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Smoothing the Marmousi model

Karel Žáček

Department of Geophysics, Charles University, Ke Karlovu 3, 121 16 Praha 2, Czech

Republic, E-mail: zacek@karel.troja.mff.cuni.cz

Summary

The only way to make an excessively complex velocity model suitable for application
of ray-based methods, such as the Gaussian beam or Gaussian packet methods, is to
smooth it.

We have smoothed the Marmousi model by choosing a coarser grid and by mini-
mizing the second spatial derivatives of the slowness. This was done by minimizing the
relevant Sobolev norm of slowness.

We show that minimizing the relevant Sobolev norm of slowness is a suitable tech-
nique for preparing the optimum models for asymptotic ray theory methods. However,
the price we pay for a model suitable for ray tracing is an increase of the difference be-
tween the smoothed and original model. Similarly, the estimated error in the travel time
also increases due to the difference between the models. In smoothing the Marmousi
model, we have found the estimated error of travel times at the verge of acceptability.

Due to the low frequencies in the wavefield of the original Marmousi data set, we
have found the Gaussian beams and Gaussian packets at the verge of applicability even
in models sufficiently smoothed for ray tracing.

Key words

Velocity model, smoothing, asymptotic ray theory, Gaussian beams, Lyapunov expo-
nent, Sobolev norm.

1 Introduction

The computation of rays is extremely sensitive to the smoothness of the model. In
rough models, the behaviour of rays becomes chaotic and geometrical spreading and the
number of arrivals increase with travel time rapidly (e.g., Smith et al., 1992; Abdullaev,
1993; Tappert & Tang, 1996, Witte et al., 1996; Keers et al., 1997). Moreover, a
large number of two-point rays to each receiver makes calculation of two-point travel
times slow and expensive. Often, two-point rays cannot be found within the numerical
accuracy.

We need a reasonably smooth velocity model for a depth migration technique based
on Gaussian packets. In Gaussian packet method (e.g., Klimeš, 1989), we do not need
to find two-point rays, but a sufficiently dense set of rays must be calculated. Thus,
the desired model should be suitable for ray tracing. Since we wish to keep the width
of the Gaussian packets sufficiently small, the width of the Gaussian packet also de-
pending on frequency, the model should be sufficiently smooth for the frequencies under
consideration.

Various methods of smoothing the velocity model have been already developed and
published. The authors have been interested in determining the most suitable physical

Pure and Applied Geophysics, vol. 159, 2002, in press.
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Figure 1. The Marmousi model.

quantity to be smoothed (Müller & Shapiro, 2000; Gold et. al., 2000), in finding a way
to smooth the velocity model (Grubb & Walden, 1995; Versteeg, 1991; Brac & Nguyen,
1990), or in studying the effects of smoothing on the wavefield (Versteeg, 1991, 1993).

An optimum way to smooth a complex velocity model for ray-based methods, which
is presented in this paper, is to minimize the appropriate Sobolev norm of the velocity
or slowness. We show that minimizing the Sobolev norm may be used for efficiently
controlling the behaviour of rays in complex structures.

2 The Marmousi model

Since we wish to use a “realistic” 2-D velocity model, we have decided to smooth the
Marmousi model (Versteeg & Grau, 1991; Versteeg, 1991, 1993). The Marmousi model,
based on a real geological structure, is very complex, see Figure 1. The dimensions of
the model are 9200 metres (length) by 3000 metres (depth). Values of velocity, which
correspond to P-waves, are defined at each gridpoint of the grid of cells of 4×4 metres.
The grided values of velocity vary from 1500 ms−1 to 5500 ms−1.

In the Marmousi model, the synthetic seismograms were computed by the finite
difference method (Versteeg & Grau, 1991). We wish to use these seismograms as
the “real data” for the migration. The length of the seismograms is 2.9 seconds with
a sampling interval of 4 milliseconds. A trapezoidal frequency filter determined by
frequencies of 0 Hz, 10 Hz, 35 Hz and 55 Hz has been applied to the data by the
developers of the Marmousi data set.

3 Basic ideas about the desired model

The desired smoothed model has to fulfil two main and, unfortunately, contradictive
requirements:
(a) to be in “good agreement” with the original Marmousi model, and
(b) to be “sufficiently smooth” for ray tracing and Gaussian packet computations.

Under the term “good agreement”, we understand a small difference between the
smoothed and original model, expressed in terms of the standard L2 Lebesgue norm.

The meaning of the term “sufficiently smooth” is more complicated. In a com-
plex model, the geometrical spreading and number of arrivals exponentially increase
with increasing travel time. The exponential increment is controlled by the Lyapunov

6



exponent (Lyapunov, 1949; McCauley, 1993; Addison, 1997; Klimeš, 2002). Since the
Lyapunov exponent depends on the second spatial derivatives of the velocity or slowness,
the second derivatives should be minimized.

By minimizing the square of the Sobolev norm of slowness we may minimize the
corresponding partial derivatives. The Sobolev scalar product is a linear combination
of the L2 Lebesgue scalar products of the zero, first, second or higher partial derivatives
(Tarantola 1987).

The vague terms “good agreement” and “sufficiently smooth” cannot be easily
quantified before a detailed study of the behaviour of rays and Gaussian packets in
smoothed models is made.

The original Marmousi velocity model consists of discrete values of velocity at grid
points of a regular, dense grid. In obtaining a smoothed model, we
(a) choose a coarser data grid (which is a sub-grid of the original grid) to reduce the
amount of data to fit,
(b) arithmetically average the densely sampled slowness of the Marmousi model over
cells centred at the grid points of the coarse data grid,
(c) choose a coarse B-spline model grid (which is a sub-grid of the coarse data grid)
and
(d) fit the averaged slowness values by the smoothed model.
We need to interpolate the discrete values of slowness on a coarse model grid for ray
tracing. We have chosen bicubic B-splines as the interpolating functions, benefiting
from the continuity of the second derivatives.

Let us summarize all types of grids being used in this paper. The first one is the
original grid of the Marmousi model. The second is the coarser data grid constructed
from the Marmousi model as explained above, which is used to fit the smoothed model.
The third is the B-spline grid of the smoothed model.

4 Inversion

In order to find optimum parameters of the smoothed model, we minimize the objective
function S defined by formula

S =
∑

GRID

(
uD(xGRID) − uM (xGRID)

σGRID

)2

+

+

[∫
d2x

]
−1 ∫

bijkl

(
∂2uM (x)

∂xi∂xj

) (
∂2uM (x)

∂xk∂xl

)
d2x , (1)

where uD is the value of slowness in the data grid, uM is the value of slowness in the
model being sought, x = (x1, x2), σGRID are the weighing parameters of the grid points,
bijkl are the weighting coefficients of the Sobolev scalar product. Superscript GRID
takes values GRID = 1, 2, .., N , where N is the number of grid points of the coarser
data grid with averaged values of slowness mentioned above. Subscripts take values
i, j, k, l = 1, 2 in a 2-D model. Einstein summation over the pairs of identical indices is
used. Integration is performed over the whole model.

We can express uM as a linear combination of bicubic B-splines Bα(x)

uM (x) = Bα(x)uα , (2)
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where uα are the model parameters (values of slowness at grid points of the B-spline
grid). Subscript α takes values α = 1, 2, .., P , where P is the number of model parame-
ters. Consequently, P is the number of B-splines describing the smoothed model.

Equation (1) now reads

S =
∑

GRID

(
uD(xGRID) − Bα(xGRID)uα

σGRID

)2

+ uαDαβuβ , (3)

where

Dαβ =

[∫
d2x

]
−1 ∫

bijkl

(
∂2Bα(x)

∂xi∂xj

)(
∂2Bβ(x)

∂xk∂xl

)
d2x . (4)

Since we do not know the coefficients bijkl which lead to the optimum model, the
problem is not linear. Thus, parameters uα cannot be determined analytically. Since we
do not want to solve the non-linear inverse problem numerically, we need to “linearize”
formula (4). The linearization of (4) yields

Dαβ = s2D
′

αβ , (5)

D
′

αβ =

[∫
d2x

]
−1 ∫

b
′

ijkl

(
∂2Bα(x)

∂xi∂xj

)(
∂2Bβ(x)

∂xk∂xl

)
d2x , (6)

where s is a free parameter and b
′

ijkl are fixed coefficients of the Sobolev scalar product.

The choice of coefficients b
′

ijkl will be discussed in Section 6.

We can now rewrite equation (3) to read

S = [uD − Bu]TC−1[uD − Bu] + s2uT D
′

u , (7)

where B is defined as Biα = Bα(xi), D
′

is a P ×P matrix given by formula (6), C is
a N×N diagonal matrix, composed of (σGRID)2, see equation (1). N is the number of
grid points.

The condition for the minimum of the objective function is

∂S

∂uα

= 0 , (8)

which yields

BT C−1[Bu − uD] + s2D
′

u = 0 . (9)

The resulting vector of the model parameters is

u = [BT C−1B + s2D
′

]−1BT C−1uD . (10)
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5 Criteria of acceptability

In a complex 2-D model, the width of ray tube Q increases with increasing travel time
τ approximately according to the asymptotic formula

Q ∝ eλτ , (11)

where λ is the Lyapunov exponent corresponding to the ray (Lyapunov, 1949; Oseledec,
1968; Katok, 1980).

The number of arrivals at each point of the model is an important indication,
whether the behaviour of rays is regular or chaotic. We wish the number of arrivals
not to exceed, let us say, 10. In a finite model, the number of arrivals ν is proportional
to the widths of the ray tubes. This is caused by the overlaping of the ray tubes, see
Figure 5. As we wish to smooth the model for migration, the sum of travel times from
source τS and receiver τR to a point of the model should be substituted for travel time
τ in equation (11). Hence,

ν ∝ eλ(τS+τR) . (12)

Consequently, the number of arrivals ν may be expressed as the product of the numbers
of arrivals from source νS and receiver νR

ν = νSνR . (13)

For τ = τS+τR = 0, we obtain eλτ = 1. Since this corresponds to the number of arrivals
in the nearest vicinity of the source (or of the receiver for the migration), we can alter
equation (12) to read

ν ≈ eλ(τS+τR) . (14)

We want to work with the “average Lyapunov exponent” λ̂. The “average Lyapunov
exponent” λ̂ is the Lyapunov exponent averaged over a large set of rays (Klimeš, 1999).
The value of the “average Lyapunov exponent” may be one of the criteria of the smooth-

ness of the model. Hence, we wish eλ̂τmax not to exceed 10, τmax being the maximum
sum of travel times from the source and receiver to a point of the model. Since the sum
of travel times from the source and receiver cannot exceed the length of the seismogram,
τmax = 2.9s may be used for estimating the optimum value of λ̂. Thus, for number of
arrivals not exceeding 10, we obtain the optimum value of λ̂ close to 0.8s−1.

The width of Gaussian packets should be kept small. For very wide packets, the
obtained wavefield would not be the correct solution of the equations being solved.
Thus, the desired migrated section would be wrong. The maximum halfwidth should
probably not be greater than the B-spline interval.

Let us mention that the width of the Gaussian beams or packets depends not only
on the smoothness of the model, but also on the frequencies under consideration. From
this point of view, the model is not complex for Gaussian beams or packets by itself,
but in relation to the frequency.

The relative root-mean-square (RMS) difference of slowness between the original
and the smoothed model may be the criterion of “good agreement”. The relative RMS
difference of slowness corresponds approximately to the relative error of the travel time.
This is an asymptotic relation valid for short rays. The relative error of the travel time
may be smaller for longer rays.

By the term “error of travel time” we understand the difference between the real
travel time in the original structure and the computed travel time in the smoothed

9



model. Although we cannot determine the real travel time, we can estimate the error
caused by the difference between the original and the smoothed model.

6 Choice of the coefficients and of the density of the grids

We need to specify coefficients b
′

ijkl and s, the matrix C and the density of the grids
before the computation.

As we do not have any prior information, we choose σGRID =
√

N , where N
is the number of values to be fitted. This makes the value of objective function S
approximately independent of the number of gridpoints.

Coefficients b
′

ijkl may be constructed as a completely symmetric tensor (Bulant,

2002). The 4×4 matrix b
′

is then defined by

b
′

ijkl =
d(d + 2)

3
〈eiejekel〉 , (15)

where e is a unit vector, 〈...〉 indicates averaging over all directions of the unit vector,
d = 1 in 1-D, d = 2 in 2-D and d = 3 in 3-D. We have introduced the formal scaling
coefficient 1

3
d(d + 2) in order to make the respective coefficients b

′

ijkl equal in 1-D, 2-D
and 3-D.

The average of the unit vector over all directions can be calculated analytically.
Generally in d-D for d = 1, 2 or 3, we may put

b
′

ijkl =
δijδkl + δikδjl + δilδjk

3
, (16)

where δij is the Kronecker symbol. In 2-D,

b
′

1111 = b
′

2222 = 1,
b
′

1122 = b
′

1212 = b
′

1221 = b
′

2112 = b
′

2121 = b
′

2211 = 1
3 and

b
′

1112 = b
′

1121 = b
′

1211 = b
′

1222 = b
′

2111 = b
′

2122 = b
′

2212 = b
′

2221 = 0.
We must keep in mind that this is only our special choice of coefficients b

′

ijkl, and that

there are various other ways of constructing matrix b
′

. For example, we can increase
coefficient b

′

1111 and decrease coefficient b
′

2222 (or vice versa) and use this new matrix of
coefficients for anisotropic smoothing.

The original grid of the Marmousi model consists of cells of 4×4 metres, which
yields 751×2301 = 1728051 grid points. Three B-spline grids of cells of (a) 100×400
metres, (b) 200×230 metres and (c) 200×400 metres are studied. These grids consist
of P = 744, 656 and 384 grid points, respectively.

Three data grids of cells of (a) 20×80 metres, (b) 40×40 metres and (c) 40×80 metres
are used in the inversion. The values at the grid points are calculated by averaging the
values of slowness in the Marmousi model, as described in Section 3. These grids consist
of N = 17516, 17556 and 8816 grid points, respectively.

Finally, we need to choose the values of parameter s. We choose the initial value
of parameter s for the linarized inversion as

sinit ≈
|u − u0|

σ

1

||u||init
, (17)

where ||u||init is the initial value of the Sobolev norm of slowness, |u−u0| is the standard
slowness deviation of the model, and σ is the given slowness deviation. We have made
this rough estimate assuming that the first term on the right-hand side of equation
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(1) does not exceed dramatically the second term, or vice versa. According to equation
(A−10), we can estimate the maximum value of the Sobolev norm of slowness as ||u||init ≈√

8/3(2Λinit)
2u3

A, where uA is the average slowness in the model, and Λinit is the initial
value of the “average Lyapunov exponent” without compensation for the focusing low-
velocity zones, see equation (A−1). The standard slowness deviation of the model may
be estimated by |u−u0| ≈ εuA, ε being the relative travel-time error. The given slowness

deviation is determined by σ = σGRIDN−

1

2 . Hence, we can alter equation (17) as

sinit ≈
√

3

8
ε (2uAΛinit)

−2
√

N
(
σGRID

)
−1

. (18)

Note that parameter s is proportional to λ̂−2, see equation (18). Thus, the n-fold

decrement of λ̂ requires an n4-fold increment of the square of the Sobolev norm in
the objective function in equation (1). Consequently, the decrement of λ̂ increases the

difference between the new and the original model. From this point of view, λ̂ should
not be too small. We should keep λ̂ close to the optimum value estimated above.

For ε = 0.1, (uA)
−1

= 3000 ms−1 and Λinit = 1.3 s−1, see equation (A−12),
we obtain sinit = 81529. We study the values of s of (1) 0 m2 (without the Sobolev
norm included in the inversion), (2)

√
3/8 · 10000m2 ≈ 6124m2, (3)

√
3/8 · 25000m2 ≈

15309m2, (4)
√

3/8 · 50000m2 ≈ 30619m2, (5)
√

3/8 · 100000m2 ≈ 61237m2 and (6)√
3/8 · 225000m2 ≈ 137784m2.

7 Numerical examples

We have calculated the smoothed models, the corresponding values of the relative
RMS difference of slowness between the smoothed and original model, the angular de-
pendence of the Lyapunov exponents, the values of the “average Lyapunov exponents”,
rays, numbers of arrivals and the halfwidths of Gaussian beams.

Figure 2 shows the models without the minimized Sobolev norm, smoothed just by
the use of the coarse B-spline grid.

Figure 3 shows the smoothed models with the grid of cells of 200×400 metres and
with the minimized Sobolev norm. The respective figures for the models with the grid
of cells of 100×400 or 200×230 metres look similar and are not shown. At first glance, we
can see that the models with the values of parameter s = 61237m2 and s = 137784m2

do not show features of the original Marmousi model.
Figure 4 displays the angular dependence of the Lyapunov exponents and the values

of the “average Lyapunov exponents” for smoothed models with the B-spline grid of
cells of 200×400 metres. We can see that the model without the minimized Sobolev
norm of slowness seems to be too rough, whereas the “average Lyapunov exponents”
of the models with the minimized Sobolev norm are close to or less than our initial
assumption of the optimum value. Unfortunately, the strong angular dependence of the
Lyapunov exponents (and consequently the excessive maximum value of the Lyapunov

exponent) indicates that even models with λ̂ close to 1 (as the model with s = 6124m2)
may still be too rough.

The synthetic seismograms, used for the migration in the Marmousi model, are
computed with the length of 2.9 seconds. The streamer composed of hydrophone groups
has been used for data acquisition for each shot. The farthest hydrophone was located
2575 metres from the watergun. Since the maximum travel time cannot exceed the

11



0

1000

2000

3000

2000 4000 6000 8000distance (m)

depth
(m)

a
0

1000

2000

3000

2000 4000 6000 8000distance (m)

depth
(m)

b
0

1000

2000

3000

2000 4000 6000 8000distance (m)

depth
(m)

c

Figure 2. The smoothed models without minimized Sobolev norm of slowness (s = 0m2) for the
B-spline grids of cells of (a) 200×400 metres, (b) 200×230 metres and (c) 100×400 metres.

length of the seismogram, let us assume a fixed travel time of 2.9 seconds. For an
almost horizontal ray with the endpoint in the farthest hydrophone and for the velocity
of 1500ms−1 we obtain the farthest possible reflection point at 4350 metres from the
watergun and 900 metres from the farthest hydrophone. As 900 metres corresponds
to 0.6 seconds, we may estimate the maximum useful value of the travel time as 2.3
seconds. The rays have been calculated for this value of the maximum travel time.

Figure 5 displays rays computed in the smoothed models with a constant step in
the take-off angles. We can see the dependence of the behaviour of rays on parameter s.
We moved the source along the whole profile and tested ray tracing. The behaviour of
rays was always of the same kind as in these illustrative figures. Models with s = 0m2

and s = 6124m2 do not seem to be suitable for ray methods due to the density of
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Figure 3. The smoothed models for the B-spline grid of cells of 200×400 metres and for values of
parameter s of (a) 0m2, (b) 6124m2, (c) 15309m2, (d) 30619m2, (e) 61237m2 and (f) 137784m2.

caustics. In Figure 5a, we can see rays trapped in the low velocity channels.

The maximum number of arrivals for the models with the B-spline grid of cells of
200×400 metres is
(a) 19 for the value of s = 0m2,
(b) 18 for the value of s = 6124m2,
(c) 7 for the value of s = 15309m2,
(d) 5 for the value of s = 30619m2,
(e) 3 for the value of s = 61237m2 and
(f) 2 for the value of s = 137784m2.
In the model without interfaces, the number of arrivals should be odd. Even numbers
for s = 6124m2 and s = 137784m2 may be explained by the influence of the borders of
the model. Due to the requirements established above, the models with s = 0m2 and
s = 6124m2 are probably not suitable for ray-based methods.

The relative RMS difference of slowness between all calculated models and the
original Marmousi model are in Table 1. We can see that the price for a model suitable
for ray tracing is a considerable increment of the relative RMS difference of slowness
between the smoothed and original model, representing here the geological structure.
This is caused by the complexity of the original Marmousi model. If the value of
parameter s is larger, the relative RMS difference is the same for all the studied B-
spline grids. Hence, the model with the B-spline grid of cells of 200×400 metres (with
only 384 B-spline grid points) is probably the best choice.
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Figure 4. The angular dependence of the Lyapunov exponents for the models with the B-spline
grid of cells of 200×400 metres. The left and right border corresponds to the vertical ray, the middle
corresponds to the horizontal ray. The values of parameter s are (1) 0m2 for red, (2) 6124m2 for green,
(3) 15309m2 for blue, (4) 30619m2 for yellow, (5) 61237m2 for magenta and (6) 137784m2 for cyan.
The thin horizontal lines correspond to the “average Lyapunov exponents”, averaged over angles with
a uniform weight.

In general, we believe it is useless to work with a too dense B-spline grid, because
the smoothed models with various densities of the model grid converge with increasing
weight of the Sobolev norm.

Let us make a short summary of what we have already done. We have prepared
the smoothed models. We have calculated the values of corresponding “directional” and
“average Lyapunov exponents” and the values of the relative RMS difference between
the smoothed and the original Marmousi model. Finally, we have studied the behaviour
of rays in the smoothed models. In other words, we already know, how to smooth the
Marmousi model for the computation of rays and travel times.
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Figure 5. Rays in models with the B-spline grid of cells of 200×400 metres and with values of
parameter s of (a) 0m2, (b) 6124m2, (c) 15309m2, (d) 30619m2, (e) 61237m2 and (f) 137784m2. The
maximum travel time is of 2.3 seconds.

100 − 400m 200 − 230m 200 − 400m

0m2 8.3% 10.8% 11.1%
6124m2 11.4% 11.9% 12.0%

15309m2 13.2% 13.2% 13.3%
30619m2 14.3% 14.3% 14.3%
61237m2 15.1% 15.1% 15.1%

137784m2 15.8% 15.8% 15.8%

Table 1. The relative RMS difference between the smoothed and the Marmousi model. Columns
correspond to various B-spline grids, rows correspond to various values of parameter s.

8 Effects of smoothing on Gaussian beams

Our primary objective was to prepare a suitable velocity model for Gaussian packet
migration. Since the width of the Gaussian beam is equal to the width of the corre-
sponding symmetric Gaussian packets, and the computation of the beams is easier, we
study the width of the Gaussian beams. In 2-D, the profile of the Gaussian beam in a
cross-section orthogonal to the ray is controlled by the factor

exp
(
iπfMq2

)
, (19)

where i is the imaginary unit, f is frequency, q is the ray-centred coordinate orthogonal
to the ray, and M is the second derivative of the complex-valued travel time. The
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Figure 6. The halfwidths of Gaussian beams in smoothed models with the B-spline grid of cells of
200×400 metres. Columns correspond from left to right to the values of parameter s of (a) 15309m2,
(b) 30619m2, (c) 61237m2 and (d) 137784m2. Rows correspond to various positions of the source (in
metres).
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quadratic term in the Taylor expansion of the complex-valued travel time of the Gaussian
beam thus reads

1

2
Mq2 . (20)

The quadratic term in the Taylor expansion of the complex-valued travel time of the
Gaussian beam along the surface is

1

2
(GR + iGI)(x − x0)

2 , (21)

where (x − x0) is the distance from the initial point of the central ray of the Gaussian
beam to the respective point on the surface and GR and GI are real-valued parameters
determining M uniquely (Klimeš 1984).

We have calculated the standard halfwidths of Gaussian beams in various smoothed
models for various initial values of parameters GR and GI. Standard halfwidth a of a
Gaussian beam of crossection

exp

(
− q2

2a2

)
, (22)

multiplied by the square root of (2πf), has been interpolated between the rays and
displayed,

W = a
√

2πf . (23)

The halfwidths of Gaussian beams calculated for the models with the B-spline grid
of cells of 200×400 metres and with s = 15309m2, s = 30619m2, s = 61237m2 and
s = 137784m2 are shown in Figure 6. These halfwidths have been calculated for the
initial values of parameters GR = 0 and GI = 0.250×10−6. The models with lower
values of s were excluded.

The colour coded quantity W is displayed at the respective points along the central
rays of the beams. The yellow colour corresponds to the Gaussian beam halfwidth of 0
metres for all frequencies. The green colour corresponds to the Gaussian beam halfwidth
of 202 and 378 metres for the frequencies of 35 Hz and 10 Hz, respectively. The red
colour corresponds to the Gaussian beam halfwidths of 1010 metres and more for the
frequency of 35Hz, and of 1890 metres and more for the frequency of 10Hz. Thus, the
red coloured regions of Figure 6 indicate too wide Gaussian beams for the frequencies
under consideration

We can see that the model with s = 15309m2 is not suitable for Gaussian beams
or packets. Especially if the position of the source is close to the middle of the profile,
the Gaussian beams become wider too quickly. On the other hand, the models with
s = 61237m2 and s = 137784m2 seem to be acceptable. Unfortunately, these models
are smoothed to an extent which may jeopardize the migration. We hope that we
will be able to use the model with s = 30619m2 in the migration. We have studied the
behaviour of Gaussian beams for various initial parameters GR and GI. We have realized
that different initial values of these parameters are suitable for different positions of the
source, or of the receiver in the migration. In future, we will try to develop a method
to optimize the shapes of Gaussian beams or packets in dependence on the position of
the source, or of the receiver in the migration. This would allow the use of models not
so smoothed.

Let us mention that even in models with a sufficiently small number of arrivals, the
widths of Gaussian beams are at the verge of acceptability. This is caused by the low

19



frequencies under consideration.

Let us summarize that models with parameter s equal to or greater than 15309m2

seem to be suitable for ray tracing with the travel time of 2.3 seconds, see Figure 5
and 6. From this point of view, these models are sufficiently smooth. However, the low
frequencies under consideration make the use of the Gaussian beam or packet method
almost impossible. We should probably improve the applicability of the Gaussian packet
method by using shapes of Gaussian packets optimized in dependence on the position
of the source, or of the receiver in the migration.

9 Conclusions

The minimization of the relevant Sobolev norm of slowness is a powerful tool for prepar-
ing the optimum models for the asymptotic ray theory methods. As we have illustrated
in numerical examples, it can be used for smoothing very complex models. However,
the difference of slowness between the smoothed and the original model then increases
rapidly. Also, the error of the travel time then increases.

We must keep in mind that there exists a natural relation between the complexity
of the original model and the resulting difference between the sufficiently smoothed
model and the original model. The more complex the original model, the more change
it requires. Thus, the decision is up to the user, whether or not the model is too complex
for smoothing. The required maximum error of travel time is then a key argument.

We have also demonstrated that even in models sufficiently smoothed for ray trac-
ing, the Gaussian beams may still be too wide for the frequencies under consideration.
In preparing a model for Gaussian beams or packets, we cannot judge solely from the
number of arrivals and values of the “average Lyapunov exponents”, whether the model
is convenient. The widths of Gaussian beams or packets in relation to the frequency
should be studied as well.
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Appendix A

In evaluating a meaningful initial value of parameter s (see Section 6), we need to find
some approximative relation between the Sobolev norm and the Lyapunov exponent.

According to Klimeš (1999), the “average Lyapunov exponent” λ̂ may be approxi-
mated by

λ̂ ≈ Λ + ∆Φ , (A−1)

where ∆Φ is the decompensation for the low-velocity focusing zones. In 2-D, Λ is defined
as

Λ =

[∫
v−1 d2x

]
−1 ∫ √

neg(v,ijeiej)v−1 d2x , (A−2)

where neg(f) = 1
2 (f − |f |) is the negative part of f , v is the velocity, v,ij is the second

velocity derivative and e is a unit vector perpendicular to the ray.
We assume that the model is so smooth that the number of velocity oscillations,

Kosc, along rays of length corresponding to τmax is small,

Kosc =
τmax

τosc
, (A−3)

where τosc is the average wavelength of the velocity oscillations in the smoothed model,
expressed in travel-time units. This assumption allows for the approximation

∆Φ ≈ − ln2

τosc
= −Koscln2

τmax
. (A−4)

Let us now perform several approximations to express Λ in terms of the Sobolev norm
of slowness u in the model without interfaces,

Λ ≈
[∫

u d2x

]
−1 ∫ √

pos(u,ijeiej)u−1 d2x , (A−5)

where pos(f) = 1
2 (f + |f |) is the positive part of f ,

Λ ≈ 1

2

[∫
u

3

2 d2x

]
−1 ∫ √

|u,ijeiej | d2x , (A−6)

and

Λ ≈ 1

2
u
−

3

2

A

{[∫
d2x

]
−1 ∫

(u,ijeiej)
2 d2x

} 1

4

, (A−7)

where

uA =

{[∫
d2x

]
−1 ∫

u
3

2 d2x

} 2

3

. (A−8)
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Finally, we arrive at

Λ ≈ 1

2
u
−

3

2

A

(
3

8

) 1

4 √
||u|| , (A−9)

where ||u|| is the Sobolev norm of slowness given by matrix b
′

, see equation (17). This
approximation may also be expressed as

||u|| ≈
√

8

3
u3

A(2Λ)2 . (A−10)

As we need to find some initial value of parameter s, we should estimate the respective
value of the Sobolev norm ||u||init. Since we have already derived an approximative
relation between ||u|| and Λ, see equation (A−10), we need to find the value of Λinit. We
have decided to keep the number of arrivals less than 10, see Section 5. With a view to
equations (14), (A−1) and (A−4),

Λ ≤ ln10 + Koscln2

τmax
. (A−11)

Since we assume at least one shift of −ln2 for the source and one for the receiver, we
assume Kosc = 2. For τmax = 2.9 s, we can put

Λinit ≈ 1.3s−1 . (A−12)
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Optimization of the Shape of Gaussian Beams

Summary

The applicability and accuracy of the Gaussian beam method depend on the proper
choice of the shape of beams. Gaussian beams become inaccurate solutions of the elas-
todynamic equation if the velocity field changes considerably within the beam width. We
present a procedure of determinig the optimum initial shape of Gaussian beams based
on minimizing the average widths of Gaussian beams and smoothing the distribution of
the optimum parameters of Gaussian beams.

This procedure can increase the applicability of the Gaussian beam or packet
method, especially in complex structures. Moreover, it can make the use of the Gaussian
beam or packet method more comfortable. The presented procedure is suitable for the
optimization of the shape of Gaussian beams for Gaussian beam or packet migrations.

Key words

Asymptotic ray theory, Gaussian beams, Sobolev norm.

1 Introduction

Gaussian beams (GBs) represent high-frequency asymptotic time-harmonic solutions of
the elastodynamic equation, which are concentrated close to rays (e.g., Červený et al.,
1982, Červený & Pšenč́ık, 1983). The distribution of the amplitude of the principal
component of the displacement in the profile perpendicular to the ray is Gaussian (bell-
shaped). The great advantage of the Gaussian beam method is that GBs are regular
along the whole ray, even at caustics.

However, the applicability and accuracy of the Gaussian beam method depend on
the proper choice of the shape of beams. It is necessary to keep GBs narrow in relation
to the velocity changes in the model, because GBs become inaccurate solutions of the
elastodynamic equation if the velocity field changes considerably within the beam width.
Unfortunately, if GBs are too narrow, they quickly increase in width as they propagate.
Thus, we can use neither too narrow nor too wide beams as the initial choice of the
shape of GBs. Furthermore, in a complex structure, we cannot judge solely from the
final width of the beam whether the beam is or is not the reasonably accurate solution
of the elastodynamic equation. The beam must be sufficiently narrow along the whole
ray path.

All these requirements force us to use a more sophisticated theory in the choice of
the initial shape of GBs than just a wild guess or some kind of empirical rules. Klimeš
(1989) proposed a procedure, which is followed in this paper, based on minimizing
the integral of a certain expression along a fixed part of the beam’s central ray. This
approach allows us to minimize not only the width of GBs, but also the quadratic
variations of the complex-valued phase along an arbitrary surface, along a structural
interface or along a wavefront tangent plane.

In a complex structure, for various positions of the initial point of the beam’s central
ray (e.g., source), for various take-off angles of the beam’s central ray and for various
travel times, the optimum initial parameters of GBs can vary considerably. This can
bring about serious problems in the decomposition of the wave field into GBs or packets.
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Hence, we should be able to simultaneously optimize and smooth the distribution of the
initial parameters of GBs.

2 Specification of some used quantities

In the case of the component notation, the upper-case indices take the values I, J, ... =
1, 2 and the lower-case indices take the values i, j, ... = 1, 2, 3. The Einstein summation
over the pairs of identical indices is used. The matrices are denoted by boldface letters
(e.g. A) or by means of their components (e.g. Aij). The dagger (e.g. A†) denotes
Hermitian adjoint (transpose for real-valued matrices).

We denote by Aj the amplitude and by θ the complex-valued phase of a frequency-
domain Gaussian beam

gj = Ajexp(iωθ) , (1)

where i is the imaginary unit and ω is the circular frequency. In ray-centred coordinates

qj (eg., Popov & Pšenč́ık, 1978, Červený, 2001), where q3 is an independent variable
along the ray, the quadratic Taylor expansion of the phase has the form of

θ(qj) = τ(q3) +
1

2
qKMKL(q3)qL , (2)

where τ is the travel time along the central ray and M is the second differential of the
phase along the plane tangent to the phase-front.

Matrix M consists of a symmetric real part R and of a positive-definite symmetric
imaginary part Y,

M = R + iY . (3)

It may be also expressed as
M = PQ−1 , (4)

where

(
Q

P

)
=

(
1

M

)
Q (5)

is the solution of the dynamic ray-tracing system (eg., Červený, 2001)

d

dτ

(
Q

P

)
=

(
0 v21

−v−1V 0

) (
Q

P

)
, (6)

v is the propagation velocity, V is the second differential of the propagation velocity
along the phasefront tangent plane, 0 and 1 being zero and identity 2 × 2 matrices.

Any solution of the dynamic ray-tracing system with the initial conditions

(
Q(q

(0)
3 )

P(q
(0)
3 )

)
=

(
Q0

P0

)
=

(
1

M0

)
Q0 (7)

may be expressed as

(
Q

P

)
= Π

(
Q0

P0

)
, (8)
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where the ray propagator matrix

Π(q3, q
(0)
3 ) =

(
Q1 Q2

P1 P2

)
(9)

is the fundamental 4 × 4 matrix of the solutions of the dynamic ray-tracing system.
Q1 and P1 are solutions of the dynamic ray-tracing system for the normalized plane

wavefront initial conditions

(
Q1

P1

)
=

(
1

0

)
(10)

and Q2 and P2 are solutions of the dynamic ray-tracing system for the normalized point

source initial conditions

(
Q2

P2

)
=

(
0

1

)
. (11)

3 Minimization of the objective function

Klimeš (1989) proposed a procedure for determining the shape of Gaussian beams so
that they minimize the integral of certain expression along a fixed part of the beam’s
central ray. The general form of the minimized objective function is

T (G) =

∫ q
(2)

3

q
(1)

3

tr{G(q3)Re [Ψ(q3)]}dq3 , (12)

where

Re [Ψ(q3)] =

(
[Y(q3)]

−1
[Y(q3)]

−1
R(q3)

R(q3) [Y(q3)]
−1

Y(q3) + R(q3) [Y(q3)]
−1

R(q3)

)
(13)

and G is the weighting 4× 4 matrix. We control the physical quantity to be minimized
by the choice of the form of the matrix G.

In order to minimize the mean square of the width of GBs, we choose the matrix
G in the form of

G =

(
1 0

0 0

)
. (14)

Hence, the objective function reads

T (G) =

∫ q
(2)

3

q
(1)

3

tr{[Y(q3)]
−1}dq3 . (15)

The objective function may be also written as

T (G) = tr{B(G)Re(Ψ0)} , (16)

where

B(G) =

∫ q
(2)

3

q
(1)

3

Π†(q3, q
(0)
3 )G(q3)Π(q3, q

(0)
3 )dq3 (17)
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and Re(Ψ0) is given by
Re (Ψ) = ΠRe (Ψ0)Π

† , (18)

Re (Ψ0) =

(
Y−1

0 Y−1
0 R0

R0Y
−1
0 Y0 + R0Y

−1
0 R0

)
. (19)

Let us now decompose the real positive-definite symmetric 4 × 4 matrix into 2 × 2
submatrices

B =

(
B11 B12

B21 B22

)
, (20)

which yields

T = tr{B11Y
−1
0 + B12R0Y

−1
0 + B21Y

−1
0 R0 + B22(R0Y

−1
0 R0 + Y0)} . (21)

This objective function has just one local extreme which is simultaneously the global
minimum.

Differentiating the objective function (16) with respect to the real symmetric matrix
R0 and putting the result to equal zero, we obtain

Y−1
0 B12 + B21Y

−1
0 + Y−1

0 R0B22 + B22R0Y
−1
0 = 0 . (22)

Finally, we obtain

R0 = X − (Y0B22)(X − X†)[tr(Y0B22)]
−1 , (23)

where
X = −B12B

−1
22 . (24)

Differentiating the objective function (16) with respect to the real symmetric matrix
Y0 and putting the result to equal zero, we obtain

−Y−1
0 [B11 + B12R0 + R0B21 + R0B22R0]Y

−1
0 + B22 = 0 , (25)

Finally, we arrive at

Y0 = B
−1/2
22 SB

−1/2
22 {1 + det(X − X†)det(B22)[tr(S)]−2}1/2 , (26)

where
S = (B

1/2
22 C11B

1/2
22 )1/2 (27)

and
C11 = B11 − B12B

−1
22 B21 . (28)

The matrix B, which is the result of the integration of the ordinary differential
equations

dB

dq3
= Π†GΠ , (29)

is ill-conditioned. This may be overcome by using the symmetric matrix

C =

(
C11 C12

C21 C22

)
=

(
B11 − B12B

−1
22 B21 B12

B21 B22

)
. (30)
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The differential equations for the matrix C for optimization read

dC11

dq3
= (Π1 − Π2C

−1
22 C11)

†G(Π1 − Π2C
−1
22 C11) ,

dC12

dq3
= Π

†

1GΠ2 ,

dC22

dq3
= Π

†

2GΠ2 , (31)

where

Π1 =

(
Q1

P1

)
(32)

and

Π2 =

(
Q2

P2

)
(33)

are 4 × 2 submatrices of the ray propagator matrix (9).

4 Transformation of the matrix C

We define the Cartesian components of the slowness vector

p
(z)
i =

∂τ

∂zi

, (35)

where (z1, z2, z3) is a local Cartesian coordinate system with its origin at the initial

point of the ray and basis vectors i
(z)
1 , i

(z)
2 and i

(z)
3 . We choose the unit vector i

(z)
3 to

coincide with the unit vector normal to the initial surface at the initial point of the ray.

The vectors i
(z)
1 and i

(z)
2 are then obviously situated in the plane tangent to the initial

surface.
The unitary transformation matrix is defined by

Hij =
∂zi

∂qj

=
∂qj

∂zi

, (36)

the columns of which constitute the local vector basis of the ray-centred coordinate

system expressed in local Cartesian coordinates zi. We shall also denote the components
of the velocity gradient in the ray-centred coordinate system on the central ray

Vi =

(
∂v

∂qi

)

qI=0

=

(
∂zj

∂qi

∂v

∂zj

)

qI=0

. (37)

The second-order Taylor expansion of the time field along the initial surface is given
by the relation (Klimeš, 1984)

θΣ = τ + p
(z)
I zI +

1

2
zIzJMΣ

IJ . (38)

The matrix MΣ is defined by

MΣ
IJ = HIKHJLMKL(q

(0)
3 ) + p

(z)
3 DIJ + EIJ (39)
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where
EIJ = −HI3HJKVKv−2 − HJ3HIKVKv−2 − HI3HJ3V3v

−2 (40)

and D is the matrix of curvature of the initial surface.
Let us now introduce the projection matrix F,

F =

(
H† 0

−H−1(p
(z)
3 D + E) H−1

)
, (41)

(
1

M

)
= F

(
1

MΣ

)
(H†)−1 . (42)

We can use the projection matrix F for transformation of the matrix B from ray-centred

coordinates to local Cartesian coordinates on the initial surface,

BΣ = F†BF . (43)

From (30), (41) and (43), we can easily derive

CΣ
11 = HC11H

† , (44)

CΣ
12 = CΣ

21 = (H†)−1[C21H
† − C22H

−1(p
(z)
3 D + E)] , (45)

CΣ
22 = (H†)−1C22H

−1 . (46)

5 2-D case with a flat initial surface

In 2-D, the submatrices of the matrix C may be written as

C11 =

(
C11 0
0 C⊥

11

)
, (47)

C22 =

(
C22 0
0 C⊥

22

)
, (48)

C12 = C21 =

(
C12 0
0 C⊥

12

)
. (49)

In other words, we have three independent parameters, C11, C12 and C22. Parameters
C⊥

11, C⊥

12 and C⊥

22 describe the optimum initial parameters of GBs perpendicularly to
parameters C11, C12 and C22. In the case of a flat initial surface, matrix D is given by

D = 0 . (50)

Hence, we can write that

CΣ
11 = (vp

(z)
3 )2C11 , (51)

CΣ
22 = (vp

(z)
3 )−2C22 (52)

and
CΣ

12 = C12 − (vp
(z)
3 )−2EC22 , (53)
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where

E = −2p
(z)
1 p

(z)
3

(
∂v

∂q1

)

q1,3=0

−
(
p
(z)
1

)2
(

∂v

∂q3

)

q1,3=0

. (54)

Finally, we present the initial parameters of the shape of the Gaussian beams
projected on the initial surface,

MΣ
0 = RΣ

0 + iY Σ
0 , (55)

where

RΣ
0 = −CΣ

12

(
CΣ

22

)
−1

(56)

and

Y Σ
0 =

[
CΣ

11

(
CΣ

22

)
−1
]1/2

. (57)

6 Smoothing the distribution of RΣ
0 and Y Σ

0

The rays may be defined as the characteristic curves of the eikonal equation (eg.,
Červený, 2001). In smoothly inhomogeneous isotropic media, the eikonal equation reads

pipi = v−2(x) , (58)

where

pi =
∂τ

∂xi

, (59)

xi being the general Cartesian coordinates. In general, we shall write the eikonal equa-

tion as

H(x,p) = 0 , (60)

where the Hamiltonian function H(x,p) may be specified in various ways.
We consider xi and pi to be independent coordinates in a six-dimensional phase

space (four-dimensional phase space in 2-D). The eikonal equation then defines a Hamil-

tonian hypersurface in the phase space.
In 2-D, let us define a new coordinate system yi in the three-dimensional Hamil-

tonian hypersurface. Coordinate y1 corresponds to an independent variable along the
ray, y2 corresponds to take-off angle of the ray and y3 corresponds to the position of
the initial point of the ray along the initial line. We shall call it the phase-space ray

coordinate system. These coordinates are suitable for optimization of the shape of GBs
for Gaussian beam or packet migrations.

Let us remind that the parameters RΣ
0 and Y Σ

0 depend upon an independent vari-
able along the ray, take-off angles of the beam’s central ray and the position of the
initial point of the ray,

RΣ
0 = RΣ

0 (y) (61)

and

Y Σ
0 = Y Σ

0 (y) . (62)

For numerical purposes, we have to choose certain discretization of the Hamiltonian

hypersurface. This may be done by choosing a sufficiently dense grid in the Hamilto-

nian hypersurface, the grid points of which are used for storing the necessary physical
quantities, and also for storing the optimum initial parameters of GBs. Since we need
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to have the distribution of the initial parameters of GBs sufficiently smooth in the de-
composition of the wave field into GBs or packets, we should be able to smooth it. Let
us denote the smoothed initial parameters of GBs by RM

0 and Y M
0 .

In obtaining a smoother distribution of the optimum initial parameters of GBs, we
minimize the squares of the relevant Sobolev norms of the parameters of GBs together
with the mean squares of the widths of the corresponding GBs. The objective function
to be minimized reads

O =
T

q
(2)
3 − q

(1)
3

+ ‖RM
0 ‖2

+ ‖Y M
0 ‖2

, (63)

where T is defined by (15) and ‖ • ‖ is the appropriate Sobolev norm. The Sobolev
scalar product is a linear combination of the L2 Lebesgue scalar products of the zero,
first, second or higher partial derivatives (Tarantola 1987).

Expressing T in the form of

T = CΣ
11(Y

M
0 )−1 + [RM

0 + CΣ
12(C

Σ
22)

−1]2CΣ
22(Y

M
0 )−1 + CΣ

22Y
M
0 , (64)

we see that the objective function O (63) is minimized by RM
0 minimizing the objective

function

OR = ‖RM
0 ‖2

+

∣∣∣∣
RM

0 − RD
0

σR

∣∣∣∣
2

L2

, (65)

where | • |L2 is the standard L2 Lebesgue norm, RD
0 is given by

RD
0 = RΣ

0 (66)

and the standard deviations σR are defined as

σR =

√
Y M

0

CΣ
22

. (67)

During the iterative linearized smoothing, σR is calculated using Y M
0 from the previous

iteration, with the initial estimate corresponding to value

σR =

√
Y Σ

0

CΣ
22

. (68)

Equation (64) may be rearranged to read

T = 2CΣ
22Y

D
0 + CΣ

22(Y
M
0 )−1(Y M

0 − Y D
0 )2 , (69)

where

Y D
0 =

√
CΣ

11(C
Σ
22)

−1 + (RM
0 − RD

0 )2 . (70)

We see that the objective function O (63) is minimized by Y M
0 minimizing the objective

function

OY = ‖Y M
0 ‖2

+

∣∣∣∣
Y M

0 − Y D
0

σY

∣∣∣∣
2

L2

, (71)

where the standard deviations σY are given by

σR =

√
Y M

0

CΣ
22

. (72)
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During the iterative linearized smoothing, σY is calculated using Y M
0 from the previous

iteration, with the initial estimate corresponding to value

σY =

√
Y D

0

CΣ
22

. (73)

In obtaining the parameters RM
0 , we minimize the objective function OR defined

by formula

OR =
∑

GRID

(
RD

0 (yGRID) − RM
0 (yGRID)√

NσGRID
R

)2

+

+

[∫
d3y

]
−1 ∫

bij

(
∂RM

0 (y)

∂yi

)(
∂RM

0 (y)

∂yj

)
d3y , (74)

where y = (y1, y2, y3) and bij are the weighting coefficients of the Sobolev scalar product.
Superscript GRID takes values GRID = 1, 2, .., N , where N is the number of grid points
of the original data grid. As we have not had any prior information about the optimum
smoothness of the distribution of the initial parameters of GBs, we have used here only
the first derivatives in the Sobolev norms in constructing the objective function.

We can express RM
0 as a linear combination of tricubic B-splines Bα

RM
0 (y) = Bα(y)RB

α , (75)

where RB
α are the values of the smoothed initial parameters of GBs at grid points of

the B-spline grid, which is a sub-grid of the original data grid. Subscript α takes values
α = 1, 2, .., P , where P is the number of B-splines describing the smoothed distribution
of the optimum initial parameters of GBs.

Equation (74) now reads

OR =
∑

GRID

(
RD

0 (yGRID) − Bα(yGRID)RB
α√

NσGRID
R

)2

+ RB
αDαβRB

β , (76)

where

Dαβ =

[∫
d3y

]
−1 ∫

bij

(
∂Bα(y)

∂yi

)(
∂Bβ(y)

∂xj

)
d3y . (77)

Since we do not know the coefficients bij which lead to the optimum distribution of
the initial parameters of GBs, the problem is not linear. Thus, parameters RB

α cannot be
determined analytically. Since we do not want to solve the non-linear inverse problem
numerically, we need to “linearize” formula (77). The linearization of (77) yields

Dαβ = s2
RD

′

αβ , (78)

D
′

αβ =

[∫
d3y

]
−1 ∫

b
′

ij

(
∂Bα(y)

∂yi

)(
∂Bβ(y)

∂yj

)
d3y , (79)

where sR is a free parameter and b
′

ij are fixed coefficients of the Sobolev scalar product.

Coefficients b
′

ij may be constructed as a completely symmetric tensor. The 3×3

matrix b
′

is then defined by

b
′

ij =
〈eiej〉

d
, (80)
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where e is a unit vector, 〈...〉 indicates averaging over all possible directions of a unit
vector, d = 1 in 1-D, d = 2 in 2-D and d = 3 in 3-D. The average of a unit vector over
all directions can be calculated analytically. Generally in d-D, we may put

b
′

ij =
δij

d
, (81)

where δij is the Kronecker symbol. In 3-D, the desired matrix b
′

may be expressed as

b
′

=




1/3 0 0
0 1/3 0
0 0 1/3


 . (82)

We can now rewrite equation (56) to read

OR =
(
RD

0 − BRB
)
†

C−1
R

(
RD

0 − BRB
)

+ s2
R(RB)†D

′

RB , (83)

where RD
0 is defined as

(
RD

0

)
i
= RD

0 (yi), B is defined as Biα = Bα(yi), D
′

is a P × P ma-

trix given by formula (79) and CR is a N×N diagonal matrix, composed of N(σGRID
R )2,

see equation (74).
Differentiating the objective function (83) with respect to the vector RB and

putting the result to equal zero, we obtain

B†C−1
R

(
BRB − RD

0

)
+ s2

RD
′

RB = 0 . (84)

The resulting vector RB is

RB = [B†C−1
R B + s2

RD
′

]−1B†C−1
R RD

0 . (85)

By analogy, following the procedure from equation (74) to equation (85), the re-
sulting vector YB is

YB = [B†C−1
Y B + s2

YD
′

]−1B†C−1
Y YD

0 , (86)

where CY is a N×N diagonal matrix, composed of N(σGRID
Y )2.

7 Algorithm

(a) First of all, we need to compute a sufficiently dense set of rays and store several
important quantities along the rays. In dependency upon an independent variable y1

along the ray (e.g., travel time), take-off angle y2 of the beam’s central ray and position
y3 of the initial point of the ray (e.g., source), we have to store the ray propagator matrix,
see equation (9), the Cartesian components of the slowness vector, see equation (35),
and the transformation matrix, the columns of which constitute the local vector basis
of the ray-centred coordinates expressed in Cartesian coordinates, see equation (36).

(b) In minimizing the objective function (15), we solve the ordinary differential equations
(31) by numerical integration along the ray.

(c) The results of the numerical integration describe the optimum initial profiles of GBs
in a plane perpendicular to the central ray of GBs. We have to transform the results of
the numerical integration to the analogous quantities describing the optimum shape of
GBs along the initial surface, see equations (44), (45) and (46).
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(d) Finally, we can calculate the optimum initial parameters of GBs RΣ
0 and Y Σ

0 , which
are discretized in dependency upon an independent variable along the ray (e.g travel
time), take-off angles of the beam’s central ray and position of the initial point of the
ray (e.g., source). Thus, each initial parameter of GBs is defined on the 3-D parameter
grid, where each dimension is related to one of the quantities mentioned above.

(e) If necessary, we should smooth the distribution of the optimum parameters of GBs.
In obtaining a smoother distribution, we minimize the squares of the relevant Sobolev
norms of the parameters of GBs together with the mean squares of the widths of the
corresponding GBs, see equation (63). The presented procedure also allows us to smooth
iterativly.

8 Numerical examples

We have decided to use the Marmousi model (Versteeg & Grau, 1991) as the velocity
model. Since the original Marmousi model is too complex for ray-based methods, we
have used the smoothed Marmousi model (Žáček, 2001) in the computations, see Fig-
ure 1. The dimensions of the model are 9200 metres (length) by 3000 metres (depth).
The grided values of velocity vary from 1520ms−1 to 4550ms−1.

0

1000

2000

3000

2000 4000 6000 8000distance (m)

depth
(m)

Figure 1. The smoothed Marmousi model.

We have prepared two groups of sets of the initial parameters of GBs:
(a) very little smoothed sets (with various numbers of iterations), where we have used
sR = 5 × 109m3s−1 and sY = 5 × 1010m3s−1 in the smoothing, see equations (78), (85)
and (86), and
(b) sets smoothed to a constant value (with various numbers of iterations), where we
have used sR = 1 × 1013m3s−1 and sY = 1 × 1013m3s−1 in the smoothing.

In Tables 1 and 2, we show the relative root-mean-square (RMS) differences between
the parameters RΣ

0 and Y Σ
0 and the parameters RM

0 and Y M
0 obtained by the smoothing

with one, two and three iterations. Note that the differences between the second and
the third iterations are not very pronounced. For more iterations, there is no difference
at all.

Although the relative RMS differences, see Table 1, close to 100% may look as
too great, this is the least possible smoothing due to the numerical problems. The
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sY = 5 × 1010m3s−1 425 m 3200 m 5975 m 8775 m

relative RMS diff. (1st it.) 65 37 42 69
relative RMS diff. (2nd it.) 150 34 48 160
relative RMS diff. (3rd it.) 160 34 52 190

Table 1a. The relative RMS difference between the smoothed parmeters Y
M

0
and the original

parameters Y
Σ

0
(in [%]). Columns correspond to various positions of the source.

sR = 5 × 109m3s−1 425 m 3200 m 5975 m 8775 m

relative RMS diff. (1st it.) 84 84 140 110
relative RMS diff. (2nd it.) 75 84 120 94
relative RMS diff. (3rd it.) 83 83 120 100

Table 1b. The relative RMS difference between the smoothed parmeters R
M

0
and the original

parameters R
Σ

0
(in [%]). Columns correspond to various positions of the source.

sY = 1 × 1013m3s−1 425 m 3200 m 5975 m 8775 m

relative RMS diff. (1st it.) 95 110 85 97
relative RMS diff. (2nd it.) 230 200 130 130
relative RMS diff. (3rd it.) 230 200 130 130

Table 2a. The relative RMS difference between the smoothed parmeters Y
M

0
and the original

parameters Y
Σ

0
(in [%]). Columns correspond to various positions of the source.

sR = 1 × 1013m3s−1 425 m 3200 m 5975 m 8775 m

relative RMS diff. (1st it.) 350 530 40000 130
relative RMS diff. (2nd it.) 1900 1900 38000 160
relative RMS diff. (3rd it.) 1900 1900 39000 160

Table 2b. The relative RMS difference between the smoothed parmeters R
M

0
and the original

parameters R
Σ

0
(in [%]). Columns correspond to various positions of the source.

differences in Table 2 considering the initial parameters of GBs smoothed to a constant
value are, naturally, even worse. Especially for the position of the source of 5975 metres,
where the relative RMS difference between RM

0 and RΣ
0 is up to 40000%. This is caused

by a broad range of the values of the parameter RΣ
0 and clearly corresponds to a fact,

that the spreading of GBs is the most considerable for this position of the source. Note
that the greatest jump in the relative RMS differences is between the smooting to a
constant value with one iteration and with two iterations.

Standard halfwidth a of a Gaussian beam of crossection

exp

(
− q2

1

2a2

)
, (87)

multiplied by the square root of (2πf), f being the frequency, has been interpolated
between the rays and displayed,

W = a
√

2πf . (88)

The color coded quantity W is displayed at the respective points along the central
rays of GBs. The yellow colour corresponds to the GB halfwidth of 0 metres for all
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frequencies. The red colour corresponds to the GB halfwidths of 1010 metres and more
for the frequency of 35Hz, and of 1890 metres and more for the frequency of 10Hz.

In Figures 2 and 3, the optimum inital parameters of GBs are very little smoothed
(just for numerical purposes) with one (Figure 2) and two (Figure 3) iteration. As you
can see there is no significant difference between the figures. This also corresponds to
Table 1, where is no considerable jump in the relative RMS differences of the inital
parameters of GBs.

In Figures 4 and 5, the optimum inital parameters of GBs are smoothed to a
constant value with one (Figure 4) and two (Figure 5) iterations. We can clearly see
that the initial parameters of GBs smoothed with two iterations give much better results.
We do not show the GB widths for the initial parameters smoothed with three or more
iterations, beacause they do not change anymore.

The halfwidths of GBs for the value of the initial parameter R0 = −0.26 × 10−6

and for the value of the initial parameter Y0 of 0.29 × 10−7 (which corresponds to the
optimum initial parameters of GBs smoothed to a constant value with one iteration,
see Figure 4c), 0.59 × 10−7 (which corresponds to the optimum initial parameters of
GBs smoothed to a constant value with two iteration, see Figure 5c), 0.12 × 10−6 and
0.24 × 10−6 are in Figure 6.

The halfwidths of GBs for the value of the initial parameter Y0 = 0.59 × 10−7

and for the value of the initial parameter R0 of −0.13 × 10−6, −0.26 × 10−6 (which
corresponds to the optimum initial parameters of GBs smoothed to a constant value
with two iteration, see Figure 5c), −0.39 × 10−6 and −0.52 × 10−6 are in Figure 7.

As we can see, the constant optimum initial parameters of GBs obtained by the
presented procedure give the best results in terms of GB width. Although a slightly
different choice of the initial parameters can be also good (eg., see Figure 6c), we should
not forget, that we have achieved the optimum parameters automatically. This is a
great advantage of this method.

Currently, we cannot say anything meaningful about the influence of the optimiza-
tion of the shape of GBs on the Gaussian beam or packet migrations. Naturally, we
believe it will improve the accuracy of these methods.

9 Conclusions

The presented procedure of determining the optimum initial shape of GBs can improve
the applicability and accuracy of the Gaussian beam or packet method. We obtain the
optimum parameters almost automatically. Only the smoothness of the distribution of
the optimum parameters of GBs, which plays the key role in the decomposition of the
wave field into Gaussian beams or packets, have to be chosen by the user.

Naturally, it is not necessary to use this procedure in simple structures. But the
more complex is the model, the more important is to optimize the initial parameters of
GBs. Furthemore, especially in simple structures, we can smooth the optimum initial
parameters of GBs to make them constant in the whole Hamiltonian hypersurface. It
is more comfortable than trying to obtain the constant optimum initial parameters of
GBs just by chance.

Let us remind that our goal was to find the optimum initial parameters of GBs in
terms of GB width and that we have not tested the influence of the choice of the initial
parameters on the wave field. This is a theme for further study.
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Figure 2. The halfwidths of GBs for the position of the source of (a) 425m, (b) 3200m, (c) 5975m and
(d) 8775m. The green colour corresponds to the GB halfwidth of 202 and 378 metres for the frequencies
of 35 Hz and 10 Hz, respectively. The red colour corresponds to the GB halfwidth of 1010 and more,
and of 1890 metres and more for the frequencies of 35 Hz and 10 Hz, respectively. The coefficients used
for smoothing the optimum initial parameters of GBs are sR = 5×109m3s−1 and sY = 5×1010m3s−1,
one iteration.
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Figure 3. The halfwidths of GBs for the position of the source of (a) 425m, (b) 3200m, (c) 5975m and
(d) 8775m. The green colour corresponds to the GB halfwidth of 202 and 378 metres for the frequencies
of 35 Hz and 10 Hz, respectively. The red colour corresponds to the GB halfwidth of 1010 and more,
and of 1890 metres and more for the frequencies of 35 Hz and 10 Hz, respectively. The coefficients used
for smoothing the optimum initial parameters of GBs are sR = 5×109m3s−1 and sY = 5×1010m3s−1,
two iterations.
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Figure 4. The halfwidths of GBs for the position of the source of (a) 425m, (b) 3200m, (c) 5975m
and (d) 8775m. The green colour corresponds to the GB halfwidth of 202 and 378 metres for the
frequencies of 35 Hz and 10 Hz, respectively. The red colour corresponds to the GB halfwidth of 1010
and more, and of 1890 metres and more for the frequencies of 35 Hz and 10 Hz, respectively. The
coefficients used for smoothing the optimum initial parameters of GBs are sR = 1 × 1013m3s−1 and
sY = 1 × 1013m3s−1, one iteration.
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Figure 5. The halfwidths of GBs for the position of the source of (a) 425m, (b) 3200m, (c) 5975m
and (d) 8775m. The green colour corresponds to the GB halfwidth of 202 and 378 metres for the
frequencies of 35 Hz and 10 Hz, respectively. The red colour corresponds to the GB halfwidth of 1010
and more, and of 1890 metres and more for the frequencies of 35 Hz and 10 Hz, respectively. The
coefficients used for smoothing the optimum initial parameters of GBs are sR = 1 × 1013m3s−1 and
sY = 1 × 1013m3s−1, two iterations.
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Figure 6. The halfwidths of GBs for the value of the initial parameter R0 = −0.26×10−6 and for the
value of the initial parameter Y0 of (a) 0.29×10−7, (b) 0.59×10−7, (c) 0.12×10−6 and (d) 0.24×10−6.
The green colour corresponds to the GB halfwidth of 202 and 378 metres for the frequencies of 35 Hz
and 10 Hz, respectively. The red colour corresponds to the GB halfwidth of 1010 and more, and of
1890 metres and more for the frequencies of 35 Hz and 10 Hz, respectively.
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Figure 7. The halfwidths of GBs for the value of the initial parameter Y0 = 0.59 × 10−7 and for
the value of the initial parameter R0 of (a) −0.13 × 10−6, (b) −0.26 × 10−6, (c) −0.39 × 10−6 and
(d) −0.52 × 10−6. The green colour corresponds to the GB halfwidth of 202 and 378 metres for the
frequencies of 35 Hz and 10 Hz, respectively. The red colour corresponds to the GB halfwidth of 1010
and more, and of 1890 metres and more for the frequencies of 35 Hz and 10 Hz, respectively.
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