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Chapter 1

Introduction

1.1 Generation of the Geomagnetic Field

The question of the origin of geomagnetic field attracted the attention of
scientists for centuries. The first theory of the geomagnetic field source
was Gilbert’s idea of a permanent magnet within the Earth. It had to be
abandoned, because it did not agree with the observation of the secular
variation of the field. Neither the theory of geomagnetic field generated by
rotation, nor the flow of free electrons in the Earth were able to explain
properties of the field.

Better understanding of the Earth’s interior, especially the discovery of
the liquid core in 1906, together with the advance in fluid dynamics and
electrodynamics, brought into being the dynamo theory of geomagnetism.
Electrically conductive fluid is forced to circulate in the Earth’s outer core
by the combined effect of the Lorentz, Coriolis, thermal and compositional
buoyancy forces. Due to the presence of magnetic field, the motion of the
fluid generates electric currents, which are responsible for the generation of
magnetic field according to the Ampere law. As we will show in Chapter 2,
such a behaviour is described by a set of complicated, nonlinear, evolutionary
equations, even if we accept some important simplifications.

Three-dimensional, self-consistent and time-dependent solutions of this
system on a spherical shell [7, 8] require incredible computational power,
which was not available at all until the recent days. Therefore many sim-
plifications and approximations are used to study this phenomenon. The
kinematic dynamo theory [1, 13], which is interested only in the evolution
of magnetic field and considers the motion of the fluid to be known, is an
example of such a simplification. We use a different approach, as described
in the next section.

1.2 Description of the Model

We will study the time evolution of self-consistent magnetohydrodynamic
equations in a three-dimensional rectangular box, which is considered to
be a part of the spherical shell (see Fig. 1.1), situated below the North
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Pole. Although from the hydrodynamic point of view it would be possible
to position the rectangular area in the core by different ways [11], the choice
of boundary conditions suitable for magnetic induction in such a domain
is questionable. Using the rectangular box is an important simplification,
because it introduces new boundaries — sidewalls, that do not exist in the
real core. Also the centre of the Earth is stretched into a new boundary
plane. On the other hand, limiting ourselves to a smaller computational
domain increases our spatial resolution. It also allows us to perform all the
computations in Cartesian coordinates.

The other assumptions, that we suppose, are more acceptable. We con-
sider the fluid in the outer core to be Newtonian. Because the viscosity in
the core is poorly determined and, moreover, the estimated values are far
behind our computational reach, introducing a more complicated rheolog-
ical model would be of no use. For similar reasons, we use the Ohm law
to describe the electrical behaviour of the fluid and consider the outer and
inner core to be electromagnetically homogeneous and isotropic.

It is supposed, that the Earth’s outer core consists mainly of iron, with
addition of light elements. Iron freezes on the inner core boundary (ICB),
resulting in the growth of the inner core, while the release of light elements
and heat at this boundary drives the convection. In our simulation, we do
not take into account the compositional buoyancy, i.e. we consider the fluid
to be homogeneous. Although the compositional driving may be larger than
the thermal driving, they are both governed by similar equations and their
influence on the convection is also similar [8]. We will use the Boussinesq ap-
proximation of the state equation, which neglects the pressure dependency

C

Figure 1.1: Position of the computational domain in the Earth’s core.
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of density and allows to take into account only the temperature dependency
of density in the gravitational force. The thermodynamic parameters de-
scribing the fluid are constant both in space and time.

The radial gravitational field is replaced by a homogeneous one, acting
downward in the z-axis direction. Our model includes the Coriolis force with
rotation axis parallel to z-axis, the inertial force and the Lorentz force.

Also the boundary conditions of our model are simpler than those in the
Earth. Instead of rigid boundary conditions for the velocity at the core—
mantle boundary (CMB) and ICB, we use impermeable, free-slip boundary
conditions, which result in similar physical behaviour of the boundary, while
being more suitable for the vorticity formulation of the problem, as will be
described in Chapter 2. We also prescribe the temperature values at the
CMB and ICB, allowing the heat flux through them. As for the magnetic
induction, we solve the diffusion equation in the inner core box, allowing
only the z-component to be non-zero at its bottom plane. We consider the
Earth’s mantle to be an insulator, because its conductivity is at least two
orders smaller than the conductivity of the core. In other words, we do not
allow the electromagnetic coupling at the CMB. The boundary conditions at
the sidewalls assure that no mass, no heat flux and no magnetic field leaves
the box.
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Chapter 2

Conductive Fluid in a Three-dimensional Box

2.1 Basic Equations

2.1.1 Hydrodynamic Equations

The Earth’s outer core can be considered as a conductive fluid continuum.
Such a material obeys basic laws of conservation of four quantities: mass,
momentum, moment of momentum and energy. The differential form of
these laws written in Euler’s coordinate system, i.e. with respect to the
deformed state, is

dp

-r (o) =0 2.1
o, TV (e7) =0, (2.1)

Dv
o_or 2:3)

Ds < LA 32

pTE:V-(kVT)jL o :Vv—i—'u—(VXB) +Q, (2.4)

0

where the meaning of all symbols is explained in Tab. 2.1. If we consider
dominantly hydrostatic pressure, the equation (2.4) can be written as fol-
lows,

POy 5 = V- (EVT)—pC,i- VT —aT pgi-¢,+ 0 : Vit -—(VxB)2+Q. (2.5)
Ho
In our work we will consider three volume forces acting on the fluid: the
Coriolis force, the Lorentz force and the gravitational force (caused by a
homogeneous gravity field), i.e.,
. . 1 L.
[ =20 x74+—(V xB) x B+ pg. (2.6)
Ho
Two more equations are needed to fully describe the fluid: a rheological
relationship and an equation of state. We will use the Newtonian rheology
given by the equations
— AR
T I1+o0.

=—pl + (2.7)
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T = Vi + (Vi) — ??v 4. (2.8)
Note, that this relation satisfies the law of conservation of moment of mo-
mentum (2.3).
The Boussinesq approximation of the state equation, as was described
in Chapter 1, leads to the substitution of p in the third term of equation
(2.6) by

p= poll — (T = Ty)]. (2.9)
In all other terms we will consider
p=po. (2.10)

All physical parameters describing the fluid, e.g. A, n, k, a, Cp, py (see
Tab. 2.1), are constant.
Taking into account these assumptions, (2.1) implies the incompressibil-
ity of the fluid
V-7=0 (2.11)
and thus the non-reversible part of the stress tensor in the rheological rela-
tion (2.8) simplifies into

T = y[Vi— (V&) (2.12)
Substituting (2.6), the rheology (2.7), (2.12) and the density (2.9), (2.10)
into the momentum equation (2.2) yields

ov 1 L

pO(E—F’D’V{)’) = T]A’U—Vp—2p09 X ¥+ M—(V XB) x B+
0
+p0g — poc(T — Tp)g. (2.13)
The gradient of the hydrostatic pressure is given by relation
Vpo = pog- (2.14)

We will introduce the pressure II as a deviation from the reference hydro-
static pressure,

II=p-—po. (2.15)
Now we can finally write
8_’ 1 — -
po(a—:-i-?_)'Vﬁ) = nAQ?—VH—QpOQXQ7+M—(VXB)XB—,O()OJ(T—To)g. (216)
0

By applying the Boussinesq approximation on the law of conservation of
energy (2.5) we get

oT
poC,

A .
oS = EAT+7 Vﬁ—ngpﬁ-VT—anggU-€Z+u—(V><B)2+Q. (2.17)
0
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Symbol
t

d

d;

Ay, Qy

€x, €y, €2

o’ﬂ’ﬂ@im

<,
S~

>
S

SO mOOR F e QU S OF S T~ ol 3T

Meaning

time

vertical size of the outer core box

vertical size of the inner core box
horizontal sizes of the box relative to d
unit base vectors (orthogonal)

unit vector perpendicular to the boundary
velocity

temperature

temperature at the CMB

temperature drop between ICB and CMB
density

reference density at T

Cauchy’s stress tensor

non reversible part of Cauchy’s tensor

identical tensor

total volume force acting on the fluid
Earth’s rotation

unit vector of Earth’s rotation
pressure

hydrostatic pressure

deviation of pressure from hydrostatic state
dynamic viscosity

kinematic viscosity

gravitational acceleration

density of entropy

thermal conductivity

thermal diffusivity

thermal expansivity

internal heating rate

specific heat at a constant pressure
magnetic induction

intensity of the magnetic field
intensity of the electric field
electric induction

density of electric current

density of electric charge
permitivity

permeability

electric conductivity

magnetic diffusivity

SI Unit

B——=—"BEB?"

%)
|
—

FERAR
5 B

o 7
&P

Nm™

rads™!

Pa
Pa
Pa
Pas

m?s!

ms—?2
m?s 2K~!
kgms 3 K1

kgm~!s™3

m?s2K~!

Am™!
Vm!
Cm™2
Am™!
Cm™3
Fm™!
Hm™!
QO 1tm-!

m?s!

Table 2.1: List of symbols.
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2.1.2 Magnetic Equations

The electromagnetic field is governed by four Maxwell’s equations which can
be written as

V-B=0, (2.18)
VD = p,, (2.19)
o oD
H=7+=2= 2.2
V x 7+ TR (2.20)
. 0B
E=-22 2.21

Of course, relations describing the electromagnetic properties of the fluid
must be added. We consider the fluid to be electromagnetically homoge-
neous, isotropic and linear, i.e. to obey the Ohm law:

D = ¢E, € = const, (2.22)
B = poH, po = const, (2.23)
7=0(E+ 7 x B), o = const, (2.24)

Let us assume, that the electric induction changes slowly and that the
second term in equation (2.20) can be neglected

aD

— K7 2.25

5 <J (2.25)
This assumption is well satisfied in the Earth’s inner and outer core, with
characteristic times of order higher than 10 yr, and EM waves periods of
order 10725 only. Then applying the operator Vx to the equation (2.20)
and substitution from (2.18), (2.21), (2.23) and (2.24) to (1.20) yields:

0B _ .
where 1
A= —o. (2.27)
Moo

Equations (2.26) and (2.18) describe the magnetic field in the fluid. Let
us apply the differential operator V- to (2.26). We get

(V- B)

S =MV B). (2.28)
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Thus, if we choose at the time #y such an initial field g(w, Y, 2,tp), that
V- B(z,y, 2 t)) =0 (2.29)

then the equation (2.18) should be satisfied as well for B(z,y, z,t),t > to
(assuming, that we can compute the field B with no errors). So we can omit
it and use only the equation (2.26) for computing the magnetic field.

In the solid inner core the equation (2.26) simplifies:

5 = MAB. (2.30)

2.2 Computational Domain

As we have already mentioned in the introduction, we will solve the system
of equations (2.11), (2.16), (2.17) and (2.26) in a three-dimensional rectan-
gular box with dimensions (a, d, ay d,d) (see Fig. 2.1). The bottom of the
box corresponds to the inner core boundary (ICB) and its top reaches the
core-mantle boundary (CMB). We will also compute the magnetic induc-
tion, according to (2.30), in the inner core, i.e. in the box with dimensions
(ag d,ayd,d;). The bottom of this box is considered to be “the centre of the
Earth”.

o
! Tﬁ
by

d 1 _ _ J,E
|ﬂ”d
ommmm

& y edyed X

e
_,:-;!."f

Figure 2.1: The computational domain.
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2.3 Boundary Conditions

We will use impermeable, free-slip boundary conditions at the boundaries
of the box:

(V' 1) sidewalts,c B, 10B = 0, (2.31)

S R S G
T = (- T - )i sidewalts,cMB,1cB = 0. (2.32)

[
Substituting 7 from (2.7) and (2.12) yields
_ Ovg Ovg

(vp = - %)sidewalls,CMB,ICB =0. (2.33)

Subscript n corresponds to the normal component of the vector, subscripts
t and s describe the tangential components of the vector.

As for the temperature, we prescribe its values at the top and the bottom:

(T)emp = To, (2.34)
(T)ICB =Ty + oT (235)
and we require no heat flux through the sidewalls,
oT
(%)sidewalls = 0. (236)

The boundary conditions for magnetic induction B are more compli-
cated. We will require, that no magnetic field leaves the box through the
sidewalls. This condition will be applied to both the outer and inner core
boxes, i.e.

_ 9B _ 0B,
~ On  On
There is no boundary condition for B at the ICB, because the field is com-
puted also in the lower box. At the bottom of the lower box, in the centre

of the Earth, we require the tangential components of B to vanish and the
normal component to be continuous, i.e.

0B,
on

At the CMB, the situation is different. We will consider the Earth’s
mantle to be an electric insulator. It means, that the magnetic field in the
mantle will be governed by equation (2.26) for A — oo, i.e.

(Bn )sidewalls =0. (237)

(B; = By = =) = 0. (2.38)

AB = 0. (2.39)
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Now, let us expand B into the Fourier series with respect to z and y:

S RN

Bla,y,2) = Y Bpgle)e ™ aataya), (2.40)
P,q¢=0
Equation (2.39) then implies
d2§pq(z) 211 P \2 4 \215
A (B =0 Ypa @AY

The solution of (2.41), that does not diverge for z — oo, has the following

form
%, %, -2 2_)24+(=L)2 (2—d
Bpy(2) = qu(d)e[ (Geal iz ol (2.42)

We can see, that the terms of two-dimensional Fourier series of B exponen-
tially decay in the mantle.

2.4 Dimensionless Equations

It is useful to rewrite the system of equations (2.11), (2.16), (2.17) and
(2.26) by means of dimensionless variables. It allows us to minimize the
set of parameters needed to describe the fluid. We will use the following
scaling equations (new dimensionless quantities are primed, note that also
the operator V must be rescaled)

i =d7, (2.43)
1 !/
d2
t= Xt’, (2.45)
A
U= 317' , (2.46)
nA
Il = ﬁn’, (2.47)
T="Ty+0TT, (2.48)
B = \/2p0QuoAB’, (2.49)
A
T =129 (2.50)
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= P2t . (2.51)

We also introduce new quantities - thermal diffusivity and kinematic viscos-
ity by the relations

k
K = : 2.52
e (2.52)
v="1" (2.53)
Po

With these new variables we can write the system of magnetohydrodynamic
equations as follows (from now, primes will be omitted, because we will use
only dimensionless variables)

V.-17=0, (2.54)
ov V., L _, Vv agd36T
rri XA’U—’U-VU—XVH—F 2 Te, —
2Qd? - 2Qd? Lo
Y k x o (V x B) x B, (2.55)
oT k . nxn & L agd To .. .
= = — AT VT +—"—0 :Vi— = (T + —
T Yen e eyl sl i L
20\ o
B)? 2.
+CP5T(VX )+ Q, (2.56)
OB . _

The equation (2.12) in dimensionless variables also changes,

7 =vi+ (Vo)L (2.58)

Now we can introduce five parameters. They are called Prandtl, Prandtl
magnetic, Rayleigh, Taylor and dissipative numbers and are defined in the
following way:

1%
Pr == 2.59
r=- (2.59)
1%
Pm = — 2.
m= (2.60)
d36T
a=290 (2.61)
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4d*Q?
Ta=—5, (2.62)
d
Dn = %. (2.63)
p

The five parameters mentioned above, the ratio JI:% and the internal heating
rate @@ characterize the magnetohydrodynamic system.
Using these numbers we can finally write:

V-9=0, (2.64)
ov Pm)?R
9% pmAG— Vi Py L R
ot Pr
—PmVTak x 7+ PmVTa(V x B) x B, (2.65)
or Pm Dn Pr « Dn PrvTa = 9
— = —AT—-%-VT Vo4+ ——— B)* —
ot Pr veVT A+ RaPmU Vot Ra Pm (V x B)
To ., .
—Dn (T + ﬁ)v e+ Q, (2.66)
OB . .

The boundary conditions for velocity ¢ and magnetic induction E, as
described in (2.33), (2.37), (2.38) and (2.42) remain unchanged for dimen-
sionless quantities. Also the condition (2.36) for temperature at the sidewalls
does not change. However, the dimensionless temperature at the top and
the bottom of the box is

(T)ems =0, (2.68)

(T)rcp = 1. (2.69)

2.5 Vorticity

Equations (2.64) and (2.65) represent four scalar equations for computing
three components of velocity ¥ and pressure II. Let us define vorticity of
the velocity field as

&=V x7. (2.70)
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Then applying Vx to (2.65) yields

%‘: = PmAG+&-Vi—7-Vd+
Pm)? -
+(”;3ﬂv % (T&,) + PmTak - Vi +
T
+PmVTa[B-V(V x B) — (V x B) - VB]. (2.71)

Employing this equation, we can compute vorticity & and we do not have
to take care of pressure II. However, we need to compute velocity ¢ from
(2.70) while keeping the condition (2.64) satisfied. This can be easily done
using the Fourier transform.

We have also to write the boundary conditions for vorticity. Substitution
of (2.33) into (2.70) yields:

Ow
( ann =Wt = ws)sidewalls,CMB,ICB = 0. (2-72)
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Chapter 3

Numerical Methods

3.1 Spatial Derivatives Approximation

3.1.1 Finite Difference Method

We will solve the system of equations given in the previous chapter on a
regular spatial grid, i.e. we will compute the values of functions and their
derivatives at discrete points. Velocity, vorticity and temperature will be
computed on the grid with dimensions (0... K, 0...L, 0... M), that covers
the upper box. Magnetic induction will be computed on the grid, that
covers the upper box in the same way, but that is also extended in the lower
box. Its dimensionsare (0... K, 0...L, —M; ... M), where M; = %M. The
dimensionless coordinates (zg,y;, zm) of the point (k,[,m) are

k
T = Gz,
l
Y = ay37 (31)
— m

The spatial derivatives are computed by finite difference scheme. The
function f(x,y, z) is approximated near the point (x, y;, 2, ) by three poly-
nomials of n-th order (n is even) P (z,y1, 2m), Q7' (Tk, Y, 2m), By (Zk, Y1, 2).
Each of the polynomials is given by n 4 1 points as follows:

P]?(:L‘iaylazm) = f(xiaylazm)a o= k_%aak_’_%a
Qr (xk,Yis2m) = f@rYiszm), @ = 1—=5,...,0+5, (3.2)
R?n(xkaylazi) = f(xkaylazi)a o= m_%aam+%
These conditions yield
k2
Pl?(ajaylazm) = ) Z Ulg;jo(]:)f(xiaylazm)a
i=k—%
l«k%2
i=l-2
m+%2
R:;l(a:kaylaz) = E W#L?(z)f(xkaylazz)
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The weighting functions UX’(z), V;"°(y) and W%(z) are given by relations

k+3
Upd(z) = I ==
r:kfg,ryéz
+3 B
Vitly) = I %, (3.4)
r:lfg,ryéz
0 mis
Wii(z) = I =

The partial derivatives of f(z,y,z) with respect to x, y, and z at the point
(zk, Y1, 2m) are then approximated by derivation corresponding polynomials

k+%5
%f(xkaylazm) = ) kz " Ulzp(xk)f(xiaylazm)a
i=k—%
oP : e np
3_ypf(xkaylazm) = 4 ‘/lz (yl)f(xkayiazm)? (35)
i=l—3
oP : mt np
oo @y zm) = 0 Wiilzm)f(@k yi, 2)-
i=m—%

The weights U.” (z1), V;;* (y1) and W2 (z,,) are the values of the p-th partial
derivatives of weighting functions (3.4) in the central node. They depend
only on the grid coordinates, as given in (3.1) and thus do not have to
be computed repeatedly. Moreover, due to the regularity of the grid, the
weights do not depend on the point with respect to which they are computed,
i.e. they do not depend on k, [ and m. The mixed partial derivatives
are approximated by the same scheme, applied consequently for different
coordinates. In our work we need to compute first order and second order

(including some mixed) derivatives. We use the subroutine weights from

[6]-

3.1.2 Discrete Boundary Conditions

To compute the spatial derivatives near the boundaries of the box, we will
expand the grid outside it. We will define the function values outside the
box antisymmetrically, if the function has zero value at the boundary, or
symmetrically, if its derivation (with respect to the coordinate perpendicular
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to the boundary) reaches zero at the boundary. For velocity we can write

T

Y(—k)im “Vkim> Y(K+k)im UK —k)m>
oY oY oY —

(=k)lm klm> (K+k)lm (K—k)lm> (3 6)

2 _ z 2 _ z :
U—kym =  Ykim>  Y(K+k)m V(K —k)im>

k=0...2 1=0...L, m=0...M,

x x

Yk(=l)ym Ykim>  Vk(L+l)m Yk(L—)m>

oY — Y oY — Y

k(=0)m klm> k(L+1)m k(L-0)m> (3 7)

F1 _ V1 2 _ F1 :
Ye(-ym = Ykim> Yk(L+im T Vk(L-l)m>

k=0...K, [=0...2, m=0...M,

T — T xT — xT
Yki(-m) = Ykim> Yki(M4m) T Uki(M—m)
oY — Y oY — Y

kl(—m) klm> kEl(M+m) kl(M—m)> (3 8)
2 2 F1 2 .
Vki(—m) “Vkim> Uki(M4m) T T Vki(M-m)

m p—
k=0...K, 1=0...L, m=0...35.
For vorticity we can write

iy

|
)

xT — xT
Ykim = Yem Y(K4k)im T Y(K-k)im
y .y Y .y
Yi—kim = TYkm Y(K4k)m T TY(K—k)im (3.9)
K1 _ F1 F1 _ K1 .
Y—kim T TY%km Y(K4k)im T TY(K—k)im
=0...2, 1=0...L, m=0...M,
xr X xr
Wi—ym T T Ykimo Yk(L+D)m “Wk(L—1)m>
y _ Y y
Wk(-ym = Ykim'  Yk(L+D)m We(L-l)m> (3.10)
2 1 2 .
Wk(=l)m Weims  Yk(L+1)m ~Wk(L—l)m>
k=0...K, 1=0...2 m=0...M,
xr _ X xr _ xr
Yei(-m) = TYkim> Ygi(M+4m) T T Yki(M-m)
y _ Y y _ y
Yei-m) = TYkim» Yki(M+m) T " Yk(M-m) (3.11)
2 z 2 _ 2 :
Wki(—m) Weim>  Yki(M+m) T YEI(M-m)’

—0...K, 1=0...L, m=0...2

Temperature is expanded symmetrically at the sidewalls and antisym-
metrically at the CMB. At the ICB, we expand antisymmetricaly the non-
conductive part of temperature, i.e.

T kym = Teims Tkvkym = T(k—k)ims (3.12)
k=0..2 1=0...L, m=0... M,
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Ti(-tym = Thims Teprym = Th—nyms (3.13)
k=0...K, 1=0...% m=0...M,
Toa(-my = 2—=Tkims Toymr+m) = —Trar-—m) (3.14)

k=0...K, 1=0...L, m=0...%

The boundary conditions for magnetic induction at the sidewalls and at
the bottom of the lower box are again simple

Bf”fk)zm = —Bjm BEEKJrk)lm = _B{ka)lm’
Y — Y Y — Y
B(*k)lm B Bklm’ B(K+k)lm - B(ka)lm’ (3 15)
B? = B? B = B? ’
(=k)lm klm> (K+k)lm (K—k)lm>
k=0..2, 1=0...L, m=—M,...M,
Blf —)m T Blzglm’ Blzg(LJrl)m Blf(Lfl)m’
y — Y Y — Y
Bk(—l)m - _Bklm’ Bk(L-i—l)m - _Bk(L—l)m’ (3 16)
k(=l)m klm> k(L+)m k(L-0)m>
k=0..K, 1=0...2 m=—M...M,
Blfl(fMifm) = _Blgcgl(fMier)’
y _ y
Bkl(—Mi—m) - _Bkl(—Mi-l-m)’ (3.17)
BﬁZ(—Mi—m) - B§1(—Mi+m)v

k=0...K, 1=0...L m=0...2

The values of magnetic induction above the CMB should be computed
according to (2.42). The horizontal dimensions of the grid, where B is
computed, are (0...K,0...L). Therefore the Fourier series used in (2.40)
— (2.42) must be replaced by discrete Fourier transform. We must also take
into account the relations (3.1) between grid coordinates and corresponding
indices. Then we can write

K,L
— 1 3 2, 727_”( pk +q_l)}
Bklm: Z qume[ K+1 7 L+l s (318)
(K+1)(L+1) =
K »p L g 02
A2 [(—— )2 — )+ M?*—B =0 3.19
2 L e (S 2 ) B
qu(M+m) :quMe \/ K+1 T+1 ay M’ (3.20)
p=0...K, ¢g=0...L, m=0...5.

It is not quite correct to derivate with respect to m, which is a discrete
index, but this notation allowed us to express the exponent in (3.20). Thus,



3.2. DISCRETE FOURIER TRANSFORM 23

we compute the 2D discrete Fourier transform épq m of magnetic induction
at the top of the box gklM, then we expand it above the CMB by applying
the exponential decay (3.20) and finally we return to the spatial domain by
the inverse discrete Fourier transform (3.18) applied in § layers above the
CMB.

3.2 Discrete Fourier Transform

We use the discrete Fourier transform to compute velocity of the fluid ¢ from
(2.70). Numerically, both the direct and the inverse Fourier transforms are
realized with fast Fourier transform procedure for 3D real functions r1ft3
from [12]. First, let us write the inverse Fourier transforms of velocity and
vorticity

Tt = 1 Ki,:M & e[_QWi(%"‘Lq_ll—'_]\:[:fl )] (3.21)
"KM 1) e ’
K,L,M

- 1 —2mi( pk_y al_ 4 rm )]

w = w K+1 L+1 " M+1/7, 3.22
= K D+ (M +1) pqz;o par€ (322
The definition of vorticity (2.70) yields

V-&=0, (3.23)

which can be rewritten in the spectral domain, using also (3.1), as

K p. L gq. M
K+1la, g‘”+L+1a Dpar T 3p 1 par = 0- (3.24)

Therefore it is not necessary to compute all three components of vorticity
from (2.71), but one of them, let it be w,, can be computed from its discrete
Fourier transform given by equation

o M+11, K k L q_,

= - - 3.25
“rar M Kilas W+L+1a “par)- (8.25)

Now, let us rewrite the definition of vorticity (2.70) in the spectral form:

AT _ s M sy L g a2

por = 2mara 0 — 9T ay Vpar);

Y _ K parz _ M s~z

v = 27rz(—KL+1 ZOpar A[/£+1rqur , (3.26)

OFr = 2mi( 737 L0 — Lay ).
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But we can also consider (3.26) as a system for solving {TPQT:

L gy - _K_P gy —  “par
L+1 ay “Pqr K+1 a; “pqr 2w
~Y
M AT K p anz _ Wpgr
M+1 " Upgr + K+1 ap “pqr  — 2mi (327)
M sy L qgr _— “pgr
m+1 " Upgr T+1 ay Ypar = 2mic

This system is not regular, because its determinant is zero. But velocity
must also satisfy (2.64), which can be written in the spectral domain as
K k L 1 M .
K——|-1 a ’qu,« + L—-l-l a—y vgqr + m ’I"’U;qr =0. (328)
Replacing one of the equations in (3.27) by (3.28) gives a well determined
linear system of equations which can be easily solved:

M- L .
o UGvem rwqu_L-;-l %wéqr)
Upgr = K P2 L g y2 M 2717
pq 2r((z57 o)’ +H e @) Hagr )]
-0 K P~ M ~ .
,lA)y _ ¢ K41 a w;qT_M+l rw;‘ﬁ‘)l (3 29)
= K T T .
par 2nl(m 22+ ) H e )2l
il 4 K b )
’[A)Z _ L+1 ay pgr K+1 agp P47
= K T T .
bar 2rl(w7 £+ %)24‘(1\4—4_1 r)?]

3.3 Time Evolution

We use the modified Euler method, which is a special case of the 2 order

Runge-Kutta method to compute the time evolution of equations (2.66),
(2.67) and (2.71). As we have showed in the previous section, in each time
step we can compute the velocity field from vorticity, thus we can formally
write

or S S

g = Fy(T, B,9(&)) = F»(T, B, ), (3.31)
0o = S ~ =
- = F3(T, B,9(&),d) = F3(T, B, d). (3.32)

Then magnetic induction, temperature and vorticity in the (n + 1) time

step will be
. LAt o I
Bn—|—1 = Bn + T(FI(Bnawn) + FI(Blaw,))a (333)
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At [ —
Toy1 =T, + 7(F2(Tn,Bn,wn) + B(T', B',d")), (3.34)

— = At - ] — -~ I =l
Gnt1 —wn+7(F3(Tn,Bn,wn)—|—F3(T,B,w)), (3.35)

where

B' = B, + At F{(By,3,), (3.36)
T' =T, + At Fy(T,, Bn, @), (3.37)
& = @n + At F5(Ty, By, @n). (3.38)

The time step At must satisfy the Courant-Friedrichs-Levy criterion.
Depending on the parameters describing the system and on velocity, it is
given by one of several different terms in the evolutionary equations. The
equation of magnetic induction (2.67) yields two conditions,

At < Aty = min[dz?, dy?, d2%] (3.39)

and
de dy dz

? ? ] ?
maz’ jymaz’ ,,max
x Uy Uy

At < Aty = min| (3.40)

where doz = ¢, dy = %’"’ and dz = ﬁ are the grid distances and v

x 9’
v, and v7"** denote the maximum velocity components. The equation
governing the evolution of vorticity (2.71) also limits the time step by two

relations. The first one is identical with (3.40), while the second one is

max

I
At < Atz = P min[dz?, dy?, dz?). (3.41)

The equation for temperature (2.66) also requires (3.40) to be satisfied,
together with

Pr .
At < Aty = P min[dz?, dy?, dz?). (3.42)
Therefore, the final formula for the time step is
At = te min[Atl, Atg, Atg, At4], (343)

where t. < 1 must be set experimentally.
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Chapter 4

Results

4.1 Parameters of the Models

Behaviour of the system described in Chapter 2 depends on the choice of
physical and numerical parameters of the model. Tab. 4.1 shows the sum-
mary of physical parameters of the Earth’s outer and inner core. Some of
them, e.g. the dimensions of the outer and the inner core, the radial de-
pendency of density or gravitational acceleration are well known from the
PREM model. The thermodynamic and physico-chemical parameters are
much more uncertain. Their values depend on the chemical composition
of the core and are estimated from theoretical assumptions and from high
pressure experiments. Especially the estimates of kinematic viscosity and
internal heating rate may vary in range of orders.

Parameter | Symbol | Value
Well determined parameters

outer core radius Roc 3.48 10 m
inner core radius Ric 1.22 10 m
magnitude of Earth’s rotation Q0 7.3107° 57!
reference density at Ty (i.e. at the CMB) Po 9.9 10 kgm—3
gravitational acceleration at the CMB JgoMB 10.68 ms—2
gravitational acceleration at the ICB grcB 4.40 ms—2

Poorly determined parameters
temperature at the CMB To 4000 K
temperature drop between ICB and CMB oT 1300 K
thermal expansivity at the CMB acMB 1.76 107° K1
thermal expansivity at the ICB areB 0.98 1075 K1
specific heat at a const. pressure at the CMB | Cp.cnmp | 848 m?s 2Kt
specific heat at a const. pressure at the ICB | Cp rcB 826 m2s 2K !
magnetic diffusivity A 10° m?s~t
kinematic viscosity v 1077 — 103 m2s~!
thermal diffusivity K 1079 m2s~!
internal heating rate Q 0-102 kgm's?

Table 4.1: Physical parameters of the Earth’s interior, according to [2, 5, 14].
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In our model, we use the set of seven dimensionless numbers, that charac-
terize the system. Prandtl (2.59) and Prandtl magnetic (2.60) numbers com-
pare the diffusion rates of velocity, temperature and magnetic field. Rayleigh
number (2.61) determines the thermal buoyancy. Taylor number (2.62) com-
pares the Coriolis force with the diffusion of velocity. Dissipation number
affects the adiabatic, viscous and Joule heating. The ratio g—% is involved
only in the adiabatic heating and the dimensionless internal heating rate
represents radioactive heat sources in the outer core. Tab. 4.2 contains the
possible values of these parameters in the Earth based on the estimates in
Tab. 4.1 (note, that the dimensionless internal heating rate @ differs from
the SI value) and the values, that we have chosen for our cases. The Earth’s
rotation vector is parallel with the z-axis, as we have stated in Chapter 1,
ie. k=(0,0,1).

Parameter | Earth Case I | Case II | Case II1
Pr 1071 —10° | 1 1 1

Pm 1077 -10% | 1 1 1

Ra 102t — 103 | 10* 104 104

Ta 10M — 103t | 104 108 104

Dn 0.2 0 0 0.2

T,

5 3 0 0 4

Q 0- 10" 0 0 0

Table 4.2: Dimensionless parameters of the Earth and the computed cases.

We have evolved the system for three different sets of parameters. In
Case I we have simplified the energy equation by neglecting the viscous and
ohmic dissipation and the adiabatic term. In Case II we have increased
the Taylor number, i.e. the Coriolis and Lorentz forces. The most complex
Case I1II includes the effects of dissipation and adiabatic heating. The values
of Ra and T'a for the Earth are far behind our computational reach. As we
will see later in this chapter, our choice of the Rayleigh number corresponds
to the steady state of the flow. We have also unified the magnitude of
diffusive terms for velocity, temperature and magnetic induction by setting
the Prandtl and Prandtl magnetic numbers to the same value in order to
allow the velocity and temperature to evolve at the same time scale as the
magnetic induction. We have neglected the internal heating in the core.

The numerical parameters are the same for all three cases and are sum-
marized in Tab. 4.3. The fast Fourier transform algorithm limited our choice
of number of grid points in the upper box to integer powers of two. The
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choice of relative horizontal sizes of the box means, that the vertical resolu-
tion of the model is twice the horizontal one. We used the 8" order finite
differences scheme, so we had to increase the dimensions of all fields by 4
at each side. Our FORTRAN code required about 80 MB of memory with
single (4 bytes) representation of real numbers and one time step took 1 —
2 minutes on a HP workstation.

Parameter Symbol Value
horizontal grid dimensions (0...K,0...L) | (0...63,0...63)
vertical grid dimension of the upper box | (0...M) (0...63)
vertical grid dimension of the lower box | (—M;...0) (—41...0)
relative horizontal sizes of boxes Qg Gy 2,2

finite differences order n 8

time step factor te 0.2

Table 4.3: Numerical parameters of models.

4.2 Integral Quantities

In this section we will introduce several physical quantities and numbers
which are usefull in the description of physical and numerical behaviour of
the system. By the word “integral” we mean that they are defined globally,
as an integral or average over the entire computational domain.

The kinetic energy of the fluid in the outer core is defined by relation

1
£¢:§/paﬁm/£%{/aﬁmc (4.1)
ocC ocC

where we neglect the changes of density with respect to the reference state.
Similarly, we define the energy of the magnetic field in the entire core as

Ep=— 1/ B-Bdv. (4.2)
OIC+OC

Note, that the quantities in these definitions are in SI units. We will scale
the energy (kinetic as well as magnetic) as follows:

E = pod\’ E'. (4.3)
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Now, using the dimensionless velocity, magnetic induction, energy and vol-
ume (primes are again omitted) we can write

B, = % /mmv (4.4)
oc
and
E,, = PmT\/T_“ B-BaVv. (4.5)
1C+0C
The discrete forms of (4.4) and (4.5) are
. ay K,L,M
By = 577 MZ Vi ims (4.6)
B, = - m v Taa ay Kf:M B2, . (4.7)
2KL(M+M)kl0m_—M m

To compare the importance of dissipative terms in Case III, we will
define dimensionless numbers Qy, @ 4 and @7 that describe average viscous,
adiabatic and Joule heating:

Dn Pr

= dv =
Qv RaPmVoc/U Vidv =

K,L.M
Dn Pr )

e N (O V) kim,
RaPmKLM /=

= ST Eav =
Qa VOC/| |

K,L.M
Dn

T
k,l,m=0

Dn PrvTa

= B
@ RaPmVoc / (V%

K,L.M
Dn Pr -

= ————— > B), .
RaPmKLM 7(VX Jiim
,,m=0

(4.10)
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We will also use dimensionless numbers Fg, F- and Fj as measures of
thermal buoyancy, Coriolis and Lorentz forces acting in the fluid,

Fs = _PTVbC ./|]der_
K,L,M
(Pm) Ra sLsy
i 2o Tl (4.11)
k,l,m:o
Pm T -
Fo = %/mxmdv:
Pm KLAI
- KLM Z \/Uklm + (Vm)%s (4.12)
k,l,m=0
P \/T
o= a/| B) x B|dV =
K,L,M
Pm Ta s N .
= &z 2 |V xB)xBlunl (4.13)
k,l,m:(]

To check the evolution of V - B in time we introduce number D B as an
average of absolute value of (dimensionless) magnetic induction divergence
over the entire core:

1
Dp = ——F— / V- -B|dV =
B Vie +Voc | |
I1c+0C
1 K,L,M
= D V-B . 4.14

4.3 Casel

As an initial condition of the simulation we used the temperature and velo-
city fields corresponding to the non-magnetic stationary flow (with the same
Prandtl, Rayleigh and Taylor numbers) and we imposed weak homogeneous
magnetic field in the vertical direction. We evolved the system until the
dimensionless time reached ¢ = 0.12.
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Figure 4.1: Case I. Temperature and projection of velocity in horizontal
planes zy for (a) m =1, (b) m = 32, (c) m = 62.
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Figure 4.2: Case I. Temperature and projection of velocity in vertical plane
yz for k = 32.
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Figures 4.1 and 4.2 show temperature and velocity in different cross-
sections through the box at the end of the simulation. Temperature is
represented by the coloured background (using a symmetrical blue—green—
red palette), the black arrows correspond to velocity, horizontal and vertical
components use separate scalings, but uniform in the entire box (indepen-
dent on the position of cross-section). The flow structure shows a high
degree of symmetry with one large hot plume across the box and two small
hot plumes in the opposite corners. The fluid descends back to the bottom
in two cold bands between the hot upwellings. Maximum velocities in the
horizontal direction are about 35 and are concentrated above the bottom

5.37E+003 7

5.32E+003 _J
8.25E+002 ]

6.96E+002 _|
2.55E-005 ]

2.41E-005

0.00 0.02 0.04 0.06 0.08 0.10

Figure 4.3: Case I. Time evolution of average buoyancy force Fp (solid line),
the Coriolis force F¢o (dotted line) and the Lorentz force Fy, (dashed line).
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and below the top of the box, where the material enters and leaves the hot
upwellings and cold downwellings. The vertical velocity reaches the maxi-
mum values of 85 in both directions. The Coriolis force, which is about 15%
of thermal buoyancy force (see Fig. 4.3), screws horizontal velocity in the
clockwise direction. The Lorentz force is weak and has no influence on the
flow structure. The flow of the fluid is very close to its steady state with
only small changes of velocity and temperature fields in time. This fact is
in agreement with results obtained in [9].

The force lines of magnetic induction at the end of the simulation are
shown in Fig. 4.4, while Fig. 4.5 represents horizontal magnetic field in cross-
sections through both the lower (inner core) and upper (outer core) box. We
can see, that the field keeps its dominantly vertical direction, the maximum
values of B, are about 0.0039, while the horizontal field reaches values up
to 0.0018. In the areas where the flow is mainly vertical, i.e. inside the
upwellings and the downwellings, magnetic induction remains also vertical
because (7 x B) = 0 there.

The horizontal flow of the fluid invokes horizontal screwing of the mag-
netic induction lines. However, the horizontal direction of magnetic induc-

Figure 4.4: Case I. Magnetic induction.
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Figure 4.5: Case I. Projection of magnetic induction in horizontal planes xy
for (a) m = —20, (b) m =1, (c) m = 32, (d) m = 62.
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tion does not always agree with the horizontal direction of velocity as it
would correspond to the drift of the magnetic field by the fluid. How can
we explain this discrepancy? Both the velocity and magnetic fields are
solenoidal, i.e. they satisfy (2.18) and (2.64). But the velocity is restrained
in the box by the impermeable and free-slip boundary conditions, while the
magnetic field enters the outer core box from the inner core at the bottom
and leaves it to the mantle at the top. Therefore the vertical component of
the velocity significantly changes in the box in contrast to the vertical mag-
netic field, which undergoes only minor changes. Relations (2.18) and (2.64)
then imply different constraints on the horizontal components of velocity and
magnetic field. In the lower box, where only the diffusive term applies, the
horizontal magnetic field rapidly decreases with increasing depth.

Our model represents so called “weak field dynamo” with the magnetic
energy being several orders lower than the kinetic energy (see Fig. 4.6).
Although the magnetic energy has slightly increased during the simulation,
it remains eight orders below the kinetic energy.

9.9E+003
9.86+003
w¥ 9.7E+003
9.66+003

9.5E+003

5.80E—004 —

5.75E-004

3 J.,-
Ll -4,
5.70E-004 -,

5.65E—004

5.60E—004 —

0.00 0.02 0.04 0.06 0.08 0.10

Figure 4.6: Case 1. Time evolution of the kinetic energy of the fluid and the
energy of the magnetic field.
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4.4 Case Il

We have started the second model from the stationary solution of the flow
and vertical homogeneous magnetic field again and evolved it for ¢ = 0.14.
The flow structure at the end of the simulation is shown in Figs. 4.8 and
4.9. The fluid flows up in two large, band-like upwellings parallel with the
z-axis and situated by the sidewalls of the box. One broad, cold downwelling
between the hot areas transports the fluid back to the bottom of the box.
The horizontal velocities are less than 8.5 in the z-direction and 18 in the
y-direction, as the symmetry with respect to the diagonal, that we observed

5.60E+003 7

5.25E+003 _J
3.19E+003 ]

2.92E+003 _J
1.91E-004 ]

1.79E-004

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

Figure 4.7: Case II. Time evolution of average buoyancy force Fp (solid
line), the Coriolis force Fr (dotted line) and the Lorentz force Fj, (dashed
line).
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Figure 4.8: Case II. Temperature and projection of velocity in horizontal
planes zy for (a) m =1, (b) m = 32, (c) m = 62.

Figure 4.9: Case II. Temperature and projection of velocity in vertical plane
yz for k = 32.
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Figure 4.10: Case II. Projection of magnetic induction in horizontal planes
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| ‘h\l\ x

Figure 4.11: Case II. Magnetic induction.

in the previous case, was replaced by the symmetry of the temperature and
antisymmetry of the flow with respect to the plane y = %y The vertical
velocities do not exceed 50. The effect of the Coriolis force is now of the
same order as the buoyancy (see Fig. 4.7). At the bottom and the top of the
box we can see the screwing of high velocities in the y-direction to the right.
The ratio of Lorentz force to the buoyancy is larger, than in the previous
case, but the magnetic field is still too weak to act significantly on the fluid.

The structure of the magnetic field is similar to Case I. Horizontal mo-
tions lead to deformations of dominantly vertical force lines (see Fig. 4.11).
The cross-sections (Fig. 4.10) show, that the horizontal magnetic field has
similar antisymmetry as the horizontal velocity field, although it does not
copy its structure. The maximum values reached 0.00041 in the z-direction,
0.00033 in the y-direction and 0.0024 in the z-direction.

The time evolution of kinetic and magnetic energy (Fig. 4.12) shows,
that the system reached the steady state of the velocity and temperature
structure, with the magnetic field increasing (the difference between Ej and
E,, is one order less than in the first simulation), but still in the “weak field
dynamo” mode.
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Figure 4.12: Case II. Time evolution of the kinetic energy of the fluid and
the energy of the magnetic field.

4.5 Case IIT

The last model, that we have computed, includes the effects of viscous,
adiabatic and Joule heating. We started the computation from the final
state of Case I and evolved the system for ¢ = 0.13.

The additional terms in the energy equation have considerably changed
the pattern of the flow in the box. The temperature field (see Figs. 4.13, 4.14
and 4.15) almost linearly depends on the vertical coordinate z, with small
horizontal perturbations. However, the fluid still circulates in the box with
maximum velocities 2.4 in the horizontal direction and 16 in the vertical
direction. The flow structure is more complicated, but still shows certain
symmetry. The material flows upwards nearby the opposite sidewalls y = 0
and y = a, and descends to the bottom nearby the sidewalls z = 0 and
z = az. The central area of the box is relatively calm.

The average Coriolis force (Fig. 4.16) is relatively weaker than in Case I
(about 1% of the buoyancy force), because the ratio of the vertical motions to
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(b)

Figure 4.13: Case III. Temperature and projection of velocity in horizontal
planes zy for (a) m =1, (b) m = 62.
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Figure 4.14: Case III. Temperature and projection of velocity in vertical

plane yz for k

= 32.

Figure 4.15: Case III. Temperature and projection of velocity in vertical

plane zz for [ = 32.
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the horizontal motions is greater in Case III and only the later are significant
in the term k x 4. Nevertheless, we can find the clockwise rotation of the
horizontal velocity above the bottom and under the top of the box. The
Lorentz force is negligible as it was in the previous cases.

At the beginning of this simulation, the viscous heating was about 40%
of the adiabatic heating. As the fluid motion slowed in time, the impor-
tance of the viscous heating also decreased to 7% of the adiabatic term (see
Fig. 4.17), which is responsible for the vertical stratification of temperature.
The feedback from the magnetic field to the energy equation, the Joule
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Figure 4.16: Case III. Time evolution of average buoyancy force Fp (solid
line), the Coriolis force Fr (dotted line) and the Lorentz force Fy, (dashed
line).
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heating, is again unimportant.

There are no significant differences in the magnetic field pattern from
the previous cases (Figs. 4.18, 4.19). It was less then 0.0002 in the horizontal
direction and up to 0.0014 in the z-axis direction.

The kinetic energy of the fluid decreased by one order during the evolu-
tion, due to the adiabatic and viscous heating (Fig. 4.20). Unlike in previous
cases, the magnetic energy also decreased, though only by one third.
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Figure 4.17: Case III. Time evolution of the average adiabatic heating Q)4
(solid line), the average viscous heating Qv (dotted line) and the average
Joule heating @ (dashed line).
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Figure 4.18: Case III. Projection of magnetic induction in horizontal planes
zy for (a) m = —20, (b) m =1, (c) m =32, (d) m = 62.
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Figure 4.20: Case III. Time evolution of the kinetic energy of the fluid and
the energy of the magnetic field.

4.6 Numerical Stability

In this section we will discuss the advantages and disadvantages of math-
ematical and numerical methods applied to the problem. First, we will
concentrate on the fast Fourier transform, that we used to compute the
velocity from the vorticity field. In [11] this problem was solved with an
iterative Alternating Direction Implicit scheme and it was necessary to in-
troduce another physical quantity — the vector potential. Unlike this, the
Fourier transform can be computed “in place”, with almost no additional
memory needs and it is also faster. However, it has two disadvantages.
Firstly, it limits the number of grid points to the integer power of two,
which is more or less an inconvenience and secondly, it forces us to use the
regular grid. This is more serious, because an irregular grid would allow us
to increase the resolution in critical areas near the bottom and the top of the
box without increasing the memory requirements. The lower resolution in
boundary areas is the reason, why our attempts to simulate the chaotic flow
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(with Rayleigh number greater than 10%) or to use rigid boundary conditions
(17 = O)ICB,CMB have failed.

Another problem that deserves closer look is how to maintain the Max-
well equation (2.18) valid. We have showed in Chapter 2, that this equation
can be considered as an initial condition for (2.67). However, the numer-
ics always introduces some errors, so even the divergence of homogeneous
vertical magnetic field (approximated by finite differences) at the start of
Case T was non-zero (Fig. 4.21). The time dependence of the average di-
vergence Dp shows similar history as the evolution of the magnetic energy
(Figs. 4.6, 4.12 and 4.20), though the relative changes are smaller. There
are two other ways, how to solve this problem (if we do not want to move
to the spectral domain). We could use the evolution equation (2.67) to
solve only two components of the magnetic induction and to compute the
third one from the divergence-free condition (for example by using again the
3D Fourier transform) or we could separate the magnetic field in toroidal
and poloidal components, which satisfy (2.18) automatically. However, this
would increase the order of differentiation in the induction equation.
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Figure 4.21: Time evolution of the average magnetic field divergence Dp for
Case I (solid line), Case IT (dotted line) and Case IIT (dashed line).
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Chapter 5

Conclusions

We have simulated the behaviour of magnetohydrodynamic system with
thermal driving in rectangular box for three sets of controlling parameters.
The results, that we have achieved lead us to the following conclusions:

1. All simulations resulted in a steady state, highly symmetric flow and
temperature patterns. The main reason of this behaviour is the choice
of low Rayleigh number.

2. Increased Taylor number in Case II changed the pattern of the flow.
The Coriolis force became almost as important as the buoyancy force.

3. The adiabatic heating (cooling) and the viscous dissipation in Case III
decreased the lateral changes of temperature. The temperature field
was close to the conductive profile with almost linear dependency on
the z-coordinate. The velocity pattern also changed, the convection
slowed down, but did not cease to work.

4. In all three cases so called “weak field dynamo” was evolved, with
magnetic energy several orders below the kinetic energy of the fluid.
The studied model can be called kinematic, because the feedback from
the magnetic field to the convection (through the Lorentz force and
Joule heating) was negligible.

5. The steady state convection with low Rayleigh and Taylor number was
able to maintain, and in Cases I and II even to increase the magnetic
field.

Although the system of equations, that we have solved is suitable for
the Earth’s outer core (with possible replacement of the Boussinesq approx-
imation by the anelastic one), the choice of the computational domain and
especially the choice of physical parameters of the fluid brought us very
far from the problem of the geodynamo. The main differences between our
model and the situation in the outer core are:
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1. The rectangular shape of the domain in which we solved the magne-
tohydrodynamic equations introduces new boundary planes and leads
to symmetries in the flow structure.

2. High Rayleigh and Taylor numbers in the core correspond to higher
buoyancy driving as well as to increased effects of the Coriolis and
Lorentz force. As a result, the material of the core flows faster and
the system behaves chaotically.

3. The magnetic field of the core is several orders greater than in the
simulation. Therefore, the Joule heating and the Lorentz force affect
the flow and temperature patterns. In other words, the geodynamo is a
“strong field dynamo”. From this point of view, our simulation would
correspond to the onset of the geodynamo, when the weak magnetic
field in the interplanetary space served as an initial state.

Further improvements of the model are possible. Better spatial resolu-
tion, above all in the boundary layers is necessary to evolve the system with
higher Rayleigh and Taylor numbers or with rigid boundaries. Decreasing
the order of the equation of motion by abandoning the vorticity scheme
could also improve the computation. It would be also possible to start the
simulations with higher initial magnetic field, however better treatment of
the divergence-free condition for the magnetic field could be necessary. All
these changes would bring the model closer to the real problem, though evi-
dently only the spherical models can simulate the generation of the Earth’s
magnetic field in its whole complexity.
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