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ologii byl pouzit ke studiu vlivu lateralnich heterogenit viskozity na post-
glacidlni zdvih. Je uveden postup odvozeni rovnic popisujicich malé defor-
mace Zemé a tyto rovnice jsou pieformulovany ve slabém smyslu. Dale je
dokéazéna existence a jednoznacnost slabych feseni. Slaba formulace je poté
prepsdna do cylindrickych soufadnic a zdiskretizovdna v prostoru (metodou
kone¢nych prvku) a v ¢ase. Jsou provedeny pocitacové simulace pro ruzné
geofyzikdlni modely. Uvazuji se dva tvary ledovce, dvé jednoduché a jedna
realisticka casova zavislost zatéze a predevsim nékolik pozic astenosféry. Pro
nékteré z modelu jsou uvedeny grafy deformace, napéti a disipace. Kompletni
vysledky ve formé filmu lze nalézt na ptilozeném CD.
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Abstract: A cylindrically symmetric flat-earth finite element model of the elastic
and viscoelastic Earth is used to study the impact of lateral heterogeneities of
viscosity on the postglacial rebound. It is shown how to derive the equations
describing the Earth’s infinitesimal deformations and how to formulate them
in the weak sense (for the flat-earth approximation). Existence and unique-
ness is proved for the weak formulations. The equations are reformulated for
the case of cylindrical symmetry and discretized in space and time. Computer
simulations for various geophysical models are performed. We consider two
different shapes of the glacier, two simple and one realistic loading history and
most importantly, several positions of the asthenosphere. Graphs of displace-
ment, stress and dissipation are given for some models. Complete results in
the form of movies can be found on the enclosed CD.
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1 Introduction

This work deals with the postglacial rebound (also known as glacial isostatic adjust-
ment), i.e. the Earth’s deformations due to the loading and unloading of realistic
glaciers. For many years, the most popular method for calculations of the postglacial
rebound was the normal-mode approach. In this approach, the partial differential
equations governing the post-glacial rebound are transformed into the Laplace do-
main and subjected to the spherical harmonic decomposition. Later, the so-called
initial value approach was developed [8]. In this approach the problem is solved
using the method of lines in the time-domain and using the spherical harmonic
decomposition in space. Such studies usually assume radially symmetric distribu-
tions of Earth’s material properties. However, seismological evidence has revealed
significant lateral variations in the viscosity [18].

Recently, the finite element method has been found very useful to study post-
glacial rebound in the case of lateral heterogeneities (e.g. [12]). In most cases, the
Earth is treated as flat to reduce the computational complexity [22]. Furthermore,
the Cowling approximation [19] is usually adopted, which means that the pertur-
bation of the Earth’s gravitational potential is neglected. In the present work we
will use the finite element method (with both these approximations) to study the
impact of lateral heterogeneities of the viscosity.

Throughout this work, it will be assumed that all the material properties of the
Earth with the exception of the viscosity vary only with depth. The viscosity will be
allowed to vary laterally as well. We will consider only the forward problem, where
the viscosity distribution is known beforehand. In reality, this distribution is not
well determined, so the task is often to solve the inverse problem, i.e. to estimate the
viscosity distribution in the mantle so as to match the measured surface deformation.

The outline of this work is as follows. We will show how the equations describing
the Earth’s deformations can be derived, in order to give at least the basic idea, what
approximations these equations involve and where the unusual terms appearing in
the equilibrium equation come from. Next, we adopt the flat-earth approximation
and discuss the conditions when such an approximation is reasonable. The main
intent of the present work is to rigorously derive the weak formulation of the equa-
tions describing the Earth’s deformations, to prove the existence and uniqueness
of the solutions, to propose a discretization of the problem in space and time and
finally, to implement the discretization by means of a computer program. Then, the
program is used to perform simulations of the Fennoscandian glacier for different
glacier shapes, loading histories and most importantly, for several viscosity distri-
butions. Among other models, we will study the instability of PREM [16], different
cases of the position of the asthenosphere, the energy dissipation in the mantle. The
last case has so far deserved very little attention in the literature (apart from [9]—in
preparation).
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2 Equations Describing the Earth’s Deformations

In this section it will be shown, how to derive the equations that describe the defor-
mation of the elastic or viscoelastic inhomogeneous Earth. The necessity to derive
special equations for such a case arises from two important facts—the Earth is a
pre-stressed and self-gravitating body. It means that the stress is non-zero even
when no external force is applied. Once it is applied, the already existing stress,
displacement and gravitational fields are slightly altered. However, we are interested
only in the fields’ changes generated by the additionally applied external force and
this fact will lead to the concept of incremental quantities (incremental stress, incre-
mental displacement and incremental gravitational potential). Moreover the Earth
itself is influenced by its gravitational field. Whenever the Earth is deformed, its
gravitational field is affected, thereby altering the forces acting on the Earth. This
gives rise to coupling between the gravitational potential and the deformation.

The general problem of infinitesimal deformations superimposed on a finite initial
strain was studied by Biot [1] and other investigators. A very detailed derivation
with emphasis on the case of the Earth was carried out e.g. in [2], [13]. To complete
the model of the Earth, we will introduce equations describing the two rheologies
that will be dealt with throughout this work.

2.1 Equations of Motion of a Pre-stressed Body

Let us assume that there exists an original configuration, where no stresses are
present and no forces act on the body occupying the domain €23. This stress-free
configuration is called the natural configuration and it will be denoted By. Some
static forces begin to act on the body, thus forcing it to establish a new equilibrium.
The newly-adopted (strained) configuration will be denoted B, the newly-occupied
domain Q and the space coordinate &. The equilibrium condition (in the Eulerian
reference frame) is expressed as

V'T0+p0f0=0 inQ, (2.1)

where Ty is the Cauchy tensor of initial static stress, py the material density in
configuration B and f, the initial body force per unit mass, which will be discussed
later.

The body in configuration B is subject to additional forces varying in both space
and time, superimposed on the original static forces. The body will be deformed from
configuration B to configuration B’, a material point will move from its position x
to a new position x’. The additional forces are assumed to be small compared to the
initial forces, therefore we shall restrict ourselves to the (linear) small strain theory.
In such case, the curvilinear coordinate systems in B and B’ can be considered as
identical. It is more advantageous to take the coordinate system of B as a reference
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frame rather than that of the natural configuration By. In the case of the Earth,
the natural (stress-free) configuration does not even exist. The positions of all
points will thus be expressed in the coordinate system of the configuration B, which
corresponds to the Lagrangian approach (when dealing with the deformation from
B to B').

Under the above assumptions, the stress and displacement are approximated as

T(z,t) = 1o(x) + T (x, ) 2.2)
z'(z,t) = ¢ +eu(z,t), (2.3)
where T stands for the Piola-Kirchhoff stress tensor, €T for its increment and eu for

the displacement field. Let us denote the deformation gradient and the deformation
Jacobian

ox'
F=—_— ) = det(F 24
o j=dey(d), (24)
which, in the present case, yields
F=I+¢Vu)', j=1+eV-u, j'=1-eV-u. (2.5)

Using these relations and the relation between the Piola-Kirchhoff and the Cauchy
stress tensor 7 [13]

=4 'FT, (2.6)
we can rewrite (2.2) as
T=1T)+eT, (2.7)
where B
F:T-F(VU)T'TO—(V"U,)T(). (28)

According to [13], the equations of motion of the body are

0*u(zx, t)

V- -T(z,t)+ pof(x',t) = epo R (2.9)
where the body force f(x') can be expanded using the Taylor series
Ff(z',t) = f(z,t) + eu(z,t) - VF(z,t) + o(c?). (2.10)

The force f(x) is considered to be only a linear perturbation of the initial force

fo(z)
f(@,t) = folz) +efi(z, ). (2.11)

By combining the previous two expansions and neglecting the terms quadratic in ¢,
we have

f(@',t) = folz) +eulx,t) - VFo(z) +fi(z,?). (2.12)
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After substituting this result into the equation of motion (2.9) and considering the
equilibrium equation (2.1), we obtain

0’u

V-T+p(u-Vf,+ 1) = Po g (2.13)

Finally, this equation can be expressed in terms of the increment of the Cauchy

stress tensor, using the relation (2.8) and the initial equilibrium condition (2.1) as
_ T 0*u

V-7-V-[(Vu)' 1|+ V(V-u)- 1o+ po[u-VIf—(V-u)fo+ fi] = Po g (2.14)

The acting body forces f,, f, and the initial static stress 7 are of a completely
general nature as yet.

2.2 Body Forces Acting on the Earth

Let us now determine the initial body force per unit mass f,. In the case of the
Earth, it is due to the Earth’s own gravitational field and the centrifugal force and
can be expressed in terms of the geopotential

Do = g0 + ¥ (2.15)

as
fo=—V. (2.16)

Considering the fact that in the equilibrium configuration B the Earth rotates
uniformly with angular frequency w about the origin located in its center of gravity,
the potential of the centrifugal force is

1
v=—5 [lwf 2]’ - (0 2)7]. (2.17)
The gravitational potential is given by Poisson’s equation

Apy = 47Gpy (2.18)

and is required to vanish in the infinity. GG is the universal gravitational constant.
The geopotential ®(x,t) at point x after the deformation can be expressed as

O(x,t) = Oo(x) + ey (x, 1), (2.19)

where @, (z,t) is the increment of the geopotential and can be expressed as the sum
of the increment of the gravitational potential and the increment of the potential
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of the centrifugal force. However, the latter one is of the order of £ and therefore
drops out due to the linearization. Hence, we can write

Q) (x,t) = ¢1(x, ). (2.20)
The gravitational potential after the deformation is approximated by
o (@,1) = po(@) + 1 (x, ) (2.21)
and must fulfill Poisson’s equation
Ap = 4nGp. (2.22)

In order to obtain a similar equation for the incremental gravitational potential ¢,
we must approximate the density p after the deformation at point . From the law
of the mass conservation, we have

p(ml’t) = pO(ma t)/] = pO[l —eV- u(w’t)]’ (2'23)

where p(z',t) is the density after the deformation in the configuration B’. To cal-
culate the density after the deformation in the configuration B, we must use the
Taylor expansion in the neighbourhood of point x

p(z',t) = p(x,t) +eVp(x,t) - u(z,t) + o(e?) = p(x,t) + eVpo(z) - u(z,t). (2.24)
Finally, the density after the deformation at point @ is expressed as
p(e,t) = po(x) +epi (e, 1), (2.25)
where
pi(z,t) = —po(x)V - u(x,t) — Vpo(x) - u(x,t) = =V - (pou). (2.26)

By substituting this result into Poisson’s equation after the deformation (2.22)
and taking into account Poisson’s equation at the equilibrium (2.18), we obtain the
equation for the incremental gravitational potential

A1 + 471G V - (pou) = 0. (2.27)

Also the incremental gravitational potential ¢y must vanish in the infinity.

It is important to note that Poisson’s equation is always written in the Eulerian
reference frame. The deformations are considered to be small, so we could linearly
approximate Poisson’s equation in the Lagrangian reference frame. Since the bound-
ary becomes curved when undergoing the deformation from B to B’, there arises a
term for the apparent surface mass density due to the normal displacement of the
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boundary (for details, see [13]). This term will appear in the boundary conditions
for the incremental gravitational potential.

The body force per unit mass after the deformation was expected to be a linear
perturbation of the initial field

f(mat) = fO(w) +8f1($,t), (228)
where the increment of the body force per unit mass is now given by
fi(x,t) = =V (z,t). (2.29)

The equation of motion (2.9) can be modified using the introduced potentials to
the form

V-T-V-[(Vu)' 1]+ V(V-u) 7
0*u ou (2.30)

= pPo W-FQQJXE+V§01+U'V(V@0)—(V'U)V@0

2.3 Initial Static Stress

From this section on, the terms arising from the Earth’s rotation will be neglected.
The initial static stress 7 is assumed to be hydrostatic

To(x) = —po(x)I, (2.31)

where pg(x) is the hydrostatic pressure in the initial equilibrium configuration, de-
scribed by equations (2.1) and (2.16), which, in this case, yields

Let us now assume that the initial density pg is dependent on the radial distance
r from the center of gravity of the Earth only. By Poisson’s equation (2.18), we see
that the initial gravitational potential is also dependent on 7 only. Finally, from the
two above-appearing equations, we see that py and 7, also depend on r only.

The gravitational acceleration in the initial configuration is

dio

&= —go(r)er, go(r) > 0. (2.33)

9o=—Vgo=—

By substituting the assumption on the initial static stress (2.31) into the relation
(2.30), we have

0u
VT = po 52+ Vi1 +V(u- Vo) — (V-u)V,| . (2.34)
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Finally, we substitute for V¢, and obtain the result

_ 0’u
VT —pVor+ po(V - u)goe, — poV(gou - €,) = Po g (2.35)
Since py = po(r), the previous equation can be rewritten in the form, in which
it is usually stated in the literature dealing with the postglacial rebound. Further-
more, the changes are usually assumed to be gradual, so we can consider the static

equilibrium rather than the motion equation:
V-7 —poVp1+ V- (pou)goe, — V(pogou - €,) = 0. (2.36)

This equation and Poisson’s equation (2.27) are the two equations that model small
static (or quasi-static) deformations of the inhomogeneous non-rotating Earth.

To simplify the notation, the incremental stress field 7 will be denoted simply 7
hereafter.

2.4 Boundary Conditions

Without going into further details, we will provide the above-derived equations with
appropriate boundary conditions.

Since the Earth comprises of several spherical layers of highly differing physical
properties, there exist certain internal surfaces of discontinuity in the density, Lamé
coefficients etc. Let X be such a surface of discontinuity separating the domains Q
and €27. On the surface X, we will apply the jump conditions

[u]t =0, [T-n]T=0 (2.37)

[o1]F =0, (Vo1 +47Gpyu) - m]t =0 (2.38)

for a solid-solid boundary and
[u-n]t =0, [T m]t =0 (2.39)
[p1]t =0, (Vo1 +47Gpyu) -n]t =0 (2.40)

for a solid-liquid boundary. Furthermore, in the case of solid-liquid boundary, it is
required that the tangential forces vanish on the boundary:

T-n—(n-7-n)n=0  onX. (2.41)

The symbol [£]T indicates the jump of the quantity £ across ¥, vector n is a unit
normal to the surface ¥, pointing toward the domain Q.

The external surface of the Earth will be subject to an external load f, signifying
the pressure at a given surface point. This evidently imposes a boundary condition
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on the incremental stress field. However, it also influences the jump condition for the
incremental potential, since the load corresponds to a certain surface distribution of
mass. The conditions on the external surface are

T(x) - n=flz,t)n, [p]f=0 (2.42)
Vit -n=47G(pou - n — f/gr), (2.43)

where n is the outward unit normal to the surface of the Earth. The constant gz > 0
is the value of the initial gravitational acceleration go(r) at the Earth’s surface.

2.5 Rheological Models

The above derived equation of static equilibrium and Poisson’s equation are inde-
pendent of the rheological model used, provided that we stay in the framework of
small deformations. To complete the description of the Earth, we will now supply
these equations with two alternative rheological models. One of them is the elastic
rheology given by Hooke’s law

T—ANV-u)I —-2pe(u) =0, (2.44)
the other one is the time-dependent Maxwell viscoelastic rheology given by the
formula 5 9

27— = V- )T + 2ue(w)] + % [ — K(V-u)I] =0, (2.45)

empirically derived from the RSL (relative sea level) data.
The small strain tensor e(u) is defined as

e(u) = % (Vu + (Va)?). (2.46)

The symbols u and X represent the elastic Lamé coefficients and K, the bulk mod-
ulus, can be expressed as their linear combination

2
K=+ g,u. (2.47)
The symbol n denotes the dynamic viscosity.
In case of the Maxwell viscoelasticity, there is a non-zero dissipation density,
which can be evaluated as [9]

o = T523 TS, where 7g=7—-K(V-u)l. (2.48)

n
For modeling the Earth’s liquid core, a different rheological model is necessary.
However, as already explained before, we will concentrate on local problems, so the

core can be completely excluded.
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Fig. 1: Passing to the local problem

3 Local Problem Formulation

In the previous section, the equations describing the deformation of the Earth as a
whole were derived. In the present work we deal with the elastic and viscoelastic
response of the Earth to the presence of a glacier on its surface. Depending on
the glacier’s size, this may be considered to be a local problem, i.e. a problem,
where the driving forces and deformations are present only in a limited region of the
Earth. Hence, we can abandon the spherical nature and geometry of the problem,
and limit ourselves to the local orthogonal geometry, which will be later replaced
by cylindrical geometry (for a cylindrically symmetric case). This is the so-called
flat-earth approximation. The validity of such an approximation was studied in [22],
where it was shown that it is credible in the case of a glacier, whose size is smaller
than or comparable to that of the Fennoscandian glacier.

Hereafter, the vertical coordinate (pointing in the direction away from the Earth’s
center) will always be denoted z in place of 7, in order to avoid confusion with the
radial coordinate in the local cylindrical coordinate system.

We must realize that such a simplification involves two possible sources of dis-
crepancies. The first comes from the fact that the real geometry is curved, whereas
the local one is not. The second is due to the necessity to impose boundary condi-
tions at the edges of the local geometry. These boundary conditions do not come
from the model of the Earth, they come from the assumption that the Earth is not
affected by the glacier outside the local domain at all.

To make the problems’ formulations clear, we will summarize the equations,
the boundary conditions, the jump conditions of the incremental gravitational po-
tential on the free boundary and the initial conditions describing the elastic and
the viscoelastic problem. The internal jump conditions (2.37), corresponding to
the discontinuities in the Earth’s properties, need not be considered. In the weak
formulation, discontinuous coefficients are generally assumed.
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3.1 Elastic Problem

We aim to solve the equation system

V-1 —p V1 + V- (pou)goe, — V(pogoe, - u) =0 in Q (3.1a)
V- (Vo1 +41Gpou) =0  in (3.1b)

Ap; =0 inQ° (3.1¢)

T—AMV-u)l —2pe(u)=0 in Q, (3.1d)

for the unknown incremental displacement (vector field) u = u(x), the incremental
gravitational potential (scalar field) ¢; = ¢;(x) and the incremental stress (sym-
metric tensor field) 7 = 7(x). Q C R? is a bounded domain with a lipschitzian
boundary and Q¢ = R? \ Q its complement. €(u) denotes the small strain tensor.

The vector e, is a unit vector pointing in the direction of the z-coordinate. The
parameters pg, go are assumed to depend only on z. A and p are the elastic Lamé
coefficients. G is the universal gravitational constant.

The equations are supplied with the boundary (or limit) conditions

u(xz) =0 on I'y (3.2a)
T(x) - n=f(x)n on I'y (3.2b)

1
p1(x) ~ 2| for |x| — oo (3.2¢)

and the jump conditions

[pr]t =0 on 0$) (3.3a)
Ve[t -n=0 on Iy (3.3Db)
Vol - n = 4nG(pou -n — f/gr) on Ty, (3.3¢)

where n is the vector of the outward unit normal to 02 and the sets I'y and I'y
are non-empty and open with respect to 9€2. gr > 0 is the value of the initial
gravitational acceleration at the Earth’s surface.

Figure 2 shows a typical domain 2 under consideration. As the figure suggests,
for the case of postglacial rebound, the upper face of the cylinder will be considered
as the part I'y of the boundary (i.e. the part, where the stress condition is given) and
the remainder of the surface as the part I'y (i.e. the part, where the displacement
condition is given).
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te~fe,

u=0

Fig. 2: A cylindrical 3D region

3.2 Viscoelastic Problem

In this problem, Hooke’s law is replaced with the Maxwell rheology and the problem
becomes time-dependent, thus yielding the following equation system:

V-1 —p V1 + V- (pou)goe, — V(pogoe, - u) =0 inQx1T (3.4a)
V- (Vo +41Gpou) =0  in Q2 x 1  (3.4b)

Ap; =0 in Q° x I  (3.4c)

)

9 O NV ) + 2ue(u)] + % [r—K(V-w)Il=0 inQxI, (34d

where the unknowns v = wu(z,t), 1 = @i(x,t), T = 7(x,t) are now time-
dependent. I = [0,7], T > 0, is the time interval under consideration. The bulk
modulus K is defined through the elastic Lamé coefficients A and p as K = A+2/3pu.
n is the dynamic viscosity. All the coefficients pg, go, A, i, K and 7 are considered to
be independent of time. The time and space dependence will be omitted hereafter,
whenever there is no risk of confusion.

The problem is provided with the initial conditions

u(z,0) = uo(x) in (3.5a)
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the boundary (or limit) conditions

u(w,t) = only xI
T(x,t) - n=f(z,t)n  onlyx I
1
p1(z,t) = 1] for || — oo, Vt € I

and the skip conditions

[p1]F =0 on 0 x I
Vo]t -n=0 onTy xI

Vo]t -mn=47G(ppu -n— f/gr) on Ty x 1.

4 Weak Formulation of the Problems

17

(3.7a)
(3.7b)
(3.7¢)

We will derive the weak formulations of the elastic and the viscoelastic problem.
Existence and uniqueness will be proved for these weak formulations. The weak
formulations will later be used for the discrete approximation of the problems.
Martinec [14] has derived the variational formulation (i.e. formulation in terms
of energy functionals) of an incompressible viscoelastic problem discretized in time
using the standard #-scheme. To our knowledge, the weak formulation of the fully
time-dependent problem has not yet been presented in the literature. The conditions
for the existence and uniqueness of the solution of the elastic and the viscoelastic

problem as well as the proof itself also seem to be an original result.

4.1 Elastic Problem

Let us now derive the weak formulation of the elastic problem.
Equation (3.1a) is multiplied by an arbitrary vector test function

UeV= {'v € [(,’C"’(Q)]g’;v|Fl = 0}
and integrated over the domain €:
/(V 1)U dx +/ [V - (pou)goe, — V(pogoe, - u)] - U dx
Q Q

—/,00V(,01Ud$:0
Q

(4.1)

(4.2)
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Then, integrating by parts the term with (V - 7), using the symmetry of 7 and the
definition of the small strain tensor (2.46), we have

3 3
0Ty oU;
V-T-de:/ ZJU-dx:—/ Ti-—]dx—i-/ n-7-UdS
/Q( ) Q”Z:l Ox; Q”ZZI ! O o9
(4.3)

:—/T:Vde—l—/ n-T-UdS:—/T:s(U)dx-I-/ n-7-UdS,
Q ) Q

o

so the previous equation becomes

- / T:e(U) dz -l—/ [V - (pow)goe. — V(pogoe, - u)] - U dx
—/pOVgol-de+/ n-T-UdS=0.
Q o0

Next, we take into consideration the imposed boundary conditions for U and 7 in
the surface integral, thus obtaining

— / T:e(U) dz +/ [V - (pow)goe. — V(pogoe, - u)] - U dx
Q Q
(4.5)
—/pOVgpl-de—i- fn-UdS =0.
Q

Ty

Considering the fact that py = po(z), we have the equality
V- (pou)goe: — V(pogoe: - u) = po [(V - u)goe. — V(goe. - w)].  (4.6)

Finally, we substitute for 7 from Equation (3.1d), to get

/2u e(u) : e(U) dx—i—//\(V-u)(V-U) dx-l—/,ongol-Udac
0 0 Q (4.7)
—l—/,oo[V(goez-u)—(V-u)goez]-de:/ fn-UdS VYUEV.

To derive the weak form of Equation (3.1d), we simply multiply it (using the
double-dot product) by a symmetric tensor test function

TeP={AcC®Q)]> A= A"} (4.8)

and integrate the result over €2

/ T:de:/2ue(u):de+//\(V-u)Terx VT € P. (4.9)
0 " Q
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The weak formulation of Poisson’s equation (3.1b) is the most delicate. We take
an arbitrary test function ® € F' = C°(R?). We multiply both Equations (3.1b) and
(3.1c) by ® and integrate the first one over 2 and the second one over Q¢ = R3\ Q.
As a result, we obtain

/ (Ap)® dz + /C(Agol)@ dz + 47TG/ V- (pou)® dz = 0. (4.10)

Keeping in mind that ® has a bounded support, we apply integration by parts to
all the integrals:

/Vgol-V(I)dx+ Vgol-VCI)d:r+47rG/p0u-V<I>dx
Q Q

(918

+/ [Vgol]+-n<I>dS—47rG/ pou - n® dS = 0.
890 a0

Adding the first two integrals together and using the prescribed boundary and jump
conditions (namely (3.2a), (3.3b), (3.3¢c)), we get

Vp,-Vo dz +47TG/ pou - VO dx
Q

R3

+47G | (pou-n — f/gr)® dS — 4G | pou-n P dS =0.

'y Iy

(4.11)

Two terms in the boundary integrals cancel out, so the weak formulation of the
potential equation is

Vi, - VO dz +/ pu-Vodr= [ Lads vweeh (w12

4G Jgs Q Ty 9R

We will now close the above-presented test function spaces in the right norm in
order to ensure the existence of all the integrals appearing in the derived equations
and the fulfillment of the Dirichlet boundary condition for the displacement. The
solutions will be sought in the same spaces and this choice will be later justified by
the proof of existence and uniqueness. The solution and test function spaces are

wUeV= {v e [W2(@))° ;0] = o} (4.13a)
T, TeP= {A e (2] A= AT} (4.13b)
¢1,® € F = Dy*(R?), (4.13c)

where the space Dé’2 is a homogeneous Sobolev space. The definitions and some
properties of the homogeneous Sobolev spaces D"™? and Dg"? can be found in Ap-
pendix A and we will refer to them as they will be used throughout the text. We
observe that for u € V' we have e(u) € P.
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We must also specify the conditions for the coefficients:
A po € L2(Q), go € WH2(Q), f e L*(y). (4.14)

All the spaces V, P and F' are Hilbert spaces, equipped with the scalar products

UVV_Z/UdeJrZ gigy‘; (4.15a)
(T,S)p = Z / T;; S da (4.15b)
t,j=1
(,¥), = " Ve .- VY dz (4.15¢)
and the corresponding norms |- [ly; = [| - [, 5 0: |- [lp = [I- ll5,0 and || - [|[z = [ |1 5 za-

From the definition of homogeneous Sobolev space we only know that the gradient
of ¢; lies in the space L?*(R?). According to Lemmas A.4 and A.5, ¢, lies in some
better spaces, namely

2
Y1 € LG(R3)a ||S01||6,723 < % o1l (4.16)

and

¥1

Veg € RP: — L ¢ [2(RY),
| — x|

|z — x|

<2eilly.  (@17)
2,R3

The weak solutions can be found as functions from the above-defined spaces,
fulfilling Equations (4.7), (4.9) and (4.12) for all test functions U € V, ® € F,
7 € P. To put these equations into a more compact form, we introduce the bilinear
forms

0 VXV SR, a(U,V)E/Que(U):e(V) dx+/)\(V-U)(V-V) dz
(4.18a)

bV xV SR, bUV)= / 20 [V (g0es - U) — (V- U)goes] - V dz (4.18b)
Q

c:VxF—-R, c¢cU,®=/[pU-Vedx (4.18c¢)
Q

d:VxP—>R, d(U,'T)E/Que(U):Tda:—i—/)\(V-U)(TrT) dz (4.18d)
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and the linear forms

F(U) = / fn-UdS (4.19a)
I's

F(®) = gid) ds. (4.19b)
T2 YR

The existence of the boundary integral in the definition of F, is justified by Lemma
A.3 and the trace theorem.

Now, the weak formulation of the elastic problem can be rewritten in the compact
form

a(uw,U)+b(u,U)+cU,p))=FU) YUeV (4.20a)
# (01, ) + ¢ (u, @) = F5(®) Vb e F (4.20b)
(1 T)p —d(u,T) = 0 VT € P. (4.200)

4.2 Existence and Uniqueness of the Solution of the Elastic
Problem
Equation (4.20c) for 7 can be regarded as explicit and 7 does not appear anywhere

else in the equation system. It is therefore evident that once we have a unique
solution wu, there also exists a unique solution 7. Furthermore, it is bounded by

I7llp < 2 leelle + 3 IAl]o) [lully - (4.21)

Thus, in the following proof we will only deal with w and ¢;. The proof will be
carried out using the Lax-Milgram theorem.

Step 1: Properties of the defined bilinear and linear forms
First, it is necessary to prove some basic properties of the above-defined bilinear
and linear forms, namely the boundedness and ellipticity.

Using the Holder inequality and the inequalities

IV-Ull; <3VUly, e, <|IVUl, YU€V, (4.22)

we show that the bilinear forms a(-, -), b(-, -), ¢(-, -) are bounded on the spaces, where
they are defined:

(U, V)| < 2llulle + 31X 1Ty IV = lall 1Ty IVl (4.23a)
(U, V) < (1 +V3) llpolloo 9011100 1Tl IV Il =2 NBIHIT Iy IV (4.23D)
e (U, @) < lpolloe 1Ty [|@l - =: llelHIUTly ([l - (4.23¢)
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Using the trace theorem, we find out that the linear form Fi(-) is bounded as
well:

(B (O)] < [ fllor, 1Ty - (4.24)
To prove the boundedness of the linear form Fy(-), we must show that ||®||, ., is

controlled by ||®||. First, we employ Lemma A.4, which in our case reads

PeF=dcI®R’) and [|®]gzs < (4.25)

2
— ||®]| ..
7 1]l
We also need the inequality

|®

A
o < [O7]|®

ls.0 (4.26)

for an arbitrary bounded domain ©, with |©| being its measure and A a real constant.
Combining the previous inequalities with the trace theorem, we get

[@]ly,r, < C(]|@

A
o + [l 6,) < C (162 [@llg6, +[®l; 56,

2 A
<o 10, +1) |2, ,

where the domain ©, is any bounded locally lipschitzian domain such that it has
I’y as a boundary part. Employing this result in the definition of Fy(-), we conclude
that it is, indeed, bounded:

(4.27)

[F2(®)] < Co [ fllr, 125 (4.28)

with C5 being a positive real constant depending on the domain ©,.

The bilinear form a(-, -) is V-elliptic under certain supplementary conditions. In
order to prove it, we will make use of the following theorem (for proof and further
details, see [15]):

Theorem 4.1 (Korn’s inequality)
LetU €V = {v c [Wl’Q(Q)]?);”‘rl = O}, where I'y is a non-empty set open with
respect to 0S2. Then there exists a constant Ck (depending on Q2 and I'y) such that

/Qs(U) . e(U) dz > O U2 (4.29)

Under the assumption that the Lamé coefficients obey the inequalities

0<XAx), 0<pug<p(x) a.e. in Q, (4.30)
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the bilinear form a(-, -) fulfills

a(U,U) = /92/1 e(U) :e(U) daH—/Q/\\V-U|2 dz > 2,u0/Qe(U) :e(U) dx (4.31)

or
a(U,U) > 2uCx |U|)}, VYU € V. (4.32)

The V-ellipticity of the bilinear form a(-, -) is proved. The condition on \ is sufficient,
not necessary.

From the ellipticity of the bilinear form a(-, -) and the boundedness of the bilinear
form b(-,-), we see that the bilinear form (a + b)(-,-) is also elliptic, under the
condition

0 < Cap :=2u0Cx — (1 + V3) [|poll . 190

In the rest of the proof, we will assume this condition to be met.

(4.33)

||1,oo'

Step 2: Reformulation for the Lax-Milgram theorem
By summing Equations (4.20a) and (4.20b) we get an equivalent equation

1
CL(U, U) +b(u7 U) + R ((pla(I))F+c(u7 (D) +C(U7 ()01)

= F(U) + F»(9) YU €V, V& € F.

(4.34)

Let us now introduce a space combining both the displacement and the potential
X =V xF, (4.35)

with the norm
1T, ®)lx = Ul +127) (U, 9)€X. (4.36)

The space X with the defined norm is evidently a Banach space.
Next, we can define a bilinear form representing the left hand side of the above
equation:

g: X xX->R, (U®eX, (V,V)eX,
9((U,®),(V,¥)) = (4.37)

a(U,V)+b(U,V)+ﬁ (®,0), + ¢ (U, ) +c(V, D)

and a linear form representing the right hand side:

K((U,?)) = Fi(U) + F»(9), (U,®) € X. (4.38)
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Now, Equation (4.34) or the equation system (4.20a), (4.20b) can be rewritten
simply as
g((u,¢1),Y)=K(Y) VY € X, (4.39)

which is already applicable in the Lax-Milgram theorem. However, we must first
prove some properties of the bilinear form g(-,-) and the linear form K(-).

The linear form K(-) is bounded on the space X due to the boundedness of the
linear forms Fi(-), Fy():

K((U,®)) < fllor, 1Ty + C2 I f lla,p, 1911
< (1+Co) [ £llor, (IO + 1)

(4.40)

Similarly, owing to the boundedness of the bilinear forms af(-,-), b(-,-), c(-,-), the
bilinear form g(-, -) is bounded by

9((U,®),(V,¥)) < ([lall + LD (1Tl 1VIly) + ﬁ 12l 11l

+ el TNy 11+ IV @1 < gl AT + 1215 AV + 12152,
(4.41)

where

1
= b —. 4.42
gl == llall + 1]l + llell + —~ (4.42)

Finally, let us prove the X-ellipticity of the bilinear form g(-,-). By putting
V :=U, ¥ := @ in its definition (4.37), we get

¢(U,3),(U,d)) = a(U,U) +b(U,U) + ﬁ B2 + 20 (U, 3).  (4.43)

Now, we make use of the V-ellipticity of the bilinear form (a + b)(-,-) and of the
boundedness of ¢(+,-) to find the estimate

1
g((U,®),(U,®)) > Co |U|l; + C 115 — 2llpolloe 1Ty 1@l (4.44)
If it holds that
Cab

A7G’

then the two non-negative (quadratic) terms overbalance the non-positive one using
the simple inequality a? + > > 2ab. Hence, we have shown the desired ellipticity:

llpolla, < (4.45)

9((U,®),(U,®)) 2 my(|Ully +I®lz)"*  Y(U,9) € X, (4.46)
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where m, is a positive real constant and can be explicitly expressed as

1
2

1

1 2
- )2
Cab + 47TG \/(Cab 47TG) + 4 ||p0||oo . (447)

mg=

At this point, we can apply the Lax-Milgram theorem and, by summarizing all
the required conditions, we have the following result:

Theorem 4.2 (Existence and uniqueness for the elastic problem)
Let the spaces V', F', P be defined by (4.13). Let the following conditions be met:

o 1Ap€L¥(Q), g€ WH(Q), feL*Ty)
e 0< \Nz), 0< pu<pu(x) a.e. in <
o 0<Cu:=2uCk — (1+V3) [lpollo 1901l 06

C'ab
ArG’

2
1olls <

Then Problem (4.20) admits unique solutions w, @1, T. Furthermore, these
solutions are continuously dependent on the boundary condition f.

4.3 Viscoelastic Problem

Next, we will derive the weak formulation of the viscoelastic problem, given by the
equation system (3.4) and equipped with initial conditions (3.5), boundary condi-
tions (3.6) and jump conditions (3.7). Since all of the equations but one are the
same as in the case of the elastic problem, we will describe the weak formulation
more briefly. The only differing equation is that of the Maxwell rheology:

%T - % N+ 2ue(w) + e~ K(V-wI =0, (448)
where we recall that K = X + 2.
We introduce an auxiliary tensor field o = o (x,t), defined as

oc=17—-ANV- -u)I —2ue(u). (4.49)

The tensor o corresponds to the non-elastic part of the incremental stress tensor
and is evidently symmetric. After substituting this definition into Equation (4.48),
we get an equivalent formulation of the Maxwell rheology:

2
o+l e(u)

1
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where the notation o = %a was adopted and will be used hereafter. To formulate

this equation ni the weak sense, we multiply it (using the double-dot product) by
an arbitrary test function & € P and integrate it over 2

TN 2 4
/[d+—a+2—€(u)} :de—/— (V- u)TrSdz=0 VSeP (45
Q n n (23 n

The weak formulation of Equation (4.49) relating o, 7 and w is obtained in a
similar manner:

/ T:dez/ a’:de—l—/Z,ue(u):de—l—/A(V-u)Terx VT e P
0 0 Q Q

(4.52)

The weak formulation of the equilibrium equation (4.5) derived in the elastic

problem formulation is valid in the present case as well, but this time we need to
substitute for 7 from the definition (4.49):

/92“ e(w) : e(U) dx-i—/)\(V-u)(V-U) dz

Q

+ / o:eU)dz+ / poVr - U dz (4.53)
o Q

+/p0[V(goez-u)—(V-u)goez]-Ud:vz fn-UdS VUeV
Q

Ty

The weak formulation of Poisson’s equation remains unchanged from the elastic
case, i.e. it is again (4.12).
The solutions u, ¢1, 7 and o will now be considered as mappings

u:[0, 7] =7V, ¢©1:10,T] — F,

r0,T|>P,  o:0,T]>P (4.54)

The test function spaces are chosen in the same way as for the elastic rheology, in
addition, the space for & is given,

UeceV, T,8§€P, dcF. (4.55)
The spaces for the coefficients also remain the same:
A po € L®(Q), go € WHe(Q), f(t) € L*(Ty). (4.56)

In fact, the space for f will be specified in a more precise way later on. Furthermore,
a restriction for 7 is introduced

0<n <n(x) ae inQ, (4.57)
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so that we have pu/n, u?/n € L>(Q).
We will introduce an additional bilinear form, in order to put the equations into
a more readable form:

2 92 2
e:VxP—R, e(U,S)E/2'u—s(U):8dac—/—M—(V-U)Trde.
o N a3 1

(4.58)

The weak formulation of the viscoelastic problem can be summarized by the
system of equations, holding for a.e. ¢ € [0, T]:

a(u,U)+b(u,U)+c(U,p1)+ (0,e(U))p = Fi(U) YU e V (4.59a)
5 @1+ (w,@) =F(®)  VeEF  (450)
(7, Tp—(0,T)p—d(u, T)=0 VT € P (4.59c¢)
. " _
(6,8)p + (;a,S)P +e(u,8)=0 VS e P (4.59d)

and the initial condition
o(z,0) =o¢(x) =To(x) — A (V- up(x)) I —2pe(uy(x)), (4.60)

which is readily obtained from the definition of & (4.49) and the initial conditions
imposed on the incremental stress and the displacement.

It is interesting to remark that if we take the viscosity n — oo and initial con-
dition oy = 0, the problem will reduce to the equations of elasticity (4.20). This
means that elasticity may be treated as a special case of viscoelasticity. More im-
portantly, this allows us to consider certain regions of €) as elastic and certain as
viscoelastic without the need to develop a special theory for such a case.

4.4 Existence and Uniqueness of the Solution of the Vis-
coelastic Problem

First of all, it will be shown that Problem (4.59) can be simplified by resolving the
three equations independent of time. The Galerkin method will be used to prove the
existence and uniqueness of the remaining evolutionary problem, mainly following
the proof performed by Evans [4] (section 7.1.2).

The solution & will be approximated on finite dimensional subspaces of the
solution space P using the Galerkin approximations. Next, it will be proved that
such a sequence of solutions is bounded in a certain Bochner space and finally, we
will show that the weak limit of the sequence is the sought solution.
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Step 1: Reduction of the number of unknowns
Using the results obtained for the elastic problem, we will show that all the unknowns
but o can be eliminated from the system. In other words, they can be all explicitly
expressed in terms of o.

We see that the equation system (4.59a), (4.59b) for the incremental potential
and the displacement is very similar to that of the elastic problem. Thus, by sum-
ming the two equations and recalling the definition of the bilinear form g(-,-) and
the linear form K (-), we have an equivalent equation

9((u, 1), (U, ®)) = K((U,®)) = (0,6(U))p VU, )€ X. (4.61)

The right hand side represents a bounded linear form on the space X, because
K (-) is bounded and so is the second term

(a,e@))pl <llolloUI,, YUV, (4.62)

provided that o € P.

As already pointed out earlier, the bilinear form g(-,-) is bounded and elliptic.
Therefore, by virtue of the Lax-Milgram theorem, there exist unique solutions wu,
¢1 of Equation (4.61). These solutions are bounded by the right hand side terms
through the inequality

1

2 2

lalfy + e 3)72 < — (1]
g

1
x-tllollp) = —— |+ Co) [ fllor, +llollp |, (4.63)
)

where m,, is the ellipticity constant of the bilinear form g(-,-).
Hence, for a fixed boundary condition f, there exists a continuous linear mapping
L such that
,Cf:P—>V, ’U,Z,CfO' (4.64)
and u, o satisfy Equation (4.61).
Equation (4.59c¢) for 7 is explicit as in the case of the elastic problem. Further-
more, an upper bound similar to (4.21) can be found:

171l < 2l + 3 1IAl) [lully +llollp (4.65)

where ||u||;, is itself bounded by (4.63).
Thus, it suffices to deal with Equation (4.59d) for &, which, after the substitution
from (4.64), reads

(6,8)p+ (Ha',8> +e(Ljo,8)=0 VSeP (4.66)
Y P
plus the initial condition
o(xz,0) = o(x). (4.67)
It is important to keep in mind that the linear operator L is time-dependent through
the boundary condition f = f(t) .
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Step 2: Galerkin approximations
The space P C [L*()3*3] is separable, hence we can choose a basis in it:

{Sk}iz Cc P (4.68)

and this basis may be constructed as orthonormal in P.

The Galerkin approximations are the solutions of the projection of the evolu-
tionary problem (4.66), (4.67) onto a finite dimensional space Py = span{Sj}.,.
Therefore, they can be sought in the form

a(t) = Z an ()8, (4.69)

with o : [0,7] — P and off € R, k =1,..., N. By substituting the approximate
solution o into the initial condition (4.67) and into Equation (4.66), we obtain the
initial value problem

(a™(0),8) , = (00, 8)p VS € Py (4.70a)

P
(eV,8), + (%O'N,S) +e(Lyo™,8) =0 VS € Py.  (4.70b)
P

Let us show that this finite-dimensional problem admits a unique solution.

By substituting from the definition (4.69), putting the basis functions §; as test
functions and taking into account the orthonormality of the chosen basis, we can
rewrite the preceding problem as

@} (0) = (60, 8;)p j=1,.,N (4.71a)

N N
0'4;." + Za,’f (%sk,s]) +Za,]cve (EfSk,Sj) =0 j=1,...,N. (4.71b)
k=1 P =

By defining
Gji = (%sk,sJ)P, Ej = e (L;8k,S;), (4.72)
we can rewrite the linear ODE system (4.71b) in the matrix form
" +Ga +E()a” =0. (4.73)

The matrices G and E satisfy Caratheodory’s conditions, thus there exists a
unique absolutely continuous function o (¢) = (¥ (t),...,a(t)) satisfying (4.71)
locally. The global existence for a.e. 0 < t < T follows from linearity or from
the energy estimates derived below. Hence, there exists a unique solution uv to
Problem (4.70).
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Step 3: Energy estimates
Let us put & := 0" as the test function in Equation (4.70b):

(c'rN,O'N)P-I- (%O’N,O'N> +e(£.fa'N,cr ):O. (4.74)
P

Using the Holder inequality and the inequalities
ITeS|; <3|8ll; vSeP,  |V-Ul;<3|VU[; VU €V, (4.75)

we show that the bilinear form e(-, -) is bounded

2

v
e(U,8)<4|=—| Uy [ISlp, (4.76)
specially
e (Lot 0e™) < lo™ |+ C) 1l + ][
9 117 Hloo (4.77)
2 || p? N2 211 p112 .
<= et arering).
Considering that
0< B e g, (4.78)
()
we can estimate
0< (HO'N,O'N> . (4.79)
n P
Finally, by making use of
d 2
N Ny _ N
("0 = Lo (450)
we can use the above estimates and Equation (4.74) to get the inequality
d w2 2 || p N2 201 2112
o< | Pl arorings]. sy

This inequality can be readily applied in the Gronwall’s lemma, stated in the
following form:

Lemma 4.3 (Gronwall) Let y(t), a(t), B(t) be non-negative functions on [0,T] such
that

§(t) < alt) y() + () VYt e (0,T). (4.82)
Then

y(t) < elo als) ds [y(O) + /Otﬂ(s) ds] vVt € (0,7). (4.83)
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In our case, this yields

t
2
o @l < e [loull+ B [ WGy, 45| we@n, sy
where the constants A, B are defined as
2 2
A=3B, B=—|" a+c) (4.85)
mg n o]

If we put T instead of ¢ on the right hand side of (4.84), the value of the right
hand side will not decrease, hence

2
e @), < T [”0'0”?3 +B ”f”i?(O,T;L?(I‘Q))} vt € (0,T). (4.86)
By integrating this result with respect to ¢ and using the assumption that
f € L*(0,T; L*(Ty)), (4.87)

we find out that the Galerkin approximations o lie and are uniformly bounded in
the space
o € I*(0,T;P) VNEeWN. (4.88)
Let us now derive, in which space the function & lies. We take an arbitrary
function S € P, ||S||, < 1 and decompose it into two parts S = S° + S, where
S° € Py and (SL,S;C)P =0,k = 1,..,N. Since the functions {S;}3, are or-
thonormal, |S°|] < ||S]] < 1. Directly from Equation (4.70b) and from a slight
modification of the previously derived estimate (4.77), we get the upper bound

4 2 N
6. 8)ul < | ] oo |2+ €Mt + 97, a0

The term on the left hand side represents the dual norm Hc'rN | p+- By taking the
square of the previous inequality, integrating it over [0, 7] and employing (4.86), we

finally obtain
T N
| ls"]
0

where C' is a constant independent of N.
Thus, we have deduced that

2
2 dt < C (lloollp+ 110y (4.90)

o € L*(0,T; P*) = L*(0,T; P) VN e N (4.91)

and that the approximations & are uniformly bounded in this space.
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Step 4: Passing to weak limit
To find the solution of our evolutionary problem, we pass to the limit as N — oc.
Since the sequence {a"¥}%_; is bounded in the Bochner space W'2(0, T’; P), we can
choose a weakly convergent subsequence o™ such that

oM —~ o in W"%(0,T; P), (4.92)

with o denoting the corresponding weak limit and o being its weak time derivative.
Next, we choose a fixed integer M and a test function V € C*([0,T]; P) having
the form

V() =) Bi(t)Sk, (4.93)

where [, are given smooth functions. We put this test function in place of & in
Equation (4.70b) with N > M, and integrate the result over [0, T]:

/OT [(dN, V), + (%UN, v)P +e(Lyo", v)] dt = 0. (4.94)

By setting N = N; and then passing to the limit as NV; — oo, we obtain

/OT [(d', V)p + (%0', V)P +e(Lyo, V)} dt = 0. (4.95)

By density argument, this equality holds for all V € £%(0,T’; P). In particular, this
yields

(6,8)p + (%a’,S) +e(Lyo,8) =0 forae te[0,T],VSeP.  (4.96)

P

As a result, we have found the weak solution o € W?(0,T; P) of Equation
(4.66). According to [4], this implies that o € C([0,T]; P) and

2 2
max o Oll < € (Ioolls + 11 reey ) (4.97)

which directly yields the uniqueness of the solution.

It remains to show that the initial condition (4.67) is fulfilled. We will now
choose a test function V € C!([0,T); P) with Y(T) = 0. Using integration by parts
in (4.94), we get

/OT [_ ("N"">p + (%M,v)}) +e (gfazv,v)] at + (¥ (0),V(0)),, =
(4.98)



4 WEAK FORMULATION OF THE PROBLEMS 33

Employing the discrete version of the initial condition (4.71a) and passing to the
limit similarly as before, we find out that

/OT [_ <‘7’v)p + (%a v)P +e(Lyo, V)] dt + (a9, V(0))p = 0. (4.99)

On the other hand, integrating by parts (4.95), we have

/OT [‘ (o:¥), + (%"’VL + e(ﬁfaaW] dt+ ((0), V(0)), = 0. (4.100)

Finally, subtracting the two preceding equations, we conclude that the initial con-
dition is satisfied.

Step 5: Spaces for the other unknowns
In the end, let us occupy ourselves with the question, in what spaces the solutions
u, 7 and ; lie. By virtue of the bounds (4.63), (4.65), we can easily show that
under the assumption (4.87), the solutions obey

u € L*(0,T;V), ¢ €L*0,T;F), T¢€L*0,T;P). (4.101)

However, we have no estimate for the derivative, so to show that they are, in fact,
continuous in time, we must use a different approach. We write the time-independent
Equations (4.59a), (4.59b), (4.59¢) for two times ¢; and ¢, and subtract the two
systems, equation by equation, thus obtaining

a (u(tl) - ’U,(tg), U) +0b (u(tl) - 'U,(tg), U) +c (U, ng(tl) — gOl(tQ))
+(o(t) — o(ts),eU))p =0 (4.102a)
ﬁ (p1(t1) — p1(t2), ®) p + c(u(t1) — u(t2), ®) =0 (4.102b)
(T(t1) —7(t2), T)p — (o(t1) — o (t2), T)p — d (u(ty) —u(ts), T) =0 (4.102c)

holding for all U € V, ® € F, T € P. By using the previously derived bounds
for the solutions, but keeping in mind that now we have a case corresponding to
f(t) =0, we get the bounds

lu(ts) —u(to)lly < Killo(t) —o(ta)llp (4.103a)
l1(t1) = o1l < Kz [lor(ts) — o (ta)llp (4.103b)
l7(t:) = T(t)llp < Ksllo(t1) — o (ta)llp (4.103¢)

with constants K7, K5, K3 independent of time. Considering that o € C([0,T7]; P),
we immediately have

ueC([0,T;V), ¢ €C(0,T);F), TecC(0,T];P). (4.104)

Bounds in these spaces similar to (4.97) can be easily derived.
We have constructively proved the following theorem:
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axis

axis

Fig. 3: Transformation of the 3D cylindrical domain to the 2D rectangular domain

Theorem 4.4 (Existence and uniqueness for the viscoelastic problem)
Assume that the same conditions as in the case of the elastic problem hold. In
addition, let

o fel? ((),T; L2(F2))
o useV, T9€P
e dnp: 0<mn<nlx) ae inl
Then Problem (4.59) admits unique solutions w, @1, T, o lying in the spaces
o €C([0,T];P), weC(0,T);V), pr € C([0,T); F), T € C([0,T); P). (4.105)

Furthermore, these solutions are continuously dependent on the initial conditions
ug, To and the boundary condition f.

5 Formulation in Cylindrical Coordinates

So far, we have made very few assumptions concerning the studied domain and the
imposed boundary condition f. From this section on, however, we put the general
3D problem aside and concentrate on the special case of a cylindrical domain with
a cylindrically symmetric vertical load. A schematical drawing of such a domain
was shown on Figure 2. Since the problem possesses cylindrical symmetry, it can
be reduced to a pseudo-twodimensional problem. As a result, it suffices to solve the
given problem on a 2D domain, a rectangle, which produces the cylinder when it is
revolved around one of its sides. This side represents the axis of the symmetry. The
situation is depicted on Figure 3.

Solving the 2D problem rather than the full 3D problem greatly reduces the
complexity of the problem and hence also the computational time necessary for a
simulation. However, the equations must first be rewritten into cylindrical coordi-
nates. Owing to the cylindrical symmetry of the problem, many of the terms will
fortunately drop out.
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5.1 Displacement, Stress and Strain Components

We consider the cylindrical coordinate system with the radial coordinate r, the
azimuthal coordinate ¢ and the vertical coordinate z, with e,, e,, e, denoting the
corresponding unit vectors.

In such a coordinate system, the divergence of a vector field w can be written as

ow, w, 10w, OJw,

V-w= — 5.1
Y= T * r 0y 0z (5:1)
and the gradient of a scalar field V' is given by the formula
ov 10V ov
= e +-— — e,. 5.2
\A% (')re+r8gpe“’+8ze (5.2)
In the case of cylindrical symmetry, these formulae become:
ow, w, Ow,
Cw = - 5.3
V-w p + . + E (5.3)
ov ov
= — — e,. 5.4
\A%4 5 & + 5, & (5.4)

The physical components of the small strain tensor are in the cylindrical coordi-
nates given by the relations

_aur c _1 8uz+8ur
frr = or’ "2\ or 0z )’
10u, u, 1 (0u, 10u, u,
_ L1ou,  ur o= (e 20U Ue) 5.5
Fov r6g0+r’ Ere 2(8r+r8g0 r (5:5)
_ o 1 (2 100
A “v: = 9\ oz rop )’

Considering the cylindrical symmetry of the given problem, we have

Ou, Ou,
u, = 0, 9o " 0y 0 (5.6)

and the small strain tensor components are simplified to

ou, 1 [(0u, n Ou,
Epp = s Erz = 3 )
or 2\ or 0z
Uy
Epp = 7; Erp = E€pz = 0, (57)
ou,
€22 = .

0z
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Using Hooke’s law or the formula describing the Maxwell rheology, one can de-
duce that the stress tensor components obey

Tro = Tpz — 0. (58)

The other stress tensor components are generally non-zero. From the definition of
o it is clear that similar relations hold for o as well.

Thus, in the case of cylindrical symmetry, the problem is reduced to the scalar
incremental gravitational potential, two non-zero components for the displacement
field and four non-zero components for both the stress and the o field, giving 11
unknowns altogether.

5.2 Weak Formulation of the Problems

Next, we proceed to the weak formulations of a cylindrically symmetric elastic and
viscoelastic problem.

The weak formulations (4.20), (4.59) remain essentialy unchanged, we only need
to explicitly write out all the bilinear forms

ou, ur 8uz ou, U, 0JU,
a(u,U) // ( 8z)<8r+r 82>Tdrdz (5.9)
Zs R
+// ou, oU, urUT n ou, 0U, +l ou, n ou, oU, n oU, dr d
or 67‘ r2 0z 0z 2\ Or 0z or 0z rarez
71 0

ou, ou, Uy dgo
_ _ _ 1
b(u,U) // {pogo < 5 U, o U, . U> + pou,U, dz} rdr dz (5.10)

Zz

(u, ) //po (8(1) (I) ) rdr dz (5.11)
r 0 0 0 0
u?" U”r‘ uz /u:fr U,Z
d(u,T)= //2,u[ TW—FET“_F(@z—FW)T”]TdeZ
0
(5.12)
Z>

R
ou, u, Ou,
— T, T, T
//\<87° +r+az)(”+ vo + o) 7 dr dz
0
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Z> R
2
w? [Ou, Uy ou, Ou,  Ou,
S) = 2— —Srr —S —Szz a. Tz
e(u,S) // . [87“ S T - +<8z+87“ Spz| T dr dz
Zi 0
(5.13)
Zs 32 > /5 p
1 Uy Uy U,
//3 0 (87“ T az)(s”www“)rdrdz’
Zi 0
scalar products
Zy R
(T T // TerTrr + TopLpp + Too Loz + 2 7o T..)r dr dz (5.14)
T e 00 g1 00
©1 oY1
(1, @ / / (87“ 87‘ 0z az>rdr dz (5.15)

and linear forms

E/f(r) U,rdr (5.16)

Fy(®) = f( )& ar (5.17)

in cylindrical coordinates.

The 2D domain corresponding to €2 as well as the boundary parts corresponding
to ['1 and I'y will still be denoted by the same symbols. By performing the trans-
formation to the 2D rectangular domain, we have obtained a fictitious boundary at
r = 0, which will be denoted I'3. The displacement field is physically acceptable
only if the condition

u, =0 at =10 (5.18)

is met. In the weak formulation, it is satisfied by choosing an appropriate solution
space for the displacement. The forces due to the stress acting at the axis » = 0 are
cynlindrically symmetric only if

T.,=0 at r=0. (5.19)

However, this stress condition applies only in the classical formulation.

It is evident, that the previously derived existence and uniqueness results hold in
the case of cylindrical symmetry as well, since it is only a special case of the general
problem. Nevertheless, it would require a more precise notion of the solution spaces
in such case and we do not intend to go into details here.
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Fig. 4: Boundary conditions imposed in the 2D problem (classical formulation)

6 Numerical Approach

For the numerical calculations, we adopted the so-called Cowling approximation,
which means that the effect of the incremental gravitational potential is completely
neglected. There are several reasons for doing this. First of all, the complexity of
the associated problem is much higher than for the remaining unknowns. Methods
for solving such problems on unbounded domains are known, e.g. the infinite ele-
ment method [23] or the better-known boundary element method (BEM). The weak
formulation of Poisson’s equation derived in the present work is readily usable for
the infinite element method, whereas for BEM it has to be done using a different
approach. However, practical implementation of these methods in the adopted FEM
code would be very difficult and time-consuming. Furthermore, the values of the
incremental gravitational potential itself are of very little interest in the postglacial
rebound studies. The effect of the Cowling approximation has been studied e.g.
in [19]. For local problems it is reasonable to leave the incremental gravitational
potential out.

It might seem that the stress tensor components could be calculated a posteriori,
because it is given explicitly and doesn’t appear in the other equations. However,
the results obtained using such an approach were deteriorated, most likely due to the
discontinuities in the Lamé coefficients. This retrospectively confirms the necessity
to include the stress in the weak formulation.
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6.1 Time Discretization

The standard #-scheme with an automatic time step control was used for the time
discretization. For § = 0, the scheme corresponds to the forward Euler scheme, for
6 =1 to the backward Euler scheme and for # = 0.5 to the Crank-Nicolson scheme.

The considered time interval (0,7) will be divided into time steps 0 = ¥ < ¢! <
... < t" =T. We will denote the time-step size At! = t*+1 — !, Equation (4.59d)
describing the Maxwell rheology is the only equation involving a time derivative.
Using the #-scheme, we can proceed from the time layer #* to the next time layer
tz’—l—l by

ot —g Prp it ; i1 ;
<7.,s) + (—[0ch+ +(1- 0)0“],8) +e(fut + (1-0)u’,S) =0,
At P n P

which can be rewritten in the form

(a,i—l—l’S)P LA (Ha'"“,S) T Ae (ui-l-l’s) _
7 P (6.2)
= (ai,S)P —B (Ha'i,S) —Be (ui,S) ,
n P
where we have defined A = 0.At*, B = (1 — 0).At".

The time step error control is accomplished in the i+l i+
following way [20]. Let us suppose that the solution ti+l
vector 2* at time t* is known. First, the solution at .
time #'*! is calculated in a single time step. We denote Atfp
this solution #*!. Next, a time step of size At'/2 Ati xi+1/2 {i+1/2
starting at ¢* is performed and the solution is denoted
2+3. Then we perform another time step of size At?/2 )
starting at #+3 and denote the solution z*'. One
such time step is depicted on Figure 5. By taking a
suitable norm of the difference of solutions z**! and
Z"! we obtain an error indicator, which we want to Fig. 5: Time-step
be roughly equal to the prescribed tolerance, for error control

|zt — #F|| ~ TOL. (6.3)

ti

xi xi

If the error is too large, we redo the last time step with a smaller step size, otherwise
we consider z'*! to be the correct solution.

To estimate the optimal size for the following time step, we adopt a well-known
formula from the numerical methods for ODR:

TOL )PH

||$i+1 — 5;12+1||

AT = A, ( (6.4)
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. L

Fig. 6: The elements used and their degrees of freedom

where p is the order of the used time stepping scheme (for the Euler schemes p = 1,
for the Crank-Nicolson scheme p = 2).

It remains to discuss, which of the presented schemes is the best for the problem
at hand. The forward Euler has the advantage of being explicit, so the time needed
to calculate one time-step is smaller. However, explicit schemes are known to have
only conditional stability. Furthermore, both Euler schemes have the disadvantage
of being only first order methods. The backward Euler scheme is known to perform
very well for stiff problems and the problem at hand was expected to exhibit a certain
degree of stiffness. None the less, all three methods were tried and it was found
out that the Crank-Nicolson scheme performs most efficiently, while the forward
Euler scheme proved to be practically unusable, because the stability domain is
not known. The backward Euler scheme gave similar results as the Crank-Nicolson
scheme. However, significantly smaller time-steps were necessary in the case of the
backward Euler scheme.

6.2 Space Discretization

The space discretization is performed using the finite element method. The shape
of the used elements is quadrilateral. The domain €2 is covered by a set of elements
Tn. The set of the nodes lying on the boundary part I'y, I'y, '3 will be denoted Gy,
G, (3, respectively.

Let us introduce the following finite element spaces:

Vi = {'v € [C(Q)]Z;vi|T € QAT)VT € Ty,i=r,2; (6.5)
v(N) =0 VYN € Gy;0,(N) =0 YN € Gg}
b, = {p € [L2(Q)}4 ;pi‘T € P(T)VT € Tp,i =rr, pp, zz,rz} , (6.6)

i.e. continuous biquadratic elements are used for the displacement field and discon-
tinuous linear elements for the stress and o fields. Figure 6 schematically shows the
degrees of freedom of the used elements. The presented choice of the finite element
spaces results in 42 degrees of freedom on one element. Considering the adjacency
of the elements, it averages to 32 degrees of freedom per element.

In theory, approximation using bilinear elements for the space V' and piecewise
constant elements for the space P should be sufficient. However, this choice lead to
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a problem with the upper-most node at the axis of symmetry. This node exhibited
zero displacement in both directions, although the vertical displacement should be
non-zero, since there is some force applied to the node. A possible explanation of
this phenomenon is that in the weak formulation, the acting force is multiplied by
the radius r. At the axis of symmetry r = 0, so the node reacts as if no forces were
acting on it. This problem does not appear with biquadratic elements.

6.3 Practical Implementation

The numerical calculations were performed using an adaptation of a Navier-Stokes
code programmed by Dr. Jaroslav Hron. The capabilities of this code were the main
reason for several aspects of the numerical methods used, e.g. the choice of the
time-stepping technique, the shape of the elements and so on.

Primarily, it was necessary to replace the Navier—Stokes equations with our sys-
tem of equations, choose the element spaces and input the boundary condition. Since
the Navier—Stokes equations are essentially non-linear, whereas our equation system
is linear, certain changes were made to improve the efficiency for the linear case.
The adaptive time-stepping algorithm was already included in the code, slight mod-
ifications were necessary, however. The GMRES method with ILU preconditioning
included in the splib solver package was used as the linear solver.

The output of the simulations are data files including the values of the unknowns
and other predefined quantities at all the time levels. These files can be visualized
using the freely available GMV software [6]. It is also possible to generate movies of
the time evolution using the gmvmpeg tool [7] developed for the Featflow software.
Although the use of these readily available post-processing tools saved an immense
amount of time, it lead to certain drawbacks. For example, it was impossible to
include the glacier shape as well as the time dependence of the boundary condition
in the movies. Also the boundaries between the domains with different viscosity
could not be visualized in the graphs. Especially the latter fact made the analysis
of the results significantly more difficult.

It was necessary to program some additional pre- and post-processing tools, e.g.
a simple mesh generator, a program for calculating the dissipation rate over the
whole domain, etc.

7 Geophysical Models

In this section, the various geophysical components of the simulations will be pre-
sented, namely all the geophysical quantities appearing as coefficients in the equa-
tions and the surface load. While the values of the initial density, the initial grav-
itational acceleration and the Lamé coefficients are generally assumed to be well-
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determined and only vertically-dependent, the viscosity distributions widely vary
from area to area and depend on the horizontal direction as well. Thus, several vis-
cosity distributions will be considered. The surface load is given by the shape and
size of the glacier present on the Earth’s surface. The load may be time-dependent.

7.1 PREM

The Preliminary Reference Earth Model (PREM), presented in [3], is used as a
widely-accepted standard for the description of the depth variation of seismic veloc-
ities (shear and compressional) and the density, based on seismological data. The
Earth is separated into 13 spherical layers and the above mentioned physical quan-
tities are approximated by polynomials of at most 3rd degree in each of the layers.
The table in Appendix B gives the polynomials as functions of the normalized radius
a = z/Rg, where Ry is the Earth’s radius. The resulting density is in g/cm?® and
the velocities in km/s. In our case we left the upper-most (ocean) layer out and
expanded the upper crust layer all the way up to 6371 km.
Once knowing the seismic velocities and the density, values of other quantities
can be derived. The values of the Lamé coefficients are obtained from
v?gzﬁ, vh = )\+2M. (7.1)
p p

The depth variation of the gravitational acceleration can be calculated as

o) =9 [ pee a, (7.2)

22 Jo

from which it easily follows that the gradient of the gravitational potential obeys

Vo(e) = (1960(z) — 29(2) ) .. (73)

The graphs of the depth-variations of these quantities can be found in Appendix B.

7.2 Glacier Models

In all the simulations performed, we assumed a glacier of constant radius, only
the thickness (height) was allowed to vary in time. Two different shapes of glacier
were used in the calculations—the rectangular and the parabolic profile depicted on
Figure 7. The dependence of the glacier’s thickness on the distance from the axis of
symmetry r is in the case of the parabolic profile given by the formula

h(?“) = hmam -V 1- T/Tmaa:; (74)
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Fig. 7: The considered glacier profiles

where 7,4, 18 the glacier’s radius and A, is the thickness in the glacier’s center
at the time of the glacial maximum. It is interesting to observe, that the parabolic
glacier meets the Earth’s surface at right angle and has a sharp peak.

The surface load due to the glacier’s presence can be calculated as

f(rit) = pg-gr.-h(r) . 1(t), (7.5)

where the glacier’s density was taken to be p, = 1000 kg/ m® and the gravitational
acceleration at the Earth’s surface gr was computed from PREM. The loading his-
tory function [(¢) will be discussed separately.

Apart from the Benchmark model, we always took the parameters of the Scan-
dinavian glacier, h,,q; = 2.5 km, 7,0, = 890 km.

7.3 Loading History

Three different models for the loading history were considered. Heaviside loading,
a simple saw-tooth glaciation cycle and a realistic glaciation cycle. The two latter
loading histories are graphed on Figure 8.

The Heaviside loading corresponds to the situation, where there is initially no
surface load present and the glacier appears instantaneously with the maximum
thickness. This is modeled by calculating the elastic response to the glacier’s pres-
ence and then taking the result as the initial condition for a viscoelastic simulation.

Evidence shows that in the past million years there were glaciation cycles, each of
duration approximately 100 kyrs (kyrs = 1000 years). A simple saw-tooth model for
a glaciation cycle was proposed in [21]. The glacier’s thickness starts from zero and
linearly grows to the maximum, which is achieved at 90 kyrs. In the next 10 kyrs
it drops linearly back to zero. We also studied the periodic case with the saw-tooth
cycle repeated several times.

For the realistic glaciation cycle, the data from [17] were adopted. Siddall et
al. analysed oxygen isotope records from Red Sea sediment cores to reconstruct the
history of water residence times in Red Sea. Then a hydraulic model of the water
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Fig. 8: The various loading histories

exchange between Red Sea and the world ocean was used to derive the global sea-
level over the past 470 kyrs. A decrease of sea-level corresponds to a proportional
increase of glacier volume and vice-versa. We will restrict our model to the last
glaciation cycle, which started approximately 110 kyrs ago.

7.4 Viscosity profiles

For the benchmark model discussed below, the viscosity was assumed only verti-
cally dependent. For the other models the viscosity varies laterally as well. The
uppermost layer (the crust) has a thickness of approximately 100 km and is always
assumed to be elastic. Under the crust is the upper mantle—a layer of low viscosity
(~ 10*' Pa.s), extending down to the distance of 5701 km from the Earth’s center.
Below is the lower mantle, which has a higher viscosity (~ 10?2-10%* Pa.s) and ex-
tends to 3480 km. In our models, the lateral variations in viscosity appear only in
the upper mantle and result from the presence of the asthenosphere—a region of
very low viscosity (~ 10! Pa.s). The assumed viscosity distributions are shown on
Figure 9. The asthenosphere was taken to extend outwards from different radii A,
namely A = 550 km, A = 890 km and A = 1200 km.

8 Discussion of Results

Numerous calculations were performed, but due to the limitations of the written
form, we will present and discuss only the most interesting results. Movies showing
the time evolution of some physical quantities for several of the models can be found
on the enclosed CD. For some cases we present graphs in Appendix C. The quantities
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Fig. 9: The viscosity distributions (distances in km)

shown are: both components of the displacement (in meters), all four components
of the stress (in GPa), the Euclidean norm of the o tensor (in GPa) and the local
dissipation density (in 3 x 107 W.m™). For many cases, we present graphs of
the vertical and horizontal surface displacement (in meters), the maximum local
dissipation density (in 3 x 107 W.m™?) vs. time and dissipation integrated over the
whole cylindrical domain (in 10° W) vs. time.

8.1 Benchmark Comparison

To have at least the basic idea that our computer program gives reliable results,
we performed a benchmark simulation proposed by [11]. The loading history is
Heaviside, the glacier has 800 km radius and 1 km thickness. The output of the
model should be the vertical and the horizontal displacement at the Earth’s surface
in times 0, 1, 2, 5, 10 kyrs after loading. The problem was to be calculated using
Legendre polynomials and for a spherical Earth.

Figure 12 shows the results presented at [11] as well as our own results. The
vertical displacements are in very good quantitative agreement, our horizontal dis-
placements seem to evolve faster in time, e.g. our result for 5 kyrs corresponds quite
well to the benchmark result for 10 kyrs. However, in both cases the lines have the
same characteristic shape with the minima at the edge of the glacier. The slight
discrepancies in the horizontal displacement could have resulted from the flat-earth
approximation.
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Fig. 10: The Rayleigh—Taylor instability

8.2 Instability of PREM

The viscoelastic Earth model with the density distribution given by PREM is known
to be unstable. This so-called Rayleigh—Taylor instability has been studied e.g. in
[16] for PREM and in [10] for simpler models, but also analytically. In the case of
PREM, it was found that this instability may typically have a characteristic time
of the order of 107 years, but for very low viscosities in the asthenosphere it may be
as low as 6 x 10® years. We were interested in finding out when such an instability
would become apparent in our models.

Two simulations ranging over the time interval of one million years were per-
fomed. One with the Heaviside loading history for model 1 viscosity with A = 890
km, the other one with the saw-tooth cycle repeated 10 times for model 1 viscosity
with A = 1200 km. For the Heaviside loading a ten times smaller time-stepping
tolerance was used to make sure that the observed phenomenon is not caused by
accumulation of numerical error. The appearance of the instability can be well vi-
sualized by plotting the total dissipation over the whole cylindrical domain vs. time
(Figure 10). The exponential growth of the dissipation is evident and its character-
istic times were found to be approximately 105 years in both cases.

8.3 Other interesting results

One model with load periodic in time was tried in order to see in how many cycles
the solution would become periodic. The loading history was taken to be several
saw-tooth cycles, each following right after the previous came to zero. Because of
the Rayleigh—Taylor instability, only the first four or five cycles can be considered
as reliable. The surface displacement at times 50, 100, 150, 200, 250, 300, 350 and
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400 kyrs for such a case is visualized on Figures 14 and 15. From these graphs, it
is apparent that only the first cycle substantially differs, otherwise the solution is
already periodic. We can arrive at the same conclusion by looking at the graph of
the total dissipation on Figure 13.

The most interesting results seem to be the graphs of the dissipation variation
over time. The dissipation itself has deserved very little attention in the literature
so far. We expected that the total dissipation would reflect the rate of change of the
surface load. This appeared to be true to a certain extent. However, for the saw-
tooth cycle, it was found that right after the switch from glaciation to deglaciation,
there was a moment during which the total dissipation slightly decreased. The
maximum dissipation density exhibited even more complicated behaviour. At some
times, the graphs manifested jumps in the derivative, although the surface load was
smooth. This is most likely due to the significant stress redistribution following
such a glaciation-deglaciation switch, which results in a change of the position of
the maximum. These positions can be well observed on the graphs showing the
dissipation density in the whole domain (Figure 25. To our great astonishment,
when the radial position of the boundary between the asthenosphere and the crust
coincided with the position of the edge of the rectangular glacier (A = 890 km),
the maximum for the dissipation density appeared later than the maximum for the
total dissipation. In all other studied saw-tooth simulations, both maxima appeared
simultaneously at 100 kyrs. Further calculations are necessary to find out whether
the later maximum is caused by the switch to the following glaciation period or not
and whether it appears for other values of A near 890 km as well. The realistic
time-cycle (again A = 890 km) also reveals that a secondary peak usually appears
after a sharp decrease of maximum dissipation density. Unfortunately, the realistic
loading history was studied only with the parabolic glacier profile.

As to the stresses, an interesting phenomenon to observe is the reaction of the
stress fields to the deglaciation. While during the glaciation the stress components
are significant only in the upper part of the domain, during the deglaciation they
decrease near the top, but become quite significant in the middle or even lower part
of the domain. In fact, their values in these parts reach maximum at the time, when
zero load is present on the surface. This phenomenon was observed not only in the
case of the saw-tooth cycle, but also for the realistic loading history.

9 Conclusions

We succeeded in deriving the weak formulation of both the elastic and the viscoelas-
tic problem. The existence and uniqueness were proved in both cases. A simple
numerical approach was developed. The introduction of the auxiliary tensor field
o, corresponding to the inelastic part of the stress tensor, seems very promising for
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development more complicated time-stepping techniques. Using such an approach
the evolutionary problem could be decoupled into an evolutionary and a stationary
problem, thus enabling use of more efficient time-stepping algorithms.

Using the finite element approach, lateral variations of viscosity may be easily
incorporated into the calculations. A program for numerical solution of the elastic
and viscoelastic problem was developed and tested on a benchmark problem. Using
the program, several simulations were performed for some model glacier profiles and
loading histories and one simulation even for a realistic loading history. Further-
more, different positions of the asthenosphere are considered. The graphs of the
deformation, stress tensor components and dissipation are shown for some of the
problems. All simulations are visualised in the form of movies, which may be found
on the enclosed CD. The graphs of the total dissipation as well as those of the max-
imum local dissipation density exhibit very complicated behaviour. The instability
of PREM was studied for two different loading histories and the characteristic times
were determined. Some other remarkable results were obtained and discussed. In
some cases, further studies are necessary to confirm and explain the phenomena
observed.
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A Homogeneous Sobolev Spaces

Only those properties of the homogeneous Sobolev spaces that were used throughout
the preceding text, are cited below. For further information and proofs, see [5].
The homogeneous Sobolev spaces D™(€2),  C R™, are defined as

D™(Q) = {u € L;,,(Q); D*u € LI(Q),V |a| =m}, (A1)
where mEN,mEOanquR,qz 1.

Let us introduce the seminorm
1/q

ul Dot | . (A.2)
|ee|=m /

Then the space {D™4, |-| '} is a complete normed space, provided that two
functions u1, up € D™?(R2) are identified, whenever |u; — usl,, , = 0.

Along with the spaces D™? we also introduce the spaces Dy"?(f2) defined as
the completion of C§°(2) in the above-defined seminorm. Evidently, Dg"?(2) C
D™1(Q).

Lemma A.1 Let Q@ CR", n>1. Then {D™(Q), |-|,,} is a Banach space. In
particular, if ¢ = 2, it is a Hilbert space with the scalar product

(u, D D%, (A.3)
jal=m /

Lemma A.2 The spaces D™ and Dg"? are separable for 1 < q < oo and reflexive
for1 < g < oo.

Lemma A.3 Ifu € D™(Q) then u € W,29(Q).

loc

Lemma A4 Let u € Dg"?, 1 < g <n. Thenu € L, s = ng/(n — q) and the
Sobolev inequality holds:

_gln=1)

[[ull, < (A.4)
2n—qpvn
Lemma A.5 LetuED , 1< qg<n. Then
u
< 00, Vo, € R" (A.5)
[ — ol |,
and, moreover,
u q

< A.6
o] S g (A.6)
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B Definition of PREM

Region Radius [km] p vp Vs
13.0885 11.2622 3.6678
Inner Core 012215 1 g 838102 | —6.364002 | —4.447502
12.5815 11.0487
—1.2638 —4.03620
Outer Core 1221.5-3480 3 649602 14.802302 0
—5.528103 | —13.573203
7.9565 15.3891 6.9254
i} . —6.4761 —5.3181 1+1.46720x
D 348073630 | 5 598342 +5.524202 —2.083402
—3.080703 —92.551403 +0.978303
7.9565 24.9520 11.1671
—6.4761 —40.4673a —13.7818a
Lower Mantle | 3630-5600 | - ocs o | 151483902 | +17.457502
—3.08070 | —26.641903 —9.277703
7.9565 29.2766 22.3459
—6.4761 —923.6027a —17.2473a
5600-5701 | 5 508342 +5.524202 —92.083402
—3.080703 —92.551403 +0.978303
5.3197 19.0957 9.9839
5701-5771 —1.4836« —9.8672c —4.9324«
. 11.2494 39.7027 22.3512
Transition Zone | 5771-5971 | ¢ hogq | —32.61660 —18.58560
7.1089 20.3926 8.9496
5971-6151 —3.8045c —12.2569« —4.4597«
2.6910 41875 2.1519
Lvz 6151-6291 +0.69240, +3.9382a, 192.3481c
2.6910 4.1875 2.1519
LID 6291-6346.6 +0.6924c +3.9382c +2.3481cv
Crust 6346.6 6356 2.9 6.8 3.9
63566368 2.6 5.8 3.2
Ocean 6368 6371 1.020 1.45 0
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Fig. 11: The variations of the elastic Lamé coefficients (in GPa), the initial density
(in g.cm™3) and the initial gravitational acceleration (in m.s~2) according to PREM
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C Graphs of Results

Benchmark results
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Fig. 22: Results at t=90 kyrs, rectang. glac., saw-tooth load, A=1200 km
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Fig. 23: Results at t=95 kyrs, rectang. glac., saw-tooth load, A=1200 km
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Fig. 24: Results at t=100 kyrs, rectang. glac., saw-tooth load, A=1200 km
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