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Abstrakt: Je diskutován výpočet stochastických silných pohyb̊u p̊udy a jeho metodolog-
ické aspekty pro konečný zdroj. Trhlina je popsána stochastickým kinematickým mod-
elem s k−2 rozložeńım skluzu (k je vlnové č́ıslo). Zvláštńı pozornost je věnována
náběhovému času závislému na vlnovém č́ısle (Bernard et al., 1996). V tomto mod-
elu se trhlina š́ı̌ŕı konstantńı rychlost́ı jako puls o š́ı̌rce L0 (spojené s maximálńım
náběhovým časem). Nehomogenity skluzu menš́ıch charakterických rozměr̊u se vytvoř́ı
v čase úměrném jejich prostorové vlnové délce. Bylo zjǐstěno, že nejd̊uležitěǰśı část
vlnového pole v 1D vrstevnatém modelu v lokálńıch vzdálenostech (< 50 km) je dána
př́ımou S vlnou. V této práci se tedy uvažuje pouze tato. Použ́ıvá se paprsková
teorie. Paprsky jsou pro každý přij́ımač nalezeny z ř́ıdké śıtě bodových zdroj̊u na
zlomu. Nalezená paprsková řešeńı (časy š́ı̌reńı a komplexńı amplitudy) jsou inter-
polovány do śıtě dostatečně husté pro kinematické modelováńı. Heterogenńı model
skluzu je použit k modelováńı silných pohyb̊u p̊udy během Aténského zemětřeseńı v
roce 1999 (Mw = 5.9). Mapy maximálńıch hodnot zrychleńı (PGA) poč́ıtáme pro
r̊uzné k−2 modely skluzu s r̊uznými funkcemi rychlosti skluzu a pro několik hodnot
L0. Simulace jsou porovnány s publikovanými makroseismickými daty (intenzitami) a
s výsledkem modelováńı nezávislou metodou.
Kĺıčová slova: kinematické modelováńı, k−2 skluz, silné pohyby p̊udy, PGA, Aténské
zemětřeseńı.
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Abstract: Stochastic strong motion synthesis with its methodological aspects for a
finite fault is discussed. The rupture is described by a stochastic kinematic model
with k−2 slip distribution (k being the wave number). Special attention is devoted
to the wave-number dependent rise time (Bernard et al., 1996). In this model the
rupture propagates with constant velocity in a slip pulse of width L0 (connected with
the maximum rise time). Slip inhomogeneities of shorter characteristic dimensions
rupture in time proportional to their spatial wavelength. It was found that the most
important contribution to the wave field in 1D medium consisting of homogeneous
layers in near source range (< 50 km) is usually due to direct S waves and therefore
only these waves are considered in this study. The ray theory is used. The rays for each
receiver are traced from grid points distributed sparsely over the fault, and then the
parameters of the ray solution (travel times and complex amplitudes) are interpolated
by bicubic splines into a grid dense enough to perform kinematic modelling. The
heterogeneous slip distributions is used to model the strong ground motions during the
1999 Athens earthquake (Mw = 5.9). The peak ground acceleration (PGA) maps have
been computed for various k−2 slip models with various slip velocity functions and for
several values of L0. The simulations are compared with published observation data
(macroseismic intensities), as well as with the previous modelling by an independent
method.

Keywords: kinematic modelling, k−2 slip, strong motions, PGA, Athens earthquake.
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Chapter 1

Introduction

Short fibres of cognition lead to a long thread of knowledge.

Strong ground motions are studied because they represent (besides surface
ruptures) the most important seismic hazard during an earthquake. They can
damage engineering structures and, consequently, injure or kill people who use
them. To protect the structures, engineers need to know realistic ground motion
estimation information about possible impact of a future earthquake. They are
mainly interested in realistic broadband (about 0.5−20 Hz) synthetic ground ac-
celerations. One of the existing approaches to the task is the kinematic modelling
of strong ground motion. This is the main topic of the presented work.

The strong motions are important also for seismologists because the recorded
waveforms contain information about (among others) the dynamics of the rup-
ture. The high frequency content of the ground acceleration is influenced by
stopping and starting tends of sliding and short wavelength heterogeneities of the
rupture process. These complexities are linked to complexities of the dynamic
rupture properties studied by the fault mechanics, e.g., static and dynamic fric-
tional coefficients, strength, etc. Unfortunately, the information about the source
is masked by propagation effects, which make this problem difficult and not yet
resolved.

High frequency numerical modelling of finite extent sources requires strong
computing power (large computer memory and high processor speeds). Fortu-
nately, great improvement in computers as well as in computer science allows for
such calculations nearly in real time.

In this chapter we briefly describe the motivations for this work. Next we
introduce the physical quantities and derive basic formulas, which are used in
the text. We give a brief discussion on source scaling laws in the section 1.3. The
rupture models used by seismologists in strong motion prediction are discussed
in chapter 2 with emphasis on kinematic models. The ”k−2” broadband rupture
model is discussed in detail and generalized. The strong motion synthesis together

9



10 CHAPTER 1. INTRODUCTION

with the asymptotic Green’s function computation is discussed in the chapter 3.
In the chapter 4, the theory and methodical aspects discussed in the previous
chapters are applied to modelling of strong ground motion for the 1999 Athens
earthquake.

1.1 Motivation

There are two main motivations for this work. The first one is to find a way to
model past earthquakes to determine some characterization of the rupture pro-
cess. This is done for the 1999 Athens earthquake in Chap. 4. The second one is
the task of strong ground motion prediction for an unknown (future) earthquake.

To address the latter a EU project PRESAP has to be mentioned. PRESAP is
an acronym for ”Towards Practical, Real-time Estimation of Spatial Aftershock
Probabilities: a Feasibility Study in Earthquake Hazard”. Its aim is to find
out whether the following procedure of prediction of strong aftershock and its
impact could give reasonable results and whether it could be done in nearly real-
time: After a strong earthquake, its fault plane solution is determined. The slip
inversion is then performed. The resulting slip model is used to compute the
redistribution of the static stress in the vicinity of the earthquake on oriented
planes. The stress map is compared with the map of active geological faults
and if there is found a correlation, it is characterized as an area where a strong
aftershock can occur. The possible magnitude is estimated. The ground shaking
(our task) is then computed in the near source region. After the local conditions
(site effects) are taken into account, the possible dangers in urban areas can be
estimated.

The project is based on indications given by seismologists in case of, e.g.,
Landers earthquake (M = 7.3), see King et al., 1994. The static stress redistri-
bution is well correlated with the small aftershocks as well as with the Big Bear
earthquake (M = 6.4), which occurred about 3 hours after the main shock. A
large aftershock can also occur much later.

Note that in some cases the strong aftershocks can be more devastating than
the main shock. The current thrilling example is a series of two strong earth-
quakes in the Hindu Kush region, Afghanistan. On March 3, 2002 a M = 7.4
event occurred 256 km beneath the surface. It caused death of at least 113 peo-
ple; most of them were killed due to landslide triggered by the quake. This shock
was followed by a shallow earthquake (hypocentral depth of 8 km) on March 25
with M = 6.1. This quake caused more causalities (at least 1,500 people killed)
and damage than the previous one of intermediate depth. Could have been this
second earthquake triggered by the previous one? Are the seismologists able to
predict such strong aftershock? These questions are very important and not yet
resolved. The aim of this study is to try to answer a more specific question
whether we can predict realistic ground motions caused by an earthquake of a



1.2. BASIC EQUATIONS 11

given size and location.

1.2 Basic equations

The seismic source and its radiation is well investigated problem in elastodynam-
ics. The displacement u measured at r caused by the seismic moment tensor
distribution M corresponding to a seismic fault Σ is given by the representation
theorem (see, e.g., Aki and Richards , 1980)

ui(r, t) =

∫∫

Σ

dξGij,k(r, t; ξ) ∗Mjk(ξ, t), (1.1)

where G is the elastodynamic Green’s tensor, ξ(x, z) represents the position on
the fault, ∗ means the time convolution and comma in the subscript denotes the
spatial derivative. The seismic moment tensor for shear slip on the fault is given
by:

Mjk(ξ, t) = µ(ξ)∆u(ξ, t) [nj(ξ)νk(ξ) + nk(ξ)νj(ξ)] , (1.2)

where µ is the rigidity, ∆u the slip function (discontinuity of displacement), ν
and n are the unit normal to the fault and the unit vector in the slip direction,
respectively.

Farra et al., 1986, introduced the impulse response of a medium to a point
double couple dislocation source:

Hi(r, t; ξ) = µ(ξ)nj(ξ)νk(ξ) [Gij,k(r, t; ξ) +Gik,j(r, t; ξ)] . (1.3)

Using (1.2) and (1.3) we can express (1.1) as

u(r, t) =

∫∫

Σ

dξH(r, t; ξ) ∗∆u(ξ, t). (1.4)

For simple media, the calculation of H can be done analytically or using
some approximations. For more complicated media, H can be determined nu-
merically by, for example, the finite differences, the discrete wave-number method
or asymptotic methods (e.g., the ray theory).

Spudich and Frazer , 1984, proposed that in smooth models it is often possible
to represent H only by the ”far-field” part of the complete Green’s function (ray
approximation for given elementary wave):

H(r, t; ξ) = H0(r; ξ)∆̇(t− T (r; ξ)), (1.5)

where H0 is the ray amplitude, ∆(t) = δ(t) − i/(πt) is the analytic function
of Dirac’s delta function δ, the dot above ∆ means the time derivative and T
denotes the travel time. The equation (1.5) is a general formula for all types of
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rays (reflected, transmitted, converted etc.). The calculation of H 0 using the ray
theory is discussed in detail in section 3.1.

It should be noted that H0 is generally complex vector. The resultant syn-
thetic seismogram can be obtained by taking the real part of the representation
theorem.

The ray approximation can be applied only with some restrictions, otherwise
the computed wave-field won’t be valid. The main constraint is that all wave-
lengths under consideration should be much shorter than the distance to the fault
and the widths of layers. The validity and accuracy of the far-field approximation
of the Green’s function is discussed in, e.g., Červený et al., 1977, Červený , 1985,
Farra et al., 1986, etc.

We put (1.5) into (1.4) and after expressing the convolution, we can write the
representation theorem in simple form

u(r, t) =

∫∫

Σ

dξH0(r; ξ)∆u̇(ξ, t− T (r; ξ)), (1.6)

where ∆u̇ is the analytic function of the time derivative of the slip function.
For homogenous unbounded medium, the travel time can be expressed as

d(r; ξ)/c, where d is the distance between the source and the receiver. H 0 is
given by

H0(r; ξ) =
µF c(r; ξ)

4πρc3d(r; ξ)
, (1.7)

where ρ is the density, c either P or S wave velocity, F c is the radiation pattern
depending on the takeoff angles of the ray at the source and the geometrical
properties of the fault (strike, dip, rake).

We put (1.7) into equation (1.6) and obtain the representation theorem for
homogeneous space:

u(r, t) =
µ

4πρc3

∫∫

Σ

dξ
F c(r; ξ)

d(r; ξ)
∆u̇

(

ξ, t− d(r; ξ)

c

)

. (1.8)

Let us introduce the point source approximation of the source. We assume
that the variations of d and F c when changing ξ are negligible with respect to
the hypocentral distance d0 (e.g., corresponding to the nucleation point of the
rupture). Equation (1.8) then gives

u(r, t) =
µF c(r)

4πρc3d0
Ω

(

t− d0
c

)

, Ω(t) =

∫∫

Σ

dξ∆u̇(ξ, t), (1.9)

where Ω(t) is called the source time function. The point source approximation is
suitable for small earthquakes.
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Figure 1.1: The geometry used for a line fault with unilateral rupture propagation. The

coordinate system is connected with the fault. The rupture propagates in the x direction.

The approximation of the distance from a point on the fault to a receiver P by d=̇d0−x cosΘ

is called the Fraunhoffer’s approximation.

Another, weaker, approximation of the source is called the ”partial” finite
source approximation. We return back to (1.8) and assume that the variations of
F c when changing ξ are negligible with respect to the hypocentral distance d0.
We make the same assumption for d outside the argument of ∆u̇ only. We obtain

u(r, t) =
µF c(r)

4πρc3d0
Ω(r, t), Ω(r, t) =

∫∫

Σ

dξ∆u̇

(

ξ, t− d(r; ξ)

c

)

, (1.10)

where Ω(r, t) is called the apparent source time function due to its dependence
on the position of the receiver.

Let us express ∆u̇(ξ, t) = D(ξ)U(ξ, t) where D(ξ) represents the final slip
and U(ξ, t) is a function normalized to unite final dislocation.

Let us assume that the points along the fault follow similar slip history, but at
different times, as the rupture front expands. We will refer this slip rate history
as the slip velocity function and the time necessary for the rupture front to reach
point ξ on the fault the rupture time tr(ξ). We write

∆u̇(ξ, t) = D(ξ)U(ξ, t− tr(ξ)). (1.11)

In this case, U is already the slip velocity function. The duration of U is called
the rise time.

Let us assume a very simple model of nearly line rupture with unilateral
propagation. We consider the coordinate system corresponding to the fault as
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shown in Fig. 1.1. The final slip D(x, z) is constant along z and the slip velocity
function is the same for each point. The rupture is assumed to propagate at
constant rupture velocity v, thus, we can express the dependence of the rupture
time on the spatial coordinate x as tr(x) = x/v. We assume the Fraunhoffer’s
approximation, which suggests that the distance d can be approximated by the
relation d = d0 − x cosΘ, where Θ is the angle between the direction of rupture
propagation and the seismic ray connecting the source with the receiver. Under
all above mentioned assumptions the equation (1.10) is simplified to

u(Θ, t) =
µWF c

4πρc3d0

L
∫

0

D(x)U

(

t− d0
c

+
x

c
cosΘ− x

v

)

dx, (1.12)

where W is the width of the fault (see Fig. 1.1). The Fraunhoffer’s approximation
is valid only for observers situated far from the fault with respect to the length
of the fault.

Note that in this approximation the integration with respect to z is an inte-
gration along an isoline of sum of the rupture time and the propagation time.
Such isoline is called the isochrone and can have more general shape for general
2D rupture in complex media.

We omit expressing the dependence on Θ further in the text. We introduce
the well known directivity coefficient:

Cd =
1

1− (v/c) cosΘ
. (1.13)

Using (1.13) we can rewrite (1.12) into the form

u

(

t+
d0
c

)

=
µWF c

4πρc3d0

L
∫

0

dxD(x)U

(

t− x

vCd

)

. (1.14)

Transforming (1.14) to the Fourier domain and considering magnitude of u
(u = |u |) only we obtain

u(f) = C

L
∫

0

dxD(x)U(f)e
−i2πf x

vCd with (1.15)

C =
µWF c

4πρc3d0
e−i2πfd0/c.

1.3 Source scaling laws and source time func-

tion

In the seismological literature various source scaling laws (empirical relations
between earthquake and rupture properties) can be found. These laws are very
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Rupture Area [km2] vs. Seismic Moment A = 2.23× 10−15 ×M
2/3
0

Average slip [cm] vs. Seismic Moment ∆ū = 1.56× 10−7 ×M
1/3
0

Average slip duration [sec] vs. Seismic Moment TR = 2.03× 10−9 ×M
1/3
0

Area of Fault Covered by Asperities 22%
Average Asperity Slip Contrast 2.01

Table 1.1: Scaling Relations of Slip Models after Somerville et al., 1999. Seismic moment

is in dyne-cm.

important when we want to predict strong ground motions of a future earthquake.
We can either choose all the parameters (for usually the worst scenario possible
in the region) or choose only a few of them and determine the remaining ones by
using some scaling law relation.

The selection of parameters to be chosen depends on the technique of ground
motion modelling. Let us name some of the most important properties which
have to be known for modelling: the scalar seismic moment M0, the length L and
the width W of the fault, the static stress-drop ∆σ, the mean slip ∆ū, etc. There
are other useful properties such as the area of the largest asperity, hypocentral
distance to the closest asperity, hypocentral distance to the largest asperity or
slip duration. The empirical scaling laws for all of these properties can be found
in seismological literature. The rupture slip distributions and its properties are
discussed in Appendix A.

The main problem of the scaling relations is that they are derived from gen-
erally small group of earthquakes and from quantities determined quite inaccu-
rately. It results in a big variance of any studied quantity.

Mai and Beroza, 2000, divided the earthquakes into two groups – strike-slip
and dip-slip events. These two groups differ in scaling laws mainly between the
seismic moment and dimensions of the rupture area. Here we write only some of
the basic laws given by Mai and Beroza, 2000 (L and W are in km, ∆ū is in cm
and M0 in Nm):

Strike-slip events:

logL = 0.36 logM0 − 5.15

logW = 0.09 logM0 − 0.54

log∆ū = 0.55 logM0 − 8.68

Dip-slip events:

logL = 0.38 logM0 − 5.71

logW = 0.33 logM0 − 4.93 (1.16)

log∆ū = 0.29 logM0 − 3.88

Some of the scaling laws presented by Somerville et al., 1999, are in the
table 1.1.
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Figure 1.2: Model source spectrum Ω̈(f) (accelerogram) with a) one corner frequency fc
due to the finiteness of the rupture process, influenced by the directivity and b) with two

corner frequencies: fc and the so-called fmax. Note the f2 slope before fc, the plateau

between the corner frequencies and the steep fall-off after fmax. The height of the plateau

of Ω̈(f) is proportional to f 2c M0.

The fault mechanics as well as the empirical observations show that the mean
slip is proportional to ∆σL. Assuming constant stress drop (i.e., the same for
earthquakes of various sizes), the mean slip is proportional to the fault length.
Such scaling law is usually referred in the seismological literature as the constant
stress drop scaling.

Among the most important scaling laws belong the one for the source time
function. Empirically, it was found that the (apparent) source time functions
obtained from far-field as well as near-field recordings exhibit f−2 decay of am-
plitudes in the Fourier domain beyond a corner frequency fc which corresponds
to the reciprocal of the total duration of the rupture process. This property of
Ω(f) is referred in the seismological literature as ω-squared model of the source
time function. The shape of such source spectrum can be represented by

Ω(f) ∝ M0

1 + (f/fc)2
. (1.17)

When a short period or broadband seismograph is used, a rapid decay of am-
plitudes can be found after a frequency called fmax. Examples of two accelerogram
source spectra (with and without fmax) are in the figure 1.2.

The presence of fmax is very important. If it is present it causes a steep
spectral fall-off at high frequencies of the accelerogram and subsequently weaker
damages caused by the earthquake. There are two main hypothesis to explain
the existence of fmax. Some authors think it is connected with the attenuation
of high frequency waves due to propagation in dissipative medium, others that
it is a source controlled parameter. For example, fmax is modelled by the slip
function in kinematic model of Hisada, 2000. For more details about fmax see
Hanks , 1992.



Chapter 2

Kinematic models of earthquake

ruptures

There are various approaches to the representation of the rupture processes on an
extended fault in order to simulate the strong ground motions. The approaches
can be divided into four overlapping groups:

Kinematic. In this approach we are not interested in dynamics of the rupture.
We want to find only the main (realistic) kinematic properties of the fault which
would generate desired ω-squared spectrum as it is described in section 1.3. The
kinematic model defines the slip distribution and the rupture time as functions of
position on the fault. Radiated wave-field is then simply calculated by the integral
in the representation theorem. Numerically, the integral can be transformed into
the sum over the point sources with their own Green’s functions and slip histories.

The synthesis is valid in arbitrary distances from the fault. The only problem
is to compute Green’s functions.

Composite. The fault is divided into relatively few segments which are assumed
to represent small earthquakes. The source time function of each subevent has its
spectral shape, corner frequency, seismic moment, etc. Contributions of subevents
are summed in a special way to get proper seismic moment and spectral shape of
the source function corresponding to the whole fault. This approach is often used
together with the Empirical Green’s Function (EGF) method where an aftershock
is taken as the record of the small rupture, but analytic Green’s function can be
used as well. More about composite modelling can be found in papers by, e.g.
Frankel , 1991, Irikura and Kamae, 1994, and others.

Stochastic. We are interested in the high frequency processes on the fault only in
a stochastic sense. The aim is just to describe deterministically an envelope (low
frequencies) of the seismogram to correspond to given seismic moment, corner
frequency, duration, etc., for the whole earthquake. The high frequencies are
purely stochastic. See Beresnev and Atkinson, 1997.

17
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These models are usually used just for fast prediction. The main problem is
that this modelling approach has nearly no physics in the background.

Hybrid. For different frequency bands the seismogram is modelled by either
kinematic (composite) or stochastic approach. The threshold frequency is usually
about 1Hz (lower frequencies are deterministic, higher stochastic). See Zahradńık
and Tselentis (submitted) and others.

In this study, we consider only the kinematic modelling. Quite a lot of models
of rupture propagation and its scaling properties were proposed to obtain desired
ω-squared source time function. They differ mainly in definition of the kinematic
quantities used for calculation of the wave-field. Input kinematic quantities are
usually as follows:

• spatial distribution of final slip values

• temporal slip function at each point on the fault

• rise time (time needed for creation of the slip at a given point)

• rupture time (time needed by the rupture front to reach a given point)

Some of the kinematic models are referred to by Hisada, 2000, or Hartzell at al.,
1999, e.g.:

• Haskell source model

• Omega-square model

• ”k−2” kinematic source model

In this text, the classic Haskell model is presented only briefly because it is
well known. In this work we discuss in detail the k−2 kinematic model only.
The source time functions are derived and discussed for a very simple rupture
model (line fault, unilateral propagation etc.) in a homogenous space. Our
simplified properties of the rupture can be understood as an approximation for
the observer situated far from the fault. Then we extrapolate the model to more
general rupture (rectangular fault, radial rupture propagation).

2.1 Haskell source model

The description of Haskell model of a line fault can be found in many textbooks
on seismology. The fault of length L is characterized by unilateral rupture prop-
agation with constant velocity v, uniform final slip D and boxcar slip velocity
function with the duration (rise time) τ , same for any point on the fault. Under
these assumptions, it is easy to obtain the amplitude spectrum from (1.15):
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|u(f)| = WµF c

4πρc3d0
D

sin(τπf)

τπf

sin
(

Lπf
vCd

)

Lπf
vCd

. (2.1)

For meaning of the quantities in (2.1) see section 1.2.

Formula (2.1) yields two corner frequencies, one connected with the rise time
and the other with the apparent duration of the rupture propagation. Although
(2.1) satisfies ω-squared spectral law behind the larger of the two frequencies and
exhibits observed directivity effect, it is not sufficient. Problems are obvious when
looking into the acceleration in time domain. The displacement is a convolution
of two boxcars which yields a trapezoid function. Then, the acceleration consists
only of four peaks, which is not realistic. It can be masked by convolution with
a long-duration Green’s function.

The real broad-band accelerograms are complicated even more, both in time
and spectral domain. These complications are caused by a lot of factors, e.g.
more complicated final slip on the fault and/or non-constant rupture velocity.
The rupture process is completely inhomogeneous, not perfectly planar and con-
tains asperities with large slip release. All these effects together with complexity
of propagation of seismic waves cause observed complicated high frequency radi-
ation.

The other problem of Haskell model is the extrapolation of this model to more
general rupture (rectangular fault, etc.). Since the isochrones are parallel to z-axis
of the fault (see fig. 1.1), it radiates ω-squared spectrum. However, Bernard and

Herrero, 1994 showed that because the isochrones have more general direction
for observer near the fault, it generates rather f 3 spectral decay. Such problem is
one of the most important because the observations exhibit also in the near field
ω-squared spectral shape.

We need to find more realistic finite source model. One of the most novel
is discussed in the next section. We use the Haskell model in section 3 in cases
when we are interested more in seismic waves propagation than in the rupture
model.

2.2 ”k−2” kinematic source model

In this chapter, we introduce the main assumptions and free kinematic parameters
of the set of so-called k−2 rupture models. We show that they generate the source
time functions which satisfy the ω-squared scaling law. In order to analytically
derive the influence of the kinematic parameters on the generated wave field, we
study them for a line fault in the Fraunhoffer’s approximation in homogeneous
medium. In Sec. 2.2.4, we extrapolate the model to a rectangular fault and show
how to compute the wave fields in general media.
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We adapt the equation (1.15) for our purposes. Since the slip distribution
D(x) is identically zero outside the fault (i.e., for x < 0 and x > L), the limits of
the integral in the formula (1.15) can be extended to infinity. We can write

u(f) = C ′

∞
∫

−∞

dxD(x)U(f)e
−i 2πfx

vCd with (2.2)

C ′ =
µWF c

4πρc3d0
e−i2πfd0/c.

Further, we omit writing the limits of the integral. Note that (2.2) depends
on the angle from the fault due to the directivity coefficient Cd.

2.2.1 Instantaneous slip

We start with simple k−2 rupture model with instantaneous slip. Under instan-
taneous slip we understand that the final slip at each point on the fault is fin-
ished instantaneously. Mathematically, we assume that the slip velocity function
U(t) = δ(t). We put the Fourier transform of U(t) (U(f) = 1) into the equation
(2.2) obtaining

u(f) = C ′

∫

dxD(x)e
−i 2πfx

vCd . (2.3)

We express the final slip D(x) using the inverse Fourier transform of the wave
number spectrum D(kx). We get

u(f) = C ′

∫

dx

∫

dkxD(kx)e
i2πkxxe

−i 2πfx
vCd . (2.4)

Integrating it with respect to x,

u(f) = C ′

∫

dkxD(kx)δ

(

kx −
f

vCd

)

(2.5)

and then with respect to kx, we obtain

u(f) = C ′D(k′
x), k′

x =
f

vCd

. (2.6)

As we can see from the formula (2.6), the Fourier frequency spectrum of dis-
placement u(f) at a given frequency corresponds to the Fourier wave number
spectrum of the slip distribution D(kx) at the wave number k′

x = f
vCd

. Conse-
quently, the spectral decay of the apparent source time function corresponds to
the spectral decay of the dislocation distribution. Bernard and Herrero, 1994,
introduced the so-called k−2 slip distribution D(kx) in the form (amplitude spec-
trum) |D(kx)| = ∆ūL for kx < 1/L and |D(kx)| = ∆ūL/(kxL)

2 for kx > 1/L,
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Figure 2.1: The slip distribution spectra:

the difference between Bernard’s and Her-

rero’s definition of the k−2 slip model and

the definition (2.7) in this work. The only

difference is in the vicinity of the corner

wave number where our definition behaves

smoothly.

where L is the length of the fault, ∆ū represents the average slip and kx = 1/L
is called the corner wave number.

In this work, we use modified smoothed dislocation distribution with gener-
alized corner wave number kc

x = K/L as follows:

D(kx) =
∆ūL

√

1 +
(

kxL
K

)4
eiΦ(kx), (2.7)

where Φ is the phase spectrum. As we can see from figure 2.1, the amplitude
spectra of the above mentioned slip distributions differ in intermediate wave-
numbers only. They are not so important for us since we are interested in the
spectral k−2 decay at high frequencies.

Let us note that since we assume the constant stress drop scaling (∆ū ∼ L),
(2.7) represents a self-similar distribution. It means that if the length of the fault
is changed, only the long wavelengths of slip feel the change, unlike the short
ones (for kx → ∞, |D(kx)| = K2/k2x is independent of L). In other words, the
dimension of the rupture affects only large wavelengths. The Fourier spectral
amplitudes of small wavelengths are the same for any size of the fault (see fig.
2.2).

Note that, generally, we do not make any restriction to the phase spectrum
of D(kx). So, it can be, e.g., chosen randomly.

Let us put the equation (2.7) into (2.6). Considering the amplitude spectrum
only, we get

|u(f)| = |C ′| ∆ūL
√

1 +
(

fL
vCdK

)4
. (2.8)

Expressing C ′ (see Eq. (2.2)) and considering the definition of the scalar seismic
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moment M0 = µ∆ūLW the equation (2.8) gives

|u(f)| = F c

4πρc3d0

M0
√

1 +
(

fL
vCdK

)4
. (2.9)

As we can see from Eq. (2.9), our above mentioned assumptions give a rupture
model which satisfies the ω2 scaling law (see Sec. 1.3). The apparent acceleration
source time function spectra computed according to the formula (2.9) for various
angles Θ from the fault (see Fig. 1.1) can be found in the figure 2.3. Note that our
smooth character of the slip distribution results in smooth acceleration spectrum.

The apparent corner frequency can be expressed as

fa =
vCdK

L
(2.10)

and we can see that it varies with different angles from the fault due to Cd (see
the formula (1.13)). The typical values of Cd for a reasonable choice v/c = 0.8
can be found in the figure 2.4.
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(according to Eq. (1.13)). The former one is connected with the apparent source time

function, the latter one with the acceleration spectral level.

The height of the spectral plateau of the apparent source time function can
be found as the limit of (2.9) multiplied by 4π2f 2 for infinite frequency:

|ü(f →∞)| = πF cM0

ρc3d0
f 2a . (2.11)

As we can see from Eq. (2.11), the height of the spectral plateau is pro-
portional to C2

d due to the proportionality to the square of the apparent corner
frequency. The graph of angular dependence of C2

d can be found in Fig. 2.4. It
represents a very strong directivity effect. For v/c = 0.9, C2

d would reach 100 in
the direction of rupture propagation. Such high frequency amplification is not
realistic. Consequently, the rupture model needs a revision concerning the high
frequency range.

Note that, regardless of the position of the station, the K-parameter (com-
ing from the corner wave number of the dislocation distribution) influences the
corner frequency similarly as Cd does and, consequently, it affects the height of
the acceleration spectral plateau. Moreover, K does not influence the seismic
moment. That is why we can link it to the high frequency features of the k−2

rupture model.
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2.2.2 Wave number dependent boxcar slip function

Bernard et al., 1996, proposed a revised kinematic model to damp the strong
amplification at high frequencies due to directivity. The authors preserve the k−2

slip distribution and define a more realistic slip velocity function, boxcar with
the wave number dependent rise time τ(kx):

U(kx; t) = H[t+ τ(kx)]H[τ(kx)− t]
1

τ(kx)
, (2.12)

where H is the Heaviside function.
The idea of the wave number dependent rise time arises from dynamic models

of earthquake ruptures or cracks where the dislocation on small scales is created
earlier than the dislocation on large scales. This phenomenon was also found
in inversions of rupture propagation (i.e. Wald and Heaton, 1994, Cotton and

Campillo, 1995).
The wave-number dependent rise time should be understood in the following

sense: after arrival of the rupture front to a point on the fault, the creation of
slip at all wave-numbers kx starts. The dislocation at given kx reaches the final
value D(kx) at the time τ(kx). Consequently, the slipping at the point is finished
after τmax =max(τ(kx)). Note that we assume that the rupture time does not
depend on the wave number.

To involve the above discussed feature in Eq. (2.2), we can assume that
(2.2) was derived for a rupture process at given wave number. For a given wave
number, the generated wave field is given by

u(kx; f) = C ′

∫

dxD(kx;x)U(kx; f)e
−i 2πfx

vCd , (2.13)

where D(kx;x) represents the final slip distribution for given wave number kx,
i.e., D(kx;x) = D(kx)e

i2πkxx. To obtain the whole wave field generated by the
rupture process at all wave numbers, we integrate (2.13) with respect to kx. It
results in

u(f) = C ′

∫

dkx

∫

dxD(kx)e
i2πkxxU(kx; f)e

−i 2πfx
vCd . (2.14)

Considering the time Fourier transform of U(kx; t) given by Eq. (2.12) and rear-
ranging the terms in (2.14) we obtain

u(f) = C ′

∫

dkx

∫

dxD(kx)
sin(πfτ(kx))

πfτ(kx)
eπfτ(kx)e

i2πx
(

kx− f
vCd

)

. (2.15)

We apply the same trick as in case of instantaneous slip. We integrate with
respect to x which yields

u(f) = C ′

∫

dkxD(kx)
sin(πfτ(kx))

πfτ(kx)
eπfτ(kx)δ

(

kx −
f

vCd

)

(2.16)
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and then with respect to kx to get the final formula

u(f) = C ′D(k′
x)
sin(πfτ(k′

x))

πfτ(k′
x)

eπfτ(k
′
x), k′

x =
f

vCd

. (2.17)

We have to propose a relation between the rise time and the wave number.
Two parameters were introduced by Bernard et al., 1996, in order to quantify
the relation. 1) τmax which controls maximum duration of slip and 2) a nondi-
mensional coefficient a which controls, for given wavelength λ, the ratio of the
rise time to the time necessary for the rupture front to pass the distance λ. The
authors suggested a = 0.5, which is used in this text. The maximum rise time
τmax is controlled by the width of the so-called propagation pulse L0 according to
the relation τmax = L0/v. The observational evidences for such pulse propagating
over the fault are given by Heaton, 1990.

Bernard et al., 1996, introduced the relation between the rise time τ(kx)
and the wave number in the following form: τ(kx) = τmax for kx < a/L0 and
τ(kx) = aτmax/(L0kx) for kx > a/L0. In other words, for scales equal or larger
then L0, the slipping is finished in time τmax, for smaller scales the rise time is
proposed to be proportional to the reciprocal of the wave number.

In this work we use a smoothed rise time distribution:

τ(kx) =
τmax

√

1 +
(

L0kx
a

)2
, τmax =

L0
v

. (2.18)

The difference between the above mentioned relations for the rise time concerns
the intermediate wave-numbers only (similarly to the case of the smooth slip
distribution, see Fig. 2.1). Our smooth character of the relation results in smooth
acceleration spectrum.

Note that the equation (2.18) represents a k−1 self-similar distribution of
τ(kx). It means that the large wavelengths are affected by the width of the slip
pulse while the small wavelengths are not (see Fig. 2.5).

To illustrate the difference between the propagation of the rupture with con-
stant and wave number dependent rise time, we show the spatio-temporal evolu-
tion of such rupture models in the figure 2.6. Although the rupture propagation
seems to be quite similar, the radiated wave field would be different a lot. Con-
stant boxcar slip function would excite f−3 spectral decay at high frequencies of
the seismogram because it would act as a low-pass filter.

Since the computation of rupture evolution of the model with constant rise
time is obvious, let us discuss the computational approach for the model with
the wave number dependent rise time. The dislocation at given wave number
D(kx;x) is filtered (i.e., multiplied) by the slip history S(kx;x, tr) on the fault
corresponding to the given rupture time tr and kx. Summing the contributions
from all wave numbers we obtain the state of the slip on the fault at the time tr

d(x, tr) =

∫

D(kx)e
i2πkxxS(kx;x, tr)dkx. (2.19)
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Note that (2.19) is not a simple inverse Fourier transform since S depends on x.
It should be noted that S could represent the slip velocity history on the fault.
Then, d(x, tr) would give the spatial-temporal evolution of the slip velocities on
the fault.

Acceleration amplitude spectra given by (2.17) multiplied by 4π2f 2 together
with (2.18) and (2.7) are presented in the figure 2.7 for two widths of the propa-
gation pulse. As it can be seen, the spectra should be studied in three frequency
ranges separated by two corner frequencies (unlike the model with instantaneous
slip which spectral shape consists of two ranges split by one corner frequency
only). They are illustrated in Fig. 2.8. The first corner frequency is the apparent
corner frequency fa (2.10) controlled by the dislocation distribution (2.7). The
second one, called the transition frequency

f0 = aCd
v

L0
= a

Cd

τmax

, (2.20)

is connected with the corner wave number of the rise time distribution (2.18).
It is influenced by the directivity coefficient and the duration of the propagating
slip pulse τmax. Note that fa < f0 since K/L < a/L0.

At low frequencies (f < fa), u(f) is not affected by the finite duration of the
boxcar. It means that the C2

d proportional amplification (see the model with in-
stantaneous rise time) is preserved. Between fa and f0 (middle frequencies), the
boxcar slip velocity function of finite duration starts to act as a low-pass filter.
However, behind the transition frequency (high frequencies), the k−1 proportion-
ality of the rise time forces the source acceleration spectrum to be independent on
frequency (see the behaviour of the argument of the sinc function in Eq. (2.17)),
i.e., we obtain a plateau at high frequencies. Thus, this model is consistent with
the ω-squared scaling law.

The height of the plateau can be examined by the value of the acceleration
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Figure 2.6: Spatial-temporal evolution of two rupture models with the boxcar slip function.
In the top figure the rise time is constant, in the bottom it is wave-number dependent

according to the relation (2.18). Each curve represents the state of the rupture in equally

spaced time steps. Note that in the wavenumber dependent case the dislocations of smaller

wave-lengths are finished earlier than the dislocations of larger wavelengths.
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the instantaneous slip (see Fig. 2.3). The ranges of axis are the same as in the figure 2.3.

lo
g 

(F
ou

rie
r 

am
pl

itu
de

s)

log (frequency)

v/c=.8, L0=.20L, K=1.0, Boxcar

f a
 =

 K
C

dv
/L

f 0
 =

 a
C

dv
/L

0

θ = 90

Figure 2.8: The figure shows the acceleration spectra and the two corner frequencies of

the rupture model with wave number dependent rise time for a special choice of parameters

(listed above the figure). The ranges are the same as in Fig. 2.3.
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source spectra for infinite frequency:

|ü(f →∞)| = πF cM0

ρc3d0
f 2a

sin(πaCd)

πaCd

. (2.21)

We can see that the directivity dependence of the acceleration plateau is decreased
(comparing with the result for the instantaneous slip) by a factor of sinc(πaCd).
This results in more realistic estimates of seismograms in the direction of rupture
propagation.

It should be noted that as the transition frequency approaches the apparent
corner frequency (by increasing L0), the frequency range with strong C2

d amplifi-
cation contracts. Observational evidence to prefer L0 = .20L over L0 = 0.05L is
missing.

2.2.3 General slip function

The boxcar slip velocity function remains unrealistic. Here we show how it can
be replaced by a general function.

We take a function F (t) with one-second duration and unit finite disloca-
tion. The slip velocity function for given rise time τ(kx) is then U(kx; t) =
F (t/τ(kx))/τ(kx). The unit dislocation is preserved due to the factor 1/τ(kx).
Fourier transform of U(kx; t) is U(kx; f) = X(fτ(kx)), where X(f) is the Fourier
spectrum of F (t). We put it into the equation (2.14):

u(f) = C ′

∫

dkx

∫

dxD(kx)e
i2πkxxX(fτ(kx))e

−i 2πfx
vCd . (2.22)

We integrate with respect to x and then with respect to kx (like in previous
sections) to obtain

u(f) = C ′D(k′
x)X(fτ(k′

x)), k′
x =

f

vCd

. (2.23)

As in the previous section, the source spectrum (2.23) can be studied in three
frequency ranges. The described effects are similar. Again, the plateau at high
frequencies is a consequence of the k−2 slip distribution and the k−1 dependence
of the rise time, regardless of the slip velocity function. We can obtain the height
of the plateau by limiting the frequency to infinity in (2.23) multiplied by 4π2f 2

as follows:

|ü(f →∞)| = πF cM0

ρc3d0
f 2aX(aCd). (2.24)

Let us introduce two slip velocity functions that are used in this text. The
first one is the Brune’s function
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Figure 2.9: Three slip velocity functions with their spectra used in this study. The Hisada’s
function is constructed according to Hisada, 2000 for a special choice of parameters describ-

ing the function: NV = 5 and fmax = 16s−1. The Brune’s function is computed according

to (2.25) with fb = 8s−1. Note that the functions satisfy the definition conditions for F (t),

namely the one second duration and the unit finite dislocation.

F (t) =

{

f 2b te
−fbt, t ≥ 0

0, t < 0
(2.25)

and the second one is the Hisada’s function constructed according to a procedure
described by Hisada, 2000. Both of them together with the boxcar function (for
comparison) and their amplitude spectra are displayed in the figure 2.9.

Acceleration amplitude spectra (the second time derivative of (2.23) using
(2.18) and (2.7)) for Brune’s and Hisada’s slip velocity functions for two widths
of the propagating pulse are presented in the figure 2.10. As we can see, the
acceleration levels are a little higher than for the boxcar case (Fig. 2.7), however,
they are lower comparing with the case of instantaneous slip (Fig. 2.3). To
illustrate this, we show the amplification at high frequencies in the figure 2.11.
Under the amplification we understand the term C2

dX(aCd), see Eq. (2.24).
To show the influence of the K-parameter in the slip distribution (2.7) on the

acceleration spectrum, we display the acceleration spectra for the Hisada’s slip
velocity function for two values of L0 and various K in Fig. 2.12.

2.2.4 Extrapolation to a rectangular fault

We derive formula for strong motion synthesis for given kinematic rupture model
of a rectangular fault with the wave number dependent rise time.

We start with the representation theorem in the general form (1.6). We
formally define the function

H1(r, t; ξ) = H0(r; ξ)∆(t− T (r; ξ)− tr(ξ)), (2.26)
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Figure 2.10: Amplitude spectra of acceleration generated by two different widths of prop-

agating pulses (left and right) for two different slip velocity functions (top and bottom).

The low, middle and high frequency effects are similar to the case of the boxcar slip velocity

function in the figure 2.7. The ranges of axis are the same as in the figures 2.3 and 2.7.
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Figure 2.11: Azimuthal dependence of the amplification at high frequencies (high of the

plateau of accelerogram’s spectrum). a) Intantaneous: this graph shows the amplification

for the kinematic model characterized by the k−2 slip distribution and the instantaneous

slip. b), c), d) show functions which control high frequency radiation from k−2 dislocation

with slip velocity functions boxcar, Hisada’s, Brune’s, respectively with rise time dependent

on the wave number. Note that the oscillatory character of the amplification in the boxcar

case is a consequence of its unrealistic shape. We avoid of the oscillations by assuming

different (more realistic) slip velocity function.
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Figure 2.12: Amplitude spectra of acceleration for two widths of the propagating pulse

(left, right) and for three K’s (rows). The K-parameter strongly affects the radiated

wave field since it changes K times the corner frequency and K2 times the level of the

acceleration spectral plateau.
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where tr is the rupture time. We take advantage of the definition of the time
convolution and using (2.26) and (1.11) we can rewrite Eq. (1.6) in the following
way:

u(r, t) =

∫∫

Σ

dξH1(r, t; ξ) ∗ [D(ξ)U(ξ, t)] . (2.27)

Note that although we start with Eq. (1.6) derived for the ray approximation,
H1 can represent also the time integral of the impulse response (given by, e.g.,
discrete wave number or finite differences method) shifted in time according to
the rupture time.

As in the section 2.2.2, we assume that (2.27) was derived for the rupture
process at given wave number k:

u(k; r, t) =

∫∫

Σ

dξH1(r, t; ξ) ∗ [D(k; ξ)U(k; ξ, t)] . (2.28)

To obtain the wave field generated by the rupture process at all wave numbers,

we integrate (2.28) with respect to k. Considering D(k; ξ) = D(k)e2πik·ξ and
rearranging terms in (2.28) we get

u(r, t) =

∫∫

Σ

dξH1(r, t; ξ) ∗
[
∫∫

dkD(k)U(k; ξ, t)e2πik·ξ
]

. (2.29)

For simplicity, we assume that, for given k, the slip velocity function is the same
for each rupture point (U does not depend on ξ). As in Sec. 2.2.3, we assume
that U(k; t) = F (t/τ(k))/τ(k), where F (t) is a function of unit dislocation with
one second duration. We put it in Eq. (2.29) obtaining

u(r, t) =

∫∫

Σ

dξH1(r, t; ξ) ∗
[
∫∫

dkD(k)
1

τ(k)
F

(

t

τ(k)

)

e2πik·ξ
]

. (2.30)

Note that the inverse spatial Fourier transform (the term in square brackets
in Eq. (2.30)) gives for each point on the fault a unique slip velocity function.
In other words, the slip velocity function is not more the same for each point on
the fault because it is a sum of contributions from all wave numbers with wave
number dependent rise time.

For numerical computations it is usually more convenient to transform Eq.
(2.30) to the Fourier domain:

u(r, f) =

∫∫

Σ

dξH1(r, f ; ξ)

∫∫

dkD(k)X(fτ(k))e2πik·ξ, (2.31)

where X(f) is the Fourier transform of F (t).
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We make following assumptions to generalize the k−2 rupture model for a 2D
finite fault. The rupture propagates radially at constant velocity v. The rise time
distribution is radially symmetric:

τ(k) =
τmax

√

1 +
(

L0k
a

)2
, k = |k|. (2.32)

The generalization of the slip distribution is discussed in detail in the appendix A.
The above mentioned assumptions allow for computation of the slip functions

for a finite rectangular fault. The problem which still remains is the computation
of Green’s functions. It is discussed in next section.
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Chapter 3

Strong motion synthesis

The Earth’s structure is very complex since it includes 3D small-scale hetero-
geneities and attenuative and local topographical properties. These complexities
cannot be studied deterministically (e.g., by any geophysical measurements), nev-
ertheless, they are important for signals at high frequencies.

The propagation of seismic waves in media with statistically varying velocities
at small scales was modelled by finite differences by Frankel and Clayton, 1986.
They showed that such perturbations in velocities can explain observed high
frequency effects like travel time variations across large-scale seismic arrays, coda
waves and backscattered coda waves and their time decay, etc. On the other
hand, these effects are not strong enough for buried fault in the near source
region to be responsible for the largest peaks on accelerograms.

The strong motion array analyses show that high frequency (> 1Hz) content
of the wave-fields is incoherent. To solve this problem, Abrahamson and Bolt ,
1987 suggested to generate a number of synthetic ground motions with statisti-
cally varying Fourier phase for the incoherent energy. In other words, while the
deterministic approach seems to be unable to handle the problem, the stochastic
approach (e.g., fractal) should be preferred.

The dynamic rupture properties (static and dynamic frictional coefficients,
strength) needed in the fault mechanics are complex as well as the seismic wave
propagation. In our study, we assume that the stochastic nature of acceleration
records at high frequencies can be involved into the source and that, consequently,
the deterministic computation of propagation effects is sufficient.

In this chapter, we discus the computation of Green’s functions needed in the
kinematic strong motion synthesis.

3.1 Ray theory

High frequency accelerograms may be computed using the ray theory (more pre-
cisely, the zero-order term). The ray approach gives, in principle, only the far-field
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term of the complete Green’s function. This technique is applicable to general
3D heterogeneous structures.

The ray theory is very efficient for computation of high frequency wave-fields
since we can obtain from a solution for one frequency the values for other fre-
quencies at nearly no cost. It is due to the advantage of using the fast frequency
response algorithm (see Červený , 1985).

This method is much faster (for reasonable number of rays) than the other
methods for computing full wave fields (discrete wave numbers, finite differences,
etc.). The disadvantage is that it omits near-field term, surface waves, head waves
and all others non-geometrical waves (pseudospherical waves, leaking waves, etc.).

The ray theory (Červený et al., 1977) gives a formula for the amplitude of
the impulse response of general medium (see Eq. (1.5)) calculated along one ray
connecting the source with the station:

H0(r; ξ) =
µ(ξ)F c(r; ξ)

4πρ(ξ)c(ξ)3

(

ρ(ξ)c(ξ)

ρ(r)c(r)J(r; ξ)

)
1
2

Π(r; ξ), (3.1)

where ρ is the density, c either P or S wave velocity,
√
J denotes the geometrical

spreading and F c the radiation pattern depending on the takeoff angles of the
ray at the source and the geometrical properties of the fault (strike, dip, rake).
Π is the product of all reflection and transmission coefficients at the interfaces
impinged by the ray along its trajectory. The other quantities are defined in
chapter 1.2.

It should be noted thatH0 is generally complex since J can be negative (when
the ray passes caustics) and Π can contain non-zero imaginary part when the ray
is reflected or transmitted at a supercritical angle.

To compute the ray solution according to (3.1), we need to find rays connecting
the source with the station. They can be found by solving the ray tracing system.
The ray parameters (initial conditions, e.g. two take-off angles in 3D) can be
found for simple medium analytically by Snell’s law. A numerical approach is
necessary for more complicated media.

In our study, two step method for the two point ray tracing is used. The
azimuth of the ray is changed until the ray ends on a profile that connects the
centre of the coordinate system with the receiver. For such rays, classical regula-
falsi method is used to aim the receiver, i.e, to find the proper azimuth and
declination. Π and the propagation time are easy to compute for known ray
trajectory. The dynamic ray tracing system is solved along the ray to obtain the
geometrical spreading.

Having all the necessary quantities for (3.1) and the propagation time, we
can compute, for given slip velocity function, the synthetic seismogram for one
elementary wave. The final seismogram is a superposition of contributions from
all elementary waves.
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Since we are interested in ground shaking acceleration maps, we assume a set
of receivers radially distributed on profiles going from the centre of the coordinate
system. The computation of ray synthetic seismogram is performed according to
following steps.

• The fault is covered (represented) by a grid of point sources.

• All rays connecting the source points and the receivers for each elementary
wave are found and all parameters of the ray solution (the amplitudes and
the propagation times) are obtained.

• Synthetic spectra of seismograms for each point source are computed by
the product of the slip velocity spectrum with the spectrum of the sum of
(1.5) using (3.1) for each elementary wave.

• Spectra are multiplied by (iω)2 and the inverse Fourier transform is per-
formed to obtain the ray synthetic accelerograms.

• For a finite fault all contributions from point sources over the fault properly
shifted in time with respect to the rupture time are summed.

We have to remember that computation of the wave-field is efficient only
for a reasonable set of rays.The problem is that it is necessary to assume for
kinematic modelling a large number of point sources distributed over the fault
because we need to evaluate numerically the integral of representation theorem.
This problem is well discussed in Spudich and Archuleta, 1987. There the authors
show that the impulse responses (as functions of spatial co-ordinates on the fault)
and the slip distributions have to be sampled sufficiently at shortest wavelength
λ connected with the lowest velocity v and the highest computed frequency f
(λ = v/f) in the modelling. It is also shown that the sampling has to be denser
for a receiver in the opposite direction to the direction of rupture propagation
(at least 6 point sources per the wavelength) than for a receiver on the other side
(about 3 samples per the wavelength). Note that the understanding of the latter
effect can be found also in equation (2.6). The Nyquist wave number of the fault
sampling has to be higher than the maximum kx in (2.6) corresponding to the
highest computed frequency and the lowest Cd (i.e., for the opposite direction of
the rupture propagation, see figure 2.4).

For example, we have to sample a relatively small fault of dimension 5×4 km
by at least 32×32 of point sources when computing up to 5Hz for a station located
in the direction of the rupture propagation. We have 1024 sources, multiplying
by e.g. 80 stations, we obtain 81920 rays for each code! It is very high number
since the ray tracing is relatively very time-consuming.

Thus, we have to find a way to reduce the number of necessary rays.
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3.2 Direct S-waves

We discussed in the introduction to this chapter that the wave propagation is
rather complex. However, it is common opinion in seismological literature (e.g.,
Hanks , 1982, Zollo et al., 1997, Emolo and Zollo, 2001) that the most damaging
high frequency waves for receivers closer than about 50km from a buried fault
are the direct S-waves. The other elementary waves (e.g., reflected from MOHO)
become important in larger epicentral distances (Gasperini , 2001). On the other
hand, the fault that reaches the surface is more likely to generate strong surface
waves. All types of waves can be then trapped in basin structures causing larger
damages.

Because we will perform strong motion synthesis for a fault that is located
about 7km beneath the surface, we assume that computation of only direct S-
waves in the wave-field gives reasonable estimates of peak ground acceleration
(PGA). Moreover, it obviously results in faster computation. Other methods
should be used to predict other quantities important in earthquake strong motion
prediction like duration magnitude, which would be rather underestimated, or
root mean square acceleration (arms), which would be overestimated. In our text
we will be concerned mainly with PGA as one of the most common quantity
(besides, e.g., the response spectra), which has been studied also empirically (see
appendix A.3) and can be roughly related to macroseismic data (intensities). It
allows our computations to be compared with measurements.

To test our assumption, we calculate three-component accelerograms from a
point source located in the depth of 12km by two methods: by the ray theory in
a layered medium assuming direct S-waves only and by the discrete wave number
(DWN) method which gives full wave-field solution (see figure 3.1). Note the
good fit of peak amplitudes. Of course, the lengths of the accelerograms differ.

For the second test we use accelerograms modelled also by the two methods
mentioned above for a 5×4 km Haskel’s fault (see figure 3.2). Again, a reasonable
fit for PGA estimates is obtained. It gives us hope that the PGA maps computed
for direct S-waves only (in chapter 4) will represent reliable results.
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Figure 3.1: The three-component synthetic
accelerograms generated by a buried point
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rect S-wave fits PGA of the full wave field
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3.3 Interpolation

Let us discuss the interpolation methods used to reduce the number of necessary
Green’s functions needed for kinematic modelling.

There are several ways how to interpolate the impulse responses of a medium.
The easiest one is to find only one Green’s function (usually for the centre of the
fault). The Green’s functions for remaining points on the fault are then obtained
by shifting in the time domain with respect to the hypothetical propagation time
of S waves in homogeneous medium surrounding the fault. The amplitude is
corrected by considering the proper geometrical spreading. This approach is well
known in the Empirical Green’s Function (EGF) method. There, dispite of such
rough approximation, we can obtain relatively good results thanks to the realistic
impulse response involved in the computation. Nevertheless, it is obvious that it
provides a reasonable approximation in regional distances. On the other hand, it
could cause large errors in near source region.

The more accurate method is to find the Green’s functions from a sparse grid
of point sources on the fault and to use some of the interpolation techniques
discussed, for example, in Spudich and Archuleta, 1987. They can be split into
two groups: time domain and Fourier domain approaches. In the time domain
techniques, the spatially adjacent impulse responses are shifted in time like in
one Green’s function case and linearly weighted with respect to the time shift.
Again, these interpolation techniques assume the S wave to be the only significant
arrival. The Fourier domain techniques are based on an assumption that the
Green’s functions are basically oscillatory functions of position with wavelengths
corresponding to c/f . It means that Green’s function at given frequency as a
function of coordinates on the fault can be refined from a sparse grid to a dense
grid by, e. g., bicubic splines. However, the sparse grid still has to be dense
enough to ”see” the shortest wavelengths, thus we still have to find relatively
large number of Green’s functions.

These techniques are very time-consuming because the procedures have to
be performed for each combination of time/frequency and station. Their use is
beyond the scope of this text.

In this work we take advantage of the zero-order ray solutions. They are
determined by three parameters for each ray: the arrival time, the real and the
imaginary part of the amplitude. Only these quantities have to be interpolated
for each combination of elementary wave and station which results in faster com-
putation of medium impulse responses. Moreover, the changes of that parameters
of the ray solution with respect to position on the fault are usually smooth in, e.
g., medium consisting of homogeneous layers. It allows for using bicubic splines
as interpolation functions. The interpolation is performed on a rectangular grid.
The values are interpolated first in one direction and then the resulting parame-
ters are interpolated in the second direction.

An example of accelerograms computed for the same fault model as in the
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Figure 3.3: A comparison of synthetic accelerograms computed for a finite fault assuming

only direct S waves in layered medium. The stations are located in the direction of rupture

propagation (bottom) and in the opposite direction (top) in two epicentral distances of

10km (left) and 20km (right). The number of rays found for each station is 32 × 32

(dense) and 8 × 8 (sparse) whose parameters of the ray solutions are interpolated into a

grid 32 × 32. Note that the accelerograms consist of the starting and stopping phases

caused by the edges of the fault in Haskell model.
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previous section can be found in the figure 3.3, where ray solutions for only 8× 8
point sources are interpolated into a sufficiently dense grid 32 × 32. It results
in about 16 times faster evaluation of impulse responses (the time necessary for
interpolation is negligible). The example clearly shows a good agreement in the
direction of rupture propagation. In the opposite direction the accelerograms
noted as ”dense” exhibit artificial oscillations between the starting and stopping
phases unlike the accelerograms noted as ”sparse”. This ”ringing” effect is an
effect of slight spatial undersampling of the fault (Spudich and Archuleta, 1987).
The reason why it is not present in the case of a sparse grid is that the interpo-
lation smoothes the behaviour of Green’s functions over the fault. In this case,
the interpolation smoothes the result that it looks better than the ringing wave
which of course does not mean that it is more accurate.

The interpolation provides a way to minimize the time needed for the Green’s
functions computation. It should be emphasised that dense grid necessary for
high frequency computations still makes the problem very time-consuming due
to the summation of contributions from all point sources.



Chapter 4

Application of the k−2 rupture

model to the 1999 Athens

earthquake

The Athens earthquake in the area of Attica on September 7, 1999 at 11:56:50
GMT surprised seismologists with its Mw = 5.9 since no seismological data (his-
torical records, instrumental data) have shown evidence of events with magnitude
Mw > 5 at distances smaller than 30km from Athens. The maximum intensity
was determined XIII-IX in the NW outskirts of Athens. In the area, the earth-
quake caused death of 143 people and injuries for more than 2,000.

Fortunately, the rupture process did not reach the surface and stopped at
the depth of about 7 kilometers. It resulted in relatively short strongest ground
motion phase (predominantly direct S waves).

In the Attica region, there are two nearby N120o-130o south dipping normal
geological faults (Fili and Aspropyrgos) which are about 10km distant from each
other. The seismologists have not yet been able to determine definitely which of
these faults was activated, although the Fili fault seems to be more probable.

The location and focal mechanism were determined by a number of seismo-
logical agencies (National Observatory of Athens – NOA, U.S. Geological Survey
– USGS NEIC, Harvard, Geophysical Laboratory of the Thessaloniki University
and others). The locations of epicentre are in a range of 38.02o-38.15o N and
23.55o-23.71o E. In our text, we consider the coordinates of epicentre 38.08o N
and 23.58o E (NOA, after relocation) fixed.

It is not surprising that the source depth determination did not give consistent
results (from 9 to 30km). The result of ASPO method (Zahradńık (submitted)),
12km, is used in this work as the most reliable because it takes into account first
motion polarities as well as the amplitude spectra of complete regional seismo-
grams.

The focal mechanisms, determined by different agencies, seem to be quite
consistent (for review see Tselentis and Zahradńık , 2000a, b). We fix the so-
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Figure 4.1: The map view of September

14-25, 1999 aftershocks (full circles) and

two alternative faults proposed by Tselen-

tis and Zahradńık , 2000a, b. The USGS-

NEIC and NOA (relocated) epicentres are

presented. The locations of the epicentre

with respect to the position of both sug-

gested planes agrees with observed directiv-

ity of the earthquake (see the text). After

Zahradńık and Tselentis (submitted).

lution given by USGS-NEIC: strike 123o, dip 55o and rake −84o. The iden-
tification of the main shock fault plane with one of the two nodal planes has
been confirmed by the recognition of aftershock spatial clustering (Tselentis and
Zahradńık , 2000a, b). Moreover, it is consistent with the orientation of the geo-
logical faults mentioned above.

The fault plane solution given by Kontoes et al., 2000, based on satellite radar
interferometry (SAR), quite differs. They proposed also a secondary parallel
shallow fault plane with the strike of 96o and the dip of 40.9o to model the
asymmetry observed in the SAR interferogram. This secondary fault is neglected
in this study.

The spatial distribution of aftershock epicentres suggests two possible dimen-
sions of faults (see figure 4.1): 20 × 16 km with the assumption that the strain
on the fault was not fully released and the remaining strain was relieved by
aftershocks; 8 × 10 km with the assumption that the main shock released com-
plete strain and the aftershocks occurred in the surroundings1 (Tselentis and

Zahradńık , 2000a, b).

Plicka and Zahradńık (submitted) inverted regional data from 7 broadband
stations by the EGF method to obtain the position of the fault with respect
to the fixed hypocentre position (assumed to be the position of the nucleation
point on the rupture). The authors suggest that the nucleation point is located
on the western edge of the fault. Thus, the rupture propagated mainly in the
strike direction, towards Athens. It resulted in strong directivity effect in that

1It should be noted that the studied aftershocks occurred within 12 days, starting 7 days
after the main shock. Exact location of the aftershocks that occured earlier after the main
shock is unknown.
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Figure 4.2: Observed intensities I (left) published by NOA and PGA map (right) computed

according to mean values in table 4.1 with about 30% variance. The maps arise from

interpolation of values at data points, which are represented by diamonds in the maps. The

star denotes the relocated NOA epicentre.

direction. It has been confirmed by macroseismic data (intensities, see figure 4.2),
published by NOA, as well as by the shapes of apparent source time functions
studied by Baumont et al. (submitted). In this case, the effect of directivity
seems to be responsible for the large losses. Now we can understand why such
moderate size earthquakes represent a very serious seismic hazard in areas like
Europe (especially Greece and Italy).

The EGF modelling in the paper by Plicka and Zahradńık (submitted) was
not able to resolve the dimension of the fault (i.e., to decide which one of the
above mentioned fault model is more likely).

The fault dimension 7.5×6 km was found plausible by Zahradńık and Tselen-

tis (submitted) to generate realistic PGA’s (see figure 4.3). The authors used a
hybrid method (so-called PEXT method), which is based on deterministic mod-
elling of generated wave-field up to a frequency a little higher than the corner
frequency. The flat part of the acceleration spectrum behind the corner frequency
is extrapolated by a spectrum of a stochastic white noise. In the deterministic
part of the method, the composite modelling with equally sized subevents with
spatially constant slip is used.

In our study, we relax the assumption of constant slip. The main aim is to
constrain values of kinematic parameters of the k−2 rupture model (see section
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Intensity a(cm/s2)

V 12 – 25
VI 25 – 50
VII 50 – 100
VIII 100 – 200
IX 200 – 400
X 400 – 800

Table 4.1: The empirical relation between

the macroseismic intensity and PGA. After

Willmore, 1979.

Lat. (N) 38.08o

Long. (E) 23.58o

Depth (km) 12.0
Moment (Nm) 7.8 · 1017
Strike 123o

Dip 55o

Rake −84o
v (km/s) 2.8

Table 4.2: Fixed parameters for the Athens

earhquake model. Note, v is the radial rup-

ture velocity.

PGA (m/s^2)
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Figure 4.3: PEXT simulation of the Athens earthquake with 7.5 × 6 km fault under the

assumption of homogeneous slip. The rectangle represents the projection of the fault on

the earth’s surface. The star represents the epicentre (NOA, relocated). Modified from

Zahradńık and Tselentis (submitted).
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thickness (km) vp(km/s) vs(km/s) ρ(g/cm3)

1 2.67 1.50 2.50
1 4.45 2.50 2.50
3 5.70 3.20 2.84
13 6.00 3.37 2.90
21 6.40 3.60 2.98
∞ 7.90 4.44 3.28

Table 4.3: Parameters of crustal model MA.

2.2). We study the influence of L,W,L0, K and the shape of the slip velocity
function on the PGA maps. In this text, we want to restrict the range of possible
values of these parameters by comparison with the observed data (Fig. 4.2). We
try to find a set of suitable k−2 models for the Athens earthquake.

4.1 Computational details

The fixed parameters of the Athens earthquake model are listed in the table
4.2. We assume that the nucleation point (located in the bottom left corner of
the fault) corresponds to the hypocentre. The rupture propagates radially at
constant rupture velocity v.

The crustal model, called MA, used for discrete wave number modelling of
regional data by Tselentis and Zahradńık, 2000b, was chosen for our computa-
tions. This 1D structural model consists of homogeneous layers described in the
table 4.3. The uppermost 1 km low-velocity layer is partly confirmed by, e.g.,
the surface waves dispersion study in Novotný et al., 2001. Since the direct S
waves represent the most important part of the generated wave field in terms of
amplitudes of accelerograms, only these waves are taken into account.

The computer code for 2D ray computations BEAM87 written by Červený
and modified by Brokešová, 1993, to allow for 2.5D computations is used. Under
the 2.5D computation we understand computation of 3D rays in 2D medium (i.e.,
medium with properties dependent on vertical and one horizontal coordinate, in
general). In the case of the adopted crustal model, we do not take advantage of
the code fully since the crustal model is 1D only. On the other hand, we need 3D
rays because of the 3D position configuration of the sources/receivers. Note also
that neither topography nor site effects are taken into account. Thus, our results
correspond rather to seismograms on the bedrock. To allow for site effects, the
synthetics can be further convolved with local amplification functions.

In our computation we consider the frequency range up to 5.5Hz believing
that fmax is somewhat higher in the Athens region. The attenuation effects are
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neglected. The high frequency randomness of wave propagation could be assumed
to be formally involved in the randomness of the k−2 source. The incoherent
nature of high frequency waves (due to propagation) is neglected because then
the comparisons of results are more clear. Both the last mentioned effects are
discussed in the begining of Chap. 3.

To produce the maps of PGA values around the fault, the receivers are radially
distributed on 16 line profiles, intersecting at the epicenter, with azimuthal incre-
ment of 22.5o. On each profile, there are 5 receivers at the epicentral distances of
5 – 25 km, step 5 km. The horizontal PGA’s computed at these receivers are used
to generate desired PGA maps by interpolation. Under the horizontal PGA we
understand the magnitude of the vectorial sum of both horizontal components.
All maps are displayed in the same section of Greece as the empirical data shown
in the figure 4.2.

4.2 5× 4 km fault model

We start with probably underestimated dimension of the fault (compare with
results of the previous studies) and show that it provides unrealistic results. Let
us assume K = 1 (see Appendix A).

Figure 4.4 shows PGA maps generated by k−2 rupture model with instan-
taneous and wave number dependent rise time (L0 = 0.2L, boxcar slip velocity
function) for two different realizations of final slip on the fault. The bottom part
of the figure shows the mean PGA map of 100 realizations. The map of variance
for the case of k-dependent rise time is on the right in the figure 4.5. The variance
is about 20−30% everywhere and does not exhibit any systematic behavior with
respect to the position of the fault or directivity.

As we can see from the figure 4.4, in all cases the position of the area of
highest PGA is in the east direction from the epicentre. It is a consequence of
the combination of the directivity effect and the S wave radiation pattern. To
enlighten the effect of the latter, the figure 4.6 shows how the PGA map changes
when the double couple radiation pattern is neglected (isotropic radiation from
each point source is considered).

Qualitatively, the mean map (see Fig. 4.4) indicates that the differences
between the maps for different slip distributions (in the same figure) are rather
two extremes. The top one has the PGA focused in one point on the surface
while the middle has the PGA maximum rather split in two adjacent areas.
Substitution of instantaneous to k-dependent rise time changes a bit the shape
and position of the high PGA area but the map qualitatively remains the same.

The values predicted by the model with instantaneous rise time are more than
5 times higher than those simulated by the model with wave number dependent
rise time. It has been explained for a line fault in the Fraunhoffer’s approximation
(see the figure 1.1). The PGA values for the instantaneous rise time are more than
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Figure 4.4: PGA maps in m/s2 for instantaneous (left) and wave number dependent

(right) rise time (L0 = 0.20L) for the fault dimensions 5×4 km. In the top and the middle

part the figure shows results for two different realizations of the slip distribution. The mean

result of 100 realizations is shown in the bottom. The rectangle in the middle of each map

represents the projection of the fault to the earth’s surface. The star denotes the epicentre.



52 CHAPTER 4. APPLICATION OF THE K−2 RUPTURE MODEL

mean PGA

38.0

38.2

23.4 23.6 23.8

23.4 23.6 23.8

2

4

4

6

Variance (%)

38.0

38.2

23.4 23.6 23.8

23.4 23.6 23.8

20

22

22

24

24

26

26

28

28

30
Figure 4.5: The mean PGA map in m/s2 (adopted from the figure 4.4) for wave number

dependent rise time (left) and its variance map (right). The fault is projected onto the

surface. The star denotes the epicentre.

50 times higher in the direction of the rupture propagation than in the opposite
direction. Such strong directivity effect has never been measured. That’s why
this model was revised by Bernard et al., 1996, and the k-dependent rise time
was introduced.

On the other hand, the k−2 rupture model with instantaneous rise time was
succesfully used for strong motion prediction by, e.g., Zollo et al., 1997 and
Emolo and Zollo, 2001. Their mean predicted values of PGA do not seem to
be unrealistic because they compute the means from results obtained for varying
nucleation point position on the fault. Note that if we put the nucleation point
on the opposite side of the fault (bottom right), the area of highest PGA would
move to the opposite side with respect to the fault. The mean values would be
then much lower, hence providing ”realistic” estimates. However, their variances
are very large (somewhere reaching 100%).

Although the k-dependent rise time gives lower PGA values, it is obvious that
they are still overestimated. We should investigate whether the change of the slip
velocity function would make any difference.

Results for different combinations of two widths of the slip pulse (L0 = 0.20L
and L0 = 0.05L) and three types of slip velocity functions (boxcar, Hisada’s and
Brune’s, see the figure 2.9) are shown in the figure 4.8. The used slip distribution
is the same as for the first realization in the figure 4.4.
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Figure 4.6: The influence of the S wave radiation pattern (see Fig. 4.7) of the Athens

earthquake on the PGA maps: the radiation pattern is taken into account (left, the same

as in Fig. 4.4 top right) and it is neglected (right). The right map is scaled by the largest

value of PGA on the left figure.

Figure 4.7: The figures show the used S wave radiation pattern (square root of the sum

of SH and SV radiation patterns squared) in two different view angles. The x-axis goes to

the north, the y-axis to the east.
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Figure 4.8: PGA maps in m/s2 for two slip pulse widths (0.20L and 0.05L) and three slip

velocity functions. The slip distribution is the same as was used for the maps in the top of

the figure 4.4. The position and the size of the fault is the same as in the figure 4.4.
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Again, the overall qualitative shape of the maps remains unchanged. As we
can see in the wide pulse case, the use of the boxcar slip velocity function results
in the lowest estimates of PGA when comparing with the results for the other
two functions. This difference almost cannot be seen for the narrow pulse. The
values nearly reach values for the instantaneous rise time. That is why we prefer
the broad pulse. The effect of narrowing the slip pulse on the PGA maps is
displayed in more detail (four values of L0) in the figure 4.9 for Hisada’s slip
velocity function.

We can conclude that the instantaneous slip and the boxcar slip function
are two unrealistic extremes among possible slip velocity functions. Moreover,
the difference between the estimated PGA values for Hisada’s and Brune’s slip
velocity functions is relatively small even for the wide slip pulses although their
functional shape seems dissimilar. However, the unrealistic PGA values still
remain. This lead us to consider a larger fault.

4.3 7.5× 6 km fault model

Here we assume the fault of dimension 7.5 × 6 km and K = 1. Note that the
mean slip was decreased in order to keep the scalar seismic moment unchanged.
Hisada’s and boxcar slip velocity functions and L0 = 0.20L are used to generate
PGA maps in the figure 4.10 for two different realizations of slip distribution.
Fig. 4.10 shows also the mean PGA map for 100 slip realizations. The map of
variances is not displayed because it does not exhibit any systematic behaviour
as in the previous case. The variances are about 25− 35%.

In the figure 4.10 we can see similar quantitative and qualitative differences
between the maps as in Fig. 4.8. The simulations with Hisada’s slip veloc-
ity function give higher values of PGA than those corresponding to the boxcar
function. Nevertheless, the shape of the maps, which is caused mainly by the
directivity and the S wave radiation pattern, is very similar to each other. As it
was expected, the simulated PGA values are lower than for the smaller 5× 4 km
fault.

The 7.5×6 km fault was found plausible by the PEXT simulation by Zahradńık
(submitted). However, constant slip is assumed in the PEXT method. Our
heterogeneous slip results in higher PGA estimates (compare with the figure
4.3).

The K-parameter introduced in the slip distribution allows for modelling of
smoother slip (K < 1). The slip distribution would be similar to the clipped
constant slip for very small K (see figures A.1). The PGA maps for K = 0.5,
K = 1.0 and K = 2.0 (L0 = 0.20L) are displayed in the figure 4.11. As we can
see, the higher K, the higher PGA. This confirms the theoretical result derived
in the chapter 2.

The PGA values for K = 0.5 are still relatively high but it is obvious that we
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Figure 4.10: PGA maps in m/s2 for 7.5×6 km fault model and two slip velocity functions.

In the top and the middle part the figure shows results for two different realizations of the

slip distribution. The mean result of 100 realizations is shown in the bottom. The rectangle

in the middle of each map represents the projection of the fault to the earth’s surface. For

comparison, the 5 × 4 km fault studied before is displayed on the top left map. The star

denotes the epicentre. L0 = 0.20L.
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would reach PEXT simulation results by decreasing K. However, the slip would
be smoothed.

Thus, one possibility is to extend the fault dimensions and keep K between
0.5 and 1.0 or to assume an asperity model of the rupture.

4.4 Asperity model

We choose two examples from a large set of possible asperity models: the ”smaller”
fault 10 × 8 km and the ”larger” fault 15 × 12 km with an asperity 5 × 4 km
and 7.5 × 6 km, respectively. The sizes as well as the positions of the asperities
are chosen to correspond to the fault models discussed above. It means that the
fault is extended in down-dip and along strike direction.

The width of the slip pulse corresponds to 20% of the asperity length La,
thus, 10% of the fault entire length L, i.e. L0 = 0.20La = 0.10L. To model the
slip distribution with an asperity, we take advantage of our ability to combine
the deterministic part of slip (asperity in our case) at low wave numbers and the
stochastic k−2 distribution for the higher ones as it is described in the appendix
A.2.

Another free parameter occurs in asperity models: contrast between the slip
on the asperity versus the mean slip on the fault. We choose two slip contrast
values: 2 and 3. The mean PGA maps for four cases (two dimensions of fault and
two slip contrasts) are displayed in the figure 4.12. We can see that the simulated
PGA values are realistic in these cases. The synthetic accelerograms and their
amplitude spectra for various epicentral distances and azimuths are shown in the
figure 4.13.

The two studies of empirical scaling laws for rupture properties mentioned in
the chapter 1.3 give consistent parameters. The empirical relations of Somerville

et al., 1999 (summarised in the table 1.1 in this work) gives the area of the fault
A = 88 km2, which is only slightly larger than our case of 10 × 8 km. Mai

and Beroza, 2000 (see formula (1.17) in this text) suggests a fault of dimension
12 × 9 km. The suggestion by Somerville et al., 1999 that the asperity should
cover about one quarter of the whole fault with twice higher slip than the mean
slip is also consistent with our parameters. The average rise time TR = 0.4 s
given by Somerville et al., 1999 is lower than our preferred maximum rise time
(corresponding to the width of the slip pulse) of about 0.5s. On the other hand,
the rise times for the slip wavelengths shorter than the slip pulse width are smaller
in the k−2 rupture model, thus, the rise time given by the empirical relation should
rather represent an ”effective” value for this rupture model.

However, our parametric study of the rupture model cannot help us to decide
whether the fault dimension was larger than 7.5 × 6 km without asperity or
whether there were more asperities on relatively large fault and so on. Some
other techniques inverting seismograms has to be used to obtain the slip model.
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Figure 4.13: Each panel shows the synthetic accelerograms (in m/s2) and their amplitude

spectra at given epicentral distance for four azimuths of the stations (measured from north

clockwise). The rupture model corresponds to a realization of the hybrid slip distribution

for the case of 10 × 8 km fault with slip contrast 2. Note the effects of directivity: the

amplitude and the width of the accelerogram, the height of the spectral plateau after the

corner frequency and the shift of the corner frequency. The timescale is in seconds, the

frequency scale in Hz.
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Figure 4.14: PGA map for slip model in-

verted by Baumont et al., 2001. The slip

pulse width is L0 = 1.9km. The Hisada’s

slip velocity function is used. The rectan-

gle in the middle of the map represents the

projection of the fault of 22× 22 km to the

surface. The star denotes the epicentre.

4.5 Forward strong motion modelling for the

slip obtained by inversion of seismograms

The EGF slip inversion was performed for the Athens earthquake by Baumont

et al., 2001 from regional data. The resultant slip distribution on 22 × 22 km
fault and its hybrid k−2 modification can be found in the figure A.3. The strong
motions are modelled with L0 = 1.9km, which corresponds to the maximum rise
time about 0.68s. The PGA map is displayed in the figure 4.14.

As we can see, the slip model moves the area of the highest PGA values
slightly to the west (compare with our previous results). We cannot compare
easily with the macroseismic data in the figure 4.2 since no direct intensity values
are avaible from that area. Nevertheless, the overall pattern of the maximum
PGA agrees with observation.

Note, the current state of the computing power of a standard PC allows for
performing the slip inversion as well as the kinematic modelling for earthquakes
with magnitudes comparable to the Athens earthquake nearly in real-time. If we
believe that the slip inversion gives reasonable results, our procedure could help
to assess the areas of the highest losses right after a damaging event. It can help
to organize rescue operations.



Chapter 5

Discussion and conclusion

We have studied the k−2 kinematic rupture model proposed originally by Bernard

et al., 1996. It has been already successfully used for past as well as future earth-
quakes (e.g, Berge-Thierry et al., 2001, Zollo et al., 1997, Emolo and Zollo, 2001).
All works emphasize the importance of considering the complexity of the source
process for strong ground motions estimate in the near source region. Therefore,
in this work we have generalized this model to provide a more flexible tool to
simulate a larger variety of earthquakes. The four generalizations performed in
this work are as follows:

1. The corner wave number in the k−2 stochastic slip distribution was gen-
eralized from 1/L to K/L (L being the fault length). The K-parameter
consequently controls smoothness/roughness of the slip distribution. This
parameter also affects the shape of the source spectrum: the corner fre-
quency is proportional to K and the height of the spectral plateau to K2.
We suggest to study this parameter in more detail not only by analyzing
the slip inversion results but also by studying the empirical attenuation
relations.

2. An easy way to generate so-called hybrid slip (originally proposed byHisada,
2001) was suggested. The hybrid slip consists of two parts. At low wave
numbers the slip is deterministic, given by, e.g., empirical scaling laws (po-
sition of asperities subjected to variations and slip contrasts on them) or
the slip inversion results. For the wavelenghts shorter than about the di-
mension of the deterministic part in the spatial slip spectrum, the slip is
prescribed to have k−2 decay with a random phase. Such a hybrid model
may represent more realistic slip distributions than the stochastic slip.

3. The unrealistic assumption of a boxcar slip velocity function (with wave
number dependent rise time), discussed in Bernard et al., 1996, was relaxed.
It was found that arbitrary slip velocity function, which has its Fourier
spectrum, possesing rise time proportional to the wavelength at high wave
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numbers generates the desired omega-squared source spectrum. In other
words, the spectral decay at frequencies higher than the corner frequency
is given just by the decay of the slip distribution spectrum regardless on
the type of the slip velocity function. This makes the ω-squared scaling
law more robust. Moreover, it could also contribute to explanation of the
empirical fact that ω-squared decay has been observed commonly. The
assumption of wave number dependent rise time could be confirmed or
refused by the dynamic rupture studies.

The study of the influence of various slip velocity functions on the ground
acceleration has shown that the instantaneous slip and the boxcar function
represent the limiting unrealistic cases. The instantaneous slip overesti-
mates the accelerations while the boxcar slip velocity function underesti-
mate them.

4. An easy way to incorporate the wave number dependent rise time in the
representation theorem has been developed. The inverse spatial Fourier
transform of the product of the slip distribution and the slip velocity func-
tion gives a unique slip function for each point on the fault. The ground
motions are then obtained by the integration over the fault plane of Green’s
functions convolved with the slip functions from the previous step.

We have applied the k−2 rupture model to the 1999 Athens earthquake in
order to compute the PGA maps in the vicinity of the fault. We fixed the
earthquake parameters determined by previous studies: location of the epicentre,
scalar seismic moment, focal mechanism, radial rupture velocity and the position
of the nucleation point on the fault. The fact that the fault was buried about
5 − 7 km under the surface allows us to assume that the direct S waves were
responsible for the predominant phase in the strong ground motions.

The influence of remaining parameters of the k−2 rupture model (fault dimen-
sions, slip pulse width, K-parameter and the shape of the slip velocity function)
on PGA maps was studied. We have shown in a series of numerical experiments
that the shape of the maps is given predominantly by the directivity and the
radiation pattern. The fault dimensions together with the slip pulse width, K
and the slip velocity functions change mainly the values of PGA. As regards the
fault dimensions, they affects both the pattern of the PGA maps and the values
of PGA. All these results of numerical experiments for 2D fault in a realistic 1D
model can be understand in terms of the results derived for simple line fault in
Fraunhoffer’s approximation in homogeneous space (see Chap. 2). In the case of
the asperity model, the asperity dimensions as well as the slip contrast also affect
the PGA values considerably.

Our suggested set of k−2 rupture models suitable for the Athens earthquake
(see Chap. 4.4) can explain the pattern of the macroseismic intensity map. We
compared the suggested values of the kinematic parameters with the empirical
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source scaling relations. The reasonable consistency gives us the hope that the
source scaling laws by Somerville et al., 1999, obtained basically from Californian
earthquakes are applicable in the seismic hazard assessment in Attica. It means
that we could be able to estimate strong ground motions of future event for given
location and magnitude. Moreover, the hybrid slip model together with some
fast slip inversion technique is applicable on fast estimations of highest damage
areas after an event.

The remaining problems and outlines are as follows:

1. The most important problem of the high frequency kinematic modelling is
the need of massive numerical computations. It is caused by the numerical
evaluation of the representation theorem integral as well as the computation
of a large set of Green’s functions. In contrast, the rapidity of computations
is the advantage of the composite and hybrid modelling.

2. The still remaining problem of k−2 rupture model is the assumption of
constant rupture velocity. The influence of rupture time variations in the
representation theorem on the generated wave field is not easy to handle
even in the line fault approximation. However, it is clear that they are
responsible for generation of high frequency waves. A first (numerical)
attempt to incorporate the rupture time variations into kinematic modelling
with constant rise time has been done by Hisada, 2000. Note that the
influence of such variations on directivity is not yet resolved.

3. In our modelling, there is a strong assumption that the radiation pattern
is the same at all frequencies. The wavefield at high frequencies is sensitive
to small-scale variations of the rupture process, i.e., to spatial variations
of rake or to non-planarities of the fault, etc. They have to be taken into
account and further studied in order to find their consequences on the ra-
diated wave field (particulary, on the directivity). The radiation pattern
at high frequencies can be also smoothed out by scattering from small-
scale heterogeneities in the Earth crust. These effects were not taken into
account.

4. Besides PGA’s, the response spectra should be studied for the Athens earth-
quake as one of the most used quantity in the engineering strong motion
studies.

5. The attenuation (Q, κ) should be taken into account for better estimates
of ground motions.

6. Note that the omega-squared source model has not yet been reliably con-
firmed. The critical task is to remove the propagation effects (e.g., atten-
uation, separation of direct P or S wave phases) from the recorded wave
fields. In the k−2 rupture model, the decay exponent over ω is equal to the
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exponent over k in the slip distribution. Moreover, the effect of directiv-
ity at high frequencies has not yet been reliably determined by empirical
studies.



Appendix A

k−2 slip generation

In this part we explain the k−2 random dislocation distribution in detail.
Frankel , 1991, proposed that subevent distribution with the fractal dimen-

sion D = 2 and constant stress drop scaling (the mean slip is proportional to the
fault length) produce the falloff f−2 of the high frequency radiation, provided
the subevents fill in the whole fault area. Herrero and Bernard , 1994, intro-
duce a kinematic self-similar random slip distribution with k−2 decay of Fourier
amplitudes for high wave numbers and, consequently, k−1 decay for stress drop.

For 1D (linear) fault, the slip distribution function used in this work is de-
scribed in the wave number domain by (2.7). Let us discuss the generalization
to a 2D rectangular fault. The integration in the z-direction in the line fault
approximation (see the derivation of (1.14)) can be interpreted as an integration
along an isochrone parallel to the z-axes. If we deal with a general rectangular
fault where the isochrones are more complex, it’s reasonable to consider the spa-
tial spectrum decay of the final slip as radially symmetric (Bernard and Herrero,
1994). This leads to the function

D(kx, kz) =
∆ūLW

√

1 +
(

(

kxL
K

)2
+
(

kzW
K

)2
)2

eiΦ(kx,kz), (A.1)

where ∆ū denotes the mean slip, Φ is the phase spectrum and L and W the
length and the width of the fault, respectively. K is a dimensionless constant
which influences the slip distribution and is discussed further in this appendix.

A.1 Random slip

In this case, the phase spectrum of (A.1) is considered random at any wave
number, except for k2 ≤ (1/L)2 + (1/W )2 for which the phase is chosen in such
a way to obtain the final slip concentrated in the centre of the rectangular fault.
This also means that we have no other physical constraints on the dislocation
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Figure A.1: Six different k−2 slip distribution for two different approaches to avoid neg-

ative slip as it is described in text. The parameter K changes the shape of final slip. The

bigger K is the more the dislocation is ”broken”. Other consequences can be found in text.

The mean slip is the same for all distributions.
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Figure A.2: A schematic picture of the influence of either cutting or elevating of the slip

distributions on their spatial amplitude spectra. Only a cross-section kz = 0 is shown for

simplicity. The qray line represents the originally prescribed amplitude spectrum. Note how

the elevation weakens the amplitudes at high wave numbers.

than the dimension of the fault and the mean slip. That’s why we refer this as
random slip. Examples of final slip for various K’s (see (A.1))are shown in figure
A.1. Here we give a brief description how to generate the final slip numerically:

• Random numbers are distributed in spatial domain on the discretised fault.

• The function is transformed to the wave number domain by performing 2D
Fourier transform.

• The amplitudes of the spectrum are modified to correspond to (A.1). The
phase for k2 ≤ (1/L)2 + (1/W )2 is changed to get the centre of the whole
dislocation in the centre of the fault. The other phases (which are random)
retain.

• The spectrum is transformed back into the spatial domain.

• To obtain a non-negative slip, the slip distribution has to be either elevated
by adding a constant, or the negative numbers have to be cut. This step is
discussed further in detail.

• The slip is tapered on the edges of the fault by a double cosine spatial
window.
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• Finally, the mean slip is imposed to the distribution to conserve seismic
moment.

Let us discuss the problem of negative values of slip. According to Bernard

(personal communication), in the figure A.2, it is illustrated how either cutting
or elevating influences the high wave numbers.

Cutting. As the negative slip values are replaced by zeros the amplitude at zero
wave number (integral over the fault) becomes larger. The amplitudes for other
wave numbers become also higher due to the sharp edges caused by cutting. To
impose the mean slip as the last step, the dislocation has to be multiplied by a
constant less than 1. Consequently, the amplitude spectrum nearly returns to its
original amplitudes for the whole wave number range.

Elevating. Adding a constant to the final slip changes the amplitude at zero
wave number (kx = kz = 0) only. Tappering of the slip distribution expands
the peak at zero wave number, i.e., it makes the amplitudes at long wavelengths
dominant. After the last step of the generation procedure, the short wavelengths
are even more weakened.

Note that for K smaller than 1 the small wave numbers are dominant to
that extent that cutting or elevating is nearly not needed. However, for other
K’s, the procedure becomes important. Considering the elevation weakens short
wavelengths, therefore we recommend cutting.

A.2 Hybrid slip

Let us note that considering a random slip is not very physical. Concentration
of the seismic moment (slip) at the centre of the fault may be valid for small
earthquakes, perhaps asperities but not for large ruptures. This is confirmed by
various slip inversions yielding two or more asperities on the fault at random
positions.

Another problem represents a broadband modelling for inverted slip models
that are confined by limited resolution. Thus, the slip produced by slip inversion
can be considered as a deterministic part of final slip at long wavelengths onto
which a stochastic part is to be superimposed at wavelengths shorter than about
the smallest dimension of the deterministic part.

It is obvious that random slip is one nonrealistic extreme case of possible slip
models. The other nonrealistic extreme is the uniform slip. A real dislocation
distribution lies somewhere between these two limiting cases.

These are the motivations to introduce so-called hybrid slip generator (Hisada,
2001). See two illustrative examples in the figure A.3. The procedure consists of
four steps:



A.2. HYBRID SLIP 71

(1)

(2)

L
L

L L

W
W

WW

Figure A.3: Two examples of the hybrid slip: (1) a model with 1 asperity, (2) the hybrid

slip created from the slip inversion result by Baumont et al., 2001. The deterministic part

of the slip distribution is displayed on the left side. The resulting hybrid slip (combination

of the deterministic part and the k−2 amplitude spectrum (A.1) with random phase) is on

the right side.
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Figure A.4: The dependence of K on the

moment magnitude Mw after two authors:

1)Mai and Beroza, 2001 and 2) Somerville

et al., 1999. Kx and Kz mean K in the

strike and down dip direction, respectively.

Let us note that both above mentioned pa-

pers prefere K rather less than 1 (corre-

sponding to relatively smooth slip).

• Layout of the blocks of constant slip with the dimension of ∆L × ∆W
representing the deterministic part of the slip (left side of the figure A.3).

• Smoothing by a sliding window.

• Transforming to the wave number domain

• Prescribing k−2 spectral decay by function (A.1) with random phase for
k > kN where kN is the Nyquist’s wave number of the deterministic part
(k2N = (1/∆L)2 + (1/∆W )2). The deterministic shape will be preserved.

The deterministic part of the slip distribution (first step) can be obtained, for
example, from slip inversions, from some empirical relations or from some known
tectonic properties or constraints in the region.

The smoothing of the dislocation (second step) is necessary to avoid of the
spectral holes caused by sharp edges of layout blocks1. Hisada, 2001, presents
more complicated method of smoothing: first linear interpolation and then bi-
cubic spline smoothing. However, we have found our easy method sufficient.

A.3 K-parameter

The scaling relation for the corner wave number in the slip distribution (A.1) has
already appeared in papers dealing with the source scaling relations (Somerville,
1999, Mai and Beroza, 2000, Main and Beroza, 2001). They extract information
about K-like-parameter (correlation length, i.e., L/K or W/K in our notation)
from slip inversion results, i.e., from usually rough data with quite low confidence,

1The amplitude spectrum of a box corresponds to the function sinc(f). This oscillatory
function reaches zero for some values of f . Such spectral holes are an artifact of the unphysical
assumption that the deterministic part consists of blocks.
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especially in the wave number domain (for tests of the slip inversion accuracy,
see Graves and Wald , 2001, and Wald and Graves , 2001). Moreover, up to now
there have been found (and examined) not more than about tens of slip models
for magnitudes in the range about 5 < MW < 8
(see http://www-socal.wr.usgs.gov/wald/slip_models.html for available slip
models of the western America earthquakes). Two empirical curves according to
two authors showing the magnitude scaling of K are in the figure A.4.

We propose another way how to find a relation between, e.g., magnitude and
the correlation length – to study horizontal peak ground acceleration (PGA) in
the near source region and attenuation relations. Under attenuation relation we
understand empirical relations between PGA and hypocentral distance for given
magnitude, for an overview see Abrahamson and Shedlock , 1997. These relations
usually more or less differ among particular authors or regions.

The theoretical Brune’s omega-squared model is used to describe the source
radiation as a function of earthquake magnitude. The geometrical spreading and
the anelastic attenuation (i.e., propagation effects) are taken into account. Site
effects are usually described by one variable, which differ from station to station.

Note that for our purpose the most reliable information lies in attenuation
relations derived for a set of earthquakes of (nearly) the same magnitude within
the same area. Consequently, the differences among them could be then linked
to the K-parameter. Unfortunately, no such study exists.

The attenuation relations are studied usually for two ranges of magnitudes:
from small to moderate sizes (2 < MW < 5) and from moderate to large sizes
(4 < MW < 7 − 8). First, let us discuss the latter case. Andrews , 2001, studied
the attenuation relation in California with a correction for a finite fault effect
for small epicentral distances (that does not affect the information we want to
extract). The author described the residuals from PGA regression, according to a
prescribed fitting relation f(M,R), by two random variables. Thus, his regression
had the following form:

lnPGAij = f(Mi, Rij) + ηi + εij, (A.2)

where R is the epicentral distance, subscripts i and j correspond to the event and
record number, respectively, ηi is an interevent random variable with variance τ 2

and εij is an intraevent random variable with variance σ2. τ 2 can be linked to
the variance of K because it corresponds to fluctuations of PGA’s regardless
of the moment and hypocentral distance. Its value was found by non-linear
regression τ 2 = 0.032. This suggests 20% variance for PGA. Consequently, for
all considered magnitudes the K-parameter lies in the interval 0.9 − 1.1 for the
region of California since PGA is proportional to K2 (see below). Such small
variation of K can be linked to errors in the fitting procedure as well.

An open question still remains whether the range of K is the same for other
regions with its tectonic regime and whether concluded fluctuation can be extrap-
olated to smaller magnitudes and other areas. Moreover, such slight fluctuation
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Figure A.5: A comparison of attenuation relations for weak-to-moderate earthquakes

found for Greece (denoted as ”this study”), Italy (Costa et al.) and California (Campbell).

After Theodulidis, 1998.

can be still addressed to other, in the regression not accurately determined, quan-
tities as well – they will be discussed further.

Let us discuss the attenuation relations for small-to-moderate events found
for two nearby regions: Italy and Greece (Theodulidis , 1998). They can be found
in the figure A.5. As it can be seen, they are very similar. On the other hand,
Californian relations (Campbell , 1989, also in the figure A.5) predicts much higher
(5-15 times) values of PGA. Could this suggest different correlation lengths of slip
for these regions? Should it be thatK < 1 orK > 1 for Greece (Italy)? To answer
this, we have to recall that (see section 2.2) the height of acceleration spectral
plateau and the corner frequency are proportional to K2 and K, respectively.
If the steep spectral falloff after fmax was not present, the PGA (related to the
root mean square acceleration arms, which is equal to square root of the power
spectrum integral due to the Rayleigh’s theorem) would be still higher for higher
K, proportional to approximately K2. Otherwise, if the falloff after fmax is
present, then as the corner frequency approaches fmax, the PGA value gets smaller
(for rising K). This suggests that for Greece K is probably less or slightly more
than 1.

These were only motivations for studying the dependence of the corner wave
number on the magnitude not only from slip inversions but also from attenuation
relations. We recommend to study this topic deeply because there are (as in slip
inversions) lots of biases that have to be sensitively considered. Let us discuss
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them here in a little more detail.

• The correction for the radiation pattern is not appropriately (if ever) dis-
cussed in any of the referred papers. We have to believe that this effect
was taken into account but still we have to keep in mind that this could
be questinable. The determination of the focal mechanism for small mag-
nitude earthquakes is quite inaccurate. On the other hand, in case of large
earthquakes, the effect of the radiation pattern could be quite smoothed
due to the finiteness of the fault.

• It should be investigated how the K-parameter affects, for example, the
estimation of the fault dimension or the stress drop.

• In referred papers, prescribed source model contains only epicentral (hypocen-
tral) distance, not the hypocentral depth. It is not clear whether the depth
of the source was excluded for simplification or it does not affect the results
significantly.

• The value of fmax is very important in PGA estimations. It is demonstrated
by Campbell , 1989. The attenuation relation were found for California
where fmax does not exceed approximately 25Hz. The author has to restrict
the range of interest to frequencies lower than 25Hz to obtain consistent
predictions for (i.e., extrapolate the Californian to) Northeastern America
earthquakes where fmax can be more than 50Hz.

• The differences in regional magnitude scales can produce significant sys-
tematic errors and cause problems in comparisons of attenuation relations
among various areas.

• Other quantities uncertain in determination and biasing the attenuation
relations are, e.g., unelastic attenuation (Rovelli et al., 1991) and site effects
(caused by, for example, lateral inhomogeneities, 3D site effects, etc.).

Despite of these problems, the correlation length (and K) should be investi-
gated, since its most important property is that it affects values of strong ground
motions regardless of magnitude or propagation effects.
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