z . 6-28
(5 )(zx,lz) /2 |:( 0z ) * (093 )} (iz,i2) ( )

However, it is necessary to express ande<,, a posteriori on the non-staggered grid
(solid squares) to compute the shear heafiihgand second invariant of the strain rate
tensor:y;.
I I
_ Vs (ia+1/2,iz) — Yz (iw—1/2,iz) (6.29)
0.5 (Axix—l/z + Axix-‘rl/z 7
UI L — UI .
. z (iz,iz+1/2) z (iz,iz—1/2)
Er2)linin = , 6.30
( )(wc,zz) 0.5 (Aziz—l/z + Aziz—‘,-l/Q) ( )

(ijw) (iz,iz)

The variables] ,, .., andvl ,, ;.. area- andz- component of the velocity vector inter-
polated from the half-staggered grid using Eq. (6.10). Iémnputing% on the vertical
boundaries ant%%z on the horizontal boundaries in the points, z;., we use the for-
ward/backward formulas to express the derivatives. Fomgka, we get for the left and

upper boundaries

UI = 'UI .
) z (3/2,iz) z (1,i2)
o 7 6.31
(5 )(1,zz) O,5A£L’3/2 ( )
UI ) _ ,UI .
. z (iz3/2) — Uz (iw)1)
o _ . 6.32
(5 )(wj,l) 05AZ3/2 ( )
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6.3.2 Continuity equation on the staggered grid

The continuity equation (5.15)
ov, Ov,
=0
ox * 0z
is prescribed in the points;, .., z;..11, (Open squares), foir = 1,...,nz — 1 and
iz=1,...,nz — 1. From equation (5.15) using formulas (6.13) and (6.16), &te g

ail;p+1/2 (Um (iz+1,iz4+1/2) — Vg (im,iz+1/2)) +

a?z+1/2 (Uz (iz41/2,iz+1) — Uz (im+1/2,iz)) - 07 (633)
where the coefficients;, ,,, anda?, ,,, denote
1 1
1 2
Q1= ———— and  ai ,,=——.
T Ay B2 Az

The discretization scheme of the continuity equation isign €.3a.

6.3.3 Momentum equation on the staggered grid

The z-component of the momentum equation (5.16)

on 004y 004, 9z
_%Jr ox * 0z Apgo

is prescribed in the points;,, z;..1, (open triangles). Using the rheological properties
(6.19) and (6.21), derivatives of the stress-tensor (6a2#)(6.25), derivative of the dy-
namic pressure (6.17), derivatives of the velocity (6.18)14), (6.15) and linear interpo-

Figure 6.3 The discretization scheme aj continuity equation (6.33) in point;, /., Ziz41/., b) -
component of the momentum equation (6.34) in peint z;.1/,, C) z-component of the momentum equa-
tion (6.35) in pointr;,11/,, z;.. Red color marks the points used for the discretization efethuations in
the central point.
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lation of the density variatioth p, this equation can be rewritten into:

/B%Z'm7iz+l/2) (UI)(ix,iz+f5/2) + ﬁ(%‘;c,iz+1/2) ('UI)(z’:c,iz—l/z) +
3 4
+ﬂ(ix,iz+1/2) (Ur>(igp+1,iz+1/2) + ﬂ(ix,iz—i-l/z) (UI>(im—1,iz+1/2) -
1 2 3 4
- (ﬁ +0°+ 0+ 0 )(ix,iz+1/2) (Ux)(z’:m'z—i-l/z) +

5
FBiai241/2) ((UZ)(ix—i-l/miz—i-l) - (UZ)(m_l/g,izﬂ)) +

+6(6i:c7iz+1/2) ((UZ)(ix—1/2,iz) - (UZ)(Z'J:+1/2,Z'Z)> +
000 i1y (Tlia—vj2sizt1p2) = Tliatrpiztife) =
Jx
= _0'5%(Ap(iz’,iz) + Apiz,iz+1))- (6.34)

The discretization scheme of thecomponent of momentum equation is in Fig. 6.3

The coefficientss;,, .. .., denote
1 1
ﬂ(lminrl/Q) = N(iz,iz+1) AZizi1p 0.5 (Azisgrpy + Azisys)
1 1
ﬁ(zm,iz+1/2) = Masiz) Azizy15 0.5 (Aziz_l/z + Aziz+1/2) ’
1 1
ﬁ?im,iz—l—lﬁ) = 277(Sm+1/2,iz+1/2) Axi:(:+1/2 0.5 (Al’ix—1/2 + Axix-i-l/?) ’
1 1
Blawizryy = szt AZi1/5 0.5 (Aig—rjs + Atigypn)’
1 1
Havin = Minisen 35— (AZigoys + Atigiays)
1 1
ﬁ?im,iz—i—l/?) = Miiz) Az, 0.5 (Al’iz—l/z + A$iz+1/2) ’

e = :
(iz,iz+1/2) 0.5 (Axi:v—l/Q + A.Ti;p+1/2) .

The z-component of the momentum equation (5.16)

on 0o, 00,. 9=
_EjL 0z * or Apgo

is computed in the points;,. .., z;. (Open circles). Using the rheological properties
(6.20) and (6.21), derivatives of the stress-tensor (6a28l) (6.24), derivative of the dy-
namic pressure (6.18), derivatives of the velocity (6.1®)14), (6.15) and linear interpo-



6.3. SOLVING CONTINUITY AND MOMENTUM EQUATIONS 77

lation of the density variatioth p, this equation can be rewritten into:

L 2

V(iz+1/2,iz) (Uz)(i:v+1/2,iz+1) + V(iz+1/2,iz) <UZ)(im+l/2’iZ_1) +
+’Y(3im+1/2,iz) (Uz)(i:c+3/2,z'z) + 7éx+1/27i2) (UZ)(ix_l/Q’iz) -

= (7 ) agniny (0 apnin) T

_I— 2:(3+1/2 iz) (( )zx—l—l Jiz+1/2) (,Ux)(i:c—i—l,iz—l/z)) +

+ry (z+1/2,iz) ((UJB) (iz,iz—1/2) (Uw)(im,iz—i-l/Q)) +
+7Zim+l/2,iz) (77-(2':(:4—1/2,2'2—1/2) — T (ix+1/2, iz+1/2)) =
= —0. 5 (Ap(zx iz) + Ap(2x+1 zz)) (635)

The discretization scheme of thecomponent of momentum equation is in Fig.6&.8he

coefficientsy(;, .., ;., represent
W(Ii;c+1/2,z‘z) = 277(Si:v+1/2,iz+1/2) A ! ! )
Ziz41/2 0.5 (Aziz_l/z + Aziz+1/2)
1 1

7(2ix+1/2,iz) = 277(Six+1/2,iz—1/2) Aziz—l/z 05 (Aziz_l/g T AZiz+1/2) )
3 B 1 1

Viw+1/2iz) =  Tiz+1,iz) Axiz+1/2 05 (sz’:c+1/2 T Axix+3/2) )
4 B 1 1

Tia+ijziz) = TMiwiz) Aigi172 0.5 (Azjp_rjy + Ajgip)’
5 B 1 1

Viz+1/2,iz) = Tiz+1,iz) Axiﬁw 05 (Aziz_w i Aziz+1/2)’
6 1 1

Via+1/2,i2) =  M(im,iz) A$2x+1/2 05 (Azzz et Azzz+1/2)

1
5 (AZ,’Z_VQ + AZz’z-i—l/2) .

7
Viz+1/2,42) =

6.3.4 Boundary conditions on the staggered grid

To be able to solve the system (5.15-5.16), the
boundary conditions have to be prescribed. ThIS
is implemented by using the virtual points out:

side the studied area. These virtual points cor-
responding to staggered-grid points are symmet-
rically mirrored around horizontal/vertical bound-

aries. For example, for the left hand side (Ihs)

boundaryAz., = Auzs,, (see Fig. 6.4). As wei:-2
mentioned above, we use four types of the bound-
ary conditions Egs. (5.19-5.22). All these condi- _ _
tions can be expressed using the prescribed riggire 6-4 Staggered grid and the virtual

oints on the boundar
mal/tangential velocity or force. Here, we will re e’ y
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strict ourselves to describe the boundary condition onlyona boundary (lhs vertical
boundary). On the other boundaries, the conditions arepbesl analogically.
The normal component of velocity- n is given by

_ _ BC
Up = Uy = _U;p )

wherev3¢ is a prescribed value on the horizontal velocity on the bamdnd it is
positive in the sense of the outer normal to the boundarys Tbindition is computed in
the pointzy, 2. 41/,

Uz (Liz+1/2) = — (UEC)(l,z’z—H/z) : (6.36)

The discretization scheme of this condition is in Fig.e6.5
The tangential component of the velocity- (v - n) n on the Ihs boundary is

— _ ,,BC
Ut_vz_vz 9

wherevBC is prescribed boundary value and it is positive in the sefifigen:-axis. This
condition is computed in the point, z;.

0.5 (Uz)(l/z,iz) + (UZ)(S/z,iz):| = (UEC)(LZ-@.) (6.37)

The discretization scheme of this condition is in Fig.k6.5
The normal component of the for¢e - n) - n can be expressed as follows

fn=Tex = _f:}:307

where B¢ is prescribed boundary value and it is positive in the sehtfeecouter normal
to the boundary. This condition is evaluated in the point;. /.

0.5 [(TEI)(1/2,2‘2+1/2) + (TEI)(3/2,iz+1/2):| == f(c1,z+1/2)- (6.38)

This condition is, however, not prescribed directly. Thaatpn (6.38) is substituted into

Figure 6.5 Scheme of the conditiom) for normal velocity in pointzy, z;.,1/, (6.36),b) for tangential
velocity in pointzy, ;. (6.37),c) for normal force in pointcy, ;. 11/, (6.39) andd) for tangential velocity
in pointxy, z;, (6.40). Red color marks the points used for the discretimatf the boundary conditions.
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the xz-component of the momentum equation (6.34). Then we get

1 2 3
5(1,z’z+1/2) (Ul’)(l,iz+f5/2) + ﬁ(l,iz+1/2) (Ux)(uz_l/g) + 25(1,iz+1/2) (U:c)(27iz+1/2) -
- (ﬁl + 3%+ 253)(1,iz+1/2) (U:v)(l,iz+1/2) + 5(51,2:&1/2) ((UZ)(S/Q,iz+1) - (Uz)(l/g,z'z+1)> +
+ﬁ?1,iz+1/z) ((UZ)(1/27iz) - (UZ)(3/27iz)> - 2ﬁ(71,iz+1/2) (77(1/2,z'z+1/2)) =
Ja
= _05_(Ap(1,zz) + Ap(l,iz-‘rl)) — 2ﬁ(71,iz+1/2) (f:(]?c)(l ) (639)
90 ’
The xz-component of the momentum equation in the form (6.39) ispaed, if the nor-
mal component of the force is prescribed. The discretinadtheme of this equation is

demonstrated in Fig. 6¢5
Tangential component of foree- n — ((7 - n) - n) - n is given by

ft =O0gz = f?c7
where fB€ is prescribed boundary value and it is positive in the sefigeo:-axis. This
condition is evaluated in the point,, z;.. Using Egs. (6.21), (6.14) and (6.15), we get

1
O 5 (Azzz 1/2 + AZZZ+1/2

1 _ BC
10320 5 (Arys + D) (0onin = s = (P (640)

1zz

) |:(U$)(1,iz+1/2) - <U$)(1,iz—1/2)} *

_'_

the discretization scheme of this equation is shown in Fisd.6

In the corners, the normal boundary conditions are compartethe half-staggered
nodal points (open triangles and open circles) and they toatlide with each other. On
the other hand, the tangential boundary conditions arecpbesl on non-staggered grid
and hence in the same nodal point (solid square). If the itglecprescribed from both
directions, the tangential component from both directibautd be equal, i.e for upper

left corner
( Bc)upper boundary B ( Bc)left boundary

EERACRY) = (L) ’

( Ec)f I‘l’;r bownday i nositive in the sense af-axis and(v BC)l(iftl;’ omdanY s positive in
the sense of-axis. If the free-slip or free-flux is prescribed (tangahtorces from both
direction are zero), we split the condition (6.40) into twarts. We use the boundary

conditions in the form
[(“x)m/z) - (“x)u,l/z)] =0 and [(“z)w/z,l) - (“z)<1/271>] =0

If the normal force condition is not prescribed on any parthef boundaries, the dy-
namic pressure is determined except for the additionattaahdn this case, we prescribe
in one of the corners the condition on the dynamic pressute 0 instead of the conti-
nuity equation. Then we calculate the additive constantsdgpimri from the condition
f; “7m(z,z = 0)dx = 0 (integral of the dynamic pressure on the surface is equarm) z
Analoglcally if thez-/z-component of the velocity is not prescribed on any part ef th
boundaries, the-/z-component of the velocity is also computed except for trdbtemhal
constant. However, we do not use this type of boundary camdit
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6.3.5 Inversion

As we mentioned above, we hage nx - nz + 1 unknowns. For these unknowns, we
prescribgnz —1)(nz—1) the continuity equation (6.33) in the nodal points, 1/, .41/
foriz =1,...,nx —landiz = 1,...,nz — 1 (open squares). Thecomponent of the

momentum equation (6.34) is computed in the pointsz;. 1, foriz = 2,... ,nx — 1
andiz = 1,...,nz—1, hence we havéwxr — 2)(nz — 1) conditions. The:-component of
the momentum equation (6.35) is described in the paipts,, z;. foriz = 1,... ,nrx—1

andiz = 2,...,nz — 1, we have(nz — 1)(nz — 2) equations. Moreover, we prescribe
2(2nxz—1) condition on the horizontal ar&{2nz—1) condition on the vertical boundaries.
Hence, we hav8 - nz - nz + 1 equations for thé - nz - nz + 1 unknowns.

The system of Egs. (5.15-5.16) leads to the matrix probdem = b, wherex is vec-
tor of unknowns and is right-hand side vector. If we use appropriate order ofnawkns
(Vs (iz41/2,i2)y Piiat1/2,i241/2)1 Uz (iz,iz+1/2)) and equationszecomponent of the momentum
equation, continuity equation,-component of the momentum equation), mathixs a
band matrix. We use the width of the batvd:+11. For the inversion, we use LU decom-
position from LAPACK subroutines. The use of direct (noerdttive) method is necessary
since we use the viscosity varying within the range of thessworders of magnitude.

6.3.6 Non-linear viscosity

In general, the viscosity depends on the strain ratgs;;), hence the problem is non-
linear. In this case, we solve the system (5.15-5.16) iteigt First (j = 0 iteration),
we get the viscosity) from the previous time step (or take a guess of the viscosity f
the 1°* time step). Then the iterative process is as follows: for(the 1)t iteration, we
solve the system (5.15-5.16) using the viscosity from tlewipus;®™ step. We repeat
this procedure until the following condition is satisfied:

G+l

=J
€ —€
max |11

< e, c=0.01. (6.41)

max (éfl)

6.4 Adiabatic and shear heating

Dimensionless adiabatic heatiif,

L« Ts ) g
Ha=Dil (T + v. 2
A ao( Tg —Ts 9o

is computed in the nodal points,, z;. (solid squares)

iz iz) i—1 TS 1 I
HA (iaiz) = D1 0 (T(ix,iz) + Ty — Ts) (V2 (iyin)%/90 + Vs (i2,i)%/90) . (6.42)

The variables; ,, ;. andv ,, ;.. arex- andz- components of the velocity vector inter-

polated from the half-staggered grid using Eq. (6.10).
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Dimensionless shear heatiify; is

HS = %% (VV + (VV) > . VV.
In the pointse,,, z;. (solid squares), we get
o _ Di . : : 6.43
( S)(ix,iz) - E (Uq:xgmc + 0:2€22 + 20’1’261’2)(7;1»’7;2) . ( - )
To compute theéHS)(mZ) on the grid, we use rheology relationship (5.7) and Eqs8(6.2
6.32).
6.5 Time step

For determining the time step, we use following two condisio
The first condition describes the maximum allowed tempeeatbangeg\T,,.. (typ-
ically 0.002 < AT} < 0.005) per time step:

-1
DT\ "
At = min | AT ax T )
(iLB,iZ) Dt (iLB,iZ)

i i2) the time change computed using the explicit scheme in time

(ixv

(50 = B e T 0 00

(iziz) (iz,iz) (iwiz)

where (2L)

For computing the, (i.i-) andq; (i.i-), S€€ paragraph 6.6.
The second condition describes the maximum allowed dispiaat.

-1
(iz,iz) | ?

Atp = min [Cd(im,iz) (v)

(ix,iz)

2 2
wherev;, ;) = \/ <Ui (i Z.Z)) + <v£ (i Z.Z)) is the velocity in the pointr;,, zi., d(iz,iz)
denotes the minimum grid distance in the vicinity of the paip, z;., i.e. d(.) =
min (Axm_l/Q,Axml/Q,Aziz_l/Q,Azinrl/g). The constant is maximum allowed dis-
placement in the sense of the minimum grid distance andypisally 0.2 < ¢ < 0.5.

The time-stepAt is defined as a minimum of these two conditions:

At = min (AtT, AtD) .

6.6 Solving the heat equation

The heat equation (5.18) without advection and latent lsesdlived on the Eulerian stag-
gered grid. The unknowns are temperatures in the non-sedggid (solid squares)
Tiiz,izy foriz =1,... ,nrandiz = 1,...,nz.
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6.6.1 Derivatives and heat flux on the staggered grid

To formulate the heat equation on the staggered grid, we tuaggpress the- and z-
derivatives. Ther- andz-derivatives are computed in the poinats. .., z;. (open circles)
andz;,, 2.1/, (Open triangles). Using (6.3) and (6.6), we get

(8_T) _ Tizt1,i2) — Liiz) (6.44)
Oz (iz+1/2,iz) Axm"‘l/Q ’
8’2 iz, iz+1/2) AZzz—|—1/2

The z- and z-components of the heat flux are computed in the paints. ., z;. (open
circles) andr;,, 2.1/, (open triangles). Using formulas (6.44), (6.45) and linaterpo-
lation, the heat flux can be rewritten into

T(ix-i—l,iz) - T(z:c,zz)
ATy

, (6.46)

(qu'c)(ix+1/27iz) =-05 (k(i:p+1,iz) + k(zm,zz))

T(ix,iz-l—l) - T(z:c,zz) .
Aziz—l—l/z

(qz>(ix’iz+1/2) =—0.5 (k(i:v,iz+1) + k(im,iz)) (6.47)

Using (6.1) and (6.2), the- and z-derivatives of ther- andz-component of the heat flux
are computed in the points,, z;. (solid squares) as follows

(8%) _ (92) (iat1/2,02) = (@) (10-17,02) (6.48)

Oz (iz,iz) 0.5 (Axix_lh + Axix""l/?) ’ .

(%) _ (qz)(ix,iz—i—l/z) - (‘Jx)(imz—l/z) (6.49)
0z iw,iz) 0.5 (AZZ'Z_VQ + Aziz_’_l/Q) . .

6.6.2 Heat equation on the staggered grid

The heat equation (5.18) without advection and latent resats

oT Ragq
—=-V- —— + Hp + Hs.
BT V.-q+ Ta + Ha + Hg

If we apply the time-implicit schemé (s the current time step,— 1 is the previous time
step), we can write
i—1

T — Tt 0,i R
(ix,iz) (iz,iz) _ < qx ) ’ ( q- ) aq H H 6.50
At 0z / (iw,iz) 02/ (iz,iz) + Ra +( A)(“U iz) +( S) (iz,iz) * ( )

Using formulas for heat flux (6.46—6.47) and their derivesiy6.48—6.49), adiabatic and
shear heating (6.42) and (6.43), the heat equation can d&emelated into

0,7
6( Tz:c 1zz)+

(1+51+52+53+54), T =

(zx,zz) (ZLB ZZ)

i Raq

TOZ

0,2
T zz)T(m iz—1) ix,iz) (iz+1,iz) 5(2:p iz)

1 0,2
_5(i$,22 T(wc iz+1)

— &
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The discretization scheme of the heat equation is on Fig. 6Tte coefficientsyy;, ;.
denote

5(1i:v,iz) = 0.5At (k:(,-x,,-z+1)+k(ix,z‘z>) Azii+1/20.5 (Aziz_1/21—|—AZiz+1/2)’
Oiwizy = 05O (Kaie-1) + Kiiwia)) Azii_1/20.5 (Aziz_l/j + Azisyy)’
Bniny = OB (Kprsris) + Keiaio) Ax;woﬁ (A%_l/j+A%+l/2)’
O(imizy = 0.5t (Kig—1,iz) + Kiiai)) 1 :

Axix_l/Q 0.5 (Axix_l/g + A«Tix-i-l/z) .

6.6.3 Boundary conditions on the staggered grid

For the heat equation (6.51), we prescribe either the testyreror the heat flux. For the
left-hand side boundary, the prescribed temperature tondakes form

T = TBC TO 2 (TBC)

(14z)
whereTBC is prescribed boundary temperature. The discretizatiberse of this con-
dition is in Fig. 6.®. The normal-flux condition on the Ihs boundary can be expgekss
using the virtual point as follows:

¢ =—q° 05 ((qx)@/m-z) + (qx)@/m-zﬂ = — () (1) - (6.53)

whereg¢2¢ is prescribed boundary value and it is positive in the sehtigecouter normal.
Similarly to the condition for the normal force (6.38), we wlot prescribe this condition
directly, however, we substitute it into the heat equat®bl)

1 0,3 2 0,3 3 0,4
5(i$,22 T(z:c iz+1) 5(i$,22 T(z:c iz—1) 26 (1x,iz2) T(wc-‘,—l iz) +

+ (L6 + 87 +28%), T =T+

(iw,iz) ~ (iw,i2) (ix,iz)

(6.52)

(1,iz)?

Ra q:v iz

(Al’l/g + A.Ts/Q)

The scheme of this equation is in Fig. 6.6

Figure 6.6 Scheme o&) the heat equation (6.51) in the point., z;.; scheme of the boundary condition
for b) prescribed temperature (6.52) atidorescribed normal heat flux (6.54) in point, z;.. Red color
marks the points used for the discretization of the heatt&mnsmand boundary conditions.
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6.6.4 Inversion

As we mentioned above, we haxe - nz unknowns. For these unknowns, we prescribe
(nx —2)(nz —2) heat equations (6.51). Moreover, we prescihe + 2nz — 4 boundary
condition. Hencenz - nz equations are solved farr - nz unknowns. We can reformulate
this problem into the matrix proble®@ - y = d, wherey is a vector of unknowns] is
right-hand side vector an@ is band matrix. The band-width of the matixis 2nx + 1.

For the inversion, we again use LU decomposition and LAPAGBrsutines.

6.7 Marker technique

Advection part of the heat equation is solved using the miadahnique. The temperature
markers are distributed evenly in each cell of the primany-staggered grid. The starting
positions of these markers are the same for each time stepgath time step they are put
back into their original positions). After finding the satut of the heat equation without
heat advection (6.51), the temperatii¥ is interpolated into markers using Eq. (6.10).
Hence, we gain the temperature distributicyn) im = 1,..., M in markers M is number
of markers. Then the markers are moved using the velocityildlision v* (section 6.8).
Finally, the temperature is interpolated back from the tpd@osition of the markers on
the Eulerian grid and new temperatdreis computed (see section 6.9).

The advective transport equation (5.17)

is solved using the chemical markers (each iz +1
marker carrying the information about chem-

ical component). In each time step, the mark- - =

ers are shifted using the velocity field'. 5
From these markers, the chemical concentra- -

tion can be computed on the Eulerian grid
(see section 6.10). Moreover, the chemical ,
markers are used to compute the latent heat
(see section 6.8). Contrary to the temperature
markers, chemical ones do not return to th(ﬁigure 6.7 Scheme of the addition of the chemical
original positions in each time step, but thenﬁarkers'
move with the material. Therefore, the distribution of themical markers can be insuf-
ficient in some cells of the non-staggered grid (Fig. 6. @radbme time. In this case, we
have to add some extra chemical markers. Firstly, the positi the new marker is com-
puted randomly in the insufficiently covered cells. (Figl,&mall solid circle). Then all
markers in the distance less thigrig. 6.7, open circle) are counted. Finally, the resulting
chemical component of the new marker is set randomly witbaidity corresponding to
the concentration of the markers in the chosen circle (sgedk, splitted circle).

6.8 Advection of the markers and latent heat

The advection of both temperature and chemical markerseiditst order method in
time and the fourth order method in space. We use fourth dkdege-Kutta scheme to
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compute the displacement and the new position of the mafkethe position of themn™
marker, we use following scheme

7

Vo= V(X))

vo = vi(x. +0.5Atvy),
vy = v'(x}, +0.5Atvy),
vy = V(X + Atvs),

xp = X 6AL (v +2vy + 2vs 4+ vy),

wherex®, = (x¢ 2z )is an original position of th¢im)™ marker at the beginning of

thei'h time stepx®,,, = (z2, 24) is a position of the marker after advection. Moreover,
the relationx® = x'*! holds for the chemical markers. Vectgrdenotes field of velocity
interpolated to the marker using Eq. (6.10).

Since the latent heat can be different for various chemimadpgonents, it is computed
together with the advection of the chemical markers. Udiegélationship (5.13) gener-

alized forl = 1,..., My components in dimensionless variables:

l I,k . L,k
(;21 = E =D ] + ’
k R ' ( jB QS) %7k Dt ’

wheree, ;. denotes parameters for tii@ material and the:™ phase transition in this
material. Hence, for then'® marker containing'® material, it can be written

Rby i, 0,
AT =N 2 pg (70
(a1 = 30 i (14 +

) Vi,k (Fz,k ( Zm,TOZ) Lo (x ( Zm1’T02 1)) ’

(6.55)
Where(AT)ferL denotes the temperature change caused by all phase tarisitheim™"
marker containing material T, (x¢,,,7%") andl'; (x;,!, T%~') are phase functions
computed for temperatures distributicfi$’ and 7%~! in the pointsx!, andx. !, re-
spectively. The phase functiofig;, are calculated using equations (5.10) and (5.11). The
temperature changes caused by latent hAﬁ’t) is interpolated from markers on Eu-
lerian grid using Eq. (6.11), hence we get the temperatuae@ds on the Eulerian grid

(AT)QL

(ix,iz)"

S
T —Tg

6.9 Interpolation of temperatures to the Eulerian grid

After advection of the temperature markers, the tempegdtald has to be interpolated
back from the temperature markers to the Eulerian grid. Fsrihterpolation, the for-
mula (6.11) could be used as is done by Gerya and Yuen (20a8yeYer, this relation
does not describe the inversion process to the bilinearpokation from the grid to the
markers (6.10). Moreover using this relation (6.11) carseanscillations of the resulting
temperature field,, .., which have to be filtered out. Hence, the method which uses

the inverse relatlonshlp to the formula (6.10) should bedusghe inverse problem in
the form Ta11 = W, - T, should be solved. Vectcffﬁf1 denotes temperature in the



86 CHAPTER 6. METHOD

markers(T&{\ﬁ)im = T,,, matrix W2 contains weights corresponding to Eq. (6.10) and
vector T,;; is composed of temperature in the nodal poififs = T}f(z.iz), in IS inth
component of the vectoif is unique identifier of the nodal poiftz, iz). Therefore, the
overdetermined inverse problem (we assume more markergtieanodal points) should
be solved. However, this inversion is rather time-demagdifherefore, we adopt the
following scheme, where the inversion is splitted up intoeseof the inversions. In each
cell of the non-staggered grid, we formulate the relatiomvieen markers in this cell and
the surrounding nodal points as follows

T w11 W12 w13 W14 T
T Wa1 Wa2 Wa3 Way (i,12)
= : : : : Lt | (6.56)
Tliziz+1)
Tt Wim-1)1 Wim-1)2 Wim-1)3 Wim-1)4 T(im—i—l i5+1)
Tm Wm1 Wm2 Wm3 Wma 7
™ = W.T,
T = (WC-w) - wT.TM (6.57)

wherem is the number of markers in ther, z’z)th cell (i.e. all markers satisfying condi-
tion 25, < Tim < Tipyr ANAz. < 25, < 2i.41). FOr theim™ marker, weightsv;, 1.....4)
are computed using (6.10). We assume an overdetermineteprdbr > 4 — more
than four markers have to be in the each cell). The vector emi¢int-hand side contains
unknown temperatures in the nodal points. For computingeheerature in the nodal
points on the boundaries, we use the virtual markers mirareund the boundary and

temperature in these marke(@jni“)Z is prescribed for the Ihs boundary as follows

for prescribed temperature 0.5 (Tim + Tijj;t)i — TBC

for prescribed normal heat flux (Lo — T3)" = —g2€.

Lim

For this markers, the inversion (6.57) is also solved. Hemeesolve(nx + 1)(nz + 1)
inverse problems (6.57) and for each nodal point, we get $olutions. The resulting

temperature in the nodal poirﬁ% is calculated by averaging these four solutions and

1,i2)

by adding the temperature changes caused by the Iaten@zhé‘é@)

(ix,iz)"

6.10 Computing concentration and scalar properties

The scalar properties of the fluid are computed in the nodaltpof the non-staggered
grid (solid squares). In general, we assume that thermalresipn coefficient, thermal
diffusivity £ and density variatiod\p depend on the temperaturg depthz, concentra-
tion of the/"™ materialc; and on the phase functiods,, i.e. Ap = Ap(T, ¢;, T, 2).
Besides, viscosity) depends also on the second invariant of the strain rate reinso
n= T](T, Cr, Fl,k) zZ, éH).
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The concentratiofic;) for the /™™ material is calculated using Eq. (6.11)

(iz,iz)

(wl) T,z
(Cl)(im,iz) = %’ (658)

w(zm,zz)
where(w;);, .., is @ sum of weights (6.12) over all markers containing/thehemical

component in adjacent cells to the nodal pégint iz) and(wa”)(m i) is a sum of weights

(6.12) over all markers in adjacent cells to the nodal pgintiz).

The density variation is computed using the equation oégta®) andfof = 1,..., M,
components. The density anomélypc) caused by multichemical components can
be computed as

(ix,iz)

l

(Apc)(mvlz) = (Z (Cl)(ix,iz) RCl) - ApC, ref(ziz), (659)

whereRc, is chemical Rayleigh number for tfi& material,> denotes depth amipc ,of(2;.)
is chemical reference density at a given depthForg = (0, g.), it is given by

ApC, rof(Ziz) = m/ (Z( ) Z.’E ZZ RC[) dJJ

Ny l

The density variation in the nodal poifitz,iz) caused by the phase transitions can be
expressed as follows

(Apph (iwyiz) (ZZ Cl (ix,iz) Rblkrlk(xzxazzz)> _Apph, ref(ziz)a (660)

wherel denotes thé'™ material and: denotes thé'™" phase transitionkzb; ,, andT’;;, are
phase Rayleigh number and phase function forkthghase transition in thi" material.
Appn, ret(2i2) 1S phase transitions reference density at a given dgpttForg = (0, g.),
it is given by

1
Apph, ref(2iz) = m/ <Z Z 1) (i i) LOLRL 1 (T, Zzz)) da.

The temperature density variatiodg are

<APT)(zm,zz) = _a_ORaT(wc 1z) APT rof(ziz>7 (661)

whereApr is temperature reference density. lgor (0, g.), is given by

1 Tnx
APT, rcf(ziz> = 7'7;1/ __Rasz Ji2) )d

L, &%)
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If we consider constant thermal expansivity, these eqnatian be rewritten into
(ApT)(waz) = —Ra (T(zm,zz) - Tref(ziz)) (662)

1 Tnx
j}ef(ziz> = 7/ T(z:c,zz))dxv

l’nx — T z1

whereT, is reference temperature (geotherm).
The resulting density variation is given by the sum of cdnitions (6.59—6.61)

Viscosity,.i-) is calculated as follows

1

. _
1 Ui (ix,iz)

) iziny = S1( Tz Zizs (E10) iz  Tik)-

The resulting viscosity is an inverse value of the sum ofmexial values of the viscosities
m with weightsc;. Viscosity of thel'" material can be a functiony,) of temperature,
depth, second invariant of the strain rate tensor and phastidns.

6.11 Tests

Before employing the code in mantle slabs modeling, we per&everal numerical tests.
First three tests (6.11.2—6.11.3) are based on Gerya and (A0©3). Moreover, we
compare our results with benchmark of the thermal convecitmles (Blankenbach et al.
1989) to test our code.

6.11.1 Sinking of rectangular block

The first example demonstrates the ability of our numeridémgntation to handle sharp
and large viscosity changes. In this test, equations (5.153 are solved for the heavy
a) 0 My b) 15.37 My C) 21.61 My

Figure 6.8 Markers distribution (blue — rectangular block, red —#sunding material)a) initial distri-
bution of markersb) markers distribution after5.37 My and viscosity contrastiocx/n, = 1, ¢) markers
distribution after21.61 My and viscosity contragbock/,, = 10°.
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rectangular block falling due to the gravity acceleratipn= 10m/s2, On the bound-
aries, the free-slip conditions are prescribed. The réisolwof the staggered grid is
50 x 50 nodes and we have 25 markers in each cell. The initial carditare shown
in Fig. 6.&. The size of studied area380 km x 500 km, the rectangular block measures
100km x 100 km and is placed0 km below top boundary. The densities of the sur-
rounding material and the rectangular block 2r200 k&/ms and3, 300 k&/m3, respectively.
Viscosity is equal ta), = 102! Pa - s for surrounding material. The falling block has
either the same or higher viscosity. For viscosity contb@ttveen the rectangular block
and surrounding materialoc</n, = 1, the result is shown in Fig. 6oafter15.37 My. For
the viscosity contrastue/y, = 109, the result afte1.61 My is plotted in Fig. 6.8. The
numerical method is able to successfully solve the problsitissharp viscosity contrast
of at leastt orders of magnitude.

6.11.2 Flow with non-Newtonian rheology

This test demonstrates the behavior of solu-
tion with strain-rate dependent rheology. We ‘ i
solve Egs. (5.15-5.16) in the vertical chan- *°]

10°

nel with non-Newtonian rheology and with
no gravity. No-slip is prescribed on vertical
boundaries and the flow is driven by the ver-
tical pressure gradierit/s-. The rheology is
described by the relation

0.8

2 0.6

)
2
>

L 102

nMme

L 101

0.2+ ’ N
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8/UZ o \"\
Opr =M g .

' 0.0 += : . : ; ~4 00
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The analytical solution (Gerya and Yuen
2003) of this problem is Figure 6.9 Solution for flow with non-Newtonian
rheology. Solid circles and dashed lines are
22\ * 1A /op /o- 3 numenc_al and analytlt_:al _solu'uons for viscosity.
v, =00 1= = R Open circles and solid line show the numeri-
? L 64 \ M cal and analytical solution of the velocity profile
"o 4M?
n=-——"—"——2 M= _"——"——3
(2L —1) (%f0=L)

across the channel.

Both the analytical solution and the numerical solutionliénodes resolution agree very
well (Fig. 6.9).

6.11.3 Couette flow with viscous heating

In this test, Egs. (5.15-5.16) are solved together with da¢ quation (5.18) with viscous
heating. The equations are solved for the vertical chanitebwt gravity. The vertical
pressure gradier@f is equal to zero. On one vertical boundary, we prescribecitglo
v, = v,0 and temperaturg = 7,. On the other boundary, no-slip = 0 and normal heat
flux g—i = 0 is prescribed. The initial distribution of the temperatisreonstant. Viscosity
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a) b)
10 7 ‘
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Figure 6.10 Solutions for Couette flow with viscous heating, nucarsolutions are marked by solid
points, the analytical one with the line®;dependence of the Brinkman number (for definition see Ttecot
and Schubert 2002, p. 317) on the maximum of the dimensistéesperature changg = (T-70)/1y; b)
the profile of the dimensionless change of the temperatuteichannel for different Brinkman number.

is temperature-dependent

=1e S U |
X
1= Tho &XP RIL, \T ’

whereF is activation energyz denotes gas constant amds pre-exponential rheological
constant. We solve the time evolution problem as long asaiimpérature profile changes
for wide range of flow parameters. We use 24 nodal points abderhperature markers.
The numerical solution agree with analytical steady-sbaite see Turcotte and Schubert
(2002) (Fig. 6.10).

6.11.4 Thermal convection benchmark

In this test, we compare our results with the benchmark tegil Blankenbach et al.
(1989), i.e. we solve equations (5.15-5.16) and heat equ&si.18) without adiabatic
heating, viscous dissipation and internal heat sourcesth®boundaries, free-slip con-
dition is prescribed for system (5.15-5.16). For heat aqngb.18), temperature is pre-
scribed on the horizontal boundaries and zero heat-flux @nehtical boundaries. In the
benchmark by Blankenbach et al. (1989), the steady-statden is solved using various
codes and numerical approaches. Here we use our time depieoade and we solve the
time evolution of the thermal convection until we get steadlution.

Our tests 1a and 1b are performed for constant viscosity aytelgh numbersia =
10* and Ra = 105, respectively. The results are summarized in Tab. 6.1. l@®itdw
Rayleigh numbeiRa = 10%, the solution converges to the benchmark results when we
increase the resolution. The test with the same grid resol#nd different numbers
of markers per cell (last four rows of Tab. 6.1) shows thatdbktion is not influenced
considerably even if rather low number of markers is usest {te only 9 markers in cell).
For high Rayleigh numbeRa = 10°, the steady state is reached, however root mean
square of velocity is slightly underestimated and Nussefhiner (dimensionless mean
surface temperature gradient over mean bottom tempeyandgemperature gradient in
one corner is overestimated. This effect should be elimohby increasing the resolution.
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Test 1a — constant viscositita = 10*
resolution markers vrums Nu a1 G2
Blankenbach et al. 42-44 52-45 5-11 0.50.8
(1989) (42.80) (4.9 (8.1) (0.59
24 %24 64 42.67 5.42 9.15 0.59
36x 36 64 42.78 5.13 8.57 0.59
48x 48 64 42.81 5.02 8.35 0.59
64 x 64 64 42.83 4.96 8.22 0.59
48x 48 9 4264 5.02 8.36 0.59
48 x 48 25  42.82 5.03 8.38 0.59
48x 48 144  42.82 5.02 8.34 0.59
48 x 48 225  42.82 5.02 8.34 0.59
Test 1b — constant viscositRa = 10°
resolution markers vrus Nu 0 G2
Blankenbach et al. 777-979 18-23 35-55 0.741.1
(1989) (833) (21.9) (46) (0.9)
64 x 64 64 821.02 2760 61.68 0.81

Table 6.1 Benchmark for constant viscosity, test 1a is compute®R&yleigh numbeRa = 104, test 1b

is for Ra = 105 ; vgrumg denotes root mean square of the velocly is Nusselt number;; andg, are
temperature gradients in the corners near surface; thefragsently values obtained by Blankenbach et al.
(1989) are in parentheses.

Test 2a — temperature dependent viscosity, In(1,000), ¢ = 0, Ra = 10*
resolution markers vrums Nu 1 G2 q3 s
Blankenbach et al. 450-520 9-10.5 14-20 1-1.3 20-31 0.4-0.6
(1989) (480) (10.0) (17.5) (1.0) (32.7) (0.43)

64 %64 64 470.1 10.0 17.00 1.05 3269 0.431
Test 2b — temperature dependent viscosity, In(16, 384), ¢ = 64, Ra = 10*
resolution markers vrums Nu 1 G2 q3 s
Blankenbach et al. 170-200 6-8 12-22 0.15-0.30 13-17 @.2-0.
(1989) (171) (6.93) (18.5) (0.17) (14.1) (0.61)
48x120 64 170.8 7.26 17.07 0.207 15.40 0.567
64x160 64 171.7 7.15 17.46 0.197 15.18 0.593
120x 300 64 175.5 7.12 18.19 0.189 14.70 0.605

Table 6.2 Benchmark for temperature and depth dependent vigcos#t 2a is computed for Rayleigh
number at surfac&a = 10, b = In(1,000), ¢ = 0, test 2b is computed for Rayleigh number at surface
Ra = 10%, b = In(16,384), ¢ = In(64); vrms denotes root mean square of the velocityy is Nusselt
number,q, g2, g3 andgy are temperature gradients in all corners; the most frequealues obtained by
Blankenbach et al. (1989) are in parentheses.
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For tests 2a and 2b, the viscosity depends on deptid temperaturé”:

_ T ez
1 = Tjo €Xp AT n

The surface Rayleigh numberig*. Viscosity parameters ate= In(1,000), ¢ = 0 for
test 2a and = In(16,384), ¢ = In(64) for test 2a. The results are shown in Tab. 6.2.
For both tests 2a and 2b, the solution is in the bounds oftseshtained by Blankenbach
et al. (1989).



Chapter 7

Long-wavelength slabs in the lower
mantle

Recent seismic tomographic models mapping the subduateas an details provide uni-
gue information about the structure of the subducted plétésrpretation of these hetero-
geneities is an important issue. From high resolution taieyoigic models (e.g. Bijwaard
et al. 1998, Karason and van der Hilst 2001), fast seismicraaties traditionally con-
nected to the subducting plates seem to be significantligghied after they penetrate into
the lower mantle. Further, the plate-like character of twmvelling anomalies vanishes
and blob-like features are observed in the lower mantle.s Tiiickening might be an
artifact of the tomographic inversion — the relatively thlabs could be interpreted as
thick anomalies due to smearing. However, the authors ofdm®graphic models pay
special attention to this problem. They claim to have a gefiiicresolution in the slabs
in the lower mantle (see e.g. Ribe et al. 2007). Ribe et aD{2@ound that the width
of the slabs may thicken froi0 — 100 km above the570 km boundary up to more than
400 km below it in Central America and Java zones. Further, thaysiggest thickening
by factors up to five in the Marianas, Kuril-Kamchatka and JanSuch an increase of
the wavelengths of the cold downwellings may indeed be regun some geodynamical
interpretations of e.g. long-wavelength geoid (Ricard.e1293) or long-term variations
of the Earth’s moment of inertia (Richards et al. 1997).

To be able to explain the slab long-wavelength charactéckighing or blobbing of
the slabs) in the lower mantle, the subducting plate hasgse fhaough some mechanical
barrier. At the depth o670 km, the significant increase of the viscosity is expected.
The increase by factar0 — 1,000 is usually accepted (e.g. Hager and Richards 1989,
Peltier 1996, Kido andCadek 1997, Lambeck and Johnston 1998). At this depth, the
subducting plate is also passing through the endothernaseltransition which forms
another barrier against the slab penetration into the lomgentle (Tackley and Stevenson
1993). Possible mechanisms of the slabs thickening are @ssipn due to the increasing
viscous resistance with depth (e.g. Bunge et al. 1@%i&kova andCadek 1997) or
the fluid buckling (Ribe 2003). The compression is, howesapposed to thicken the
slab approximately twice (Gurnis and Hager 1988, Gahertiytéager 1994), therefore it
may not be able to explain the tomographic results. The bugkbn the other hand, is
supposed to explain even larger thickening (Ribe et al. 007

93
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We employ the forward modeling method described in chaptersudy the circum-
stances under which the thickening of the subducting slabars in the lower mantle.
The deformation and potential thickening of the subducpigge in the lower mantle
depends on several parameters, especially on the rhealqguperties. Rheology of
the mantle material is known to be non-linear but its paransedre rather uncertain es
pecially in the lower mantle. That is why we first concentratea simple mechanical
model, where the subduction process is only governed by ositipnal buoyancy (slab
is compositionally heavier than the ambient mantle) andhiegt equation is not taken
into account. Both plate and ambient mantle have constaobsities, which can vary
between the upper and the lower mantle. In this simplifiedehode study characteris-
tic behavior of slab deformation depending on the viscositytrasts. Then we employ
the model driven by the thermal anomalies, where the plagedefined purely thermally.
The rheology of the mantle material is based on experimshidies of the mantle miner-
als. Further, the major phase transitions and complexmdyimechanism (slab pull, ridge
push and mantle drag) are included. In this second modeliwdy $he influence of the
plate strength, viscosity jump 670 km boundary and boundary conditions.

7.1 Compositional model

7.1.1 Model setup

In this model, equations (5.15-5.17) are solved, i.e. wechsenical convection and the
flow is driven only by the chemical buoyancy. The initial getsi shown in Fig. 7.4 and
detail of the studied area is in Fig. B.1n our model slab pull is taken into account, other
two driving mechanisms (mantle drag and ridge push) aretethitThe studied area is
2,000 km deep and, 000 km wide. On the bottom and vertical boundaries, the free-flux
condition is prescribed (5.22). On the top boundary, the-gkp condition (5.20) is used
for x < 1,000 km and no-slip condition (5.19) far > 1,000 km is used. In horizontal
direction, the maximum resolution of the staggered gri8ilis for = € (900, 1330)km,
the minimum resolution i$2 km. The expansion of the grid is limited by factoe 1.03
(Eq. 6.9). In vertical direction, the resolution 3&m from top down to the depth of
z = 90 km. In the transition zone, the resolutionli§km and near the bottom boundary

a) 1,000 km b)
free-slip no-slip _
200 km§tF F—— N P —— S
670 km . D g \ ® 7
91 I e |2 S
& = i
£ =5 T 200mm |
10 km
free-flux ©
3,000 km

Figure 7.1 Initial setup of the compositional model faj whole area and fob) detail, material 0 —
surrounding mantle material, 1 — subducting plate, 2 — dpting layer, 3 — over-riding plate.
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po reference density 3,200 kg-m™3
Ap density anomaly for material 1, 2 and 3 100 kg-m™3
go gravity acceleration 10 m-s~2

no reference viscosity 10 Pa-s
num  Viscosity of mantle (material 0) in the upper mantle 102! Pa-s
nm  Viscosity of mantle (material 0) in the lower mantle 1022 Pa-s
nusp  Viscosity of subducting plate (material 1) in the upper fentl0*!-2% Pa-s
nmsp  Viscosity of subducting plate (material 1) in the lower ni@nt10?2=2¢  Pa - s
npr,  Viscosity of decoupling layer (material 2) down20 km 102 Pa-s
nop Viscosity of over-riding plate (material 3) 10%® Pa-s

Table 7.1 Parameters used for the chemical simulation.

model nuy [Pa-s] nom [Pa-s] nusp [Pa-s| nuse [Pa- s
CObOb 102t 10%2 102! 10%?
COb1b 102! 1022 1022 10%3
COb2b 102t 10%2 10% 10%
COb2a 102t 10%2 10% 1023
COc2a 102t 10%4 1023 1023

Table 7.2 Parameters of the models for chemical convection, sigcof the surrounding mantle is marked
by num in the upper andyy; in the lower mantle, viscosity of the subducting platesisp in the upper
andnpsp in the lower mantle.

the resolution iS50 km. The expansion of the grid is limited by facter= 1.03 and
¢ = 1.04 for the upper and the lower mantle, respectively.

In our simulation, we use four different types of the maleriaaterial O (mantle
material) is a reference material, material 1 denotes stthdyplate, material 2 describes
decoupling layer and material 3 is the over-riding plate.tdvials1 — 3 have negative
buoyancyl00 k&/m® with respect to the reference mantle material 0. The thiskné the
subducting and over-riding plates1i80 km. Decoupling layer thickness i) km and it
creates the top part of the subducting plate. This layeré@ssseparation of the subducting
and over-riding plate during the subduction process (Eith)7

The viscosity of both mantle and slab materials can vary betwthe upper and the
lower mantle. The viscosity jump at th#&0 km depth in the slab material can be dif-
ferent than the jump in the mantle material. The mantle nateiscosity is equal to
10%! Pa - s in the upper mantle and it increases by fadtor- 1,000 in the lower mantle.
The subducting plate material viscosity varies betwe@h Pa - s and10% Pa - s in the
upper mantle and0?> — 10%* Pa - s in the lower mantle. The decoupling layer viscosity
is 10?! Pa - s down to the depth 0200 km. For greater depths, the strength of the decou-
pling layer is equal to the strength of the subducting plates over-riding plate is rather
rigid, its viscosity is10% Pa - s. In our parametric study, we change only three parameters
— viscosity contrast between the upper and lower mantle maégdecontrast between the
slab and the mantle materials in the upper mantle and comteaseen slab and mantle
materials in the lower mantle. All parameters used in theuktions and the model list
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are shown in Tabs. 7.1 and 7.2. The models are closely deddntparagraph 7.1.2.

7.1.2 Results

The results for all models are shown in Fig. 7.2. In model GQlBere is no viscosity
contrast between the surrounding mantle material and thdusting plate in both the
upper and the lower mantle. The viscosity increases wittofdd) in both the slab and
ambient mantle material in the lower mantle. The resultrafteMy of simulation is
shown in Fig. 7.2, first row. As expected, the downwellingraates do not have plate
character. Two downwelling plumes with large heads devaisfead. No thickening of
the plate occurs in the lower mantle.

In model COblb (Fig. 7.2, second row), the viscosity conto@sween the plate and
the ambient mantle is equal 10 in both the upper and the lower mantle. At #i& km
boundary, both plate and mantle viscosities increase albofactor 10. The result after
48 My of simulation is plotted. The material of the subducting@lis somewhat thick-
ened in the lower mantle. However, its wavelength is stiisiderably lower than in the
tomographic models. During the slab penetration to the tawantle, the compression
regime is observed in the vertical direction underé@fié km boundary, which causes the
thickening (see time evolution in Fig. 7.3). Aftés My, the subduction is dilating in the
vertical direction at depths lower th&A0 km and then for: € (670, 1100)km (blue areas,
Fig. 7.3, second row). The compressional regime is obsamddr thes70 km boundary
in approximately horizontal direction (red area, Fig. T#d row). In the vicinity of the
tip of the subducting plate, the compression occurs in thigcat direction as the plate
penetrates into the viscous material.

For the model COb2b (Fig. 7.2, third row), we again incredmse iscosity of the
plate in both the upper and the lower mantle to two orders ajmtade in comparison
with the mantle material. In this case the plate penetratébe lower mantle without
any significant deformation. Afte32 My, when the subduction tip arrives @70 km
boundary, the material is again under mechanical commnessimilarly to the previous
model COblb. However, this compression is not sufficienthioken the plate. The
horizontal dilatation of the plate already occurs down tptHeof ~ 1,300 km (Fig. 7.2,
third row). For even greater depth, the compression can ereéd in the plate in vertical
direction.

Model COb2a (Fig. 7.2, fourth row) differs from model COb3bdecreased viscosity
of the plate by factot0 in the lower mantle. The results are rather similar to theipres
model. The stress regime is not very different, howevertrtngsition between the vertical
dilatation and compression in the plate is shifted to loweptts ¢ ~ 1,200 km).

In the last model COc2a (Fig. 7.2, fifth row), the viscositytbé mantle material
increased, 000 times in the lower mantle. The viscosity of the plate is canstn both
the upper and the lower mantle. In this case, the plate isibgndlowever, no significant
thickening is observed. The strong vertical compressi@uigchboth above and under the
boundary at70 km.

To summarize the characteristics in our models, we can wbsame thickening of
the subducting plate only in the model with relatively lownt@ast between the subducting
plate and the mantlen(sr/,, = 10) and with increase by factdi in the lower mantle
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Figure 7.2 Results of chemical convection for model CObOb (first)yadb1b (second row), COb2b (third
row), COb2a (fourth row) and COc2a (fifth row). The chemiaainposition (first column) and, 000 km
wide and1, 600 km deep detail of relative viscosity in the log scale (secondron), second invariant of
stress tensory; (third column) and eigenvalues and direction of eigenusobd stress tensor (fourth and
fifth columns, axis are marked by lines, amplitudes by coklddfiblue and red color denote dilatation and
compression regimes, respectively) are shown. White lilee®te depths ¢f00 km and670 km.
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Figure 7.3 The time evolution of the model COb1b for chemical conitpms (first row) and eigenvalues
and eigenvectors (second and third row)000 km wide and1, 600 km deep part of the model domain is
shown.

(model COb1b). The width of the plate increases approxilpatgce with respect to its

upper mantle value. Such thickening is too low to explaintdmographic results. For
even higher increase of viscosity in the lower mantle (m&@dt2a), the subduction is
bending after penetrating the lower mantle, however, nckéning is observed. Clearly
some more complex model has to be considered to explainitiegi@phic observations.

7.2 Thermo-compositional model

7.2.1 Model setup and boundary condition

In this model, we solve Egs. (5.15-5.18). The model setupustiated in Fig. 7.4.
The model is7, 000 km wide and2, 000 km deep. A ridge is positioned in the left-hand
side upper corner. Plate width increases from the ridgeddrémch following the half-
space cooling model with maximal age0 My. Hence the ridge push, mantle drag and
slab pull are all taken into account. The subducting plate (90 km long. The over-
riding plate is positioned for > 5,000 km and its width corresponds to tH&0 My
old plate. On the top of the subducting plate, there i$ &m thick layer of relatively
weak material. This crust-like layer enables the separaiiche subducting and over-
riding plates. Its characteristics are, however, quitepsénfconstant viscosity and no
compositional density contrast) compared to complex ptegseof the real crust. The
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Figure 7.4 Initial setup of the moded) for whole area ant) for detail, material 0 — mantle material, 1
— decoupling layerg) profile of initial temperature condition for age of the plat# My (solid line) and
adiabatic profile for potential temperatufg,. = 1,573 K (dashed line).
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Figure 7.5 Profile of top boundary condition for prescribed velpa) whole profile b) detail of transition
between prescribed velocity and no-slip condition.

geometry of this decoupling layer on the contact betweerstielucting and the over-
riding plates is in Fig. 7.4. The initial temperature condition is adiabatic

Tadiab(z) - Tpot exXp (aogoz)

Cp

with potential temperaturg,.. = 1, 573 K together with half-space cooling. The temper-
ature profile for agé00 My is in Fig. 7.4&.

The resolution of Eulerian grid on the left-hand side-id0 km, the grid is shrinking
with the coefficient = 1.03. Maximum resolutior8.33 km is reached for: € (4,800 —
5,300) km. Then the grid is expanding with coefficient= 1.035 and the minimum
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resolution on the right-hand side 4¢ 50 km. In the vertical direction, the maximum
resolution is3 km for z < 90km. The resolution down ta = 700 km is 10 km, the
resolution near bottom of the model 8 km. The expansion of the grid is limited by
factors1.03 and1.04. In each cell, we havé00 temperature markers ai@d0 chemical
markers at the beginning.

We use the free-slip condition on the left, right and bottooufdaries. On the top
boundary, we use either free-slip or prescribed velocitydition. The profile of the
prescribed velocity is in Fig. 7éb The prescribed velocity is, = 5cm -y~ ! andv, =
Ocm-y~! forz < 4,980km. Forz > 5,000km, no-slip is prescribed. The width of
the transition between prescribed velocity and no-slipikm (Fig. 7.3). The boundary
conditions for the heat equation (5.18) are as follows: anttp boundary the surface
temperaturdy (Tab. 7.3) is prescribed except for the left-hand side uppemer, where
the potential temperaturg,,; is specified. On the bottom boundary, the temperature is
Ts. On the left- and right-hand side boundaries, zero heat 8yxescribed. Further,
the phase transitions at depth0 km and670 km are included in this model. All used
parameters of the model are in Tab. 7.3.

For the rheological description of mantle material, we useraposite model (van den
Berg et al. 1993) including diffusion creep, dislocatioaep and power-law stress limiter
approximating the strongly non-linear Peierl’s creep.eEfiive viscosity is expressed as

follows: )
1 1 1 1\
Neff = ( + + —+ ) , (7.1)
Naifr Tldisl Ty TImax

wherengg andng are viscosities of the diffusion creep and the dislocati@ep, re-
spectively.n, is the viscosity of the stress-limiting mechanism apg, is a maximum
viscosity introduced to limit viscosity in the coldest dbal parts of the model. Pressure
and temperature dependence of the viscosities of the wiffuseep and dislocation creep
follow Arrhenius law

Naif = C’Agi}f exp <%) , (7.2)
Ndist = CA;iZnéEin)/n exp <%§%) - (7.3)

Stress limiter viscosity, is calculated using
Ny = Coyéy e, (7.4)

Stress-limiter replaces effectively Peierl's mechanismlew temperature plasticity
(Kameyama et al. 1999). If power-law index is 1, this mechanism describes the vis-
cosity limit. Forn, — oo, the maximum stress is limited to the regardless the yield
strain rates,. Here we user, = 5, therefore, our stress-limiting functional descrip-
tion is in fact a strongly non-linear dislocation creep. Twaues of the yield stress —
oy, = 0.1 GPa or 1 GPa are taken into account. Two values of the viscosity of theodec
pling layer10' or 102! Pa - s are tested. At the depths higher ttf0 km, the decoupling
layer material has the same rheological properties as titlen@aterial. The viscosity
within the studied area varies betwerit? and102® Pa - s, hence the viscosity changes
are approximately orders of magnitude.
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gravity acceleration 90 10 m-s—2
height of the model domain d 2,000 km
surface temperature Ts 273 K
bottom temperature Ts 2,753 K
potential temperature Toot 1,573 K
reference density 00 3,400 kg - m~3
thermal conductivity k 5W-mt. Kt
heat capacity Cp 1,250 J-kg ! - Kt
thermal expansivity o 3.5-107°% K1
plate velocity Uy 5 cm -yt
molar gas constant R 8.3143 J-K~!-mol™!
maximum viscosity Nmax 10%® Pa-s
reference viscosity Mo 10%! Pa-s
upper mantle parametets:
pre-exponential parameter of diffusion creepdgig  1.92 - 10710 Pa~! . 57!
activation energy for diffusion creep Eiq 300 - 10% J - mol™!
activation volume for diffusion creep Via 6.0-107% m? - mol™!
pre-exponential parameter of dislocation creég, 2.42-107¢ Pa™.s7!
activation energy for dislocation creep Ela 540 - 10® J - mol™!
activation volume for dislocation creep Vi 15-107% m? - mol™!
power-law stress exponent n 3.5
lower mantle parametefs:
pre-exponential parameter of diffusion creepdgig  3.65- 1071 Pa~!.s7!
activation energy for diffusion creep Eig 208 -10% J-mol™!
activation volume for diffusion creep Vi 2.5-107% m?® - mol™!
pre-exponential parameter of dislocation cre¢p, 6.63 10732 Pa ™™ .s7!
activation energy for dislocation creep Eiy 285 - 10% J - mol™!
activation volume for dislocation creep Vig 1.37-107% m3 - mol™!
power-law stress exponent n 3.5
yield stress oy 10%,10° Pa
reference strain rate in yield strength determinatiar) 10715 g7t
yield stress exponent Ny 5
viscosity of decoupling layer DL 1019, 10% Pa-s
pre-factor coefficient in the upper mantle C 1
pre-factor coefficient in the lower mantle C 1, 10, 30
Clapeyron slope 400 km phase transition Y400 3.0 MPa - K1
density difference across 400 km phase transitiom\ p, 273 kg -m~3
Clapeyron slope 670 km phase transition Y670 -2.5 MPa - K™}
density difference across 670 km phase transitiom\ pg-o 342 kg -m™3
width of all phase transitions dpn 5 km

ladapted from Karato and Wu (1993)

2Yamazaki and Karato (2001), Frost and Ashby (1982), seddexietails

3Bina and Helffrich (1994)
4Steinbach and Yuen (1995)

Table 7.3 Parameters used for thermo-chemical convection.
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The rheological parameters such as the activation engtgwctivation volumé/*,
pre-exponential parametersand viscosity stress-exponeniare listed in Tab. 7.3. We
use different parameters for the upper and the lower maRtiethe upper mantle (UM),
the parameters adapted from Karato and Wu (1993) are used.sddling pre-factor
C in Egs. (7.2)—(7.4) is equal tb. In the lower mantle (LM), the parameters are less
constrained. Here we use parameters based on Yamazaki aatb K2001) and Frost
and Ashby (1982). They both use viscosity parametrizatesed on homologous tem-
perature. We estimate our activation parameters by fitthegy tviscosity curves. Pre-
exponential parameters’ )l and ALY are computed from conditiong/}! (670 km) =
nEM (670 km) andn{M (670 km) = nkM (670 km). Further, we use scaling factofs =
1,10, 30 from Egs. (7.2)—(7.4) in the lower mantle. Hence, this fad&fines the viscosity
jump at670 km boundary.

The effective viscosity and its decomposition is demonsttan Figs. 7.6 and 7.7.
In Fig. 7.6, the vertical profiles of viscosity after first #nstep are shown. At shallow
depths (approximately uppermadsio km), the stress limiter controls the deformation in
the cold subducting plate (Fig. &6b). Below the subducting plate, the dislocation creep
is prevailing (Fig. 7.6—b) though its viscosity is only slightly lower than the visdgof
the diffusion creep. In the rest of the mantle, the diffussogep viscosity prevails. In the
lower mantle, the viscosity is almost constant. The viggasirather low~ 4-10%' Pa - s
(Fig. 7.6) if no additional jump is assumed in the lower mantle<£ 1). If the viscosity
jump isC' = 10 (Fig. 7.&), the diffusion creep viscosity increases with factorin
comparison with model without viscosity jump (cf. Fig. &6 On the other hand, the
dislocation creep and stress limiter viscosity can inaeasere thar 0 times due to non-
linearity — the second invariant of strain rate tensor deses due to high viscosity.

The decomposition of the effective viscosity is demonettah a model with higher
stress limito, = 1 GPa and viscosity jumpC’ = 10 (Fig. 7.7). The logarithm of rel-
ative effective viscosity and prevailing mechanism are iop F.7a—b. Two horizontal
viscosity profiles in the upper mantle are given in Figc#d. In the subducting plate, the
stress limiter controls the viscosity. In the over-ridirigtp, the viscosity limit dominates
because of small deformation (the second invariant ofrstiate tensor is low). In the
material surrounding the subducting plate, the dislocati@ep prevails. In the rest of
the upper mantle, the diffusion creep mechanism contrelsigcosity. Similar viscosity
decomposition for one lower mantle horizontal profile isegivin Fig. 7. 2. The dislo-
cation creep prevails in the subducting plate and arouredséwhere the diffusion creep
mechanism controls viscosity.

Here we concentrate on the influence of the viscosity jumwéen the upper and the
lower mantle ' = 1, 10, 30). Further, we study the effects of the boundary conditions,
the viscosity of the decoupling layep, = 10" or 10! Pa - s and stress limiter, =
0.1 or 1 GPa. The list of the models is in Tab. 7.4.

7.2.2 Results

Here, we discuss the results obtained in the series of modéssort the models by the
value of stress limiterf, = 0.1 and1 GPa) and by the value of the viscosity of the de-
coupling layer {p;, = 10! and10?! Pa - s).
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Figure 7.6 Vertical viscosity profiles far = 4, 800 km after the first time step for modety Tsy9d19C01
andb) Tsy9d19C10. The effective viscosity is marked by thick solid line, diffusion-creep viscositys
by thin solid line, dislocation-creep viscosifyis by dashed line and stress limit viscosityby dotted line.
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Figure 7.7 Example of viscosity decomposition and horizontal esity profiles for model Tsy9d19C10)
after 63 My. For 2,000km deep and3, 000 km wide part,a) logarithm of relative effective viscosity
log (1/n0), b) prevailing deformation mechanism (0 — diffusion creep, 1 islatation creep, 2 — stress-
limiter, 3 — viscosity limit, 4 — decoupling layer for > 200 km). White lines denote the depth 260 km
and phase transitions &10 km and670 km. Horizontal profiles of viscosity at deptf) 300 km, d) 500 km
ande) 1,000 km. The effective viscosityj.s is marked by thick solid line, diffusion-creep viscosify:s
by thin solid line, dislocation-creep viscositmis by dashed line and stress limit viscosify by dotted
line.
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model o, | nor | C|boundary condition
[Pal|[Pa - s]
Tsy8d19COlv [10%] 10% prescribed velocity

Tsy8d19C10v |10%| 10! |10|prescribed velocity

Tsy8d19C30v  |108| 10 |30|prescribed velocity

Tsy8d19C01fs00 108 | 10'? free-slip

Tsy8d19C10fs00 10%| 10 |10|free-slip

Tsy8d19C30fs00 108 | 10 |30|free-slip

Tsy8d21COlv |10%| 10* prescribed velocity

Tsy8d21C10v |10%| 10%' |10|prescribed velocity

Tsy8d21C30v |10%| 10%' |30|prescribed velocity

Tsy8d21CO01fs1Q 108 | 10% prescribed velocityt(< 10 My), free-slip ¢ > 10 My)
Tsy8d21C10fs10 10%| 10%* |10|prescribed velocityt(< 10 My), free-slip ¢ > 10 My)
Tsy8d21C30fs10 10%| 10%t |30|prescribed velocityt(< 10 My), free-slip ¢ > 10 My)
Tsy9d19CO0lv |10°] 10 prescribed velocity

Tsy9d19C10v |10%| 10'° |10|prescribed velocity

Tsy9d19C30v  |10%| 10! |30|prescribed velocity

Tsy9d19C01fs08 10°| 10 prescribed velocityt(< 8 My), free-slip ¢ > 8 My)
Tsy9d19C10fs08 107 | 10 |10|prescribed velocityt(< 8 My), free-slip ¢ > 8 My)
Tsy9d19C30fs08 107 | 10 |30|prescribed velocityt(< 8 My), free-slip ¢ > 8 My)
Tsy9d21CO0lv  [107] 10% prescribed velocity

Tsy9d21C10v  |10°| 10%* |10|prescribed velocity

Tsy9d21C30v  |10%| 10%' |30|prescribed velocity

Tsy9d21C01fs0810°| 10* prescribed velocityt(< 8 My), free-slip ¢ > 8 My)
Tsy9d21C10fs08 10°| 10%' |10|prescribed velocityt(< 8 My), free-slip ¢ > 8 My)
Tsy9d21C30fs08 107 | 10%' |30|prescribed velocityt(< 8 My), free-slip ¢ > 8 My)

—_

—_

—_

—_

—_

—_

—_

—_

Table 7.4 Models description for thermo-chemical convection.

Models with lower stress limit and weaker decoupling layer

The models with lower stress limit, = 0.1 GPa and weaker decoupling layer;, =
10'° Pa - s are in Fig. 7.8 for prescribed velocity and in Fig. 7.9 forefigip boundary
condition. In these cases, the ridge push exceeds theofrict the plates contact and
internal resistance against bending and hence the plate taubduct on its own with a
free-slip condition prescribed on the top from the begigrahthe calculation (contrary to
the models which are discussed later). In all models, thdwsetibn process is accelerated
during passing the exothermic phase transitiofDatkm (cf. Figs. 7.8 and Fig. 7.9, third
column). Then the velocities of the subducting plates desredue to the mechanical
resistance — the plate is passing through the endothernaiseptiansition and in some
models also the viscosity increases there. The plate \wglegolution differs between
the models after the plates penetrate into the lower manttbe models with prescribed
velocity at the top, the plate velocity is partly controlley the boundary condition at
the surface. However, velocity differentiation within thlate is observed due to the weak
decoupling layer. That means that the velocity differs siggntly in the individual layers
of the crust. In the underlying slab, horizontal velocityedmot change substantially with
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Figure 7.8 Results for models with stress limij, = 0.1 GPa and decoupling viscositypr, = 10'% Pa - s.
On the top boundary, velocity is prescribed. 12,@00 km deep and3, 000 km wide part of the model
domain, the temperature (first column) and decadic logarith relative viscosity (second column) are
shown. The time evolution of the plate velocity at the pointth = = 4,800 km and depth (marked by
color)z = 0, 5, 15, 25, 45, 65 and85 km is plotted in the third column.

depth up to~ 100km. In the models with free-slip boundary condition, the vélpc
differentiation in the crust is much weaker. The velociiieshe plates in models with
free-slip are considerably higher than in the model wittspriéed velocity. This means
that even if the decoupling layer is weak, the velocity idl gtartly controlled by the

boundary condition.

The results for model (Tsy8d19C@) with prescribed velocity and no viscosity jump
(C'=1) are in Fig. 7.8, first row. In this model, the plate penesat¢o the lower mantle
without significant deformation. After passing into the Eawnantle, the plate velocity
accelerates until the plate is detached. Then the new cedie®. Model with prescribed
free-slip condition (Tsy8d19CQfs00) is plotted in Fig. 7.9, first row. After penetrating
into the lower mantle, the plate is accelerated due to itatnagbuoyancy until the bottom
of the studied area is reached. In this case, the velocityinvihe plate is unrealistically
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Figure 7.9 Results for models with stress limi}, = 0.1 GPa and decoupling material viscosity, =
1019 Pa - s. On the top boundary, free-slip condition is prescribeca 201000 km deep and, 000 km wide
part of the model domain, the temperature (first column) awdic logarithm of relative viscosity (second
column) are shown. The time evolution of the plate velocityha points withr = 4,800 km and depth
(marked by colory = 0, 5, 15, 25, 45, 65 and85 km is plotted in the third column.

high and the velocity in the crust is not differentiated. éttbabove discussed models, the
plates remain thin and they are not deformed significantiph&lower mantle. Further,
in these models, the numerical oscillations occur due tahtgk velocities within the
mantle.

The models with viscosity increage = 10 (Tsy8d19C10v and Tsy8d19C1(s00)
are in Figs. 7.8 and 7.9, second row. In both models, ratinge kdeformations (buckling)
of the material are observed in the lower mantle. The bugkinslightly stronger in
model Tsy8d19C1@s00. The plate velocities (Figs. 7.8 and 7.9, third colurnaye
similar characteristics as we described above. Furthter, thie tips of the plates penetrate
into the lower mantle, the velocity of the subduction is easing due to the increasing
slab pull and the small oscillations occur due to the bugklin

So far, we have discussed slab morphologies in differentatsad one time-step. Let
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Figure 7.10 Model Tsy8d19C18: time evolution of temperatuifgC], 1, 600 km deep and , 200 km wide
part of the model domain is shown.

model Tsy8d19C1@s00
t =0My t=105My t=21My t=315My t=42My t=>52.5My
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Figure 7.11 Model Tsy8d19C18500: time evolution of temperatufeC], 1,600 km deep and , 200 km
wide part of the model domain is shown.

us now illustrate the evolution of the slab in two models vdifierent boundary condi-
tions — prescribed velocity (Tsy8d19Ci0Fig. 7.10) and free-slip (Tsy8d19C1600,
Fig. 7.11). Both models are developing rather similarly. the model with free-slip
boundary condition (Tsy8d19C1800), slab is developing more slowly at the beginning
before the plate passes through phase transiticld@km. Then the plate velocity is
higher than in the model with prescribed velocity (Tsy8d10®) due to the extra buoy-
ancy introduced by the exothermic phase transition. Treceff this phase transition is
somewhat suppressed in the model with prescribed velwditgre the surface boundary
conditions limits the slab velocity. In both models, the dutting plates deform above
the phase transition &70 km due to the mechanical resistance of the lower mantle and
endothermic phase transition. These deformations ardezhblp rather low stress limit
o, = 0.1 GPa. Then the deformed plates slowly penetrate into the loweantl®a The
velocity of the subducting plate is higher in the upper natitlan in the lower mantle
(Fig. 7.12).

The detail of the slab in the model Tsy8d19C4&s in Fig. 7.12. We show here the
temperature field” (panela) and the temperature variatiaxil” with respect to geotherm
Tt (panelb) to illustrate the slab morphology. The decadic logaritHrthe relative vis-
cosity and the prevailing deformation mechanisms are irlsarandd. By the prevailing
deformation mechanism, we mean the mechanism which predacally the lowest vis-
cosity. The prevailing deformation mechanism (paahein the plate is stress limiter in
the upper mantle and stress limiter together with the datlon creep in the lower man-
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model Tsy8d19C1Q, ¢t = 54 My

a) TI[C] b) AT [°C] c) log ("/n) d) mechanism
oon2h 26 28 oo 24 26 28 oo 24 26 28 hond 26 28

3 A
0.2 0.2 ‘ 0.2 0.2 ‘
0.4 0.4 0.4 0.4 ‘
06 06 l 0.6 0.6 . )

08 : 058 058

= ] | — ] e e——
1240 2480 -1400 0 1400 -4-20 2 4 6 8 0 1 2 3 4

0) eigenvaluesPal

0.0

0.2 (==

L — ] [ — ] [ — ]
0 4e+08 8e+08 -8e+08 0 8e+08 -8e+08 0 8e+08

Figure 7.12 Result for model Tsy8d19CM0after54 My, a) temperaturd’, b) temperature variatioT'
with respect to geotherffi.¢, ) relative viscosity in the log scaleg (7/x,), prevailing deformation mech-
anism (0 — diffusion creep, 1 — dislocation creep, 2 — stil@sger, 3 — viscosity limit, 4 — decoupling
layer forz > 200 km), e) velocity v (directions are marked by arrows, amplitudes by color fid)dgecond
invariant of the stress tensag andg) its eigenvalues and eigenvectors are shown (axes are niaykeds,
amplitudes by color field)1, 600 km deep and, 200 km wide part of the model domain is shown.
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Figure 7.13 The phase transition influence, result for model Ts984Dv. 1, 600 km deep and, 200 km
wide detail of the model domain is shown.
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tle. The velocity field is in paned, directions of the velocity are marked by arrows, the
amplitudes by color field. To illustrate the stress regimthimithe slab, we show here
the second invariant of the stress tensor (p&nahd its decomposition into the eigen-
vectors and eigenvalues (pamgl The axes are marked by lines and the values by color
field. The dilatation (paneg, blue color) is observed in the plate above4hé km bound-
ary due to the buoyancy effect of the exothermic phase transiThe dilatation can be
also observed in the lower mantle in the outer part of the pirie. The plate is com-
pressed (red color) in the vertical direction between thgltel00 km and670 km due

to the combined effect of both phase transitions and thehardawer mantle due to the
viscous resistance of the lower mantle material. The pliegaiheological mechanisms
and stress regime in the model Tsy8d19@4@0 are similar to those discussed above for
model Tsy8d19C1@®.

Until now, we have discussed the effects of the viscositytaedoundary condition.
Now, let us concentrate on the effect of the phase transitionthe plate morphology.
To be able to study the influence of the phase transition, Weexquently enable/disable
individual phase transitions in the model Tsy8d19®10rhe results of this test are in
Fig. 7.13. In panedh, there is an original model with both phase transitionshéf€Clapey-
ron slopes of both transitions are set to zero, the buckloegsaot occur (pandl). Only
the tip of the subducting plate is slightly deformed due te genetration to the more
viscous lower mantle. If only the Clapeyron slope of the $raon at the dept00 km
is assumed to be zero (par@ the buckling occurs only as the slab tip penetrates into
the lower mantle. Later as the slab pull increases, bucldimgs not occur any more.
If the Clapeyron slope of the phase transition at the dépthkm is taken zero (panel
d) and only the400 km phase transition is considered, the buckling is observenhglu
the penetration into the more viscous lower mantle. Henoth the exothermic and the
endothermic phase transitions support the creation of glcklimg instabilities. The ef-
fect of the400 km phase transition has however even more important effecherslab
thickening.

Results of the models with viscosity jundp= 30 are in Figs. 7.8 and 7.9, third row.
For both models, the buckling occurs. At the beginning, tmplgude of the buckling
instabilities is rather high. However, as the slab pull @ases the buckling amplitude
decreases and the plate thickening is also caused by stesticgy compression. Further-
more, the plates seem to thicken not only in the lower manttelso between the phase
transitions att00 km and670 km. The plate velocity (Figs. 7.8 and 7.9, third column)
slightly increases after the plates penetrate into thedomantle. Further the velocity in
the lower mantle is rather low (up to& 2cm - y~') and the conductive warming of the
slabs is clearly visible.

Models with lower stress limit and stronger decoupling laye

The results for models with lower yield stress = 0.1 GPa and stronger decoupling
layer np;, = 10?' Pa - s are in Figs. 7.14 and 7.15. In models with prescribed vefpcit
the velocity within the plate is only slightly differented. The weak peak appears when
the plates pass through the phase transitiotOakm. For these models, the free-slip
could not be prescribed from the beginning of the simulatidre ridge push is too small
to overcome the friction on the contact of the plates and #rading resistance. Hence,
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Figure 7.14 Results for models with stress lini, = 0.1 GPa and decoupling layer viscosityp;, =
102! Pa - s. On the top boundary, velocity is prescribed. 12,800 km deep and, 000 km wide part of the
model domain, the temperature (first column) and decadaritign of relative viscosity (second column)
are shown. The time evolution of the plate velocity at thenfowithz = 4, 800 km and depth (marked by
color)z = 0, 5, 15, 25, 45, 65 and85 km is plotted in the third column.

we had to start the subduction process using the prescriddedity boundary condition
(5 cm - y~1) forinitial 10 My. At this time, the tip of the subducting plate is approxinhate
at the depth o200 km. Then the free-slip condition is prescribed — the ridge paisth
slab pull are already high enough to maintain the subdugtioness. The time evolution
of the plate velocity (Figs. 7.14 and 7.15, third column)diagain similar characteristics
— the velocity increases when the plate passes through theepinansition at00 km
and decreases again when the plate reaches the phasddmaasit70 km. Then the
velocity again increases due to the increasing slab puill tinet plate reaches the bottom
of the studied area or until it is detached. In this case, thrimum velocities are in the
reasonable bounds — maximum velocityisi2 cm - y~!. An interesting feature of these
models with free-slip boundary condition is the fact, the trench is moving forwards
probably due to the relatively strong coupling between thigdsicting and over-riding
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Figure 7.15 Results for models with stress liraif = 0.1 GPa and decoupling layejpr, = 10%! Pa - s. On
the top boundary, free-slip is prescribed. 12,800 km deep and, 000 km wide part of the model domain,
the temperature (first column) and decadic logarithm oftiredaviscosity (second column) are shown. The
time evolution of the plate velocity at the points with= 4, 800 km and depth (marked by colog)= 0, 5,

15, 25, 45, 65 and85 km is plotted in the third column.

plates and relatively weak and therefore easily deformabsde-riding plate.

The results for models with no viscosity jump@t) km boundary are in Figs. 7.14
and Figs. 7.15 (first row) for models Tsy8d21C0and Tsy8d21C01s10, respectively.
For both models, the plates are detached at a dep#0 km after they penetrate into
the lower mantle. For the model with prescribed velocity 83@&31CO01v, the plate is
deflected when it reaches tG@0 km boundary. After it penetrates into the lower mantle,
the detachment of the plate is observed. Then the new cyafts stnd the subduction
process continues. For the model with free-slip conditisp8d21C01fs10, the plate is
not significantly deformed after passing into the lower rreant/hen the subducting plate
is detached, the subduction process does not continues giacslab pull is apparently
not strong enough and contrary to the model Tsy8d21¢@fkere is no push due to the
surface boundary condition.
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model Tsy8d21C1¥
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Figure 7.16 Model Tsy8d21C18: time evolution of temperatuifgC], 1, 600 km deep and , 200 km wide
part of the model domain is shown.
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Figure 7.17 Model Tsy8d21C16510: time evolution of temperatufeC], 1,600 km deep and , 200 km
wide part of the model domain is shown.

The models with viscosity jump’ = 10 at 670 km boundary are in Figs. 7.14 and
7.15, second row. For these models, there is hardly any imgckl the lower mantle —
only one fold occurs before the plates penetrate into thelamantle. Time evolution of
these models are in Figs. 7.16 and 7.17. In both models,pgh®tithe slabs are deflected
when they reach the boundary @t0 km. After penetration into the lower mantle, the
plates do not significantly deform and no thickening occis. model with the free-slip
condition Tsy8d21C1@s10, the forward drift of the trench is observed.

The detail of the model Tsy8d21CMis shown in Fig. 7.18. For this model, the pre-
vailing deformation mechanism (parwlis stress limiter in the upper mantle and disloca-
tion creep together with the stress limiter in the lower f@anthe velocity distribution is
in panele. Contrary to the model with the weak decoupling layer (Fid2@), the veloc-
ity in the upper mantle and in the lower mantle does not d#fgnificantly in the model
Tsy8d21C10v (Fig. 7.1&). Hence the buckling does not occur. The stress regime in the
plate is shown in panal. The dilatation (blue color) in the plate is observed abdne t
boundary att00 km due to the extra negative buoyancy caused by the exothelmagep
transition. The over-riding plate is also dilating in theinity of the contact between the
plates due to the relatively strong coupling between thesmfared to the model with
weaker crust). Further, the horizontal dilatation occarthie tip of the slab at the depth
~ 1,500 km. The vertical compression (red color) is found between thendaries at
400 km and670 km and in the lower mantle similarly to the previously discuksases.

For yet higher viscosity jumg@' = 30, the results are in Figs. 7.14 and 7.15, third
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model Tsy8d21C1®, t = 62 My
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Figure 7.18 Result for model Tsy8d21CMafter62 My, a) temperaturd’, b) temperature variatioAT’
with respect to geotherffi..¢, C) relative viscosity in the log scaleg (7/x,), prevailing deformation mech-
anism (0 — diffusion creep, 1 — dislocation creep, 2 — sties#ter, 3 — viscosity limit, 4 — decoupling
layer forz > 200 km), e) velocity v (directions are marked by arrows, amplitudes by color fid)dgecond
invariant of the stress tensaf andg) its eigenvalues and eigenvectors are shown (axes are nmaykees,
amplitudes by color field)1, 600 km deep and , 200 km wide part of the model domain is shown.

row. For the prescribed velocity on the top boundary (modsi8621C30v, Fig. 7.14),
the plate is pushed into the lower mantle. The buckled anesare created at the be-
ginning — three folds occur. Then the subduction processimaes without buckling.
However, the plate is still thickening due to the rather éangechanical resistance of the
lower mantle. This thickening is observed in the lower maathd also betweef)0 km
and670 km boundary. The slab velocity in the lower mantle is rather (w2 cm - y~!)
and significant conductive warming of the slab is observedtite model with a free-slip
boundary condition (model Tsy8d21C3410, Fig. 7.15), one fold occurs when the plate
reaches thé70 km boundary. Then the penetration into the lower mantle slaalytin-
ues. The maximal velocity within the lower mantle is lessntBam - y—1. Again the
conductive warming of the slab is significant. In the lowemtis, the plate thickens due
to the compression. Further the slowly moving slab is capthre surrounding material
and hence the cold temperature anomaly looks even thicker.

Models with higher stress limit and weaker decoupling layer

The results for higher stress limit( = 1 GPa) and weaker decoupling layen, =
10* Pa - s) are in Figs. 7.19 and 7.20. For the prescribed surface igldhe velocity
within the plate is differentiated due to the weak decouplayer. The maximum plate
velocities caused by the effect of the phase transitiaf@km (Figs. 7.19 and 7.20, third
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Figure 7.19 Results for models with stress limif, = 1 GPa and decoupling layer viscosityp;, =
109 Pa-s. On the top boundary, velocity is prescribed. 12,00 km deep and3, 000 km wide part
of the model domain, the temperature (first column) and dedadarithm of relative viscosity (second
column) are shown. The time evolution of the plate velocityha points withr = 4,800 km and depth
(marked by colory = 0, 5, 15, 25, 45, 65 and85 km is plotted in the third column.

column) are~ 20cm - y~! for model with no viscosity jump (model Tsy9d19CO}1
and~ 12cm -y ! and~ 1lcm-y~! for models Tsy9d19C10 and Tsy9d19C3@,
respectively.

For the model with the free-slip condition, the subductioogess does not start on
its own by the ridge push. For time< 8 My, the prescribed velocity condition is there-
fore used to initiate the subduction process. Afterwar@sfibe-slip condition is used.
After 8 My, the tip of the subducting plate is approximatel) km deep. The velocity
within the plate is more differentiated than for the modeiiéthe lower stress limit, =
0.1 GPa (models Tsy8d19CQ1s08, Tsy8d19C10s08 and Tsy8d19C3&08, Fig. 7.9).
The maximum plate velocities caused by the effect of the @lrassition att00 km are
~ 75cm -y~ ! (model Tsy9d19C01s08, Fig. 7.20, first row)~ 28cm -y~ ! (model
Tsy9d19C10fs08, Fig. 7.20, second row) and 18 cm - y~! (model Tsy9d19C3(s08,
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Figure 7.20 Results for models with stress limif, = 1 GPa and decoupling layer viscosityp;, =
109 Pa -s. On the top boundary, free-slip is prescribed. 18,800 km deep and, 000 km wide part
of the model domain, the temperature (first column) and dedadarithm of relative viscosity (second
column) are shown. The time evolution of the plate velocityha points withz = 4,800 km and depth
(marked by colory = 0, 5, 15, 25, 45, 65 and85 km is plotted in the third column.

Fig. 7.20, third row).

Models with no viscosity jump are in Figs. 7.19 and 7.20, ficst. In both models,
the plates penetrate into the lower mantle without sigmticteformation. The plate
velocities increase gradually due to the increasing sldibapth a local maximum at the
time when the slab tip comes through the exothermic phasegehat400 km depth. For
the model with a free-slip condition, the plate is more bert the subduction is faster
than for the model with prescribed velocity. Nonetheleks,\telocities in both models
are unrealistically high. These high velocities could baseal by the underestimation of
the friction on the plates contact or by the low viscosityhe tower mantle. It can be
also effect of the 2-D approach. Further, the numericalllasicins occur due to the high
velocities within the mantle.

In Figs. 7.19 and 7.20 (second row), there are the modelsamibcosity jumpC' =
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Figure 7.21 Model Tsy9d19C18: time evolution of temperatuiféC], 1, 600 km deep and , 200 km wide
part of the model domain is shown.
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Figure 7.22 Model Tsy9d19C16508: time evolution of temperatufeC], , 1,600 km deep and , 200 km
wide part of the model domain is shown.

10. For both models, the plates do not deform significantly eltwer mantle except for
the backward deflection of the slab. This deflection is deyeddioduring the slab descent
through the upper mantle due to the high viscosity of the afablow friction at the plates
contact. The resulting shapes of the plates are similartiminodels. The time evolutions
of the temperature field in these models are in Figs. 7.21 @&l Both models develop
rather similarly. Contrary to the models with lower strasst (Figs. 7.10 and Fig. 7.11),
the slab is developing slightly slower in a model with theefidip than in the model with
prescribed velocity. The detail of the model Tsy9d19®i8in Fig. 7.23. The prevailing
deformation mechanism is in pargtl In the subducting plate, the stress limiter controls
the viscosity in the upper mantle. In the lower mantle, thetodiation creep is prevailing
mechanism instead of the stress limiter. In the over-ridlilage, the maximum viscosity
limit is acting due to the higher stress limit and hence the d@formations. The plate
velocity (panele) is almost constant in both the lower and the upper mantle Stress
distribution is in panel$—g. The bipolar stress structure develops in the plate (p@nel
This means that two parallel features with rather high steee separated by relatively
thin layer with low stress. This bipolarity can be observiss #or the eigenvalues of the
stress tensor (Fig. 7.83— the dilatation (blue color) occurs in the left-hand-sjbet
of the subduction, the compression regime (red color) ib@right-hand-side part of the
subduction in the upper mantle. In the lower mantle, thetali@n occurs in the outer
parts of the slab arc, thus indicating bending.

The results for the models with a viscosity jur6p= 30 are in Figs. 7.19 and 7.20,
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model Tsy8d19C1®, t = 63 My
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Figure 7.23 Result for model Tsy9d19CMafter63 My, a) temperaturd’, b) temperature variatioAT’
with respect to geotherffi..¢, C) relative viscosity in the log scaleg (7/x,), prevailing deformation mech-
anism (0 — diffusion creep, 1 — dislocation creep, 2 — sties#ter, 3 — viscosity limit, 4 — decoupling
layer forz > 200 km), e) velocity v (directions are marked by arrows, amplitudes by color fid)dgecond
invariant of the stress tensaf andg) its eigenvalues and eigenvectors are shown (axes are nmaykees,
amplitudes by color field)1, 600 km deep and , 200 km wide part of the model domain is shown.

third row. For both models, the subduction process is almtigiped due to the me-
chanical resistance of the high viscosity lower mantle wiherplate reaches boundary at
670 km. For model with the prescribed velocity, rather weak detioagdayer is pushed
down by the boundary condition by constant velocity evehefsubduction process slows
down. Crust material then creates a bubble-like anomaltys(Fi.19, third row, between
the depth200 km and400 km).

Models with higher stress limit and stronger decoupling lagr

The results for higher stress limity( = 1 GPa) and stronger decoupling layef;, =
102! Pa - s) are in Figs. 7.24 and 7.25. For models with the prescribéatitg (Fig. 7.24),
the plate velocity maximum associated with the phase tiiansat400 km are not signifi-
cant. The velocities within the plates are rather undifieged except for the model with
viscosity jumpC' = 30. The free-slip condition (Fig. 7.25) is prescribed for 8 My.
At this time, the tip of the subducting plate is approximat&d0 km deep. The veloc-
ity within the plate is not differentiated and the maximuntoeity caused by the phase
transition a400 km is less tharb cm - y~!. After the penetration into the lower mantle,
the plate velocities may both increase or decrease. Theasefdecrease depends on the
viscosity jump in the lower mantle — the velocity increasaghvdecreasing viscosity
jump.
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Figure 7.24 Results for models with stress limif, = 1 GPa and decoupling layer viscosityp;, =
102* Pa-s. On the top boundary, velocity is prescribed. 12,00 km deep and3, 000 km wide part
of the model domain, the temperature (first column) and dedadarithm of relative viscosity (second
column) are shown. The time evolution of the plate velocityha points withr = 4,800 km and depth
(marked by colory = 0, 5, 15, 25, 45, 65 and85 km is plotted in the third column.

The results for no viscosity jump &70km are in Figs. 7.24 and 7.25, first row.
For these models, the plates do not deform and penetratéhatower mantle without
any deflection. For model with free-slip Tsy9d21CR0D8 (7.25, first row), the plate is
slightly steeper than for model with prescribed velocitgy9d21CO01v, 7.24, first row).

The models with viscosity jump’ = 10 are in Figs. 7.24 and 7.25, second row. In
these models, significant deformations are not observee. pldte is more bent in the
model with prescribed velocity (model Tsy9d21QL0Fig. 7.24, second row) than for
the model with free-slip (model Tsy9d21C1€08, Fig. 7.25, second row). Generally,
the plates are more bent for these models (models Tsy9d2¢@mnd Tsy9d21C1Gs08)
than for the models without any viscosity jump.

The results for the models with a viscosity jurap= 30 are in Figs. 7.24 and 7.25,
third row. In the free-slip condition model (Tsy9d21C&WD8, Fig. 7.25, third row), the
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Figure 7.25 Results for models with stress limif, = 1 GPa and decoupling layer viscosityp;, =
102* Pa-s. On the top boundary, free-slip is prescribed. 18,800 km deep and, 000 km wide part
of the model domain, the temperature (first column) and dedadarithm of relative viscosity (second
column) are shown. The time evolution of the plate velocityha points withz = 4,800 km and depth
(marked by colory = 0, 5, 15, 25, 45, 65 and85 km is plotted in the third column.

subduction process stops when the plate reaches the bguatd&i) km. The slab re-
mains there and warms up due to the heat conduction. For maithgbrescribed velocity
(Tsy9d21C30v), the plate is deformed in the lower mantle. The time evolubf the
model Tsy9d21C3® is in Fig. 7.26. The plate subducts under rather low angksie
the fact that the plate is strong,(= 1 GPa), it is deformed in the transition zone due to
the rather high resistance of the lower mantle and due toubkk pf the boundary con-
dition. Later, the deformed plate penetrates into the lawantle. The detail of model
Tsy9d21C30v is in Fig. 7.27. The prevailing deformation mechanism ia slmbducting
plate (paned) is stress limiter in the upper mantle and the dislocati@eprin the lower
mantle. In the over-riding plate, the viscosity limit canlr the viscosity except for the
part close to the plates contact, where the stress limieaails. The subducting velocity
(panele) is higher in the upper mantle than in the lower mantle so tnekling is ob-
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model Tsy9d21C3W
t =15My t =33 My t =51 My t =69 My t=87My t=105My

0.02.4 26 28 3.0 0&.4 26 28 3.0 0&.4 26 28 3.0 0&.4 26 28 3.0 0&.4 26 28 3.0

o 8.4 26 28 3.0

N

| — ] [ —— ] | — ] | — ] [ —— ] | — ]
0 1240 2480 0 1240 2480 0 1240 2480 0 1240 2480 0 1240 2480 0 1240 2480

Figure 7.26 Model Tsy9d21C38: time evolution of temperatuifgC], 1, 600 km deep and , 200 km wide
part of the model domain is shown.

model Tsy9d21C3®, ¢t = 105 My
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Figure 7.27 Result for model Tsy9d21CA0after 105 My, a) temperaturel’, b) temperature variation
AT with respect to geotherfi,.¢, c) relative viscosity in the log scaleg (7/x,), prevailing deformation
mechanism (0 — diffusion creep, 1 — dislocation creep, 2 —esstilimiter, 3 — viscosity limit, 4 —
decoupling layer for: > 200 km), e) velocity v (directions are marked by arrows, amplitudes by color
field), f) second invariant of the stress tensgrandg) its eigenvalues and eigenvectors are shown (axes are
marked by lines, amplitudes by color field).600 km deep and , 200 km wide part of the model domain

is shown.

served. The stress regime is shown in pdngl Dilatation occurs in the outer part of the
folds. Strong compression is found in the plate paralleéation within the slab down
to the depth~ 1,000km. In this case, the bipolar structure of the stress tensootis n
observed.
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7.2.3 Summary

Results of our models are summarized in Fig. 7.28. We showe thertemperature vari-
ations AT with respect to the geotherifi.; for all studied models. The results for both
lower stress limit (first and second rows) and higher stresi (third and fourth rows)
are given. The characteristics of the slabs (e.g. dip atigtkening) depend on all tested
parameters (stress limiter, surface boundary condititsgogity increase in the lower
mantle and the strength of the decoupling layer).

Generally, the slabs in models with the lower stress limiticgher easily break (pan-
elsa andg-h) or buckle (panels—f andk). For models with higher stress limit, slabs in
most models do not deform significantly, hardly any thickgndccurs and bipolar struc-
ture of the stress tensor similar to the one reporte@tikova et al. (2007) are observed.
The backward deflection develops in most models (pamelsandu), especially if the
crustal friction is low. Some buckling is observed only foodel in paneiw.

The results for models with no viscosity increasédikm are in Fig. 7.28, first and
second columns. If lower stress limit is applied, the slahsily break-off (panela and
g—h) at the depth 400 km after they penetrate into the lower mantle. Only in the model
with the weak coupling and the free-slip condition (pabglthe slab is not detached.
In models with higher stress limit, the curvature of the stabs is higher in models
with weaker decoupling layer (pan@k-n) than in models with stronger decoupling layer
(panels—t). Moreover, in models with weaker decoupling layer, theeafistically high
velocities develop (panél andm-n).

The results for the models with viscosity increase by fattoare shown in Fig. 7.28,
third and fourth columns. For models with lower stress ljmignificant deformations are
observed in the lower mantle. However, they depend on tleagtin of the decoupling
layer. The buckling occurs in the models with the weaker tcpanelsc—d). In the
models with the stronger crust (panej), the tips of the slabs are deflected6add km.
Then the slabs pass into the lower mantle without signifitt@okening. For higher stress
limit, the shapes of the slabs are rather similar for the nsoa#h the weaker decoupling
layer (panel—p) and for the stronger decoupling layer with prescribed eigyapanel
u). For the model with the stronger decoupling layer and a-$tgecondition (paneV),
the slab curvature is smaller than for the models in pameatsandu.

In Fig. 7.28, fifth and sixth columns, there are the resultstiie@ models with the
viscosity increase by fact@d0. The buckling occurs in most models with the lower stress
limit (panelse—fandk). In the model with the stronger decoupling layer and pibscr
surface velocity (panéd), the buckling is observed only at the beginning of the sehidn
process. Then the penetration into the lower mantle coasinuithout buckling and the
plate is thickened due to the compression and the condwzinieng. For model with the
strong decoupling layer and free-slip (pahebnly one fold occurs. Then the plate slowly
penetrates into the lower mantle and its width increasds wireasing depth due to the
compression and conductive cooling. Slabs in most models stionger stress limit
penetrate into the lower mantle with difficulties (pangts andx). For these models,
the subduction process is almost stopped when the slalds¢@dkm boundary and the
conductive warming is significant. In the model where an @oldal push induced by
the boundary condition is transmitted though the relagisttong crustal layer to the
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Figure 7.28 Summary of results for all models, the temperatureatiansAT[°C] in respect of geotherm
Tt are shown foil, 600 km deep and, 200 km wide part of the model domain.
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subducting plate (pan&V), the slab penetrates into the lower mantle and the buclding
observed.

7.2.4 Seismic velocity anomalies

Finally, let us try to compare the results of our numericatleling with seismic tomogra-
phy. For this purpose, we need to convert our temperaturmalies to seismic velocity
ones. The seismic velocity anomalies can be calculated fih@nmal and compositional
structure of the mantle using the appropriate partial dékies (sensitivities) — e.g. De-
schamps and Trampert (2003). The seismic velocities and deevatives depend on
the elastic properties and the equation of state of the manitherals. To get the elas-
tic parameters of the lower mantle material, we use the cou#iykprovided by Renata
M. Wentzcovitch. It calculates polycrystalline multipleaaverages of bulk and shear
moduli using Hashin-Shtrinkman averages scheme (MeistdrReselnick 1966, Watt
1979). We employ the mineralogical model by Ringwood (19W8)uding perovskite
(Pv) (Mg, _,Fe,)SiO3 and magnesiowustite (MwMg, _, Fe,)O. We take the same per-
centage of iron for both these minerals, ve= y = 0.12. Further, we have to specify the
ratio of magnesiowustite to perovskite. We define it ushg\olume fraction of magne-
siowustitev; = 0.2 at30 GPa and2, 000 K. For computing polycrystalline average of the
elastic properties, we use the formulas

Ki(p,T) = v K™ (p,T)+ (1 —vp)K(p, T),
Gp,T) = v,G™(p,T)+ (1 —vp)G™(p,T), (7.5)

where K, and G are the bulk and the shear moduli, respectively. Our cdicms are
based on the elastic properties and equation of state oWglate MgSiO3 by Karki

et al. (2000b) and Wentzcovitch et al. (2004). The elastaperties and equation of
state of magnesiowustite are in Karki et al. (1999) and Keirkl. (2000a). For including
the iron content, we use corrections by Kiefer et al. (199%) Karki et al. (1999) for
(Mg,_,Fe,)SiO3 and (Mg, _,Fe,)O, respectively. P-wave velocities are then calculated

as
| Kd(p,T)+3G(p,T)
o) = [T
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Figure 7.29 Thea) P-wave velocity for the lower mantle material anyits derivative with respect to the
temperature depending on temperature and pressure.
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and we calculate its derivati\?% numerically. Bothwp and%”—sz are in Fig. 7.29.
Once we have the derivative, we compute the seismic velaaiynalies for our sub-
duction models as follows:

dvp Ovp 1
2 (p(2), T(x, 2)) (p(2), T(w,2)) - AT (2, 2) o sy

vp - 8—T
For several models where the slab thickening occurs (F&8, panel—, k, | andw),
the P-wave velocity anomalies are given in Fig. 7.30. FalhgnRibe et al. (2007), we
show here the isolines of seismic velocity anomalyf@% and0.3 %. The estimated
slabs widths are given in Tab. 7.5. Let us compare them to Iti®s svidths by Ribe

(7.7)
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Figure 7.30 The estimation of the width of the slabs in the lower feamsingdvr/v» = 0.2 and0.3 % iso-
line (solid line) for chosen models. Broken lines denotedepth200 km and phase transitiong, 000 km
deep and, 600 km wide part of the model domain is shown.

a) Tsy8d19b) Tsy8d19c) Tsy8d19d) Tsy8d19e) Tsy8d21f) Tsy8d21g) Tsy9d2]

Clov | Ci0fsOQ C30v | C30fs0OQ C30v | C30fslg C30v
estimated minimal slab width below boundary6@0 km

360km| 360km | 690km| 690km | 800km| 580km | 490km
estimated maximal slab width in the lower mantle

580km | 620km | 790km| 760km | 890km| 690km [ 650km

Table 7.5 The estimated width of the slabs for models shown in EBD @nd isoline$.2 — 0.3 %.
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et al. (2007), who estimate the slab width to be upl0 km below the boundary at
670 km. We obtain comparable slabs widths for models with lowessstiimit, weaker
decoupling layer and viscosity jumip (Fig. 7.3&-b). In these cases, the slabs widths
are approximately360 km below the670 km boundary. For models with the viscosity
increase30 at 670 km and lower stress limit (Fig. 7.894), the slab velocity in the lower
mantle is low (up tov 2 cm - y~!) and conductive cooling of the ambient mantle is rather
efficient therefore the plates become considerably widen th Ribe et al. (2007). For
these models, the slabs widths are in the rai3ge, 800) km below the670 km boundary
(Fig. 7.3@—f). For the only model with higher stress limit which shows éwmnantle
thickening, the estimated width belo#0 km boundary 90 km) is in agreement with
Ribe et al. (2007).

7.2.5 Discussion

In our models, we study the influence of the stress limit, thendlary conditions, the
viscosity increase ai70 km boundary and the viscosity of the decoupling layer. We
concentrate on relatively old slabis=€ 100 My). We use the activation parameters based
on experimentally derived values (Frost and Ashby 1982atteand Wu 1993, Yamazaki
and Karato 2001). The yield stress of the power-law stresisthg mechanism is less
constrained, however, the values in the range betwele@GPa and1 GPa are generally
assumed (Kameyama et al. 1999, van Hunen et al. 20(Zkova et al. 2007). Further,
the viscosity increase by factdr 10 and 30 at 670 km boundary is investigated. We
limit ourselves to the maximum viscosity increg@se= 30, even though sometimes much
higher increase (up 00 — 1,000) is predicted (Forte and Mitrovica 1996, Kido and
Cadek 1997). For the viscosity increase by a fa8thrthe subduction process is nearly
stopped if no extra push is applied by the boundary conditibtence, we expect that the
slabs would not be able to penetrate into the lower mantleeifviscosity jump is even
higher. Finally, we investigate the influence of the top lany condition and coupling
between the subducting and over-riding plates.

The resulting shape and the wavelength of the subductirtg piahe lower mantle
depends also on the decoupling between the plates, i.e.eostrgngth of the crust. In
the oceanic plates, the crust consists of less-dense ba@salt subducts, it transforms
into stronger and denser eclogite by series of phase tiamsit The properties of the
basalt-to-eclogite metamorphism and rheological progedf basalt and eclogite are not
well known and they strongly depend on the content of water fagacity (Kohlstedt
et al. 1995). Vlaar et al. (1994) use dislocation creep obake to describe rheological
properties of both basalt and eclogite. For temperatuesvat600 °C and1, 750 °C, they
get viscosities between 10' — 7- 102! Pa - s for &;; = 107551, Here we use a simple
approximation of the crustal properties — crust materia ha density contrast with
respect to the mantle one and we assume two constant valites/isicosity (0'° Pa - s
and10?! Pa - s) in agreement with the above mentioned results by Vlaar. €1804).

In our models, the thickening of the slabs in the lower mastt&aused by two mecha-
nisms — buckling and/or thickening due to the compressidre Quckling is observed in
the models with the lower stress limit and viscosity incesaghe lower mantle (Fig. 7.28,
panelsc—f, k). For models with higher stress limit, the significant slaiodmation occurs
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only in the model with a strong decoupling layer, viscositgrease by factos0 and a
prescribed velocity on the top boundary (Fig. 7.28, pav)elThe thickening in the lower
mantle due to compression and conductive cooling is alsergbd (Fig. 7.28, pand).
For models with viscosity increas®®), the widths of the plates are too high compare to
the seismic tomography models. The velocities within tiveelomantle are rather low
and the slab thickening due to the conductive cooling isiBagmt.

Further, we observe the forward shift of the trench for thedete with the free-slip,
lower stress limiter and stronger decoupling layer (modelsig. 7.28 paneh, j andl).
The trenches migrate to the right, i.e. in the direction & skubducting plate. Here the
coupling between the crustal layer and the subducting amdvhr-riding plates is rather
strong and thanks to the rather low stress limit, the owding plates deform and part of
them may subduct together with the subducting plate.

In some of our models with the weaker decoupling layer (maué&lig. 7.28 panels
b, m andn), the plate velocities are unrealistically high. This candaused by several
factors, e.g. underestimation of the friction on the cont@tween the subducting and the
over-riding plates, too low viscosity in the lower mantlebyrneglecting 3-D effects.

Further, the plate-velocity peak caused by an exothermas@hransition at00 km
can be also rather high in the models with weaker decoupdiyey! The velocity can even
reach~ 75cm - y~! depending on the viscosity increas&ah km. These high velocities
can be again caused by the underestimation of the frictiotherplates contact or by
two-dimensional approximation. In three-dimensionalitgahe plate would reach the
phase transition a0 km gradually and hence the speeding effect of an exothermggpha
transition would not be instantaneous and could thereferewer.

Our results agree quite well with previous works. Christen§l996) uses a 2-D
Cartesian model of subduction with depth- and temperatapeiddent viscosity and he
obtains buckling features for models with viscosity jumB@Qd km or with strong phase
transition at660 km. For a cylindrical 2-D model and composite rheology, McNama
et al. (2001) get the buckling instabilities and its degreeréases with decreasing plate
strength. In a 2-D Cartesian model with visco-plastic rbgg) viscosity increase at
660 km but without phase transitions, Enns et al. (2005) also ptduickling — a higher
degree of buckling is observed for weak and thin plates.

We conclude that the presence of the major phase transitiotiee mantle and a
viscosity increase enable the buckling of the relativelakvslab in the mantle. Further,
we show that the effect of the crustal layer (especiallytitsrgyth) may have important
implications. Hence, in the future, we plan to concentratehe effect of crust layer
parameters in more details. Especially, the effect of thiem@esence within the oceanic
crust may play an important role. The water content dependthe plate velocity —
the amount of water content within the crust increases wibrehsing plate velocity
(Gorczyk et al. 2007). Consequently, the viscosity of thestincreases with increasing
plate velocity. This is opposite to the effect of dislocat@yeep. The unrealistically high
plate velocities in some of our models can be suppresseddgftact.



Chapter 8

Conclusions

We numerically solve the equations describing the thertmxical convection using
method introduced by Gerya and Yuen (2003). This method awmslihe Eulerian and
Lagrangian approaches. The momentum equation, contiegutgition and the heat equa-
tion without advection and latent heating are solved usinigefidifference method. The
heat and material advection and latent heating part of taedwuation are solved using
marker technique. It turns out that the interpolation oftdraperature and scalar proper-
ties of the fluid are essential for numerical stability. Faerpolation of the temperatures
from markers to Eulerian grid, we suggest and use here adliffescheme than Gerya
and Yuen (2003).

We wrote the code to solve the equations in a two dimensioadé€ian domain using
Fortran 90. For solving the momentum and continuity equatand the heat equation, we
use LU decomposition from LAPACK subroutines. The code ial@ized using shared
memory model and OpenMP instruction. For testing our codeemploy several fluid
mechanical problems with analytical solution. Our resulése also compared with the
benchmark of Blankenbach et al. (1989). Our code includeardieating, adiabatic heat-
ing and latent heating. It can handle chemically differeatenials, non-linear viscosity
depending on chemical composition, phase transitionasinstate invariant and temper-
ature and pressure. It allows to employ spatially depenttheninal expansivity, thermal
conductivity and internal heating.

For high resolution model runs needed in detailed subduatiodeling, the computer
demands are essential. Therefore, further parallelizasfothe code using distributed
memory is planned to get higher resolution of the Euleriad gnd speed-up the com-
putations. In the future, the elasticity which plays an imt@ot role in the process of
subduction should also be included.

We apply our code to the problem of subduction and we studfatieeof the slabs in
the mantle. Especially, we concentrate on the effect of ke thickening in the lower
mantle. We employ two models. In the first simple mechanicadeh the mantle convec-
tion is driven by a compositional buoyancy. We study theafté the viscosity contrast
between the subducting plate and the mantle material ingperiand the lower mantle
and the effect of the viscosity increase at & km boundary. We suppose constant
viscosities for each material and each phase. In these syauzbuckling is observed.
Some thickening (by approximately factrdue to the compression is observed only for
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model with rather low viscosity contrast o between the subducting plate and the am-
bient mantle and with viscosity increase by factorin both plate and mantle materials
in the lower mantle. For most models, no significant deforomaait the viscosity barrier
at the670 km depth is observed. Only if the relatively high viscosityrease {, 000) at
670 km boundary is employed, the plate is bent when it penetrateshe lower mantle.

In the second model, the subduction process is driven bynidudsuoyancy. We em-
ploy composite rheology including diffusion creep, digltion creep and stress limiter.
We find that the buckling occurs for relatively weak slabsiafower mantle. In the mod-
els with viscosity jump equal td0, this effect is observed if the weaker decoupling layer
is used and for both prescribed velocity and free-slip bampdonditions. We show that
the presence of the phase transitions (especially exotbé&mamsition att00 km) supports
the creation of the buckling instabilities. For higher wasity jump 0), the buckling is
observed in all models except for the model with strongepdpling layer and free-slip
condition. In this model, the thickening due to the compresand conductive cooling is
observed. If stronger slabs are assumed, the buckling daexcour in most models. In
these models, the plates subduct without any significamrdeftion. The resulting plate
shapes depend on the boundary conditions, the viscositydee a670 km and strength
of the decoupling layer. Therefore, we can conclude thatthg-wavelength character of
the lower mantle fast seismic velocity anomalies traddibnassociated with slabs could
be explained either by the buckling of relatively weak slabdy thickening due to the
compression and conductive cooling in the higher viscdsityer mantle.



Epilogue

The structure of the Earth’s interior reflected in the setstomography images is quite
complex. Since the onset of both the numerical modeling af/ection and the global
seismic tomography, great effort has been dedicated tocdeaesults of both approaches.
Convection modelers tried to vary the parameters of themmtial/thermo-chemical mod-
els to get the mantle structure and its characteristics @eas possible to the tomo-
graphic ones. On the other hand, the real resolution powtreafomographic inversion
was questioned and investigated, which is necessary bef@ecan draw the reliable
conclusions about the dynamic processes in the mantle.

In this work, we deal with the problem of the corresponderfdd®tomographic im-
ages and convection models employing both these appraa€iss we assume that the
seismic velocity anomalies in the Earth’s mantle arise ftbethermal structure driven by
convection and, using a snapshot of thermal convection htodenstruct synthetic data,
we study the ability of the tomographic inversion to retdakie geodynamic models. In
the second, more traditional approach, we rely on the iestithe real data tomographic
inversion, where the thickening of the slabs is observeteridwer mantle and we try to
get such behavior of the slabs in our regional scale coreatiodel.

Apparently none of these two approaches is better than trex ohe. A synthesis of
both of them may however ultimately bring us further on thg wirevealing the structure
of the Earth’s mantle and understanding the dynamic presdsst.
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