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o vnitřńı struktuře planety. Spektrum geoidu se nám dař́ı rozdělit na dvě části a každou
z nich vysvětlit samostatně v rámci jiné teorie kompenzace topografie. Na stupńıch j > 40
je vhodným mechanismem izostatická kompenzace k̊ury o jedné vrstvě s mocnost́ı 35 km; na
stupńıch j=2-40 je vhodným kompenzačńım mechanismem dynamické tečeńı v plášti. To
v této práci modelujeme za použit́ı teorie odezvových funkćı. Za předpokladu vztlakových
sil měńıćıch se pouze laterálně se nám dař́ı vystihnout kolem 90% pozorovaného geoidu i to-
pografie. Řešeńım obrácené úlohy pro viskózńı strukturu dostáváme litosféru o mocnosti
100-200 km s viskozitou o několik řád̊u vyšš́ı v porovnáńı s hlubš́ımi partiemi. Pro zbytek
pláště pak dostáváme nár̊ust viskozity směrem k jádru o 1-1.5 řádu bez př́ıtomnosti ostře
ohraničené zóny ńızké viskozity (podobné astenosféře u Země). Predikované hodnoty dy-
namického geoidu i topografie jsou analyzovány pomoćı spektrálńıch i lokalizačńıch metod
a vykazuj́ı dobrou korelaci s pozorovanými daty.
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Abstract: Modelling Venus’ gravity gives us acceptable constraints on the structure of the
planet. We can successfully divide the geoid spectrum into two main parts and each of them
explain on the basis of different topographic support. For a signal at degrees j > 40 it is
appropriate to use the crustal-isostasy model with the one-layer crust of thickness 35 km; for
degrees j=2-40 is the suitable compensation mechanism a dynamic flow in the mantle. In
our work this is investigated in the framework of internal loading theory. When we assume
that the buoyancy force is only varying laterally we can explain well about 90% of both the
geoid and topography. By solving the inverse problem for a viscosity structure we obtain
a lithosphere with a thickness 100-200 km and of a viscosity stiffer by several orders of
magnitude than the deeper parts. For the rest of the mantle we obtain a viscosity increase
towards the core by 1-1.5 orders of magnitude with no indication of a narrow low-viscosity
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analyzed by means of both spectral and localization methods and show a good correlation
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Earth is the cradle of mankind.
But one cannot live in the cradle forever.

K. E. Ciolkovski (1857-1935)
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Chapter 1

Introduction

In the case of planets other than Earth our knowledge of their interiors is very poor because,
except for the Moon, we have no seismological observations which can give us direct infor-
mation about their structure. Our only tool to uncover the subsurface structure and mantle
properties is to carefully analyze the gravity/topography relations – both of these fields are
precisely measured by orbiting space probes. This work’s aim is to continue such efforts
in the case of Venus, previously studied by other authors, with modifications of currently
used methods and employing new data models obtained by recent analyses. Our effort is to
identify the part of the geoid generated by dynamic processes in the mantle and then, by
means of the inverse problem, find the best rheological model to reproduce it.

Basically this thesis is divided into two parts. Chapter 2 has a character of literature
retrieval, where all the different findings concerning geophysics of Venus are reviewed –
for identification of interdisciplinary links this section also contains parts focused on the
magnetosphere and atmosphere of Venus. Chapter 3 deals with the used spherical harmonic
models of geoid and topography and with the techniques of obtaining them.

Our own contribution to the understanding of Venus’ structure comes in the chapters
after these. In Chapter 4 the global estimates of the crustal thickness based on the isostasy
for short wavelengths are made, and in Chapter 5 we applied the internal loading theory
to explain the dynamic geoid and topography which are believed to be observed at long
wavelengths on Venus. The test of our results by the multidimensional methods is done in
Chapter 6 and the discussion of it with regards to the work of other authors in Chapter 7.

Because some of the materials included in this thesis are obtained from the internet,
their reference is noted as [i?] and the list of sources is given at the end of the thesis.
The supplemental CD contains the PDF version of this work, the source files of geoid and
topography coefficients and some of the results in EPS format.

9
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Chapter 2

Venus As We Know It

From the very beginnings of civilization people have known Venus as a morning or evening
star. Its dense clouds (Fig. 2.1) reflect incident sun light so intensely that they could not
overlook it. The Greeks named such stars which wandered through the sky among other
fixed stars ”planets”, which means travellers. And perhaps for its brightness this planet got
its name from the Roman goddess of beauty and love, Venus.

But the same dense clouds prevented the first astronomers from observing its surface
after the telescope was invented. However, because of the physical similarity between Venus
and our planet, it was for a long time accepted that the surface conditions would be the
same. We had to wait until the radiotelescope was constructed and used for purposes of
astronomy before we could learn more about this planet. The first radio reflections gave
people suggestions of what could be hidden under the dense venusian atmosphere.

Figure 2.1: Venus observed in visible light [i1]

11



CHAPTER 2. VENUS AS WE KNOW IT 12

After WWII the time came to go into the space – first Sputnik in 1957 and then other
spacecrafts. Both Russians and Americans tried to reach Venus with unmanned space
probes – russian Veneras several times landed softly on the surface of Venus and worked
until the hostile environment destroyed them. Americans succeeded with Pioneer Venus and
Magellan missions to get into orbit, and so obtained important global observations.

People always speculated about Venus – maybe because it looked so similar to Earth.
After getting the first data from space missions, the geoscientists focused on applying their
knowledge of our planet to this body. Nowadays there is whole new scientific discipline
called planetology and a lot of people work seriously on Venus research. Many questions
have already been answered but more remain yet unsolved – one of them is the origin of
Venus’ geoid. Answering these questions will maybe lead us to discover of general rules of
planetary behavior and this could help us to better understand our own planet Earth.

2.1 Structure of Venus

All we know about Venus are data recorded at ground-based facilities placed here on Earth,
obtained by orbiting probes or by several landers – no interior data are available to help us
if thinking about the structure and processes in Venus’ interior. Therefore we often consider
it as Earth’s twin and try to apply the knowledge of our planet to our understanding of
Venus. This assumption is allowed mainly because of the shared conditions during the
Solar System’s formation – the material composition does not differ too much, the main
differences were probably just the abundance of water on Earth and the incoming energy
from the Sun (which is greater on Venus because it is closer to our star than Earth).

2.1.1 Magnetic Field

Most of the planets of the Solar System have huge magnetospheres. These structures are
often 10-100 times larger than the planet itself and in the cases of Mercury, Earth and the
giant planets originate in the interior of the planets by the dynamo processes.

But in the case of Venus – as for comets – there is no internal mechanism producing the
magnetic field. However, it is the interaction of a solar wind with the ionosphere (the part of
the atmosphere with charged particles) that produces a weak magnetic field (e.g. Phillips
and McComas, 1991). This field shows a behavior similar to an internally-generated one
except for the dipole characteristics – the structure is shown in Fig. 2.2.

There the bow shock is formed in front of the ionosphere where the particles of the
solar wind are decelerating to sub-Alfvénic and sub-sonic speeds. The magnetic lines and so
even the solar wind particles accumulate in the magnetosheath behind the bow shock. This
magnetosheath is separated from the ionosphere by the ionopause – here the plasma pressure
is in the equilibrium with thermal pressure of venusian atmosphere. The interplanetary
magnetic field is draped around the planet and forms an induced magnetotail behind it
similar to Earth’s but with polarity controlled solely by the surrounding field. Without the
dipole field there is no system of trapped particles surrounding Venus.
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Figure 2.2: Structure of Venus’ induced magnetosphere [i2]

2.1.2 Atmosphere

In the early state of the formation of the Solar System Venus probably had an atmosphere
very similar to that of the Earth, both in physical properties and chemical composition.
But because of global warming (caused by the greenhouse effect) the water vaporized and
partially escaped from the planet, the atmosphere overheated and has stayed in this state
trough the present.

Chemical element Fraction

Carbon Dioxide CO2 96.5%

Nitrogen N2 3.5%

Sulfur Dioxide SO2 150 ppm

Argon Ar 70 ppm

Water H2O 20 ppm

Carbon Monoxide CO 17 ppm

Helium He 12 ppm

Table 2.1: Chemical composition of Venus’ atmosphere (de Pater and Lissauer, 2001)

The question remains of how much water was there. The measured ratio of deuterium
and hydrogen (D:H) is much higher (∼ 0.016) than on Earth (0.00015) (as shown e.g. by
Donahue and Hodges, 1992). That could mean Venus may have once had a certain
volume of surface water (where both D and H were contained) but this evaporated as the
greenhouse effect intensified. Because of the lack of a magnetic field (see previous section)
which protects the planet and its atmosphere from the solar-wind’s high energies particles,
the light isotopes of hydrogen were expelled to space and the D:H ratio increased. If this is
the case, Venus had at least a few tenths of a percent of the Earth’s hydrosphere.
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On the other hand a second interpretation for this D/H measurement indicates the
possibility that Venus’ atmosphere is permanently supplied with hydrogen from some other
source (Grinspoon, 1993). By studying the escape time of atmospheric particles the
historic reservoir of water is doubted and a permanent outgassing from volcanoes or other
internal sources is suggested. Possible connections to resurfacing event are also arising
because of a supposed fractionation of subducted surface crust. Which of these theories is
valid will be proven by future probes measuring precisely the surface chemical composition.

The atmosphere of Venus is very dense compared to that of Earth – the pressure at
the surface reaches 92 bars and the density is 65 kg·m−3 (on Earth it is only 1.22 kg·m−3).
The chemical composition is similar to the Earth’s atmosphere except that the dominant
element is not nitrogen but carbon dioxide (which is the cause of the greenhouse effect) as
is shown in Table 2.1 (e.g. Hunten et al., 1983). Clouds on Venus are made mostly
of sulfuric acid and they help distribute the heat around the planet, and because of this
the temperatures on both the day-side and the night-side are almost equal. As shown in
Fig. 2.3 the main cloud layer lies approximately in 45 km above the surface and is about
15 km thick – above and below this the atmosphere is quite clear and just sparse haze is
apparent. The clouds rain sulphuric acid but this does not reach the surface because the
intense heat below the clouds evaporates the raindrops about 30 km above Venus.

Figure 2.3: Structural and thermal profile of venusian atmosphere [i3]

The wind is very fast in the upper atmosphere (around 350 km·h−1, almost 60 times
faster than the rotation of the planet; this is called superrotation) but at the surface is quite
slow (around 5 km·h−1). All around the planet the wind direction is the same as the planet’s
rotation direction but it is slower closer to the poles, which gives the clouds a typical ”V”
pattern. At altitudes greater than 100 km the day-to-night atmospheric flow is observed.



CHAPTER 2. VENUS AS WE KNOW IT 15

During the Venera and Pioneer Venus missions plasma wave signatures similar to the
ones on Earth caused by lightning (whistlers) were detected. But the question was if these
signatures were of local origin (in the neighborhood of the space probes) or they were
generated in the atmosphere of Venus. The latest observation made by the Cassini spacecraft
during two close flybys in 1998 and 1999 failed to detect any high-frequency radio waves
(spherics) also commonly connected to the lightning (Gurnett et al., 2001). But there
still remains a possibility of an other lightning, e.g. from clouds to ionosphere – this produces
slow discharges and such low-frequency radio signals that they are difficult to detect.

2.1.3 Surface

The surface of Venus has mainly an unimodal character and over 80% of it lies within ±1 km
from planetary mean radius. Unimodality is characteristic for all terrestrial bodies in the
Solar System except Earth where the topography is basically bimodal at levels of continents
(+200 m) and sea-floor (−3500 m). A comparison of planetary modalities can be seen in
Fig. 2.4 left – at right is a cumulative age distribution of surfaces.
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Figure 2.4: Modality and cumulative age distributions of terrestrial planet surfaces (both
after Schubert et al., 2001)

Most of Venus’ surface (Fig. 2.5) consists of relatively flat volcanic plains with several
broad depressions and a few highlands. Everywhere on the surface we can see only a little
erosion because of the absence of water and the slow wind at the surface. The dense
atmosphere also prevents small meteors from impacting so only medium and large craters
are observed.

The venusian highlands are 3-5 km above the average surface level – at the equator
Aphrodite Terra (size of South America) and Beta Regio (smaller volcanic region), southern
Alpha Regio and small Lada Terra. Close to the north pole of the planet is Australia-sized
Ishtar Terra which shows several interesting features. Here, next to each other are located
Maxwell Montes – the highest peak of Venus (10 km) – and several tectonic-like geological
units. For these features some authors have proposed a crustal folding mechanism based
on lithospheric stresses (e.g. Sandwell et al., 1997) whereas others favor as their cause
dynamic-mantle topographic support, which could be a generating mechanism for both
highlands (including local upwellings (Grimm and Philips, 1991) as well as downwellings
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(Bindschadler et al., 1990)) and lowlands. There is no obvious evidence for ongoing
or remanent plate tectonics similar to the subduction zones or large rifts located on Earth
(e.g. Kaula, 1994). A possible reason for this could be the lack of water on Venus
which enables the lithosphere to sustain larger stresses and so prevents the creation of plate
tectonics (section 2.3). Thermal exchange between the planet and space is very efficient
through plate tectonics and therefore an interior of the planet with a single-plate surface
would slowly warm up (Nimmo, 2002). However we can find a lot of unusual topographic
features on Venus (besides volcanoes – Fig. 2.6 – and craters – Fig. 2.7) like coronae and
arachnoids (Fig. 2.8), chasmas (Fig. 2.9) and tesserae (Fig. 2.10) – some of which could
be areas of local subduction. These together with signs of recent volcanic activity (lava
channels – Fig. 2.11 – and domes – Fig. 2.12) show that Venus could still be an active
planet. The surface itself (Fig. 2.13) is basically basaltic but more detailed geochemical
research is needed in the future.
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Figure 2.5: Topographic map of Venus based on the Magellan’s observations [i3]
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Figure 2.6: Magellan radar image of Sapas Mons volcano [i1]. On Venus there are several
large shield volcanoes (similar to Hawaii or martian Olympus Mons) and many small ones
which could be sources for the lava covering a large part of the surface. Recently announced
findings indicate that Venus is still volcanically active, but only in a few locations – most
of the surface has been rather quiet geologically since the resurfacing event

Figure 2.7: Magellan radar image of Wheatley crater [i1]. Craters at Venus are generally
circular and sometimes surrounded by a rim formed mainly by meteorite impact. However
we do not find the abundance of small craters as we do on the Moon or Mars because the
small meteorites are destroyed during the flight through the dense atmosphere. But for the
same reason we find there groups of craters – the dense atmosphere breaks the meteorites
into smaller parts which impact around the same place
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Figure 2.8: Magellan radar image of a corona and arachnoids [i4]. Coronae are circular
surface features which are usually surrounded by several concentric ridges. We suppose that
coronae are formed by hot spots in the mantle of Venus or by collapsed domes over large
magma chambers. Arachnoids are smaller but similar to coronae, often clustered and with
radial fractures and inter-fractures

Figure 2.9: Magellan radar image of landslide debris in Devana Chasma [i1]. These
formations and other similar features on the surface are basically deep valleys with often
serpentine structure and are found mainly near volcanic or proposed-tectonic features. Often
they are interpreted as signs of rifting however the originating mechanism is not yet fully
understood



CHAPTER 2. VENUS AS WE KNOW IT 19

Figure 2.10: Magellan radar image of tessera in Eistla Regio [i1]. Tesserae are complex
ridged terrains situated usually in the plateau highlands of Venus. They are quite unique
because we suppose the mechanism of their origin is similar to the tectonic mountain-
building processes on Earth, despite that today there are no signs of the plate tectonics
on Venus. So this thickening and folding of the crust should originate through some other
mechanism

Figure 2.11: Magellan radar image of a channel close to Fortuna Tessera near to Ishtar
Terra [i1]. The origin of these channels is not clear however we can dismiss that they were
formed by liquid water – the only possible fluid which could have caused them is a low-
viscous lava. They can extent up to 1,000’s km (much longer than similar ones on the
Moon) and with widths 100’s-1000’s m. These features seem to be some of the most recent
at the surface as they show no or little erosion and few superimposed craters
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Figure 2.12: Circular domes on the eastern edge of Alpha Regio [i4]. These volcanic
features seem to have an origin in eruptions of high viscous lava – they are often located
near volcanoes or coronae which are both probably manifestations of ascending plumes. The
domes have diameters up to 10’s of km, steep sides and usually complex fracture patterns

Figure 2.13: Pictures from Venera 9 and 14 (top and bottom respectively) which landed
on the surface of Venus [i5]. The first panoramas from Venus were sent to Earth by the
russian spacecraft Venera 7 in 1971. We notice the significant differences between the two
landing sites – the first of them represents a tectonic site whereas the second one is typical
of volcanic plains
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2.1.4 Crust, Lithosphere and Mantle

There is not much information on venusian interior structure as we lack any seismic data
from surface landing probes. Because of this we must estimate the mantle structure based
on our knowledge of Earth and from the application of the appropriate scaling law.

The crustal and lithospheric thicknesses are derived usually from observed gravity signals
and topography by means of gravimetric inversion combined with crustal isostasy and flex-
ure. Many authors (e.g. Arkani-Hamed, 1996; Simons et al., 1997; Watts, 2001)
put the bottom of the crust at the depth of between 15-50 km. However for the bottom
of lithosphere the values differ much more – the estimates put the bottom of the litho-
sphere between 50-300 km but the elastic lithosphere seems to coincide with the crust (e.g.
McKenzie, 1994; McKenzie and Nimmo, 1997). Some others (Simons et al., 1997),
on the other hand, doubt our ability to discover the lithospheric thickness from data which
we have presently – also from this point of view the information from upcoming missions to
Venus might be crucial.

Just as the information we have on the subsurface is limited, our knowledge of mantle
properties is very poor. However using knowledge of the Solar System’s initial conditions
and using thermal evolution models Stevenson et al., 1983 derived the depth of mantle
to be 2900-3200 km. From a scaling law and knowledge of Earth the phase transitions
(endothermic and exothermic) are assumed to be at depths of 440 and 740 km respectively
(e.g. Schubert et al., 1997).

2.1.5 Core

As mentioned in Section 2.1.1 Venus does not possess an intrinsic magnetic field. That gives
a strong condition on venusian core structure because we assume an internally generated
field is produced by the thermal convection in the liquid, electrically-conductive part of core.

One possible explanation of this is that the core is completely frozen. In the time of the
Solar System’s formation the more volatile elements like sulfur were partially blown out from
the Sun’s neighborhood and so Venus’ interior contains less iron sulfide than the Earth’s one.
This lighter alloy decreases melting temperatures and since the venusian interior conditions
are not sufficient to melt the core, it could stay solid. However the observed venusian mean
density is slightly less than Earth’s (97% of Earth’s density – e.g. de Pater and Lissauer,
2001) which contradicts the supposed smaller amount of these lighter materials in the core.

Another theory by Stevenson et al., 1983 states the possibility of a liquid core but
with no convection. The slow rotation of Venus induces a Coriolis force great enough to
keep the convection but the thermal gradient dropped down during the planet evolution
and the magnetic field disappeared approximately 1.5 Ga. And because there is no solid
inner-core the energy from phase transition (driving the thermal convection in Earth) is
missing. This theory is supported by venusian Love number estimates which indicate that
the core is liquid (Konopliv and Yoder, 1996). But as the planet cools it is possible
that the solidification of the inner-core would happen (Fig. 2.14) and the magnetic field will
be generated again.
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Figure 2.14: Possible formation and evolution conditions for cores of Venus and Earth (after
Stevenson et al., 1983)

2.2 Evolution of Venus

Venus was formed during the accretion procedure of Solar system circa 4.5 Ga (giga-years
i.e. billion years ago). Because of its proximity to the Sun a relatively major part of the
volume is constituted by heavy elements (Fe, Si, Al etc.) with additional of volatiles (N, O,
H2O etc.) as in the case of Earth. From this comparative view most of our ideas about the
evolution of Venus were originated.

In the beginning the planet was undifferentiated but the gravitational force and initial
heat (from impacts and radioactive decay) caused the heavier elements to sink to the central
part and the lighter ones to ascend to the surface. This process formed the core and also
the initial mantle rheology – both of them then evolved as the primitive structure changed.
The interior cooled and was chemically transformed and so the current state is a result of
both the initial condition and planetary evolution.

2.2.1 Resurfacing Event Constraint

Even if we do not know the exact history of venusian evolution we can make judgements
on it based on observed features. One of the most striking ones is the relatively low crater
density observed by Magellan radar on the surface, as can be seen on comparison diagrams
in Fig. 2.15. This means that any record of the craters older than approximately 500-750
Ma (Schaber et al., 1992; McKinnon et al., 1997) was erased by some global process
and only the younger ones can be observed.
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In any model of Venus’ interior there must be a possibility of some unique event which
changed the surface of the planet at a global level. The most suitable explanations is
probably a resurfacing event which caused a subsidence of the existing surface (e.g. Tur-
cotte, 1993) or covered it completely by material from volcanic eruptions material a
relatively short period (e.g. Nimiki and Solomon, 1994). A possible mechanism for the
first of them is a model of catastrophic lithosphere instability which could be a result of
a lithosphere-thickening process connected with a single-plate tectonics. For the second,
authors speculate about a periodical convective style, which once per period longer than
500 My, causes enormous volcanic activity. Of course the possibility of plate tectonics and
volcanic suspension is an alternative which we can not deny. In all cases the most important
factor could be the lack of water which had a major influence on the mantle rheology – the
drier subsurface structure could be also the reason for the single-plate tectonics.

2.2.2 Heat Transport Models

It is very important is to fully understand the heat transport process. In the case of Earth
about 70% of the internally generated heat is transferred by subduction of cold lithospheric
slabs and by production of a new and hot oceanic crust at the middle-oceanic ridges. Other
minor contributions are by ascending hot-spot, lithospheric delamination and secondary
convection. However in the case of Venus we observe no plate tectonics and so the heat
transfer must be done by some other means. There are generally three possible ways (see
review in Schubert et al., 2001): the uniformitarian model (with constant heat flux and
stable internal conditions), the catastrophic model (the heat flux is not in balance with heat
generated and stored in the planet) and the differentiated-planet model (all heat producing
elements are concentrated in the crust).

Figure 2.15: Crater density statistics for three well explored objects of the Solar System –
the planets Venus, Earth and Mars. For Venus and Earth we see (except for the protective
influence of atmosphere on small-size meteor penetrations) a certain degree of erosion but
for Mars there are parts of the surface saturated with almost no erosion (after de Pater
and Lissauer, 2001)
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2.2.3 Convection Models

The very efficient means of cooling the deep planetary interior is the subsolidus mantle
convection. This process controls not only the evolution of Earth (where it is demonstrated
by plate motions) but also the thermal and chemical structure of other terrestrial planets
and moons (Schubert, 1979; Schubert et al. 1986) where the manifestation is merely
indirect, through surface volcanic and tectonic features. From our knowledge of Earth and
presumed initial structure of Venus there is a general agreement that this planet is probably
still active. Therefore through modelling of mantle convection we obtain important insights
into the physics of Venus as well as its evolutionary history.

Several numerical studies of convection in the venusian mantle have been carried out
– both for Cartesian (e.g. Steinbach and Yuen, 1992) and for 3D spherical geometry
(e.g. Schubert et al., 1997). The results show that the parameters of the model have
a significant influence on the convection pattern, degree of layering, state of mixing and
long-time behavior of convection – an example of the importance of an increase in viscosity
is given in Fig. 2.16. Aside of this the importance of upper boundary condition is considered
– whether the rigid or free upper boundary (stagnant, sluggish or mobile lid) is the case for
Venus. If great importance in the mantle behavior is a Rayleigh number, which controls the
nature of convection (e.g. Ratcliff et al., 1997) in all the parametrization – for more
detailed explanation see an extensive review on this theme in Schubert et al., 2001.

Figure 2.16: Convection models for Cartesian box 8 × 8 × 1 with temperature-dependent
viscosity and fixed Rayleigh number – from left to right and up to down we have viscosity
contrasts: 100, 101, 102, 103, 104 and 105 respectively (redrawn from Schubert et al.,
2001). From comparison with observed dynamic features on the surface of Venus we can
deal with viscosity models a)-d) and reject e)-f) for its small scale character
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But another approach to the study the venusian mantle dynamics is also possible –
because of the assumption, mentioned several times already, that Venus’ topography and
geoid are manifestations of interior dynamic processes we can include the gravity, topography
and admittance as constraints for quantitative mantle convection. From such global models
(e.g. Kiefer et al., 1986) we obtain surprisingly good agreement with observed values
for even very simple parametrizations. Also from these studies come our current estimates
of viscosity structure and mantle rheology – see the discussion in Chapter 7. A similar
technique could be used also on the regional scale for those major surface features with
strong gravity signals e.g. venusian equatorial highlands (Kiefer and Hager, 1991) or
large volcanoes (Kiefer and Hager, 1992) but with the limitation that the obtained
results may not represent the global characteristics. On the other hand the large percentage
of explained observed data allows us to use these forward problems results to consider the
venusian mantle as still being active, with similar structure to Earth, except for the existence
of an asthenosphere and with a stiff lithosphere on top.

2.3 Quest for Water

As has been mentioned several times throughout the text the key question for understanding
Venus is how much water it originally had and where it has gone. When we know the answer
to this question we can assume more clearly the ongoing geophysical processes within the
venusian interior and also the evolution of its climate conditions. Mainly the convection style
problem and mantle rheology are tightly connected to the water budget in the minerals and
these could have a significant influence on the resurfacing event.

Our only means of studying these problems are through studying surface mineralogic
composition or atmospheric element ratios. Unfortunately the first is limited to the data
from russian Venera missions and has not given us satisfactory answers. As our only other
option the second possibility strongly depends on exact measurements not only of the ele-
ment composition of the atmosphere but also of the escape-time from the atmosphere into
space. This problem is already mentioned in Section 2.1.2 where the possible explanations
for the current hydrogen and deuterium contents are also noted. However to decide if the
D/H ratio is a sign of relatively late outgassing or a residual sign of original water reservoirs
we need to have exact measurements of H escape flux (Donahue, 1999). Because these
vary in the order of magnitude (7× 106 - 3× 107 cm−2·s−1) the originating water could may
have evaporated from the surface anytime from 500 Ma to 4 Ga. To decide whether Venus
had an ocean or not we have to improve the sensitivity of our measurements.

2.4 Comparison with Earth

As mentioned above Venus is in many ways similar to Earth. In Table 2.2 some of the
physical parameters and ratios of both planets are shown for comparison. The first three
orbital parameters are directly connected to Venus’ position in the Solar System, the other
parameters probably to the evolution.
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planetary parameters Venus Earth ratio

mean distance from Sun 108 mil. km 150 mil. km 0.72

orbital period 225 day 365 days 0.66

orbital velocity 35 km·s−1 30 km·s−1 1.18

rotational axis inclination 177.4 ◦ 23.5 ◦ –

rotational period 243 days 1 day 243

mass of planet 4.87×1024 kg 5.98×1024 kg 0.95

fraction of atmosphere to total mass ∼ 10−4 ∼ 10−6 100

mean density 5.24 g·cm−3 5.52 g·cm−3 0.95

mean gravitational acceleration 8.89 m·s−2 9.81 m·s−2 0.91

escape velocity 10.36 m·s−1 11.2 m·s−1 0.93

albedo (reflexivity) 0.65 0.37 1.76

temperature interval +446 to +482 ◦C −88 to +58 ◦C –

number of moons 0 1 –

Table 2.2: Comparison of Earth and Venus (after de Pater and Lissauer, 2001)

According to the latest celestial mechanics studies the orbits of terrestrial planets are
very stable over astronomical short period. But over longer periods they can become chaotic
and thus unpredictable because of weak but random-like gravitational impulses from other
Solar System objects. The Ljapunov exponent of orbital decay in the case of Venus is
approximately 50 My−1 (de Pater and Lissauer, 2001) so after this time the orbit
changes distinguishably. But from similar studies done on Earth it is known that the
group of possible orbits is quite narrow and so the changes in the insolence (important for
temperature trend) are not significant.



Chapter 3

Data Sets

In the previous chapter we saw the importance of exact measurements of topography and
gravity for the understanding of internal structure and processes in the mantle when we miss
any seismic data. Unfortunately such data coverage is available only for a few terrestrial
bodies (Venus, Earth, Moon, Mars) because a probe on stable orbit for a relatively long
period is needed. For the other planets and moons we have just flybys (Mariner 10 around
Mercury, Galileo around Jovian moons) which are not sufficient for the construction of
global models.

The planetary topography is measured usually by laser altimetry whereas the gravity
must be derived from the Doppler shift of radio signals received on Earth. These raw data
could be easily converted to the spherical harmonic (SH) model – the spectral approach has
several advantages so even the topography is used to transform to the SH model. But be-
cause of coefficient normalization by planetary parameters (Kaula, 1966; see Appendix A)
proper knowledge of these parameters is needed. In Table 3.1 their values are listed – but as
any data from the space missions their values could be re-set again in the future. However,
throughout this work we will be dealing SH coefficients with no normalization.

GM[km3·s−2] radius[km] g0[m·s−2]

Venus 324,858.592 6,051 8.89

Earth 398,600.442 6,371 9.81

Moon 4,902.801 1,738 1.62

Mars 42,828.372 3,396 3.72

Table 3.1: Planetary parameters for SH coefficients normalization [i4]

One of the reasons for the use of SH models is to see the power of topography or the
geoid on different scales – from this we can assume certain implications about the internal
structure of planet. However these spectral methods have of course global characteristics
and therefore they are unsuitable for the investigation of individual features on a local scale.

27
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3.1 Spherical Harmonic Models for Venus

Both venusian geoid and topography models are known from orbital measurements made
by the spacecrafts Pioneer 12 Venus Orbiter (1978–1993) and Magellan (1990–1994). The
latter data sets from Magellan are much more accurate and so we have used them in our
investigation. However because of a strong coupling between the present topography model
and new gravity measurements and vice versa there is still a chance for future improvements.
The SH coefficients were downloaded from Geophysical Node of Planetary Data System [i4].

3.1.1 Geoid model MGNP180U

The model of Venus’ geoid was derived from Doppler tracking of the Magellan orbiter in
form of line-of-sight (LOS) acceleration measurements. All aerodynamic processes were
modelled so the gravity acceleration could be read from the Doppler shift of two-way radio
communication and converted into a geoid model (Konopliv et al., 1999). The first three
orbital cycles (1 cycle ∼ 243 days) of the Magellan mission were used just for preliminary
models. The collection of data began with cycle 4 and continued until the loss of the
spacecraft late in 1994. Using an equation A.30 we can convert measured quantities to a
gravitational potential – this then gives us then the geoid as is shown in Fig. 3.2.
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Figure 3.1: Power spectrum of the venusian geoid displayed an a linear and logarithmic
scale compared with Earth geoid power spectrum (using equation A.12)

3.1.2 Topography model GTDR.3

During the Magellan mission orbital cycles 4, 5 and 6 4,284,578 measurements by its laser
altimetry device were obtained, and so the entire surface was covered in great detail several
times. The radial position of surface elements was determined based on gravity models
obtained from previous maneuvering of the Magellan itself (see section above). The map in
Fig. 3.3 shows 0.25 ◦ resolution of topography in equidistant projection – the corresponding
SH model (Rappaport et al., 1999) was completed up to the degree and order 360.
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Figure 3.2: Model MGNP180U of the venusian geoid. The dashed line marks the zero-level
topography contours

Figure 3.3: Model GTDR3.2 of venusian topography
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Figure 3.4: Power spectrum of the venusian topography displayed in linear and logarithmic
scale compared with Earth topography power spectrum

The mean planetary radius was defined with new precision as 6,051,881 m and the
planetary flattering of Venus as 9.75× 10−5. New calculations were also done for center-of-
figure offset from center-of-mass and it was found lying beneath the north-west corner of
Thetis Regio in Afrodite Terra with the radius of offset rf = 186.5 m. This position is caused
mainly by equatorial highlands which, given their non-uniform distribution mainly around
the equator, mark an accumulation of the surface mass. However when compared to Earth’s
topography Venus’ is generally much flatter, which is obvious also in the power spectra
comparison diagram in Fig. 3.4. This could again corresponds to the overall character of the
venusian surface (see Section 2.1.3) and our assumption that a large part of it represents the
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topography with respect to the reference radius (after Rappaport et al., 1999)
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dynamic topography which has to have much smaller amplitudes (e.g. Schubert et al.,
2001) than a plate-tectonics one, with its existence of continents, sea-floor with subduction
zones and plate-collisions areas inducing high mountain-chains of tectonic origin.

As mentioned above this latest spherical harmonic model of venusian topography is
evaluated up to degree and order 360. It shows a generally higher degree of correlation with
the geoid – in comparison to previous models – over the entire spectral interval and also
for short wavelengths in spatial domain (Konopliv et al., 1999) and so enables us to
investigate surface features of a smaller scale (∼ 10’s km) objects like coronae or volcanic
domes. In Fig. 3.5 the misfit between the spherical harmonic model and the real digital
altimetry on the equator is displayed (please note 2500× vertical exaggeration). However
a priori constraint of using the Kaula’s rule of thumb for higher degrees of geoid model
(Konopliv et al., 1999) is a reason for the decreasing of correlation coefficient (Fig.
3.6 left) and for change of the admittance function character (Fig. 3.6 right) for degrees
j > 100. Therefore we will use in our calculations both models truncated at j = 90 which
guarantees the certain independence of data sets.
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Figure 3.6: The degree correlation between Venus’ geoid and topography (A.13 – the dashed
line marks a 95% level of confidence) and degree admittance (A.15)

The key question however is how the topographic load is supported. In following two
chapters we will apply different approaches to answer this question and by used methods
then predict the venusian geoid. By comparison of the observed data and the predicted
values we can find out properties of the venusian subsurface.

3.2 Spherical Harmonic Models for Other Planets

As we are enhancing our knowledge of the Solar System with automatic space probes map-
ping individual planets and moons we are still strongly pushed to look for the parallels
between these bodies and our own planet Earth. Unfortunately the progress is complicated
and several missions to a planet are needed to obtain reliable data with sufficient resolution.
Some basic gravity and topographic data for Earth, Moon and Mars are shown to under-



CHAPTER 3. DATA SETS 32

lay wider planetological considerations which could help us not only in planetary research
but also back in the Earth sciences. The data used (SH coefficients or grided values) were
obtained from [i4] for Moon and Mars whereas those for the Earth from [i6] and [i7].

In Fig. 3.7 are the observed geoid and topography of Earth together with the power
spectra and their correlation. The purpose of showing these diagrams is to offer a chance
to compare it with other terrestrial planets – e.g. the correlation diagrams show important
global-scale difference in the nature of planets. This is especially the case when compared to
Venus, where the correlation coefficient for j > 2 is above 95% level of confidence. Another
interesting feature is the bipolar structure of the geoid which is, in the case of Earth, inter-
preted as a manifestation of D” heterogeneity reservoirs connected with mantle upwelling
(e.g. Forte and Mitrovica, 2001) but is similar to a martian geoid dominated by the
Tharsis region and Utopia Planitia (which is by some – e.g. Harder and Christensen,
1996 – presumed to be a remanent sign of single-cell convection in the mantle).

Despite the fact that the Moon is our closest space neighbor we had to wait until 1990’s
to obtain more detailed information – the Clementine (1994) and then Lunar Prospector
(1998–1999) missions provided us the global gravity and topography data. Recent gravity
models have been completed up to the degree and order 165 (Konopliv et al., 2001) but
with the handicap of no direct information from the far-side which limits the information
on wavelengths l > 110 and needs a strong a priori constraint. From laser altimetry several
topographic models were completed – here we use the model up to degree and order 90
(Smith et al., 1997) however truncated at j = 70 because of the coverage gaps in the
polar regions. In the close future a major advance in lunar research is expected so these
both problems should soon be solved and complete SH models up to a higher degree will be
available. Analyzing these fields (Fig. 3.8) we can immediately observe the most striking
features in the lunar geoid: so-called mascons (mass concentrations). Most of these strong
gravity peaks are located in large Mares or craters where the topographic minima are and
most probably originate in some subsurface mass anomalies.

In the case of Mars the main contribution to our knowledge of the planet came from
mission Mars Global Surveyor (1997-until now). This spacecraft’s altimetry device produced
a global topography model (Smith et al., 1999) with better precision than we have for
many locations on Earth. However the current model of martian geoid GMM-2B (Lemoine
et al., 2001) is only up to the degree and order 90 and in the short wavelengths a strong
”contamination effect” is observed – see Fig. 3.9. Because of this basic problem the scientific
community is impatiently awaiting the results from new missions, namely from the european
Mars Express which has been in a polar orbit around Mars since 2003. The new results will
then be used to better determine the crustal properties (of which the global distribution
is already know from gravimetric inversions done recently by Zuber et al., 2000) and
parameters of the lithosphere and mantle which are connected to planetary evolution.

In the future the automatic spacecrafts will explore for us the planet Mercury, the largest
bodies of the asteroid belt and the Jovian moons. From these data we will hopefully uncover
more on the Solar System’s formation, terrestrial planet evolution and possibly also on icy-
moon structure. The latter is crucial both for planetary sciences and for exobiology as we
assume there are water oceans under the icy-crusts (Spohn and Schubert, 2003).
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Figure 3.7: Earth’s geoid (top) and topography (middle) together with their power spectra
and the correlation between observed geoid and topography
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Figure 3.8: Lunar geoid (top) and topography (middle) together with their power spectra
(compared to Earth – blue lines) and the correlation between observed geoid and topography
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Figure 3.9: Martian geoid (top) and topography (middle) together with their power spectra
(compared to Earth – blue lines) and the correlation between observed geoid and topography
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Chapter 4

Isostasy and Crustal Structure

In Chapter 3 we saw in the correlation and admittance diagrams, that the key point in
understanding the mechanisms producing the topography is an interpretation of the ac-
companying geoid. With Venus this is well correlated to the topography, hence the easiest
explanation based on steady-state processes is acceptable. If these predict the observed data
with high accuracy the current status of Venus may be explained by already ceased dynamic
mantle processes and the heat flux removed from the planet through a thermal conduction.

4.1 Uncompensated Topography

Any model of the venusian geoid based on steady-state processes should contain the con-
tribution of an uncompensated topography – this case is described by the equation A.26.
However, comparing the observed and predicted power spectra (Fig. 4.1) we see that such a
model predicts a geoid with a power spectrum of two orders of magnitude higher than the
observed data.
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Figure 4.1: Power spectrum of geoid induced by the uncompensated topography compared
with the power spectrum of the observed geoid
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Figure 4.2: Geoid induced by venusian uncompensated topography

From analysis of the predicted power spectrum we can reject the hypothesis of uncom-
pensated topography. Nevertheless it is worthy to also examine the spatial expansion of
the obtained SH model. As seen in Fig. 4.2 we obtained a geoid with amplitudes one order
of magnitude higher than the observed data. The major features of this model are also
not well correlated with the observed ones as could be seen in comparison with Fig. 3.2 at
page 29 (e.g. a high signal at Aphrodite Terra but instead of a major peak in Atla Regio
this is quite low and higher signals are located in Ovda Regio – Maxwell Montes in Istar
Terra became the highest peak on the planet). Because of these reasons we have to look for
some other geoid generating mechanism.

4.2 Isostatic Compensation of Topography

To diminish the topographical contribution to the geoid we can employ the principle of
isostatic compensation to our model. For our purpose we adopt a simple scheme of a
homogeneous crust with density ρ = 2,900 kg·m−3 (e.g. Rappaport et al., 1999). To
satisfy a principle of isostasy we prescribe on the bottom of the crust a topography which is
an inverse of the surface and having amplitudes multiplied by the ratio

ρsurf

∆ρmoho
. We cannot

determine the density contrast at the bottom of the crust ρmoho, but when we are only
dealing with the geoid contribution from this boundary, the amplitude of it cancels this
term and we obtain the equation A.28 which is independent from it.

First we look for a single apparent depth of compensation (ADC) in the whole spectral
interval j=2-90 (which is not severely biased by a priori constraint). We vary the parameter
of the compensation depth in the interval 1-500 km and for every depth we calculate the
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Figure 4.3: Power spectrum of the geoid induced by topography compensated in 165 km
compared with the observed geoid power spectrum (left) and a misfit function for compen-
sation in the whole spectral interval j=2-90 (right)

Figure 4.4: Geoid induced by topography compensated in 165 km. The predicted geoid
shows similar defects to the uncompensated one, especially overcompensation at Istar Terra
(twice the signal of the observed data) and Ovda Regio
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least-squares misfit (based on A.29) between our model’s predictions and the observed data.
In the misfit diagram (Fig. 4.3) we see that the minimal misfit is obtained for a global ADC
of 165 km. Such a crustal thickness model, however, produces a power spectrum (Fig. 4.3)
and a geoid (Fig. 4.4) which are not in close agreement with observed data.

The second hypothesis which we will test is the assumption that only small scale venusian
topography is isostatically compensated. Hence we apply the previously used method for
finding a global ADC separately for each degree in the SH model (Arkani-Hamed, 1996).
In the resulting diagram (Fig. 4.5 left) we can see the optimal depths of compensation for
surface features at all wavelengths. At degrees j=2-40 the ADC is decreasing more or less
monotonously from 200 to 30 km. But for degrees j > 40 the global ADC stays almost
constant – from a misfit minimization (Fig. 4.6 right) we obtain a value of 35 km. Therefore
we can suppose that the features smaller than approximately 500 km are well compensated
by the crustal isostasy. Another approach to this problem (Simons et al., 1997) is based
on fitting the admittance curve (Fig. 4.5 right) – calculated by using the equation A.15
– by the theoretical curve for the compensated topography. As shown, for degrees 40-90
a predicted admittance for compensation depth 35 km fits well with the observed values.
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Figure 4.5: Degree ADC and degree admittance between the geoid and topography with
synthetic admittance curves for 35 (red line) and 165 km (blue line) thick crust.

When we are studying the resulting power spectrum (Fig. 4.6 left) and geoid (Fig. 4.7)
we find no direct contradictions with observed data and therefore this model of isostatic
topographic support is acceptable. However, the amplitudes of both compared quantities
are smaller than observed ones. From that we can assume that the geoid generating mech-
anism is not only of isostatic nature but rather some complex mechanism with a possible
isostatic contribution from shallow compensation. This judgement then implies the possible
importance of some active processes in Venus interior (presumably in the mantle) which will
be studied in the next chapter.
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Figure 4.6: Power spectrum of the geoid induced by topography compensated in 35 km com-
pared with the observed geoid power spectrum (left) and a misfit function for compensation
in the spectral interval j=40-90 (right)

Figure 4.7: Geoid induced by topography compensated in 35 km. We can see that biggest
contributions are in the tectonic or volcanic areas such as Ovda Regio, Ishtar Terra or Maat
Mons but these should be taken only as minor components of the observed field
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4.3 Degree ADC Method for Other Planets

Because the used method of degree ADC (as well as the corresponding method of degree
admittance) is simple and in the case of Venus gives us a reasonable results we would like
to see if it also has a general validity for other planets. Fortunately as can be seen on the
next page this method more or less also works well for the Earth and Moon and therefore
does not cast doubt on our results obtained for Venus.

For Earth the situation is similar to Venus. When we study the geoid induced by an
uncompensated topography (e.g. Rožek, 2000) we obtain a field with amplitudes one
order of magnitude higher than the observed one. From seismic experiments we know that
Mohorovicić discontinuity is situated approximately 30 km beneath the continental surface
and less than 10 km beneath the sea-floor. Looking at the degree ADC diagram (Fig. 4.8
left) we see that our results (at degrees j > 50 the global ADC between 15 and 25 km)
are somehow averaging these values and therefore are in agreement with the observations.
The admittance diagram (Fig. 4.8 right) confirms this – it also shows interesting negative
admittance values for long wavelengths which are probably caused by the anticorrelating
geoid and topography.

The size of the Moon is half of the size of Earth or Venus but the anomalies of the geoid
are of one order of magnitude higher (Fig. 3.8). The main contribution to its gravitational
potential is from subsurface mass concentrations and impact basins – moreover from the
Apollo seismic experiments and mare observations we assume a near-side/far-side dichotomy
where the crust of the far-side could be twice as thick as of the near-side. The uncompensated
topography model predicts similar values to the observed ones suggesting that the main
contribution to geoid is presumably not of dynamic origin. When we carry out the degree
ADC method (Fig. 4.9 left) we find for degrees j > 20 a compensation depth of around 20 km
which is in agreement with the latest processing of the Apollo Passive Seismic Experiment
which gives a compensation depth of around 30 km. However the oscillations of ADC
diagram as well as some anomaly in the admittance curve at degree j=10 (Fig. 4.9 right)
signalize a strange behavior of lunar gravity and topography.

Finally we applied the methods of degree ADC and admittance to the planet Mars. Nev-
ertheless because a strong alias effect in the geopotential model GMM-2B (and maybe also
because of the major surface features – the giant Tharsis uplift and nort/south dichotomy)
we are not able to determine the global ADC value. However from local values the crustal
thickness ∼ 50 km has already been derived (Zuber et al., 2000).
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Figure 4.8: Degree ADC and admittance function in the case of Earth
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Figure 4.9: Degree ADC and admittance function in the case of Moon
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Figure 4.10: Degree ADC and admittance function in the case of Mars
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Chapter 5

Dynamic Model of Geoid

In our effort to determine the mechanism providing the support of observed topography at
the long-wavelength part of spectrum, we focus on the dynamic processes in the mantle, as
they are supposedly still active (e.g. Schubert et al., 2001) and because their numerical
modelling could give us valuable results concerning the inner structure of Venus (Kiefer
and Hager, 1992; Kiefer and Peterson, 2003).

In mantle convection the common principle driving the whole process are the buoyancy
forces induced by thermal (i.e. density) inhomogeneities. The relatively hot and cold parts
of mantle induce the flow which is controlled by both density structure and mantle rheology.

+

- -

Figure 5.1: Upwellings and downwellings in the mantle induced by negative (red) and posi-
tive (blue) density anomalies. At the boundaries the buoyant forces induce non-zero stress
deforming both the surface and CMB
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The stress associated with this motion of mass acts on any boundary – surface, CMB –
of the mantle and deforms them (schematically in Fig. 5.1). The dynamic topography
predicted at the surface could be successfully compared in the case of Venus to the observed
one. Moreover the uneven mass distribution beneath the surface together with the dynamic
topographies at the surface and CMB induces the variations in the geopotential – which
could also be compared to the long-wavelength geoid observed. By looking for a model with
the highest agreement with observed data we can learn about the mantle properties.

Our work is based on the internal loading theory which has already been successfully used
for forward modelling of venusian interior (Kiefer et al., 1986; Kiefer and Peterson,
2003). However our approach combines this useful tool with an inverse problem formulation
and therefore our results should have a global validity and higher robustness than results
from forward modelling. The extensive description of our approach is given in Appendix C.
The major step done by our work was considering only 2D density variations constant with
depth (i.e. ρ = ρ(ϑ, ϕ)) to avoid ambiguity in the solution. Because we have no information
about the density variations within the venusian mantle, we could obtain the same result
(dynamic geoid or topography) for any given viscous profile by using a number of different
ρjm models. Therefore to obtain a unique solution we fix the density variations at a value
calculated to best fit both observed fields. Among such models we then look for those with
minimal L2 norm misfit when compared with observed data.

We have adopted two approaches to solve this nonlinear problem – the Monte Carlo
method (random search in the model space) and the simulated annealing algorithm (random
search with successive focusing). We consider the mantle with layered viscosity profile (n−1
layers with viscosity varying 100-105 and an uppermost layer with fixed viscosity 105). In
Fig. 5.2 we can see the results for n = 3, 4 (the model for n = 2 was omitted because of
general inconsistency with successive models) obtained by the Monte Carlo method (the 10
best from 1,000,000 and 2,000,000 runs respectively) superimposed with the best solutions
reached through the simulated annealing algorithm (red lines).
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Figure 5.2: The best viscosity profiles for 3 and 4 layer models of venusian mantle. The
Monte Carlo results (black lines) mark the class of possible solutions whereas for comparison
between models we use single results obtained by the simulated annealing (red lines)
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The number of parameters of our random search is 2n− 1 plus the density distribution
given by a set of SH coefficients ρjm. However this model vector is not a free parameter
as we decided to compute its value analytically to minimize the misfit between observed
and predicted values (C.28). To analyze the resolving power of our inverse problem for-
mulation we choose the model n = 3. In Fig. 5.3 we can study the resolution of viscosity
changes between lithosphere and upper mantle and their positions. Whereas the depth of
the lithosphere seems to be located relatively well between 100-200 km, the viscosity drop
connected to this remains in a wide interval. The following viscosity change (Fig. 5.4)
seems on the other hand to be well detected (increase by 1-2 orders of magnitude) but can
be placed at a wide interval of depths. Therefore we can assume that such an increase is
not a manifestation of a low viscosity zone end but rather of a gradual viscosity rise.

In comparison to the isoviscose mantle model we can reduce, by using the various viscos-
ity models, the misfit between the predicted and observed data to about 2/3. However, we
can also consider another parameter of the agreement – the percentage of predicted data p
(C.30). For our method and various viscosity profiles we can well predict about 90− 95% of
both the geoid and topography. However, between individual random-search solutions the
difference in p is insignificant (does not directly depend on n) which could be a consequence
of strong nonlinearity of our inverse problem.

The following statements are made for the solution obtained for n = 4 by the simu-
lated annealing algorithm although the difference to other results is rather minor. The
comparison of power spectra and the correlation between observed and predicted quantities
(Fig. 5.5) could be a valuable tool in the evaluation of our findings. The correlation be-
tween predicted and observed data is overall very good which supports the dynamic support
hypothesis. The power spectra of geoids and topographies differ slightly nevertheless the
predicted/observed geoid difference is noticeable around j = 10, where we can assume some
other minor contribution to the observed geoid.

The degree admittance function was not a constrained quantity but when we compare
a prediction with the observed values (Fig. 5.6) we can also see a good fit to this parame-
ter. The predicted geoid and topography (Fig. 5.7 left) seems to have the major features
corresponding well to the observed ones (same figure, at right). However, for precise spatial
studies we have mathematical tools not just based on intuitive comparison – for details
see Chapter 6. Despite the basic simplification in obtaining the density lateral variations
inducing the mantle flow (Fig. 5.8 left) the uppwelling and downwelling structures do often
coincide with the assumed mantle structure. This is not only the case of volcanic uplift
sites (Atla or Beta Regiones) and major lowlands (Atalanta or Lavinia Planitias) induced
presumably by ascending and descending mantle flows but maybe also of some highlands
like Ovda or Thetis Regiones (Kiefer and Hager, 1992).
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Figure 5.5: The power spectra of predicted dynamic topography (left) and geoid (right)
together with observed ones and their degree correlation with observed data. Dashed lines
again denote the 95% level of confidence
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Figure 5.6: Observed degree admittance (black curve) and predicted dynamic one (red
curve). Good agreement is observed approximately up to degree j = 25
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Figure 5.7: Comparison of predicted (left) and observed (right) geoid and topography for
wavelengths j=2-40. The biggest difference could be seen in the regions containing tectonic
features like surroundings of Ishtar Terra or Aphrodite Terra highlends
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Figure 5.8: Inducing density (j=2-40) for the n=4 result obtained by the simulated annealing
(left) and its power spectrum (right) – the power spectrum for j > 40 is also plotted here
for character study (right of the dashed line)
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For n ≥ 4 the resulting viscosity profiles contain some instabilities compared to pre-
viously obtained trends (Fig. 5.2). The typical one with an inserted stiff layer (Fig. 5.9
left) seems to be generated by the nonlinear character of the inverse problem – it appears
increasingly with higher n and does not have a steady shape but rather is positioning the
high-viscous layer randomly. However the second characteristic one with a viscosity drop of
somewhere between 80-100% in the depth of the mantle (Fig. 5.9 right) corresponds to the
previous trends of uniform increase through the mantle. The presence of such low viscosity
transitional zone above the core has not yet been reported which can be due a higher sen-
sitivity of our global inverse model in comparison to the forward models – however because
of the low resolution in this deep part of the mantle we cannot accept it unambiguously.
But comparing our finding to the fact that Venus presumably still has a melted core which
is just slowly cooling down (Stevenson et al., 1983) we may explain it naturally in the
way of a transitional mantle zone above the core.
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Figure 5.9: Two kinds of viscose instabilities contained in the set of results for n=4 layer
model obtained by the Monte Carlo random search method
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Chapter 6

Localization Analysis

When we need to study some well localized features in the gravity field (e.g volcanic rise
or tectonic rift) or to detect some hidden ones (e.g. crustal thickening contributions),
appropriate tools to use are the localization methods. In comparison with the spectral
methods – which are for global characteristics – this approach employs the function with
compact support and thus is not affected by distant-zone contributions. There are several
different ways how of realizing it mathematically (see Appendix B) but for our purposes we
chose the method recently presented by Kido et al., 2003 (equations B.16-B.21).

6.1 Localization of Data

Using this approach we first of all examine individually the geoid and topography of Venus
(applying equation B.18). In Fig. 6.5 left we can see the localization of the geoid for long and
intermediate wavelengths – at right there is the corresponding localization of topography.
This can give us the first insight into the mass distribution on Venus as well as on the geoid’s
major features. This is the first step in data localization analysis which is needed for other
studies – all diagrams show a zero-level topography contour.

This method could be used also for the empirical comparison of two fields because the
localization reveals the real field’s anomalies unaffected by other (global) signals. Such a
comparison can also be carried out in the case of localized geoid and topography (Fig. 6.1)
but in the next section we introduce a better method for such a task. Instead, we use it
to validate our hypothesis of the isostatic support of topography for j > 40. In following
figures we display a localized geoid for the wavelength j = 40 in the three diverse regions of
Ishtar Terra, Aphrodite Terra and the surroundings of Phoebe Regio. As these regions have
another nature they are obviously also in another isostatic case. Whereas the first of them
(Fig. 6.2) seems to be no longer tectonically active and in isostatic equilibrium, for the other
two this is most probably not the case. The region of Devana Chasma (Fig. 6.3) seems to
be compensated only partially (some authors are arguing a hypothesis that this is a still
an active rift – e.g. Kiefer and Peterson, 2003) whereas for the region west of Beta
Regio (Fig. 6.4), where the isostasy does not work well, we have a strong presumption from
coronae clustering (Squyres et al., 1993) that this could be a site of dynamic activity.

53
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Figure 6.1: Localized geoid (left) and topography (right) for wavelengths j = 8, 16, 32
(respectively from top to bottom) in cylindrical projection. For shorter wavelengths the
results cannot be displayed as a global view hence the regional studies are preferred. On
the geoid localization diagrams we can clearly observe the volcanic rises at Atla and Beta
Regiones as well as the contribution of the coronae in Eistla Regio. The localization of
topography is revealing the major contributions of the venusian highlands together with
Ishtar Terra and major volcanoes. At long wavelengths it apparently corresponds to the
localized geoid which is proven by localized correlation studies in the next section
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Figure 6.2: Localization of observed and predicted geoid and corresponding topographic
map (respectively from top to bottom) for wavelength j = 40. The region of interest is in
this case Ishtar Terra with the Maxwell Mountains and adjacent Lakhsmmi Planum (the
red lines serve as an orientation guide – they are always in the same position)
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Figure 6.3: Localization of observed and predicted geoid and corresponding topographic
map (respectively from top to bottom) for wavelength j = 40. The region of interest is
in this case Phoebe Regio and close Devana Chasma (the red lines serve as an orientation
guide – they are always in the same position)
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Figure 6.4: Localization of observed and predicted geoid (left and right) and corresponding
topographic map (bottom) for wavelength j = 40. The region of interest is in this case
between Beta and Atla Regiones and Phoebe Regio (the red lines serve as an orientation
guide – they are always in the same position)
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6.2 Localization of Correlation and Admittance

When we want to compute the degree of agreement between two fields or the transfer
function (admittance) we can employ the common spectral approaches (A.13 and A.15
respectively). However this quantity could be quite laterally variable and we would like to
separate the sites with higher values from those with lower one. For these purposes we can
employ the localized correlation (B.19) and admittance (B.20) which come out from the
localization method mentioned in the previous section.

Localized correlation between geoid and topography (Fig. 6.5 left) clearly proves an
overall good correlation of the two fields on Venus, which is already known from spectral
analysis (Fig. 3.6 left). Moreover we can observe certain regions of the surface which have
some lower correlation for intermediate wavelengths – these specific sites mostly coincide
with some complicated topographic structures. Therefore we can conclude that generally
even the long-wavelength topography on Venus is a manifestation of internal dynamic pro-
cesses. Studying the localized transfer function between geoid and topography (Fig. 6.5
right) we can distinguish at intermediate wavelengths several prominent surface features
like highlands or volcanic raises whereas at long ones we can observe only the general lower
values of admittance in the sites of plateaus and tesserae.

We can successfully link this tool to our dynamic modelling problem when we use it for
the spatial comparison of the observed and predicted geoid and topography (Fig. 6.6). For
this purpose we choose only wavelengths j = 16, 32 because of the restriction of dynamic
model in spectrum and low resolving power at wavelength l = 8. From obtained results
we can see the general good agreement between observed data and our predictions in the
examined spectral interval. The sites of lower correlation correspond mainly to tectonic
highlands where some more complex (not strictly dynamic) mechanisms of origin should be
employed. This could be a significant disadvantage of our dynamic model, however, with
the chosen simplifications (see section C.3 for discussion) we cannot overcome the basic
mismatch between the observed geoid and topography (compare to Fig. 6.5 left).

Moreover if one is interested in the properties of a specific site the method of localized
admittance restricted to this region could be used (for more details see again Simons et al.,
1997 or Kido et al., 2003). This approach could be helpful in verification of the laterally
varying properties as it shows a cross-cut through the entire selected spectral interval for
the surveyed quantity at the site.

6.3 Ẽmax-kmax Method Applied on Venus’ Geoid

When we wish to examine anomalies with maximum energy (i.e. with maximum localized
signal) at different scales we can employ the localization for each individual wavelength and
study them separately or we can use a compositional method. In this thesis we applied to the
planetary geoids the Ẽmax-kmax method (equation B.23) which analyzes the contributions
from localization at all wavelengths over a given spectral interval and displays the highest
value at each grid point.
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Figure 6.5: Localized correlation (left) and admittance (right) between venusian geoid and
topography for wavelengths j = 8, 16, 32. The admittance function gives reasonable results
only in sites of correlation |C| > 0.5 because otherwise it is not clear what the sense of the
transfer function between these fields is. Despite the fact we are using another method a
comparable results can be found in Simons et al., 1997
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Figure 6.6: Localized correlation between the observed and predicted geoid (top) and the
observe and predicted topography (bottom) for dynamic modelling at wavelengths j=8,16
(from left to right). Please note the change in color scheme from Fig. 6.5

In Fig. 6.7 and Fig. 6.8 we can see the Ẽmax-kmax maps of the venusian geoid for
long and short wavelengths respectively – for intermediate ones the result do not differ too
much from these. However because of the already mentioned good correlation between the
geoid and topography even at long wavelengths the signature revealed by the Ẽmax map
is mainly connected to major topographic features. Surprisingly at the short wavelengths
the most prominent signal is induced by volcanic rises and highlands and not by deep and
long trenches (e.g. Devana Chasma or Artemis Chasma). The second part of analysis – the
kmax map – is strongly influenced by the fact that in the regions of signal sign change even
the weak short-wavelength is getting the strongest signal. However we can observe several
complicated structures in Ovda and Thetis Regiones but the most prominent is located
between Atla and Beta Regiones where the largest cluster of coronae is located (Squyres
et al., 1993).

Some authors proposed the possibility that remanent signs of plate tectonics could be
inferred by these studies or some subsurface features could be revealed but none of them
were found by our research. If any such hidden structures still exist on Venus, some other
way to detect them must be used, basically after obtaining new data. The most efficient
way would be a multiple seismic probing of the venusian interior but other methods are also
available today e.g. sonar probing.
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6.4 Ẽmax-kmax Analysis for Other Planets

As we have found the Ẽmax-kmax method useful in detailed survey of the venusian geoid we
can apply it also on the gravity fields of other terrestrial planets.

In the case of Earth a similar analysis done by means of wavelet transform was carried
out by Vecsey et al., 2003. Therefore our findings just confirm their results for regions
not far from the equator. However our technique enable us also to examine the polar
and subpolar regions. In Fig. 6.9 we can see the analysis for long wavelengths which is
dominated by Greenland-Iceland, New Guinea and South America positive anomalies and
by Asian, Antarctic and North American depressions. The Hawaiian and African hotspot
contributions also appear. On the other hand Fig. 6.10 shows many features easily connected
to surface or subsurface features e.g. the middle-oceanic ridge in the Atlantic and other
sea-flour structures, Iceland’s hotspot signature, the Baltic sea depression and Spitzbergen
volcanic signal, the Canadian depression etc.

For the Moon the situation is less complicated because of the presumed end of dynamic
processes in the lunar mantle. Hence all the phenomena on the Ẽmax-kmax maps should
have an origin in observed topographical (e.g. craters, basins) or subsurface (mascons)
features. Special attention should be given to the mascons (positive signals in the center of
depressions – short for mass concentrations) as they are signs of complicated geological
structure initiated most likely by giant impacts. In Fig. 6.11 the mascons connected to Mare
Imbrum, Mare Serenitatis, Mare Crisium and Mare Nectaris really dominate the near-side
whereas on the far-side is the major feature the South Pole-Aitken basin with a negative
signal. However besides smaller craters and mare anomalies, one adjacent to the irregular
Mare Marginis appears (circled). This is very promising for new research as this area could
be an old impact basin (Wilhelms, 1987) covered by subsequent tectonic activity. In Fig.
6.12 only small-scale features mainly connected to the basin and crater rims are displayed
– this offers a promising tool for localization of new mascons (Konopliv et al., 2001) in
upcoming geoid models. The insufficient regularization of the used gravity model is obvious
here on the far-side.

The martian geoid is dominated by a bipolar structure created by the assumed single-
cell mantle dynamics (e.g. Harder and Christensen, 1996) which has most probably
already ceased. Therefore the long-wavelength analysis in Fig. 6.13 shows these two main
features together with some smaller contributions from topographic structures like Elysium
Mons, Isidis Planitia or Hellas basin. However in Fig. 6.14 we can observe a complicated
signal surrounding Olympus Mons and Valles Marineris and also some sign-changing signal
(circled) south of Elysium Mons. The latter is probably induced by the unusual topographic
structure observed here but some others connected to martian crust-dichotomy or ancient
shore-line may be found through more detailed research on new gravity maps being obtained
by current space missions.



CHAPTER 6. LOCALIZATION ANALYSIS 62

Figure 6.7: At top, the topography and geoid of Venus, at bottom the Emax and kmax maps
of the geoid for jw=08-16. We can clearly observe the dominant dynamic part of the geoid
which coincides with major topographic masses
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Figure 6.8: At top, the topography and geoid of Venus, at bottom the Emax and kmax maps
of the geoid for jw=32-64. Even with a small scale we can see good agreement between both
fields and coronae clustering in equatorial region between Atla and Beta Regiones
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Figure 6.9: At top, the topography and geoid of Earth, at bottom the Emax and kmax maps
of the geoid for jw=08-16. In this case the contribution of dynamic processes is even more
evident than in the case of Venus because of the mismatch with the continental masses
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Figure 6.10: At top, the topography and geoid of Earth, at bottom the Emax and kmax maps
of the geoid for jw=32-64. Most contributions can be assigned to the prominent surface or
oceanic topographic or tectonic structures
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Figure 6.11: At top, the topography and geoid of the Moon, at bottom the Emax and kmax

maps of the geoid for jw=08-16. We can observe mainly topographic and mascons’ signal
however a prominent anomaly not directly connected to these could be found (circled)
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Figure 6.12: At top, the topography and geoid of the Moon, at bottom the Emax and
kmax maps of the geoid for jw=32-64. Here the mascons’ signal is dominant with clearly
observable rims of mare basins and major craters
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Figure 6.13: At top, the topography and geoid of Mars, at bottom the Emax and kmax maps
of the geoid for jw=08-16. Here the dominance by Tharsis and Utopia Planitia is obvious
however some complex signal of other structures is observed
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Figure 6.14: In upper part the topography and geoid of Mars, in lower one Emax and kmax

maps of geoid for jw=32-64. We can examine the signal of well known tectonic and impact
features together with some not yet well-known (circled)
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Chapter 7

Discussion of Results

Our research was done on global planetary scale and thus results obtained by the used
inverse method should tell us important facts about general tendencies of Venus’ structure.
However lack of any direct observational data from the venusian interior can put our findings
into question – so an appropriate final step is to compare and discuss them with the results
of forward models mainly performed previously by others.

Our analysis of the crustal structure is based on global data and so the individual site
examination could differ slightly from a derived average compensation depth of 35 km.
However even local admittance studies (Simons et al., 1997) are in agreement with
our findings and predict for exclusive locations like Beta Regio, Niobe Planitia or Lak-
shmi Planum very close values of crustal thickness. The earlier estimates of a global value
(Arkani-Hamed, 1996) could differ slightly because of the use of older gravity and to-
pography models. Also the localization of the observed and predicted geoid done in the
previous section (Fig. 6.2) confirms that, in the case of no longer active regions at Venus,
the inferred compensation depth could well predict the observed data.

On the other hand for the long and intermediate wavelengths the dynamic flow model of
Venus’ mantle predicts a geoid and topography in very close agreement with the observed
values as noted earlier by several authors (Kiefer et al., 1986; Phillips, 1990; Simons
et al., 1997). So the inverse problem based on this technique could gives us important
answers about the mantle rheology. The test of resolution of our inverse problem formulation
confirms that we can detect some major subsurface features, though with certain limits in
obtaining the unambiguous values.

The three main results obtained (stiffer lithosphere overlaying the mantle, lack of the
low-viscosity zone – LVZ – and a gradual increase of viscosity through the mantle by order
1-1.5 magnitude) are in agreement not only with papers dealing with Venus’ interior but also
with some authors studying general states of convection in the case of systems with missing
mobile plate tectonics. A viscosity contrast by at least 3 orders of magnitude from the
lithosphere to the rest of the mantle and a lack of LVZ in a site of some major plumes were
shown by a regional modelling (Kiefer and Hager, 1991; Kiefer and Hager, 1992)
and also indicated by some global convection studies (Dubuffet et al., 2000; Stein
and Hansen, 2003). A common implication from these findings is that venusian rheology
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is dryer, which is caused mainly by the early water escape (Donahue and Hodges, 1992)
and therefore the plate tectonics could not evolve without an underlaying LVZ. Some others
however (e.g. Simons et al., 1997), are assuming that a determination of the presence
of an LVZ on Venus is out of our current knowledge. The viscosity increase through the
mantle used to sometimes be neglected (Venus’s mantle is then handled as isoviscose) and
sometimes interpreted as a upper/lower mantle boundary – but our results do not indicate
such a sharp contrast, rather we explain it in terms of a monotonous viscosity rise.

The question of lithospheric thickness remains only partially answered because the dy-
namic predictions are based on long wavelengths and are not very sensitive to shallow
viscosity structures. But the basic result is between 100-200 km which corresponds also
with an isostasy compensation model for the whole spectrum j=2-90 which gives ADC
around 165 km. This is in agreement with some of the estimates of lithospheric thickness
(e.g. Nimmo and McKenzie, 1998) despite some other authors (e.g. Solomatov and
Moresi, 1996) putting the bottom of the lithosphere at depths 200-400 km. It’s not clear
if this parameter could be definitely derived from our present knowledge for example by
regional modelling (see discussion in Nimmo and McKenzie, 1998) or if we have to wait
until some in-situ seismological measurements are done.

Also interesting for our investigation is the correspondence between the inducing den-
sity perturbation power spectrum for wavelengths j=2-40 (Fig. 5.8 right) and observed
tomography power spectrum (e.g. Č́ıžková et al., 1996). The linear tendency on the
logarithmic scale at intermediate wavelengths also appears in the averaged horizontal power
spectra of temperature from time-dependent convection of Newtonian fluid (Larsen et
al., 1995). The similarity to our results brakes up around degree 40 (Fig. 5.8, right of the
dashed line) which is also the interface between dynamic and isostatic theory use. From
that we can also conclude a the suitability of our dynamic flow model.



Chapter 8

Conclusions

In our search for a geoid generated primarily by dynamic processes in the mantle of Venus
we have to first separate the contribution of isostatic support of topography. For this
the isostatic hypothesis seems to predict the observed data successfully and both inverse
problem formulations used (for degree apparent depth of compensation and fitting the degree
admittance function) are steady and give the same results. However the obtained apparent
depth of compensation 35 km is only an averaged global approximation, the local crustal
thickness can vary from that significantly.

Our work seems to exploit the theme of dynamic support of topography which has
already been taken by many others. Nevertheless the unknown density distribution limits
such models and they can answer only questions regarding basic mantle properties. Our
density approximation of only lateral variations constant with depth is one of the possible
ways to overcome these difficulties. The inverse problem based on such a density model and
internal loading theory appears to be steady for small number of free parameters, as their
number increase, the solution gets less robust. Hence the major obtained results:

• the existence of a stiff lithosphere with a viscosity higher by several orders of magnitude
than the underlaying mantle

• the absence of a narrow low viscosity zone (similar to Earth’s asthenosphere) beneath
the lithosphere

• the gradual increase of viscosity through the mantle by 1-1.5 orders of magnitude

have an importance as a guiding solution showing the general trends in Venus’ mantle. All of
these findings were already introduced by other authors but never before by means of a well
defined inverse problem and all together. Our contribution is therefore the confirmation of
these results and the compilation of them into a coherent model. For better resolution of
the rheology of the deep mantle another approach, following new data, would be necessary.

The use of localization methods appears to be another efficient tool in comparing and
analyzing spatial geophysical fields. For our purposes it has been the way to overcome
the disadvantages of the global character of the spherical harmonic approach and can be
used for both field analysis and local-spectral studies. The Emax-kmax method combines
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both the spatial analytic and the synthetic approaches and despite certain mathematical
disadvantages seems to be a valuable tool in the examination of planetary gravity fields.

As mentioned in the previous paragraph, our effort to determine the subsurface structure
and mantle rheology is strongly limited by the unknown density distribution beneath the
venusian surface. The current knowledge of Venus’ geophysics, the collected data and their
analysis cannot give us a satisfactory answer to this problem, and so we see the importance
of future space missions focused on detailed geophysical exploration for the sake of better
understanding planetary formation and evolution.



Appendix A

Spherical Harmonics

In many geophysical problems we need to describe spherical fields by means of scale-varying
global functions. A very useful tool is to employ spherical harmonic (SH) functions which
create an orthogonal basis on the sphere. Within this basis we can evaluate either scalar,
vector or tensor fields to an appropriate set of coefficients and use it to express some PDE
problems as a set of ODE which are easier to solve.

A.1 Scalar Spherical Harmonics

Similar to Fourier decomposition of a continuous signal into a series, the spherical scalar
function can be evaluated by the summation of coefficients multiplied by the appropriate
basis functions (e.g. Jones, 1985; Varshalovich et al., 1988):

f(ϑ, ϕ) =
∞∑

j=0

j∑

m=−j

AjmYjm(ϑ, ϕ) (A.1)

for 2D function f or in the 3D case:

f(r, ϑ, ϕ) =
∞∑

j=0

j∑

m=−j

Ajm(r)Yjm(ϑ, ϕ), (A.2)

where ϑ and ϕ are the colatitude and longitude respectively, Ajm and Ajm(r) the appropriate
SH coefficients. The basis functions Yjm(ϑ, ϕ) are defined as follows:

Yjm(ϑ, ϕ) = (−1)mNjmPjm(cos ϑ)eimϕ j ≥ 0 m ≥ 0 (A.3)

Yjm(ϑ, ϕ) = (−1)mY ∗
j|m|(ϑ, ϕ) j ≥ 0 m < 0, (A.4)

where the asterisk means complex conjugation, the normalization factor Njm is given by

Njm =
[
(2j + 1)

4π

(j −m)!

(j + m)!

] 1
2

(A.5)
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and the Pjm in our definition of spherical harmonics are the associated Legendre functions
derived from Legendre polynomials Pj:

Pjm(cos ϑ) = (1− cos2 ϑ)
m
2

dmPj(cos ϑ)

d(cos ϑ)m
= sinm ϑ

dmPj(cos ϑ)

d(cos ϑ)m
(A.6)

Pj(x) =
1

2jj!

dj

dxj
(x2 − 1)j. (A.7)

Moreover if the function f ∈ C2 (i.e. the function has a continuous derivative) the series
A.1 (resp. A.2) is uniformly convergent and therefore:

lim
j→∞

|fjm| = 0 (A.8)

The definitions of spherical harmonics used (A.3 and A.4) satisfy the orthonormality
conditions (the δ symbols stands for the Kronecker function δjm = 1 for the case j = m,
otherwise it is equal to zero):

2π∫

0

π∫

0

Yjm(ϑ, ϕ)Y ∗
kl(ϑ, ϕ) sin ϑdϑdϕ = δjkδml. (A.9)

To evaluate coefficients Ajm – similarly for Ajm(r) – we use the decomposition by a dot
product of scalar field with the basis functions Yjm:

Ajm =

2π∫

0

π∫

0

f(ϑ, ϕ)Y ∗
jm(ϑ, ϕ) sin ϑ dϑ dϕ (A.10)

In the case that f(ϑ, ϕ) is a real function we can evaluate Ajm, m < 0 using the symmetry
from equation A.4 in relation A.10:

Aj,−m = (−1)mA∗
jm. (A.11)

A.1.1 Applications

To calculate |fj|2 – the power spectra of SH coefficients – to estimate the contribution
of different wavelength features we use the following expression or, in the case of a real
function f , its symmetric modification according to equation A.11.

|fj|2 =
j∑

m=−j

fjmf ∗jm. (A.12)

Another useful tool to investigate the global characteristic is a degree-correlation function cj,
which gives the information about the similarity between two SH fields (e.g. between geoid
gjm and topography tjm) at various scales:

cj =

j∑
m=−j

gjmt∗jm
√

j∑
m=−j

gjmg∗jm

√
j∑

m=−j
tjmt∗jm

. (A.13)
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If we want to evaluate a transfer degree-ratio between two SH fields we can use the ad-
mittance function aj, which represents the part of the field correlated with the other one –
whereas the uncorrelated part is represented by ujm (e.g. Schubert et al., 2001):

gjm = ajtjm + ujm (A.14)

aj =

j∑
m=−j

tjmg∗jm

j∑
m=−j

tjmt∗jm

. (A.15)

Considering Newton’s gravity law the gravity signal at point r of mass distributed inside
the sphere Ω′ could be evaluated in the form of the gravitational potential V (r):

V (r) = κ
∫

Ω ′

ρ(r ′)
|r − r ′| dΩ ′. (A.16)

In geophysics, rather than with the geopotential, we work with the geoid, though these
terms are nearly equivalent. The geoid height at any point on the surface located at (ϑ, ϕ)
is then given (considering a local gravity acceleration g0) by the following equation:

g(ϑ, ϕ) =
V (ϑ, ϕ)

g0(ϑ, ϕ)
. (A.17)

For our purposes we need to transform an equation A.16 into a SH form hence we must first
transform the density ρ and the relative vector 1

|r−r ′| terms:

ρ(r ′) =
∞∑

j=0

j∑

m=−j

ρjm(r ′)Yjm(ϑ ′, ϕ ′) (A.18)

1

|r − r ′| =
4π

r

∞∑

k=0

k∑

l=−k

1

2k + 1

(
r ′

r

)k

Y ∗
kl(ϑ

′, ϕ ′)Ykl(ϑ, ϕ) , r ≥ r ′ (A.19)

which allow us to write equation A.16 in the form:

V (r) = κ
∫

Ω ′

∑

j,m

∑

k,l

4π

r

1

2k + 1

(
r ′

r

)k

ρjm(r ′)Yjm(ϑ ′, ϕ ′)Y ∗
kl(ϑ

′, ϕ ′) ×

× Ykl(ϑ, ϕ)r ′ 2 sin ϑ ′dϑ ′dϕ ′dr ′. (A.20)

Using orthonormality relation A.9 we can simplify the previous equation into:

V (r) =
4πκ

r

∞∑

j=0

j∑

m=−j

1

2j + 1

r2
′∫

r1
′

(
r ′

r

)j

ρjm(r ′)Yjm(ϑ, ϕ)r ′ 2dr ′. (A.21)
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When we want to apply the derived formula A.21 to the geopotential measured at the
surface of planet then r = R (the planetary radius) and we obtain:

V (r) =
4πκ

R

∞∑

j=0

j∑

m=−j

1

2j + 1

[ R∫

0

(
r ′

R

)j

ρjm(r ′)r ′ 2dr ′
]
Yjm(ϑ, ϕ). (A.22)

Because we want to get a SH series in the form

V (r) =
∞∑

j=0

j∑

m=−j

Vjm(R)Yjm(ϑ, ϕ), (A.23)

we must define Vjm in the following form

Vjm(R) =
4πκ

R

1

2j + 1

R∫

0

(
r ′

R

)j

ρjm(r ′)r ′ 2dr ′. (A.24)

If we want to evaluate the geopotential contribution of density anomalies caused by topog-
raphy undulations at given radius (r′ = R1) – e.g. at the surface or at MOHO – which could
be evaluated as ρjm(r ′) = tjm∆ρ δR1 , where tjm are SH coefficients of this topography, ∆ρ
is the density contrast and δR1 = 0 other than at the given depth. Thus we obtain

Vjm(R) =
4πκ

R

1

2j + 1

(
R1

R

)j

tjm∆ρR2
1 =

4πκR

2j + 1

(
R1

R

)j+2

tjm∆ρ (A.25)

Vjm(R) =
4πκR

2j + 1
tjm∆ρ, at the surface R1 = R. (A.26)

Dealing with a topography compensation we need to set the isostasy by the inverse to-
pography sjm at the depth h with amplitudes proportional to density contrast ratio

∆ρsurf

∆ρMOHO
:

sjm = −tjm
∆ρsurf

∆ρMOHO

, (A.27)

therefore the gravitational potential from the compensated surface topography tjm (the sum
of the equation A.25 for R1 = R, R− h) with the density contrast ∆ρ

.
= ρsurf is:

Vjm =
4πκR

2j + 1

(
1−

(
(R− h)

R

)j+2)
tjm∆ρ. (A.28)

If we want then to calculate the least-square misfit function between two SH fields (e.g.
between observed and predicted geoid) we will use the following formula

S2 =
jmax∑

j=0

j∑

m=−j

(gpred
jm − gobs

jm)(gpred
jm − gobs

jm)∗. (A.29)
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However, for some geophysical purposes we may need to express a gravity field instead
in the form of a geoid in the form of free-air gravity. This is defined as a radial acceleration
at the geoid level (usually measured in mGals):

a(R) =
∂V (r)

∂r

∣∣∣∣
r=R

. (A.30)

This equation is easy to transform into SH form by considering an appropriate definition of
the Earth geopotential

V (r, ϑ, ϕ) =
∞∑

j=0

j∑

m=−j

(
R

r

)j+1

Vjm(R)Yjm(ϑ, ϕ). (A.31)

Putting A.31 relation into A.30 we obtain

Vjm(r) =
(

R

r

)j+1

Vjm(R) (A.32)

∂Vjm(r)

∂r
= (j + 1)

Rj+1

rj+2
Vjm(R) (A.33)

ajm(R) =
j + 1

R
Vjm. (A.34)

In the satellite geodesy there are conventional equations for SH expansion of the topog-
raphy (A.35) and the geopotential (A.36) mostly set by Kaula, 1966:

T (ϑ, ϕ) = R
∞∑

j=2

j∑

m=0

Pjm(cos ϕ)(Ct
jm cos mϑ + St

jm sin mϑ) (A.35)

V (ϑ, ϕ) =
GM

R
+

GM

R

∞∑

j=2

j∑

m=0

Pjm(cos ϕ)(Cv
jm cos mϑ + Sv

jm sin mϑ), (A.36)

where Ct
jm, St

jm and Cv
jm, Sv

jm are the corresponding fully normalized SH trigonometric co-
efficients. Re-normalizing these trigonometric coefficients for un-normalized exponential SH
coefficients Ajm suitable for use in A.1 or A.2 is simple:

At
j0 = R

√
4π(Ct

jm) At
jm = (−1)mR

√
2π(Ct

jm + iSt
jm) (A.37)

Av
j0 =

GM

R

√
4π(Cv

jm) Av
jm = (−1)m GM

R

√
2π(Cv

jm + iSv
jm), (A.38)

where GM, R and g0 are constants needed to evaluate either the topography or gravitational
field – for the proper values of the parameters known today (those for Venus, Earth, Moon
and Mars) see table 3.1. When using trigonometric coefficients it is common to write the
power spectra equation A.12 in a form (e.g. Arkani-Hamed, 1996)

RMSj =

√√√√
∑j

m=0(C
2
jm + S2

jm)

2j + 1
(A.39)
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A.2 Vector Spherical Harmonics

When considering a vector spherical field we need a proper basis for its description. Instead
of using Cartesian (ex, ey, ez) or spherical (er, eϑ, eϕ) unit vectors we use so called cyclic
unit vectors eµ (µ = −1, 0, 1), which are constructed in the following way

e1 = − 1√
2
(ex + iey) (A.40)

e0 = ez (A.41)

e−1 =
1√
2
(ex − iey) (A.42)

and have these properties

e∗µ = (−1)µe−µ (A.43)

e∗µ · eµ′ = (−1)µe−µ · eµ′ = δµµ′ . (A.44)

The scalar spherical harmonic series from the previous section could be adapted to the
vector case by adding one dimension to the used basis functions. Therefore the 2D or 3D
(respectively) vector functions can be written in the form:

f (ϑ, ϕ) =
∞∑

j=0

j∑

m=−j

j+1∑

l=|j−1|
Al

jmY l
jm(ϑ, ϕ) (A.45)

f (r, ϑ, ϕ) =
∞∑

j=0

j∑

m=−j

j+1∑

l=|j−1|
Al

jm(r)Y l
jm(ϑ, ϕ), (A.46)

where Y l
jm are the vector spherical harmonic functions. This vector canonic basis – which

is in fact a tensor basis A.58 for a case k=1 (this is omitted in the superscript, could be
written also as Y l1

jm) – is defined in the following way (see e.g. Edmonds, 1960):

Y l
jm(ϑ, ϕ) =

1∑

µ=−1

l∑

ν=−l

Cjm
lν1µYlν(ϑ, ϕ)eµ (A.47)

where Cjm
lν1µ are Clebsh-Gordan coefficients (e.g. Varshalovich et al., 1988). Alterna-

tively the vector spherical harmonic functions could be defined by use of the spherical basis
(er, eϑ, eϕ):

√
j(2j + 1)Y j−1

jm (ϑ, ϕ) = jYjm(ϑ, ϕ)er +
∂Yjm(ϑ, ϕ)

∂ϑ
eϑ +

1

sin ϑ

∂Yjm(ϑ, ϕ)

∂ϕ
eϕ

(A.48)
√

j(j + 1)Y j
jm(ϑ, ϕ) = i

1

sin ϑ

∂Yjm(ϑ, ϕ)

∂ϕ
eϑ − i

∂Yjm(ϑ, ϕ)

∂ϑ
eϕ (A.49)

√
(j + 1)(2j + 1)Y j+1

jm (ϑ, ϕ) = −(j + 1)Yjm(ϑ, ϕ)er +

+
∂Yjm(ϑ, ϕ)

∂ϑ
eϑ +

1

sin ϑ

∂Yjm(ϑ, ϕ)

∂ϕ
eϕ. (A.50)



APPENDIX A. SPHERICAL HARMONICS 81

The appropriate SH coefficients f l
jm (resp. f l

jm(r)) can be derived by a modification of
equation A.10 in the sense of term A.45:

f l
jm =

∫ π

0

∫ 2π

0
f (ϑ, ϕ) ·Y l ∗

jm(ϑ, ϕ) sin ϑ dϑdϕ. (A.51)

Because of the symmetries of Clebsh-Gordan coefficients we can again evaluate both Y l
j,−m

and therefore even f l
j,−m by using the terms with m ≥ 0:

Y l
j,−m = (−1)j+m+l+1Y l ∗

jm (A.52)

f l
j,−m = (−1)j+m+l+1f l ∗

jm (A.53)

Such basis functions defined by term A.47 (resp. by equations A.48-A.50) satisfy the
condition of orthonormality:

∫ π

0

∫ 2π

0
Y l1

j1m1
(ϑ, ϕ) ·Y l2 ∗

j2m2
(ϑ, ϕ) sin ϑ dϑdϕ = δj1j2δm1m2δl1l2 . (A.54)

Moreover it could be shown that the field on the sphere can be separated into a toroidal part
which describes only horizontal changes (∇.vT = 0 and vT .er = 0) and a spheroidal part
((∇.× vS).er = 0 – when we deal with the non-divergence field i.e. ∇.v = 0 then this part
is called poloidal). The f j±1

jm coefficients then represent the spheroidal and f j
jm the toroidal

part of the field f (e.g. Matas, 1995).

A.3 Tensor Spherical Harmonics

If we have a spherical field of tensor quantity we can adapt the cyclic basis (A.40-A.42) to
obtain a tensor orthogonal one:

E kλ =
1∑

µ=−1

1∑

ν=−1

Ckλ
1µ1νeµeν . (A.55)

With an appropriate basis function we can again write a series for SH expansion of a
spherical field – this time the 2D or 3D tensor one:

F (ϑ, ϕ) =
∞∑

j=0

j∑

m=−j

j+1∑

l=|j−1|

2∑

k=0

Alk
jmY lk

jm(ϑ, ϕ) (A.56)

F (r, ϑ, ϕ) =
∞∑

j=0

j∑

m=−j

j+1∑

l=|j−1|

2∑

k=0

Alk
jm(r)Y lk

jm(ϑ, ϕ) (A.57)

where the spherical harmonic functions Y kl
jm are defined (e.g. Varshalovich et al.,

1988) by:

Y lk
jm(ϑ, ϕ) =

l∑

µ=−l

k∑

ν=−k

Cjm
lνkµYlν(ϑ, ϕ)E kµ, (A.58)
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and again satisfy the orthogonality relation:

∫ π

0

∫ 2π

0
Y l1k1

j1m1
(ϑ, ϕ) : Y l2k2 ∗

j2m2
(ϑ, ϕ) sin ϑ dϑdϕ = δj1j2δm1m2δl1l2δk1k2 , (A.59)

where : operator denotes the double-dot product (for second order tensors with components
Aij and Bij is defined as A : B =

∑ ∑
AijBij). Moreover such an orthonormal basis has

a straight-forward interpretation: the coefficients F l0
jm represents the trace of the tensor

function, F l1
jm stands for the antisymmetric and F l2

jm for the symmetric deviatoric part of
the tensor function F . The evaluation of these coefficients is again only a modification of
previous relations A.10 and A.51:

f lk
jm =

∫ π

0

∫ 2π

0
F (ϑ, ϕ) : Y lk ∗

jm (ϑ, ϕ) sin ϑ dϑdϕ. (A.60)

A.4 Operations with Spherical Harmonics

In this section various products of spherical harmonics and others operations are listed –
some of them are used in Appendix C, others could be useful in dealing with differential
equations in the form of SH expansions. Most of the formulae are from Varshalovich et
al., 1988; Matas, 1995 and the rest came from Čadek, personal communication.

Products of spherical harmonic

Yj1m1Yj2m2 =
Πj1j2√

4π

∑

jm

1

Πj

Cj0
j10j20C

jm
j1m1j2m2

Yjm

Yj1m1Y
l2
j2m2

=
Πj1j2l2√

4π

∑

jml

(−1)j+l+1 C l0
j10 l20 Cjm

j1m1 j2m2





j j1 j2

l2 1 l



Y l

jm

Y l1
j1m1

·Y l2
j2m2

= (−1)j2+l2
Πj1j2l1l2√

4π

∑

jm

1

Πj

Cj0
l10 l20 Cjm

j1m1 j2m2





j1 j2 j

l2 l1 1



 Yjm

Y l1
j1m1

×Y l2
j2m2

=
i
√

3√
2π

Πj1j2l1l2

∑

jml

C l0
l10 l20 Cjm

j1m1 j2m2





j j1 j2

l l1 l2

1 1 1





Y l
jm

Y l1
j1m1

Y l2
j2m2

=
Πj1j2l1l2√

4π

∑

jmln

Πn C l0
l10 l20 Cjm

j1m1 j2m2





j l n

jl l1 1

j2 l2 1





Y ln
jm

Y l1n1
j1m1

: Y l2n2
j2m2

= δn1n2(−1)j2+l2
Πj1j2l1l2√

4π

∑

jm

1

Πj

Cj0
l10 l20 Cjm

j1m1 j2m2





n1 l1 j1

j j2 l2



 Yjm
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Y l1
j1m1

·Y l2n2
j2m2

= (−1)n2+1 Πj1j2l1l2n2√
4π

∑

jml

C l0
l10 l20 Cjm

j1m1 j2m2





j j1 j2

l l1 l2

1 1 n2





Y l
jm

Y l1n1
j1m1

·Y l2
j2m2

= (−1)n1+1 Πj1j2l1l2n1√
4π

∑

jml

C l0
l10 l20 Cjm

j1m1 j2m2





j j1 j2

l l1 l2

1 n1 1





Y l
jm

where the Πj1j2...jn =
n∏

i=1

√
2ji + 1, the term {j1 j2 j

l1 l2 l} stands for 6-j Wigner symbol whereas

the similar one constituted of 3 lines for 9-j Wignal symbol. The definitions of these symbols
are given e.g. in Varshalovich et al., 1988 and their properties are handled later in
this section.

Formulae for products of a unit radial vector and spherical tensors

erYjm =
1√

2j + 1
(
√

j δl,j−1 −
√

j + 1 δl,j+1) Y l
jm

er ·Y l
jm =

1√
2j + 1

(
√

j δl,j−1 −
√

j + 1 δl,j+1) Yjm

er ·Y ln
jm = (−1)j+l

√
2n + 1


√l + 1





l n j

1 l + 1 1



Y l+1

jm −
√

l





l n j

1 l − 1 1



Y l−1

jm




er ·Y j0
jm =

1√
3(2j + 1)

(
√

j + 1 Y j+1
jm −

√
j Y j−1

jm )

er ·Y j−2,2
jm =

√
j − 1

2j − 1
Y j−1

jm

er ·Y j−1,2
jm =

√
j − 1

2(2j + 1)
Y j

jm

er ·Y j,2
jm =

√√√√ j(2j − 1)

2.3.(2j + 1)(2j + 3)
Y j+1

jm −
√√√√ (j + 1)(2j + 3)

2.3.(2j + 1)(2j − 1)
Y j−1

jm

er ·Y j+1,2
jm = −

√
j + 2

2(2j + 1)
Y j

jm

er ·Y j+2,2
jm = −

√
j + 2

2j + 3
Y j+1

jm
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(v · er)er =
∑

jm

1√
2j + 1

×
{[

jvj−1
jm −

√
j(j + 1)vj+1

jm

]
Y j−1

jm −
[√

j(j + 1)vj−1
jm − (j + 1)vj+1

jm

]
Y j+1

jm

}

v − (v · er)er =
∑

jm

vj
jmY j

jm+

∑

jm

1

2j + 1

{[
(j + 1)vj−1

jm +
√

j(j + 1)vj+1
jm

]
Y j−1

jm +
[√

j(j + 1)vj−1
jm + jvj+1

jm

]
Y j+1

jm

}

Differential operators acting on spherical tensors

∆ [f(r)Yjm] =

[
d2f(r)

dr2
+

2

r

df(r)

dr
− j(j + 1)f(r)

r2

]
Yjm

∇ [f(r)Yjm] =
1√

2j + 1

[√
j

(
d

dr
+

j + 1

r

)
f(r)Y j−1

jm −
√

j + 1

(
d

dr
− j

r

)
f(r)Y j+1

jm

]

∇
[
f(r)Y l

jm

]
= (−1)j+l+1

∑

k

√
2k + 1

√
l





1 1 k

j l − 1 l





(
d

dr
+

l + 1

r

)
f(r)Y l−1,k

jm +

+(−1)j+l
∑

k

√
2k + 1

√
l + 1





1 1 k

j l + 1 l





(
d

dr
− l

r

)
f(r)Y l+1,k

jm

∇ · f(r)Y l
jm =

1√
2j + 1

[√
j

(
d

dr
− j − 1

r

)
δl,j−1 −

√
j + 1

(
d

dr
+

j + 2

r

)
δl,j+1

]
f(r)Yjm

∇× f(r)Y l
jm = −i

√
6(−1)j+l

√
l + 1





l j 1

1 1 l + 1





(
l

r
− d

dr

)
f(r)Y l+1

jm−

−i
√

6(−1)j+l
√

l





l j 1

1 1 l − 1





(
l + 1

r
+

d

dr

)
f(r)Y l−1

jm

∆
[
f(r)Y l

jm

]
=

[
d2f(r)

dr2
+

2

r

df(r)

dr
− l(l + 1)f(r)

r2

]
Y l

jm

∆
[
f(r)Y ln

jm

]
=

[
d2f(r)

dr2
+

2

r

df(r)

dr
− l(l + 1)f(r)

r2

]
Y ln

jm
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∇ ·
[
f(r)Y lk

jm

]
= (−1)j+l

√
2k + 1 ×


√l + 1





1 l l + 1

j 1 k





(
d

dr
− l

r

)
f(r)Y l+1

jm −
√

l





1 l l − 1

j 1 k





(
d

dr
+

l + 1

r

)
f(r)Y l−1

jm




Clebsch-Gordan coefficients

More on the definition of Clebsch-Gordan coefficients and related Wigner symbols could
be found again in Varshalovich et al., 1988 or [i8]. Here we will be dealing just with
the properties most useful to our purpose.

¦ Symmetries of Clebsch-Gordan coefficients

Cjm
j1m1 j2m2

= (−1)j+j1+j2 Cj,−m
j1,−m1 j2,−m2

= (−1)j+j1+j2 Cjm
j2m2 j1m1

Cjm
j1m1 j2m2

= (−1)j1+m1
Πj

Πj2

Cj2,−m2
j1m1 jm

Cjm
j1m1 j2m2

= (−1)j1+m1
Πj

Πj2

Cj2m2
jm j1,−m1

Cjm
j1m1 j2m2

= (−1)j2+m2
Πj

Πj1

Cj1,−m1
j,−m j2m2

Cjm
j1m1 j2m2

= (−1)j2+m2
Πj

Πj1

Cj1m1
j2,−m2 jm

¦ Values of coefficients for a special choice of indices

Cj0
j10 j20 = 0 if j1 + j2 + j3 is odd

Cj+1,0
j0 10 =

√
j + 1

2j + 1

Cj−1,0
j0 10 = −

√
j

2j + 1

Cjm
j1m1 00 = δjj1δmm1

C00
j1m1 j2m2

=
(−1)j1+m1

Πj1

δj1j2δm1,−m2

Cjj
j1j1 j2j2 = δj1+j2,j
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¦ Sums of Clebsch-Gordan coefficients

∑
m1m2

Cjm
j1m1 j2m2

Cj′m′
j1m1 j2m2

= δjj′δmm′

∑
mm1

Cjm
j1m1 j2m2

Cjm
j1m1 j3m3

=
Πj

Πj2

δj2j3δm2m3

∑
n1n2n3

Cj3m3

l1n1 l2n2
Cj1m1

l3n3 l2n2
C l3n3

l1n1 j2m2
= (−1)j1+l2+l3 Πj3l3 Cj1m1

j2m2 j3m3





l1 l2 j3

j1 j2 l3





∑
n1n2n3n4

Cj1m1

l1n1 l2n2
Cj2m2

l3n3 l4n4
Cj3m3

l3n3 l1n1
Cj4m4

l4n4 l2n2
=

(−1)j+j1+j2 Πj1j2j3j4

∑

jm

Cjm
j1m1 j2m2

Cjm
j3m3 j4m4





l2 l1 j1

l4 l3 j2

j4 j3 j





¦ Clebsch-Gordan coefficients and 3-j Wigner symbols

Cjm
j1m1 j2m2

= (−1)j1+j2+m Πj


 j1 j2 j

m1 m2 −m





 j1 j2 j

m1 m2 −m


 =

(−1)j+m

Πj

Cjm
j1,−m1 j2,−m2

6-j Wigner symbols

¦ Values of 6-j symbols for a special choice of indices





j1 j2 j

l1 l2 0



 =

(−1)j1+j2+j

Πj1j2

δj1l2δj2l1





j 2 j − 2

1 j − 1 1



 =

1√
5(2j − 1)





j 2 j + 2

1 j + 1 1



 =

1√
5(2j + 3)





j j 2

1 1 j − 1



 =

√√√√ (j + 1)(2j + 3)

2.3.5.j(2j − 1)(2j + 1)
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



j j 2

1 1 j + 1



 =

√√√√ j(2j − 1)

2.3.5.(2j + 3)(j + 1)(2j + 1)




j 1 j

2 j + 1 1



 = −

√
j + 2

2.5.(j + 1)(2j + 1)




j 1 j

2 j − 1 1



 = −

√
j − 1

2.5.j(2j + 1)




j j 1

1 1 j + 1



 =

√
j

2.3.(j + 1)(2j + 1)




j j 1

1 1 j − 1



 = −

√
j + 1

2.3.j(2j + 1)

9-j Wigner symbols

¦ Values of 9-j symbols for a special choice of indices





0 j j

l k1 k2

l k3 k4





=
(−1)j+l+k2+k3

Πjl





k4 k2 j

k1 k3 l




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Appendix B

Spectral-spatial Methods

Frequent geophysical task is to display features of physical fields but only at a certain scale.
For this purpose harmonic analysis could be used when the degree corresponds to a desired
size. But this approach is complicated by the global character of harmonic functions – since
the value at any place in the reconstructed field (e.g. topography of the required wavelength
at the north pole) is influenced by the rest of the field’s contributions to a given spherical
harmonic coefficient.

B.1 Continuous Wavelet Transform

Another possible way to solve this problem is to employ a continuous wavelet transform,
which a method is widely discussed by Daubechies, 1992; Torrence and Compo,
1998; Vecsey, 2002 et al. This method is based on the convolution of the wavelet function
ψ0(a) (where a is a desired scale) – which is well localized in both the space and spectrum
– with the given physical field, and enables us to display just the local anomalies of the
size corresponding to the scale of the wavelet. For the wavelet we can use any odd (better
resolution of edges) or even (better space resolution) function (Vecsey, 2002) but it must
satisfy the condition of admissibility and unit energy of the whole space:

∞∫

−∞
ψ0(η)dη = 0 (B.1)

∞∫

−∞
|ψ0(η)|2dη = 1, (B.2)

where equation B.1 keeps the wavelet transform unaffected by the mean of analyzed function
and equation B.2 provides the normalization of resulting wavelet transform. For our pur-
poses we use the so-called Mexican Hat (second derivative of the Gaussian) as the wavelet
function for both 1D and 2D. This wavelet is isotropic – and therefore detects the features
from all directions with the same width and weight – and well localized in space which is
necessary to obtain the good space resolution.

89



APPENDIX B. SPECTRAL-SPATIAL METHODS 90

For displaying results (scalograms) we need an additional dimension for scale – this is
not a problem in the case of 1D but for the 2D wavelet transform we have to choose between
3D diagrams (which are difficult to display) and slices showing one certain scale. In this
work we use the second method and show several slices for certain distinguished scales.

B.1.1 1D Wavelets

In the case of 1D signal analysis we can use the wavelet transform (B.3) to display con-
tributions of different frequencies to the original data. This method can be a useful tool
for such things as a time-series study (Vecsey and Matyska, 2001) or raw-data anal-
ysis (Turcotte et al., 2002). For displaying results the time/period scalograms or a
superposition of wavelet transform with the gradual offset are suitable. When dealing with
a Cartesian signal we can separate high-significance data from the white or red noise by
using a cone of influence (Torrence and Compo, 1998; Vecsey, 2002). Below is the
definition of the 1D wavelet transform and its spectrum:

Ψf (a, b) = a−
1
2

∞∫

−∞
f(x)ψ∗0(

x− b

a
) dx (B.3)

Ψ̂f (a, ω) = a
1
2 f̂(x)ψ̂∗0(aω), (B.4)

where b is the position of the wavelet transform, f(x) is the analyzed function, asterisk
denotes the complex conjunction, hat the Fourier transform and ω is the frequency in
Fourier space. Because of the homogeneity of the signal f(x) we can convert the wavelet
transform (B.3) into a Fourier space (B.4) and vice versa – this is a very efficient way of
computing as it rapidly decreases the computational time.

B.1.2 2D Wavelets

For a 2D wavelet transform (B.5) on the Cartesian domain we use a transformation similar
to the 1D case but enhanced to another dimension. Such an extension could be carried out
even for more dimensions (e.g. studying 3D structures – see Bergeron et al., 1999)
but then the computational requirements increase and displaying the results becomes more
difficult. As well as in the previous case a transform into Fourier space (B.6) is again very
favorable and spares a lot of computational time. The definition of the 2D wavelet transform
and its spectrum is as follows:

Ψf (a, b) = a−1

Lx∫

0

Ly∫

0

f(x )ψ∗0(
x − b

a
) dx 2 (B.5)

Ψ̂f (a, k) = af̂(k)ψ̂∗0(ak), (B.6)
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Figure B.1: 2D Mexican Hat wavelet function

where k is the wavevector in the Fourier space. An often used 2D wavelet is the Mexican
Hat (Fig. B.1), which is defined on the Cartesian domain as a second derivative of the
Gaussian normal function centered at the origin and dependant only on the radial vector
r = r(x, y):

ψ0(r) =
1√
2π

(
∂2

∂x2
+

∂2

∂y2
)e−

1
2
|r |2 =

1√
2π

(2− |r |2)e− 1
2
|r |2 (B.7)

B.2 2D Spherical Localization

When we apply the method of a 2D wavelet transform to data fields on the sphere (e.g.
gravity, topography etc.) transformed by a cylindrical projection to Cartesian coordinates,
only regional studies should be considered. But when we need to analyze whole spherical
data sets we obtain a distortion increasing with latitude (e.g. Vecsey et al., 2003).
A solution to this problem is to substitute a wavelet transform by another transformation
defined on a sphere. It employs wavelets or other localized functions with a spherical cor-
rection (Fig. B.2) which in the Euclidian limit gives the 2D wavelet transform as mentioned
in previous section. Several different approaches have been suggested (Antoine et al.,
2002; Michel, 2002) but they are usually very mathematically complicated and are rarely
employed by geophysical community. Therefore some easier methods have been proposed –
here two which are widely used in the planetary sciences are outlined.
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Figure B.2: 2D Mexican Hat with the spherical correction

B.2.1 Spectral Approach

The general principle of the localization is (as well as in the case of the wavelet transform)
based on the convolution of an analyzed field A(Ω) with a window function W (Ω) on the
sphere Ω. The first possible method was presented by Simons et al., 1997 and it is real-
ized purely in the spectral domain by operations with spherical harmonic (SH) coefficients
(equations B.8-B.11). However one must remember that the following sequence of obtain-
ing the localized field is only for a certain window-scale and window-position – for another
scale or position of the window function on the sphere some other set of SH coefficient is
obtained. In the following terms the normalization and phase convention are the same as
in e.g. Varshalovich et al., 1988:

Ψ(Ω) = W (Ω)A(Ω) =
∑

jm

ψjmYjm(Ω) (B.8)

ψjm =
∫

A(Ω)W (Ω)Y ∗
jm(Ω) dΩ (B.9)

ψjm =
∑

j1m1j2m2

a∗j1m1
w∗

j2m2
ξj1j2l


 j1 j2 j

0 0 0





 j1 j2 j

m1 m2 m


 (B.10)

ξj1j2...jn =

√
(2j1 + 1)(2j2 + 1) . . . (2jn + 1)

4π
(B.11)

where ajm, wjm and ψjm are respectively SH coefficients of analyzed field, window function
and obtained localized field; (j1j2j

0 0 0) and (j1 j2 j
m1m2m) are the Wigner 3-j symbols defined e.g. by

Varshalovich et al., 1988. Using the ψjm and γjm coefficients of two localized fields
we can construct the cross-covariance coefficient (B.12), RMS amplitude of Ψ (B.13), the
correlation between Ψ and Γ (B.14) and the transfer function (admittance) (B.15):
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σ2
ΨΓ(j) =

∑
m

ψjmγ∗jm (B.12)

Sj(Ω) =

√√√√σ2
ΨΨ(Ω)

2j + 1
(B.13)

rj(Ω) =
σ2

ΨΓ(Ω)√
σ2

ΨΨ(Ω)σ2
ΓΓ(Ω)

(B.14)

Fj(Ω) =
σ2

ΨΓ(Ω)

σ2
ΨΨ(Ω)

. (B.15)

B.2.2 Spatial Approach

Another approach to a spherical localization is based on spatial computation and was pre-
sented by Kido et al., 2003. The main advantages of this method are its computational
simplicity and an option to process only a selected interval instead of the whole spherical
surface, which is essential when we desire to work with high resolution or short wavelengths.
Therefore we choose this system (B.16-B.17) for our calculations in Chapter 6 with parame-
ters used by the authors. As a window function we apply the spherical wavelet-like function
Fjw,σ,ϑ0,ϕ0(ϑ, ϕ) centered in (ϑ0, ϕ0) with wavelength jw and optional parameter σ, which
controls the width of the wavelet-like function:

Fjw,σ,ϑ0,ϕ0(ϑ, ϕ) = j2
w exp

(
−

(
jwξ

2σ

)2)[
J0(jwξ)

ξ

sin ξ
− exp(−σ2)

]
(B.16)

cos ξ = cos ϑ0 cos ϑ + sin ϑ0 sin ϑ cos(φ0 − φ). (B.17)

where ξ is the angular distance to the center of the wavelet-like function (ϑ0, ϕ0) and J0 is
the Bessel function of order zero (the resulting function is very close to Mexican hat wavelet
mentioned in the previous section). Using these definitions we can evaluate the transformed
field Ã (B.18), the correlation between two fields (in our case G and T i.e. geoid and
topography respectively) (B.19) and the admittance between these fields (B.20) – both of
which are using the appropriate window (B.21) which also acts as a weighting function if
we understand this problem as a least square fit.

Ãjw,σ(ϑ0, ϕ0) =
1

4π

2π∫

0

π∫

0

A(ϑ, ϕ)Fjw,σ,ϑ0,ϕ0(ϑ, ϕ) sin ϑ dϑ dϕ (B.18)

Cjw,σ(ϑ0, ϕ0) =

∫
Ω Wjw,σ(ξ)T̃ (ϕ, ϑ)G̃(ϕ, ϑ)dΩ√∫

Ω Wjw,σ(ξ)T̃ 2(ϕ, ϑ) dΩ
∫
Ω Wjw,σ(ξ)G̃2(ϕ, ϑ) dΩ

(B.19)

Zjw,σ(ϑ0, ϕ0) =

∫
Ω Wjw,σ(ξ)T̃ (ϕ, ϑ)G̃(ϕ, ϑ)dΩ

∫
Ω Wjw,σ(ξ)T̃ 2(ϕ, ϑ) dΩ

(B.20)
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Wjw,σ(ξ) = exp


−

(
jwξ

2σ

)2

 (B.21)

The localized geoid and topography analysis are progressive tools in looking for the
local geophysical mechanisms (e.g. crustal thickness by Simons et al., 1997 or elastic
lithosphere thickness by McGovern et al., 2002) whereas the spatial correlation and
admittance maps can examine a lateral variation of geoid/topography relations (e.g. esti-
mations of different generating mechanisms by Kido et al., 2003). They can also help
us in the future to improve new spherical harmonic models of the geoid which would be the
basis for a better determination of the topographical elevation (Konopliv et al., 1999
and Rappaport et al., 1999).

B.3 Compositional Methods

One of the disadvantages in the localization of geophysical fields is the difficulty displaying
the 2D analysis results and the redundant information contained in CWT. Hence a method
combining the advantages of a localization approach with synthetic processing is needed –
in this thesis we employed a modification of the Emax-kmax method (Bergeron et al.,
1999) for spherical fields:

Emax(ϑ, ϕ) = max
〈jw1,jw2〉

|ψjw,σ(ϑ, ϕ)|2 (B.22)

Ẽmax(ϑ, ϕ) = max
〈jw1,jw2〉

|ψjw,σ(ϑ, ϕ)|2 · sgn ψjw,σ(ϑ, ϕ). (B.23)

This technique simply analyzes the observed data on a given interval 〈jw1, jw2〉 by means
of localization and registers the highest value of the transformed field for each grid point
(Emax B.22 or Ẽmax B.23, if we take into an account the sign of signal) and the corresponding
wavelength jw – these quantities are then displayed in new 2D maps.



Appendix C

Dynamic Modelling

The aim of dynamic modelling in our work is to predict a rheology of the venusian mantle.
Because we do not have any information about the density structure, phase transitions,
layering nor geochemical composition we have to find an adequate method which can in-
corporate the only known quantities – gravitational potential and topography. Therefore
we will try to predict the observed data by means of the internal loading theory which was
already successfully used earlier for research on Earth (e.g. Čadek et al., 1997) and also
on Venus (e.g. Kiefer and Peterson, 2003).

C.1 Governing Equations

The mantle flow in our model is controlled only by the density structure of the venu-
sian mantle (which controls the buoyancy forces) and its viscous profile. The basic set of
equations must then incorporate the continuity equation, the equation of motion and the
rheology equation. For our purpose we consider several simplifications (neglecting of the
self-gravitation and compressibility of newtonian material) but despite that we can still use
this model to predict the venusian geoid and topography with high accuracy (Kiefer et
al., 1986). Hence the equations of flow are handled in the following form:

∇ · τ + ρ g = 0 (C.1)

∇ · v = 0 (C.2)

τ = −I p + η(∇v +∇Tv), (C.3)

where τ is the stress tensor, ρ stands for the density, g for the normal gravity acceleration, v
for the flow velocity, p for the hydrostatic pressure and η for the viscosity. However because
the internal structure of Venus is not known we keep g constant trough the whole model.
The geoid and topography induced by the flow described by equations C.1-C.3 does not
generally depend on the absolute values of viscosity and therefore our results can reveal
only relative viscosity contrasts.
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C.2 Parametrization and Numerical Solution

The governing equations are solved for the whole mantle, i.e. in the spherical layer between
surface and core-mantle boundary. At both boundaries we employ the free slip condition
C.4 (because of zero tangential stress) and zero vertical velocity C.5 (because no material
is penetrating trough the surface nor CMB) as reasoned by e.g. Kývalová, 1994:

v · er = 0 (C.4)

τ · er − [(τ · er) · er] er = 0. (C.5)

Now we have to choose the numerical method to work with these mathematical terms. As
shown in Appendix A, a very reasonable way to do that is to employ the spherical harmonics.
By using them we can express all the scalar (A.2), vector (A.46) and tensor (A.57) quantities
by terms containing only appropriate coefficients and harmonic functions. Because the terms
are not coupled together through different orders we can separate them into individual
equations for every degree and order. Thus we can rewrite boundary conditions (C.4 and
C.5) into:

√
jvj−1

jm (r)−
√

j + 1vj+1
jm (r) = 0 (C.6)

j + 1

2j + 1

√
j − 1

2j − 1
τ j−2,2
jm (r)− 1

2j + 1

√
j(j + 1)(j + 2)

2j + 3
τ j+2,2
jm (r) −

−
√√√√ 3(j + 1)

2(2j − 1)(2j + 1)(2j + 3)
τ j2
jm(r) = 0, (C.7)

the equation of motion (C.1) into a set of two equations:

−
√

j

3(2j + 1)

(
d

dr
+

j + 1

r

)
τ j0
jm(r) +

√
j − 1

2j − 1

(
d

dr
− j − 2

r

)
τ j−2,2
jm (r) − (C.8)

−
√√√√ (j + 1)(2j + 3)

6(2j − 1)(2j + 1)

(
d

dr
+

j + 1

r

)
τ j2
jm(r) = −f j−1

jm (r)

√
j + 1

3(2j + 1)

(
d

dr
− j

r

)
τ j0
jm(r) +

√√√√ j(2j − 1)

6(2j + 3)(2j + 1)

(
d

dr
− j

r

)
τ j2
jm(r) − (C.9)

−
√

j + 2

2j + 3

(
d

dr
+

j + 3

r

)
τ j+2,2
jm (r) = −f j+1

jm (r),

the continuity equation (C.2) into:

√
j

2j + 1

(
d

dr
− j − 1

r

)
vj−1

jm (r)−
√

j + 1

2j + 1

(
d

dr
+

j + 2

r

)
vj+1

jm (r) = 0, (C.10)
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and the constitutive relation (C.3) into three equations:

τ j−2,2
jm (r)− 2η

√
j − 1

2j − 1

(
d

dr
+

j

r

)
vj−1

jm (r) = 0 (C.11)

τ j2
jm(r) + 2η

√√√√ (j + 1)(2j + 3)

6(2j − 1)(2j + 1)

(
d

dr
− j − 1

r

)
vj−1

jm (r) −

−2η

√√√√ j(2j − 1)

6(2j + 3)(2j + 1)

(
d

dr
+

j + 2

r

)
vj+1

jm (r) = 0 (C.12)

τ j+2,2
jm (r) + 2η

√
j + 2

2j + 3

(
d

dr
− j + 1

r

)
vj+1

jm (r) = 0. (C.13)

However these terms describe only the spheroidal part of the governing equations – there
is no toroidal flow in the mantle with only radial viscosity structure (e.g. Ricard and
Vigni, 1989). Therefore the corresponding terms vj

jm, τ j−1,2
jm and τ j+1,2

jm are identically

equal to zero. Now we have a set of 6 equations for 6 unknown quantities vj−1
jm (r), vj+1

jm (r),

τ j−2,2
jm (r), τ j2

jm(r), τ j0
jm(r) and τ j+2,2

jm (r) for each degree and order. We will solve this problem
for j ≥ 2 because we are interested mainly in the explanation of observed local geoid and
topographic features rather than in the center-of-mass/center-of-figure offset. In equations
C.8 and C.9 the terms f j−2,2

jm and f j−2,2
jm denote the SH coefficients of buoyancy force:

f j−1
jm = −gρjm

√
j

2j + 1
f j+1

jm = gρjm

√
j + 1

2j + 1
. (C.14)

If we have a solution of this set of equations we can easily calculate the amplitudes of the
dynamic topography t. When we start with the term for hydrostatic equilibrium at the
top/bottom boundary (− and + sign respectively) we quickly obtain the result:

∓(τ · er) · er = ∆ρg0t ⇒ t = ∓(τ · er) · er

∆ρg0

. (C.15)

Transforming this result into the spherical harmonic form gives:

tjm(r) = ∓ 1

∆ρg0

(
1√
3
τ j 0
jm(r)−

√√√√ j(j − 1)

(2j + 1)(2j − 1)
τ j−2,2
jm −

−
√√√√ (j + 1)(j + 2)

(2j + 1)(2j + 3)
τ j+2,2
jm +

√√√√ 2j(j + 1)

3(2j − 1)(2j + 3)
τ j,2
jm

)
. (C.16)

The dynamically generated geopotential is then generated by contributions from surface
and CMB topography (we can use terms A.26 and A.25 respectively) and from the uneven
mass distribution in the mantle:

Vjm = V surf
jm + V mantle

jm + V CMB
jm (C.17)

V mantle
jm =

4πκR

2j + 1

Rsurf∫

RCMB

(
r ′

R

)j+2

ρjm(r ′) dr ′ (C.18)
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Figure C.1: The alternating scheme for finite difference method – at every layer boundary
we calculate τ and at every center of layer v by using the appropriate equations. RH in the
description stands for rheological equation (C.3), CE for continuity equations (C.2), BC for
boundary conditions (C.4, C.5) and EM for the equation of motion (C.1)

To solve all these differential equations we use the spherical harmonic approach for ϑ, ϕ
coordinates and for the r coordinate we employ the method of finite differences. We divide
the mantle into n− 1 layers and the derivatives in these equations then become:

df

dr
(r1) ' 1

h
(f1 − f2) (C.19)

df

dr
(ri) ' 1

2h
(fi−1 − fi) i = 2, . . . , n− 1 (C.20)

df

dr
(rn) ' 1

h
(fn−1 − fn), (C.21)

where h is the semi-thickness of the particular layer (from its boundary to its center). The
computational grid does not have all quantities defined at common layer boundaries but we
rather use the alternating scheme because of its numerical stability (Kývalová, 1994).
This defines the components of stress tensor τ at layer boundaries, whereas the components
of velocity v are evaluated at their centers. At the uppermost and lowermost boundaries we
group both τ and v together because the boundary conditions need them to be evaluated
(see Fig. C.1).

When we divide the mantle into n−1 layers we have n boundaries but at the surface and
CMB we also need to evaluate boundary conditions. Therefore we have 6n + 2 equations
and by appropriate positioning we can obtain the band-matrix which is easy to solve e.g.
by FORTRAN numerical libraries (Numerical Recipes etc.). The response functions for
constant viscosity trough the mantle (Fig. C.2) show the contributions of load corresponding
to the layer thickness at every single layer for both gravitational potential and topography.
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Figure C.2: The response functions for venusian geoid (top) and topography (middle for
surface and bottom for CMB) at degrees j=2,4,8,16,32. The depth of the mantle is set to the
assumed 3,000 km and the viscosity is handled as a constant. For this model (100 layers)
the load corresponds to the layer thickness. The amplitude of the dynamic topography
at appropriate boundary could be then evaluated analytically as −h/∆ρ, where h is the
parametric layer thickness and ∆ρ stands for the density contrast (at upper boundary 2,900
and at CMB 5,500 kg·m−3)
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C.3 Inverse Problem

As we have a definition of the forward problem we can model the dynamic geoid and to-
pography for a given 3D density structure and 1D viscosity profile. Because of the results
nonlinear dependency on viscosity such an inverse problem could be solved only by appro-
priate numerical methods such as the Monte Carlo random search, a genetic algorithm or
simulated annealing method (see review in Tarantola, 1987 or Matas, 1995). These
techniques are computationally demanding and could give us a broad spectrum of differing
results.

Nevertheless we can divide the algorithm into the two-step inversion – in each round
of search we first choose the viscosity by some previously mentioned technique and then
derive the density structure which produce the smallest L2 norm difference between the
observed and predicted data. To obtain a unique solution we consider only lateral density
variations, thus the mantle model should have a plume-like character – this is only a kind of
mathematical representation which should not be confused with the real unknown venusian
mantle structure. However, it could be proved (Kiefer et al., 1986) that such a mantle
flow model does not have a high sensitivity to the exact density distribution.

For the linear problem in step two we can calculate the analytical solution by the mini-
mization of the least-square misfit between the observed and predicted data. This specific
misfit function we define as:

S2(ρ, η) =
jmax∑

j=0

j∑

m=−j

S2
jm(ρ, η) (C.22)

S2
jm(ρ, η) =

(tpred
jm − tobs

jm)(tpred
jm − tobs

jm)∗

σ2
j

+ (gpred
jm − gobs

jm)(gpred
jm − gobs

jm)∗, (C.23)

where asterisk denotes the complex conjunction, gpred
jm and gobs

jm respectively predicted and
observed spherical harmonic coefficient of gravitational potential (the same for topography)
and σ2

j is a degree a priori weighting function whose purpose is to balance power signals
from topography and the geoid:

σ2
j =

j∑
m=−j

tobs
jmtobs∗

jm

j∑
m=−j

gobs
jmgobs∗

jm

. (C.24)

Because gpred
jm and tpred

jm are linearly dependent on density, we can decompose them into
a density term ρjm (we can omit the r dependency because there are only lateral variances)
and response functions gj, tj (neither C.16 nor C.17 are dependant on m) which are depth
integrals of a full-mantle load (unit mass and given viscosity structure) response functions:

tpred
jm = ρjmtj(η) (C.25)

gpred
jm = ρjmgj(η), (C.26)
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where the best ρjm for the given viscosity profile is uniquely given by the derivative of a
misfit function equal to zero – then we can analytically find the solution:

∂S2
jm

∂ρjm

= 0 (C.27)

ρjm =

tjtobs
jm

σ2
j

+ gjg
obs
jm

tjtj
σ2

j
+ gjgj

. (C.28)

When we look at the case where the topography is of purely dynamic origin (100% dy-
namic support) we can use only the equation C.25 and then the resulting term for density
then becomes very simple. However we do not consider these modifications because the ob-
tained gravitational potential has low both spectral and spatial correlation with the observed
data and moreover solely the dynamic support of the topography for selected broad spec-
tral intervals is unrealistic – more desired is to divide the modelling error equally between
predicted geoid and topography.

Finally to evaluate the level of overall agreement between the observed and predicted
gravitational potential spectra we can examine the correlation (C.29) or percentage of fitted
data quantity (C.30) for every obtained result. These can give us a valuable information
about quality of our models.

c =

∑
jm

gpred
jm gobs

jm
∗

√
∑
jm

gpred
jm gpred

jm

∗
√

∑
jm

gobs
jmgobs

jm
∗

(C.29)

p = 1− ||gpred − gobs||2
||gobs||2 (C.30)
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