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Abstrakt: Kompozitńı model, který bere v úvahu r̊uzně velké elementárńı zdroje,
představuje jeden z možných popis̊u seismického zdroje. Počet elementárńıch zdroj̊u
s velikost́ı větš́ı než R je úměrný R−2. Elementárńı zdroje se nepřekrývaj́ı a jejich
celková plocha má stejný obsah jako zlomová plocha hlavńıho otřesu. Rozložeńı ele-
mentárńıch zdroj̊u na hlavńı zlomové ploše je náhodné. Elementárńı zdroje jsou mode-
lovány bud’ jako konečné zdroje, a to konkrétně kinematicky (radiálńı š́ı̌reńı trhliny
s konstantńı rychlost́ı, skluzová funkce je funkce typu rampa s náběhovým časem
rovným době trháńı), nebo v bodovém přibĺıžeńı. Hodnota konečného skluzu na
elementárńım zdroji je úměrná velikosti elementárńıho zdroje. Syntetické Greenovy
funkce se poč́ıtaj́ı metodou diskrétńıch vlnových č́ısel v 1D vrstevnatém prostřed́ı v re-
lativně ř́ıdké śıti bod̊u. Greenovy funkce v husté śıti bod̊u se dostávaj́ı za použit́ı
interpolace (kubické splajny). Výše popsaný kompozitńı model je možné interpreto-
vat jako kinematický model s nerovnoměrným rozložeńım skluzu a s nerovnoměrným
časem př́ıchodu trhliny. Metoda byla aplikována při modelováńı silných pohyb̊u p̊udy
zp̊usobených Aténským zemětřeseńım 1999 (Mw=5.9).
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Abstract: A composite source model, incorporating different sized subevents, provides
a possible description of complex rupture processes during earthquakes. The number
of subevents with characteristic dimension greater than R is proportional to R−2. The
subevents do not overlap with each other, and the sum of their areas equals to the
area of the target event (e.g. mainshock) . The subevents are distributed randomly
over the fault. Each subevent is modelled either as a finite source, using kinematic
approach (radial rupture propagation, constant rupture velocity, boxcar slip-velocity
function, with constant rise time on the subevent) or as a point source. The final slip
at each subevent is related to its characteristic dimension, using constant stress-drop
scaling. The synthetic Green’s functions are calculated by the discrete-wavenumber
method in a 1D horizontally layered crustal model in a relatively coarse grid of points
covering the fault plane. The Green’s functions in a fine grid are obtained by cubic
spline interpolation. The composite source model described above allows interpretation
in terms of a kinematic model with non-uniform final slip and rupture velocity spatial
distributions. The strong ground motion modelling of the 1999 Athens earthquake
(Mw = 5.9) was performed.
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Chapter 1

Introduction

Accurate estimation of strong ground motion in a broad-frequency band (0.5-
20Hz) for future large earthquakes is one of the major topics of present strong
motion seismology. Syntheses of strong ground motion are based on combination
of generation (source effects) and propagation of seismic waves in Earth. The
problem is, that at high frequencies (f ∼ 20Hz) deterministic methods based
on limited knowledge of Earth’s interior still fail. The problems adherent to
propagation effects are quite obvious, present crustal models are insufficient for
such high frequencies. The problems adherent to source effects are may be even
more complicated, because there has not been developed yet universal physical
theory of faulting processes.

This thesis is particularly focused on the modelling of finite-extent sources.
Seismic sources are of course studied in various ways. We mention here three
main approaches: dynamic modelling, kinematic modelling and composite mod-
elling of seismic source. The goal of dynamic modelling of seismic source is to
determine point of rupture initiation, rupture velocity and slip behavior over the
fault, from stress acting on the fault, strength of the fault and properties of ma-
terial surrounding the fault (see Kostrov and Das (1988)). One can see, that
dynamic modelling represents very complex problem by itself, and therefore it is
not suitable for strong ground motions simulations. On the other hand kinematic
modelling of seismic source represents favorable choice from strong ground mo-
tion point of view. The problem of seismic source is reduced to specification of
the dislocation on a fault as a function of time and position (usually expressed in
form of representation theorem presented by Aki and Richards (1980)). In other
words kinematic modelling of seismic source starts at the point, where dynamic
modelling of seismic source usually results. The composite modelling of seismic
source represents quite different approach. The seismic source is taken as a case
of certain self-similar entity. In other words, seismic source is assumed to be
composed from smaller seismic sources (usually called subevents). The idea of
composite source model came from EGF (Empirical Green’s Function) method,
where time history of mainshock is built up from aftershocks (Hartzell (1978)). In
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10 CHAPTER 1. INTRODUCTION

this study we are going to enhance recent composite source models by incorporat-
ing non-equal sized subevents. Although composite models with non-equal sized
subevents were already studied from both theoretical (Boatwright (1982), Frankel
(1991)) and practical (Zeng et al. (1994), Irikura and Kamae (1994), Hartzell et
al. (1999)) points of view, the number of uncertainties and uncompleted descrip-
tions does not allow to use these models universally. So that the motivation for
this study was to build up composite model, which would be simple, universal
and which would be without any contradictory assumptions. Chapter 2 provides
description of composite source model with equal sizes to show basic properties of
composite modelling. Then in Chapter 3, which represents the fundamental part
of this master thesis, non-equal sized subevents are incorporated. In Chapter 4
we outline possible ways of subevents modelling and finally in Chapter 5 there
is shown an example application of developed composite model for Athens 1999
earthquake.



Chapter 2

Subevents with equal sizes

2.1 Scaling laws

Scaling laws between large and small earthquakes have to be considered for build-
ing composite source model. Set of scaling laws for source parameters such as
fault area, average final slip and scalar seismic moment, introduced by Kanamori
and Anderson (1975) and assuming constant stress drop are

Lm

Ls
=
Wm

W s
=
〈u〉m
〈u〉s =

f sc
fmc

=

(

Mm
o

M s
o

)
1

3

= K (2.1)

where L, W denote length, width of fault area, 〈u〉, fc, Mo, denote average
final slip, corner frequency and scalar seismic moment respectively and K is
constant. Superscripts m and s distinguish 2 different earthquakes. Present
composite models, which have incorporated these laws, produce reasonable results
(see Irikura and Kamae (1994), Frankel (1995), Hartzell et al. (1999)), however
they aren’t certain for wide magnitude ranges (see Mai and Beroza (2000)). In
further study we will use the assumption of constant stress drop (2.1) to simplify
derived formulas. A more general case of nonconstant stress drop can be found
in Irikura and Kamae (1994).

2.2 ω−2 source model

Another fundamental assumption of presented composite model is f−2 falloff of
amplitude displacement spectra above corner frequency fc. The shape |u(f)| of
amplitude displacement spectra is prescribed, following Brune (1970), as

|u (f)| ∝ Mo

1 +
(

f

fc

)2 (2.2)
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12 CHAPTER 2. SUBEVENTS WITH EQUAL SIZES

One can see that (2.2) has plateau for f < fc, particularly

|u (f → 0)| ∝Mo (2.3)

The shape of amplitude acceleration spectra |ü(f)| is then, derived multiplying
(2.2) by f 2,

|ü (f)| ∝ Mof
2

1 +
(

f

fc

)2 (2.4)

(2.4) has plateau for f > fc, particularly

|ü (f →∞)| ∝Mof
2
c (2.5)

2.3 Summation method for subevents with equal

sizes

The idea of ongoing study is to compose target event from smaller events, which
meet (2.2), so as target event will meet (2.2), conserving (2.1).

Let’s propose some basic assumptions about modelled event (i.e. mainshock):
rupture fault is considered to be rectangle with known length Lm and width
Wm, scalar seismic moment Mm

o , corner frequency fmc and mechanism are known
parameters, too. Further, we assume that there are available seismograms of N
subevents, which occur within the fault of the mainshock (i.e. mainfault). These
subevents have same mechanism as the mainshock and appropriate rectangular
subfault is assigned to each subevent. These subfaults fully fill up the mainfault.
Moreover, we assume that all of these subevents have same moment M s

o , corner
frequency f sc and stress drop ∆σ. Thus, due to constant stress drop scaling, all
subfaults have same length Ls and width W s. In other words, we simply cut the
mainfault into N identical subfaults, so

LmWm

LsW s
= N (2.6)

The stress drop ∆σ is considered to be same for both mainshock and subevent,
so by combination of (2.1) with (2.6), we obtain

(

Mm
o

M s
o

)
2

3

= N (2.7)

One of the simplest ways how to build up the target event is to sum up con-
tributions from subevents with appropriate time shift to model finite size of the
mainfault, mathematically

ΩΣ (t) =
N
∑

m=1

Ωs
m (t− trm) (2.8)



2.3. SUMMATION METHOD FOR SUBEVENTS WITH EQUAL SIZES 13

whereΩΣ (t) is modelled composite seismogram, Ωs
m (t) is contribution fromm-th

subevent, trm is time, when the m-th subevent is initialized. Timing of subevents
can be chosen in various ways, from completely random trm (see Tumarkin (1994)),
to trm which follows prescribed rupture front spreading over mainfault (e.g. ra-
dial rupture). ΩΣ (t), Ωs

m (t) could be generally time histories of displacement,
velocity or acceleration.

2.3.1 Summation process for random trm

In this section, we are going to study general behavior of amplitude spectra
∣

∣ΩΣ (f)
∣

∣ of simulated time history ΩΣ (t) . Firstly, we show its asymptotic be-
havior, following Joyner and Boore (1986). In this case, it is useful to assume
random subevent timing, to provide analytical derivation. Transforming (2.8) to
frequency domain, we obtain

ΩΣ (f) =
N
∑

m=1

Ωs
m (f) e−2πift

r
m (2.9)

It is clear that one realization of trm and one set of Ωs
m (f) would not tell us

much about the general shape of ΩΣ
m (f). Hence, we are going to study ΩΣ

m (f)
statistically to provide trustful results. The general shape of ΩΣ

m (f) will be
identified with average composite amplitude spectra and will be denoted

∣

∣ΩΣ (f)
∣

∣.

For the square of average amplitude spectra
∣

∣ΩΣ (f)
∣

∣ we have

∣

∣ΩΣ (f)
∣

∣

2
= ET ,S







(

N
∑

j=1

Ωs
j (f) e

−2πiftrj

)(

N
∑

k=1

Ωs
k (f) e

−2πiftr
k

)







(2.10)

where ET ,S {. . .} is operator of expectation (mean value, see Lee (1960)) from
sets T and S, bar over denotes complex conjugate, T denotes set of trm, S denotes
set of Ωs

m (f). Rearranging (2.10) we get

∣

∣ΩΣ (f)
∣

∣

2
= ET ,S

{

N
∑

j=1

[

Ωs
j (f)Ω

s
j (f)

]

+
N
∑

j,k=1
j 6=k

[

e−2πif(t
r
j−t

r
k)Ωs

k (f)Ω
s
j (f)

]

}

(2.11)
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We suppose thatΩs
j (f) ,Ω

s
k (f) , t

r
j and t

r
k are independent of each other for j 6= k,

thus

∣

∣ΩΣ (f)
∣

∣

2
=

N
∑

j=1

[

ES

{

Ωs
j (f)Ω

s
j (f)

}]

+
N
∑

j,k=1
j 6=k

[

ET

{

e−2πif(t
r
j−t

r
k)
}

ES

{

Ωs
k (f)Ω

s
j (f)

}]

(2.12)

As we supposed above, trm is random variable, hence it can be described by certain
probability density function ρ (trm). We choose simply uniform probability density
function

ρ (trm) =











0 trm < 0
1
T

0 ≤ trm ≤ T

0 trm > T

(2.13)

where T is duration of the mainshock, which is inversely proportional to the
corner frequency of the mainshock fmc . From definition of expectation E {. . .}
we obtain

E {f (trm)} =
∫ ∞

−∞

f (trm) ρ (t
r
m) dt

r
m =

1

T

∫ T

0

f (trm) dt
r
m (2.14)

As we treat both trk and trj independently, ET becomes

ET

{

f
(

trj
)

f (trk)
}

=
1

T 2

∫ T

0

∫ T

0

f
(

trj
)

f (trk) dt
r
jdt

r
k (2.15)

Putting (2.15) into (2.12) we get

∣

∣ΩΣ (f)
∣

∣

2
=

N
∑

j=1

[

ES

{

Ωs
j (f)Ω

s
j (f)

}]

+
1

T 2

N
∑

j,k=1
j 6=k

[
∫ T

0

∫ T

0

e−2πif(t
r
j−t

r
k)dtrjdt

r
k ES

{

Ωs
k (f)Ω

s
j (f)

}

]

(2.16)

Obvious integration produces

∣

∣ΩΣ (f)
∣

∣

2
=

N
∑

j=1

[

ES

{

Ωs
j (f)Ω

s
j (f)

}]

+
N
∑

j,k=1
j 6=k

[

sinc2
(

f T

2

)

ES

{

Ωs
k (f)Ω

s
j (f)

}

]

(2.17)
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where function sinc(x) denotes sin(x)
x

. Equation (2.17) is already suitable for

studying
∣

∣ΩΣ (f)
∣

∣ when f → 0 and f →∞.

Firstly, let’s propose
∣

∣ΩΣ (f)
∣

∣ and
∣

∣Ωs
j(k) (f)

∣

∣ in (2.17) to be displacement

spectra (|uΣ (f)| resp. |us
j(k) (f)| ). All subevents have same scalar seismic mo-

ment M s
o , low-frequency part of displacement spectra is proportional to M s

o ,
hence low-frequency average of these spectra will be surely proportional to M s

o

and approximately equal to average subevent amplitude displacement spectra
|us (f → 0) |, then

lim
f→0

ES

{

us
j (f)u

s
j (f)

}

= |us (f → 0)|2 (2.18)

lim
f→0

ES

{

us
k (f)u

s
j (f)

}

= |us (f → 0)|2 (2.19)

For f → 0, using (2.17), (2.18), (2.19) and limx→0 sinc(x) = 1, the square of an
average amplitude displacement spectra is

∣

∣uΣ (f → 0)
∣

∣

2
=

N
∑

j=1

|us (f → 0)|2 +
N
∑

j,k=1
j 6=k

|us (f → 0)|2 (2.20)

rearranging terms yields

∣

∣uΣ (f → 0)
∣

∣ =
√

N +N (N − 1) |us (f → 0)| (2.21)

and finally
∣

∣uΣ (f → 0)
∣

∣ = N |us (f → 0)| (2.22)

Secondly, let’s propose
∣

∣ΩΣ (f)
∣

∣ and
∣

∣Ωs
j(k) (f)

∣

∣ in (2.17) to be acceleration

spectra (|üΣ (f)| resp. |üs
j(k) (f)| ). All subevents have same scalar seismic mo-

ment M s
o and same proportions, thus same corner frequencies f sc . High-frequency

part of acceleration spectra is proportional to M s
o (f

s
c )
2, hence high-frequency av-

erage of these spectra will be surely proportional to M s
o (f

s
c )
2 and approximately

equal to average subevent amplitude acceleration spectra |üs (f →∞) |, then

lim
f→∞

ES

{

üs
j (f)ü

s
j (f)

}

= |üs (f →∞)|2 (2.23)

lim
f→∞

ES

{

üs
k (f)ü

s
j (f)

}

= |üs (f →∞)|2 (2.24)

For f → ∞, using (2.17), (2.23), (2.24) and limx→∞ sinc(x) = 0, the square of
an average amplitude displacement spectra is

∣

∣üΣ (f →∞)
∣

∣

2
=

N
∑

j=1

|üs (f →∞)|2 (2.25)
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and finally
∣

∣üΣ (f →∞)
∣

∣ =
√
N |üs (f →∞)| (2.26)

From (2.22) and (2.26) it is clear that low-frequency and high-frequency parts
of subevents spectra are summing up in different ways. In literature (2.22) and
(2.25) has been often distinguished as coherent and incoherent summation. Co-
herent summation means that composite amplitude spectrum, composed of N
subevents, is sum of N subevents’ amplitude spectra and incoherent summation
means that square of composite amplitude spectrum, composed of N subevents,
is sum of N squares of subevents’ amplitude spectra. Adopting terms coher-
ent/incoherent, one can see that coherency and incoherency is proved only for
limits f → 0 and f → ∞ respectively. To look at the composite spectrum
between these two limits, we dare to assume

ES

{

Ωs
j (f)Ω

s
k (f)

}

≈ ES

{

Ωs
j (f)Ω

s
j (f)

}

≈ |Ωs (f)|2 (2.27)

where |Ωs (f)| denotes average subevent amplitude spectra, so (2.17) becomes

∣

∣ΩΣ (f)
∣

∣

2
= |Ωs (f)|2

[

N + (N − 1) sinc2
(

f T

2

)]

(2.28)

Average composite displacement spectrum |uΣ (f) | computed from (2.28) is plot-
ted in Figure 2.1, for four different N . We can see that low-frequency levels are
underestimated. Explanation is obvious. From (2.22) and (2.3) we have

∣

∣uΣ (f → 0)
∣

∣ = N |us (f → 0)| ∝ N M s
o (2.29)

however for |um (f → 0) | we have from (2.3) and (2.7)

|um (f → 0)| ∝ N
3

2 M s
o (2.30)

so that
|um (f → 0)|
|uΣ (f → 0)| =

√
N ⇒ lim

f→0

|Ωm (f)|
∣

∣ΩΣ (f)
∣

∣

=
√
N (2.31)

On the other hand, we can see that high-frequency levels are fitted well. Expla-
nation is also obvious. By combining (2.1) with (2.7) we get

f sc
fmc

=
√
N (2.32)

Putting (2.5) into (2.26), using (2.32), we obtain
∣

∣üΣ (f →∞)
∣

∣ =
√
N |üs (f →∞)| ∝

√
N M s

o (f sc )
2 = N

3

2 M s
o (fmc )2 (2.33)

and for |üm (f →∞) | we have from (2.5) and (2.7)

|üm (f →∞)| ∝Mm
o (fmc )2 = N

3

2 M s
o (fmc )2 (2.34)

so that
|üm (f →∞)|
∣

∣üΣ (f →∞)
∣

∣

= 1 ⇒ lim
f→∞

|Ωm (f)|
∣

∣ΩΣ (f)
∣

∣

= 1 (2.35)
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Figure 2.1: Four displacement amplitude spectra
∣

∣uΣ (f)
∣

∣ for different N , com-
puted using (2.28), and the requested displacement amplitude spectrum of the
mainshock |um (f)|, computed using (2.2). The spectra are normalized at f = 0
to Mo. Corner frequencies satisfy (2.1).
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2.3.2 Summation process for deterministic tr
m

Although deterministic timing of subevents represents quite different task from
random timing, we will show that it gives similar results. Let’s take a radial rup-
ture as an example case of deterministic timing of subevents. By radial rupture
we mean

trm =
|ξm|
vr

(2.36)

where vr is rupture velocity, ξm is vector pointing from hypocenter of the main-
shock to the nucleation point of the m-th subevent, which is usually taken in
the center of m-th subfault. For further discussion, it is useful to denominate
frequencies f , f ∈ (0, fmc ) low frequencies, f ∈ (fmc , f

s
c ) middle frequencies and

f ∈ (f sc ,∞) high frequencies. Let’s generally propose that low-frequency contri-
butions sum coherently, high-frequency contributions incoherently and middle-
frequency contributions partly coherently. Although we have no mathematical
proof for such proposition (rate of coherency/incoherency is strongly dependent
on the total number of subevents N and on given value of rupture velocity vr),
we will provide qualitative explanation. To explain coherency at low frequencies,
we can follow an example of kinematic models of finite source. In kinematic
modelling of faulting one has to provide coherent summation over whole desired
frequency band. In other words, fault elements have to be small enough, such
that time differences between arrivals from adjacent elements are less then peri-
ods of interests. Six elements on the shortest wavelength is usually considered
to be sufficient to provide correct summation (see section 4.1 for description in
more detail). Back to composite modelling, it is reasonable to assume that the
number of subevents along dip and strike is same, thus equal to

√
N . Then we

can imagine that we have
√
N elements on wavelength equal to length Lm of

the mainfault, which is inversely proportional to fmc . Because
√
N is usually

greater then 5, we are convinced that coherent summation is provided for fre-
quencies bellow f cm. We emphasize that elements in kinematic modelling don’t
have same meaning as subevents in composite modelling, but the criteria of co-
herent summation can be handled for both cases in the same way. On the other
hand, high-frequency (f > f sc ) contributions sum incoherently. Explanation is
obvious. Time differences between rupture times of two adjacent subevents are
greater than periods of interest, thus trm appears to be random variable from
high-frequency point of view (time shifts are too big to catch rapid changes of
subevent contribution). Hence we can apply results for high frequencies, derived
in previous section (see section 2.3.1). Figure 2.2 show schematically example of
both coherent and incoherent summation. Figure 2.2 can be interpreted in two
different ways: 1) Ta = Tb, ta = 1

4
tb ⇒ showing influence of different timing;

2) proposing self-similar function plotted at two different time scales, so that
Ta = 4Tb, ta = tb ⇒ showing the fact, that lower frequency contributions are
summed coherently and higher frequency contributions are summed incoherently.
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Figure 2.2: Coherent versus incoherent summation at two time windows of length
Ta resp. Tb, with time differences ta resp. tb. Bold line represents sum of thin
lines, which are bellow the bold line.

To summarize results of this section, we declare that low-frequency contribu-
tions of subevents sum coherently producing underestimated low-frequency part
of composite spectra (see (2.31)). The high-frequency contributions of subevents
sum incoherently, producing requested level of composite spectra (see (2.35)).
Middle frequencies are mix of both coherent and incoherent energy. Accurate rate
of coherency/incoherency in middle frequencies depends mostly on total number
of subevents. The higher number of subevents we have, the more coherent sum-
mation is above the corner frequency of the mainshock. Other parameters may
play role too (rupture velocity, changes of impulse response of medium over the
mainfault).

2.4 Correction at low frequencies

Results of previous section show that summation made by applying (2.8) produces
correct level of high-frequency part of the composite spectra, but also produces
wrong level of low-frequency part. This problem was resolved by number of
authors in various ways (Joyner and Boore (1986), Boatwright (1988), Irikura and
Kamae (1994), Frankel (1995), Beresnev and Atkinson (1997)). We have chosen
the method presented by Frankel (1995), because it seems to be the simplest one
and it also includes reasonable physical explanation. Correct spectral level at low
frequencies is obtained by simple linear filtering of composite spectra computed
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from (2.8). Filtering function is constructed taking into account (2.31) and (2.35),
so that frequencies bellow corner frequency of the mainshock have to be boosted√
N -times and frequencies above corner frequency of the subevent should remain

unchanged. At middle frequencies we don’t have any special constraint about
the filter’s amplitude spectrum, it should only smoothly decay from value

√
N to

value 1. An example of such amplitude spectrum is

|S (f)| = C
1 +

(

f

fs
c

)ε

1 +
(

f

fm
c

)ε (2.37)

where f sc is corner frequency of the subevent, fmc is corner frequency of the
mainshock,ε is parameter determining shape and C is constant determined from
conditions

|S (f → 0)| =
√
N (2.38)

|S (f →∞)| = 1 (2.39)

so combining (2.37) with (2.38) and (2.39), we get

lim
f→0

C
1 +

(

f

fs
c

)ε

1 +
(

f

fm
c

)ε = C ⇒ C =
√
N (2.40)

lim
f→∞

C
1 +

(

f

fs
c

)ε

1 +
(

f

fm
c

)ε = C

(

fmc
f sc

)ε

⇒ C

(

fmc
f sc

)ε

= 1 (2.41)

Since C is determined from (2.40), (2.41) becomes

(

f sc
fmc

)ε

=
√
N (2.42)

It is clear that ε should be 1 to preserve consistency with (2.32). However,
plotting (2.37) for ε = 1 produces amplitude spectra, which decays immediately
at frequencies lower than fmc (see Figure 2.3). Hence, boosting low frequency
part of spectrum, especially at frequencies near fmc , is insufficient. To solve this
problem, we substitute fmc by formal corner frequency fxc . Then (2.42) becomes

fxc =
f sc

2ε
√
N

(2.43)

Now putting ε = 2 or ε = 3 produces f xc 6= fmc , particularly fxc > fmc . For-
mal parameter fxc controls the range of frequencies which are exactly amplified√
N -times, that is why we use it instead of fmc in (2.37) (see Figure 2.3). Partic-

ularly, we choose ε = 2, so fxc would not differ much from fmc , but low-frequency
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Figure 2.3: Amplitude spectra of fil-
tering function computed from (2.37)
substituting fmc by fxc for N=100,
f sc = 3.56, fmc = 0.36. fxc is known
from (2.43) for different ε: ε = 1 ⇒
fxc = fmc (red); ε = 2 ⇒ fxc = 1.13
(black); ε = 3⇒ fxc = 1.65 (blue) 9 : 9 ; 9 : ; 9 ; : 9 9 ; 9 : 9 9 ; 9 9 : 9 9< = > ? @
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contributions would be boosted sufficiently. The case of ε = 2 is also preferred
by Frankel (1995) and Hartzell et al. (1999). Amplitude spectra of the required
filter is then

|S (f)| =
√
N

1 +
(

f

fs
c

)2

1 +
(

f

fx
c

)2 (2.44)

where

fxc =
f sc
4
√
N

(2.45)

A causal operator with amplitude spectrum given by (2.44) is found using equiv-
alence

x (t) is causal ⇔ = [X (f)] = H {< [X (f)]} (2.46)

where X (f) is Fourier transform of x (t), = and < denotes imaginary resp. real
part of an complex number, symbol H {. . .} is used for Hilbert transform. We
can write

S (f) = |S (f)| ei φ(f) (2.47)

where |S (f)| is the amplitude spectrum of S (f) and φ (f) is the unknown phase
spectrum of S (f). Applying on (2.47) logarithm, we get

log S (f) = log |S (f)|+ i φ (f) (2.48)

Let’s assume log S (f) to be spectrum of causal function, then by applying equiv-
alence (2.46) we obtain

φ (f) = H {log |S (f)|} (2.49)

so that

S (f) = |S (f)| eiH{log|S(f)|} (2.50)

The result is complex spectrum of requested filtering function (see Figure 2.4, in
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Figure 2.4: Filtering function in time
domain, computed applying inverse
Fourier transform on (2.50) (signal
was shifted to better resolve delta
function at the beginning). N=100,
f sc = 3.56, fmc = 0.36, fxc = 1.13
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Figure 2.5: Four displacement amplitude spectra
∣

∣uΣ (f)
∣

∣ for different N , com-
puted from (2.28) and multiplied by (2.44), with the requested displacement am-
plitude spectrum of the mainshock |um (f)|, computed using (2.2). The spectra
are normalized at f = 0 to Mo. Corner frequencies satisfy (2.1).
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time domain). Incorporating linear filter S(f) into our summation method (2.8),
we get

ΩΣ (t) = s (t) ∗
N
∑

m=1

Ωs
m (t− trm) (2.51)

where s(t) is inverse Fourier transform of S(f) and asterisk ∗ denotes convolution.
Figure 2.1 was recomputed using filtering function. The result is in Figure 2.5.
We can see, that both very low and very high frequencies spectral levels are
correct, however middle frequencies spectral levels are slightly underestimated.

Physical basis of such filtering is that low frequencies of the mainshock are
controlled by long-wavelength variations of slip over the mainfault. Subevents
obviously don’t contain such information about these long-wavelength variations,
thus one has to enhance them (for example by linear filtering). For detailed
explanation see Frankel (1995), Frankel (1991) and Boatwright (1988).

2.5 Synthetic test

Algorithm of the summation provided above as-
Mm

o 2.16 1018Nm

Lm 25000m

Wm 25000m

〈vr〉 2800ms−1

fmc 0.11Hz

Table 2.1: Source param-
eters of modelled event.

sure proper scaling of both low and high frequency
parts of composite spectra. However, scaling of mid-
dle frequency spectral levels was not resolved properly,
because of the complexity of the summation process
at these frequencies (frequencies between corner fre-
quency of the mainshock and corner frequency of the
subevent). Irikura and Kamae (1994) showed, that
for high number of subevents (N & 400) there are
significant sags from ω−2 spectrum. Tumarkin and
Archuleta (1994) were solving similar problem of spectral deficiencies close to
corner frequency of the mainshock. On the other hand, Frankel (1995) didn’t
mention any problems with the shape of modelled spectra at middle frequen-
cies. With respect to these uncertain propositions, we decided to perform simple
synthetic test to study behavior of our composite model, especially at middle fre-
quencies. Time histories of subevents for this test were obtained using stochastic
approach, similar to one presented by Boore (1983). Particularly, we generated
Gaussian white noise and next we multiplied it by shape of ω−2 amplitude ac-
celeration spectra (see relation (2.4)). Summation was provided using (2.51) and
(2.36). Resulting spectra was identified with spectra of acceleration time history
at some virtual station. The source parameters of the modelled mainshock (see
Table 2.1) were set to common values for event of magnitude Mw = 6.2 (see
Somerville et al. (1999)). Test was performed for set of different N (total num-
ber of subevents). 100 realizations of subevents’ time histories was generated for
each value of N . The result of the test is shown in Figure 2.6. Curves labelled
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as synthetic amplitude spectra represents average modelled spectra (average is
made over 100 generated time histories of subevents).

We can see, that modelled spectra show significant discrepancies with re-
quested shape of spectra, similar to ones shown by Irikura and Kamae (1994).
To avoid such discrepancies from ω−2 source model, we were forced to look for
more sophisticated composite model. The idea of non-equal sized subevents, im-
proving middle frequencies, comes from Irikura and Kamae (1994) and we expand
it in next chapter.
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Figure 2.6: Modelling Mw = 6.2, using tapered white noise as a time history of
subevent. The subevent moment magnitude ranges from 2.4 to 4.8.
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Chapter 3

Subevents with non-equal sizes

Concept of non-equal sized subevents was firstly proposed by Boatwright (1982).
Further, Frankel (1991) expanded and generalized that idea to the statistical
source model with a continuous, self-similar distribution of subevent sizes, finding
relations, which controls the high-frequency behavior of composite spectra with
respect to scaling of stress drop and particular size distribution of subevents. We
adopted that model and making some improvements tried to use it in practice.
Several successful applications of such models (Irikura and Kamae (1994), Zeng et
al. (1994), Zeng and Anderson (1996), Hartzell et al. (1999)) gave us motivation
for this part of study.

3.1 Fractal subevent size distribution

As we proposed above, our adopted model is self-similar. It means, that the way
how behavior of level i+1 subevents affects level i subevent is same for all levels
(see Figure 3.1). This allows us to solve only the problem of mainshock and level
1 subevents. In next lines, we are going to determine high-frequency falloff of
the mainshock, evaluating the total high-frequency energy of level 1 subevents.
Derivation is made following Frankel (1991), providing some modifications. We
notice, that we will strictly hold the total area of level 1 subevents equal to the
area of the mainshock, because this is, from our point of view, the only natural
condition for the total area of level 1 subevents. However, other authors (see
Zeng et al. (1994), Zeng and Anderson (1996)) used successfully the total area
of level 1 subevents greater than area of the mainshock.

Self-similar distributions can be quantified using fractal concept (see Turcotte
(1989)). So that the number N of subevents with characteristic dimension greater
than or equal to R, occurring within mainshock area (∝ R2main), can be treated
as

N (R) ∝
(

Rmain

R

)D

(3.1)

27
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Level i Level i+1 Level i+2

Figure 3.1: Self-similar composite model

where D is fractal dimension. The corresponding probability density function is

dN (R)

dR
∝ RD

main

RD+1
(3.2)

Further, we assume that displacement spectral amplitude Ω (f) of subevent source
function decays as a power γ of frequency above corner frequency fc:

Ω (f) ∝ Mo

1 +
(

f

fc

)γ (3.3)

where Mo is the seismic moment of the subevent. The amplitude spectrum of
radiated energy is proportional to the square of the velocity spectral amplitude,
so

E (f) ∝ f 2Ω2 (f) (3.4)

For high frequencies (f >> fc), relation (3.3) reduce to

Ω (f) ∝ f−γfγcMo (3.5)

so for high frequencies we can write (3.4) in way

E (f) ∝ f 2−2γf 2γc M2
o (3.6)

For seismic moment we have relation

Mo ∝ ∆u (R)R2 (3.7)
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where ∆u is final slip, which is treated as a linear function of R. Final slip ∆u
can be associated with a static stress drop ∆σ, which represents the difference
between stress on the subevent before and after rupture, using relation

∆σ ∝ ∆u (R)

R
(3.8)

so we can write
Mo ∝ ∆σR3 (3.9)

However, static stress drop can be generally dependent on the subevent’s size R.
We prescribe dependence in form

∆σ ∝ Rη (3.10)

By combining (3.10) and (3.9) with (3.6) we get

E (f) ∝ f 2−2γf 2γc R2η+6 (3.11)

Since corner frequency fc is inversely proportional to subevent size R, (3.11)
becomes

E (f) ∝ f 2−2γR2η−2γ+6 (3.12)

Total high-frequency energy dE(f) radiated by subevents with sizes within the
range (R,R + dR) can be expressed as

dE (f) ∝ E (f) dN (3.13)

where dN is number of subevents with size within a range (R,R + dR). Then
using (3.2) we get

dE (f) ∝ f 2−2γR2η−2γ−D+5RD
main dR (3.14)

where dE is total high-frequency energy radiated by subevents with sizes within
the range (R,R+dR). Further we introduceRmin andRmax which denote minimal
and maximal size of level 1 subevents within mainshock, respectively. The high-
frequency content of subevents sums incoherently (see sections 2.3.2 and 2.3.1),
so that their energy is additive. By “high-frequency” we mean frequencies f >>
fc,min, where fc,min is the corner frequency of the smallest subevent1. Therefore
the energy of the mainshock Emain at a given frequency f (f >> fc,min) can be
determined evaluating integral

Emain (f) ∝
∫ Rmax

Rmin

dE (f)

dR
dR (3.15)

1denotation fc,min may be misleading; although it is linked with the smallest subevent (as
shown by the subscript), it represents the highest denoted frequency in the model.
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Since Emain must satisfy (3.12) for R = Rmain, we obtain

f 2−2γR2η−2γ+6main = p

∫ Rmax

Rmin

f 2−2γR2η−2γ−D+5RD
main dR (3.16)

where p is constant of proportionality. Obvious modifications of (3.16) will pro-
duce

R2η−2γ−D+6main = p

∫ Rmax

Rmin

R2η−2γ−D+5 dR (3.17)

Now it’s possible to eliminate p, by assuming that the sum of subevents’ areas is
equal to the area of the mainshock. For simplicity, we assume circular subevents.
The area Asub (R) of the subevent with radius R is

Asub (R) = πR2 (3.18)

The total area dA of the subevents with radii within (R,R + dR) is given by

dA (R) = πpR−D+1RD
maindR (3.19)

and finally the total area A of all subevents is

A = pπRD
main

∫ Rmax

Rmin

R−D+1 dR (3.20)

Assuming A equal to he area of the mainshock πR2main, (3.20) becomes

1

p
= RD−2

main

∫ Rmax

Rmin

R−D+1 dR (3.21)

The integral (3.21) has two different solutions according to parameter D. Since
now, our derivation slightly differs from the one, presented by Frankel (1991). In
case of D = 2, we get

1

p
= [lnR]Rmax

Rmin
(3.22)

and in case of D 6= 2, we get

1

p
= RD−2

main

[

R−D+2

−D + 2

]Rmax

Rmin

(3.23)

Substituting (3.22) and (3.23) into (3.17) produces

D = 2 , R2η−2γ+4main =
1

ln Rmax

Rmin

∫ Rmax

Rmin

R2η−2γ+3 dR (3.24)

D 6= 2 , R2η−2γ+4main =
2−D

R2−Dmax −R2−Dmin

∫ Rmax

Rmin

R2η−2γ−D+5 dR (3.25)
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One can easily prove that

1

ln Rmax

Rmin

∫ Rmax

Rmin

R−1 dR = 1 (3.26)

2−D

R2−Dmax −R2−Dmin

∫ Rmax

Rmin

R1−D dR = 1 (3.27)

hence variables γ, η have to satisfy relation

η − γ + 2 = 0 (3.28)

for all values of D. Rearranging terms in (3.28), we get the final expression for
high-frequency falloff γ

γ = η + 2 (3.29)

It means that high-frequency f >> fc,min spectral falloff γ depends only on
scaling stress drop with subevent’s radius, described by η, and is independent
of the fractal dimension D. The relation (3.29) differs from that one derived by
Frankel (1991),

γ = η − D

2
+ 3 (3.30)

That is caused by preserving the condition, that the sum of subevents’ areas is
in our derivation equal to the area of the mainshock for all values of D.

It is useful to evaluate shape of composite spectra, to verify results derived
above and to study their behavior for frequencies between the corner frequency
of the mainshock and the corner frequency of the smallest subevent (often called
middle-frequencies). Presuming for a while incoherent summation even in the
middle-frequencies, a composite spectral amplitude ΩΣ (f) at given frequency f
can be expressed as

ΩΣ (f) =

√

∫ Rmax

Rmin

(Ωγ (f,R))
2 dN

dR
dR (3.31)

where Ωγ (f,R) is contribution of subevents with size R, high-frequency slope γ to
the composite spectrum at given frequency f . All terms have to be expressed by
variable R and parameters γ and D, using suitable relations derived above in this
chapter. The results for Rmin = 1 km, Rmax = 5 km, Rmain = 10 km and for num-
ber of different sets of parameters are shown in Figure 3.2. For high-frequencies
f >> fc,min both composite spectra match the falloff γ, the high-frequency falloff
of the subevents (self-similarity is preserved) and the mainshock. The high-
frequency fall-off, described by γ, seem to be really independent of D. For the
middle-frequencies fc,min > f > fc,main the composite spectrum becomes slowly
insufficient, because the summation process in the middle frequencies becomes
partially coherent, however we assumed incoherent summation. One could expect



32 CHAPTER 3. SUBEVENTS WITH NON-EQUAL SIZES

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � �
� � � �

� � � �

� � � � �

� � � � � �

� ��� �   ¡¢ £¤�£¥
  ¦§

� � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � �
� � � �

� � � �

� � � � �

� � � � � �

� ��� �   ¡¢ £¤�£¥
  ¦§

¨ © ª ©

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � �
� � � �

� � � �

� � � �

� � � � �

� ��� �   ¡¢ £¤�£¥
  ¦§

� � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � �
� � � �

� � � �

� � � �

� � � � �

� ��� �   ¡¢ £¤�£¥
  ¦§

« © ¬ ©

η=0 γ=2 ­ ® ¯

η=1 γ=3 ° ± ² η=1 γ=3 ° ± ³

η=0 γ=2 ° ± ³

Figure 3.2: Requested amplitude acceleration spectra of the mainshock (black)
and composite amplitude acceleration spectra (red) for four sets of parameters.
Parameters were chosen to verify (3.31), especially the independence γ of D.
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better results for the middle-frequencies, if we sum up time series directly, taking
into account partial coherency.

Further, Frankel (1991) showed independently2, that D and η are related in
way

D = 2− η (3.32)

Substituting η in (3.29) by D, using (3.32), we get

γ = 4−D (3.33)

while Frankel (1991) obtained (using (3.30))

γ = 5− 3

2
D (3.34)

The expressions (3.33) and (3.34) can be directly compared, one can see that
they become same for D = 2.

In further study we prefer η = 0, γ = 2, D = 2. As we proposed above (see
(3.32), (3.33)), just one of these η, γ, D can be treated independently. Thus
the choice D = 2, η = 0, γ = 2 can be explained in three different ways.
We can hold D = 2 (produces η = 0, γ = 2), as well as we can hold γ = 2
(produces D = 2, η = 0), as well as we can hold η = 0 (produces D = 2,
γ = 2). All of these three values seem to be acceptable independently and it’s
appreciable that they fully satisfy equations (3.32), (3.33). The choice D = 2,
η = 0, γ = 2 is supported by number of papers. Hanks (1979) and Andrews
(1980) have suggested that stress drop independent of seismic moment (η = 0)
produces ω−2 high-frequency spectral falloff. Bernard (1996) successfully applied
D = 2 in modelling stochastic slip distribution. Moreover, Mai and Beroza (2001)
analyzed recent source inversions for number of great earthquakes, getting fractal
dimension D = 2.3 of final slip distribution, Somerville et al. (1999) indicates
D w 2, too.

2here without proof



34 CHAPTER 3. SUBEVENTS WITH NON-EQUAL SIZES

3.2 Discrete realization of FSSD

To use the fractal subevent size distribution (for short, FSSD) in practice, one
has to evolute its discretized form. Following Irikura and Kamae (1994), we are
going to produce discrete distribution of subevents, which meets the probability
density function, here denoted n (R), (3.2) for D = 2

n (R) =











0 0 < R < Rmin

dN(R)
dR

= p
R2

main

R3 Rmin < R < Rmax

0 Rmax < R < Rmain

(3.35)

We propose finite integer number M of subevent types. The type of subevent is
defined by its size Ri (i = 1, . . . ,M). Subevent with size Ri is going to represent
subevents with size within a range (Ri, Ri +∆R). In other words, number Ni of
subevents with size Ri is equal to number of subevents with size within the range
(Ri, Ri +∆R), so

Ni = n (Ri)∆R (3.36)

For all Ri within (Rmin, Rmax) we have

Ni = p
R2main
R3i

∆R (3.37)

In practice, the fault is usually taken as a rectangle. That’s why we assume
rectangular subevents and further, for simplicity, square subevents. The constant
of proportionality p will be determined by letting the sum of subevents’ areas
equal to the mainshock area:

M
∑

i=1

NiR
2
i = R2main (3.38)

then putting (3.37) into (3.38) produces

p =
1

∑M

i=1
∆R
Ri

(3.39)

thus (3.37) becomes

Ni =
R2main
∑M

j=1
∆R
Rj

∆R

R3i
(3.40)

The choice of ∆R is not trivial, although it may look like. If we simply set ∆R
as

∆R =
Rmax −Rmin

M
(3.41)

we obtain common equidistant subdivision of the range (Rmin, Rmax). (3.40)
then produces Ni efficiently equal to zero for higher Ri. In other words, we
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Figure 3.3: Discrete realization of FSSD with following parameters: M = 6,
Rmain = 80Rmin, Rmax = 64Rmin. Histogram on right side show appropriate
distribution of numbers of subevents with respect to their sizes. Red line denotes
R−2 decay.

get efficiently non-zero values of Ni only for smallest types of subevents. For
example, we will consequently fill the mainfault only with two types of subevents,
however we prescribed M = 6 (M becomes efficiently equal to two, although it
was formally set to 6, because Ni

.
= 0 for i > 2). It is clear, that the higher

number of subevents types in the model is, the better representation of continuous
subevent size distribution is achieved. So we request the high numbers M of
subevents’ types to be exactly present in the model (Ni ≥ 1, for all i = 1 . . .M).
We solved the problem by setting

∆R = ∆Ri (3.42)

then
Ri+1 = Ri +∆Ri (3.43)

It is clear that ∆Ri has to increase with increasing Ri to get the number NM of
greatest subevents equal minimally to one. Particularly, we put

∆Ri = ci−1∆R1 (3.44)

where c is constant greater then 1 and ∆R1 is width of first interval, represented
by subevent with size Rmin. The choice of c and ∆R1 is not arbitrary, because
condition

M
∑

i=1

∆Ri = Rmax −Rmin (3.45)
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has to be satisfied. By substituting (3.44) into (3.45), we obtain

∆R1

M
∑

i=1

ci−1 = Rmax −Rmin (3.46)

and using relation for sum of geometric progression with quotient c, we get

∆R1 =
c− 1

cM−1 − 1
(Rmax −Rmin) (3.47)

The value of ∆R1 is thus determined by choice of c. Hence, the number of
subevents Ni with size equal to Ri is

Ni =
R2main

∑M

j=1
∆Rj

Rj

∆Ri

R3i
(3.48)

where ∆Ri(j) is determined from

∆Ri = ci−1
c− 1

cM−1 − 1
(Rmax −Rmin) (3.49)

The optimal value of parameter c was found c ∼= 2. Now if Ni are generated
properly, it is not problem to distribute the subevents randomly (we incorporate
stochastic component to the source modelling) over the mainfault, so they don’t
overlap with each other. In Figure 3.3, we can see an example of one realization
of FSSD generated by subroutine FRACTAL. A hardcopy of the subroutine with
brief description is placed in Appendix. To preclude any confusions about Rmax,
we suggest that Rmax denotes RM +∆RM . As it was proposed above, subevents
within the range (RM , RM + ∆RM) are represented by subevent with size RM .
Hence, the biggest subevent visible in Figure 3.3 has size RM (particularly RM =
32Rmin), not Rmax (particularly Rmax = 64Rmin).

3.3 Summation process for FSSD

In this section we will construct summation scheme in similar way as it was done
for equal sized subevents in Chapter 2. At the end of section 3.1 we have proposed
that we prefer constant stress drop scaling (in 3.1 represented by η = 0) and ω−2

source model (in 3.1 represented by γ = 2). Hence, we can incorporate into our
considerations sections 2.1, 2.2, so we can use results of Chapter 2, just adjusting
them to be consistent with FSSD. We propose

ΩΣ (t) =
M
∑

j=1

sj (t) ∗
Nj
∑

i=1

Ω
j
i

(

t− trij
)

(3.50)
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Figure 3.4: Modelling Mw = 6.2, using tapered white noise as a time history
of subevent for one realization of FSSD with following parameters: M = 6;
Rmin = 312.5m Rmain = 80Rmin; Rmax = 64Rmin (the distribution depicted in
Figure 3.3). The subevent moment magnitude ranges from 2.4 to 5.4.

where ΩΣ (t) is modelled composite time history, M denotes number of subevents
types, subscript j denote subevent type, sj(t) is filtering function similar to
the one introduced in section 2.4, Nj denotes number of j-th type subevents.
Ω
j
i

(

t− trij
)

is time history of ij-th subevent (i-th subevent of j-th type), trij is
time when ij-th subevent is initialized. Nj is determined from (3.48) for given
values of M , Rmain, Rmin and Rmax (see section 3.2 for detailed description). To
obtain amplitude spectra of filtering functions sj, we cannot use directly (2.44),
because N is not defined in model with non-equal sized subevents. We override
this formal problem by putting (2.7) into both (2.44) and (2.45), so

|S (f)| =
(

Mm
o

M j
o

)
1

3 1 +
(

f

f
j
c

)2

1 +
(

f

fx
c

)2 (3.51)

fxc = f jc

(

M j
o

Mm
o

)
1

6

(3.52)

where M j
o , f

j
c are scalar seismic moment and corner frequency of j-th subevent

type respectively. Next we show, that summation scheme described above pro-
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duces correct levels of composite amplitude spectra. We assume that low-frequency
contributions sum coherently (see sections 2.3.1 and 2.3.2), thus using (2.1) and
(2.3) produces

∣

∣uΣ (f → 0)
∣

∣ =
M
∑

j=1

|sj (f → 0)|
Nj
∑

i=1

∣

∣

∣
u

j

i (f → 0)
∣

∣

∣
∝

M
∑

j=1

(

Mm
o

M j
o

)
1

3

Nj
∑

i=1

M j
o =

=
M
∑

j=1

(

Mm
o

M j
o

)
1

3

NjM
j
o =

M
∑

j=1

(

Mm
o

M j
o

)
1

3 R2main
∑M

k=1
∆Rk

Rk

∆Rj

R3j
M j

o =

=
1

∑M

k=1
∆Rk

Rk

M
∑

j=1

(

Mm
o

M j
o

)
1

3

(

Mm
o

M j
o

)
2

3 ∆Rj

Rj

M j
o = Mm

o (3.53)

so low frequency levels of composite spectra are scaled properly. High-frequency
contributions, we assume, sum incoherently (see sections 2.3.1 and 2.3.2), thus
using (2.1) and (2.5) produces

∣

∣üΣ (f →∞)
∣

∣

2
=

M
∑

j=1

|sj (f →∞)|2
Nj
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∣

∣

∣
ü

j

i (f →∞)
∣

∣

∣

2

∝

∝
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Nj
∑
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(
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o

(

f jc
)2
)2

=
M
∑
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Nj

(

M j
o

)2 (
f jc
)4

=

=
1

∑M

k=1
∆Rk

Rk

M
∑
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∆Rj

Rj
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(
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o

)2 (
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)4

=
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)
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3

(fmc )4 =

=
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k=1
∆Rk

Rk

M
∑

j=1

∆Rj

Rj

(Mm
o )2 (fmc )4 =

(

Mm
o (fmc )2

)2
(3.54)

so high frequency levels of composite spectra are scaled properly.

We recomputed synthetic test described in the section 2.5 (see section 2.5
for detailed description of the test), applying FSSD and summation scheme rep-
resented by (3.50). The result is in Figure 3.4. Curve labelled as a synthetic
amplitude spectra represents an average modelled spectrum (average is made
over 100 generated time histories of subevents) for one realization of FSSD. We
can see that discrepancies in middle frequencies spectral levels were successfully
removed. But on the other hand, we obtain slight underestimation of low fre-
quencies (f < 0.6Hz). However, strong motion seismology is focused on higher
frequencies, where is our model correct.
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Figure 3.5: Final slip spatial variations for one realization of FSSD with following
parameters: M = 6, Rmain = 80Rmin, Rmax = 64Rmin. The graph on the right
side shows the slice (ky = 0) of appropriate 2D amplitude spatial spectrum. Red
line denotes k−2 decay.

3.4 Spatial variations of final slip

Looking carefully at (2.1), one can see that non-equal sized subevent distributed
over the mainfault produce spatial variations of final slip over the mainfault.
Particularly

〈u〉j =
(

M j
o

Mm
o

)
1

3

〈u〉m (3.55)

where 〈u〉j and 〈u〉m denote average final slip of j-th subevent type and main-
shock respectively. But taking into account (3.51) and (3.52), it becomes clear
that low frequency contributions are boosted exactly to one level, same for all
subevent types. This level is proportional to 〈u〉m. Thus we get homogenous slip
at low frequencies. On the other hand, filtering functions don’t affect high fre-
quencies. Hence we obtain spatial variations of final slip (see Figure 3.5) only at
high frequencies. We analyzed these spatial variations by 2D Fourier transform,
getting k−2 decay of slice (ky = 0) of 2D amplitude spatial spectrum (see Figure
3.5). The k−2 slip distribution is proposed by theoretical studies Bernard et al.
(1996), Hisada (2000), Hisada (2001) and it also seems to be verified by analyzes
of recent seismic source inversions (see Mai and Beroza (2001), Somerville et al.
(1999)). That is why we believe, that our model is well constrained.
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Chapter 4

Modelling of subevents

Time histories of subevents can be generally obtained by several ways. Most
common is to use aftershocks as time histories of subevents (Irikura and Ka-
mae (1994), Frankel (1995), Hartzell et al. (1999)), which is usually called EGF
method (Empirical Green’s Function method). Although EGF method carries
advantage of full information on source-receiver propagation effects, it has lim-
ited range of applicability (regions without seismic stations, signal/noise ratio,
determination of aftershock’s mechanism, etc.). Thus it is inconvenient for pre-
diction of strong ground motion. Other approach is using synthetic time histories
of subevents. These can be obtained using either deterministic methods (finite-
difference methods, discrete wave number method, etc.) applied by Zeng et al.
(1994), Zeng and Anderson (1996), Hartzell et al. (1999) or stochastic methods,
where the synthetics are obtained by filtering of white noise, applied with particu-
lar modifications by Beresnev and Atkinson (1998), Kamae et al. (1998), Hartzell
et al. (1999). We decided to follow fully deterministic approach of subevents’
modelling.

4.1 Kinematic modelling of subevents

Using representation theorem (Aki and Richards, 1980), the ground displacement
U (x, t) at position x and time t is

Uk (x, t) =

∫

Σ

mpq (ξ, t) ∗
∂Gkp (x, ξ, t− tr (ξ))

∂ξq
dΣ (4.1)

where Σ denotes rupture fault of subevent, mpq is component of surface seismic
moment density tensor, ξ determines position on the subfault, Gkp is a component
of Green’s tensor and tr is rupture time. The asterisk ∗ denotes convolution. Just
for pure shear

mpq (ξ, t) = µ∆u (ξ) s (ξ, t) (np νq + nq νp) (4.2)

41
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where µ is shear modul, ∆u (ξ) is final slip, s (ξ, t) is slip function, n and ν

are vectors determined by focal mechanism (for detailed description see Aki and
Richards, 1980)). Rewriting (4.1), using (4.2) and properties of convolution

Uk (x, t) =

∫

Σ

µ∆u (ξ) s (ξ, t− tr (ξ)) (np νq + nq νp) ∗
∂Gkp (x, ξ, t)

∂ξq
dΣ (4.3)

By discretizing (4.3) we get

Uk (x, t) =

nL
∑

i=1

nW
∑

j=1

µ∆uij sij
(

t− trij
)

(np νq + nq νp) ∗
∂Gkp (x, ξ, t)

∂ξq

∣

∣

∣

∣

ξ
ij

∆Σ

(4.4)
where nL and nW are numbers of discrete elements along strike and dip, ∆Σ is
area of element, ∆uij, t

r
ij and sij (t) are final slip, rupture time and slip function

on ij-th element, respectively and ξij determines center of ij-th element. Now,
we rewrite (4.4) in terms, which are suitable for our procedure

U (x, t) =

nL
∑

i=1

nW
∑

j=1

µ∆uij sij
(

t− trij
)

∗ G̃ij (x, t) ∆Σ (4.5)

G̃ij (x, t) = (np νq + nq νp)
∂Gkp (x, ξ, t)

∂ξq

∣

∣

∣

∣

ξ
ij

ek (4.6)

where ek is set of base vectors in which we exactly compute ground displacement
U (x, t), G̃ij (x, t) can be directly computed in 1-D medium by DW-code (Bou-
chon (1981), Coutant (1989)) and we will call it impulse response. The technical
details of computation of impulse responses are discussed in section 4.3. It is
very reasonable to provide summation process in frequency domain, hence we
transform (4.5) in

U (x, f) =

nL
∑

i=1

nW
∑

j=1

µ∆uij sij (f) exp
(

−2π f trij
)

G̃ij (x, f) ∆Σ (4.7)

In next sections, we are going to discus each parameter in more detail.

4.1.1 Final slip and slip velocity function on the subevent

As it is written above, we use kinematic approach for modelling subevents - rela-
tively small earthquakes compared to the mainshock. That’s why we presume to
make ∆uij and sij (f) independent of their position on the fault (we get subscripts
ij off). Final slip ∆u of the subevent is related to its characteristic dimension us-
ing (2.1). As slip velocity function ṡ(t) we favor functions which have ω−1 decay
in frequency domain (e.g. box-car), because we need ω−2 decay in displacement
spectra (as in standard Haskell model, see Lay and Wallace (1995)), on each
subevent.
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Figure 4.1: Spatial distribution of rupture times deviations from radial rupture,
for one realization of FSSD with following parameters: M = 6, Rmain = 80Rmin,
Rmax = 64Rmin. The red star denotes the hypocenter of the mainshock. The
graph on the right side shows the slice (ky = 0) of appropriate 2D amplitude
spatial spectrum. Red line denotes k−1 decay.

4.1.2 Rupture time

In our case we assume the rupture front spreads radially from nucleation point
with constant rupture velocity vr. As a nucleation point can be taken generally
any point of the subevent. Rupture time trij is exactly the time between nucleation
of subevent and the moment, when the rupture front meets the center of ij-th
element of the subevent. Thus for trij we have

trij =

√

(i∆L− ξ01)
2
+ (j∆W − ξ02)

2

vr
(4.8)

where ∆L and ∆W are length and width of element, respectively, ξ0 is a vector in
the subfault determining a position of the nucleation point of the subevent. Par-
ticularly, we choose as the nucleation point of the subevent the closest point to the
mainshock hypocenter. Let’s have look what such choice causes in combination
with radial rupture on the subevent, independent subevent timing (determined
from (2.36)) and fractal subevent size distribution. To summarize the facts, the
mainfault is cut into number of subevents, which are further cut into number of
integrating elements, so that mainfault is in fact cut into these integrating ele-
ments, too. If we modelled the mainshock fully kinematically using radial rupture
with constant vr, we would get obviously continuous spatial distribution of timing
of the integrating elements with respect to mainshock’s hypocenter. However, in-
troducing subevents with independent radial ruptures causes the deviations from
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such continuous spatial distribution. Especially on the borders of the subevents,
the timing of the integration elements with respect to mainshock’s hypocenter be-
comes discontinuous. The case of one rupture velocity for both spreading rupture
on subevents and for timing of subevents (used in (2.36)), is depicted in Figure
4.1. We analyzed obtained spatial distribution of these deviations from radial
rupture by 2D Fourier transform, getting k−1 decay of slice (ky = 0) of 2D am-
plitude spatial spectrum (see Figure 4.1). This result doesn’t coincidence with
theoretical propositions of Hisada (2000) and Hisada (2001). However, spatial
variations of rupture velocity over the mainfault of recent earthquakes have not
been studied systematically yet. We emphasize, that our proposition of inhomo-
geneous rupture velocity is introduced artificially and miss any deeper physical
explanation, but on the other hand is not in direct contradiction with any obser-
vations.

4.1.3 Sampling of the fault plane

Sampling of the fault plane is usually expressed in form of number of samples
k on minimal computed wavelength λmin. The numbers nL and nW of samples
along strike and dip are

nL =
L

λmin

k

(4.9)

nW =
W
λmin

k

(4.10)

where L is length and W is width of the fault. λmin can be expressed by fmax,
the highest computed frequency, using relation

λmin =
vr
fmax

(4.11)

where vr is rupture velocity, which is in our case constant. Rupture velocity
is considered here instead of vP and vS (P -wave and S-wave velocity), because
vP > vS > vr usually, thus λmin is guaranteed to be minimal. Putting (4.11) in
(4.9), (4.10), we get

nL = k fmax

vr
L (4.12)

nW = k fmax

vr
W (4.13)

The total number M of samples over fault is

M = nL nW =

(

k fmax
vr

)2

LW (4.14)

and fmax is given by
fmax = N ∆f (4.15)
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where N is number of frequencies computed, ∆f is step in frequency domain.
The summation process is made in frequency domain, so the total number NTOT

of computing steps is
NTOT = 2M N (4.16)

The multiplication by 2 appears here because computed spectrum is a complex
function (real and imaginary parts are computed separately). Using (4.14) and
(4.15), we get

NTOT = 2N 3

(

k∆f

vr

)2

LW (4.17)

The above derivation is for fixed nL, nW independent of the calculated frequency.
We attempted to decrease NTOT by modifying (4.12) resp. (4.13) in the way that
nL = nL(f) resp. nW = nW (f), particularly substituting fmax by f

nL = k f

vr
L (4.18)

nW = k f

vr
W (4.19)

Then the number Mj of computing steps, needed for j-th frequency f = j∆f , is

Mj = 2

(

k∆f

vr

)2

LW j2 (4.20)

and the sum over whole desired frequency band produce

NTOT =
N
∑

j=1

2

(

k∆f

vr

)2

LW j2 (4.21)

Using relation
N
∑

j=1

j2 =
N (N + 1) (2N + 1)

6
(4.22)

yields

NTOT = 2
2N3 + 3N 2 +N

6

(

k∆f

vr

)2

LW (4.23)

NTOT is plotted in Figure 4.2 as function of N using (4.17) and (4.23). If we
divide (4.17) by (4.23), then for N →∞, we get

lim
N→∞

6N3

2N3 + 3N 2 +N
= 3 (4.24)

In other words, for high N we need only one third of computing steps, compared
to the case of sampling independent of frequency. By high N we mean N > 50,
approximately (Figure 4.2).
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Figure 4.2: a) Number of computing steps needed when using fix sampling (black)
and frequency dependent sampling (red), b) Ratio between the number of com-
puting steps using fix and frequency dependent sampling

The choice of k depends mainly on a relative position of the receiver and the
fault plane. Computed spectrum has to be independent of k. As a rule k = 6 is
often considered, but it can be shown, that in some special cases it’s not dense
enough. On the other hand, in some other cases even lower value (e.g. k = 2)
is enough. That’s important, because computing time is proportional to k2 (see
(4.23)), so setting up k low can save computing time significantly.

As we proposed above, kinematic modelling is exactly numerical evaluation of
integral (4.1). The summation with fixed sampling is the most primitive way of
numerical integration. With frequency-dependent sampling we exactly take into
account influence of integration parameter f on a final result of integration. The
method of integration can be likely further improved.

4.2 Point-source approximation of subevents

Point-source approximation is an another approach to earthquake source mod-
elling. Although it has limited extents of application, it simplifies and speeds up
the computation significantly. Approximation is carried from (4.1) (see Aki and
Richards (1980) for more details) getting

Uk (x, t)
.
= Mpq (t) ∗

∂Gkp (x, ξ, t)

∂ξq

∣

∣

∣

∣

ξ
o

(4.25)
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where ξo denotes center of the subevent,Mpq is seismic moment tensor determined
from

Mpq (t) = µ∆uLW s (t) (np νq + nq νp) (4.26)

where ∆u is an average slip on the subevent, L and W are length and width of
the subevent. The rest of parameters appearing in (4.25) and (4.26) is described
in section 4.1. Putting (4.26) into (4.25) produces

U (x, t) = µLW ∆u s (t) ∗ G̃o (x, t) (4.27)

G̃o (x, t) = (np νq + nq νp)
∂Gkp (x, ξ, t)

∂ξq

∣

∣

∣

∣

ξ
o

ek (4.28)

where G̃o is exactly the impulse response introduced in section 4.1.
Average final slip ∆u of subevent is related to its characteristic dimension

using (2.1). Spectrum of source time function ṡ(t) (derivative of slip function
s(t)) of the subevent is prescribed following Brune (1970):

ṡ(f) =
1

(

1 + i f
fs

c

)2 (4.29)

where i is imaginary unit and f sc is corner frequency of subevent, which is in our
case determined from

fc = a
vr
R

(4.30)

where vr is rupture velocity, R denotes characteristic dimension of subevent and
a is free parameter constant for all subevents. The choice of a play great role
in prediction of strong ground motion, because higher a causes higher f sc which
causes the higher level of the plateau of acceleration spectrum (see (2.5)), thus it
should be handled very carefully. From our practical point of view, it seems to
be feasible to use a = 1 (see chapter 5) for subevents which are nearly squares.

4.3 Calculation of impulse responses

In case of kinematic modelling, impulse response of medium, as it was defined
in section 4.1, is needed in finite number of points covering subevent. As the
subevents fully fill up the mainfault we need impulse responses in grid covering
the mainfault. Density of such grid depends of maximal computed frequency. In
section 4.1.3 it was shown that the number of elements (points of grid) grows
rapidly going into high frequencies. Thus the number of impulse response needed
grows too. Although the computation of impulse response with DW-code (Bou-
chon (1981), Coutant (1989)) is simple and quite fast, time and memory requests
become unjustifiable for such numbers of impulse responses (thousands). The fre-
quency dependent sampling presented in section 4.1.3 accelerates the summation
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Figure 4.3: The influence of density of primary grid, on resulting spectra. Case
of kinematic modelling of subevents.

itself, but it doesn’t solve growing requirements on number of impulse responses.
It makes the requirements even higher, because with every new sampling we
need generally new set of impulse responses. To overcome these problems we
introduce interpolation of impulse responses over the mainfault. Particularly, we
use 2D cubic spline interpolation taken from Press et al. (1992). The outline
of algorithm is obvious. At first we compute impulse responses by DW-code in
fixed grid (one can call it primary grid) covering the rectangle which contains
the mainfault. It is important to compute impulse responses in points which are
out of the mainfault too, to perform reliable interpolation up to borders of the
mainfault. The interpolation of complex spectra (real and imaginary parts are
treated independently) from such a grid is made step by step for each frequency,
getting spectra of impulse response in any arbitrary point of the mainfault. This
allows us to use frequency dependent sampling without growing requirements on
the number of impulse responses. We emphasize, that we don’t say that such
interpolation of impulse responses allows us to go with computations to very
high frequencies, leaving the primary grid, from which is the interpolation made,
untouched. We expect that spectra of the impulse responses at high frequencies
would not be so smooth, to be transcribed by relatively low number of values,
so to compute high frequencies we need to make interpolation from denser grid.
The influence of density of primary grid on resulting composite spectra is shown
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Figure 4.4: The influence of density of primary grid, on resulting spectra. Case
of modelling of subevents as point sources.

in Figure 4.3 (kinematic modelling of subevents) and Figure 4.4 (subevents are
modelled as point sources). These pictures show composite spectra for one real-
ization of FSSD. 1D velocity model used here has 10 layers with vS = 400ms−1

in the top layer, mainfault size is 20×25 km, primary grid size is 24×28 km, rup-
ture velocity is vr = 3000ms−1. Station is placed on the surface with epicentral
distance equal to 11 km. In case of kinematic modelling of subevents, compu-
tation was made for both fixed and frequency dependent sampling and for two
values of k (k = 6 and k = 12) getting identical results for all four cases. Hence,
k = 6 and frequency dependent sampling performed well in this special case. We
can see that calculation is surely correct up to 1Hz for 25× 25 Green’s function
in primary grid (that is determined from fact, that the spectra for 25 × 25 and
20 × 20 Green’s function in primary grid coincidence up to 1Hz approximately,
see Figure 4.3 and Figure 4.4).
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Chapter 5

Applications

5.1 Athens 1999 earthquake

Strong motion modelling, using composite model
strike 135◦

dip 55◦

rake −84◦

Mm
o 7.8 1017Nm

Lm 7500m

Wm 6000m

〈um〉 0.55m

vr 2800ms−1

fmc 0.37Hz

Table 5.1: Basic source
parameters of the Athens
1999 earthquake (Mw =
5.9).

described in section 3.3, was performed on the Athens
1999 earthquake (Mw = 5.9). The choice of this
event was not random. Other methods were de-
veloped at the time at our department and Athens
1999 earthquake was suggested for comparison. The
source parameters (Table 5.1) were taken from Za-
hradńık and Tselentis (2001). 1D model used for
computation of impulse responses was taken from
Novotný et al. (2001). Subevents were modelled as
point sources (see section 4.2). The choice of charac-
teristic dimension R was not problem here because
the mainfault is nearly square (see Table 5.1), par-
ticularly we put R equal to the subevent’s length
Lj. The value a = 1 (see section 4.2) was preferred
following Zahradńık and Tselentis (2001). The rup-
ture starts at the western bottom corner (38.08◦N ,
23.58◦E, depth 12000m) and spreads radially with
constant rupture velocity. The parameters of FSSD are in Table 5.2. It is ex-
actly FSSD shown in Figure 3.3. The only reason for such choice of FSSD was
relatively high value of M . The calculation was made up to 6Hz. One can see,
that choice of point source approximation for bigger subevents is discussable, so
using kinematic modelling would be more appropriate here. The computation
was performed for 56 receivers placed on four concentric circles with center in
the epicenter of the mainshock and with radius ranges from 5 km to 20 km. The
results (see Figure 5.2) are PGA maps computed for 100 realizations of FSSD.
By one realization of FSSD we mean, one realization of spatial distribution of set
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j 1 2 3 4 5 6

Nj 1 4 16 68 271 1156

Lj (m) 3000 1500 750 375 188 94

f jc (Hz) 0.93 1.87 3.73 7.5 14.93 29.87

Table 5.2: Parameters of applied FSSD.

of subevents given by Table 5.2. By PGA we mean just absolute maximum from
all three components of given accelerogram.

However, missing instruments in the near-field source region make the com-
parison with data hard. Especially, in the region with major damages no strong
motion measurements are available. Thus the only information about strong
ground motion at these locations is from macroseismic intensities published by
NOA (see Figure 5.1). We can see that synthetic PGA maps (Figure 5.2) ex-
plain main features of macroseismic field (Figure 5.1). Maps of average PGA and
maximum expectable PGA can be interpreted as a prediction tool. On the other
hand, map generated for one realization of FSSD can be compared with observed
macroseismic intensities. Proposed standard deviations ∼ 25% (see Figure 5.2)
seem to be reasonable.

Figure 5.1: Macroseismic intensities
published by NOA. Star denotes epi-
center. Diamonds denote places where
the macroseismic data were collected.
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Figure 5.2: The results for Athens 1999 earthquake. PGA are carried out in
ms−2, standard deviations in percentage. Star denotes epicenter, triangles denote
villages with major damage. Average PGA map show exactly the average of 100
realization of FSSD. Maximum expectable PGA map show the sum of average
PGA and standard deviation of PGA (in ms−2). Last map shows PGA computed
for one realization of FSSD.
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Chapter 6

Discussion and Conclusions

The composite source model with fractal subevent size distribution described
above, represents reliable seismic source model for strong ground motion mod-
elling for frequencies f > 1Hz, removing amplitude discrepancies in middle fre-
quencies spectral levels. However, there is clear deficiency at low frequencies,
indicating need of hybrid schemes presented by Kamae et al. (1998) and Hartzell
et al. (1999). Hybrid schemes combine kinematic approach (used to model low
frequency part) with composite approach (used to model middle and high fre-
quency part). Hybrid schemes seem to be most successful in strong ground motion
modelling, at the time (see Hartzell et al. (1999)). So the method is worth to be
implemented into our model.

Fractal dimension D, characterizing generally any fractal distribution, is in our
case determined (following Frankel (1991)) just from stress drop scaling. Constant
stress drop scaling cause D = 2. Irikura and Kamae (1994), Zeng et al. (1994)
and Hartzell et al. (1999), all of these were using D = 2, however, they came to
this value in different way (they used exactly (3.27)), which is from our point of
view less rigorous. We do not consider formula (3.27) to be generally correct in
case of non-overlapping subevents fully filling up the mainfault.

We have described algorithm of generation of FSSD for practical use. The source
code of FORTRAN 90 subroutine FRACTAL, generating such spatial distribu-
tions of subevents, is part of the thesis (Appendix). Hence, FSSD can be imple-
mented easily by anyone who is interested in.

The favorable feature of FSSD is incorporation of final slip spatial variations
over the mainfault. The fact that non-equal subevents produce inhomogeneous
slip was firstly found out by Zeng et al. (1994). We have further showed, that
our implementation of FSSD with fractal dimension D = 2 produces k−2 slip
distribution, which is in agreement with recent source inversions (Mai and Beroza
(2001)). That invokes the idea of well constrained future seismic source inversion,
using our implementation of FSSD.
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Although our study was focused on composite source modelling, we partially came
in touch with kinematic source modelling, proposing some improvements, which
may speed up computations significantly. Particularly, we proposed frequency
dependent sampling together with interpolation of impulse responses over the
mainfault.

Finally, the application on Athens 1999 earthquake showed capabilities of FSSD
composite model combined with synthetically computed subevents. The gener-
ated PGA maps are in agreement with maps presented by Zahradńık and Tse-
lentis (2001). However, PGA maps represent only one of the results usable for
engineering applications. Maps of durations, averaged PSA spectra and others
indicators can be implemented easily.

One who is interested in strong motion modelling surely missed the term directiv-
ity in the whole study. We didn’t mentioned it, because we had not studied this
effect systematically. However looking at the PGA maps generated for Athens
1999 earthquake and take into account geometry of the faulting, especially po-
sition of hypocenter, one has to say that directivity is present. Unless a robust
synthetic study is made, we would not rather discus the rate of directivity with
respect to frequency.



Appendix

Subroutine FRACTAL

Here we provide subroutine FRACTAL, which generates in 1st step Ni and Ri

(see section 3.2) and in 2nd step put the subevents randomly on the mainfault
so they do not overlap with each other. The code is also available with more
detail description on e-mail address: burjanek@karel.troja.mff.cuni.cz. The
author appreciate your comments. In case of using the subroutine, please refer to:

Burjánek, J.: A composite source model with fractal subevent size

distribution, Master Thesis, Dept. of Geophysics, Charles University,

Prague, May 2002.

Subroutine FRACTAL is programmed in FORTRAN 90. It needs function RAN2
from Press et al. (1992) or some other generator of random numbers from interval
〈0, 1〉 with uniform probability density function. An output is file SUBXY.DAT,
which has following format:

1.line: Rmain/Rmin Rmain/Rmin

2.line: M
3.line: N1 N2 . . . NM

4.line: R1/Rmin R2/Rmin . . . RM/Rmin

5.line: x1 + 1 y1 + 1 x2 y2
...

...
...

...
...

X.line: x1 + 1 y1 + 1 x2 y2

whereRmain, Rmin,M , Ri andNi were defined in section 3.2 andX =
∑m

i=1Ni+4.
x1, y1 are coordinates of left upper corner and x2, y2 are coordinates of right
bottom corner of appropriate subevent.
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module spol

logical test

integer, allocatable :: subxy(:,:)

integer citac

integer sublenx,subleny,xo,yo

end module

subroutine FRACTAL(nsubtypes,mainsize,lmax,idum)

! INPUT PARAMETERS:

! nsubtypes - number of the subevents types (in the text is denoted m)

! mainsize - determines R_main/R_min (see text, section 3.1.1)

! lmax - determines R_max/R_min (see text, section 3.1.1)

! idum - this is seed of random generator

!

! OUTPUT:

! output of subroutine fractal is file SUBXY.DAT (described in Appendix A)

use spol

integer nsubtypes

real*8, parameter :: lmin=1.d0

real*8 mainsize,lmax

integer, allocatable :: fault(:,:)

real*8, allocatable :: rfault(:,:)

integer nsub(nsubtypes),np

integer nsubsize(nsubtypes,2)

real*8 subsize(nsubtypes,2),c

real*8 deltax(nsubtypes)

real*8 koef,rsub(nsubtypes),area

real*8 pom

real*4 ra

integer idum

c=1.98d0

np=int(mainsize/lmin)-1

allocate(fault(0:np,0:np))

allocate(rfault(0:np,0:np))

open(4,status=’replace’,form=’formatted’,file=’subxy.dat’)

subsize=0.d0

do i=1,nsubtypes

if (c/=1.d0) then

deltax(i)=(c**(i-1))*(lmax-lmin)/(((c**nsubtypes)-1)/(c-1.d0))

else

deltax(i)=(lmax-lmin)/nsubtypes

endif

if (i/=1) then

subsize(i,:)=subsize(i-1,:)+deltax(i-1)

else

subsize=lmin

endif

enddo

koef=0.d0

do i=1,nsubtypes

koef=koef+deltax(i)/subsize(i,1)

enddo

rsub=((mainsize**2)/(subsize(:,1)**3))*deltax(:)/koef

nsub(:)=nint(rsub(:))

nsubsize=nint(subsize/lmin)

do j=nsubtypes,2,-1

area=(rsub(j)-dfloat(nsub(j)))*subsize(j,1)**2+(subsize(j,1)**2-dfloat(nsubsize(j,1))**2)*dfloat(nsub(j))

rsub(j-1)=rsub(j-1)+area/(subsize(j-1,1)*subsize(j-1,2))

nsub(j-1)=nint(rsub(j-1))

enddo

allocate(subxy(sum(nsub),4))

fault=0

subxy=0

citac=0

xo=0

yo=0

do i=nsubtypes,2,-1

do j=1,nsub(i)

citac=citac+1

test=.TRUE.

sublenx=np+1

subleny=np+1

do while (test)

do while (((sublenx+xo)>np))

ra=ran2(idum)
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xo=nint(dfloat(ra)*mainsize)

sublenx=nsubsize(i,1)-1

enddo

do while (((subleny+yo)>np))

ra=ran2(idum)

yo=nint(dfloat(ra)*mainsize)

subleny=nsubsize(i,2)-1

enddo

test=.FALSE.

call control()

if (test) then

sublenx=np+1

subleny=np+1

endif

enddo

fault(xo:(xo+sublenx),yo:(yo+subleny))=i-1

subxy(citac,1)=xo

subxy(citac,2)=yo

subxy(citac,3)=xo+sublenx

subxy(citac,4)=yo+subleny

enddo

enddo

do j=0,np

do i=0,np

if (fault(j,i)==0) then

citac=citac+1

subxy(citac,1)=j

subxy(citac,2)=i

subxy(citac,3)=j

subxy(citac,4)=i

endif

rfault(j,i)=dfloat(fault(j,i))

enddo

enddo

l=sum(nsub)

write(4,*) np+1, np+1

write(4,*) nsubtypes

do i=1,nsubtypes/2

pom=nsub(i)

nsub(i)=nsub(nsubtypes+1-i)

nsub(nsubtypes+1-i)=pom

pom=subsize(nsubtypes+1-i,1)

subsize(nsubtypes+1-i,1)=subsize(i,1)

subsize(i,1)=pom

enddo

nsubsize=int(subsize)

write(4,*) nsub

write(4,*) nsubsize(:,1)

do i=1,l

write(4,*) subxy(i,:)+1

enddo

deallocate(subxy)

deallocate(fault)

deallocate(rfault)

close(4)

end subroutine

subroutine control()

use spol

do m=1,citac-1

if (((xo>=subxy(m,1)).AND.(yo>=subxy(m,2))).AND.((xo<=subxy(m,3)).AND.(yo<=subxy(m,4)))) test=.TRUE.

if (((xo+sublenx>=subxy(m,1)).AND.(yo>=subxy(m,2))).AND.((xo+sublenx<=subxy(m,3)).AND.(yo<=subxy(m,4)))) test=.TRUE.

if (((xo+sublenx>=subxy(m,1)).AND.(yo+subleny>=subxy(m,2))).AND.((xo+sublenx<=subxy(m,3)).AND.(yo+subleny<=subxy(m,4)))) test=.TRUE.

if (((xo>=subxy(m,1)).AND.(yo+subleny>=subxy(m,2))).AND.((xo<=subxy(m,3)).AND.(yo+subleny<=subxy(m,4)))) test=.TRUE.

enddo

end subroutine
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