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Chapter �

Introduction

��� Generation of the Geomagnetic Field

The question of the origin of geomagnetic �eld attracted the attention of
scientists for centuries� The �rst theory of the geomagnetic �eld source
was Gilbert�s idea of a permanent magnet within the Earth� It had to be
abandoned� because it did not agree with the observation of the secular
variation of the �eld� Neither the theory of geomagnetic �eld generated by
rotation� nor the �ow of free electrons in the Earth were able to explain
properties of the �eld�

Better understanding of the Earth�s interior� especially the discovery of
the liquid core in �
��� together with the advance in �uid dynamics and
electrodynamics� brought into being the dynamo theory of geomagnetism�
Electrically conductive �uid is forced to circulate in the Earth�s outer core
by the combined e
ect of the Lorentz� Coriolis� thermal and compositional
buoyancy forces� Due to the presence of magnetic �eld� the motion of the
�uid generates electric currents� which are responsible for the generation of
magnetic �eld according to the Amp�ere law� As we will show in Chapter ��
such a behaviour is described by a set of complicated� nonlinear� evolutionary
equations� even if we accept some important simpli�cations�

Three�dimensional� self�consistent and time�dependent solutions of this
system on a spherical shell ��� �� require incredible computational power�
which was not available at all until the recent days� Therefore many sim�
pli�cations and approximations are used to study this phenomenon� The
kinematic dynamo theory ��� ���� which is interested only in the evolution
of magnetic �eld and considers the motion of the �uid to be known� is an
example of such a simpli�cation� We use a di
erent approach� as described
in the next section�

��� Description of the Model

We will study the time evolution of self�consistent magnetohydrodynamic
equations in a three�dimensional rectangular box� which is considered to
be a part of the spherical shell �see Fig� ����� situated below the North
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Pole� Although from the hydrodynamic point of view it would be possible
to position the rectangular area in the core by di
erent ways ����� the choice
of boundary conditions suitable for magnetic induction in such a domain
is questionable� Using the rectangular box is an important simpli�cation�
because it introduces new boundaries � sidewalls� that do not exist in the
real core� Also the centre of the Earth is stretched into a new boundary
plane� On the other hand� limiting ourselves to a smaller computational
domain increases our spatial resolution� It also allows us to perform all the
computations in Cartesian coordinates�
The other assumptions� that we suppose� are more acceptable� We con�

sider the �uid in the outer core to be Newtonian� Because the viscosity in
the core is poorly determined and� moreover� the estimated values are far
behind our computational reach� introducing a more complicated rheolog�
ical model would be of no use� For similar reasons� we use the Ohm law
to describe the electrical behaviour of the �uid and consider the outer and
inner core to be electromagnetically homogeneous and isotropic�
It is supposed� that the Earth�s outer core consists mainly of iron� with

addition of light elements� Iron freezes on the inner core boundary �ICB��
resulting in the growth of the inner core� while the release of light elements
and heat at this boundary drives the convection� In our simulation� we do
not take into account the compositional buoyancy� i�e� we consider the �uid
to be homogeneous� Although the compositional driving may be larger than
the thermal driving� they are both governed by similar equations and their
in�uence on the convection is also similar ���� We will use the Boussinesq ap�
proximation of the state equation� which neglects the pressure dependency

Figure ���� Position of the computational domain in the Earth�s core�
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of density and allows to take into account only the temperature dependency
of density in the gravitational force� The thermodynamic parameters de�
scribing the �uid are constant both in space and time�
The radial gravitational �eld is replaced by a homogeneous one� acting

downward in the z�axis direction� Our model includes the Coriolis force with
rotation axis parallel to z�axis� the inertial force and the Lorentz force�
Also the boundary conditions of our model are simpler than those in the

Earth� Instead of rigid boundary conditions for the velocity at the core�
mantle boundary �CMB� and ICB� we use impermeable� free�slip boundary
conditions� which result in similar physical behaviour of the boundary� while
being more suitable for the vorticity formulation of the problem� as will be
described in Chapter �� We also prescribe the temperature values at the
CMB and ICB� allowing the heat �ux through them� As for the magnetic
induction� we solve the di
usion equation in the inner core box� allowing
only the z�component to be non�zero at its bottom plane� We consider the
Earth�s mantle to be an insulator� because its conductivity is at least two
orders smaller than the conductivity of the core� In other words� we do not
allow the electromagnetic coupling at the CMB� The boundary conditions at
the sidewalls assure that no mass� no heat �ux and no magnetic �eld leaves
the box�
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Chapter �

Conductive Fluid in a Three�dimensional Box

��� Basic Equations

����� Hydrodynamic Equations

The Earth�s outer core can be considered as a conductive �uid continuum�
Such a material obeys basic laws of conservation of four quantities� mass�
momentum� moment of momentum and energy� The di
erential form of
these laws written in Euler�s coordinate system� i�e� with respect to the
deformed state� is

��

�t
�r � ���v� � �� �	���

�
D�v

Dt
� r ��� � �f� �	�	�

�
� �

�
� T � �	���

�T
Ds

Dt
� r � �krT � ��� � r�v � �

��
�r� �B�� �Q� �	���

where the meaning of all symbols is explained in Tab� 	��� If we consider
dominantly hydrostatic pressure� the equation �	��� can be written as fol�
lows�

�Cp
�T

�t
� r��krT ���Cp�v�rT��T�g�v��ez��� � r�v� �

��
�r� �B���Q	 �	���

In our work we will consider three volume forces acting on the �uid� the
Coriolis force� the Lorentz force and the gravitational force �caused by a
homogeneous gravity �eld�� i�e��

�f � �	��� �v �
�

��
�r� �B�� �B � ��g	 �	���

Two more equations are needed to fully describe the �uid� a rheological
relationship and an equation of state� We will use the Newtonian rheology
given by the equations

�
� � �p�I ��� 	 �	���
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�
� � 
�r�v � �r�v�T � 	

�

�
I r � �v�	 �	���

Note� that this relation satis�es the law of conservation of moment of mo�
mentum �	����
The Boussinesq approximation of the state equation� as was described

in Chapter �� leads to the substitution of � in the third term of equation
�	��� by

� � ����� ��T � T���	 �	�
�

In all other terms we will consider

� � ��	 �	����

All physical parameters describing the �uid� e�g� �� 
� k� �� Cp� �� �see
Tab� 	���� are constant�
Taking into account these assumptions� �	��� implies the incompressibil�

ity of the �uid
r � �v � � �	����

and thus the non�reversible part of the stress tensor in the rheological rela�
tion �	��� simpli�es into

�
� � 
�r�v � �r�v�T �	 �	��	�

Substituting �	���� the rheology �	���� �	��	� and the density �	�
�� �	����
into the momentum equation �	�	� yields

���
��v

�t
� �v � r�v� � 
 �v �rp� 	���� �v �

�

��
�r� �B�� �B �

����g � ����T � T���g	 �	����

The gradient of the hydrostatic pressure is given by relation

rp� � ���g	 �	����

We will introduce the pressure ! as a deviation from the reference hydro�
static pressure�

! � p� p�	 �	����

Now we can �nally write

���
��v

�t
��v�r�v� � 
 �v�r!�	�����v� �

��
�r� �B�� �B�����T�T���g	 �	����

By applying the Boussinesq approximation on the law of conservation of
energy �	��� we get

��Cp
�T

�t
� k T�

�
� � r�v���Cp�v�rT��T��g�v��ez� �

��
�r� �B���Q	 �	����
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Symbol Meaning SI Unit

t time s
d vertical size of the outer core box m
di vertical size of the inner core box m
ax� ay horizontal sizes of the box relative to d �
�ex� �ey� �ez unit base vectors �orthogonal� �
�n unit vector perpendicular to the boundary �
�v velocity m s��

T temperature K
T� temperature at the CMB K
�T temperature drop between ICB and CMB K
� density kgm��

�� reference density at T� kgm��

�
� Cauchy�s stress tensor Pa
�
� non reversible part of Cauchy�s tensor Pa
�

I identical tensor �
�f total volume force acting on the �uid Nm��

�� Earth�s rotation rad s��

�k unit vector of Earth�s rotation �
p pressure Pa
po hydrostatic pressure Pa
� deviation of pressure from hydrostatic state Pa
� dynamic viscosity Pa s
� kinematic viscosity m� s��

�g gravitational acceleration m s��

s density of entropy m� s��K��

k thermal conductivity kgm s��K��

� thermal di�usivity m� s��

	 thermal expansivity K��

Q internal heating rate kgm�� s��

Cp speci	c heat at a constant pressure m� s��K��

�B magnetic induction T
�H intensity of the magnetic 	eld Am��

�E intensity of the electric 	eld Vm��

�D electric induction Cm��

�
 density of electric current Am��

�e density of electric charge Cm��

� permitivity Fm��

�� permeability Hm��

� electric conductivity ���m��


 magnetic di�usivity m� s��

Table 	��� List of symbols�
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����� Magnetic Equations

The electromagnetic �eld is governed by four Maxwell�s equations which can
be written as

r � �B � �� �	����

r � �D � �e� �	��
�

r� �H � ���
� �D

�t
� �	�	��

r� �E � ��
�B

�t
� �	�	��

Of course� relations describing the electromagnetic properties of the �uid
must be added� We consider the �uid to be electromagnetically homoge�
neous� isotropic and linear� i�e� to obey the Ohm law�

�D � � �E� � � const� �	�		�

�B � �� �H� �� � const� �	�	��

�� � �� �E � �v � �B�� � � const� �	�	��

Let us assume� that the electric induction changes slowly and that the
second term in equation �	�	�� can be neglected

� �D

�t
� ��	 �	�	��

This assumption is well satis�ed in the Earth�s inner and outer core� with
characteristic times of order higher than ��� yr� and EM waves periods of
order ���� s only� Then applying the operator r� to the equation �	�	��
and substitution from �	����� �	�	��� �	�	�� and �	�	�� to ���	�� yields�

� �B

�t
� � �B �r� ��v � �B�� �	�	��

where

� �
�

���
	 �	�	��

Equations �	�	�� and �	���� describe the magnetic �eld in the �uid� Let
us apply the di
erential operator r� to �	�	��� We get

��r � �B�
�t

� � �r � �B�	 �	�	��
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Thus� if we choose at the time t� such an initial �eld �B�x� y� z� t��� that

r � �B�x� y� z� t�� � � �	�	
�

then the equation �	���� should be satis�ed as well for �B�x� y� z� t�� t 
 t�
�assuming� that we can compute the �eld �B with no errors�� So we can omit
it and use only the equation �	�	�� for computing the magnetic �eld�
In the solid inner core the equation �	�	�� simpli�es�

� �B

�t
� � �B	 �	����

��� Computational Domain

As we have already mentioned in the introduction� we will solve the system
of equations �	����� �	����� �	���� and �	�	�� in a three�dimensional rectan�
gular box with dimensions �ax d� ay d� d� �see Fig� 	���� The bottom of the
box corresponds to the inner core boundary �ICB� and its top reaches the
core�mantle boundary �CMB�� We will also compute the magnetic induc�
tion� according to �	����� in the inner core� i�e� in the box with dimensions
�ax d� ay d� di�� The bottom of this box is considered to be "the centre of the
Earth#�

Figure 	��� The computational domain�
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��� Boundary Conditions

We will use impermeable� free�slip boundary conditions at the boundaries
of the box�

��v � �n�sidewalls�CMB�ICB � �� �	����

�
�
� � �n� ��n ��� � �n��n�sidewalls�CMB�ICB � �	 �	��	�

Substituting
�
� from �	��� and �	��	� yields

�vn �
�vt

�n
�

�vs

�n
�sidewalls�CMB�ICB � �	 �	����

Subscript n corresponds to the normal component of the vector� subscripts
t and s describe the tangential components of the vector�
As for the temperature� we prescribe its values at the top and the bottom�

�T �CMB � T�� �	����

�T �ICB � T� � �T �	����

and we require no heat �ux through the sidewalls�

�
�T

�n
�sidewalls � �	 �	����

The boundary conditions for magnetic induction �B are more compli�
cated� We will require� that no magnetic �eld leaves the box through the
sidewalls� This condition will be applied to both the outer and inner core
boxes� i�e�

�Bn �
�Bt

�n
�

�Bs

�n
�sidewalls � �	 �	����

There is no boundary condition for �B at the ICB� because the �eld is com�
puted also in the lower box� At the bottom of the lower box� in the centre
of the Earth� we require the tangential components of �B to vanish and the
normal component to be continuous� i�e�

�Bt � Bs �
�Bn

�n
�C � �	 �	����

At the CMB� the situation is di
erent� We will consider the Earth�s
mantle to be an electric insulator� It means� that the magnetic �eld in the
mantle will be governed by equation �	�	�� for ���� i�e�

 �B � �	 �	��
�
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Now� let us expand �B into the Fourier series with respect to x and y�

�B�x� y� z� �
�X

p�q��

$�Bpq�z�e
���i� p x

ax d
� q y

ay d
��
	 �	����

Equation �	��
� then implies

d�
$�Bpq�z�

d�z
� ����� p

ax d
�� � �

q

ay d
���
$�Bpq�z� � �� � p� q	 �	����

The solution of �	����� that does not diverge for z � �� has the following
form

$�Bpq�z� �
$�Bpq�d�e

����
q

� p

ax d
���� q

ay d
�� �z�d��

	 �	��	�

We can see� that the terms of two�dimensional Fourier series of �B exponen�
tially decay in the mantle�

��� Dimensionless Equations

It is useful to rewrite the system of equations �	����� �	����� �	���� and
�	�	�� by means of dimensionless variables� It allows us to minimize the
set of parameters needed to describe the �uid� We will use the following
scaling equations �new dimensionless quantities are primed� note that also
the operator r must be rescaled�

�x � d�x�� �	����

r � �
d
r�� �	����

t �
d�

�
t�� �	����

�v �
�

d
�v�� �	����

! �

�

d�
!�� �	����

T � T� � �T T �� �	����

�B �
p
	�������B

�� �	��
�

�
� �


�

d�
�
� �� �	����
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Q �
��Cp��T

d�
Q�	 �	����

We also introduce new quantities � thermal di
usivity and kinematic viscos�
ity by the relations

� �
k

��Cp

� �	��	�

� �



��
	 �	����

With these new variables we can write the system of magnetohydrodynamic
equations as follows �from now� primes will be omitted� because we will use
only dimensionless variables�

r � �v � �� �	����

��v

�t
�

�

�
 �v � �v � r�v � �

�
r!� �gd��T

��
T�ez �

�	�d
�

�
�k � �v �

	�d�

�
�r� �B�� �B� �	����

�T

�t
�

k

��Cp�
 T � �v � rT � 
�

��Cpd��T

�
� � r�v � �gd

Cp
�T �

T�

�T
��v � �ez �

�
	��

Cp�T
�r� �B�� �Q� �	����

� �B

�t
�  �B �r� ��v � �B�	 �	����

The equation �	��	� in dimensionless variables also changes�

�
� � r�v � �r�v�T 	 �	����

Now we can introduce �ve parameters� They are called Prandtl� Prandtl
magnetic� Rayleigh� Taylor and dissipative numbers and are de�ned in the
following way�

Pr �
�

�
� �	��
�

Pm �
�

�
� �	����

Ra �
�gd��T

��
� �	����



���� VORTICITY ��

Ta �
�d	��

��
� �	��	�

Dn �
�gd

Cp
	 �	����

The �ve parameters mentioned above� the ratio T�
�T
and the internal heating

rate Q characterize the magnetohydrodynamic system�

Using these numbers we can �nally write�

r � �v � �� �	����

��v

�t
� Pm �v � �v � r�v � Pmr!� �Pm�

�Ra

Pr
T�ez �

�Pm
p
Ta�k � �v � Pm

p
Ta �r� �B�� �B� �	����

�T

�t
�

Pm

Pr
 T � �v � rT � DnPr

RaPm

�
� � r�v � DnPr

p
Ta

RaPm
�r� �B�� �

�Dn �T � T�

�T
��v � �ez �Q� �	����

� �B

�t
�  �B �r� ��v � �B�	 �	����

The boundary conditions for velocity �v and magnetic induction �B� as
described in �	����� �	����� �	���� and �	��	� remain unchanged for dimen�
sionless quantities� Also the condition �	���� for temperature at the sidewalls
does not change� However� the dimensionless temperature at the top and
the bottom of the box is

�T �CMB � �� �	����

�T �ICB � �	 �	��
�

��� Vorticity

Equations �	���� and �	���� represent four scalar equations for computing
three components of velocity �v and pressure !� Let us de�ne vorticity of
the velocity �eld as

�� � r� �v	 �	����
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Then applying r� to �	���� yields
���

�t
� Pm �� � �� � r�v � �v � r�� �

�
�Pm��Ra

Pr
r� �T�ez� � Pm

p
Ta�k � r�v �

�Pm
p
Ta � �B � r�r� �B�� �r� �B� � r �B�	 �	����

Employing this equation� we can compute vorticity �� and we do not have
to take care of pressure !� However� we need to compute velocity �v from
�	���� while keeping the condition �	���� satis�ed� This can be easily done
using the Fourier transform�
We have also to write the boundary conditions for vorticity� Substitution

of �	���� into �	���� yields�

�
��n

�n
� �t � �s�sidewalls�CMB�ICB � �	 �	��	�



�
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Numerical Methods

��� Spatial Derivatives Approximation

����� Finite Di�erence Method

We will solve the system of equations given in the previous chapter on a
regular spatial grid� i�e� we will compute the values of functions and their
derivatives at discrete points� Velocity� vorticity and temperature will be
computed on the grid with dimensions �� 	 	 	 K� � 	 	 	 L� � 	 	 	 M�� that covers
the upper box� Magnetic induction will be computed on the grid� that
covers the upper box in the same way� but that is also extended in the lower
box� Its dimensions are �� 	 	 	 K� � 	 	 	 L� �Mi 	 	 	M�� whereMi �

di
d
M � The

dimensionless coordinates �xk� yl� zm� of the point �k� l�m� are

xk � ax
k
K
�

yl � ay
l
L
�

zm � m
M
	

�����

The spatial derivatives are computed by �nite di
erence scheme� The
function f�x� y� z� is approximated near the point �xk� yl� zm� by three poly�
nomials of n�th order �n is even� P n

k �x� yl� zm�� Q
n
l �xk� y� zm�� R

n
m�xk� yl� z��

Each of the polynomials is given by n� � points as follows�

P n
k �xi� yl� zm� � f�xi� yl� zm�� i � k � n

� � 	 	 	 � k �
n
� �

Qn
l �xk� yi� zm� � f�xk� yi� zm�� i � l � n

� � 	 	 	 � l �
n
� �

Rn
m�xk� yl� zi� � f�xk� yl� zi�� i � m� n

� � 	 	 	 �m�
n
� 	

���	�

These conditions yield

P n
k �x� yl� zm� �

k�n
�P

i�k�n
�

Un�
ki �x�f�xi� yl� zm��

Qn
l �xk� y� zm� �

l�n
�P

i�l�n
�

V n�
li �y�f�xk� yi� zm��

Rn
m�xk� yl� z� �

m�n
�P

i�m�n
�

W n�
mi�z�f�xk� yl� zi�	

�����
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The weighting functions Un�
ki �x�� V

n�
li �y� and W

n�
mi�z� are given by relations

Un�
ki �x� �

k�n
�Q

r�k�n
�
�r ��i

x�xr
xi�xr

�

V n�
li �y� �

l�n
�Q

r�l�n
�
�r ��i

y�yr
yi�yr

�

W n�
mi�z� �

m�n
�Q

r�m�n
�
�r ��i

z�zr
zi�zr

	

�����

The partial derivatives of f�x� y� z� with respect to x� y� and z at the point
�xk� yl� zm� are then approximated by derivation corresponding polynomials

�p

�xp
f�xk� yl� zm�

	
�

k�n
�P

i�k�n
�

U
np
ki �xk�f�xi� yl� zm��

�p

�yp
f�xk� yl� zm�

	
�

l�n
�P

i�l�n
�

V
np
li �yl�f�xk� yi� zm��

�p

�zp
f�xk� yl� zm�

	
�

m�n
�P

i�m�n
�

W
np
mi�zm�f�xk� yl� zi�	

�����

The weights Unp
ki �xk�� V

np
li �yl� andW

np
mi�zm� are the values of the p�th partial

derivatives of weighting functions ����� in the central node� They depend
only on the grid coordinates� as given in ����� and thus do not have to
be computed repeatedly� Moreover� due to the regularity of the grid� the
weights do not depend on the point with respect to which they are computed�
i�e� they do not depend on k� l and m� The mixed partial derivatives
are approximated by the same scheme� applied consequently for di
erent
coordinates� In our work we need to compute �rst order and second order
�including some mixed� derivatives� We use the subroutine weights from
����

����� Discrete Boundary Conditions

To compute the spatial derivatives near the boundaries of the box� we will
expand the grid outside it� We will de�ne the function values outside the
box antisymmetrically� if the function has zero value at the boundary� or
symmetrically� if its derivation �with respect to the coordinate perpendicular
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to the boundary� reaches zero at the boundary� For velocity we can write

vx��k�lm � �vxklm� vx�K�k�lm � �vx�K�k�lm�
v
y
��k�lm � v

y
klm� v

y
�K�k�lm � v

y
�K�k�lm�

vz��k�lm � vzklm� vz�K�k�lm � vz�K�k�lm�

k � � 	 	 	 n� � l � � 	 	 	 L� m � � 	 	 	 M�

�����

vxk��l�m � vxklm� vxk�L�l�m � vxk�L�l�m�

v
y
k��l�m � �vyklm� v

y
k�L�l�m � �vy

k�L�l�m�

vzk��l�m � vzklm� vzk�L�l�m � vzk�L�l�m�

k � � 	 	 	 K� l � � 	 	 	 n� � m � � 	 	 	M�

�����

vx
kl��m� � vxklm� vx

kl�M�m� � vx
kl�M�m��

v
y
kl��m� � v

y
klm� v

y
kl�M�m� � v

y
kl�M�m��

vzkl��m� � �vzklm� vzkl�M�m� � �vzkl�M�m��

k � � 	 	 	 K� l � � 	 	 	 L� m � � 	 	 	 n� 	

�����

For vorticity we can write

�x��k�lm � �xklm� �x�K�k�lm � �x�K�k�lm�

�
y
��k�lm � ��yklm� �

y
�K�k�lm � ��y�K�k�lm�

�z��k�lm � ��zklm� �z�K�k�lm � ��z�K�k�lm�
k � � 	 	 	 n� � l � � 	 	 	 L� m � � 	 	 	 M�

���
�

�x
k��l�m � ��xklm� �x

k�L�l�m � ��x
k�L�l�m�

�
y
k��l�m � �

y
klm� �

y
k�L�l�m � �

y
k�L�l�m�

�zk��l�m � ��zklm� �zk�L�l�m � ��zk�L�l�m�
k � � 	 	 	 K� l � � 	 	 	 n� � m � � 	 	 	 M�

������

�xkl��m� � ��xklm� �xkl�M�m� � ��xkl�M�m��

�
y
kl��m� � ��yklm� �

y
kl�M�m� � ��y

kl�M�m��

�zkl��m� � �zklm� �zkl�M�m� � �zkl�M�m��

k � � 	 	 	 K� l � � 	 	 	 L� m � � 	 	 	 n� 	

������

Temperature is expanded symmetrically at the sidewalls and antisym�
metrically at the CMB� At the ICB� we expand antisymmetricaly the non�
conductive part of temperature� i�e�

T��k�lm � Tklm� T�K�k�lm � T�K�k�lm�

k � � 	 	 	 n� � l � � 	 	 	 L� m � � 	 	 	 M�
����	�
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Tk��l�m � Tklm� Tk�L�l�m � Tk�L�l�m�

k � � 	 	 	 K� l � � 	 	 	 n� � m � � 	 	 	M�
������

Tkl��m� � 	� Tklm� Tkl�M�m� � �Tkl�M�m��

k � � 	 	 	 K� l � � 	 	 	 L� m � � 	 	 	 n� 	
������

The boundary conditions for magnetic induction at the sidewalls and at
the bottom of the lower box are again simple

Bx
��k�lm � �Bx

klm� Bx
�K�k�lm � �Bx

�K�k�lm�

B
y
��k�lm � B

y
klm� B

y
�K�k�lm � B

y
�K�k�lm�

Bz
��k�lm � Bz

klm� Bz
�K�k�lm � Bz

�K�k�lm�

k � � 	 	 	 n� � l � � 	 	 	 L� m � �Mi 	 	 	 M�

������

Bx
k��l�m � Bx

klm� Bx
k�L�l�m � Bx

k�L�l�m�

B
y
k��l�m � �By

klm� B
y
k�L�l�m � �By

k�L�l�m�

Bz
k��l�m � Bz

klm� Bz
k�L�l�m � Bz

k�L�l�m�

k � � 	 	 	 K� l � � 	 	 	 n� � m � �Mi 	 	 	M�

������

Bx
kl��Mi�m� � �Bx

kl��Mi�m��

B
y
kl��Mi�m� � �By

kl��Mi�m��

Bz
kl��Mi�m� � Bz

kl��Mi�m��

k � � 	 	 	 K� l � � 	 	 	 L� m � � 	 	 	 n� 	

������

The values of magnetic induction above the CMB should be computed
according to �	��	�� The horizontal dimensions of the grid� where �B is
computed� are �� 	 	 	 K� � 	 	 	 L�� Therefore the Fourier series used in �	����
� �	��	� must be replaced by discrete Fourier transform� We must also take
into account the relations ����� between grid coordinates and corresponding
indices� Then we can write

�Bklm �
�

�K � ���L� ��

K�LX
p�q��

$�Bpqme
����i� pk

K��
� ql
L��

��
� ������

f������ K

K � �

p

ax
�� � �

L

L� �

q

ay
��� �M� ��

�m�
g $�Bpqm � �� ����
�

$�Bpq�M�m� �
$�BpqMe

����

q
� K
K��

p
ax

���� L
L��

q
ay

�� m
M

�
�

p � � 	 	 	 K� q � � 	 	 	 L� m � � 	 	 	 n� 	
���	��

It is not quite correct to derivate with respect to m� which is a discrete
index� but this notation allowed us to express the exponent in ���	��� Thus�
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we compute the 	D discrete Fourier transform
$�BpqM of magnetic induction

at the top of the box �BklM � then we expand it above the CMB by applying
the exponential decay ���	�� and �nally we return to the spatial domain by
the inverse discrete Fourier transform ������ applied in n

� layers above the
CMB�

��� Discrete Fourier Transform

We use the discrete Fourier transform to compute velocity of the �uid �v from
�	����� Numerically� both the direct and the inverse Fourier transforms are
realized with fast Fourier transform procedure for �D real functions rlft�
from ��	�� First� let us write the inverse Fourier transforms of velocity and
vorticity

�vklm �
�

�K � ���L � ���M � ��

K�L�MX
p�q�r��

$�vpqre
����i� pk

K��
� ql
L��

� rm
M��

��
� ���	��

��klm �
�

�K � ���L � ���M � ��

K�L�MX
p�q�r��

$��pqre
����i� pk

K��
� ql
L��

� rm
M��

��
	 ���		�

The de�nition of vorticity �	���� yields

r � �� � �� ���	��

which can be rewritten in the spectral domain� using also ������ as

K

K � �

p

ax
$�xpqr �

L

L� �

q

ay
$�ypqr �

M

M � �
r$�zpqr � �	 ���	��

Therefore it is not necessary to compute all three components of vorticity
from �	����� but one of them� let it be �z� can be computed from its discrete
Fourier transform given by equation

$�zpqr � �
M � �

M

�

r
�

K

K � �

k

ax
$�xpqr �

L

L� �

q

ay
$�ypqr�	 ���	��

Now� let us rewrite the de�nition of vorticity �	���� in the spectral form�

$�xpqr � 	�i� M
M�
r$v

y
pqr � L

L�

q
ay
$vzpqr��

$�ypqr � 	�i� K
K�


p
ax
$vzpqr � M

M�
r$v
x
pqr��

$�zpqr � 	�i� L
L�


q
ay
$vxpqr � K

K�

p
ax
$vypqr�	

���	��
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But we can also consider ���	�� as a system for solving $�vpqr�

L
L�


q
ay
$vxpqr � K

K�

p
ax
$vypqr �

��zpqr
��i �

� M
M�
 r $v

x
pqr � K

K�

p
ax
$vzpqr �

��ypqr
��i �

M
M�
 r $v

y
pqr � L

L�

q
ay
$vzpqr �

��xpqr
��i 	

���	��

This system is not regular� because its determinant is zero� But velocity
must also satisfy �	����� which can be written in the spectral domain as

K

K � �

k

ax
$vxpqr �

L

L� �

l

ay
$vypqr �

M

M � �
r $vzpqr � �	 ���	��

Replacing one of the equations in ���	�� by ���	�� gives a well determined
linear system of equations which can be easily solved�

$vxpqr �
i� M
M��

r ��ypqr�
L

L��

q

ay
��zpqr�

���� K
K��

p

ax
���� L

L��

q

ay
���� M

M��
r���

�

$vypqr �
i� K
K��

p
ax

��zpqr�
M

M��
r ��xpqr�i

���� K
K��

p

ax
���� L

L��

q

ay
���� M

M��
r���

�

$vzpqr �
i� L
L��

q

ay
��xpqr�

K
K��

p

ax
��ypqr�

���� K
K��

p
ax

���� L
L��

q
ay

���� M
M��

r���
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��� Time Evolution

We use the modi�ed Euler method� which is a special case of the 	nd order
Runge�Kutta method to compute the time evolution of equations �	�����
�	���� and �	����� As we have showed in the previous section� in each time
step we can compute the velocity �eld from vorticity� thus we can formally
write

� �B

�t
� �F
� �B��v����� � �F
� �B� ���� ������

�T

�t
� F��T� �B��v����� � F��T� �B� ���� ������

���

�t
� �F��T� �B��v����� ��� � �F��T� �B� ���	 ����	�

Then magnetic induction� temperature and vorticity in the �n � ��th time
step will be

�Bn�
 � �Bn �
 t

	
��F
� �Bn� ��n� � �F
� �B

�� ������ ������
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Tn�
 � Tn �
 t

	
�F��Tn� �Bn� ��n� � F��T

�� �B�� ������ ������

��n�
 � ��n �
 t

	
��F��Tn� �Bn� ��n� � �F��T

�� �B�� ������ ������

where
�B� � �Bn � t �F
� �Bn� ��n�� ������

T � � Tn � t F��Tn� �Bn� ��n�� ������

��� � ��n � t �F��Tn� �Bn� ��n�	 ������

The time step  t must satisfy the Courant�Friedrichs�Levy criterion�
Depending on the parameters describing the system and on velocity� it is
given by one of several di
erent terms in the evolutionary equations� The
equation of magnetic induction �	���� yields two conditions�

 t �  t
 � min�dx
�� dy�� dz�� ����
�

and

 t �  t� � min�
dx

vmax
x

�
dy

vmax
y

�
dz

vmax
z

�� ������

where dx � ax
K
� dy �

ay
L
and dz � 


M
are the grid distances and vmax

x �
vmax
y and vmax

z denote the maximum velocity components� The equation
governing the evolution of vorticity �	���� also limits the time step by two
relations� The �rst one is identical with ������� while the second one is

 t �  t� �
�

Pm
min�dx�� dy�� dz��	 ������

The equation for temperature �	���� also requires ������ to be satis�ed�
together with

 t �  t	 �
Pr

Pm
min�dx�� dy�� dz��	 ����	�

Therefore� the �nal formula for the time step is

 t � tcmin� t
� t�� t�� t	�� ������

where tc � � must be set experimentally�



	� �� NUMERICAL METHODS



	�

Chapter �

Results

��� Parameters of the Models

Behaviour of the system described in Chapter � depends on the choice of
physical and numerical parameters of the model� Tab� ��� shows the sum�
mary of physical parameters of the Earth�s outer and inner core� Some of
them� e�g� the dimensions of the outer and the inner core� the radial de�
pendency of density or gravitational acceleration are well known from the
PREM model� The thermodynamic and physico�chemical parameters are
much more uncertain� Their values depend on the chemical composition
of the core and are estimated from theoretical assumptions and from high
pressure experiments� Especially the estimates of kinematic viscosity and
internal heating rate may vary in range of orders�

Parameter Symbol Value

Well determined parameters

outer core radius ROC 
��� �
� m
inner core radius RIC ���� �
� m
magnitude of Earth�s rotation � ��
 �
�� s��

reference density at T� �i�e� at the CMB� �� ��� �
� kgm��

gravitational acceleration at the CMB gCMB �
��� m s��

gravitational acceleration at the ICB gICB ���
 m s��

Poorly determined parameters

temperature at the CMB T� �


 K
temperature drop between ICB and CMB �T �


 K
thermal expansivity at the CMB 	CMB ���� �
�� K��

thermal expansivity at the ICB 	ICB 
��� �
�� K��

speci	c heat at a const� pressure at the CMB Cp�CMB ��� m� s��K��

speci	c heat at a const� pressure at the ICB Cp�ICB ��� m� s��K��

magnetic di�usivity 
 �
� m� s��

kinematic viscosity � �
�� � �
� m� s��

thermal di�usivity � �
�� m� s��

internal heating rate Q 
 � �
�� kgm�� s��

Table ���� Physical parameters of the Earth�s interior� according to �	� �� ����
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In our model� we use the set of seven dimensionless numbers� that charac�
terize the system� Prandtl �	��
� and Prandtl magnetic �	���� numbers com�
pare the di
usion rates of velocity� temperature and magnetic �eld� Rayleigh
number �	���� determines the thermal buoyancy� Taylor number �	��	� com�
pares the Coriolis force with the di
usion of velocity� Dissipation number
a
ects the adiabatic� viscous and Joule heating� The ratio T�

�T
is involved

only in the adiabatic heating and the dimensionless internal heating rate Q
represents radioactive heat sources in the outer core� Tab� ��	 contains the
possible values of these parameters in the Earth based on the estimates in
Tab� ��� �note� that the dimensionless internal heating rate Q di
ers from
the SI value� and the values� that we have chosen for our cases� The Earth�s
rotation vector is parallel with the z�axis� as we have stated in Chapter ��
i�e� �k � ��� �� ���

Parameter Earth Case I Case II Case III

Pr �
�� � �
� � � �
Pm �
�� � �
� � � �
Ra �
�� � �
�� �
� �
� �
�

Ta �
�� � �
�� �
� �
� �
�

Dn 
�� 
 
 
��
T�
�T


 
 
 �
Q 
 � �
�� 
 
 


Table ��	� Dimensionless parameters of the Earth and the computed cases�

We have evolved the system for three di
erent sets of parameters� In
Case I we have simpli�ed the energy equation by neglecting the viscous and
ohmic dissipation and the adiabatic term� In Case II we have increased
the Taylor number� i�e� the Coriolis and Lorentz forces� The most complex
Case III includes the e
ects of dissipation and adiabatic heating� The values
of Ra and Ta for the Earth are far behind our computational reach� As we
will see later in this chapter� our choice of the Rayleigh number corresponds
to the steady state of the �ow� We have also uni�ed the magnitude of
di
usive terms for velocity� temperature and magnetic induction by setting
the Prandtl and Prandtl magnetic numbers to the same value in order to
allow the velocity and temperature to evolve at the same time scale as the
magnetic induction� We have neglected the internal heating in the core�

The numerical parameters are the same for all three cases and are sum�
marized in Tab� ���� The fast Fourier transform algorithm limited our choice
of number of grid points in the upper box to integer powers of two� The
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choice of relative horizontal sizes of the box means� that the vertical resolu�
tion of the model is twice the horizontal one� We used the �th order �nite
di
erences scheme� so we had to increase the dimensions of all �elds by �
at each side� Our FORTRAN code required about �� MB of memory with
single �� bytes� representation of real numbers and one time step took � �
	 minutes on a HP workstation�

Parameter Symbol Value

horizontal grid dimensions �
 � � �K� 
 � � � L� �
 � � � �
� 
 � � ��
�
vertical grid dimension of the upper box �
 � � �M� �
 � � � �
�
vertical grid dimension of the lower box ��Mi � � � 
� ���� � � �
�
relative horizontal sizes of boxes ax� ay �� �
	nite di�erences order n �
time step factor tc 
��

Table ���� Numerical parameters of models�

��� Integral Quantities

In this section we will introduce several physical quantities and numbers
which are usefull in the description of physical and numerical behaviour of
the system� By the word "integral# we mean that they are de�ned globally�
as an integral or average over the entire computational domain�

The kinetic energy of the �uid in the outer core is de�ned by relation

Ek �
�

	

Z

OC

��v � �v dV 	
�

��

	

Z

OC

�v � �v dV� �����

where we neglect the changes of density with respect to the reference state�
Similarly� we de�ne the energy of the magnetic �eld in the entire core as

Em �
�

	��

Z

IC�OC

�B � �B dV	 ���	�

Note� that the quantities in these de�nitions are in SI units� We will scale
the energy �kinetic as well as magnetic� as follows�

E � ��d�
�E�	 �����



�� �� RESULTS

Now� using the dimensionless velocity� magnetic induction� energy and vol�
ume �primes are again omitted� we can write

Ek �
�

	

Z

OC

�v � �v dV �����

and

Em �
Pm

p
Ta

	

Z

IC�OC

�B � �B dV	 �����

The discrete forms of ����� and ����� are

Ek �
ax ay

	K LM

K�L�MX
k�l�m��

v�klm� �����

Em �
Pm

p
Ta ax ay

	K L �M �Mi�

K�L�MX
k�l���m��Mi

B�
klm	 �����

To compare the importance of dissipative terms in Case III� we will
de�ne dimensionless numbers QV � QA and QJ that describe average viscous�
adiabatic and Joule heating�

QV �
DnPr

RaPmVOC

Z

OC

�
� � r�v dV �

�
DnPr

RaPmK LM

K�L�MX
k�l�m��

�
�
� � r�v�klm� �����

QA �
Dn

VOC

Z

OC

j�T � T�

�T
��v � �ezj dV �

�
Dn

K LM

K�L�MX
k�l�m��

j�Tklm � T�

�T
�vzklmj� ���
�

QJ �
DnPr

p
Ta

RaPmVOC

Z

OC

�r� �B�� dV �

�
DnPr

p
Ta

RaPmK LM

K�L�MX
k�l�m��

�r� �B��klm	 ������
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We will also use dimensionless numbers FB � FC and FL as measures of
thermal buoyancy� Coriolis and Lorentz forces acting in the �uid�
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To check the evolution of r � �B in time we introduce number DB as an
average of absolute value of �dimensionless� magnetic induction divergence
over the entire core�

DB �
�
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�
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��� Case I

As an initial condition of the simulation we used the temperature and velo�
city �elds corresponding to the non�magnetic stationary �ow �with the same
Prandtl� Rayleigh and Taylor numbers� and we imposed weak homogeneous
magnetic �eld in the vertical direction� We evolved the system until the
dimensionless time reached t � �	�	�



�	 �� RESULTS

�a�

�b�
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�c�

Figure ���� Case I� Temperature and projection of velocity in horizontal
planes xy for �a� m � �� �b� m � �	� �c� m � �	�

Figure ��	� Case I� Temperature and projection of velocity in vertical plane
yz for k � �	�
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Figures ��� and ��	 show temperature and velocity in di
erent cross�
sections through the box at the end of the simulation� Temperature is
represented by the coloured background �using a symmetrical blue�green�
red palette�� the black arrows correspond to velocity� horizontal and vertical
components use separate scalings� but uniform in the entire box �indepen�
dent on the position of cross�section�� The �ow structure shows a high
degree of symmetry with one large hot plume across the box and two small
hot plumes in the opposite corners� The �uid descends back to the bottom
in two cold bands between the hot upwellings� Maximum velocities in the
horizontal direction are about �� and are concentrated above the bottom

Figure ���� Case I� Time evolution of average buoyancy force FB �solid line��
the Coriolis force FC �dotted line� and the Lorentz force FL �dashed line��
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and below the top of the box� where the material enters and leaves the hot
upwellings and cold downwellings� The vertical velocity reaches the maxi�
mum values of �� in both directions� The Coriolis force� which is about ��%
of thermal buoyancy force �see Fig� ����� screws horizontal velocity in the
clockwise direction� The Lorentz force is weak and has no in�uence on the
�ow structure� The �ow of the �uid is very close to its steady state with
only small changes of velocity and temperature �elds in time� This fact is
in agreement with results obtained in �
��
The force lines of magnetic induction at the end of the simulation are

shown in Fig� ���� while Fig� ��� represents horizontal magnetic �eld in cross�
sections through both the lower �inner core� and upper �outer core� box� We
can see� that the �eld keeps its dominantly vertical direction� the maximum
values of Bz are about �	���
� while the horizontal �eld reaches values up
to �	����� In the areas where the �ow is mainly vertical� i�e� inside the
upwellings and the downwellings� magnetic induction remains also vertical
because ��v � �B�

	
� � there�

The horizontal �ow of the �uid invokes horizontal screwing of the mag�
netic induction lines� However� the horizontal direction of magnetic induc�

Figure ���� Case I� Magnetic induction�
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�c�

�d�

Figure ���� Case I� Projection of magnetic induction in horizontal planes xy
for �a� m � �	�� �b� m � �� �c� m � �	� �d� m � �	�
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tion does not always agree with the horizontal direction of velocity as it
would correspond to the drift of the magnetic �eld by the �uid� How can
we explain this discrepancy& Both the velocity and magnetic �elds are
solenoidal� i�e� they satisfy �	���� and �	����� But the velocity is restrained
in the box by the impermeable and free�slip boundary conditions� while the
magnetic �eld enters the outer core box from the inner core at the bottom
and leaves it to the mantle at the top� Therefore the vertical component of
the velocity signi�cantly changes in the box in contrast to the vertical mag�
netic �eld� which undergoes only minor changes� Relations �	���� and �	����
then imply di
erent constraints on the horizontal components of velocity and
magnetic �eld� In the lower box� where only the di
usive term applies� the
horizontal magnetic �eld rapidly decreases with increasing depth�
Our model represents so called "weak �eld dynamo# with the magnetic

energy being several orders lower than the kinetic energy �see Fig� �����
Although the magnetic energy has slightly increased during the simulation�
it remains eight orders below the kinetic energy�

Figure ���� Case I� Time evolution of the kinetic energy of the �uid and the
energy of the magnetic �eld�
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��� Case II

We have started the second model from the stationary solution of the �ow
and vertical homogeneous magnetic �eld again and evolved it for t � �	���
The �ow structure at the end of the simulation is shown in Figs� ��� and

��
� The �uid �ows up in two large� band�like upwellings parallel with the
x�axis and situated by the sidewalls of the box� One broad� cold downwelling
between the hot areas transports the �uid back to the bottom of the box�
The horizontal velocities are less than �	� in the x�direction and �� in the
y�direction� as the symmetry with respect to the diagonal� that we observed

Figure ���� Case II� Time evolution of average buoyancy force FB �solid
line�� the Coriolis force FC �dotted line� and the Lorentz force FL �dashed
line��
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�c�

Figure ���� Case II� Temperature and projection of velocity in horizontal
planes xy for �a� m � �� �b� m � �	� �c� m � �	�

Figure ��
� Case II� Temperature and projection of velocity in vertical plane
yz for k � �	�
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�c�

�d�

Figure ����� Case II� Projection of magnetic induction in horizontal planes
xy for �a� m � �	�� �b� m � �� �c� m � �	� �d� m � �	�



�� �� RESULTS

Figure ����� Case II� Magnetic induction�

in the previous case� was replaced by the symmetry of the temperature and
antisymmetry of the �ow with respect to the plane y �

ay
� � The vertical

velocities do not exceed ��� The e
ect of the Coriolis force is now of the
same order as the buoyancy �see Fig� ����� At the bottom and the top of the
box we can see the screwing of high velocities in the y�direction to the right�
The ratio of Lorentz force to the buoyancy is larger� than in the previous
case� but the magnetic �eld is still too weak to act signi�cantly on the �uid�
The structure of the magnetic �eld is similar to Case I� Horizontal mo�

tions lead to deformations of dominantly vertical force lines �see Fig� ������
The cross�sections �Fig� ����� show� that the horizontal magnetic �eld has
similar antisymmetry as the horizontal velocity �eld� although it does not
copy its structure� The maximum values reached �	����� in the x�direction�
�	����� in the y�direction and �	��	� in the z�direction�
The time evolution of kinetic and magnetic energy �Fig� ���	� shows�

that the system reached the steady state of the velocity and temperature
structure� with the magnetic �eld increasing �the di
erence between Ek and
Em is one order less than in the �rst simulation�� but still in the "weak �eld
dynamo# mode�



���� CASE III ��

Figure ���	� Case II� Time evolution of the kinetic energy of the �uid and
the energy of the magnetic �eld�

��� Case III

The last model� that we have computed� includes the e
ects of viscous�
adiabatic and Joule heating� We started the computation from the �nal
state of Case I and evolved the system for t � �	���
The additional terms in the energy equation have considerably changed

the pattern of the �ow in the box� The temperature �eld �see Figs� ����� ����
and ����� almost linearly depends on the vertical coordinate z� with small
horizontal perturbations� However� the �uid still circulates in the box with
maximum velocities 		� in the horizontal direction and �� in the vertical
direction� The �ow structure is more complicated� but still shows certain
symmetry� The material �ows upwards nearby the opposite sidewalls y � �
and y � ay and descends to the bottom nearby the sidewalls x � � and
x � ax� The central area of the box is relatively calm�
The average Coriolis force �Fig� ����� is relatively weaker than in Case I

�about �% of the buoyancy force�� because the ratio of the vertical motions to
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�b�

Figure ����� Case III� Temperature and projection of velocity in horizontal
planes xy for �a� m � �� �b� m � �	�
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Figure ����� Case III� Temperature and projection of velocity in vertical
plane yz for k � �	�

Figure ����� Case III� Temperature and projection of velocity in vertical
plane xz for l � �	�
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the horizontal motions is greater in Case III and only the later are signi�cant
in the term �k � �v� Nevertheless� we can �nd the clockwise rotation of the
horizontal velocity above the bottom and under the top of the box� The
Lorentz force is negligible as it was in the previous cases�
At the beginning of this simulation� the viscous heating was about ��%

of the adiabatic heating� As the �uid motion slowed in time� the impor�
tance of the viscous heating also decreased to �% of the adiabatic term �see
Fig� ������ which is responsible for the vertical strati�cation of temperature�
The feedback from the magnetic �eld to the energy equation� the Joule

Figure ����� Case III� Time evolution of average buoyancy force FB �solid
line�� the Coriolis force FC �dotted line� and the Lorentz force FL �dashed
line��
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heating� is again unimportant�
There are no signi�cant di
erences in the magnetic �eld pattern from

the previous cases �Figs� ����� ���
�� It was less then �	���	 in the horizontal
direction and up to �	���� in the z�axis direction�
The kinetic energy of the �uid decreased by one order during the evolu�

tion� due to the adiabatic and viscous heating �Fig� ��	��� Unlike in previous
cases� the magnetic energy also decreased� though only by one third�

Figure ����� Case III� Time evolution of the average adiabatic heating QA

�solid line�� the average viscous heating QV �dotted line� and the average
Joule heating QJ �dashed line��
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�c�

�d�

Figure ����� Case III� Projection of magnetic induction in horizontal planes
xy for �a� m � �	�� �b� m � �� �c� m � �	� �d� m � �	�



�	 �� RESULTS

Figure ���
� Case III� Magnetic induction�
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Figure ��	�� Case III� Time evolution of the kinetic energy of the �uid and
the energy of the magnetic �eld�

��� Numerical Stability

In this section we will discuss the advantages and disadvantages of math�
ematical and numerical methods applied to the problem� First� we will
concentrate on the fast Fourier transform� that we used to compute the
velocity from the vorticity �eld� In ���� this problem was solved with an
iterative Alternating Direction Implicit scheme and it was necessary to in�
troduce another physical quantity � the vector potential� Unlike this� the
Fourier transform can be computed "in place#� with almost no additional
memory needs and it is also faster� However� it has two disadvantages�
Firstly� it limits the number of grid points to the integer power of two�
which is more or less an inconvenience and secondly� it forces us to use the
regular grid� This is more serious� because an irregular grid would allow us
to increase the resolution in critical areas near the bottom and the top of the
box without increasing the memory requirements� The lower resolution in
boundary areas is the reason� why our attempts to simulate the chaotic �ow
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�with Rayleigh number greater than ��	� or to use rigid boundary conditions
��v � ��ICB�CMB have failed�
Another problem that deserves closer look is how to maintain the Max�

well equation �	���� valid� We have showed in Chapter �� that this equation
can be considered as an initial condition for �	����� However� the numer�
ics always introduces some errors� so even the divergence of homogeneous
vertical magnetic �eld �approximated by �nite di
erences� at the start of
Case I was non�zero �Fig� ��	��� The time dependence of the average di�
vergence DB shows similar history as the evolution of the magnetic energy
�Figs� ���� ���	 and ��	��� though the relative changes are smaller� There
are two other ways� how to solve this problem �if we do not want to move
to the spectral domain�� We could use the evolution equation �	���� to
solve only two components of the magnetic induction and to compute the
third one from the divergence�free condition �for example by using again the
�D Fourier transform� or we could separate the magnetic �eld in toroidal
and poloidal components� which satisfy �	���� automatically� However� this
would increase the order of di
erentiation in the induction equation�

Figure ��	�� Time evolution of the average magnetic �eld divergence DB for
Case I �solid line�� Case II �dotted line� and Case III �dashed line��



��

Chapter �

Conclusions

We have simulated the behaviour of magnetohydrodynamic system with
thermal driving in rectangular box for three sets of controlling parameters�
The results� that we have achieved lead us to the following conclusions�

�� All simulations resulted in a steady state� highly symmetric �ow and
temperature patterns� The main reason of this behaviour is the choice
of low Rayleigh number�

	� Increased Taylor number in Case II changed the pattern of the �ow�
The Coriolis force became almost as important as the buoyancy force�

�� The adiabatic heating �cooling� and the viscous dissipation in Case III
decreased the lateral changes of temperature� The temperature �eld
was close to the conductive pro�le with almost linear dependency on
the z�coordinate� The velocity pattern also changed� the convection
slowed down� but did not cease to work�

�� In all three cases so called "weak �eld dynamo# was evolved� with
magnetic energy several orders below the kinetic energy of the �uid�
The studied model can be called kinematic� because the feedback from
the magnetic �eld to the convection �through the Lorentz force and
Joule heating� was negligible�

�� The steady state convection with low Rayleigh and Taylor number was
able to maintain� and in Cases I and II even to increase the magnetic
�eld�

Although the system of equations� that we have solved is suitable for
the Earth�s outer core �with possible replacement of the Boussinesq approx�
imation by the anelastic one�� the choice of the computational domain and
especially the choice of physical parameters of the �uid brought us very
far from the problem of the geodynamo� The main di
erences between our
model and the situation in the outer core are�
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�� The rectangular shape of the domain in which we solved the magne�
tohydrodynamic equations introduces new boundary planes and leads
to symmetries in the �ow structure�

	� High Rayleigh and Taylor numbers in the core correspond to higher
buoyancy driving as well as to increased e
ects of the Coriolis and
Lorentz force� As a result� the material of the core �ows faster and
the system behaves chaotically�

�� The magnetic �eld of the core is several orders greater than in the
simulation� Therefore� the Joule heating and the Lorentz force a
ect
the �ow and temperature patterns� In other words� the geodynamo is a
"strong �eld dynamo#� From this point of view� our simulation would
correspond to the onset of the geodynamo� when the weak magnetic
�eld in the interplanetary space served as an initial state�

Further improvements of the model are possible� Better spatial resolu�
tion� above all in the boundary layers is necessary to evolve the system with
higher Rayleigh and Taylor numbers or with rigid boundaries� Decreasing
the order of the equation of motion by abandoning the vorticity scheme
could also improve the computation� It would be also possible to start the
simulations with higher initial magnetic �eld� however better treatment of
the divergence�free condition for the magnetic �eld could be necessary� All
these changes would bring the model closer to the real problem� though evi�
dently only the spherical models can simulate the generation of the Earth�s
magnetic �eld in its whole complexity�
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