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Preface

This doctoral thesis consists of an expanded abstract and four separate papers. Each
paper is devoted to one step of the Gussian packet prestack depth migration algorithm:
a) “Smoothing the Marmousi model”, which introduces a method of smoothing the
velocity model by minimizing the relevant Sobolev norm of slowness.

b) “Optimization of the shape of Gaussian beams”, which explains how to decrease the
spreading of Gaussian beams and packets by optimizing their initial shape.

c¢) “Decomposition of the wave field into optimized Gaussian packets”, which offers a
procedure for determining the initial amplitudes of back-propagated Gaussian packets.
d) “Gaussian packet prestack depth migration”, which describes the back-propagation
of the wave field using Gaussian packets and application of the imaging functional, and
which summarizes the whole Gussian packet migration algorithm.

We present all four papers in their original form as they were published in the
journal Pure and applied geophysics and in progress reports of the consortium Seismic
Waves in Complex 3-D Structures.

The results of the project have been presented at annual meetings of the Society of
Exploration Geophysicists (SEG) and of the European Association of Geoscientists &
Engineers (EAGE). The author of this thesis received the “Award of Merit — Best Stu-
dent Paper Presented at 2001 SEG Annual Meeting” for the contribution “Optimization
of the shape of Gaussian beams”, “Award of the Minister of Education” (2001), which
is awarded annually to five outstanding university students in the Czech Republic, and
the 1% position in the student category of the “Babuska Prize” (2001) for the papers
“Smoothing the Marmousi model” and “Optimization of the shape of Gaussian beams”.



Abstract

1 Introduction

The ultimate goal of seismic processing is to produce a correct image of a geologi-
cal structure. Currently, prestack depth migration represents the most accurate (even
though the most expensive) tool for imaging complex subsurface stuctures. Our project
follows the pioneering work of N. Ross Hill in the field of prestack depth migrations
based on Gaussian beams (Hill 1990, 2001).

Instead of using Gaussian beams, we have shifted our attention to Gaussian pack-
ets (e.g., Babich & Ulin, 1981; Ralston, 1983; Klimes, 1989a, 2004). Like Gaussian
beams, Gaussian packets represent high-frequency asymptotic solutions of the elasto-
dynamic equation. But while Gaussian beams are concentrated close to the central
ray of the beam, Gaussian packets are concentrated close to the central point of the
packet. The main advantage of the Gaussian packet migration over the methods based
on Gaussian beams is a direct relation between the regions in the recorded wave field
and corresponding localized regions in the migrated section.

Naturally, Gaussian packets spread as they propagate through the structure. It
is necessary to keep Gaussian packets narrow in relation to the velocity changes in
the model, because Gaussian packets become inaccurate solutions of the elastodynamic
equation if the velocity field changes considerably within the packet width. This spread-
ing depends on the complexity of the velocity model and on the initial shape of Gaussian
packets. Therefore, before proceeding to the migration, we need to prepare a suitable
velocity model and choose the appropriate initial shape of Gaussian packets.

The Gaussian packet migration algorithm consists of four basic steps:

a) Preparation of a suitable smooth velocity model (Z4cek, 2002).

b) Optimization of the shape of Gaussian packets (Klimes, 1989b; Zagek, 2001a, 2001b).
c¢) Decomposition of the recorded wave field into optimized Gaussian packets (Zééek,
2003, 2005a).

d) Back-propagation of the recorded wave field using Gaussian packets and application
of the imaging functional (Zacek 2004, 2005b).

The word optimized implies that the shape of Gaussian packets, in the plane per-
pendicular to the central ray of the packet, depends not only on the frequency, but
also on the coordinate of the intersection of the central ray of a Gaussian packet with
the profile, on its arrival time, and on the component of the slowness vector along the
profile.

2 Velocity model

A velocity model should prevent Gaussian packets from excessive spreading and approx-
imately preserve original travel times. The question of the smoothness of the velocity
model is closely related to the problem of finding the limits of applicability of the ray
theory, which remains unsolved and open for further research.

In a complex model, the geometrical spreading and number of arrivals exponen-
tially increase with increasing travel time. The exponential increment is controlled by
the Lyapunov exponent (e.g., Klimes, 2002). Consequently, the Lyapunov exponent
determines the horizon, where the ray behavior becomes chaotic. Since the Lyapunov
exponent depends on the second spatial derivatives of velocity or slowness, the second
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derivatives should be minimized. Therefore, we smooth slowness by minimizing the
relevant Sobolev norm composed of the second derivatives of slowness (Zacek, 2002).

3 Optimization of the shape of Gaussian packets

The applicability and accuracy of the Gaussian packet method depend on the proper
choice of the initial shape of packets. Unfortunately, narrow Gaussian packets quickly
increase in width as they propagate. Thus, we can use neither too narrow nor too wide
packets as the initial choice of the shape of Gaussian packets. Furthermore, in a complex
structure, we cannot judge solely from the final width of the packet whether the packet
is or is not a reasonably accurate solution of the elastodynamic equation. The packet
must be sufficiently narrow along the whole ray path.

The initial shape of Gaussian packets is determined by the matrix of complex-valued
second space-time derivatives of the phase function. To prevent Gaussian packets from
excessive spreading, we optimize their initial shape by minimizing their width along the
whole ray path. Since we wish to control the spreading in the plane perpendicular to
the central ray of the packet, it is sufficient to optimize the initial shape of correspond-
ing Gaussian beams (Klimes, 1989b; Z4cek, 2001b). We can restrict our attention to
Gaussian beams, because the Ricatti equation for a Gaussian packet may be decoupled
into three equations, where one equation represents the Ricatti equation for a Gaussian
beam, and the other two equations extend the Gaussian beam solution to a Gaussian
packet solution.

In 2-D, the shape of a Gaussian beam is characterized by a single complex-valued
parameter, see Zacek (2001b, 2005a, 2005b). The imaginary part of this parameter
determines the Gaussian beam width and the real part defines the curvature of the
phase-front at the reference point.

The parameter, which describes the shape of a corresponding Gaussian beam along
the initial surface, may depend on the coordinate of the intersection of the central ray
of a Gaussian packet with the profile, on its arrival time, and on the component of
the slowness vector along the profile. In other words, this parameter is situated on a
Hamiltonian hypersurface in the phase-space (Zééek, 2001b). In a complex structure,
the optimum initial parameters may vary in orders of magnitude. This would cause
great problems in the decomposition of the wave field into optimized Gaussian packets.
Therefore, we have developed a procedure, which allows us to smooth iteratively the
distribution of the initial parameter on the Hamiltonian hypersurface (Zacek, 2001b).

To simplify further calculations, we can smooth the distribution of the initial param-
eter to a constant value and obtain uniform Gaussian packets. Naturally, the smoothing
brings about more rapid spreading of Gaussian packets.

4 Decomposition of the wave field into Gaussian packets

The recorded wave field, which consists of seismic traces that have different receiver
locations, but that were generated by the same shot, is termed a common-shot gather. In
order to determine the initial amplitudes of Gaussian packets, we need to decompose the
common-shot gather into optimized Gaussian packets (Zacek, 2005a). Each Gaussian
packet arriving at the receivers is represented by a Gabor function, whose shape depends
on the shape of the Gaussian packet. Using the coherent-state transform, we decompose
the common-shot gather into these Gabor functions. The complex valued amplitude of
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the Gaussian packet then equals the amplitude of the corresponding Gabor function.
The amplitudes depend on the coordinate of the intersection of the central ray of a
Gaussian packet with the profile, its arrival time, the component of the slowness vector
along the profile, and the frequency. Let us point out that the intersection of the central
ray of a Gaussian packet with the profile does not generally coincide with any receiver.

5 Migration

The Gaussian packet migration operates in the common-shot domain. The incident
wave field may be calculated in various ways. We benefit from a method of interpolation
within ray cells proposed by Bulant & Klimes (1999), which requires only a sufficiently
dense set of rays from the shot location to be traced. By interpolation, we obtain the
multi-valued amplitudes of the incident wave field corresponding to multi-valued travel
times.

We determine the scattered wave field using the Gaussian packet method. Gaus-
sian packets propagate along their central rays. We move along these central rays,
determine the amplitude and the second space-time derivatives of the phase function of
the back-propagated Gaussian packet, and apply the imaging functional, which yields
the localized image of a single Gabor function from the common-shot gather (Zééek,
2005b). Such image represents the basic building block of the Gaussian packet mi-
gration. Then, we superimpose the images of all Gabor functions corresponding to a
single common-shot gather, and obtain the prestack migrated image of this common-
shot gather. Finally, we can stack all of the images to produce the migrated image of
the whole data set.

6 Target-oriented imaging

Each Gabor function from the common-shot gather generates its localized image in the
depth section. In this way, we obtain a one-to-one relation between the Gabor functions
from the common-shot gather and their localized images from the depth section. This
relation was discussed in greater detail by Zacek & Klimes (2003).

Let us say that we are interested in a particular area in the subsurface structure.
We call this area a target zone. Unlike Gaussian beams, Gaussian packets are, at any
given time, concentrated close to the central point of the packet. Thus, we can consider
only those packets, which fall into the target zone.

Moreover, we can pick out Gaussian packets contributing to the target zone, mul-
tiply their amplitudes by corresponding weighting factors, and use them in the re-
composition of the common-shot gather. In such a case, we obtain the wave field
scattered specifically from the target zone.

7 Numerical examples

We tested our method on the Marmousi data set (Versteeg & Grau, 1991). Following the
procedure explained in Section 4, we decompose the common-shot gather, see Figure 1a,
into individual Gabor functions, see Figure 1b. The complex-valued amplitude of a
Gaussian packet equals the amplitude of the corresponding Gabor function. Then, we
calculate the localized image of a single Gabor function from the common-shot gather,
see Figure 1c. Let us point out that Figures 1b and 1c¢ demonstrate the unique one-to-
one relation between the Gabor function from the common-shot gather and its localized
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image from the migrated section. Finally, we superimpose all relevant images and obtain
the prestack migrated image of the common-shot gather, see Figure 1d.

The Marmousi model represents a very complex structure, see Figure 2a. The di-
mensions of the model are 9200 metres (length) by 3000 metres (depth). The values of
velocity, which are defined on a grid of cells of 4 x 4 metres, vary from 1500 ms~! to
5500 ms—!. Since the original model is not suitable for any ray method, we minimized
the relevant Sobolev norm of slowness as described in Section 2 and obtained the smooth
velocity model, see Figure 2b. The model is characterized by its average Lyapunov ex-
ponent A (Klimes, 2002; Z4cek, 2002), which controls the average geometrical spreading
of the ray field. The average Lyapunov exponent for this model reads A\ = 0.89 s~ 1.

The stacked migrated section of the Marmousi data set is displayed in Figure 2c.
In order to speed the calculation up, we used a sparser grid of cells of 20 x 20 metres.
Although we can recognize several features of the Marmousi model, we failed in recon-
structing the bottom part of the model. We believe three main causes of such result
consist in (a) the use of uniform Gaussian packets, (b) an oversimplified stacking proce-
dure and (c) a considerably smoothed velocity model, see Versteeg (1993). Nevertheless,
we are still intensively testing our method, and therefore the numerical example shown
in Figure 2c should be considered as very preliminary.

In the future, we would like to refine the method of stacking in order to improve
the quality of stacked migrated sections. Moreover, we should consider the application
of Gaussian packets with varying initial parameters. This would make the Gaussian
packet prestack depth migration more expensive, but also more suitable for complex
velocity models.

8 Conclusions

The Gaussian packet prestack depth migration represents a new and promising imaging
method operating in the common-shot domain. It can handle multi-valued travel times
and allows a target-oriented approach.

Although the common-shot Gaussian packet migration cannot match the efficiency
of the common-offset Gaussian beam migration algorithm proposed by Hill (2001), it is
more general and provides a one-to-one relation between the Gabor functions from the
common-shot gather and their localized images from the depth section. We hope that
this unique feature could help us in understanding the true meaning of the migrated
section.

Ultimately, we would like to inspire and encourage other researchers and possibly
attract their attention to the Gaussian packet domain. We believe that it could show
even greater potential than the well-known Gaussian beam domain.
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Figure 1.

We decompose the common-shot gather of the Marmousi data set (a) into individual

Gabor functions (b). Each Gabor function generates its localized image in the depth section (c).
Superimposing all relevant images, we obtain the migrated image of the common-shot gather (d).

11




2000 4000 6000 distance (m) 8000

2000 4000 6000 distance (m) 8000

20|00 40|00 60|00 distance (m) 80|00

1000

2000

depth
(m)
3000

Figure 2. (a) The original Marmousi model, (b) the moothed velocity model with the average
Lyapunov exponent A = 0.89 s~1, and (c) the stacked migrated section of the Marmousi data set. We
used a sparse grid of cells of 20 x 20 metres and applied no post-processing.
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Smoothing the Marmousi Model

KAREL ZACEK!

Summary— The only way to make an excessively complex velocity model suitable for application of
ray-based methods, such as the Gaussian beam or Gaussian packet methods, is to smooth it. We have
smoothed the Marmousi model by choosing a coarser grid and by minimizing the second spatial
derivatives of the slowness. This was done by minimizing the relevant Sobolev norm of slowness. We
show that minimizing the relevant Sobolev norm of slowness is a suitable technique for preparing the
optimum models for asymptotic ray theory methods. However, the price we pay for a model suitable for
ray tracing is an increase of the difference between the smoothed and original model. Similarly, the
estimated error in the travel time also increases due to the difference between the models. In smoothing
the Marmousi model, we have found the estimated error of travel times at the verge of acceptability.
Due to the low frequencies in the wavefield of the original Marmousi data set, we have found the
Gaussian beams and Gaussian packets at the verge of applicability even in models sufficiently smoothed
for ray tracing.

Key words: Velocity model, smoothing, asymptotic ray theory, Gaussian beams, Lyapunov exponent,
Sobolev norm.

1. Introduction

The computation of rays is extremely sensitive to the smoothness of the model. In
rough models, the behaviour of rays becomes chaotic and geometrical spreading and
the number of arrivals increase with travel time rapidly (e.g., SMITH ef al., 1992;
ABDULLAEV, 1993; TAPPERT and TANG, 1996; WITTE et al., 1996; KEERS et al., 1997).
Moreover, a large number of two-point rays to each receiver makes calculation of
two-point travel times slow and expensive. Often, two-point rays cannot be found
within the numerical accuracy.

We need a reasonably smooth velocity model for a depth migration technique-
based on Gaussian packets. In the Gaussian packet method (e.g., KLIMES, 1989), we
do not need to find two-point rays, however a sufficiently dense set of rays must be
calculated. Thus, the desired model should be suitable for ray tracing. Since we wish
to keep the width of the Gaussian packets sufficiently small, the width of the

! Department of Geophysics, Charles University, Ke Karlovu 3, 121 16 Praha 2, Czech Republic,
E-mail: zacek@karel.troja.mff.cuni.cz
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Gaussian packet also depending on frequency, the model should be sufficiently
smooth for the frequencies under consideration.

Various methods of smoothing the velocity model have been developed and
published. The authors have been interested in determining the most suitable
physical quantity to be smoothed (MULLER and SHAPIRO, 2000; GOLD et al., 2000), in
finding a way to smooth the velocity model (GRUBB and WALDEN, 1995; VERSTEEG,
1991; BRAC and NGUYEN, 1990), or in studying the effects of smoothing on the
wavefield (VERSTEEG, 1991, 1993).

An optimum way to smooth a complex velocity model for ray-based methods,
which is presented in this paper, is to minimize the appropriate Sobolev norm of the
velocity or slowness. We show that minimizing the Sobolev norm may be used for
efficiently controlling the behaviour of rays in complex structures.

2. The Marmousi Model

Since we wish to use a “‘realistic” 2-D velocity model, we have decided to smooth
the Marmousi model (VERSTEEG and GRAU, 1991; VERSTEEG, 1991, 1993). The
Marmousi model, based on a real geological structure, is very complex, see Figure 1.
The dimensions of the model are 9200 metres (length) by 3000 metres (depth). Values
of velocity, which correspond to P waves, are defined at each gridpoint of the grid of
cells of 4 x 4 metres. The grided values of velocity vary from 1500 ms~! to 5500 ms~!.

In the Marmousi model, the synthetic seismograms were computed by the finite
difference method (VERSTEEG and Grau, 1991). We wish to use these seismograms as
the “‘real data” for the migration. The length of the seismograms is 2.9 seconds with a
sampling interval of 4 milliseconds. A trapezoidal frequency filter determined by
frequencies of 0 Hz, 10 Hz, 35 Hz and 55 Hz has been applied to the data by the
developers of the Marmousi data set.

3. Basic Ideas about the Desired Model

The desired smoothed model must fulfil two main and, unfortunately, contra-
dictive requirements:
(a) to be in “good agreement’ with the original Marmousi model, and
(b) to be “sufficiently smooth” for ray tracing and Gaussian packet computations.
Under the term ““good agreement,” we understand a slight difference between the
smoothed and original model, expressed in terms of the standard L2 Lebesgue norm.
The meaning of the term “‘sufficiently smooth” is more complicated. In a complex
model, the geometrical spreading and number of arrivals exponentially increase with
increasing travel time. The exponential increment is controlled by the Lyapunov
exponent (LyapuNov, 1949; McCAULEY, 1993; ADDISON, 1997; KLIMES, 2001). Since
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Figure 1
The Marmousi model.

the Lyapunov exponent depends on the second spatial derivatives of the velocity or
slowness, the second derivatives should be minimized.

By minimizing the square of the Sobolev norm of slowness we may minimize the
corresponding partial derivatives. The Sobolev scalar product is a linear combination
of the L2 Lebesgue scalar products of the zero, first, second or higher partial
derivatives (TARANTOLA, 1987).

The vague terms “good agreement” and “sufficiently smooth” cannot be easily
quantified before a detailed study of the behaviour of rays and Gaussian packets in
smoothed models is made.

The original Marmousi velocity model consists of discrete values of velocity at
grid points of a regular, dense grid. In obtaining a smoothed model we
(a) choose a coarser data grid (which is a subgrid of the original grid) to reduce the

amount of data to fit,

(b) arithmetically average the densely sampled slowness of the Marmousi model over
cells centred at the grid points of the coarse data grid,

(c) choose a coarse B-spline model grid (which is a subgrid of the coarse data grid) and

(d) fit the averaged slowness values by the smoothed model.

We need to interpolate the discrete values of slowness on a coarse model grid
for ray tracing. We have chosen bicubic B-splines as the interpolating functions,
benefiting from the continuity of the second derivatives.

We summarize all types of grids being used in this paper. The first one is the
original grid of the Marmousi model. The second is the coarser data grid constructed
from the Marmousi model as explained above, which is used to fit the smoothed
model. The third is the B-spline grid of the smoothed model.

4. Inversion

In order to find optimum parameters of the smoothed model, we minimize the
objective function S defined by formula
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B uD(XGRID) . MM(XGRID) 2
§= Z gGRID
GRID

f ] o) (G ) 0

where uP is the value of slowness in the data grid, uM is the value of slowness in the
model being sought, x = (x1,x2), cORIP are the weighting parameters of the grid
points, b are the weighting coefficients of the Sobolev scalar product. Superscript
GRID takes values GRID =1, 2,...,N, where N is the number of grid points of the
coarser data grid with averaged values of slowness mentioned above. Subscripts take
values i, j,k,[ = 1,2 in a 2-D model. Einstein summation over the pairs of identical
indices is used. Integration is performed over the whole model.
We can express u™ as a linear combination of bicubic B-splines B,(x)

™ (x) = By(X)us (2)

where u, are the model parameters (values of slowness at grid points of the B-spline
grid). Subscript o takes values o =1,2,..., P, where P is the number of model
parameters. Consequently, P is the number of B-splines describing the smoothed
model.

Equation (1) now reads

uD(XGRID) _B (XGRID)u 2
S=2 ( JGRIS at) +uaDopups (3)
GRID

ool [ru(E) )

Since we do not know the coeflicients b;;;; which lead to the optimum model, the
problem is not linear. Thus, parameters u, cannot be determined analytically. Since
we do not want to solve the nonlinear inverse problem numerically, we need to
“linearize” formula (4). The linearization of (4) yields

where

Dyp = 5Dl (5)

lf o ()G

where s is a free parameter and b, are fixed coefficients of the Sobolev scalar
product. The choice of coeflicients b;;, will be discussed in Section 6.
We can now rewrite equation (3) to read

S =[P —Bu]"C'[u® — Bu] + s’u"D'u , (7)
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where B is defined as B, = B,(x;), D’ is a P x P matrix given by formula (6), C is a
N x N diagonal matrix, composed of (¢SRP)?, see equation (1). N is the number of
grid points.

The condition for the minimum of the objective function is

A
Ou,

0, (®)

which yields
B'C'[Bu—uP] +5’Du=0 . 9)
The resulting vector of the model parameters is

u=[B'C'B+sD]'B'CuP . (10)

5. Criteria of Acceptability

In a complex 2-D model, the width of ray tube Q increases with increasing travel
time 7 approximately according to the asymptotic formula

O oxe | (11)

where / is the Lyapunov exponent corresponding to the ray (LyApuNov, 1949;
OSELEDEC, 1968; KATOK, 1980).

The number of arrivals at each point of the model is an important indication as to
whether the behaviour of rays is regular or chaotic. We wish the number of arrivals
not to exceed, let us say, 10. In a finite model, the number of arrivals v is proportional
to the widths of the ray tubes. This is caused by the overlaping of the ray tubes, sce
Figure 5. As we wish to smooth the model for migration, the sum of travel times from
source 7s and receiver TR to a point of the model should be substituted for travel time
7 in equation (11). Hence,

v o eHmstR) (12)

Consequently, the number of arrivals v may be expressed as the product of the
numbers of arrivals from source vs and receiver vg

V= VSR . (13)

For 1 =15 + tr = 0, we obtain e** = 1. Since this corresponds to the number of
arrivals in the nearest vicinity of the source (or of the receiver for the migration), we
can alter equation (12) to read

v eMEstwR) (14)
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We want to work with the “average Lyapunov exponent” 2. The “average Lyapunov
exponent” 7 is the Lyapunov exponent averaged over a large set of rays (KLIMES,
1999). The value of the “average Lyapunov exponent” may be one of the criteria of
the smoothness of the model. Hence, we wish e*™ not to exceed 10, Tay being the
maximum sum of travel times from the source and receiver to a point of the model.
Since the sum of travel times from the source and receiver cannot exceed the length of
the seismogram, tm,x = 2.9 s may be used for estimating the optimum value of A
Thus, for the number of arrivals not exceeding 10, we obtain the optimum value of y)
close to 0.8 s~

The width of Gaussian packets should be kept small. For very wide packets the
obtained wavefield would not be the correct solution of the equations being solved.
Accordingly, the desired migrated section would be wrong. The maximum halfwidth
should probably not be greater than the B-spline interval.

We mention that the width of the Gaussian beams or packets depends not only
on the smoothness of the model, but also on the frequencies under consideration.
From this point of view the model is not complex for Gaussian beams or packets by
itself, but in relation to the frequency.

The relative root-mean-square (RMS) difference of slowness between the original
and the smoothed model may be the criterion of “good agreement.” The relative
RMS difference of slowness corresponds approximately to the relative error of the
travel time. This is an asymptotic relation valid for short rays. The relative error of
the travel time may be smaller for longer rays.

By the term ““error of travel time”” we understand the difference between the real
travel time in the original structure and the computed travel time in the smoothed
model. Although we cannot determine the real travel time, we can estimate the error
caused by the difference between the original and the smoothed model.

6. Choice of the Coefficients and of the Density of the Grids

We need to specify coefficients b}, and s, the matrix C and the density of the grids
before the computation.

As we have no prior information, we choose ¢SRIP = /N, where N is the number
of values to be fitted. This makes the value of objective function S approximately
independent of the number of gridpoints.

Coeflicients bj;, may be constructed as a completely symmetric tensor (e.g.,
BULANT, 2001). The 4 x 4 matrix b’ is then defined by

d(d+2
;jkl = %@i?iekeﬁ ) (15)

where e is a unit vector, (. ..) indicates averaging over all directions of the unit vector,
d=11in 1-D,d =2 in 2-D and d = 3 in 3-D. We have introduced the formal scaling
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coefficient 1/3d(d + 2) in order to make the respective coefficients b, equal in 1-D,
2-D and 3-D.
The average of the unit vector over all directions can be calculated analytically.
Generally in d-D for d = 1, 2 or 3, we may put
 0ij0k + 001 + ik

s = ; , (16)

where 0;; is the Kronecker symbol. In 2-D,
by = by =1,
Blizs = Doy = Bloyy = bhyyp = bhyyy = by =1 and
bi11a = byay = Doy = bloyy = by = bhyyy = by = by =0 .

We must keep in mind that this is only our special choice of coeficients b;;;, and that
there are various other ways of constructing matrix b’. For example, we can increase
coefficient b},,, and decrease coefficient &,,,, (or vice versa) and use this new matrix
of coefficients for anisotropic smoothing.

The original grid of the Marmousi model consists of cells of 4 x 4 metres, which
yields 751 x 2301 = 1,728,051 grid points. Three B-spline grids of cells of
(a) 100 x 400 metres, (b) 200 x 230 metres and (c) 200 x 400 metres are studied.
These grids consist of P = 744, 656 and 384 grid points, respectively.

Three data grids of cells of (a) 20 x 80 metres, (b) 40 x 40 metres and (c) 40 x 80
metres are used in the inversion. The values at the grid points are calculated by
averaging the values of slowness in the Marmousi model, as described in Section 3.
These grids consist of N = 17516, 17556 and 8816 grid points, respectively.

Finally, we need to choose the values of parameter s. We choose the initial value
of parameter s for the linearized inversion as

lu—up| 1

o ”uHinit ’

Sinit ~ (17)
where |Ju||;,;, is the initial value of the Sobolev norm of slowness, |u — ug| is the
standard slowness deviation of the model, and ¢ is the given slowness deviation. We
have made this rough estimate assuming that the first term on the right-hand side of
equation (1) does not exceed dramatically the second term, or vice versa. According
to equation (A.10), we can estimate the maximum value of the Sobolev norm of
slowness as [Ju|];,; ~ 8/3(2Ainit)2ui, where u, is the average slowness in the model,
and Aini¢ 1s the initial value of the “average Lyapunov exponent” without
compensation for the focusing low-velocity zones, see equation (A.1). The standard
slowness deviation of the model may be estimated by |u — ug| =~ eua, ¢ being the
relative travel-time error. The given slowness deviation is determined by

o = cSRIPN-1/2 Hence, we can alter equation (17) as

Sinit ~ \/g 5(2UAAinit)_2\/]v(0'GRID)_1 - (18)
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Note that parameter s is proportional to 272, see equation (18). Thus, the n-fold
decrement of 4 requires an n*-fold increment of the square of the Sobolev norm in the
objective function in equation (1). Consequently, the decrement of 7 increases the
difference between the new and the original model. From this point of view 7 should
not be too small. We should keep 2 close to the optimum value estimated above.

Fore = 0.1, (up)"'= 3000 ms~" and Ajyi = 1.3 s, see equation (A.12), we obtain
Sinit = 81529. We study the values of s of (1) 0 m? (without the Sobolev norm included in
the inversion), (2) \/3/8 - 10,000 m? ~ 6124 m?, (3) \/3/8 - 25,000 m> ~ 15,309 m?,
4) 3/8 50,000 m? =~ 30,619 m?, (5) 3/8-100,000 m* ~ 61,237 m> and
(6) 1/3/8 - 225,000 m> ~ 137,784 m>.

7. Numerical Examples

We have calculated the smoothed models, the corresponding values of the relative
RMS difference of slowness between the smoothed and original model, the angular
dependence of the Lyapunov exponents, the values of the “average Lyapunov
exponents,” rays, numbers of arrivals and the halfwidths of Gaussian beams.

Figure 2 displays the models without the minimized Sobolev norm, smoothed just
by the use of the coarse B-spline grid.

Figure 3 presents the smoothed models with the grid of cells of 200 x 400 metres
and with the minimized Sobolev norm. The respective figures for the models with the
grid of cells of 100 x 400 or 200 x 230 metres look similar and are not shown. At first
glance we can see that the models with the values of parameter s = 61,237 m? and
s = 137,784 m? do not show features of the original Marmousi model.

Figure 4 displays the angular dependence of the Lyapunov exponents and the
values of the “average Lyapunov exponents” for smoothed models with the B-spline
grid of cells of 200 x 400 metres. We can see that the model without the minimized
Sobolev norm of slowness seems to be too rough, whereas the ““average Lyapunov
exponents” of the models with the minimized Sobolev norm are close to or less than
our initial assumption of the optimum value. Unfortunately, the strong angular
dependence of the Lyapunov exponents (and consequently the excessive maximum
value of the Lyapunov exponent) indicates that even models with 2 close to 1 (as the
model with s = 6124 m?) may still be too rough.

The synthetic seismograms, used for the migration in the Marmousi model, are
computed with the length of 2.9 seconds. The streamer composed of hydrophone
groups has been used for data acquisition for each shot. The farthest hydrophone
was located 2575 metres from the watergun. Since the maximum travel time cannot
exceed the length of the seismogram, let us assume a fixed travel time of 2.9 seconds.
For an almost horizontal ray with the endpoint in the farthest hydrophone and for
the velocity of 1500 ms~! we obtain the farthest possible reflection point, at 4350
metres from the watergun and 900 metres from the farthest hydrophone. As 900
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Figure 2
The smoothed models without minimized Sobolev norm of slowness (s = 0 m?) for the B-spline grids of
cells of (a) 200 x 400 metres, (b) 200 x 230 metres and (c) 100 x 400 metres.

metres corresponds to 0.6 seconds, we may estimate the maximum useful value of the
travel time as 2.3 seconds. The rays have been calculated for this value of the
maximum travel time.

Figure 5 displays rays computed in the smoothed models with a constant step in
the take-off angles. We can see the dependence of the behaviour of rays on
parameter s. We moved the source along the whole profile and tested ray tracing.
The behaviour of rays was always of the same kind as in these illustrative figures.
Models with s = 0 m? and s = 6124 m? seem to be unsuitable for ray methods due
to the density of caustics. In Figure 5a we can see rays trapped in the low velocity
channels.
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Figure 3
The smoothed models for the B-spline grid of cells of 200 x 400 metres and for values of parameter s of
(@) 0 m?, (b) 6124 m?, (c) 15,309 m?, (d) 30,619 m?, (e) 61,237 m? and (f) 137,784 m>.

The maximum number of arrivals for the models with the B-spline grid of cells of
200 x 400 metres is

(a) 19 for the value of s = 0 m?,

(b) 18 for the value of s = 6124 m?,

(c) 7 for the value of s = 15,309 m?,

(d) 5 for the value of s = 30,619 m?,

(e) 3 for the value of s = 61,237 m? and
(f) 2 for the value of s = 137,784 m>.

In the model without interfaces, the number of arrivals should be odd. Even numbers
for s = 6124 m?> and s = 137,784 m?> may be explained by the influence of the
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borders of the model. Due to the requirements established above, the models with
s =0 m? and s = 6124 m? are probably not suitable for ray-based methods.

The relative RMS difference of slowness between all calculated models and the
original Marmousi model is in Table 1. We can see that the price for a model
suitable for ray tracing is a considerable increment of the relative RMS difference
of slowness between the smoothed and original model, representing here the
geological structure. This resulted from the complexity of the original Marmousi
model. If the value of parameter s is larger, the relative RMS difference is the same
for all the studied B-spline grids. Hence, the model with the B-spline grid of cells
of 200 x 400 metres (with only 384 B-spline grid points) is probably the best
choice.
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Figure 4
The angular dependence of the Lyapunov exponents for the models with the B-spline grid of cells of
200 x 400 metres. The left and right border corresponds to the vertical ray, the middle corresponds to the
horizontal ray. The values of parameter s are (1) 0 m? for the dotted lines, (2) 6124 m?, (3) 15,309 m?,
(4) 30,619 m? and (5) 61,237 m? for the dashed lines and (6) 137,784 m? for the solid lines. The thin
horizontal lines correspond to the “average Lyapunov exponents,” averaged over angles with a uniform
weight.

In general, we believe it is useless to work with an overly dense B-spline grid,
because the smoothed models with various densities of the model grid converge with
increasing weight of the Sobolev norm.

Let us form a short summary of what we have accomplished. We have prepared
the smoothed models. We have calculated the values of corresponding ““directional”
and “‘average Lyapunov exponents” and the values of the relative RMS difference
between the smoothed and the original Marmousi model. Finally, we have studied
the behaviour of rays in the smoothed models. That is, we already know how to
smooth the Marmousi model for the computation of rays and travel times.

8. Effects of Smoothing on Gaussian Beams

Our primary objective was to prepare a suitable velocity model for Gaussian
packet migration. Since the width of the Gaussian beam is equal to the width of the



Vol. 159, 2002 Smoothing the Marmousi Model 1519

100Q)

2000}

depth
(m)

1000)

2000}

depth
(m)

3000

6000 distance (m) 8000

1=

1000)

2000}

depth
(m)

3000]

Figure 5
Rays in models with the B-spline grid of cells of 200 x 400 metres and with values of parameter s of
(a) 0 m?, (b) 6124 m?, (c) 15,309 m?, (d) 30,619 m?, (e) 61,237 m?, and (f) 137,784 m?. The maximum travel
time is of 2.3 seconds.

corresponding symmetric Gaussian packets, and the computation of the beams is
easier, we study the width of the Gaussian beams. In 2-D, the profile of the Gaussian
beam in a cross section orthogonal to the ray is controlled by the factor

exp(infMq*) | (19)

where 1 is the imaginary unit, f is frequency, ¢g is the ray-centred coordinate
orthogonal to the ray, and M is the second derivative of the complex-valued travel
time. The quadratic term in the Taylor expansion of the complex-valued travel time
of the Gaussian beam thus reads
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I Mq* . (20)

The quadratic term in the Taylor expansion of the complex-valued travel time of the
Gaussian beam along the surface is

HGR +iG") (x — x0)? (21)

where (x — xo) is the distance from the initial point of the central ray of the Gaussian
beam to the respective point on the surface and GR and G! are real-valued parameters
determining M uniquely (KLIMES, 1984).

We have calculated the standard halfwidths of Gaussian beams in various
smoothed models for various initial values of parameters GR and G'. Standard
halfwidth a of a Gaussian beam of cross section
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e
- 22
(1) 22)
multiplied by the square root of (27f), has been interpolated between the rays and
displayed,

W =a\/2znf . (23)

The halfwidths of Gaussian beams calculated for the models with the B-spline
grid of cells of 200 x 400 metres and with s= 15309 m?, s= 30,619 m?,
s = 61,237 m* and s = 137,784 m? are shown in Figure 6. These halfwidths have
been calculated for the initial values of parameters GR =0 and G' = 0.250 x 107°.
The models with lower values of s were excluded.

The gray-scale coded quantity W is displayed at the respective points along the
central rays of the beams. The white colour corresponds to the Gaussian beam
halfwidth of 0 metres for all frequencies. The black colour corresponds to the
Gaussian beam halfwidths of 1010 metres and more for the frequency of 35 Hz, and
of 1890 metres and more for the frequency of 10 Hz. Therefore, the black coloured
regions of Figure 6 indicate too wide Gaussian beams for the frequencies under
consideration.

We can see that the model with s = 15,309 m? is not suitable for Gaussian
beams or packets. Especially if the position of the source is close to the middle of
the profile, the Gaussian beams become wider too quickly. On the other hand, the
models with s = 61,237 m? and s = 137,784 m?> seem to be acceptable. Unfortu-
nately, these models are smoothed to an extent which may jeopardize the
migration. We hope that we will be able to use the model with s = 30,619 m? in
the migration. We have studied the behaviour of Gaussian beams for various
initial parameters GR and G'. We have realized that different initial values of these
parameters are suitable for different positions of the source, or of the receiver in
the migration. Consequently, we will try to develop a method to optimize the
shapes of Gaussian beams or packets dependent on the position of the source, or
of the receiver in the migration. This would allow the use of models not so
smoothed.

We mention that even in models with a sufficiently small number of arrivals, the
widths of Gaussian beams are at the verge of acceptability. This is due to the low
frequencies under consideration.

Let us summarize that models with parameter s equal to or greater than 15,309 m?
seem to be suitable for ray tracing with the travel time of 2.3 seconds, see Figures 5
and 6. From this point of view, these models are sufficiently smooth. However, the low
frequencies under consideration make the use of the Gaussian beam or packet method
almost impossible. We probably should improve the applicability of the Gaussian
packet method by using shapes of Gaussian packets optimized in dependence on the
position of the source, or of the receiver in the migration.
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Figure 6
The halfwidths of Gaussian beams in smoothed models with the B-spline grid of cells of 200 x 400 metres.
Columns correspond from left to right to the values of parameter s of (a) 15,309 m?, (b) 30,619 m?,
(c) 61,237 m? and (d) 137,784 m?. Rows correspond to various positions of the source (in metres).
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Table 1

The relative RMS difference between the smoothed and the Marmousi model. Columns correspond to various
B-spline grids, rows correspond to various values of parameter s

100-400 m 200-230 m 200-400 m
0 m? 8.3% 10.8% 11.1%
6,124 m? 11.4% 11.9% 12.0%
15,309 m? 13.2% 13.2% 13.3%
30,619 m? 14.3% 14.3% 14.3%
61,237 m? 15.1% 15.1% 15.1%
137,784 m? 15.8% 15.8% 15.8%

9. Conclusions

The minimization of the relevant Sobolev norm of slowness is a powerful tool for
preparing the optimum models for the asymptotic ray theory methods. As we have
illustrated in numerical examples, it can be used for smoothing very complex models.
However, the difference of slowness between the smoothed and the original model
then increases rapidly. Also, the error of the travel time then increases.

We must keep in mind that there exists a natural relation between the complexity
of the original model and the resulting difference between the sufficiently smoothed
model and the original model. The more complex the original model, the more
change it requires. Thus, the decision rests with the user, whether or not the model is
too complex for smoothing. The required maximum error of travel time is then a key
argument.

We have also demonstrated that even in models sufficiently smoothed for ray
tracing, the Gaussian beams may still be too wide for the frequencies under
consideration. In preparing a model for Gaussian beams or packets, we cannot judge
solely from the number of arrivals and values of the “average Lyapunov exponents’’,
whether the model is convenient. The widths of Gaussian beams or packets in
relation to the frequency should be studied as well.
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Appendix A

In evaluating a meaningful initial value of parameter s (see Section 6), we need
to find some approximative relation between the Sobolev norm and the Lyapunov
exponent.

According to KLIMES (1999), the ‘“‘average Lyapunov exponent” y) may be
approximated by

I A+AD (A1)

where A® is the decompensation for the low-velocity focusing zones. In 2-D, A is

defined as
-1
A= {/ vld2x] /1/neg(v,ij T i (A.2)

where neg(f) = 1/2(f — |f|) is the negative part of f, v is the velocity, v;; is the
second velocity derivative and e is a unit vector perpendicular to the ray.

We assume that the model is so smooth that the number of velocity oscillations,
Kose, along rays of length corresponding to T,y is small,

Koo = 200 (A.3)

Tosc

where 7, iS the average wavelength of the velocity oscillations in the smoothed
model, expressed in travel-time units. This assumption allows for the approximation

In2  KoeIn2

Tosc Tmax

AD ~

(A.4)

Let us now perform several approximations to express A in terms of the Sobolev
norm of slowness u in the model without interfaces,

-1
A~ [/ udzx] / pos(u,j e; ej)u~td*x | (A.5)

where pos(f) = 1/2(f + |f]) is the positive part of f,

-1
A z% {/ w dzx] / |ujj e ej| d*x | (A.6)

and

where
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Up = U dzx]l/u%dzx - (A.8)

Finally, we arrive at

3 1
Ax 32 (5) VI (A9)

where ||u|| is the Sobolev norm of slowness given by matrix b’, see equation (17). This
approximation may also be expressed as

8
[lue]| ~ 5ug(z/\)z : (A.10)

As we need to find some initial value of parameter s, we should estimate the
respective value of the Sobolev norm ||ul|;,,. Since we have already derived an
approximative relation between |ju|| and A, see equation (A.10), we need to find the
value of Aj,;;. We have decided to keep the number of arrivals less than 10, see
Section 5. With a view to equations (14), (A.1) and (A.4),

A< In10 4+ Kogc In2

(A.11)

Tmax

Since we assume at least one shift of —In 2 for the source and one for the receiver, we
assume Kysc = 2. For tmax = 2.9 s, we can put

Ainit = 13871 . (A.12)
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Optimization of the shape of Gaussian beams
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Summary

The applicability and accuracy of the Gaussian beam method depend on the proper
choice of the shape of beams. Gaussian beams become inaccurate solutions of the
elastodynamic equation if the velocity field changes considerably within the beam width.
We present a procedure of determinig the optimum initial shape of Gaussian beams
based on minimizing the average squared widths of Gaussian beams and smoothing the
distribution of the optimum parameters of Gaussian beams.

This procedure can increase the applicability of the Gaussian beam or packet
method, especially in complex structures. Moreover, it can make the use of the Gaussian
beam or packet method more comfortable. The presented procedure is suitable for the
optimization of the shape of Gaussian beams for Gaussian beam or packet migrations.

Key words

Asymptotic ray theory, Gaussian beams, Sobolev norm.

1 Introduction

Gaussian beams (GBs) represent high—frequency asymptotic time-harmonic solutions
of the elastodynamic equation, which are concentrated close to rays (e.g., Cerveny et
al., 1982; Cerveny & Pgencik, 1983). The distribution of the amplitude of the principal
component of the displacement in the profile perpendicular to the ray is Gaussian (bell-
shaped). The great advantage of the Gaussian beam method is that GBs are regular
along the whole ray, even at caustics.

However, the applicability and accuracy of the Gaussian beam method depend on
the proper choice of the shape of beams. It is necessary to keep GBs narrow in relation
to the velocity changes in the model, because GBs become inaccurate solutions of the
elastodynamic equation if the velocity field changes considerably within the beam width.
Unfortunately, if GBs are too narrow, they quickly increase in width as they propagate.
Thus, we can use neither too narrow nor too wide beams as the initial choice of the
shape of GBs. Furthermore, in a complex structure, we cannot judge solely from the
final width of the beam whether the beam is or is not a reasonably accurate solution
of the elastodynamic equation. The beam must be sufficiently narrow along the whole
ray path.

All these requirements force us to use a more sophisticated theory in the choice of
the initial shape of GBs than just a wild guess or some kind of empirical rules. Klimes
(1989) proposed a procedure, which is followed in this paper, based on minimizing
the integral of a certain expression along a fixed part of the beam’s central ray. This
approach allows us to minimize not only the width of GBs, but also the quadratic
variations of the complex—valued phase along an arbitrary surface, along a structural
interface or along a wavefront tangent plane.

In: Seismic Waves in Complex 3-D Structures, Report 11 (Department of Geophysics, Charles University, Prague, 2001), pp.181-201

35



In a complex structure, for various positions of the initial point of the beam’s central
ray (e.g., source), for various take—off angles of the beam’s central ray and for various
travel times, the optimum initial parameters of GBs can vary considerably. This can
bring about serious problems in the decomposition of the wave field into GBs or packets.
Hence, we should be able to simultaneously optimize and smooth the distribution of the
initial parameters of GBs.

2 Specification of some used quantities

In the case of the component notation, the upper—case indices take the values I, J, ... =
1,2 and the lower—case indices take the values 1, 7, ... = 1,2, 3. The Einstein summation
over the pairs of identical indices is used. The matrices are denoted by boldface letters
(e.g., A) or by means of their components (e.g., A;;).
We denote by A; the amplitude and by 6 the complex-valued phase of a frequency—-
domain Gaussian beam
g; = Ajexp(iwd) (1)

where i is the imaginary unit and w is the circular frequency. In ray—centred coordinates
g; (eg., Popov & Psencik, 1978, Cerveny, 2001), where g3 is an independent variable
along the ray and ¢y are Cartesian coordinates in the phase-front tangent plane, the
quadratic Taylor expansion (paraxial approximation) of the phase has the form of

0(a;) = 7(as) + yaxMrr(a)ar )

where 7 is the travel time along the central ray and M is the second differential of the
phase along the plane tangent to the phase—front.
Matrix M consists of a symmetric real part R and of a positive—definite symmetric
imaginary part Y,
M=R+iY . (3)

It may be also expressed as
M=PQ' , (4)

(%)= () ©

is the solution of the dynamic ray—tracing system (eg., Cerveny, 2001)

HONENCIO R

v is the propagation velocity, V is the second differential of the propagation velocity
along the phasefront tangent plane, 0 and 1 being zero and identity 2 x 2 matrices.
Any solution of the dynamic ray—tracing system with the initial conditions

()~ (@)= ()
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may be expressed as

(#)=m (&) :

where the paraxial-ray propagator matriz

(g3, q5”) = (gi gj) 9)

is the fundamental 4 x 4 matrix of the solutions of the dynamic ray-tracing system.
Q1 and P, are solutions of the dynamic ray—tracing system for the normalized plane

wavefront initial conditions
Q) (1
(Pl - (3 (10)

and Q4 and P4 are solutions of the dynamic ray—tracing system for the normalized point

source initial conditions
Q2 0
( P,) =~ \1) - (11)

3 Minimization of the objective function

Klimes (1989) proposed a procedure for determining the shape of Gaussian beams so
that they minimize the integral of certain expression along a fixed part of the beam’s
central ray. The general form of the minimized objective function is

o
7(G) = [ {Gla)Re [¥(as)}das (12

q3
where

[Y (g3)] 7" [Y (g3)] "' Rogs) ) (13)

Re[¥(gs)] = (R(qs) [Y(g3)]™" Y(gs) +Rolgs) [Y(q3)] " Rogs)

and G is the weighting 4 x 4 matrix. We control the physical quantity to be minimized
by the choice of the form of the matrix G.
In order to minimize the mean square of the width of GBs, we choose the matrix

G in the form of
1 0
G = (0 0) . (14)

Hence, the objective function reads

o

7(G) = [, olY (@) e (15)
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The objective function may be also written as

T(G) =tr{B(G)Re(¥y)} , (16)
where "
B(G)= [ = T'(s,45”)G(e2) (a5, 05”)das (17)

the dagger (7) is used to denote transpose, and Re(¥) is given by

Re (¥) = ITRe (¥,) IIT (18)
Re(Wo)= (Y0 1 o Yo 0 (19)
RO A\ ReYy! Yo+ RoY, 'R

Let us now decompose the real positive—definite symmetric 4 x 4 matrix B into
2 x 2 submatrices

B11 B12>
B = , 20
<B21 By, (20
which yields
T=tr{Bu1Y;' +BaRoY;' +Ba1 Y5 'Ro + Baa(RoY;'Ro + Yo)} - (21)

This objective function has just one local extreme which is simultaneously the global
minimum.

Differentiating the objective function (21) with respect to the real symmetric matrix
Ry and putting the result to equal zero, we obtain

Y;'Biz +Ba1 Yo'+ Y, 'RoBay + BoaRo Yy =0 . (22)
Finally, we obtain
Ro = X — (YoBa2) (X — XN)[tr(YoBg)] ! (23)
where
X = -B12By; . (24)

Differentiating the objective function (16) with respect to the real symmetric matrix
Y and putting the result to equal zero, we obtain

~Y; ' [B11 + B12Ro + RoBa1 + RoB2oRo] Yy ' +Bao =0, (25)
Finally, we arrive at
Y, = B;,/?SB5, /2 {1 + det(X — X1)det(Baa)[tr(S)]2}1/2 | (26)
where
S = (B34’C11B3}%)"/? (27)
and
Ci1 = By — B3B3, By . (28)

The matrix B, which is the result of the integration of the ordinary differential
equations
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dB

P MmGIT (29)
is ill-conditioned. This may be overcome by using the symmetric matrix
C— Cii Ci2)_ (Bu- B1,B,,;Ba; By (30)
021 022 B21 B22 .
The differential equations for the matrix C for optimization read
dC _ _
dq11 = (II; - I1,C3, C21)'G(II; — ,C5, Ca1)
3
dC
dC
dq? = IIIGII, |, (31)
where
Ql)
II, = 32
= (B (32)
and

I, = (g;) (33)

are 4 x 2 submatrices of the parazial-ray propagator matriz (9).

4 Transformation of the matrix C

We define the Cartesian components of the slowness vector

(=) _ OT
pz - 8,31 )

where (z1, 22, 23) is a local Cartesian coordinate system with its origin at the initial
point of the ray and basis vectors igz), igz) and igz). We choose the unit vector i:(,,z) to
coincide with the unit vector normal to the initial surface at the initial point of the ray.

The vectors i{”) and i$

(35)

are then obviously situated in the plane tangent to the initial

surface.
The unitary transformation matrix is defined by
azi 8q]'
P — 36
“ 6Qj 8Zi ( )

the columns of which constitute the local vector basis of the ray—centred coordinate
system expressed in local Cartesian coordinates z;. We shall also denote the components
of the velocity gradient in the ray—centred coordinate system on the central ray

Vi:<av> :<8zj@> . (37)
aqi q1=0 6q,~ 8Zj q1=0
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The second—order Taylor expansion of the time field along the initial surface is

given by the relation (Klimes, 1984)

1
0> = r —l—pgz)zj + izIzJMIEJ

[he matrix M= is defined by
IJ IKA gL MKL (Q3 ) + 3 17+ Ers

where

Erg = —HsHyxVigv™? — HysHig Viv™? — HigH sVav ™2

and D is the matrix of curvature of the initial surface.
Let us now introduce the matrix F,

F— HT 0
- \-H'({’D+E) H') ~

where H is the 2 x 2 upper left minor of the 3 x 3 matrix (36). Then

() =7 (g oo

Inserting (42) into (19), we obtain
Re (¥y) = FRe (¥7) FT |

(38)

(41)

(42)

(43)

where Re (\IIOE) is defined by equation analogous to (19), with M, replaced by Mp.
Considering (43), the objective function can be expressed in the form analogous to (16),

with Re (¥) replaced by Re (¥¥) and B(G) replaced by
B> = F'BF
From (30), (41) and (44), we can finally derive
Cf, =HC,H' |,
Cyi = (HN)'[CuH' - CH ' (p{’D + E)] |
C122 = (C§1)Jr )
C3, = (H)'CypH ™
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5 2-D case with a flat initial surface

In 2-D, the submatrices of the matrix C may be written as

Ci1 O )
Cy = , 49
a= (9 o (49)
- 022 0
= (9 L) (50)
C 0
C12=C21: (62 CJ_) . (51)
12

In other words, we have three independent in—plane parameters, Ci;, C12 and Cas.
Parameters Ci;, Ci5 and Cs; describe the optimum initial parameters of GBs perpen-
dicularly to the plane of calculation. In the case of a flat initial surface, matrix D is
given by

D=0 . (52)
Hence, we can write that
Ch= (vpéz))20u ; (53)
Ch = (vp¥))2Cg (54)
and
C3 = Cis — (pP)2ECy, (55)
where E = Fj; is given by equation (40),
ov 2 ( Ov
E = —2p{p§ (a_) - (pgz)) (a_> ' (56)
N q1,3=0 a3 q1,3=0

Finally, we present the initial parameters of the shape of the Gaussian beams
projected on the initial surface,

Mg =Ry +iYy (57)
where
Ry =-C% (CR)™ (58)
and
w=lenem]"” (59)
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6 Smoothing the distribution of R} and Y"

The rays may be defined as the characteristic curves of the eikonal equation (eg.,
Cerveny, 2001). In smoothly inhomogeneous isotropic media, the eikonal equation reads

pipi =v (%) (60)
where 3
-
P = ) (1
Pi = 5 (61)

x; being the general Cartesian coordinates. In general, we shall write the eikonal equa-
tion as

H(X, p) =0 , (62)
where the Hamiltonian function H (x,p) may be specified in various ways.

We consider z; and p; to be independent coordinates in a six—dimensional phase
space (four-dimensional phase space in 2-D). The eikonal equation then defines a Hamil-
tonian hypersurface (five-dimensional in 3-D and three-dimensional in 2-D) in the phase
space.

In 2-D, let us define a new coordinate system 7; in the three—dimensional Hamil-
tonian hypersurface. Coordinate y; corresponds to an independent variable along the
ray, y2 corresponds to take-off angle of the ray and y3 corresponds to the position of
the initial point of the ray along the initial line. We shall call it the phase-space ray
coordinate system.

Let us remind that the parameters RO2 and YOZ depend upon an independent vari-
able along the ray, take—off angles of the beam’s central ray and the position of the
initial point of the ray,

Ry = R5(y) (63)
and
Yy =Y5 (y) - (64)

For numerical purposes, we have to choose certain discretization of the Hamiltonian
hypersurface. This may be done by choosing a sufficiently dense grid in the Hamiltonian
hypersurface, the grid points of which are used for storing the necessary physical quan-
tities, and also for storing the optimum initial parameters of GBs. In determining the
optimum parameters of GBs for migration, the grid points form a regular rectangular
grid in coordinates

wy =t |, we =Y w3y =1Yy3 , (65)

where t is the time in the common-source time section. Coordinates w; are suitable
for optimization of the shape of GBs for Gaussian beam or packet migrations. The
inverted data are transformed from coordinates ¥; to coordinates w; using a coordinate
transform
wy =77 (zi(y1) + 1 w2 =Yz w3 =ys , (66)

where 75(z;) is the travel time from the source corresponding to the time section to
point ;. Multivalued travel time 7°(z;) then creates multiple data points.

Since we need to have the distribution of the initial parameters of GBs sufficiently
smooth in the decomposition of the wave field into GBs or packets, we should be able
to smooth it. Let us denote the smoothed initial parameters of GBs by R} and Y V.
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In obtaining a smoother distribution of the optimum initial parameters of GBs, we
minimize the squares of the relevant Sobolev norms of the parameters of GBs together
with the mean squares of the widths of the corresponding GBs. The objective function

to be minimized reads

T
0= SORNO)
qs

2 2
5 HIRS+ 1T (67)
) _ (D)
qs = —

where T is defined by (15) and || e || is the appropriate Sobolev norm. The Sobolev
scalar product is a linear combination of the L2 Lebesgue scalar products of the zero,

first, second or higher partial derivatives (Tarantola 1987).

Expressing T' in the form of

T =ChR(Ye") ™ + Ry + Cia(Ca) PO (Ye") ™+ ORY" (68)
we see that the objective function (67) is minimized by R}! minimizing the objective

function )

2 |RM - R
Or=|RS'I" + |[——| (69)
4 L2
where | |}, is the standard L2 Lebesgue norm, Ry is given by
RY = RJ (70)

and the standard deviations og are defined as

Y
OR — -5 - (71)
V¢35

During the iterative linearized smoothing, o is calculated using Y from the previous
iteration, with the initial estimate corresponding to value

Yy
OR — - - (72)
V&3

Equation (68) may be rearranged to read
T =205Yy + Cp(Ye) (¥ - Y9))? (73)

where

YP = \JCR(CH) 1 + (RY — RD)? . (74)

We see that the objective function (67) is minimized by Y™ minimizing the objective

function \

2 YM—YyP
Oy = IV"|I" +|=—"| . (75)
L2
where the standard deviations oy are given by
oy = —_ . (76)
C3%

During the iterative linearized smoothing, oy is calculated using Y from the previous
iteration, with the initial estimate corresponding to value

Y;)D
Cx
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In obtaining the parameters R}!, we minimize the objective function Og defined
by formula

O — Z (R(])D(WGRID) . RISA(WGRID)>2 .

/N-GRID
GRID Nog

[ ] [ (2E0) (280 o, -

where w = (wq,ws, w3) and b;; are the weighting coefficients of the Sobolev scalar
product. Superscript GRID takes values GRID = 1,2,.., N, where N is the number of
grid points of the original data grid. As we have not had any prior information about
the optimum smoothness of the distribution of the initial parameters of GBs, we have
used here only the first derivatives in the Sobolev norms in constructing the objective
function.

We can express R)! as a linear combination of tricubic B-splines B,

Ry (w) = Bo(W)RE | (79)
where RE are the values of the smoothed initial parameters of GBs at grid points of the
B-spline grid, which is a sub—grid of the original data grid. Subscript « takes values
a=1,2,.., P, where P is the number of B—splines describing the smoothed distribution

of the optimum initial parameters of GBs.
Equation (78) now reads

RD(wCRID) _ B (wGRID) B
Op= ). ( 0 © | +R;DagR; | (80)
GRID \/NUI%RID

s ([ ] [ () () e

Since we do not know the coefficients b;; which lead to the optimum distribution of
the initial parameters of GBs, the problem is not linear. Thus, parameters RZ cannot be
determined analytically. Since we do not want to solve the non—linear inverse problem
numerically, we need to “linearize” formula (81). The linearization of (81) yields

Daﬁ = S%D;B ) (82)

e [ ] () () e

where sy is a free parameter and b;j are fixed coefficients of the Sobolev scalar product.

where

Coefficients b;j may be constructed as a completely symmetric tensor. The 3 x3

matrix b’ is then defined by
’ <6i6j>
bij = 4 (84)
where e is a unit vector, (...) indicates averaging over all possible directions of a unit
vector, d =1in 1-D, d = 2 in 2-D and d = 3 in 3-D. The average of a unit vector over
all directions can be calculated analytically. Generally in d-D, we may put

b, =L (85)



where §;; is the Kronecker symbol. In 3-D, the desired matrix b’ may be expressed as

, 1/3 0 0
b= [0 1/3 0 . (86)
o 0 1/3

We can now rewrite equation (58) to read
Or = (R? —BRP)' C7' (RP - BRP) + s3(RP)'D'RP | (87)
where RY is defined as (ROD)Z. = RP(w;), B is defined as Bj, = Ba(w;), D' is a
P x P matrix given by formula (83) and Cg is a N XN diagonal matrix, composed of
N(oGRID)2 see equation (78).
Differentiating the objective function (87) with respect to the vector RB and
putting the result to equal zero, we obtain

BfC;' (BR® —R{) +s3D R =0 . (88)
The resulting vector RB is
RP = [BfC;'B + s4D' | 'BIC;'RY . (89)

By analogy, following the procedure from equation (78) to equation (89), the re-
sulting vector YB is

YE = [BfCy'B + 53D 'BfCylYy | (90)

where Cy is a Nx N diagonal matrix, composed of N(c$RIP)2,

7 Algorithm

(a) First of all, we need to compute a sufficiently dense set of rays and store several
important quantities along the rays. In dependency upon an independent variable
y1 along the ray (e.g., travel time), take—off angle y, of the beam’s central ray and
position y3 of the initial point of the ray (e.g., source), we have to store the parazial-ray
propagator matriz, see equation (9), the Cartesian components of the slowness vector,
see equation (35), and the transformation matrix, the columns of which constitute the
local vector basis of the ray—centred coordinates expressed in Cartesian coordinates, see
equation (36).

(b) We solve the ordinary differential equations (31) by numerical integration along the
ray.

(c) The results of the numerical integration describe the optimum initial profiles of GBs
in a plane perpendicular to the central ray of GBs. We have to transform the results of
the numerical integration to the analogous quantities describing the optimum shape of
GBs along the initial surface, see equations (45), (46), (47) and (48).

(d) Finally, we can calculate the optimum initial parameters of GBs RY and Yg", which
are discretized in dependency upon coordinates w;, see (65) and (66). Thus, each initial
parameter of GBs is defined on the 3-D parameter grid. We also need to store the
values of C3;, for smoothing.
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(e) If necessary, we smooth the distribution of the optimum parameters of GBs. In
obtaining a smoother distribution, we minimize the squares of the relevant Sobolev
norms of the parameters of GBs together with the mean squares of the widths of the
corresponding GBs, see equation (67). The presented procedure also allows us to smooth
iteratively.

8 Numerical examples

We have decided to use the Marmousi model (Versteeg & Grau, 1991) as the velocity
model. Since the original Marmousi model is too complex for ray-based methods,
we have used the smoothed Marmousi model (Zacek, 2002) in the computations, see
Figure 1. The dimensions of the model are 9200 metres (length) by 3000 metres (depth).
The grided values of velocity vary from 1520ms~! to 4550ms~".

2000 4000

6000 distance (m) 8000

Figure 1. The smoothed Marmousi model.

We have prepared two groups of sets of the initial parameters of GBs:

(a) very little smoothed sets (with various numbers of iterations), where we have used
sg =5 x 10°m3s~! and sy = 5 x 10!%m3s~! in the smoothing, see equations (82), (89)
and (90), and

(b) sets smoothed to a constant value (with various numbers of iterations), where we
have used sg = 1 x 103m3s~! and sy = 1 x 103 m3s~! in the smoothing.

In Tables 1a, b and 2a, b, we show the relative root—-mean—square (RMS) differences
between the parameters R and Yy~ and the parameters RY and Y obtained by the
smoothing with one, two and three iterations. Note that the differences between the
second and the third iterations are not very pronounced. For more iterations, there is
no difference at all.

Although the relative RMS differences, see Tables 1a, b, close to 100% may look
as too great, this is the least possible smoothing due to the numerical problems. The
differences in Tables 2a and 2b considering the initial parameters of GBs smoothed to a
constant value are, naturally, even worse. Especially for the position of the source of 5975
metres, where the relative RMS difference between RY! and Ry is up to 40000%. This
is caused by a broad range of the values of the parameter RJ and clearly corresponds to
a fact, that the spreading of GBs is the most pronounced for this position of the source.
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sy =5 x 101%m3s~! 425 m 3200 m 5975 m 8775 m
relative RMS diff. (1% it.) 65 37 42 69
relative RMS diff. (279 it.) 150 34 48 160
relative RMS diff. (3¢ it.) 160 34 52 190

Table 1la. The relative RMS difference between the smoothed parmeters YOM and the original
parameters Y~ (in [%]). Columns correspond to various positions of the source.

sp =5 x 109m3s~! 425 m 3200 m 5975 m 8775 m
relative RMS diff. (1% it.) 84 84 140 110
relative RMS diff. (2"9 it.) 75 84 120 94
relative RMS diff. (3" it.) 83 83 120 100

Table 1b. The relative RMS difference between the smoothed parmeters Rg/l and the original
parameters R} (in [%]). Columns correspond to various positions of the source.

sy =1 x1083m3s—1! 425 m 3200 m 5975 m 8775 m
relative RMS diff. (1°° it.) 95 110 85 97
relative RMS diff. (279 it.) 230 200 130 130
relative RMS diff. (3¢ it.) 230 200 130 130

Table 2a. The relative RMS difference between the smoothed parmeters YOM and the original
parameters Y~ (in [%]). Columns correspond to various positions of the source.

sp =1 x 1013m3s~! 425 m 3200 m 5975 m 8775 m
relative RMS diff. (1SJﬁ it.) 350 530 40000 130
relative RMS diff. (2nd it.) 1900 1900 38000 160
relative RMS diff. (3“d it.) 1900 1900 39000 160

Table 2b. The relative RMS difference between the smoothed parmeters Rg/l and the original
parameters R3 (in [%]). Columns correspond to various positions of the source.

Note that the greatest jump in the relative RMS differences is between smoothing to a
constant value with one iteration and with two iterations.
Standard halfwidth a of a Gaussian beam of crossection

i
- 91
e (~4%) (o1)
multiplied by the square root of (27 f), f being the frequency, has been interpolated
between the rays and displayed,

W =av2nf . (92)

The color coded quantity W is displayed at the respective points along the central
rays of GBs. Note that the displayed quantity W describes the halfwidth of GBs at the
endpoints of the ray segments, not the root mean square of the halfwidth along the ray
segments, although the latter quantity is minimized. The yellow colour corresponds to
the GB halfwidth of 0 metres for all frequencies. The halfwidth increases from yellow
through green and blue towards red. The red colour corresponds to the GB halfwidths
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of 1010 metres and more for the frequency of 35Hz, and of 1890 metres and more for
the frequency of 10Hz.

In Figures 2 and 3, the optimum inital parameters of GBs are very little smoothed
(just for numerical purposes) with one (Figure 2) and two (Figure 3) iterations. As
you can see, there is no significant difference between the figures. This also corresponds
to Table 1, where is no considerable jump in the relative RMS differences of the inital
parameters of GBs.

In Figures 4 and 5, the optimum inital parameters of GBs are smoothed to a
constant value with one (Figure 4) and two (Figure 5) iterations. We can clearly see
that the initial parameters of GBs smoothed with two iterations give much better results.
We do not show the GB widths for the initial parameters smoothed with three or more
iterations, beacause they do not change anymore.

The halfwidths of GBs for the value of the initial parameter Ry = —0.26x10~%sm—2
and for the value of the initial parameter Yy of 0.29 x 10~"sm~2 (which corresponds to
the optimum initial parameters of GBs smoothed to a constant value with one iteration,
see Figure 4c), 0.59 x 10~ "sm~2 (which corresponds to the optimum initial parameters
of GBs smoothed to a constant value with two iteration, see Figure 5¢), 0.12 x 10~ 6sm—2
and 0.24 x 10~%m~2 are in Figure 6.

The halfwidths of GBs for the value of the initial parameter Yy = 0.59 x 10~ "sm ™2
and for the value of the initial parameter Ry of —0.13 x 107%sm=2, —0.26 x 10~ 6sm—2
(which corresponds to the optimum initial parameters of GBs smoothed to a constant
value with two iteration, see Figure 5c), —0.39 x 107%sm~2 and —0.52 x 10~%sm~2 are
shown in Figure 7.

As we can see, the constant optimum initial parameters of GBs obtained by the
presented procedure give the best results in terms of GB width. Although a slightly
different choice of the initial parameters can be also good (eg., see Figure 6¢), we should
not forget, that we have achieved the optimum parameters automatically. This is a
great advantage of this method.

Currently, we cannot say anything meaningful about the influence of the optimiza-
tion of the shape of GBs on the Gaussian beam or packet migrations. Naturally, we
believe it will improve the accuracy of these methods.

9 Conclusions

The presented procedure of determining the optimum initial shape of GBs can improve
the applicability and accuracy of the Gaussian beam or packet method. We obtain the
optimum parameters almost automatically. Only the smoothness of the distribution of
the optimum parameters of GBs, which plays the key role in the decomposition of the
wave field into Gaussian beams or packets, have to be chosen by the user.

Naturally, it is not necessary to use this procedure in simple structures. But the
more complex is the model, the more important is to optimize the initial parameters of
GBs. Furthemore, especially in simple structures, we can smooth the optimum initial
parameters of GBs to make them constant on the whole Hamiltonian hypersurface. It
is more comfortable than trying to obtain the constant optimum initial parameters of
GBs just by chance.

Let us remind that our goal was to find the optimum initial parameters of GBs in
terms of GB width and that we have not tested the influence of the choice of the initial
parameters on the wave field. This is a theme for further study.
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Figure 2. The halfwidths of GBs for the position of the source of (a) 425m, (b) 3200m, (c¢) 5975m and
(d) 8775m. The green colour corresponds to the GB halfwidth of 202 and 378 metres for the frequencies
of 35 Hz and 10 Hz, respectively. The red colour corresponds to the GB halfwidth of 1010 and more,
and of 1890 metres and more for the frequencies of 35 Hz and 10 Hz, respectively. The coefficients used
for smoothing the optimum initial parameters of GBs are sg = 5 x 10°m3s~! and sy = 5 x 101%m3s—1,
one iteration.
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Figure 3. The halfwidths of GBs for the position of the source of (a) 425m, (b) 3200m, (c¢) 5975m and
(d) 8775m. The green colour corresponds to the GB halfwidth of 202 and 378 metres for the frequencies
of 35 Hz and 10 Hz, respectively. The red colour corresponds to the GB halfwidth of 1010 and more,
and of 1890 metres and more for the frequencies of 35 Hz and 10 Hz, respectively. The coefficients used
for smoothing the optimum initial parameters of GBs are sg = 5 x 10°m3s~! and sy = 5 x 101%m3s—1,
two iterations.
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Figure 4. The halfwidths of GBs for the position of the source of (a) 425m, (b) 3200m, (c) 5975m
and (d) 8775m. The green colour corresponds to the GB halfwidth of 202 and 378 metres for the
frequencies of 35 Hz and 10 Hz, respectively. The red colour corresponds to the GB halfwidth of 1010
and more, and of 1890 metres and more for the frequencies of 35 Hz and 10 Hz, respectively. The
coefficients used for smoothing the optimum initial parameters of GBs are sg = 1 x 103m3s~1 and
sy =1 x 10'3m3s~1, one iteration.
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Figure 5. The halfwidths of GBs for the position of the source of (a) 425m, (b) 3200m, (c) 5975m
and (d) 8775m. The green colour corresponds to the GB halfwidth of 202 and 378 metres for the
frequencies of 35 Hz and 10 Hz, respectively. The red colour corresponds to the GB halfwidth of 1010
and more, and of 1890 metres and more for the frequencies of 35 Hz and 10 Hz, respectively. The
coefficients used for smoothing the optimum initial parameters of GBs are sg = 1 x 103m3s~1 and
sy =1 x 1013 m3s~1, two iterations.
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Figure 6. The halfwidths of GBs for the value of the initial parameter Rg = —0.26 % 10~ %sm~—2 and for
the value of the initial parameter Yp of (a) 0.29 x 10~ "sm~2, (b) 0.59 x 10~ 7"sm ™2, (c) 0.12x 10~ %sm—2
and (d) 0.24 x 1076sm~=2. The green colour corresponds to the GB halfwidth of 202 and 378 metres
for the frequencies of 35 Hz and 10 Hz, respectively. The red colour corresponds to the GB halfwidth
of 1010 and more, and of 1890 metres and more for the frequencies of 35 Hz and 10 Hz, respectively.
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Figure 7. The halfwidths of GBs for the value of the initial parameter Yy = 0.59 x 10~ 7sm™2
and for the value of the initial parameter Ro of (a) —0.13 x 107%sm~2, (b) —0.26 x 1076sm™2, (c)
—0.39 x 1076sm~2 and (d) —0.52 x 10~%sm~2. The green colour corresponds to the GB halfwidth of
202 and 378 metres for the frequencies of 35 Hz and 10 Hz, respectively. The red colour corresponds
to the GB halfwidth of 1010 and more, and of 1890 metres and more for the frequencies of 35 Hz and
10 Hz, respectively.
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Summary

The decomposition of the wave field into optimized Gaussian packets is of key impor-
tance in the Gaussian packet migration. We present the theoretical basics and a set of
numerical examples of our method.

Key words

Gaussian packet, Gabor function, coherent-state transform, prestack depth migration,
common-shot gather.

1 Introduction

Our long-term project is to explore the properties of a depth migration method based
on Gaussian packets. Gaussian packets are waves whose envelopes at any given time are
nearly Gaussian in space. They represent high-frequency asymptotic solutions of the
elastodynamic equation, which are concentrated close to the central point of the packet
(e.g., Babich & Ulin, 1981; Ralston, 1983; Klimes, 1989a, 2004).

The main advantage of the Gaussian packet migration over the methods based on
Gaussian beams is a direct relation between the regions in the common-shot gather and
corresponding localized regions in the migrated section.

Like Gaussian beams, Gaussian packets become inaccurate solutions of the elasto-
dynamic equation if they spread excessively as they propagate. This spreading depends
on the complexity of the velocity model and on the initial shape of Gaussian packets.
Thus, we should use sufficiently smooth velocity model and optimize the initial shape
of the packets.

The Gaussian packet migration algorithm consists of four basic steps:

a) Preparation of a suitable smooth velocity model (Zacek, 2002).

b) Optimization of the shape of Gaussian packets (Klimes, 1989b; Zacek, 2001a, 2001b).
¢) Decomposition of the wave field into optimized Gaussian packets, which was already
presented by Zacek (2003), and which we thoroughly describe in this paper. The word
optimized implies that the shape of Gaussian packets, in the plane perpendicular to the
central ray of the packet, depends not only on the frequency, but also on the coordinate
of the intersection of the central ray of a Gaussian packet with the profile, on its arrival
time, and on the component of the slowness vector along the profile.

d) Back-propagation of the wave field using Gaussian packets and application of the
imaging functional (Z4¢ek, 2004, 2005).

The algorithm of the decomposition is designed here especially for numerical testing
on the 2-D Marmousi data set (Versteeg & Grau, 1991). That is why only 2-D case is
dealt with in this paper, although the generalization to 3-D is straightforward.

In: Seismic Waves in Complex 3-D Structures, Report 15 (Department of Geophysics, Charles University, Prague, 2005), pp.17-27
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2 Decomposition

We would like to approximate the wave field (common-shot gather) f(xz,t) in the form
of

fla',t) = /dtR/dw exp [—iw(t’ —tR)]/de/dp exp [iwp(z’ — zr)]

X W(x' — zr,t' — tr, TR, D, tR,w) F(ZR,p,tR, W) , (1)
where zg is the coordinate of the intersection of the central ray of a Gaussian packet
with the profile, tr denotes corresponding arrival time of a Gaussian packet, p is the
component of the slowness vector a Gaussian packet along the profile, and w is the
positive circular frequency of a Gaussian packet. The complex-valued function W de-
termines the shape of the envelope of a Gaussian packet, and the complex-valued func-
tion F(zg,p,tr,w) specifies the amplitude of a Gaussian packet. Hereafter, the limits
of integration with respect to zgr, tr, =, t and p are —oo and 400, and the limits of
integration with respect to w are 0 and +o0.

Let us express the amplitude of a Gaussian packet in the form of an integral trans-
form similar to the forward 2-D coherent-state transform,

/dx exp [—iwp(x — zr)] /dt exp [iw(t — tr)]

F(-’ER,p, tR,OU) = ﬁ

X U)(.’ER—x,tR—t,.’ER,p,tR,w) f(xat) ’ (2)
where w denotes a complex-valued analyzing function. Then, equation (1) can be ex-
pressed as

Fla 1) = / dt / dw exp fiw(t — )] / dz / dp exp [—iwp(z — z')]

X f(z,t) I(z —z,t' —t,p,w) , (3)

prel
where
I(z' —z,t' —t,p,w)

= /dtR/de W(x/_$R7t’_tR7xRapa tR,&)) ’lU(iL'R-iE,tR-t, IR, D, tRaw) - (4)

Considering the convolution (4) independent of p, integration with respect to p in (3)
yields a Dirac distribution §(z’ — x),

~ 1
Fla ) = / dt / dw exp [iw(t — )] / Qo b(a' ) ~ f(o,0) I ~a,0~1,0,0) , (5
which can be integrated with respect to z,
~ 1
f(z',t) = /dt/dw exp [iw(t —t")] — f(2',t) I(0,t' —¢,0,w) . (6)
T

Considering I(0,¢' —t, 0,w) independent of w, integration with respect to w in (6) yields
a complex-valued analytic Dirac distribution §(¢' —¢) — ﬁ Moreover, let us consider
real-valued 1(0,¢ — t,0,w), which leads to

Re (f(a', 1)) = / dt 6(t — 1) (&', 1) T(0,¢ — ,0,w0) (7)
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which can be integrated with respect to ¢,

Re (F(#',¢)) = J(',¢') 1(0,0,0,0) - (8)
For
1(0,0,0,wp) =1 (9)
the transformation would be exact,
Re (f(z.1) = f(a,t) (10)
The envelope of a trace of a Gaussian packet along the profile may be expressed as
1
W(z' — zr,t’ —tr, TR, D, IR, w) = €xp [iwi(yl -yr)'K(y' —yr)| , (11)
where
/ z
v= (1) (12)
VR = (fR> (13)
R
and
_ 10 p° —p
K=N (0 0>—|—N44 (_p 1) . (14)

Please note that parameters N and Ny4 correspond to N° and NY,, respectively, in
Zacek (2005, eq. 65).
Let us write the analyzing function w in an analogous form,

~ .1 =~

(e = o, = tn,on ) = oxp iz -y Ky -yw)] . (19)

where
xr

y= (%) (16)

and
2w (10 P P
kv (30)om (7 7) -

The meaning and choice of parameters a, p, N and N44 is discussed below.
Neglecting the dependence of parameters N, Ny4, a, p, N and N44 on zr and iR,
we may calculate the convolution (4),

I(z' —z,t —t,p,w)

= [[atn [ aon exp [iwg (15 - y) "K' —ym) + v —yn) Ky - yR>)}(18),
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which leads to
I(z' —z,t' —t,p,w)

2ma exp [iwl ((y' )T+ KNy - y))] . (19)

) wy/det[~i(K + K)]

Inverse matrices to (14) and (17) read

_ 1 0 0 L (1 »p
1_ - -
R AR 16 (20)

~ 1 0 0 1 1 ﬁ
1 - i
K ‘m(o 1)+J’\7(ﬁ foﬂ) ' 21)

In order to proceed from (3) to (5) and (6), we require I(z' — z,t' — t,p,w) to be
independent of p. Therefore, the sum K~ + K~ of matrices (20) and (21) in (19)
should be independent of p. To proceed from (6) to (7), we need I(0,t' —t,0,w) to
be independent of w. This means that the rightmost diagonal component of matrix
(K7 + K 171 in (19) should be proportional to w™?.

To meet these requirements, we choose the sum of matrices (20) and (21) in the
form of

2

and

2
_ 2 0
K‘1+K_1:(A6° LJri) : (22)
Ko &
0
where Ny, Ko and K o are constants. We introduce two generally different constants K
and K, because we would like to choose Nyy = Nyg(Kyp) and Nyg = Nyq(Kp). Inserting
expressions (20) and (21) into equation (22), we obtain three conditions,

1+1_ 2 (23)
N N N
p D
N+N (24)
and ) ”
1 1 w w
P+ =22 (25)

N Ny N Ny Ko ?0

where Ny, Ky and I?O are free complex-valued constants that must be selected.

In 2-D, the initial shape of a Gaussian packet is defined by two complex-valued
parameters — N and K. The imaginary part of N determines the Gaussian packet
width along the profile and the real part of N defines the curvature of the phase-
front. We choose parameter K, which describes the shape of a Gaussian packet along
the central ray, and which is connected with parameter Ny4 by equation (25), pure
imaginary and uniform for all Gaussian packets.

In order to minimize the spreading of Gaussian packets, parameter N should be
determined by the optimization of the shape of corresponding Gaussian beams (Klimes,
1989b; Zacek, 2001a, 2001b). Consequently, we should consider optimized Gaussian
packets,

N = N(.’ER, tR, p) . (26)
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In this place, we must point out that the transformation is exact,

f(.’l?,t) = f(:l?,t) ) (27)

only for N independent of xr and tr, see equations (18) and (19). Nevertheless, for
a reasonably smooth distribution of N with respect to zr and tgr, we could achieve
satisfactory results. Therefore, we have developed a procedure, which allows us to
smooth iteratively the distribution of parameter N on a Hamiltonian hypersurface in
the phase-space (Zacek, 2001a, 2001b).

Using equations (23) and (24), we may write

~ NNy
N=——— 2
2N — Ny ( 8)
and _
N
D= _—__ . 2
p NP (29)

Please note that parameter p is real-valued, but p is generally complex-valued.
Equation (25) may be rearranged in several ways to determine parameters Nyq and
Ny4. For instance, we can get two symmetrical expresions,

- NK,
Ny=—2_ (30)
wN — ﬁgKg
and N
Ny = 0 31
TN - p2K, (31)

Then, pure imaginary constants I?O and Ky must obey

Im(K,) < Im (“]’g) (32)
and
Tm(Ko) < Tm (‘;—f) . (33)

Another approach would allow the use of the fast Fourier transform (FFT) in the de-
composition (but not in the re-composition) of the wave field,

~ K
Nyg = ?0 ; (34)
2 2\ 1
w p p
Ny= (22 _ P
44 (Ko N N) (35)
and
— N,
Im(Ko) < Im (“’ (21\;2 °)> (36)
Equation (9) requires
~ W .
G— %\/det[—l(K LK) (37)



where matrix K is given by (14) and matrix K by (17). Equation (37) with (14) and
(17) can be converted using equations (29) and (25) into

- w
a=—
2w

. ~ . ~ w w
—1(N —+ N)\/—1N44N44 (FO + Ifz_—o) 3 (38)

where the square roots should be taken with positive real parts.

3 Discretization

A proper choice of the discretization of integral (1) is not only of key importance in the
decomposition of the wave field into Gaussian packets, but it also affects the accuracy
and efficiency of the Gaussian packet migration.

Let us consider a 2-D integral

/d&/dfz exp (17D kéK) (39)

discretized on a regular rectangular grid with intervals A¢; and A&;. Sufficient condi-
tions for the discretization were derived by Klimes (1986),

Aé1 < Ky/—[Im(D~1)]1 (40)

and

A§2 S I{\/—[Im(D_l)]zz . (41)
Matrix D must satisfy
[Im(D~ 12| < %\/[Im(D‘l)]n[Im(D‘l)]zz : (42)

The error of discretization depends on the properties of the wave field. For a simple
wave field with linear amplitudes and quadratic arrival times, the relative maximum
discretization error is about

Smax = 4 exp(—m2672) . (43)

Then, the maximum relative error for 2 = Z would be about 0.7 %. Unfortunately, the
error may raise rapidly for a more complex wave field. In the worst case, the maximum
relative error could reach up to 21 % for x? = %, see Table 3.3 in Daubechies (1992).
Nevertheless, we believe that a reasonable value of x for a realistic wave field would be
close to k% = J.

The error of discretization of integral (18) with respect to zgr and tg is controlled

by matrix
1 ~
D= iw(K +K) . (44)

According to conditions (40) and (41), maximum step in g for replacement of integral
(18) by its discretized counterpart is

Azg = m\/—% [Im ((K + f()—l)] L (45)

maximum step in tg is

Atn = n\/—% [ (& + %)) (46)
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and we require

fim (207 <2y fom a0 (a9, o

121 — 2

Equation (3) can be understood as a convolution of functions

J(,t,p,w) = 551(@,,p,w) exp(iwpr) exp(—iwt) (48)

and f(z,t) with respect to z and t, integrated over p and w. Fourier transform f(k', w’) of

f(z',t) is then the product of Fourier transforms J(k',w’, p,w) and f(k’,w’), integrated
over p and w. Inserting equation (19) into (48) and using the Fourier transform, we
obtain J(k',w’,p,w) in the form similar to (39) with & = &’ and & = w’. The error
of discretization of the integral of J(k',w’, p,w) with respect to k = wp and w is then
controlled by matrix

1 ~
D= —iw_l(K_l +K™1) . (49)

According to conditions (40) and (41), maximum step in p is

Ap = m\/g [ (K1 +K=)=1)] (50)

w 11

maximum step in w is

Aw = m\/Qw [Im ((K_1 + K‘l)_l)} , (51)

22

and we require

[ (4K

1 ~ ~
< = -1 —1)-1 —1 —1)-1
_2\/[Im((K + K1) >]11 [Im((K + K1) )]22 . (52)
Using conditions (23), (24) and (25), we can simplify expressions (50) and (51) into

Im(N())

Ap=r (53)

and

(54)

Awr ﬂm(ﬂ)

Ko+ K,

Presented discretization conditions are valid for a general smooth distribution of param-
eter N on a Hamiltonian hypersurface in the phase-space, see relation (26). However,
to simplify the whole migration procedure, it might be useful to smooth the optimized
distribution of parameter N to a constant value as described by Zacek (2001a, 2001b).
Considering uniform Gaussian packets with N = N = Ny, Ko = I?O, ]V44 given by
relation (30) and Ny4 determined by (31), maximum discretization steps according to
(45), (46), (53) and (54) read

Azg = g\/ —Im [(wNp — p2Ko) N3'2] (55)
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Atg = ry/~Im [(wNo — p2Ko) Ny 'K; Y] (56)

ap =y T2 R0) (57)

and
Aw = k/Im (Ky) . (58)

Naturally, uniform Gaussian packets bring about more rapid spreading, which could
jeopardize the accuracy of the migration.

4 Numerical examples

We tested our method on a common-shot gather belonging to the Marmousi data set
(Versteeg & Grau, 1991), see Figure 1. We decomposed the gather f(z,t) using equa-
tion (2) into individual Gabor functions, see Figure 2. The complex-valued amplitude
of a Gaussian packet equals the amplitude of the corresponding Gabor function.

In order to examine the accuracy of our method, we composed the approximated
common-shot gathers f(x,t) according to equation (1), see Figure 3. The differences
between the original gather and the approximated gathers are shown in Figure 4. We
calculated all the numerical examples with x? = 5

In the the first example, we present the decomposition of the wave field into uniform
Gaussian packets with Re(Np) = —0.25 X 107° sm™2 and Im(Np) = 0.25 x 107° sm™—2.
See Figure 3a for the corresponding approximated common-shot gather. Figure 4a
indicates that the transformation is almost exact.

The next example demostrates the decomposition of the wave field into Gaussian
packets with varying parameter N. In this case, Re(N) = —0.25 x 107° sm™—2 and
Im(N) ranges from 0.125 x 107% sm™2 to 0.5 x 107 sm~2. The approximated gather
is in Figure 3b. According to Figure 4b, the differences between the original and the
approximated wave field can be spotted not only at the edges of the gather. This is
caused by the dependency of parameter N on zr and tR.

The last example is the decomposition of the wave field with Re(N) = —0.25 x
107¢ sm~2 and Im(N) varying from 0.75 x 10~ sm™2 to 0.1 x 10~° sm~2. The ap-
proximated gather is displayed in Figure 3b. Although we can note several differences
between the original and the approximated gather in Figure 4c, the result seems to be
satisfactory.

The only serious problem of our method consists in the computational cost. Un-
fortunately, we cannot use 2-D FFT. The mathematical formulation of our task allows
only a series of 1-D FFTs in the decomposition, but not in the re-composition of the
wave field. In order to make the decomposition of the wave field more efficient, we are
constantly trying to refine the algorithm and speed up the computations.
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Figure 1. Original common-shot gather f(z,t) of the Marmousi data set (Versteeg & Grau, 1991).
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Figure 2. Gabor function.

5 Conclusions

The presented procedure of the decomposition of the wave field into Gaussian packets is
fully functional. It might be suitable not only for Gaussian packet migration, but also
for many different applications of the Gaussian packet method.

The choice of the discretization of the integral transform plays a crucial role in the
decomposition of the wave field. It affects not only the accuracy, but also the efficiency
of the method. We are able to control the discretization error of the decomposition into
uniform Gaussian packets.

Decomposition of the wave field into Gaussian packets, whose shape depends on
the coordinate of the intersection of the central ray of a Gaussian packet with the profile
and on its arrival time, is strictly mathematically speaking incorrect. In order to achieve
satisfactory results even in such a case, we smooth the distribution of the parameter
determining the shape of a packet in the plane perpendicular to its central ray (Zééek,
2001a, 2001b).

The main disadvantage of our approach seems to be the computational cost of the
decomposition. Nevertheless, once we obtain the amplitudes of Gaussian packets, we
can calculate many migrated sections for various reasonably similar velocity models.
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Figure 3. Approximated common-shot gathers ?(w,t) for (a) uniform Gaussian packets with

Re(Np) = —0.25 x 1076 sm~2 and Im(Np) = 0.25 x 10~ sm—2; (b) Gaussian packets with Re(N) =
—0.25x 1076 sm~2, and Im(N) ranging from 0.125x 1076 sm~2 to0 0.5 x 10~ sm~2; (c) Gaussian pack-
ets with Re(N) = —0.25 x 1076 sm~2, and Im(N) ranging from 0.75 x 107 sm~2 to0 0.1 x 107% sm—2.
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common-shot gathers f(z,t) for (a) uniform Gaussian packets with Re(Np) = —0.25 x 1076 sm~2 and
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and Im(N) ranging from 0.75 x 10~7 sm™2 to 0.1 x 107% sm™2.
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Summary

We present a complete algorithm and the first complete 2-D acoustic numerical examples
of a brand new imaging method operating in the common-shot domain — the Gaussian
packet prestack depth migration.

The main advantage of our method over the methods based on Gaussian beams
is a direct relation between the regions in the common-shot gather and corresponding
regions in the migrated section. Thus, the Gaussian packet prestack depth migration is
especially suitable for a target-oriented imaging.

Key words

Gaussian packet, Gabor function, prestack depth migration, target-oriented imaging,
multi-valued travel time, common-shot gather.

1 Introduction

Over the past years, several imaging techniques based on the seismic ray theory have
been developed. Particularly simple and popular are the methods using the Kirchhoff
integral. Another successful class of ray theory migrations employs Gaussian beams.
An especially elegant and effective migration algorithm using Gaussian beams has been
proposed by Hill (1990, 2001).

In search for an alternative to Gaussian beams, we have shifted our attention to
Gaussian packets. Gaussian packets are waves whose envelopes at any given time are
nearly Gaussian in space. They represent high-frequency asymptotic solutions of the
elastodynamic equation, which are concentrated close to the central point of the packet
(e.g., Babich & Ulin, 1981; Ralston, 1983; Klimes, 1989a, 2004).

Like Gaussian beams, Gaussian packets become inaccurate solutions of the elasto-
dynamic equation if they spread excessively as they propagate. This spreading depends
on the complexity of the velocity model and on the initial shape of Gaussian packets.
Thus, we should use a sufficiently smooth velocity model and optimize the initial shape
of the packets.

The Gaussian packet migration algorithm consists of four basic steps:

a) Preparation of a suitable smooth velocity model (Zacek, 2002).

b) Optimization of the shape of Gaussian packets (Klimes, 1989b; Zacek, 2001a, 2001b).
¢) Decomposition of the wave field into optimized Gaussian packets (Zacek, 2003, 2005).
d) Back-propagation of the wave field using Gaussian packets and application of the
imaging functional, which was already presented by Za¢ek (2004), and which we thor-
oughly describe in this paper.

The word optimized implies that the shape of Gaussian packets, in the plane per-
pendicular to the central ray of the packet, depends not only on the frequency, but
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also on the coordinate of the intersection of the central ray of a Gaussian packet with
the profile, on its arrival time, and on the component of the slowness vector along the
profile.

The migration algorithm is designed here especially for numerical testing in the 2-D
acoustic Marmousi model (Versteeg & Grau, 1991). That is why only scalar waves are
dealt with in the imaging part of this paper, although the generalization of the Gaussian
packet migration to the elastic waves is straightforward.

2 Paraxial Gaussian packet

In the case of the component notation, the upper-case indices take the values I, J, ... =
1,2; the lower-case indices take the values 1, 7,... = 1,2, 3; the Greek indices take the
values a, (3, ... = 1,2, 3,4. The Einstein summation over the pairs of identical indices is
used. The asterisk (e.g., u*) denotes the complex conjugate.

Let us write the space-time paraxial approximation of a Gaussian packet centred
at point y4(¢) in the form of

U=Aexp [iw(Nara + %Na[ﬂa?‘ﬂ)} ) (1)
where
ri =z —yi(t) (2)
ra=a4—ys(t) =za —1t (3)
Nog = Tap (4)
and
Noy=7qo - (5)

Here, 7 denotes the complex-valued phase function. The complex-valued vectorial am-
plitude A, the complex-valued second space-time derivatives of the phase function N,g
and the space-time slowness vector of the Gaussian packet N, are taken at the central
point y,(t) of the packet. We choose

Ny=—-1 . (6)

As it is much easier to deal with Gaussian packets in the ray-centred coordinate system
(e.g., Cerveny, 2001), we constitute the transform relations between the Cartesian and
ray-centred coordinates. In our notation, hj;, represents the i*® component of mth
orthonormal basis vector of the ray-centred coordinate system. Basis vectors h;; and
his are perpendicular to the central ray; basis vector h;3 is tangent to the central ray.

The complex-valued second covariant derivatives M,g of the phase function in ray-
centred coordinates are related to the second space-time derivatives N,g of the phase
function in Cartesian coordinates as

Mpn = Njgkhjmhin (7)
Njt = hjmhin M (8)
M4 = My = Njshjm (9)
Njs = Nyj = hjmMma (10)
and
Myy = Nyy . (11)
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Differentiating the eikonal equation
V27T — TaTa =0 (12)

with respect to space-time coordinates, and using relation (6), we arrive at

My = —vM;3 — vV (13)
and
Myy =v*M33+ V3 (14)
where
Vm = U,ih’im (15)

is the velocity gradient in ray-centred coordinates.

Differentiating twice the eikonal equation (12) with respect to space-time coordi-
nates, we obtain the Ricatti equation for the 4 x 4 space-time matrix (4), see Ralston
(1983). Using relations (7) to (11), let us transform the Ricatti equation into the ray-
centred coordinate system. Inserting equations (13) and (14), we obtain the Ricatti
equation for the 3 x 3 spatial submatrix M,,,, of the 4 x 4 space-time matrix M,g,

dM,.n dhi; dh;k 9 4
= - 'n—him_Mm —hin_ M mM n an_VmMn_VnM m s
dt n" gt kTt v Km0 3 3
(16)
where
an = v,ijhz'mhjn (17)

are the covariant velocity derivatives in ray-centred coordinates. The derivatives of the
basis vectors of the ray-centred coordinate system along the ray satisfy relations

dhjnm dh;s3 dh;n dh;s
—2Zhin=0, —Lhin=-Vn, —LZhjz=Vu, —Lhi3z=0 . 18
dt JN ’ dr JN N dt 33 M dt 33 ( )
Inserting relations (18), equation (16) may be decoupled into three equations,
dM
deN = —U2MMKMKN — ’U_1VMN , (19)
dM
déws = —Mp;Vi — v’ MpyrMrz — v~ Vs (20)
and A
dt‘”"”’ = —2M;3V; — v2Mar M3 — v~ Was . (21)

While equation (19) is the Ricatti equation for a Gaussian beam, equations (20) and
(21) extend the Gaussian beam solution to a Gaussian packet solution.

To express equations (19), (20) and (21) in the vector and matrix notation, we
introduce following matrices and vectors,

M, M12)
M = , 22
(M21 Mo, (22)
_( M3
M3 - (M23) ’ (23)
[ Ma
M4 - (M24) 9 (24)



W = <V” V12> (25)

Var Va2
and
_("N
V- (%) "
The Ricatti equation for a Gaussian beam (19) in the matrix notation reads
dM
T —’ MM — v 'W . (27)
Its solution may be expressed as
M=MT=pPQ ! |, (28)
where matrices Q and P satisfy the dynamic ray tracing equations (e.g., Cerveny, 2001)
Q P,
o 2P - ='W . 29
We introduce the parazial-ray propagator matrix
_ ([ Q1 Q2
M = (P1 B ) (30)
which solves equations (29) with unit initial conditions
Q) Q)\_(10
(P? Py) \0o 1) ~’ (31)

where 1 denotes a unit 2 x 2 matrix. Matrices Q and P may be determined from their
initial values Q° and P° using the paraxial-ray propagator matrix as

(8)-n(¥)

Equations (20) and (21), which extend the Gaussian beam solution of the Ricatti equa-
tion to a Gaussian packet solution, may be rewritten in the vector and matrix notation

as follows,
d(vM3 + v~ V)

pp = —v*M(vM;z + v~ 1V) (33)
and
dg?’?’ = —2VsMss — v2(M3 + v 2V)T (M5 + 0 2V) + 0 2VIV — o a3 . (34)
Solutions of equations (33) and (34) read
M;=v"'[(QT)'C—v'V] (35)
and )
Mjss = v_Q{—%CTQ_l [Im(M)] ™ (QT)'C+C - V3} , (36)

where C is a constant vector determined by the initial conditions and C'is an integration
constant. Equations for elements M3, My, M3z, M34 and M4, which supplement the
2 x 2 Gaussian beam matrix Mysn to the 4 x 4 Gaussian packet matrix M,g, consist
of two explicit evolution equations,

M, =-(Q")~'C (37)
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(Babich & Ulin, 1981),
My = -1CTQ (M) (@) IC+ O = IMT (M) MO (38)

and three simple relations,

Mz =—v"'My—v"2V (39)
M3z =v"2 (Mas — V3) (40)

and
M34 = —’l)_lM44 . (41)

Following equations (37) and (38), we determine constants C and C from the initial
values M§ and MY, of elements My and My,

C=-Q" M} (42)
and .
C =M+ %ME}T [Im(M%)] " MY . (43)

The complex-valued vectorial amplitude of a Gaussian packet A, see equation (1), may
be expressed as

A = Ae (44)
where A is the complex-valued scalar amplitude; e denotes the unit polarization vector
of a Gaussian packet, which is identical to the Gaussian beam polarization vector and to
the ray-theory polarization vector. The complex-valued scalar amplitude evolves along
the central ray of a Gaussian packet according to equation (Babich & Ulin, 1981)

v0p%det(Q°)
vp det(Q)

where velocity v and density p correspond to the elastodynamic equation and should be
replaced by respective material parameters for other wave equations.

A=A° (45)

3 Imaging
We choose the imaging functional for scalar waves in the form of

M(u,U) = /dw F (22?5‘;2’7(“” [ /dw ﬁ(w)}_l , (46)

w)

where u is the temporal Fourier transform of the incident wavefield u and U is the
temporal Fourier transform of the back-propagated scattered wavefield U. Let us take
the spectral filter F in the form of the Fourier transform 3 of the source time function
s, possibly shifted by time —tg or phase —yg,

F(w) = 5(w) exp(ipg — iwtg) . (47)

We assume the incident wavefield #(w) approximated by several ray-theory elementary
seismograms Ug(w) corresponding to individual branches  of possibly multi-valued
travel time,

iw) = Y () . (48)
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with

Uo(w) = s(w)agexp(iwrag) (49)
where aq is the amplitude corresponding to travel time 7. To avoid singularities and
to simplify the calculation, we apply approximation

7" (W)Aw) ~ 5 (W)3w) Y ahw)an(w) - (50)
Q

The back-propagated scattered wavefield may be composed of individual Gaussian pack-
ets Ug,

Uw) =Y Urw) . (51)
R

Then, the imaging functional takes the form of

Mu,U)=Y M(u,Us) , (52)
R
where
" ~ [aw exp(ips — iwtg) Yo a6 (w) exp(—iwTn) ﬁR(w) o Blw -t
(T o 3 (o) Jrore] o

In the time domain, equation (53) reads

Q exp(i(pg) ag UR(ts + TQ)

F(0) Yoqagaq
Although Gaussian packets are moving from the target zone towards the corresponding
receiver, we expect that the central rays of the packets are calculated from the receiver
towards the target zone.

Travel time 7" from the receiver is then used as the parameter along the central ray,
whereas y;(T) and y4(T) = tr — T are spatial coordinates and the travel time corre-
sponding to the centre of the Gaussian packet moving towards the receiver, respectively.

Because of the opposite propagation, the slowness vector of the packet N; is minus
the slowness vector P; of the ray coming from the receiver,

N;=-P;, . (55)

M(’U,, UR) ~ Z

(54)

We choose

Ny=-1 . (56)
Paraxial approximation of a Gaussian packet propagating towards the corresponding
receiver to reach it at time x4 = tgr, centred at point y,(7), is

Urt(z4) = Arr exp [iw(Nara + 3 NagraTs)] (57)
where
ri = x; — yi(T) (58)
and
T4 = T4 — y4(T) = T4 — (tR —_ T) . (59)

Matrix N,pg corresponds to a Gaussian packet moving towards a receiver, although it
is, like the travel time y4 and slowness vector N,, expressed in terms of the quantities
calculated along the ray emanated from the receiver.
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Paraxial approximation (57) is accurate in the vicinity of point y,(T"), but becomes
inaccurate at large space-time distances from y,(7"). Assuming discrete points y;(T)
with step AT along the central ray, we thus limit each paraxial approximation by
weighting function

Wr =7k~ ! exp [—nz (Nirz-)zAT_ﬂ , (60)

where parameter k controls the shape of the Gaussian function and, consequently, the
error of the weighting. Sum of these weighting functions is approximately 1 in the
vicinity of the central ray and thus

Ur(ts + 7o) = »_ WrUrr(ts + ) - (61)

According to equations (54) and (61), the image of a single Gaussian packet reads

M(u,Ug) = M(u,WrUrr) , (62)

where the image of a single paraxial approximation is

VT qah Ay exp lips +iw(Noro+ 3 Naprarsg) — 62 (Nir;) 2 AT 2]

M(u, WTURT) - " ,
F(0) & Y g agaq
(63)
with

T4:tS+TQ(.’L'Z‘)+T—tR . (64)

Inserting equation (62) into (52), the imaging functional takes the form of
Mu,U) =Y > M(u,WrUrr) - (65)

R T

4 Algorithm

Like other types of wave packets, Gaussian packets spread as they propagate through
the structure. It is necessary to keep Gaussian packets narrow in relation to the ve-
locity changes in the model, because Gaussian packets become inaccurate solutions of
the elastodynamic equation if the velocity field changes considerably within the packet
width. This spreading depends on the complexity of the velocity model and on the
initial shape of Gaussian packets. Therefore, before proceeding to the migration, we
need to prepare a suitable velocity model and choose the appropriate initial shape of
Gaussian packets.

Since the Gaussian packet prestack depth migration operates in the wave field
domain, the initial amplitudes of Gaussian packets are obtained by decomposing the
common-shot gathers into Gabor functions.

In the process of imaging, we compare the incident wave field v and the back-
propagated scattered wave field U. The back-propagated wave field consists of individual
Gaussian packets. We choose the imaging functional in the form of expression (46),
although other varieties of imaging functionals could be admissible as well.
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4.1 Velocity model

A velocity model should prevent Gaussian packets from excessive spreading and approx-
imately preserve original travel times. The question of the smoothness of the velocity
model is closely related to the problem of finding the limits of applicability of the ray
theory, which remains unsolved and open for further research.

In a complex model, the geometrical spreading and number of arrivals exponen-
tially increase with increasing travel time. The exponential increment is controlled by
the Lyapunov exponent (e.g., Klimes, 2002). Consequently, the Lyapunov exponent
determines the horizon, where the ray behavior becomes chaotic. Since the Lyapunov
exponent depends on the second spatial derivatives of velocity or slowness, the second
derivatives should be minimized. Therefore, we smooth slowness by minimizing the
relevant Sobolev norm composed of the second derivatives of slowness (Zacek, 2002).

4.2 Optimization of the shape of Gaussian packets

The applicability and accuracy of the Gaussian packet method depend on the proper
choice of the initial shape of packets. Unfortunately, narrow Gaussian packets quickly
increase in width as they propagate. Thus, we can use neither too narrow nor too wide
packets as the initial choice of the shape of Gaussian packets. Furthermore, in a complex
structure, we cannot judge solely from the final width of the packet whether the packet
is or is not a reasonably accurate solution of the elastodynamic equation. The packet
must be sufficiently narrow along the whole ray path.

The initial shape of Gaussian packets is determined by the complex-valued second
space-time derivatives of the phase function N 2 g, See equation (1). To prevent Gaussian
packets from excessive spreading, we optimize their initial shape by minimizing their
width along the whole ray path. Since we wish to control the spreading in the plane
perpendicular to the central ray of the packet, see equation (27), it is sufficient to
optimize the initial shape of corresponding Gaussian beams (Klimes, 1989b; Z4¢ek,
2001a, 2001b). We can restrict our attention to Gaussian beams, because the Ricatti
equation for a Gaussian packet (16) may be decoupled into three equations, where
equation (19) is the Ricatti equation for a Gaussian beam, and equations (20) and (21)
extend the Gaussian beam solution to a Gaussian packet solution.

The shape of a Gaussian beam is characterized by a 2 x 2 complex-valued matrix in
3-D and by a single complex number in 2-D. Let us denote by N° the initial complex-
valued parameter in 2-D, which was defined as parameter N by Zicek (2005). The
imaginary part of N° determines the Gaussian beam width and the real part of N°
defines the curvature of the phase-front.

Parameter N°, which describes the shape of a corresponding Gaussian beam along
the initial surface, may depend on the coordinate of the intersection of the central ray
of a Gaussian packet with the profile xg, on its arrival time ¢g, and on the component
of the slowness vector along the profile p. In other words, parameter N is situated on a
Hamiltonian hypersurface in the phase-space (Zziéek, 2001a, 2001b). In a complex struc-
ture, the optimum initial parameters N°(zg,tr,p) may vary in orders of magnitude.
This would cause great problems in the decomposition of the wave field into optimized
Gaussian packets. Therefore, we have developed a procedure, which allows us to smooth
iteratively the distribution of parameter N° on the Hamiltonian hypersurface (Zééek,
2001a, 2001b).
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4.3 Decomposition of the wave field into Gaussian packets

In order to determine the initial amplitudes of Gaussian packets A, see equation (45),
we need to decompose the common-shot gather into optimized Gaussian packets (Zééek,
2003, 2005). Each Gaussian packet arriving at the receivers is represented by a Gabor
function, whose shape depends on the shape of the Gaussian packet. Using the coherent-
state transform, we decompose the common-shot gather into these Gabor functions.
The complex valued amplitude of the back-propagated Gaussian packet A° then equals
the amplitude of the corresponding Gabor function. The amplitudes depend on the
coordinate of the intersection of the central ray of a Gaussian packet with the profile
TR, its arrival time tg, the component of the slowness vector along the profile p, and
the frequency w. Let us point out that the intersection of the central ray of a Gaussian
packet with the profile xgr does not generally coincide with any receiver.

In 2-D, the initial shape of a Gaussian packet is defined by two free complex-valued
parameters — N° and K°. Parameter N° should be determined by the optimization
of the shape of corresponding Gaussian beams. We choose parameter K°, which was
introduced as parameter K, by Zacek (2005), and which describes the shape of a Gaus-
sian packet along the central ray, pure imaginary and uniform for all Gaussian packets.
Please note that parameter K is used in the choice of N4, see Zacek (2005, eq. 25)
and equation (66) below.

Let us mention two problems closely connected with optimized Gaussian packets.
The decomposition is exact only for N° independent on zg and tg. However, we may
achieve satisfactory results for a reasonably smooth distribution of parameter N° on
the Hamiltonian hypersurface (Zacek, 2003, 2005).

Unfortunately, the non-uniform shapes of Gaussian packets also affect the amount of
data we have to work with, because the maximum steps in g and p depend on parameter
N°. In 2-D, for the imaginary part of N° varying from [Im(N®)]yn to [Im(N?)]pax, the
number of grid points in our 4-dimensional phase-space is approximately proportional
to {[Im(N°)]max/[Im(N®)]nin} /2. This could seriously jeopardize the efficiency of our
method.

We overcome these difficulties by smoothing the distribution of parameter N° on
the Hamiltonian hypersurface. To simplify the calculation, we can smooth N to a
constant value and obtain uniform Gaussian packets. Naturally, the smoothing brings
about more rapid spreading of Gaussian packets.

4.4 Migration

We begin the main process of migration by determining the incident wave field v and
the back-propagated scattered wave field U. Then, we construct the migrated image,
which is given by expressions (63) and (65).

The incident wave field v may be calculated in various ways. We benefit from a
method of interpolation within ray cells proposed by Bulant & Klimes (1999), which
requires only a sufficiently dense set of rays from the shot location to be traced. By
interpolation, we obtain the multi-valued amplitudes of the incident wave field aq cor-
responding to travel times 7.

We determine the scattered wave field U using the Gaussian packet method. Gaus-
sian packets propagate along their central rays, which have to be shot with the same
steps in zr and p as in the decomposition of the wave field. We move along these central
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rays with step AT, determine matrix N,g and the amplitude of a Gaussian packet Agrr,
and calculate expression (63).

In 2-D, we choose basis vector h;; perpendicular to the plane of calculation and,
consequently, basis vector h;s parallel to the plane of calculation. We select the Carte-
sian coordinate system with vector (0,1,0) tangent to the initial surface in the plane of
calculation and vector (0,0, 1) perpendicular to the initial surface. Then, matrix M 2ﬂ
reads

0 0 ) 0 0
N° Vo h Vi [k v
o |0 B (i) % o -
- 0 _ N§,—Vs N, ’
v2 1}30

see equations (8), (39) with My = 0, (40) and (41). Please note that parameter NO°
corresponds to NY,, see equation (8). According to Zacek (2005, eq. 31), we choose

N°(zr, tr,p)K°
wNO (.TR, tR,p) —p?K?O
In order to calculate expressions (28), (37), (38), (39), (40) and (41), which yield matrix
Mz corresponding to its initial choice M aoﬂ’ we need to determine matrices Q and P.
Since the central ray of a Gaussian packet is calculated from the surface towards the
target zone, whereas the packet propagates from the target zone towards the surface, we
have to change the sign of the slowness vector, see equation (55), and modify equation

N£4($RatRap7 (,J) = (66)

(32) into 0
(g) - (—Qﬁl }32) <§0> ’ (67)
where
Q= ((1) (1)) (68)
and

Poz(g 1\2202) : (69)

Using relations (8), (10) and (11), we transform matrix Mg into matrix Nog, which
describes the shape of a Gaussian packet in Cartesian coordinates.

The amplitude of a Gaussian packet evolves along the central ray according to
equation (45). Following our choice of matrix QU, see relation (68), we can write

v9p0 1
vp /det(Q
where the initial amplitude A° comes from the decomposmon of the wave field. In the

case of forward propagation, the complex-valued square root depends on the number of
caustic points along the central ray as

i sgn [det( Qz )]

\/ det det(Q

where the square root is taken with the positive real part. Index k denotes the KMAH
index, which is defined as the sum of the caustic points along the ray (e.g., Cerveny,

ART = AO(xR7 tR7p7 (70)

exp [—i%(Qk + 1)} , (71)
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2001). As the Gaussian packet propagates from the target zone towards the surface,
whereas the initial value of matrix Q is defined on the surface, we have to change the
sign of the KMAH index. Thus,

Anr = 4 xR,tR,p,m\/’”’ \/”gﬁ“ B oo [iTer-n] . @)

As soon as we determine the multi-valued amplitudes of the incident wave field aq
corresponding to travel times 7q, and the amplitude Arr and the second space-time
derivatives of the phase function N,g of the back-propagated Gaussian packet, we cal-
culate expression (62), which yields the localized image of a single Gabor function from
the common-shot gather. Then, we superimpose the images of all Gabor functions cor-
responding to a single common-shot gather, see expression (65), and obtain the prestack
migrated image of this common-shot gather. Finally, we can stack all of the images to
produce the migrated image of the whole data set.

5 Target-oriented imaging

Each Gabor function from the common-shot gather generates its localized image in the
depth section. In this way, we obtain a one-to-one relation between the Gabor functions
from the common-shot gather and their localized images from the depth section. This
relation was discussed in greater detail by Zacek & Klimes (2003).

Let us say that we are interested in a particular area in the subsurface structure.
We call this area a target zone. Unlike Gaussian beams, Gaussian packets are, at any
given time, concentrated close to the central point of the packet. Thus, we can consider
only those packets, which fall into the target zone.

Moreover, we can pick out Gaussian packets contributing to the target zone, mul-
tiply their amplitudes by corresponding weighting factors, and use them in the re-
composition of the common-shot gather. In such a case, we obtain the wave field
scattered specifically from the target zone.

6 Numerical examples

We tested our method on the Marmousi data set (Versteeg & Grau, 1991). The Mar-
mousi model represents a very complex structure, see Figure 1. The dimensions of
the model are 9200 metres (length) by 3000 metres (depth). The values of velocity,
which are defined on a grid of cells of 4 x4 metres, vary from 1500 ms~! to 5500 ms—!.
Since the original model is not suitable for any ray method, we minimized the rele-
vant Sobolev norm of slowness as described in Section 4.1, and obtained three different
smooth velocity models, see Figure 2. Each model is characterized by its average Lya-
punov exponent A (Klimes, 2002; Z4¢ek, 2002), which controls the average geometrical
spreading of the ray field. The average Lyapunov exponent reads A = 0.52 s~ for the
model in Figure 2a, A = 0.68 s~! for the model in Figure 2b, and X\ = 0.89 s~ for the
model in Figure 2c.

The Gaussian packet migration operates in the common-shot domain. Following
the procedure explained in Section 4.3, we decompose the common-shot gather, see Fig-
ure 3a, into individual Gabor functions, see Figure 3b. The complex-valued amplitude
of a Gaussian packet equals the amplitude of the corresponding Gabor function. Using
expression (62), we calculate the localized image of a single Gabor function from the
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Figure 1. Marmousi model (Versteeg & Grau, 1991).

common-shot gather, see Figure 3c. Let us point out that Figures 3b and 3¢ demon-
strate the unique one-to-one relation between the Gabor function from the common-shot
gather and its localized image from the migrated section. Finally, we superimpose all
relevant images according to relation (65), and obtain the prestack migrated image of
the common-shot gather, see Figure 3d.

In Figure 4, we present the migrated images of individual Gabor functions for
three different arrival times of a Gaussian packet tr, but for the same coordinate of
the intersection of the central ray of a Gaussian packet with the profile zg, the same
component of the slowness vector along the profile p, and the same frequency w.

In Figure 5, we show the migrated images of individual Gabor functions for three
different frequencies w, but for the same coordinate of the intersection of the central
ray of a Gaussian packet with the profile xr, the same arrival time tg, and the same
component of the slowness vector along the profile p.

Summation of the migrated images of Gabor functions of a fixed shape over all ar-
rival times tg yields the migrated image of a corresponding Gaussian beam. In Figure 6,
we demonstrate such summation for three different frequencies w, but for the same coor-
dinate of the intersection of the central ray with the profile zg and the same component
of the slowness vector along the profile p. Please note that the colour coded amplitudes
in Figures 3, 4, 5 and 6 are normalized and do not represent the true amplitudes.

Since we wish to minimize the spreading, we optimize the initial shape of Gaussian
packets according to the procedure suggested in Section 4.2. To simplify the tests, we
have decided to smooth the resulting distribution of parameter N° on the Hamilto-
nian hypersurface in the phase-space to a constant value. Such smoothing is sensitive
to the maximum travel time we take into account. Moreover, the smoothed uniform
parameters of Gaussian packets vary for different common-shot gathers. As not all
the common-shot gathers are equally important for the optimization, we cannot simply
average corresponding parameters N° with uniform weights. Therefore, the choice of
the most suitable parameter N for the whole data set depends not only on the strict
mathematical procedure suggested by Z4cek (2001a, 2001b), but also on our experience.
We select Re(N?) = —0.25 x 107% sm~2 and Im(N°) = 0.25 x 107% sm™2. Parameter
K°, which describes the shape of a Gaussian packet along the central ray, is considered
pure imaginary, Im(K?%) = 8.8 s72.
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Figure 2. Smoothed models with the average Lyapunov exponents A of (a) 0.52 s~1, (b) 0.68 s~1
and (c) 0.89 s~1. The average Lyapunov exponent controls the average geometrical spreading of the
ray field.
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Figure 3.

We decompose the common-shot gather of the Marmousi data set (a) into individual

Gabor functions (b). Each Gabor function generates its localized image in the depth section (c).
Superimposing all relevant images, we obtain the migrated image of the common-shot gather (d).
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Figure 4. Migrated images of individual Gabor functions for three different arrival times tr, but for
the same coordinate of the intersection of the central ray of a Gaussian packet with the profile zg, the
same component of the slowness vector along the profile p, and the same frequency w.
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Figure 5. Migrated images of individual Gabor functions for three different frequencies w, but for
the same coordinate of the intersection of the central ray of a Gaussian packet with the profile zg, the
same arrival time tR, and the same component of the slowness vector along the profile p.
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Figure 6. Migrated images of Gabor functions summed over all arrival times tg for three different
frequencies w, but for the same coordinate of the intersection of the central ray of a Gaussian packet
with the profile zg and the same component of the slowness vector along the profile p. These images
correspond to migrated images of Gaussian beams.
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Figure 7. Stacked migrated sections of the Marmousi data set calculated in the velocity models with
the average Lyapunov exponents A of (a) 0.52 s~!, see Figure 2a, (b) 0.68 s~!, see Figure 2b, and (c)
0.89 s~ 1, see Figure 2c. We used a sparse grid of cells of 20x20 metres and applied no post-processing.



A proper choice of the discretization of the phase-space is of key importance in the
decomposition of the wave field into Gaussian packets. Using the method proposed by
Zacek (2003, 2005), we obtain Azg = 82.1 m, Atg = 0.272 s, Ap = 0.404 x 10~ sm™*
and Aw = 3.70 s~1. We decomposed the original Marmousi data and did not apply any
pre-processing.

The stacked migrated sections of the Marmousi data set are displayed in Figure 7.
They correspond to three different smooth models, see Figure 2, and represent the raw
output of our method. In order to speed the calculation up, we used a sparser grid of
cells of 20 x 20 metres.

Although we can recognize several features of the Marmousi model, we failed in re-
constructing the bottom part of the model. We believe three main causes of such result
consist in the use of (a) uniform Gaussian packets, (b) an oversimplified stacking proce-
dure, and (c) considerably smoothed velocity models, see Versteeg (1993). Nevertheless,
we are still intensively testing our method, and therefore the numerical examples shown
in Figure 7 should be considered as very preliminary.

In the future, we would like to refine the method of stacking in order to improve
the quality of stacked migrated sections. Moreover, we should consider the application
of Gaussian packets with varying parameter NY. This would make the Gaussian packet
prestack depth migration more expensive, but also more suitable for complex velocity
models.

7 Conclusions

The Gaussian packet prestack depth migration represents a new and promising imaging
method operating in the common-shot domain. It can handle multi-valued travel times
and allows a target-oriented approach.

Although the common-shot Gaussian packet migration cannot match the efficiency
of the common-offset Gaussian beam migration algorithm proposed by Hill (2001), it is
more general and provides a one-to-one relation between the Gabor functions from the
common-shot gather and their localized images from the depth section. We hope that
this unique feature could help us in understanding the true meaning of the migrated
section.

Ultimately, we would like to inspire and encourage other researchers and possibly
attract their attention to the Gaussian packet domain. We believe that it could show
even greater potential than the well-known Gaussian beam domain.
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