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Errata et Addenda

After the review process and the discussion during the defense, I ask the kind reader to
take into account the following corrections:

• The proof of DBVP in Appendix B does not imply existence and uniqueness of the
problem (2.51–2.53). It remains an open question, whether these can be proved in the
case of integral boundary conditions (2.26–2.27).

• In DBVP formulation (B1–B2), the scalar magnetic potential must satisfy U(ti+1) ∈
W 2,2(G), so that gradU(ti+1) ∈ W 1,21, 2(G)3.

• In formulation (3.39–3.41) should be

A(r; t), δA(r; t) ∈
{
f ∈ W 1,2

01 (G)3 × C1 (〈0,∞))3 |n · f = 0 on ∂G2

}
.

However, the boundary condition (3.11) cannot be directly implemented in the construc-
tion of discrete approximation of the solution functional space, since the normal and
tangential components of vectors are not separated in the nodal finite element parame-
terization. Therefore it is “silently ignored” in the discretization (see also Everett and
Schultz, 1996). However the Ar component on the surface ∂G2 is close to numerical zero
in the presented runs (see Figure 3.4).

• Boundary conditions (3.14–3.15) imposed on the surface ∂G1 of the infinitely conductive
core imply for the EM field vectors,

n×E = −n×
(

∂A
∂t

+ grad Φ
)

= 0,

n ·D = −εn ·
(

∂A
∂t

+ grad Φ
)

= ρS,
n×H = µ0 n× curl A = jS,
n ·B = n · curl A = 0,

on ∂G1, where ρS, and jS are respectively the surface charges and surface currents gen-
erated on the surface of the perfect conductor.

• Indeces in equations (2.58) and (2.68–2.70) are misprinted. The correct formulae are
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• Equation (3.1) should be
B = curl A. (3.1)

I apologize to all English native speakers for the way I treated the language. And
finally, I thank my reviewers, Heather MacCreadie, Ctirad Matyska, and Josef Pek for
their comments that helped to clarify the above mentioned matters.
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