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Abstrakt

Ndzev prdce : Viskoelastickd odezva rovinné vrstvy v Kartézské geometrii
Autor : Petr Toman

Katedra : Katedra geofyziky MFF UK Praha

Vedouct diplomové prdce : doc. RNDr. Ctirad Matyska, DrSc.

e-mail vedouciho diplomové prdce : cm@karel.troja.mff.cuni.cz

Viskoelasticka odezva Zemé, jakozto geofyzikalni tloha, pracuje na prechodnych ¢asovych skédlach,
tedy od cisté elastického po ¢isté viskézni modelovani. V této préaci jsme provedli kompletni geo-
metrickou reformulaci takovéto lohy ze sférické geometrie do geometrie Kartézské, tedy takové,
kterd se vyuzivd k lokdlnimu popisu. Skaldrni a vektorové harmonické funkce byly nahrazeny
Fourierovskymi bazovymi funkcemi. Stejnym postupem jako v metodé normélnich moda jsme
v piipadé elasticity dospéli k soustavé hloubkové zavislych linedrnich obyc¢ejnych diferencidlnich
rovnic prvniho fddu. V ptipadé uziti viskoelastické reologie, tj. Maxwellovského modelu, jsme
postupovali dle metody primek zalozené na pirimém feSeni v case. Dospéli jsme k soustavé
linedarnich parcidlnich diferencidlnich rovnic prvniho #ddu. K pfevodu na soustavu obycCejnych
diferencidlnich rovnic jsme aplikovali prostorovou diskretizaci. Modélni rozklad nam umoznil Fesit
tlohu vlastnich ¢isel. Numericka implementace nam zprostiedkovala feSeni tloh a ukazuje prubéh
dalezitych velic¢in, jako napt. horizontalni a vertikdlni posunuti nebo piirastkovy gravita¢ni po-
tencidl.

Klicova slova : ledovcovy vyzdvih, viskoelasticita, normdalni mody, metoda pifimek

Abstract
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Viscoelastic response of the Earth as a geophysical problem is operating on the transient tempo-
ral scales, between domains of purely elastic and viscous modelling. In this study we present a
complete geometrical reformulation of such problem from the spherical approach to the Cartesian
approach, which is considered as a model of local description. The scalar and vector spherical
harmonics are being replaced by the Fourier scalar and vector basis functions. Following the
normal modes approach in the elastic case, we obtain a set of linear first-order differential equa-
tions with respect to the depth. For the viscoelastic rheology, i.e., using the Maxwell model of
viscoelasticity, we follow method-of-lines approach based on the direct solution of the response
in time and we obtain a linear first-order set of partial differential equations. To get ordinary
differential equations in time, we enforce discretization in space. Modal decomposition is realized
to solve the eigenvalue problem. Numerical modelling provides solution of these problems and
shows evolution of the main outcoming quantities, such as vertical and horizontal displacement
or the incremental gravitational potential.
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Vtom jdouce, trefime mezi jakési, kteriz plnou sifi cifer majice, piebirali se v nich. Nékteri berouc
z hromady, rozsazovali je; jini zase piehrslim shriujic, na hromadky kladli; jini opét z hromadek
dil ubirali a obvzlast sypali; jini opét ty dily v jedno sndSeli; a jini zase to délili roznaseli, az jsem
se tomu jejich dilu podivil. Oni mezitim vypravovali, jak v celé filozofii jistsiho uméni nad toto
jejich neni, tu Ze nic chybiti, nic ujiti, nic nadbyti nemuz. ”Naé¢ pak to uméni jest?” fekl jsem.
Oni mé hlouposti se podivic, hned jeden pres druhého divy mi vypravovati zac¢nou. Jeden, ze mi
povi, kolik husi v stadé leti, nepocitaje jich; druhy, ze mi povi, v kolika hodinach cisterna péti
rourkami vytece; treti, ze mi povi, kolik v mésci grosii mam, nehleddje tam etc., aZ se jeden nasel,
kteryz se pisek moisky v pocet uvésti podvoloval a o tom hned knihu sepsal (Archimedes). Jiny
prikladem jeho (ale vétsi subtylnosti dokdzati chtéje) dal se v poc¢itani v slunci létajiciho prasku
(Euclides). I uzasl jsem se: a oni mi k srozuméni poslouziti chtice, ukazovali své regule, trium,
societatis, alligationis, falsi; kterymz jsem se jakz takz vyrozumél. Nez kdyz mne do nejzadnéjsi,
jenz algebra aneb cossa slove, uvésti chtéli, takovych jsem tam divokych jakychsi klik a haki
hromady uhlédal, ze mne o malo zavrat nepopadl: a zavra ja oci, prosil jsem, aby mne odtud
vedli.
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List of Symbols and Abbreviations

Symbol | Meaning
t time
a scaling length (average radius of the Earth, i.e. 6371km)
e,, e,, e, | unit base vectors (orthogonal)
1 unit diagonal tensor
n outward unit normal with respect to the boundary
T horizontal position vector
q horizontal wave vector
u displacement vector
To hydrostatic Cauchy stress tensor
Po hydrostatic density
©o hydrostatic gravitational potential
Po hydrostatic mechanical pressure
e strain tensor
T incremental Cauchy stress tensor
f total volume force acting on the continuum
1 incremental gravitational potential
1 Eulerian incremental density
TF elastic part of incremental Cauchy stress tensor
yP elastic solution vector
Yy viscoelastic solution vector
A elastic Lammé parameter
5 shear modulus
K bulk modulus (isentropic incompressibility)
n viscosity
¢ inverse Maxwell time
YL interface density (prescribed load)
I mean normal stress (pressure)
1-D one-dimensional, here depth-dependent
2-D two-dimensional, here
BV boundary value
FL flat layer
v Initial Value method
Lh.s. left-hand side
MOL method of lines
NM normal modes
ODE ordinary differential equation
PDE partial differential equation
PREM preliminary reference model
r.h.s right-hand side
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4 1. Introduction

1.1 Postglacial Rebound

In the presented thesis we deal with a subject of the local response of the Earth (i.e. flat layer)
to an arbitrary external surface load. Such problem is a long-standing concern in geophysics (e.g.
Peltier, 1974; Farrell, 1972). Interest in the problem has been motivated in large part by studies
of the long-term adjustment of the Earth as a consequence of the late Pleistocene glacial cycles.

The response to surface loading is characterized in accordance with observations by fast per-
turbations of an initial state during progressive changes of surface load, followed by a slower relax-
ation towards a new state of isostatic equilibrium after stabilization of the load. This behaviour
can be well described by viscoelastic rheologies with the preference given to that of the Maxwell
solid. When referring to the modelling of the viscoelasticity, we will first follow the normal-
mode (NM) approach developed by Prof. W.R. Peltier and his colleagues (e.g. Peltier, 1974;
Wu & Peltier, 1982; etc.) and then we will employ initial value/method of lines (IV/MOL) ap-
proach and eigenvalue analysis developed by dr. L. Hanyk (e.g. Hanyk, 1999; Hanyk et al., 2002;
etc.).

By the term flat layer (FL) we are understanding non-rotating, self-gravitating, horizontally
infinite layer, responding in time as an elastic, viscoelastic or viscous continuum, or a combination
of these. Surface loading, which is expected to be large enough and not too distant in the past
to initiate the observable response at present, has been achieved by glaciers during the last
Pleistocene epoch. The whole processes leading to the resulting equilibrium is named glacial
isostatic adjustment (GIA).

The basic idea of the NM approach is to decompose the response into a set of normal modes
(NM). Field partial differential equation (PDEs) governing the viscoelastic response of the Earth
are transformed into the Laplace domain and are subjected to spherical harmonic decomposition
in the spherical geometry approach or subjected to Fourier horizontal decomposition in the
approach presented in this thesis. This leads to the system of ordinary differential equations
(ODEs) with respect to the depth:

diry(s,r) = A(s,r)y(s, 1), (1.1)

with r denoting the depth and s the Laplace variable. The solution vector y incorporates coef-
ficients of scalar representation of the unknown physical quantities, i.e, the displacement vector,
the incremental stress tensor and the incremental gravitational potential. Matrix A represents a
linear operator acting on the this system. This approach is similar to that from the theory of free
oscillations (e.g. Martinec, 1984) and the theory of Earth tides (e.g. Novotng, 1998). The time
dependence of the PDEs in the viscoelastic cases gives for the resulting ODEs parameterization
by Laplacian variable s. In the presented thesis we employ the NM approach only for the case
of elastic response, i.e., we do not use the Laplace transform.

However, in the middle of the 90’s was an extensive discussion of positive and negative
features of the NM approach in progress. The question was how to accurately invert the complex
Laplace spectra of compressible realistic Earth models back into the time domain. With these
difficulties, the idea of numerical solution to the problem entirely in the time domain appeared
quite naturally. The time derivatives in the constitutive relation of Maxwell viscoelasticity had
been replaced by the finite-differences (FD) formulas. In the same time the complete initial-
value (IV) formulation of the forward! GIA problem was to be appear. In this formulation of

!The forward problem of GIA expresses evaluation of observable response functions (i.e. vertical/horizontal
displacements and gravitational anomalies) from the prescribed model, parameters (i.e. density, elastic parameters
and viscosity) and from the model of a surface load.
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the IV approach replacement of time derivatives by the FD formulas leads to a system of linear
non-homogenous ODEs:

diiy(t,r) — ATyt + gt ) (1.2)
d _ B [z :
aq(tvr) - 77(7,) Qy(t,r)+Q(7’)q(t,7’) ) (13)

with ¢ time, p the shear modulus and 7 the viscosity. Matrices Q and Q can be found in
Hangyk, 1999, equations (7.36) and (6.39). But again, different problems? appeared. The new
formulation of the IV approach overcame those difficulties. The system (1.2)-(1.3) was replaced
by the differential system with respect to both time and the depth which allowed to make use of
the method of lines (MOL):

dl|d
dt | dr

d
() = A (tn)| =40 [ DO Lyt + Blw(en)|. (1.4
In harmony with Hanyk, 1999 we use this approach to obtain a local response of the system to
an arbitrary surface load for the case of viscoelastic response.

1.2 Overview of the Thesis

The main task rests upon reformulation of the formalism developed by e.g. Peltier, 1974;
Wu & Peltier, 1982 and last but not least by Hanyk, 1999; Hanyk et al., 1998; Hanyk et al., 2002.
The physical quantities and the equations are being transferred and rewritten from the spherical
harmonic representation (i.e. global description in spherical coordinates) into the Fourier modes
representation (i.e. local description in Cartesian coordinates). We employ the approach of the
method of lines to the governing PDEs, i.e., we discretize the equations in space. This results
in a system of time-dependent ODEs, which is fundamentally different from the modal approach
where the time dependence is dealt first.

In Chapter 2 we collect a system of field PDEs governing the response of gravitating, com-
pressible model of flat layer to surface loading. With the elastic constitutive relation considered
first, the field PDEs are converted into a system of ODEs with respect to the depth by the means
of the Fourier expansion analysis. To find analytical solution of the ODE system for homogenous
and incompressible model, we follow analysis presented by Wu € Peltier, 1982. In Chapter 3 we
switch to the constitutive relation of the Maxwell viscoelasticity which introduces time evolution
into the system. To derive a linear first-order system of PDEs with respect to both time and the
depth, we carefully reproduce the process given for the case of the elastic rheology. In Chapter 4
we will enforce discretization in space to get ODEs in time. Then we will realize modal decom-
position to solve the eigenvalue problem and show how the main Fortran codes work in the way
of simplified schemes. Chapter 5 summarizes the results developed in Chapters 2-4 and shows
the main outcomes. Formulation of conclusions and final remarks can be found in Chapter 6.
Appendices represent a complete guide to the calculus used in both Chapters 2 and 3. In the
Appendix A we show how the Fourier transform affects physical quantities through its properties.
In the Appendix B we present the exact steps, which may not be clear at the first glance when
going through Chapters 2 and 3.

2A reader interested in detailed historical and problem review should look into monograph by Hanyk, 1999.
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Chapter 2

Elastic Response of a Flat Layer

In this chapter we collect a fundamental set of field partial differential equations (PDEs) of
gravitational elastodynamics for incremental field variables, describing the response of the flat
layer to the unit surface load. We derive a system of ordinary differential equations (ODEs) for
the Fourier expansion coefficients of field variables from the field PDEs in the special case of
elastic, isotropic, non-rotating model of flat layer.
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2.1 Field Partial Differential Equations

A gravitating, compressible, non-rotating continuum in hydrostatic equilibrium is considered.
Although the effects of rotation and non-hydrostatic pre-stress may be incorporated into the this
theory, we omit them in this analysis. The reason is that they are believed to be insignificant
in the context of glacial rebound (Tromp € Mitrovica, 1., 1999). Tt is conventional to decompose
total fields into initial and incremental parts. The incremental fields are employed for description
of infinitesimal, quasi-static, gravitational-viscoelastic perturbations of the initial fields'.

The equation of motion and the Poisson equation for the initial state of the above described
continuum consist the terms of the initial (Cauchy) stress tensor 7¢, the initial gravitational
potential ¢g, the initial density distribution py and the forcing term f,

V'T0+,f0:0, (21)
Apy —4nGpy = 0,

where G is the Newton gravitational constant. The boundary conditions at the surface and all
internal boundaries require the continuity of the normal initial stress,

[n : T[]]t = 07

of the initial gravitational potential,
[()00];F = 03
and normal component of its gradient,

[n ’ V(PO]i— =0,

where n is the outward unit normal with respect to the boundary. Moreover, the tangential
stress should vanish at liquid boundaries and at the surface, i.e.

n-to=(n-719-n)n.
The assumption of the hydrostatic initial stress requires no deviatoric stresses,
To = _p017 (23)

where pg is the mechanical pressure and I is the unit diagonal tensor. The force f; is taken to
be equal to the gravity force per unit volume,

fo=—=poVo. (2.4)

Because of the depth-dependent distribution of density, po(z), where z is the depth, all initial
fields become only depth-dependent. We introduce the gravitational acceleration go(z) by the
relation

go€, = V(pg. (25)

Hence the equations (2.1)-(2.2) reduce into the form,

po + pogo =0, (2.6)
96 - 47erU =0,

! An inquisitive reader should look into e.g. Martinec, 1984.



2.1 Field Partial Differential Equations 9

where (B.3) and (B.4) have been used. The prime ' stands as a symbol for differentiation with
respect to z.

The incremental fields include the displacement vector u, the incremental Cauchy stress tensor
T, the incremental gravitational potential ¢; and the incremental density p;. Let us recall that
the incremental gravitational potential ¢ has its origin in both the internal mass redistribution
and the gravitational forcing of the applied load. We also must not forget, that it is necessary
to adopt the incremental fields for the concept of Lagrangian and Eulerian formulations. Let
us mention that the Lagrangian description relates the current value of a field at the material
point to the initial position of that point and that the Eulerian description relates the field to
the current, local position?. With this conventional casting (the material-local form) and with
the state that 7 is in Lagrangian description and ¢; and p; are in Eulerian description, the
equations for the incremental fields (i.e., for infinitesimal, quasistatic perturbations) take the
form as follows? :

V-t+f=0, (2.8)
Ap1 —4nGp; =0,

where the forcing term f and the Eulerian incremental density p; are

f==poVe1r— Vo — Vipou - Vo), (2.10)
p1 = -V - (pou). (2.11)

The individual terms on the right-hand side of the expression for the force f represent in sequence:
selfgravitation, buoyancy and prestress. Introducing the strain tensor e, cf. (B.28),

1
e=5[Vu+ (Vu)'], (2.12)
we can write the linearized constitutive relation in the form
7 = AV - ul +2pe = AV - ul + p [Vu + (Vu)'], (2.13)

with A and p the elastic Lammé parameters. They are both related to the bulk modulus or the
isentropic incompressibility K through the relation

K=X\+2pu. (2.14)

The superscript ” is applied for the ”elastic part” of any tensor, which could be written in
the form of (2.13). According to Peltier, 1974 we rewrite the constitutive relation of Maxwell

viscoelasticity as
1

F+5(r—KV-ul)=+" (2.15)
n
where 7 is the dynamic viscosity and the dots denote differentiation with respect to time £.
The internal boundary conditions for the incremental fields require continuity of the dis-
placement, the incremental stress, the incremental gravitational potential and also its gradient,
ie.,

[u]+ =0, [T]+ =0, [‘Pl]i— =0, [V(Pl]i_ =0,

2More about theoretical aspects of continuum mechanics can be found in Brdicka, 1999 or Martinec, 2000.
3The exact steps leading to the equations (2.8)—(2.9) can be found e.g. in monograph Wolf, 1997.
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and zero tangential stress at liquid boundaries,
n-to=(n-719-n)n.

Under the presence of the load prescribed by the interface density vy, the surface boundary con-
ditions for the incremental stress and gradient of the incremental gravitational potential balance
the applied load take the form

[n- 7L = —goyrn,
[n- (Vi +4nGpou)]" = —4wGryr.

Let us now summarize the equations. The fundamental system of the field PDEs for the
incremental fields u, @1 and 7 in the continuum with the Maxwell viscoelastic rheology and
depth-dependent distribution of density pg takes the form

v-rErf=o0, (2.16)
f=-nVe1 + V- (pou) goe: — V (pogoe: - u),

V- (Vi +4rGpou) = 0, (2.17)

+:+E—%(T—Kv-u1). (2.18)

In the following chapters we elaborate this system of PDEs further. Depth-dependent distribution
of density and elastic Lammé parameters is considered. For this case we apply in the following
section the Fourier decomposition to (2.16)—(2.17) together with the elastic constitutive relation,

ie. T=1F.

2.2 Fourier Decomposition

Let e;,e, and e, be the unit basis vectors of a Cartesian system z,y and z, denoting the two
horizontal coordinates and the depth, respectively. Let us assume, that the direction of vector
e, is thought to be opposite to the direction of gravitational acceleration vector g; = —Vyy, i.e.,
the vector e, is pointing upwards. We introduce a scalar basis function, which allows expansion

of scalar fields: _
By =", (2.19)

where q¢ = (k,[) denotes a horizontal wave vector and r = (z,y) denotes a horizontal position
vector. As we will see in the following chapters, it is very useful to define the dimensionless
magnitude N of the wave vector q,

=

g =k + 1% = (2.20)

a2’

where q is a scaling length, e.g., the average radius of the Earth (¢ = 6371km). We also introduce
the vector expansion functions:

G, = Bye. = e, (2.21)
GY) =  a(VBy) = iakeTe, +ialdTTe,, (2.22)

Gl) = ale-xVBy) = —iale'®"e, +iake'I"e,. (2.23)
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This orthogonal set of vector functions allows expansions of vector fields into the spheroidal and
toroidal components. As we can see, the scalar basis function (2.19) and vector basis function
(2.21) are automatically dimensionless. On the other hand, we had to rescale expressions for vec-
tor basis function (2.22)-(2.23), i.e., multiply by the scaling factor a to keep them dimensionless.

Since we assume 1-D depth-dependent distributions of density and Lamé parameters, po(z), A(2)
and pu(z), the reference gravitational acceleration is also only depth-dependent, gy = go(z). We
can write the following expansions of the scalar and vector functions ¢ and w,

u= Zkl [UMG,EZ " VG + WG| (2.24)

1= Zkl Fy By (2.25)

According to the expansions and expressions shown in Appendix A, the following expansions of
V-u,e, 78 V.78 fand V- (Vo + 4rGpou) can be found :

V-u= Zkl X B, (2.26)
et =3 [Tf,gf”a,g; Vyr1hVal) + Tf,ﬁ?)agg)] , (2.27)
R N (e e e

+ (Tfk(ll)' + 2T - By + u)Vkl) G\

+ (Tf,ﬁ?)' - uf—szz) G,(jﬂ , (2.28)
F= Zkl [(—Pogo%vm — poQri) Gél_l)
+ %(_PoFkl - Pogonz)G;gll)] ; (2.29)
V- (Vg1 + 41Gpou) = Zkl Qi — N Fu — 4nGpo X Viy] B, (2.30)
where the following relations hold,

Xpr = Upy — TV, (2.31)
Tflgl_l) =2uUy + AXp = BUp — AT Vi, (2.32)
TN = u (Vi + tUu) (2.33)
TEY = uwiy, (2.34)
Qri = Fyy + 4G poUyy, (2.35)

with 8 = A+2u,7 = p(3A+2u)/B and N = a?(k? +1?). As we can see, none of these expressions
contains second or higher-order derivatives of the coefficients in (2.24)—(2.25).

It is also useful to have Fourier expansion for the forcing term f without selfgravitation, cf.
(2.10) and (2.16),

f= Zkl [(_47TGP%UM — P90 Vir) G,(Jl) + L (—pgoUr) G,(cll)] : (2.36)

2.3 Ordinary Differential Equations for an Elastic Flat Layer

We introduce vector ykEl with 8 elements,

— T
Yi = (Ukz,sz,Tfk(l 1),Tf;§ll),sz,ka,sz,Tf;E?)> ; (2.37)
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and an 8x8 matrix Ax = (ax,j) to be expressed later. As all the expansions are decoupled with
respect to both wavevector components k£ and [, we suppress these subscripts throughout this
section when referring to the elements of yﬁi and ay;; of ykEl and Ay, respectively.

Substituting yZ into (2.31)—(2.35) we arrive at,

!

= E]aljija a1,1..8 = (0 5_N 707 0707 070> ) (238)
V=Y asyP, wﬂz(leﬁwﬂ (2.39)
yP' =Y asyF,  asi.s = (—47Gpo,0,0,0,1,0,0) (2.40)
g = Sy, aris=(0,0,0,0,0,0,0,1), (2.41)

where }_ denotes Z?:r In the next step we rewrite equations (2.28)—(2.29) into the form:

N (T
+ (o = Shnf) 61

+ (o - ) G (2.42)

F=>. [_Ej%jygEG;(Jl) - E]‘C4jijG](gll)] (2.43)

with the auxiliary coefficients, b;; and c¢;;, given by,

bs1.s = (0,0,0,%,0,0,0,0), (2.44)
bij.s = (07 (v +n),—55,0,0,0,0 0) (2.45)
bs,1..8 = (0,0,0,0,0,0,p2,0), (2.46)
c31.8 = (0, p0g0 %, 0,0,0,0,0,0) , (247)
ci1.8 = (£p090,0,0,0,22,0,0,0) . (2.48)

According to the elastic momentum equation (2.16) together with (2.42)-(2.43) we can convert
these equations into:

!
= Zja?)jy]Ev a3,1.8 = b31.8 + 3,1.8, (2.49)
= Zja"ljija a4,1.8 = ba,1.8 +Ca,1.8, (2.50)

!
v§ = Zja'Sjija ag,1..8 = bg,1.8. (2.51)

Finally, the Poisson equation (2.17) combined with (2.30) yields:

e =¥ ja007, as,1.8 = (0,47Gpo 40,0, 1%,0,0,0) . (2.52)

We have arrived at the set of linear first-order ODEs with respect to the z for the elastic solution
vector assembled from (2.38)-(2.41) and (2.49)-(2.52):

yb(2) = An(2)yb(2), (2.53)
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where the matrix Ay holds

AN 1
0 — — 0 0O O 0 0
Ba B
1
_Z 0 0 = 0 0 0 0
a 1
N N
0 Pogo— 0 — 0 po 0 O
a a
1 N A
90 b s 0 P9 00
Ay = a a a , (2.54)
—4nGpg 0 0 0 0 1 0 0
0  4rGpp—~ 0 0 % 0 0 0
a a
1
0 0 0o 0 0 0 0 -
I
N
0 0 0 0 0O O Mﬁ 0

and, let us recall, 8 = A+ 2u,y = u(3X +2u)/8 = 3uK/B and N = a?(k? + 1?). For the case of
material incompressibility, K — oo, we arrive at:

1/6—=0, ApB—1, and ~ — 3u. (2.55)

The system (2.53) consists of two independent systems, one with 6 x 6 matrix (ai.g,1.6) con-
taining the ”spheroidal” coefficients of u and 7%, and the second with 2 x 2 matrix (a7.8,7.8),
connecting the ”toroidal” coefficients. A comparison of the Cartesian representation and the
spherical harmonic representation of matrix A can be found in Section 5.1.

2.4 Boundary Conditions

Now we summarize the valid boundary conditions at the surface, z = a, and at the bottom
boundary, z = b. Responses to an arbitrary surface loads can be deduced from the response to
a surface point mass load with the Fourier representation expressed in the form, which follows
Farrell, 1972,

=Y Bu. (2.56)

4

This expression represents an elastic approximation®. The surface boundary conditions can be

then written as

Tz(_l) (a) = —49o,

7V (a) =0, 2.57)
Q(a) = —47G,

T (a) = 0.

4The viscoelastic formulation can be found in Section 3.3
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Conditions at the bottom of the layer, z = b, are considered to have dual nature. First, we
consider a layer "bonded” at its bottom side (denoted by symbol A). And second, we consider a
"laid” layer (denoted by symbol B). Let us now write the exact formulation of these prescribed
properties. The models A are similar to those Earth models with no liquid core. They require
zero values for both the displacement u and the incremental gravitational potential ¢,

(2.58)

On the other hand, models B require zero values for the stress vector of traction TZE , for the
vertical component of displacement u, and again for the incremental gravitational potential ¢,

’ (2.59)

2.5 Analytical Solution for Homogeneous and Incompressible Model

Considering all physical properties of the model constant, we may obtain solutions to (2.53) in
terms of simple functions. We will focus upon one of important versions of the homogenous
model which shows fundamental features of more general problem.

Let us now deal with the homogenous and incompressible model, i.e., model with constant
values of density, viscosity and elastlc parameters. Since the model is incompressible, V - u = 0,
and since has constant dens1ty, = 0, the incremental density (2.11) becomes zero-valued.
Hence the equations (2.16) and (2 17) decouple. Equation (2.17) takes the the form

Ap; = 0. (2.60)

In an incompressible medium the dilatation 6 = V - u goes to zero and the Lammé parameter A
goes to infinity. However, their product has a finite limit (Wu € Peltier, 1982), i.e

lim (A§) =TI, (2.61)
A—00
0—0

which has the meaning of a mean normal stress. Rewriting constitutive equation (2.13) using
(2.61) we obtain its incompressible form

= IIT + 2pe. (2.62)
The momentum equation (2.16) may be rewritten into the form
—V(pop1 + pogou - e, — ) — uV x V x u =0, (2.63)

where we used definition of strain tensor (2.12) and identities (B.8)—(B.9). The divergence of
(2.63) is
%A((pl +gou- e, —II/py) = 0. (2.64)
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We introduce the Fourier expansion of II
IT= Zkl Py (2)Bri(z, y), (2.65)
and then rewrite the equations (2.60) and (2.64) by means of the Fourier expansion coefficients
(2.24) and (2.25)
Af (Fu(z) + C2Upi(2) — Pu(z)/po) = 0, (2.67)

where ( is the constant obtained from solution of (2.7), { = 47nGpp, and Ay = g—; — aﬂz, according
to relation (B.23). The vertical component of (2.63) is

0? 0

9.2 (a°Uy) — NUy = (PO/M)G2§(FM + C2Uk; — Pri/po), (2.68)
where we used assumption V - u = 0 to eliminate those terms with Vj;. The solutions of (2.66)
and (2.67) are respectively

VN VN
Fkl = CleiTNz + CQSTNZ, (269)
Fy + C2Up; — ];’;l = M (Cge \/a_z + C4€@z) . (2.70)

If we substitute the solution (2.70) into (2.68), we obtain an inhomogeneous ODE for Uy to
which the solution is

U = Cs [ (& =) =0 + O [ (& + ) 2] +. G5 [em 07| 4+ G5 [e577] . 271)

To obtain expression for the coefficient V}; we have to use relation (2.31) and the assumption of
the incompressibility, V - u = 0, i.e.,

For evaluation of the coefficients Tfk(; ), TzEk(l and Q; we have to follow (2.32)-(2.35), and also

use (2.61), i.e.,

TP = Py + 20U, (2.73)

The constructed 6-vector Y, which solves the incompressible equivalent of (2.53), is the super-
position of six linearly independent solutions

6
Y = Zciyia (2.74)
i=1
where the particular elements yield
T _y~
vy = (anapoaoala_@) eiTNza (275)
_ V"
Y2 = (anap0a031’7> €« Za (276)
T _y~N
=3+ it w8 BT R 0G4 G) e e
T
—(z__a_ a i b lm/_ Cpoz _Capy p o ¢z _aC v,
vi=(3 - tom s SR H0S —a) e @)
T v~
Ys = (la—\/—lﬁaCPOZ - %?anac> e o Za (279)
T Jx
Yo = (la LNaCIOOZ + %,0,0, C) € “NZ' (280)
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To obtain values (or exact expressions) for the constants C;, we have to use boundary conditions
(2.57)—(2.59). We construct vector of constants c,

c=(Cy,...,C6)7, (2.81)
the right-hand side vector b following from boundary conditions
b= (_90707 _47TG707070)T- (282)

The first three terms in vector b are coming from the surface boundary conditions (2.57) and the
last three are coming from conditions for the bottom boundary, i.e., for both layer models A and
B. We also introduce matrix M,

Poef‘/ﬁ Poe‘/ﬁ (-% — VN + —Cpg‘IQ + i%) e VN
__u VN
0 0 \/Ne
_VYN, VN VN N (_a+ Ca )e—\/ﬁ
M = a a 2 4/ N
b Ny
0 0 (5+3%)e ™
b _ YNy
0 0 <ﬁ - m) e a
6_\/11_ﬁb e@b 0

2 4/ N a
& VN
VN © 0 !
(C_Qa - 4\%) e/ GemV e
b YN — Y YN ’
<§ — 4%) € a [ a € a
a b VYN, 1 YNy 1 YNy
(4N+m>“ “UNE VN
0 0 0
(2.83)
so that the surface boundary conditions then take the form
Mc=0b. (2.84)

The form (2.83) of the matrix M represents layer model A. For the layer model B there is
difference in the 5th row, according to the boundary conditions (2.59), hence the 5th row takes

form e e
M6 = (0,0, 7hce™ a0, S 1oe®30,0,0). (2.85)

The constants C; can be obtained from relation
c=M"'b (2.86)

The solution of such problem is to be given up the numerical implementation, in other words, we
do not seek the analytical solution for the constants C; as shown in Wu € Peltier, 1982.
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Chapter 3

Viscoelastic Response of a Flat Layer

At the end of Chapter 2 we arrived at the boundary-value problem (2.53) for the linear first-order
ODEs. In this Chapter we will continue with the time-domain formulation of gravitational vis-
coelastodynamics. For the 1-D depth-dependent, Mazwell model of flat layer we derive a linear
first-order system of PDEs with respect to both time and the depth. This system of PDFEs is ex-
pressed for a time-dependent solution vector yi,(t,z), constructed from the expansion coefficients
of field variables. The set of PDEs (3.24) becomes the main outcome of this chapter, elaborated
further in Chapter 4.
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3.1 Differential Equations for a Flat Layer

Let us now recall the field PDEs (2.16)—(2.18) in the form useful for further steps. The constitutive
relation of the Maxwell rheology reads

+=4F —¢(r— KV ul), (3.1)

where we used a well-known auxiliary parameter & equal to the ratio of the shear modulus and
viscosity, i.e., the inverse Maxwell time,

=1 (3.2)

If we combine the constitutive equation (3.1) with the field equations (2.16)-(2.17), we obtain a
system

V-l + f=V.[¢(r - KV-ul)], (3.3)
V- (Vo1 +4rGpou) = 0.

where the term 7% denotes the elastic part of the stress tensor 7. The dots over variables denote
time differentiation. The particular steps which lead to the resulting expressions are quite similar
to those made in Chapter 2.

3.2 Partial Differential Equations for the Maxwell Solid

In this section we will derive a system of PDEs with respect to both time and the depth. We
consider the depth-dependent distribution of these parameters:

Po :pU(z)a A= >\(Z), N:N(z)a K:K(Z), go :gﬂ(z)a ﬂ:ﬁ(z)a 526(2) (35)
and spatial distribution of field variables as follows:
u:u(xayaz)a ¥1 :(pl(xayaz)a T:T(xayaz)' (36)

The solution vector yy,;(t, z) is contructed form the coefficients of the Fourier expansion of the
field variables u, ¢ and T,

_ T
Yu(t,z) = (Ukl,Vkl,Tz(,kll),Tz(,l;.c)kaz,ka,Wkl,T,z(?lzl) : (3.7)

The only difference between y, (¢, z) and the elastic solution vector yZ(2) given by (2.37),

_ T
yh(z) = (Ukz,sz,Tf;gl 1),Tf;£ll),sz,ka,sz,Tf;g?)> . (3.8)

is in the coefficients of the Fourier expansion of the traction T, = e, - T, which is connected with
the elastic traction TY = e, - 7F through the relation following from (3.1),

T, =T —&(T, - KV - ue,). (3.9)

From (3.7)-(3.9) we obtain the following relations between the corresponding elements of y,;; and
E
ykl?
ylE = Y1, yQE = Y2, y5E = Ys, yGE = Y, y7E = Y7, (310)
9Y =3+ €(ys — KXpt), 9 =94+ &ys, 0¥ = s + &ys, with Xy = o — Lyp.
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We suppress both subscripts & and [ throughout this section when reffering to the elements
of yr; and ag;; of yy; and Ay, respectively. The symbol Xj;; means the Fourier expansion
coefficient (2.31) of V - u and we also suppress its subscripts & and [. In this 1-D case the
resulting system of PDEs remains decoupled with respect to both wave-numbers & and [ which
justifies this simplification of notation.

n (2.38)-(2.41) we collected relations for the first derivatives of the coefficients of u and ¢;.
These relations remain valid in the viscoelastic case. The only arrangement is the change of
variables from y!, to y,, according to (3.10). Hence we obtain the elements of y,,; like

11— 20509 = €las(ys — KX) + anays + a1sys] = Lars(ys — KX), (3.11)
o =002 = Elaxs(ys — KX) + azays + assys] = Lazuya, (3.12)
5 =2 0595 = Elass(ys — KX) + asays + assys] = 0, (3.13)
yr' =019 = Elars(ys — KX) + arays + arsys] = Earsys, (3.14)

where Y ; 1s denoting summarization Z j—1 and the zero-valued terms (i.e., those multiplied by
ai4,018, 023,028,053, 54, A58, 473 and a74) have been discarded.

In the next step we express the momentum equation (3.3) in the terms of the solution vector
Y- 1t is needed to substitute y,,; into the left-hand side of the equation (3.3) expressed in terms
of Y% in equations (2.42)-(2.43) and to evaluate the right-hand side of (3.3). If we substitute
(3.10) into (2.42)-(2.43) and differentiate with repsect to time, we obtain

vt =y 3+ (§(ys = KX))' = 32 ;b5 — fb34y4] Gy
7 [+ (€)' = X bugis = bialys — KX)| G

Zkl _yls + (gyg)l o Zjbsjyj} G]ES), (3.15)
f = > _—Zj%j?)jG/ng) - Zj64jz)jG,§1l)] : (3.16)

where the zero-valued terms (those with b33, bsg, baa, bas, bgs3, bga, bgs, €33, €34, €38, €43, 44 and 648)
have been discarded. For the right-hand side of (3.3) yields,

V-Elr—KV-ul)] = &(V-1—V(KV-u)|+VE-[r— KV -ul]
= ¢[~f - V(KV - )] + [T, — KV - ue.] (3.17)
> (65 ey — €KX + € (55 - KX)| GV
> e %yj ELKX) + €'y Gy
+ Z [€'s] kz ) (3.18)

where we use (B.19) for the representation of V(KV - u). Now we can extract the three scalar
components of the equation (3.3) from (3.15)—(3.17) and removing terms appearing on both sides,
we arrive at

TN

+

— 22,0345 = E[—y3 + baaya + 3 ;¢35y;]
= &[—y5 + 3 a35y;] (3.19)
yi' = 0459 = €[~y +baa(ys — KX) — (KX + 3 eq5y5]
=&y + > j045Y; — baoyo — (baz + LK X] (3.20)

ys' — D089 = —€ys (3.21)
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We recall that according to (2.49)-(2.51),

as;1.8 = b31.8 +c3.1.8,
as1.8 =ba1.8 + a8,

ag1.8 = bg 1.3

We accomplish the last step by substituting the elements of ykEl into the Fourier expansion
of the Poisson equation given by (2.52) and by differentiating with respect to time. But we have
zero values of terms ags, ag4 and agg, hence we obtain,

3j6, — Ej%jy'j =0. (3.22)

Completing (3.11)—(3.14) together with (3.19)—(3.21) we have arrived at a linear system of PDEs
with respect to time and the depth for the solution vector y,,,

a13(ys — KX)

a24Y4

—y5 + Zja'?)jyj

—yh + Y j045y5 — baoyz — (baz + §) KX

y;cl(ta Z) - AN(z)ykl(ta Z) = f 0 ) (323)
0
arsys
—g
which can be rewritten into the form
Yp(t,2) — AN(2)gp(t, 2) = &(2) [DN(2)yl(t,2) + En(2)yg(t, 2)] . (3.24)

Matrix Apy(z) takes the form of (2.54) and the explicit expressions of the matrices Dy (z) and
Ey(z) follow from (3.23) after substitution of coefficients ais,...,bg7 from (2.54) and X from
(2.26),

K
p
0

0o 0 -1 0 0O0O0 O

2y
=20 0 -1 000 0
Dy = 3a , (3.25)

0o 0 0 0 0 O0O0 O

0o 0 0 0 0 O0O0 O
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0 KN L 0O 0 0 0 O
Ba B .
0 0 0 -0 0 0 O
N N
0 pogo— O — po 0 0
2Nf)? A ¢ P
1 0
Loggey —L -2 0 2 ¢ 0 0
Ex=| " 3 af a , (3.26)
0 0 0 0 0 0 O
0 0 0 0O 0 0 0 O
1
0 0 0 o 0 0 0 -
1
0 0 0 0O 0 0 0 O

and let us recall, B = X + 2u,y = u(3X +2u)/B = 3uK/B and N = a?(k% +1?). For the case of
material incompressibility, K — oo, we arrive at:

1/6—=0, ApB—1, v—=3u and K/B— 1. (3.27)

In the limit of the elastic mantle, n(z) — oo, i.e., £(z) — 0, PDEs (3.24) should be consistent
with the corresponding equations governing elastic free oscillations in the zero-frequency limit.

In the opposite limit of the inviscid mantle, n(z) — 0, i.e., £(z) — oo, we obtain the static
PDEs

Dyy'(z) + Eny(z) =0, (3.28)
which can be shown to be equivalent with
y'(z) — Any(z) =0, (3.29)

where we assumed p — 0 in matrix Ay (z).

3.3 Boundary Conditions

Finally, we summarize the valid boundary conditions for the case of viscoelasticity. When re-
ferring to surface loads, we have to add a time dependency of the load. Again, we will follow
formulation shown in Farrell, 1972, i.e. the Fourier representation of surface load 77 takes the
form

ye(t) =Y f()Bu, (3.30)

where f(t) describes the time evolution of the load. Hence the surface boundary conditions yield

TSV (t,a) = —gof (1),
(1) _
Q(t,a) = —4rGf(t),
TO)(t,a) = 0.

Conditions at the bottom boundary, z = b, are remaining the same as in the elastic case, see
expressions (2.58)—(2.59).
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For the load applied at ¢ = 0 and kept in effect continuously for any ¢ > 0, i.e., for the
Heaviside time dependence f(t) = H(t), the Maxwell model responds elastically at ¢ = 0. So
that it is appropriate to require for y(¢, z) initial condition in the form

y(0,2) =y (2). (3.32)

The elastic solution y*(z) can be obtained from the system (2.53) by integration from the point
z = b, i.e., from the bottom side.
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Chapter 4

Numerical Methods and Techniques

In Chapter 3 we have derived the linear system of PDEs (3.24) with respect to time t and the
depth z for the solution vector y(t, z) describing the response of the depth dependent, viscoelastic,
Mazwell model of a flat layer. Now we are concerned with numerical methods applicable to this
system. In our first step we will enforce discretization in space to get ODFEs in time. Then we
will realize modal decomposition to solve the eigenvalue problem. Applying the finite-difference
technique, we undertake this in following paragraphs.
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4.1 Discretization in Space: Ordinary Differential Equations in Time

It is well known that the viscoelastic responses of compressible models can be characterized by
the exponential-like development in time. The spatial behaviour of the model is considerably
different — when we refer to spherically symmetric models, the dependency can be expressed in
terms of the spherical Bessel functions (Wu & Peltier, 1982).

For such system of PDEs, i.e. (3.24), a method based on discretization in the spatial domain,
known as the method of lines (MOL), represents a powerful solution tool (Hanyk, 1999). From
now on we consider only the spheroidal part of PDEs (3.24), so the solution vector y(t, z) consist
of 6 spheroidal elements.

Let us now consider the staggered grids {z;,i =1,...,J} and {z,j =1,...,J},
b:$0<z1<x1<22<x2<---<z]<x]:a, (4.1)

spreading over the layer, b < z < a. In order to express the system of PDEs (3.24) on the grid
{z;} by means of y(t, z) evaluated on the grid {z;}, we employ expansions of y(t, z) and its first
derivative evaluated at z; by means of weighted sums of y;(t) = y(¢, z;),

(¢
ylto) =D ol i), (4.2)
¢!
y'(taj) =Y af i), (4.3)
where az(q) are the weights given by a choice of z; and z;s. Using (4.2)-(4.3) we obtain

6.J scalar ODEs in time for 6. + 6 uknown elements of y,; by expressing system of PDEs (3.24)
on the grid {z;},

ij[ jolf| i) =

=0 i

where Aj = AN(J?]'), Dj = DN(l‘j), E]
have origin in boundary conditions (2.57),

)

and «;;

Mu

[gj( W4 Bl ))}yi(t), i=1,..., 0  (4.4)

I
=)

En(zj) and {; = £(x;). The last 6 necessary equations

—go 001 00O
My, (t) = 0 , My;=(000100], (4.5)
—4rG 000O0O 01
and the conditions (2.58), i.e. layer model A,
100 0 0O
My,(t) =0, My=|101000 0], (4.6)
000 01O
or the conditions (2.59), i.e. layer model B,
1 00000
Moy,(t)=0, Mo=[0 0010 0 |. (4.7)
000O0T1O0

We define a discretized solution vector y(t) with 6J 4+ 6 elements,

Y () = (o), y1(8),- -,y (0)" (4.8)
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for which ODEs and the boundary conditions (4.5) and (4.6) or (4.7) (differentiated in time)
form the resulting system of 6.J + 6 ODEs in time,

PY (1) = QY (1), (4.9)
where
770 P T L0 )swors0
PRCIPING & (Do) + Bia)
@ 10 6% (67--6) 6% (6.J+6)
P= , Q= 5 . (4.10)
1) _ 4 (0 ¢ (DY + B0
Ty —Avayy 6 (6.J-+6) ( “ zJ) 6 (6.7-+6)
IIlSXGJ 3><6 @3><(6]+6)

System (4.9) together with the initial condition (3.32) represents a purely initial-value formu-
lation of the problem of the viscoelastic responses of a flat layer. For given grids {z;} and {z;},
both matrices P and @ are constant. The matrix P is regular for all models studied here, so we
can write system (4.9) in equivalent form,

Y (t) = BY (1), B =P Q. (4.11)

This form is significant with the standard form a linear homogenous system of ODEs with con-
stant coefficients (Rektorys et al., 2000).

4.2 Modal Decomposition: The Eigenvalue Problem

A solution of ODEs (4.11) as a fundamental system can be written as a linear combination of
the constituents (see e.g. Rektorys et al., 2000)

et or  Ry(t)e', (4.12)

where s, is any nondegenerate eigenvalue of B, s, any (J-degenerate eigenvalue of B and R,
a polynomial of the matrix degree () — 1. Thus, eigenanalysis of matrix B can reveal a sub-
stantial information about the behavior of the solution of ODEs (4.11). We can easily see the
correspondence between a generalized eigenvalue problem

sPY = QY, (4.13)
and ODEs (4.9), while a standard eigenvalue problem,
sY = BY (4.14)

matches ODEs 4.11. In the case of regular matrix P both eigenproblems are formally equivalent.

For a given nondegenerate eigenvalue s = s, the corresponding eigenvector Y, with 6.J + 6
elements gathers the discretized (J + 1) eigenvectors Uy, V,, etc. The response of viscoelastic
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models to the time impulse, i.e., for f(t) = §(¢) is traditionally expressed by the surface load
Love numbers (Peltier, 1974),

h(t) = hPs(t) Z r{") exp(syt) (4.15)
Ity = d(t) +Z ]gl exp(spt) , (4.16)
E(t) = KkPo(t) + Z rék exp(spt) (4.17)

where AP, ¥ and kP are the elastic load Love numbers and the sums on the right-hand sides
describe the non-elastic response. The surface Love numbers are related to the 1st, 2nd and 5th
elements of solution vector y(t) by the definition (Farrell, 1972)

y1(2) hn(2)/ g0
y2(z) =ox | In(2)/90 , (4.18)
ys(2) —kn(2)

with @y the coefficient of the expansion of the surface potential of the point mass load. In order
to evaluate the non-elastic part of of the Love numbers, we employ formulas for the partial modal
amplitudes developed by Tromp & Mitrovica, 11., 1999

.

rit) = EUp(goUp +F), (4.19)
n T _ M2n+1

7"1(7) = E%(QOUZ) + Fp) y T = ; An ) (420)
k T

ri) = —%Fp(QOUp +F), (4.21)

where M is the mass of the Earth.

4.3 Numerical Techniques

The numerical implementation of the viscoelastic response of a flat layer can be divided in three
together connected parts. Let us now name and describe each one of them.

4.3.1 ”YBY?” Phase

The ”YBY” phase and its Fortran code provides numerical implementation of the impulse
response of a selected model. Elastic response is evaluated through both numerical and analytical
solution routines. The viscoelastic response is integrated in time with adaptive step-size routines
from Numerical Recipes - ODEINT. We employ the concept of stiffness' and simultaneously the
routines stiffpq and stiffb, both developed by dr. L. Hanyk?. These stiff time-integrators can
substantially reduce the number of time steps. However, the reduction of the number of time
steps in our geometrical approach was not so big as expected. We will discuss more than this in
the following chapter.

Output is provided in different ways, depending on model and further uses of the data. The
main interest lies on the behaviour of the vertical and horizontal displacements (temrs U and V'

!Stiffness occurs in a problem where there are two or more very different scales of the independent variable on
which the dependent variables are changing (see Hanyk, 1999).
2We are very grateful to dr. Hanyk for extending us the code and discussing concerning problems.
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INPUT

Model of layer
-homogenous/layers
-compressible/incomp
-selfgravitating /non
-number of grids per
layer

MAIN PROGRAM

/ The program YBY provides \

ouTPUT

Surface values of
Uand V
-dependent on N

-elastic/viscoel. /liquid

e analytical elastic solution -dependent on ¢
e numerical elastic solution

e Chebyshev grids preparation

Phys. parameters

U and V at the

-d.ensit.y e evaluation of the variables and their derivatives bottom
iscosity on the grids -dependent on N
-shez.xr modulus e initialization of matrices A, D, E, P, Q, B for d dent on ¢
-radius -dependent on

each type of input, i.e. nonself./selfgravitating,
incomp./compressible models

Time evolution e evaluation of the boundary conditions (for both
of the load types of bottom boundaries: model A and B)
linear e adaptive integration in time of the viscoelastic
-logarithmic response — the main cycle of the program

e eigenvalues and eigenvectors solver

{SPLINE interpolation in time /

Depth-depend.
Uand V
-dependent on N
-dependent on ¢

Numerical Eigenvalues

-dependent on N

routines
‘Numerical Recipes
-IMSL

-LAPACK

-NAG

Fig. 4.1. Schematic graph of the ”YBY” phase when evaluating the impulse response of a given model of flat
layer. The input paragraph is actually represented by several files containing external configuration, routines and
data files. The output takes very similar form. We obtain separate files for surface, bottom boundary, depth-
dependence and eigenvalues.

of the solution vector y) at the surface, at the bottom boundary and through the layers (depth
dependence). These temrs are evaluated for different orders of decomposition N and different
times ¢t. Hence we obtain the Fourier modes which stand as an input data for the second phase.
More detailed schema of the ”YBY” phase can be seen in Fig. 4.1.

4.3.2 7”ZBZ” Phase

The second part, called ”ZBZ”, provides many important steps. First, the program prepares
model of parabolic and cylindrical load and its Fourier coefficients, reads the output data from
the ”YBY” phase and interpolates in time and in the order N. Next step is multiplication of the
Fourier coefficients and the horizontal and vertical displacements. The inverse Fourier transform
of these data is the final step in numerical part of the code.

4.3.3 Visualization Phase

The last step in the whole process is visualization of the time evolution of the viscoelastic response.
The final part of program ”ZBZ” prepares headers and data sets as an input for visualization
program Amira. The files are created for each time step and contain the coordinate grid and
values of vertical and horizontal displacements on the grid.
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Step 0 : Theoretical phase
e Equations describing the problem
e Forward horizontal Fourier transform of all variables and equations
e Discretization in space
e Explicit integration schemes

N~

Step 1 : "YBY” phase
e Evaluation of the impulse response for a given model
(i.e. integration in time)

f Step 2 : ”"ZBZ” phase \

e Evaluation of coefficients of a realistic load
e Interpolation in time
e Interpolation in N
e Multiplication of the impulse response by the load coefficients
e Inverse Fourier transform

k e Data preparation for visuialization /

Step 3 : Visualization phase
e Graphic outputs in Amira

Fig. 4.2. Summary of the work presented in Chapters 2-4. Steps 1 and 2 are represented by Fortran code as
was described in previous sections, the visualization part represents data manipulation with commercial program
Amira.

A small schematic table summarizing the main outcomes of Chapters 2—4, i.e., a journey from
the theory to the results can be seen in Fig. 4.2.



Chapter 5
Results

This chapter should summarize the results developed in Chapters 2-4 and show the main outcomes
in the way of graphs and pictures. First we will focus upon correspondence between the Cartesian
geometry approach which had to be developed in the previous chapters and the spherical geometry
approach dealt by e.g. Peltier, 197, Hanyk, 1999, etc. Next we will move our attention on results
coming from the numerical modelling. We will deal with models of layer (ie. homogenous/layered,
compressible/incompressible, selfgravitating/non-selfgravitating etc.), possible discretizations and
also we will discuss the concerning problems.
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5.1 Cartesian Geometry versus Spherical geometry

In this section we will compare the main results of both formalisms, the Cartesian and the
spherical, respectively. First, we will focus upon the elastic case and secondly we will move on
the viscoelastic case.

5.1.1 Elasticity

At the end of Chapter 2 we have arrived at the set of ODEs for the elastic solution vector y?,
cf. (2.53),

!
y? = Ay", (5.1)
where the matrix A holds, cf. (2.54),
0 AN ! 0 0 O 0 0
1 o § 1
—— 0 0 - 0 0 0 0
a u
N N
0 P0go— 0O — 0 po 0 0
1 ¢ A ¢ P
0
—-pogo  —(y+p) —— 0 — 0 0 O
A= a 2 af a : (5.2)
—4rGpy 0 0 0 0 1 0 0
N
0 AnGpo— 0 0 < 0 0 0
a a )
0 0 0 0 0 O 0 -
N H
0 0 0 0 0 0 pu= O
a

with N = a?(k? + [2), a the scaling length and k and [ both the wave numbers. To see the
spherical representation, we can use e.g. monograph by Hanyk, 1999, expression (2.50),

2\

NA ! 0 0 0 0 0
rp rp p
—1 1 0 l 0 0 0 0
r [
4 4 2N N 4 N +1
_’2Y_ Pogo 27+ pogo 4 N (n+1)po 00 0 0
r r r r rB T r
2 1 Ny+ (N -2 A 3
LI Pl ) . B R R
A= r r rB T T , (5.3)
1
— 471Gy 0 o o -t 10 0
r
e 1 N -1
_w dn PO 0 0 0 n 0 0
T T ) )
0 0 0 0 0 — —
r 1
N -2 3
0 0 0 0 0 0 p—s ——
r r
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where N = n(n+1). The symbol n denotes a spherical degree (or angular order) of the spherical
harmonics representation and the symbol r denotes the radius.

To start the discussion, let us first mention what connects both matrices together. The system
consists of two independent systems, one with 6 x 6 matrix (a;.6,.6) containing the spheroidal
coefficients of w and 7F, and the second with 2 x 2 matrix (a7.8,7.8), connecting the toroidal
coefficients (cf. Peltier, 1974 or Hanyk, 1999).

The main difference between those two approaches can be immediately seen on the diagonal of
the matrix A. The Cartesian matrix (5.2) has all the diagonal terms a;;,7 = 1...8 equal to zero.
The explanation ensues from comparison of the expressions for the expansion terms (2.28)-(2.32)
in monograph by Hanyk, 1999 and (2.31)-(2.35) in Chapter 2, respectively. We can see that in
expressions in spherical geometry there exist among others both differentiated (with respect the
depth) and non-differentiated terms in sequence: U, V, W, F. The differentiated terms appear on
the left-hand side of the system (2.53) and the non-differentiated terms are to be appeared on
the right-hand side. But those non-differentiated terms cannot be found in expressions described
in Cartesian geometry (2.31)—(2.35). The explanation for such behaviour can be found in general
expression for the divergence differential operator acting on vector entities, cf. expression (B.37)
in Appendix B in monograph by Hanyk, 1999 and expressions (B.20)-(B.21) in Appendix B,
Section B.2.

For the non-diagonal terms we can conclude in similar direct and generalized way following
from the geometrical distincts. The geometrical intuition (i.e. the Cartesian approach as a limit
case of the spherical) could one allow to use similar limit expressions like

r — a (near infinity) and n — oo. (5.4)

Comparing both matrices (5.2) and (5.3), we can state that the following expressions justify such
behaviour, so that the geometrical idea succeeds

n/r — 0,

1/r — 1/a,

N/r — N/a, (5.5)
1/r? =0,
N/r? =0,

and, let us recall, that the symbol N = n(n + 1) on the left-hand side comes from the spherical
representation.

But we can find one exception, which does not justify these rules. Term a3; in Cartesian
matrix (5.2) differs in its behaviour against the rule 1/r — 1/a (cf. term a3 in spherical
matrix (5.3)). The origin of such fact can not be found on the journey through the formalism
leading to the matrix A, but in the Poisson equation and its initial form (2.7).

5.1.2 Viscoelasticity

In the viscoelastic case we will compare both matrices D and E coming from the system (3.24)
for the solution vector y

y—Ay = ({[Dy' +Ey], (5.6)
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where the Cartesian matrices hold, cf. (3.25) and (3.26),

K 0O 0 0 00O O
g

0 0O 0 0 00O O

0O 0 -1 0 0O0O0 O

X 0 0 -1 0 00 O

D=| 3a , (5.7)

0 0O 0 0 00O O

0 0 0 0O0O0 O

0 0O 0 0 00O O

0 0O 0 0 000 -1

KN 1
0 — — 0 0 0 0 O
Pa p )
0 0 0 g] 0 0 0 O
N
0 pogo—_ 0 " 0 po 0 0
1 2N~ A £0
- YA g g g
E=| " 32 af a (5.8)

0 0 0 0 0 0 0 O
0 0 0 0 0 0 0 O
1
0 0 0 0o 0 0 0 -
W
0 0 0 0 0 0 0 O

The spherical representation of was again taken from monograph by Hanyk, 1999, expressions
(3.24) and (3.25):

K o 0 0000 o0
B
0 0 0 0 000 0
Y 1 0 000 0
3
T 9 0 -1 000 0
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3r2 T 3r2 T rB T r Po
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When referring to differences between the Cartesian and the spherical matrix E, we can use the
same arguments as in the (previous) elastic case. Hence we obtain the same relations

n/r — 0,

1/r — 1/a,

N/r — N/a, (5.11)
1/r% =0,
N/r? =0,

we can make the same conclusions and again find one exception, which does not correspond to
these rules. The term e4o does not confirm the rule N/ r2 — 0 and the origin of such behaviour
can be found in the expression (3.15) for divergence of the time derivative of the elastic part of
Cauchy stress tensor 77 together with expressions (3.10) for elements of vector y.

Comparing matrices D, we can see that it is needed to find an explanation for behaviour of
the term ds;. The zero value of this term in Cartesian matrix comes from zero value of the term
b33, what can be seen in expression (2.44).

Tab. 5.1. Physical Parameters of the Homogeneous Layer Model and Other Constants

layer thickness a 6371 km

density pg 5517 kgm ™3
Lamé elastic parameter A 3.5288 x 10'" Pa
shear modulus p 1.4519 x 10! Pa
bulk modulus K 4.4967 x 10! Pa,
viscosity n 10?! Pas

B A+ 2u

g 3uK/pB

3 pm/n

Newton gravitational constant G 6.6732 x 10~ m3s~2kg~!
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5.2 Numerical Implementation

We illustrate the results from the reformulation of IV/MOL approach by some output of the
numerical modelling. First, we will focus upon comparison of the analytical and numerical
elastic solution for the homogenous and incompressible model. Next, we will move on the depth-
dependent, Maxwell viscoelastic Earth models, both incompressible and compressible. We are
concerned of homogenous or layered models (such as core-mantle model or simple PREM). Phys-
ical properties of the homogenous model can be seen in Table 5.1.

5.2.1 Analytical and Numerical Solution for Homogenous and Incompressible Model

At the end of Chapter 2 we have developed analytical solution for the homogenous and incom-
pressible model of layer.

5.2.2
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Fig. 5.1. Time evolution of the surface values of the terms U, V and F, for different values of N, i.e., N = 100,
300, 1000, 3000 and 10000, of the homogeneous incompressible model evaluated by the IV/MOL approach. The
responses have been calculated with various density of the spatial discretization: symbols 4+ denote values obtained
with 11 equidistant spatial grid points, X pertain to 51 grid points and A to 101 grid points (J = 10, 50 and 100,
respectively).
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We have finalized the geometrical reformulation of the initial value/method of lines approach to
viscoelastic response from the spherical geometry to the Cartesian geometry. The field partial
differential equations (2.16)—(2.18) in the material-local form have been subjected to the Fourier
horizontal decomposition. With the elastic constitutive relation (2.13) being considered first, the
procedure of derivation of the boundary-value problem for the ordinary differential equations
(2.53) with respect to the depth has been exposed. We have obtained analytical elastic solu-
tion for the homogenous and incompressible model of layer following the analysis presented by
Wu € Peltier, 1982. The similar procedure to the elastic case and generalized for the Maxwell
viscoelastic constitutive relation (2.18), has been introduced to derive the partial differential
equations (3.24) with respect to both time and the depth. In accordance with the idea of the
method of lines, the spatial discretization has been enforced. This has led to the set of ordinary
differential equations with respect to time in the form appropriate for the applications of stiff
integrators (Hanyk, 1999).

The results we have achieved, led us to the following conclusions:

e The geometrical reformulation developed in this thesis can be applied to regional modelling
of the viscoelastic response

Problems, simplifications we have used,
Further improvements, further use, postseismicity as an internal source contra external source...

We have used models of glaciers (parabolic and cylindrical) as an external force. Further
possible applications can lead to internal forces such as postseismic deformation.
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Appendix A

Transform

1er

Four

which is used for quantitative description of some geophysical models,

’

The mathematical approach

is to be developed in this appendiz. First we mention theoretical aspects of the Fourier transform.
Secondly, we show some useful identities which may be helpful on journey leading to the final

results.
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A.1 Defining Fourier Transform

Let R, be a n-dimensional space of real numbers and L; be a space of finitely integrable functions.
For complex function f € Li(R,) we define its Fourier transform F4-B:k) f with the formula

(f(A’B’k)f)(f) = An/ e—ik(m,ﬁ)f(l,)dx’ EeR,, (Al)

and the inverse Fourier transform .7-'(:?’3’]6) f with the formula

(FAPR £y (¢) = B / MO f(o)de, € € Ry, (A.2)

n

where parameters A, B,k € R\{0} are related through

and where we also used a formula for the scalar product of z € R,,y € R, in space R,,,

n
(z,y) =) zjy;.
j=1

There are different ways to define the Fourier transform', lots of them differs only by values of
the parameters A, B and k. The most frequent values of parameters A, B,k are A =1, B =
1/(2m), k = 1, hence we obtain well-known formulae for the Fourier transform and the inverse
Fourier transform

Ff= e_i(m’f)f(x)dx, (A.4)
Ry

Faf =0 [ @95, (A5)
The relation (A.3) ensures relevance of the theorem of inversion:

]_-(:?,B,k)y_—(A,B,k)f _ }—(A,B,k)}-ﬁ,B,k)f _ (A.6)

A.2 Properties and Identities
Let us now denote the Fourier transform F(4P#) f and the inverse Fourier transform fﬁ’B’k) f

of a general function f € L;(R,) by the symbols f and f, respectively. Following relations ensue
directly from the definitions (A.1)—(A.2)

f=(B/A"f(=¢), F(&) = (B/A)"F(©), F(©) = (B/A"f(2), (A7)

where the overline symbol stands for complex conjugation.

'Our choice was similar to Kopdéek, 2001
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Connection between shifting and multiplying by an independent parameter is frequently used
property of the Fourier transform

o —

flz—2)(€) = e &I f(g), 2 € Ry, (A.8)
f(& = ¢) = e*@O f(2)(€), ¢ € Ry, (A.9)
F(ex)(€) = le| "f(¢/e), € € R\{0}. (A.10)

We can see, that shifting in the "time” (”frequency”) domain corresponds to multiplication by
the exponential in the ”frequency” (”time”) domain. Following identities are direct consequences
of the definitions (A.1)—(A.2):

fgdx = fgdz, / fgdx = fgdz, (A.11)
Ry Ry Ry Ry,

for functions f,g € L1 (Ry,).

Finally, we show relationship between the Fourier transform and derivatives, i.e. multiplica-
tion by an independent variable:

e Let f € C5(R,), i.e. let f be continuous to the order of s and let derivation D*f € Ly (Ry,),
where a denotes the order of the derivation and must satisfy o < s. Then we obtain

Df(€) = (ik€)*f () (A.12)
e Let f € L1(R,) and z%f(z) € L1(R,). Then for « < s and f € C*(R,), yields
D*f(€) = F((~ikx)* f(2))(€) (A.13)

Thus, we may say in short that differentiation in the ”time” domain corresponds to multiplication
by independent variable in the ”frequency” domain and conversely.

There are different ways to define the Fourier transform?, lots of them differs only by values
of the paramaters A, B and k.

20ur choice was similar to Kopdcek, 2001
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Appendix B

Discovering the Expansions

In this Appendiz we show the exact steps which lead to the resulting expansions shown in Chapters
2 and 3. We define three differential operators, which act on scalar, vector and second-order
tensor fields. Collected expressions from the apparatus allow us to converse the field partial
differential equations (PDEs) into the system of ordinary differential equations (ODEs). At the

end of this Appendix we arrive at expansions for the Poisson equation and for the forcing term
i equation of motion.
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B.1 Differential Operators in Cartesian Coordinates

Let e;, e, and e, be the unit basis vectors of a Cartesian system z,y and z, denoted as (z,y, 2) =
(&1,&2,&3). The differential operators grad, div and rot acting on the scalar and vector functions

[ = f(xayaz)v (B]-)

u = u(z,y,z) = ux(x,y,z)ex—i—uy(x,y,z)ey—i—uz(w,y,z)ez (B2)

can be written as follows:

0
gradf = Vf = Za—g_ei, (B.3)
=1 ¢
3 u;
. — _ i
divu = V.-u = z:ZI¥ (B.4)
rotu = VXxu = Zs~~ %e- (B.5)
= - A ijk 8§] ) .
ijk
P L (O,
gradu = Vu = ZZ <a—]> e;ej, (B.6)
i=1 j=1 i
where €5, denotes the Levi-Civita symbol (e123 = €231 = €312 = —€132 = —€312 = —€213 = 1,
otherwise 0). Expression for the Laplace operator A = divgrad = V-V = V? can be
obtained by substituting (B.3) into (B.4),
3
82
Af=Y" —f (B.7)
i=1 0¢;

Let us also mention here two useful identities, which follow from the expressions for the differential
second-order operators,

Au = VV-u—-V XV Xu,

V- (Vu)l = VV.u. (B.9)

—~
o8
co

~—

B.2 Differential Operators Acting on Fourier Expansions

Let By(z,y) be the scalar basis function defined by (2.19) and G,(d_l), GSZ) and G,(g) the vector
basis functions defined by (2.21)-(2.23). Denoting the horizontal derivatives of the scalar basis
function (2.19) we obtain expressions which allow us to rewrite our further steps more clearly:

OB . OBg .
B(z,y) = — = = ikBu, Bj(z,y) = oy il Bg. (B.10)
Hence the vector basis functions (2.21)-(2.23) now hold,
G (@) = Bulz.ye, (B.11)
1
G\ (x,y) = aBy(z,y)e. +aBl(z,y)e,, (B.12)

Ggg)(w,y) = —ale(w,y)ex-i—aB,fl(w,y)ey. (B.13)
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The expansions of scalar and vector functions can be expressed as
f(zy,z) = Zkl Fru(2)Br(2,y), (B.14)
ul,y,2) = 3 |G @,y) + VG (2 9) + Wa(2)G (w,9)] . (B.15)

The scalar components of u = (ug, uy, u,) yield from (B.11)-(B.13) and (B.15),

Up(z,y,2) = ey u = Zkl (VB — aWyBY)] (B.16)
uy(z,y,2) = e, u = Zkl [aViu B}, + aWi B} , (B.17)
uy(z,y,2) = e,-u = ZklUlekl' (B.18)

From now on we suppress both subscripts £ and [ of the coefficients Fi;, Ug;, Vir, Wi, Xgi, and
of the horizontal derivatives of the basis function, Bf, and B},. Expressions (B.3)—(B.4) for the
first-order differential operators acting on expansions (B.14)-(B.15) using (B.16)-(B.18) yields:

Vi = Y [F'Bue. +F (B + Bley)]

= [F " lFGI(ell)] ; (B.19)
Vou = Z [a(~E*V +1kW — IV — KIW) + U'] By
- Zkl XBkl’ (BQO)
with X = U'-ZV, (B.21)
— _N =1 _ w1 (D) 1 1 ~(0)
Vxu = Zkl a Wle w le + ( aU +V )le y (B22)

where N = a?(k? +[?) and the prime ' stands for the derivative with respect to z. The second-
order differential operators take the form as follows:

v-vf = 3 [F"—EF]Bu, (B.23)
e =3, [(U” e el e
VxVu = ZM[ v -v) &Y + (v - v GLY)

+ (HZw-w" G ] (B.25)
vovs = Y0 -dnet s (v -y el

+ (- Xw) 6], (B.26)

TxTru = X, [V e v ol
+ (W Aw) 6. (B.27)

B.3 Strain Tensor
The scalar components of symmetric strain tensor e, defined by

- % [Vu + (Vu)T], (B.28)
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can be expressed in the Cartesian coordinates using the components of Vu by (B.6), and the
expansion of these components can be simply obtained by substitution from (B.16)-(B.18) as
follows:

Quy Oy | Duy Dus | Oug

€rx 261‘3/ 2ey, Oz o 5 oy Oz 1982
” _ u ouy ()
eyy 2ey, | = ” a_; 5o + S (B.29)
” ” €y » . du,
0z

a(=k2V + KIW)By,  a(?W — k*W — 2kIV)By, a(V'B® — W'BY) + UB®
=> v a(—1?V — kIW) By, a(V'BY + W'B*) + UBY | (B.30)
kl ” ” UIBkl

Symmetry of the tensors is indicated by the double quotes. From the form of (B.30) we can easily
obtain the first invariant of e,

€=epp ey ten = Zkl(U’ ~ VB =V - u. (B.31)
We express the Fourier expansion of the vector e, - e,

€, e = ezeyteye,y t+ee,,

= Y el +iu e vie) +awel]. (3.32)

and the expansion of the V - e,

oe;; 1 % 0%u;
(v.e)j:;a&?_iZ(ﬁJra&%), (B.33)

i

where the individual components hold,

2(V-e), = (—2ak*VB® 4 2ak*WBY — aklV BY — aklW B® — al*V B®

+al*WBY + U'B* + aV"B* — aW"BY), (B.34)
2(V-e), = (—aklVB®+ akiWBY — ak*V BY — ak?*W B* — 2al*V BY
—2al*WB* + U'BY + aV"BY 4+ aW" B*), (B.35)

20V -e), = (—ak*V' +akiW' — kU —al?V' — akIW' — 12U +2U")By,;.  (B.36)

Hence we arrive at:

Ve = Zkl

+

_ 1
(v - Jv' - Bu) GV 4 5 (v + LU -2k 6y

| — |
N —

w" - XwyeW|, (B.37)

a2

N —

where we used identities

kIB® = Kk’BY, (B.38)
kIBY = I’B”. (B.39)
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B.4 Elastic Stress Tensor and Elastic Stress Vector of Traction

The elastic stress tensor 77 is defined by the elastic constitutive relation, cf. (2.13), with 1-D
depth-dependent distribution of Lamé parameters, A(z) and p(z),

7 = AV - ul +2pe = AV - ul +p (Vu + (Vu)'), (B.40)

where A = (K — 24) and e is the strain tensor defined by (B.28). Tensor 7 is symmetric.
To obtain the components of 77 we use expressions for the strain tensor e (B.29)-(B.30) and
expansion (B.20),

Oy 0 Ouz Ou, Oug
dorh ah N[ AVourmi w(Geg) (G s
” E = 9 0 Ou, o
LT AV-uk (%5
Tzz ” 9 >\V ‘u + 2[1}%
[AX + 2pa (K2V + KIW)] By pa(i®W — k*W — 2kIV) By,
=> ” [AX + 2pa(—12V — KIW)] By
kl ” 9

w(UB* + aV'B* — aW'BY)
w(UBY +aV'BY + aW'B*) | . (B.41)
(AX +2uU") By
The expression for the scalar product of e, - 77, i.e. the stress vector of traction Tf , can be
found as follows, using (B.20) and (B.32),

T = e, . 7% = rxe,V-u—+2ue,-e
ZM [(AX +2uU")Bye.

+ w(UBY + aV'BY + aW'B%)e,
+ w(UB® +aV'B* — aW'BY)e,]|

=Y [TZE(ﬂ)GI(Jl) L TEO G +TZE<0>G§§)}, (B.42)
where
TV = uU' X = BU' = ATV, (B.43)
TPW = w(V'+30), (B.44)
PO = W, (B.45)

with 5 = A+2u and again with suppressed both subscripts k£ and ! of the coefficients TzE—l,klv Tﬁ,kl
and TzEO,k:l' In the next step we will express the expansion of V - 7, exactly

V-8 =AVV.u+Ne,V-u+2uV-e+2ie, e (B.46)
First, application of the grad operator (B.6) onto (B.20) gives,

v(vow =3 [xei"+x6y] (B.A7)
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Second, applying e, on (B.20) yields,
~1
e(Vow) =) XGi". (B.48)

Third, the expression for V - e is taken from (B.37), fourth, the term e, - e is taken from (B.32)
and finally, we may conclude that the expansion of V - 7F equals to

verf = 3 ADX XX Ut - BV - Ju) w0 6L

+ RX +pu(V" U =28y LU+ V)] G

+ (W = Xw) + W G} (B.49)
Differentiation of (B.43)-(B.45) with respect to z gives
TPED = XX 4 AX 4 20U + 2uU", (B.50)
TP — AU+ V) + pEU + V), (B.51)
TEO" — W' W (B.52)

If we substitute these expressions into (B.49) and evaluate the term X from (B.21) and (B.43),
we obtain the final form,

Ty _
v.rt = Zkl [(TZE( R r e

+(TPW 4 21D Ny 4 v)@Y
@~ um)Ed)]. (5.5
where we defined,
y = 7’“‘(%5 21) (B.54)
and used identity following from the last expression,
Y= W (B.55)

B.5 Forcing Term Expansion and Poisson Equation

Now let us express the expansion for the forcing term f in (2.16). As we mentioned in Chapter
1, we assume 1-D depth-dependent distribution of density pg = po(z). Introducing the Fourier
expansion of @1, cf. (2.26),

1= Zkl F By, (B.56)

the expansion of f can be found (both subscripts k& and [ are suppressed for the coefficient Fy;, Uy,
and Vi),

f = —poVe1 + V- (pou)goe. — V(pogoe: - u)
= —poVer +poV - ugoe, — poV(goe, - u)

B Zkl [—po (FIGIE!_I) - %FGIS)) + pogo (U' = &V) Gl(cl_l)
" (e 20Gt)

- Zkl [(—pogo%Vkl — Q) Gy + L (—po Fiu — pogoUit) G | (B.57)



B.5 Forcing Term Ezpansion and Poisson Equation 51

where the auxiliary coefficient Qy;(z) holds,
Qi1 = Fyy +4nGpoUy, (B.58)

and where the Poisson equation (2.7) for the initial field ¢y has been used in the case, that the
value of initial gravitational acceleration gy is assumed to be positive,

gy — 4rGpy = 0. (B.59)
The expansion of the left-hand side of the Poisson equation (2.17) can be derived in two steps:
Vi +4rGpou = > [ (F'+4xGpoU) GV + (LF +4nGpoV) G
+ 47TG,00WG](£)]
= |Gy + (AF +anGoyV) GYY
+ 4nGpW Gy, (B.60)

V- (Vi +4nGpou) = Y [Qiy— 25 Fu — 4nGpoy Vi) Bu. (B.61)
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