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Chapter 1

INTRODUCTION

The �nite di�erence (FD) method is used for the forward modelling of the
seismic wave propagation by solving the equations of motion for elastic
isotropic media.

The models containing material discontinuities have been solved by
two approaches: homogeneous and heterogeneous. The homogeneous ap-
proach is based on the use of di�erent FD formulas for the internal grid
points, and the surface grid points, corners and interfaces (the latter pro-
vided by the traction-continuity condition). The heterogeneous approach
is using a single FD formula for all the points of the model. The inter-
face conditions for the heterogeneous formulation are ful�lled through
the discontinuous material parameters that are entering the discretized
equation of motion.

The heterogeneous formulation used for the free surface is called "vac-
uum formalism", and it is represented by the elastic parameters, and the
displacement equal to 0 above the free surface. The e�ective parame-
ters used in the "vacuum formalism" (Zahradn��k, Moczo & Hron, 1993);
Zahradn��k, O'Leary & Sochacki, 1994) are evaluated by geometrical av-
eraging that converts the prescribed topography of the free surface into
a step-like approximation. After that, the approximated free surface is
composed of elementary steps of minimum height and width given by the
vertical and the horizontal grid step, respectively.
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6 CHAPTER 1. INTRODUCTION

To avoid the di�raction caused by the "step-like" surface, we have to
employ a �ner grid in the vicinity of the topographic free surface. The
other reason for the �ne meshing is the presence of the low velocity zones
in which the �ne gridding (with respect to wavelength) is necessary for
keeping the accuracy of the computation. The �ne grid is combined (via
the stability condition) with a small time step, hence more computer
time and memory is required.

One of the ways how to reduce the computer memory and time is to
use an irregular grid. This grid is supposed to be dense in the places
with surface topography and/or the low velocity zones.

The FD homogeneous-formulation modelling on the irregular grids
[I], and topography [T] have recently been studied by Falk, Tessmer &
Grajevski (1995) [I, irregular time step]; Jastram & Tessmer(1994) [I,T];
Hestholm & Ruud (19..)[I,T; Transformation from curved to rectangu-
lar grid]; Jih, McLaughlin & Der (1988) [Polygonal topography]; Hong
& Bond (1986) [T]; Illan (1977) [T, arbitrary polygonal surface]. Het-
erogeneous FD formulation was studied by Moczo & Kristek (1996) [I];
Zahradn��k & Priolo (1995) [regular grid, free surface]; Zahradn��k & Hron
(1992) [regular grid].

The topography models investigated by other methods were recently
published by Seriani, Priolo, Carcione & Padovani, (1993)[Spectral Ele-
ment Method]; Ga�et & Bouchon [Boundary Integral Equation Method];
Nielsen (1994) [Elimination of grid artifacts]; Tessmer, Koslo� & Behle
(1992) [Surface topography achieved by mapping a rectangular grid onto
a curved grid]; Kawase (1990) [Discrete wavenumber method, hybrid
method].

The aim of this thesis is to derive a new FD scheme for the irregular
grid (heterogeneous formulation), and to apply it to topography modelS
on the irregular grid. The scheme is called PSi�2. The derivation of the
PSi� 2 IS based on the PS � 2 scheme for the regular grid (Zahradn��k,
1995).

The PSi� 2 is numerically tested and the results are compared with
other methods. The purpose of the tests is to show, whether modelling
on the irregular grid can improve the accuracy with respect to the regular
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grids, what is the e�ciency of the irregular grids with respect the regular
�ne grids, whether the irregular gridding produces numerical artifacts,
and how the irregular grids handle the topography models.
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Chapter 2

BASIC EQUATIONS

Seismic waves propagating in a 2-D isotropic heterogeneous medium are
separated into SH and P-SV waves. The P-SV case can be described by
the following elastodynamic equations:
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with u and w denoting the horizontal and vertical displacement com-
ponents, respectively. The parameters � and � are Lam�e's elastic coe�-
cients , and � is the density. The compressional and shear wave velocities
� and � are given by:
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The boundary conditions are described in chapter 4.



Chapter 3

PSi-2 SCHEME FOR

IRREGULAR GRID

The PSi-2 scheme for an irregular grid is based upon the PS-2 (Zahradn��k,
1995) scheme for a regular grid.

3.1 Irregular grid

The grid is rectangular with irregularity de�ned by the spatially varying
grid steps DX andDZ (�gure 3.1). This allows to make it dense in places
where required, e.g. due to topography, low velocity regions inside the
model, and along the interfaces. The �nite di�erence approximations
for mixed and non-mixed derivatives, appearing in 2-D elastodynamic
equations for P-SV waves, are derived for an irregular grid in a similar
way to the case of the regular grid studied by Zahradn��k (1995).

3.2 A non-mixed derivative

The second derivative with respect to z is expressed by:
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) =

@

@z
g ; (3.1)
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X

Z

Figure 3.1: A schematic example of the irregular grid.

where a is the elastic parameter of the medium, f either the vertical or
horizontal component of the displacement, and:

g = a � @f
@z

: (3.2)

If we divide equation 3.2 by a and in sequence integrate both sides from
(0; 0) to (0; 1), then we get:

Z (0;1)

(0;0)

g

a

����
x=0

dz =
Z (0;1)

(0;0)

@f

@z

�����
x=0

dz : (3.3)
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Figure 3.2: The stencil for the �nite di�erence approximations.

After applying the mean-value theorem to the left hand side of equation
3.3 we obtain:

g0; 1
2

Z (0;1)

(0;0)

dz

a

�����
x=0

=
Z (0;1)

(0;0)

g

a

����
x=0

dz ; (3.4)

where g0; 1
2

is the mean-value of g in point(0; 1
2
).

Let us de�ne:

as = a0; 1
2

= DZ(0)

 Z (0;1)

(0;0)

dz

a

�����
x=0

!
�1

; (3.5)

where a is the parameter of the medium along the grid line x = 0 within
the interval shown in the integration limits. Then as = a0; 1

2

is the geo-

metric average of a. The distance between (0; 1) and (0; 0) is speci�ed
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Figure 3.3: The vertical and horizontal parameters for the following
short-form approximation to @
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by DZ(0).
After inserting equation 3.5 into 3.4 we get:

g0; 1
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=
a0; 1

2
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�
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dz : (3.6)

The integration of the right-hand side in 3.3 provides:Z (0;1)

(0;0)

@f

@z
dz = f0;1 � f0;0 ; (3.7)

where f0;1; f0;0 are the point values of u and w respectively. The g ap-
proximation is then:
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Proceeding similarly with g0;� 1

2

, we obtain the non-mixed second deriva-
tive approximation:
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!
(3.9)

Parameter an is analogous to as as shown in �gure 3.3. For h =
DZ(�1) = DZ(0), i.e. for a regular grid, equation 3.9 transforms to
that of regular grid (Zahradn��k, 1995):
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Using analogous procedure we get the formula for @
@x
(a@f

@x
) :
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!
:

(3.11)

Parameters ae; aw are e�ective parameters as shown in �gure 3.3.

3.3 A mixed derivative

The mixed derivative is approximated in two forms. The conditions of
their use are speci�ed later.

3.3.1 Short form

The short form is to be used inside the medium and/or at the interface
between two media. It's derivation is similar to that for the non-mixed
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derivative. The expression for the second partial derivative with respect
to z and x is
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where g is evaluated similarly as in equation 3.6:
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Parameter as is de�ned as before by harmonic averaging, see �gure 3.3,
but (in contrast to equation 3.6) the integral
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cannot be calculated exactly now. However, we can use the following
approximation:
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then
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Treating g0;� 1

2

likewise leads to the mixed-derivative �nite di�erence ap-
proximation of g. Thus the so-called short form reads:
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For DZ(�1) = DZ(0) and DX(�1) = DX(0) the equation 3.18 simpli-
�es to that of the regular grid of Zahradn��k (1995):
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Using analogous procedure we get the approximation of @f
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Parameters ae; aw are e�ective parameters as shown in �gure 3.2.
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3.3.2 Full form

The following approximation is designed mainly to treat the free-surface
grid points (shown later). The full form can be also used for internal grid
points, but more computer time is needed.

The full-form approximation is using the g function, but, in contrast
to the short-form stencil, the values of the �rst derivatives and e�ec-
tive parameters are needed at the locations between the grid lines (see
�g. 3.4, 3.5).
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After applying the mean-value theorem, the g-value in point (1
2
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2
) is:
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We again use:
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The complete stencil, made of four parts constructed likewise, is:
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Parameters ase; asw; ane; anw are e�ective parameters belonging to the par-
ticular arms of the �nite di�erence stencil, see �gure 3.4 For DZ(�1) =
DZ(0) and DX(�1) = DX(0) the equation again simpli�es to the case
of regular grid (Zahradn��k, 1995).

With h = DZ(�1) = DX(0) we get:
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�ane(f1;�1 + f1;0 � f0;�1 � f0;0)� anw(f0;�1 + f0;0 � f�1;�1 � f�1;0)] :
(3.24)

In a similar way we get :
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Parameters ase; asw; ane; anw are the same as in equation 3.22. The deriva-
tive @
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) is quite analogous:
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Parameters aes; aws; aen; awn are e�ective parameters belonging to the par-
ticular arms of the �nite di�erence stencil (�gure 3.5).
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3.3.3 The �nite-di�erence approximation to the

space derivatives

Let us denote Lu(u; w), and Lw(u; w) the FD approximation of the left-
hand side of equations 2.1, 2.2, respectively. Then the short-form ap-
proximation for the u component is:
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(3.27)

for w component:
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+
1

DZ(�1) +DZ(0)
� 1

DX(�1) +DX(0)
�

� [�e (u0;1 + u1;1 � u0;�1 � u1;�1)� �w (u�1;1 + u0;1 � u�1;�1 � u0;�1)]+

+
1

DZ(�1) +DZ(0)
� 1

DX(�1) +DX(0)
�

� [�s (u1;0 + u1;1 � u�1;0 � u�1;1)�
��n (u1;�1 + u1;0 � u�1;�1 � u�1;0)] : (3.28)

Similarly the full-form approximation for the u component is:

Lu(u; w) = 2 � 1

DX(�1) +DX(0)
�

�
 
(�e + 2�e)

u1;0 � u0;0
DX(0)

� (�w + 2�w)
u0;0 � u�1;0
DX(�1)

!
+

+2 � 1

DZ(�1) +DZ(0)
�
 
�s
u0;1 � u0;0
DZ(0)

� �n
u0;0 � u0;�1
DZ(�1)

!
+

+
1
2

DX(�1) +DX(0)
�
"
�es � 1

DZ(0)
(w0;1 + w1;1 � w0;0 � w1;0)+

+�en � 1

DZ(�1)(w0;0 + w1;0 � w0;�1 � w1;�1)�

��ws � 1

DZ(0)
(w�1;1 + w0;1 � w�1;0 � w0;0)�

��wn � 1

DZ(�1)(w�1;0 + w0;0 � w�1;�1 � w0;�1)

#
+

+
1
2

DZ(�1) +DZ(0)
�
"
�se � 1

DX(0)
(w1;0 + w1;1 � w0;0 � w0;1)+

+�sw � 1

DX(�1)(w0;0 + w0;1 � w�1;0 � w�1;1)�
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��ne � 1

DX(0)
(w1;�1 + w1;0 � w0;�1 � w0;0)�

��nw � 1

DX(�1)(w0;�1 + w0;0 � w�1;�1 � w�1;0)

#
; (3.29)

and the full-form approximation for the w component is:

Lw(u; w) =

= 2 � 1

DX(�1) +DX(0)
�
 
�e
w1;0 � w0;0

DX(0)
� �w

w0;0 � w�1;0

DX(�1)

!
+

+2 � 1

DZ(�1) +DZ(0)
�

�
 
(�s + 2�s)

w0;1 � w0;0

DZ(0)
� (�n + 2�n)

w0;0 � w0;�1

DZ(�1)

!
+

+
1
2

DX(�1) +DX(0)
�
"
�es � 1

DZ(0)
(u0;1 + u1;1 � u0;0 � u1;0)+

+�en � 1

DZ(�1)(u0;0 + u1;0 � u0;�1 � u1;�1)�

��ws � 1

DZ(0)
(u�1;1 + u0;1 � u�1;0 � u0;0)�

��wn � 1

DZ(�1)(u�1;0 + u0;0 � u�1;�1 � u0;�1)

#
+

+
1
2

DZ(�1) +DZ(0)
�
"
�se � 1

DX(0)
(u1;0 + u1;1 � u0;0 � u0;1)+

+�sw � 1

DX(�1)(u0;0 + u0;1 � u�1;0 � u�1;1)�

��ne � 1

DX(0)
(u1;�1 + u1;0 � u0;�1 � u0;0)�

��nw � 1

DX(�1)(u0;�1 + u0;0 � u�1;�1 � u�1;0)

#
: (3.30)
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3.3.4 The �nite-di�erence approximation to the

time derivative

For the computation of the wave�eld we need discretized time, proceed-
ing with the constant step �t (the value of �t is discussed in section
Stability and accuracy (3.3.6)). The time of the M th level is determined
by:

t =M ��t :

Let us de�ne each of the displacement components:

1. At a "new" time level (computed time level): fM+1
i;j

2. At a "present" time level: fMi;j

3. At an "old" time level: fM�1
i;j

The value of f is de�ned at point (i; j), with i; j 2 f�1; 1g, which rep-
resents the same scheme as shown in �gure 3.2 . The second derivative
with respect to time in grid point k = i, l = j is approximated by:

@2f

@t2
:
=
fM+1
i;j � 2fMi;j + fM�1

i;j

(�t)2
(3.31)

Let us de�ne LM
u (u; w), and LM

w (u; w) as the operators Lu(u; w), and
Lw(u; w) (discussed in 3.3.3) at the time level M .

After inserting LM
u (u; w) and equation 3.31 into 2.1 we get :

LM
u (u; w) = �i;j

UM+1
i;j � 2UM

i;j + UM�1
i;j

(�t)2
; (3.32)

where �i;j is the density in grid point (i; j). From 3.32 we get the ap-
proximation for the u component of displacement at a "new" time level
in grid point k = i, l = j:

UM+1
i;j =

(�t)2

�i;j
LM
u (u; w) + 2UM

i;j � UM�1
i;j ; (3.33)
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analogously for equation 2.2 we get:

WM+1
i;j =

(�t)2

�i;j
LM
w (u; w) + 2WM

i;j �WM�1
i;j ; (3.34)

Equations 3.33 and 3.34 are explicit FD approximations to equations 2.1, 2.2,
respectively. These equations, together with 3.27, 3.3.3, 3.29, 3.30 rep-
resent the main formulas of this thesis.

3.3.5 Consistency with free-surface boundary condi-

tions

We investigate the boundary behaviour of our scheme for a typical model
surface by inserting Taylor's expansion for the u and the w components
into FD approximations given by equations 3.33, 3.34. In this case, for
simplicity, we assume a regular grid with grid steps �x = �z = h, and a
homogeneous medium with �, � being the elastic parameters. The free-
surface speci�cations are in �gure 3.6.

� horizontal planar surface
for 3.33:

0 + o(t2) = (�Uz + �Wx) + o(h) (3.35)

for 3.34:

0 + o(t2) = ((�+ 2�)Wz + �Ux) + o(h) (3.36)

� vertical planar surface:
for 3.33:

0 + o(t2) = (�(�+ 2�)Ux � �Wz) + o(h) (3.37)

for 3.34:

0 + o(t2) = (��Wx � �Uz) + o(h) (3.38)



3.3. A MIXED DERIVATIVE 27

H

I

O

V

vacuum

medium

Figure 3.6: Planar free surface, and the free surface corners. H -
horizontal free surface, V -vertical free surface, O -outer corner, I -inner
corner. The grid lines are, for instance, the same as in �gure 5.39.

The equations 3.35, 3.36, 3.37, 3.38 are the �rst-order approxima-
tions to the standard equation of the free surface, see e.g. Zahradn��k,Hron
& Moczo (1993).

� outer corner:
for 3.33:

0 + o(t2) = (�(�+ 2�)Ux + �Uz � �Wz + �Wx) + o(h) (3.39)

for 3.34:

0 + o(t2) = (��Wx + (�+ 2�)Wz � �Uz + �Ux) + o(h) (3.40)

� inner corner:
for 3.33:

0 + o(t2) = (�(�+ 2�)Ux + �Uz � �Wz + �Wx) + o(h) (3.41)
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for 3.34:

0 + o(t2) = (��Wx + (�+ 2�)Wz � �Uz + �Ux) + o(h) (3.42)

The equations for the outer and the inner corner are linear combinations
of the free-surface conditions for the horizontal and the vertical free sur-
face (equations 3.35, 3.36, 3.37, 3.38) with an equal weight. The approx-
imations for the surface corners are also of the �rst order of accuracy,are
the same for the outer and inner corner.

3.3.6 Stability and accuracy

I For the explicit scheme on a regular square grid, there is a theoret-
ically derived stability condition relating the spatial grid step h and the
time step �t (Virieux, 1986):

�t � hp
2 � �max

; (3.43)

where �max is the highest velocity in the medium. For the heterogeneous
formulation of the explicit scheme of the second-order accuracy we use
an empirically found condition.Let

hmin = min(�xmin;�zmin) ;

with �xmin; �zmin denoting the minimal grid steps appearing in the
irregular grid.
Then the time step is:

�t � hmin

c � �max

; (3.44)

where
p
2 � c, usually 1:5 � c.

We found a very important phenomenon: For the model of step-like
layer of low velocities (section 5.2.4) on the regular grid (S1) with the
grid steps �x = �z = 2:4 m, and the time step �t = 0:0005 s we
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had c = 1:600. After making the grid 5 times denser and, at the same
time, and also decreasing the time step 5 times, as it is described for
the model S2 (thus �xmin = �zmin = 0:48 m, �t = 0:0001 rms), there
appeared an instability visible in receiver R2 (the dashed frame area in
�gures 5.40, 5.41), however, there still was c = 1:600 (see equation 3.44).

After decreasing the time step by 8% to �t = 0:000092 s (c = 1:739)
the solution was stabilized.

The described phenomenon shows, that in case of the irregular grid, it
cannot be guaranteed that the constant c empirically found for a certain
grid apply also for another grid.

II We also found cases in which the scheme is unconditionally
unstable i.e. for �t according to 3.44. The two cases presented here are
shown in �gures 3.7, 3.8. Some of the parameters (see �gures 3.7, 3.8)
are equal to 0 due to geometrical averaging (see equation 3.5), and they
yield numerical instability in points denoted by stars. To avoid these
numerical problems, our algorithm is automatically modifying the model
surface into the shape represented by the highlighted dotted line (�g-
ures 3.7, 3.8). The PSi� 2 is stable after this modi�cation of the model
surface, of course, at the same time, the condition 3.44 must be ful�lled.

III To keep numerical dispersion at a reasonably low level (Al-
ford, Kelly & Boore, 1974), we determine the largest possible grid stepg�x = g�z = ~h in every particular area of the model:

~h =
~�

10 � f �max

; (3.45)

where f �max is the frequency of the time function spectrum, at which the
absolute value of the spectrum falls below 1% of the maximum spectral
value; ~� is the S wave velocity in the area. Thus the chosen grid steps
�x and �z must ful�ll conditions:
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�x � ~h ; (3.46)

�z � ~h ; (3.47)

to avoid the numerical dispersion.
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Figure 3.7: Situation causing instability (described in section 3.3.6, sub-
section II) when computing in grid points denoted by the stars. The
highlighted dashed line represents the prescribed planar surface, numbers
"1", "2", "3", and "4" denote parameters a1, and a2, a3, and a4, respec-
tively. Here, due to the geometrical averaging (see sections 3.3.6, and 3.2;
equation 3.5), a3 = 0, a4 = 0.The highlighted dotted line represents our
free-surface modi�cation with which the PSi� 2 scheme is stabilized.
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1 1 1

2

m edium

vacuum

2 2 2 2 2 2

3 3 3

Figure 3.8: Situation causing instability (described in section 3.3.6, sub-
section II) when computing in grid points denoted by the stars. The
highlighted dashed line represents the prescribed surface, numbers "1",
"2", and "3" denote parameters a1, and a2, a3, respectively. Here, due
to the geometrical averaging (see sections 3.3.6, and 3.2; equation 3.5),
a2 = 0, a3 = 0. The highlighted dotted line represents our free-surface
modi�cation with which the PSi� 2 scheme is stabilized.



Chapter 4

BOUNDARY CONDITIONS

4.1 Non-reecting boundaries

To absorb the waves reected back from the edges of the numerical model,
so-called non-reecting boundaries were used (Stacey, 1988).

4.1.1 Equations

Let us consider a homogeneous isotropic medium, adjacent to the non-
reecting boundaries, with � and � the compressional and shear wave
velocities, respectively.Then the equations are:

Edges

� bottom:

Uzt = � 1

�
Utt +

�

�
(�� �)Wxz +

 
�2

�
� � +

1

2
�

!
Uxx (4.1)

Wzt = � 1

�
Wtt +

�

�
(�� �)Uxz +

 
�2

�
� � +

1

2
�

!
Wxx (4.2)

33
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� left boundary:

Wxt =
1

�
Wtt � �

�
(�� �)Uxz �

 
�2

�
� � +

1

2
�

!
Wzz (4.3)

Uxt =
1

�
Utt � �

�
(�� �)Wxz �

 
�2

�
� � +

1

2
�

!
Uzz (4.4)

� right boundary:

Wxt = � 1

�
Wtt +

�

�
(�� �)Uxz +

 
�2

�
� � +

1

2
�

!
Wzz (4.5)

Uxt = � 1

�
Utt +

�

�
(�� �)Wxz +

 
�2

�
� � +

1

2
�

!
Uzz (4.6)

Corners

The Stacey's corners of the model were reported as not always stable
(personal discussion with P. Moczo and J. Chroust). Therefore we used
the following approximations:

� bottom-right corner:

Ut = ��(Ux + Uz) (4.7)

Wt = ��(Wx +Wz) (4.8)

� bottom-left corner:

Ut = �(Ux � Uz) (4.9)

Wt = �(Wx �Wz) (4.10)

� top-left corner:

Ut = �(Ux + Uz) (4.11)

Wt = �(Wx +Wz) (4.12)
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� top-right corner:

Ut = �(�Ux + Uz) (4.13)

Wt = �(�Wx +Wz) (4.14)

4.1.2 Finite di�erence formulations

The �nite di�erence approximations to the non-reecting boundaries are
described here, using the stencil as shown in �gure 3.3. The stencil point
(0; 0) is placed into a particular point of the model. The way in which
the lines in the model are actually numbered is shown in �gure 4.1.

1

1

2

3

L -1

L

K -1 K2 3

.

max

max

max

max

Figure 4.1: Diagram showing the numbering of the lines in the model with
irregular grid.



36 CHAPTER 4. BOUNDARY CONDITIONS

The position of the stencils is described by �gure 4.2, and it is speci�ed
before each application of the non-reecting boundary approximation.

Moreover we de�ne here two horizontal grid lines Ltop; Rtop where the
line representing the free surface meets the left and the right edges of the
model, respectively (see �gure 4.3). The following FD approximations
are given below for all the edges and the corners of the model, because
such detailed equations are usually missing in the literature, in particular
for the irregular grid.

1

1

2

3

L -1

L

K -1 K2 3

.

L -2

max

max

max

max

max

Figure 4.2: The highlighted frame corresponds to �gure 3.2, and its posi-
tion in this case is at point (Kmax � 1; Lmax � 2).

Edges

� bottom
The stencil position is (k; Lmax � 1), where k 2 f2; Kmax � 1g.
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1

1

2

3

L -1

L

K -1 K2 3

.

L

R

max

max

top

top

max

max

Figure 4.3: De�nition of Ltop; Rtop lines; the highlighted line corresponds
to the FD approximation of the surface.

For u component:

UM+1
0;1 =

 
1 +

DZ(0)

� ��t

!
�1

�

�
h
P1 �DZ(0) ��t�

�
�UM+1

0;0 � UM�1
0;1 + UM�1

0;0

�
�

�DZ(0)

� ��t �
�
UM+1
0;0 � 2(UM

0;0 + UM
0;1) + UM�1

0;0 + UM�1
0;1

�#
; (4.15)
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for w component:

WM+1
0;1 =

 
1 +

DZ(0)

� ��t

!
�1

�

�
h
P2 �DZ(0) ��t�

�
�WM+1

0;0 �WM�1
0;1 +WM�1

0;0

�
�

�DZ(0)

� ��t �
�
WM+1

0;0 � 2(WM
0;0 +WM

0;1) +WM�1
0;0 +WM�1

0;1

�#
;

(4.16)
where:

P1 =
�

�
(�� �) � fWzx +

 
�2

�
� � +

1

2
�

!
� eUxx ;

P2 =
�

�
(�� �) � eUzx +

 
�2

�
� � +

1

2
�

!
� fWxx ;

fWzx =
DX(�1)

DX(�1) +DX(0)
�

�
"

1

DX(1) �DZ(0)(W
M
1;1 �WM

1;0 �WM
0;1 +WM

0;0)�

� DX(0)

(DX(�1))2 �DZ(0)(W
M
0;1 �WM

0;0 �WM
�1;1 +WM

�1;0)

#
;

eUzx =
DX(�1)

DX(�1) +DX(0)
�

�
"

1

DX(1) �DZ(0)(U
M
1;1 � UM

1;0 � UM
0;1 + UM

0;0)�

� DX(0)

(DX(�1))2 �DZ(0)(U
M
0;1 � UM

0;0 � UM
�1;1 + UM

�1;0)

#
;
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eUxx =
1

DX(�1) +DX(0)
�

�
"
UM
1;1 + UM

1;0 � UM
0;1 � UM

0;0

DX(0)
� UM

0;1 + UM
0;0 � UM

�1;1 � UM
�1;0

DX(0)

#
;

fWxx =
1

DX(�1) +DX(0)
�

�
"
WM

1;1 +WM
1;0 �WM

0;1 �WM
0;0

DX(0)
� WM

0;1 +WM
0;0 �WM

�1;1 �WM
�1;0

DX(0)

#
;

and

� =

vuut �s + 2�s
1
2
(�0;0 + �0;1)

;

� =

s
�s

1
2
(�0;0 + �0;1)

:

� left boundary
The stencil position is (2; l), where l 2 fLtop; Lmax � 1g.
For u component:

UM+1
�1;0 =

 
1 +

DX(�1)
� ��t

!
�1

�

�
h
P2 �DX(�1) ��t�

�
UM+1
0;0 + UM�1

�1;0 � UM�1
0;0

�
�

�DX(�1)
� ��t �

�
UM+1
0;0 � 2(UM

0;0 + UM
�1;0) + UM�1

0;0 + UM�1
�1;0

�#
;

(4.17)

for w component:

WM+1
�1;0 =

 
1 +

DX(�1)
� ��t

!
�1

�
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�
h
P1 �DX(�1) ��t�

�
WM+1

0;0 +WM�1
�1;0 �WM�1

0;0

�
�

�DX(�1)
� ��t �

�
WM+1

0;0 � 2(WM
0;0 +WM

�1;0) +WM�1
0;0 +WM�1

�1;0

�#
:

(4.18)

where:

P1 =
�

�
(�� �) � eUxz +

 
�2

�
� � +

1

2
�

!
� fWzz ;

P2 =
�

�
(�� �) � fWxz +

 
�2

�
� � +

1

2
�

!
� eUzz ;

eUxz =
DZ(�1)

DZ(�1) +DZ(0)
�

�
"

1

DZ(0) �DX(�1)(U
M
0;1 � UM

�1;1 � UM
0;0 + UM

�1;0)�

� DZ(0)

(DZ(�1))2 �DX(�1)(U
M
0;0 � UM

�1;0 � UM
0;�1 + UM

�1;�1)

#
;

fWxz =
DZ(�1)

DZ(�1) +DZ(0)
�

�
"

1

DZ(0) �DX(�1)(W
M
0;1 �WM

�1;1 �WM
0;0 +WM

�1;0)�

� DZ(0)

(DZ(�1))2 �DX(�1)(W
M
0;0 �WM

�1;0 �WM
0;�1 +WM

�1;�1)

#
;

fWzz =
1

DZ(�1) +DZ(0)
�
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�
"
WM

0;1 +WM
�1;1 �WM

0;0 �WM
�1;0

DZ(0)
�

�WM
0;0 +WM

�1;0 �WM
0;�1 �WM

�1;�1

DZ(�1)

#
;

eUzz =
1

DZ(�1) +DZ(0)
�

�
"
UM
0;1 + UM

�1;1 � UM
0;0 � UM

�1;0

DZ(0)
� UM

0;0 + UM
�1;0 � UM

0;�1 � UM
�1;�1

DZ(�1)

#
;

and

� =

vuut �e + 2�e
1
2
(�0;0 + ��1;0)

;

� =

s
�e

1
2
(�0;0 + ��1;0)

:

� right boundary
The stencil position is (Kmax � 1; l), where l 2 fRtop; Lmax � 1g.
For u component:

UM+1
1;0 =

 
1 +

DX(0)

� ��t

!
�1

�

�
h
P2 �DX(0) ��t�

�
�UM+1

0;0 � UM�1
1;0 + UM�1

0;0

�
�

�DX(0)
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; (4.19)

for w component:

WM+1
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� ��t

!
�1

�



42 CHAPTER 4. BOUNDARY CONDITIONS
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(4.20)

where:
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W component:
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��t

2
�
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1
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+
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: (4.22)

Velocities �; � are:

� =

vuut�s + �e + 2(�s + �e)

�0;0 + �1;1
;
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� =
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W component:
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Velocities �; � :

� =

vuut�s + �w + 2(�s + �w)
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� =
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W component:
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Velocities �; � :

� =
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;

� =
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W component:
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Velocities �; � :

� =

vuut�n + �e + 2(�n + �e)

�0;0 + �1;�1
;

� =

s
�n + �e

�0;0 + �1;�1
:
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4.2 Tapers

Because even Stacey's conditions do not completely eliminate the bound-
ary reections, in particular for complicated scattered wave�elds, we use
an additional method to dump the reections. It is a taper introduced by
Cerjan et al (1985) realized arti�cially by decreasing both the displace-
ment components in a "strip" 40 grid points wide adjacent to the edges
of the model.

4.3 Reecting boundaries

For special cases of symmetrical structures it is very useful to compute
just one half of the model, while the other is supplied by a symmetry
condition in which the symmetry boundary is perfectly reecting. The
following conditions describe the horizontal and vertical components of
the displacement along the vertical symmetry line placed at x0:

� for the source of P waves (antisymmetry in u, symmetry in w):

ujx0;z = 0 (4.29)

@w

@x

�����
x0;z

= 0 (4.30)

� for the source of S waves (symmetry in u, antisymmetry in w):

@u

@x

�����
x0;z

= 0 (4.31)

wjx0;z = 0 (4.32)

By the source we understand a line source placed in (x0; z0). It is a center
of compression (for P waves), or a centre of rotation (for S waves).

Conditions 4.29 and 4.30 can also se used in case of a vertical body
force, and for the incident P wave. The use of 4.31 and 4.32 is similar:
A horizontal body force, and an incident S wave.



4.3. REFLECTING BOUNDARIES 47

4.3.1 Finite di�erence formulations

Let us consider the conditions of symmetry along a vertical grid line,
and the grid line k = Ksym. In that case the stencil position is (Ksym; l),
where l 2 f2; Lmax � 1g.
Moreover, let DX(�1) = DX(0). Then:

� antisymmetry in u, symmetry in w:
from 4.29, 4.30 we get (respectively):

UM
1;0 = �UM

�1;0 ; (4.33)

WM
1;0 = WM

�1;0 ; (4.34)

� symmetry in u, antisymmetry in w:
from 4.31, 4.32 we get (respectively):

UM
1;0 = UM

�1;0 ; (4.35)

WM
1;0 = �WM

�1;0 : (4.36)
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Chapter 5

NUMERICAL

EXPERIMENTS

5.1 Plane free surface

We investigate three models here. The results retrieved from the �nite-
di�erence (FD) scheme, developed in this thesis, were compared with
the FD method usingPSi � 2 scheme for the regular grid, and with
the spectral-element method (SPEM) of E.Priolo (Zahradn��k & Priolo,
1995). The SPEM method is the reference method, because it has high
accuracy due to higher-order approximation. All the three models have
a planar surface, with a line source applied near the surface. The source
is realized by a vertical body force, whose time history is as follows:

f(t) = �exp(b) � fmax � [fmax � (t� t0) � cos c+ � � sin c] (5.1)

b = �1

2
� f 2max � (t� t0)

2 ;

c = � � fmax � (t� t0) ;

with t0 = 0:136 s,
and the maximum frequency fmax = 22 Hz.

49
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5.1.1 Homogeneous half-space

The model is described by �gure 5.1 and table 5.1. The source is denoted
by S, and the receivers by R1; R2; R3, respectively.
The grid lines were numbered as shown in �gure 4.1. The source is placed
on vertical line k = 2 which, at the same time, represents "the plane of
symmetry". It is the symmetry in the w component (equation 4.30),
and the antisymmetry in the u component (equation 4.29). The time
window for the time function is 0:408 s, and for the computation is 2
seconds. Along the bottom and the right side of the model the non-
reecting boundary condition is applied, and also the taper of 40 points,
as described in 4.2. The model has the regular grid, with constant grid
steps �x = �z = 4:0 m.

The results are displayed in �gures 5.1, 5.2, 5.3, where they are
compared with the SPEM method, and with the analytical solution.
The relative normalizing factors are given in table 5.1.1 The results show
a very close agreement of our solution compared with the two others.

Table 5.1: The meaning of the variables is as follows: �I ; �I - P, S wave
velocities (m=s); �I -density (kg=m3); f �max -the frequency (Hz) at which
the absolute value of the spectrum is 1% of the maximum spectral value;
�t -time step (s); �x;�z -grid steps (m); Nt -number of time steps;
K;L -number of vertical and horizontal lines in the model

�I �I �I f �max

2000 1155 1000 22

�t �x �z Nt K L
0:001 4:0 4:0 2000 512 242
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Table 5.2: Relative normalizing factors: nR1u is the relative normalizing
factor for u component in receiver R1, and analogously for the other
receivers and component

method nR1u nR2u nR2u nR1w nR2w nR2w
PSi� 2 0:685 0:636 0:136 0:973 1:00 0:632
SPEM 0:710 0:634 0:134 0:986 1:00 0:593
analytical 0:688 0:633 0:133 0:983 1:00 0:599

S(0,4)
R1(60,0) R2(932,0)

I

R3(932,44)

(0,0) (2000,0)

(0,960) (2000,960)

Figure 5.1: The homogeneous half-space model (coordinates in metres).
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Figure 5.2: Normalized seismograms for w component in receiver R1.
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Figure 5.3: Normalized seismograms for w component in receiver R2.
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Figure 5.4: Normalized seismograms for w component in receiver R3.
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5.1.2 Two quarter-spaces

Model with regular grid

This is a two quarter-spaces model (see �gure 5.5 and table 5.3). It is a
model with a regular grid and with constant grid steps �x = �z = 4:0 m.
Our results are compared with SPEM in �gures 5.6, 5.7, 5.8 and in
table 5.1.2.

Table 5.3: The meaning of the variables is: �I ; �I - P, S wave velocities
(m=s) in block I; �I -density (kg=m3) in block I; �II ; �II -analogous
for block II; f �max -the frequency (Hz) at which the absolute value of the
spectrum is 1% of the maximum spectral value; �t -time step (s); �x;�z
-grid steps (m); Nt -number of time steps; K;L -number of vertical and
horizontal lines in the model

�I �I �I �II �II �II
2000 1155 1000 3000 1732 2000

f �max �t �x �z (m) Nt K L
22 0:0005 4:0 4:0 4000 512 242
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S(0,4) R1(480,4) R2(1420,4)

I

R3(932,44)

(0,0) (2000,0)

(0,960) (2000,960)

II

Figure 5.5: Two quarter-spaces (coordinates in metres).
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Figure 5.6: Seismograms for w component in receiver R1 for two quarter-
spaces model with a regular grid.
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Figure 5.7: Seismograms for w component in receiver R2 for two quarter-
spaces model with a regular grid.
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Figure 5.8: Seismograms for w component in receiver R3 for two quarter-
spaces model with a regular grid.
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Model with irregular grid

This two quarter-spaces model has an irregular grid as shown in �gure 5.9.
It is realized in the following way: the �rst 10 grid steps between horizon-
tal lines l = 1, and l = 11 are of �z = 0:8 m. Then, between grid lines
l = 11 and l = Lmax the grid steps are of �z = 4:0 m. Similarly for the
vertical lines (�gure 5.9): The grid steps are �x = 4:0 m between grid
lines k = 1 and k = 252, then �x = 0:8 m between grid lines k = 252
and k = 267, and �nally �x = 4:0 m between grid lines k = 267 and
k = Kmax. The interface is lying exactly in the middle between vertical
lines k = 259, and k = 260.

The parameters of the model are shown in table 5.4

Table 5.4: The meaning of the variables is: �I ; �I - P, S wave veloci-
ties (m=s) in block I; �I -density (kg=m3) in block I; �II ; �II -analogous
for block II; f �max -the frequency (Hz) at which the absolute value of
the spectrum is 1% of the maximum spectral value; �t -time step (s);
�xmin;�zmin;�xmin;�zmin are the minimum and the maximum grid
steps (m) appearing in the model; Nt -number of time steps; K;L -number
of vertical and horizontal lines in the model

�I �I �I �II �II �II f �max

2000 1155 1000 3000 1732 2000 22

�t �xmin �zmin �xmax �zmax Nt K L
0:0001 0:8 0:8 4:0 4:0 4000 512 350

Because the Fortran optimizer (for unknown reasons) didn't compile
the subroutine for the non-reecting boundary in this particular model,
the bottom and the right-hand side of the model were prescribed as
perfectly reecting boundaries. To avoid the reections arriving at the
receivers during the time window selected for the comparison with the
SPEM , the model was extended downwards and to the right, with grid
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steps of 4:0 m in both directions, while the left-hand side was treated by
the symmetry conditions as in the model of the two quarter spaces on
a regular grid. The time window and the window for time function is
exactly the same as in the case of the regular grid.

The results are compared with the SPEM method in �gures 5.10,
5.11, 5.12. In certain parts of the seismograms we can see an improve-
ment, i.e. the FD results become closer to the SPEM results than in case
of the regular grid. The points of the most signi�cant improvements are
speci�ed by arrows. Table 5.1.2 shows the comparison of the normalizing
factors nR.

Table 5.5: Relative normalizing factors nR as in table 5.1.1

method nR1u nR2u nR2u nR1w nR2w nR2w
PSi� 2 regular grid 0:385 0:174 0:0565 1:00 0:373 0:0676
PSi� 2 irregular grid 0:337 0:170 0:0620 1:00 0:373 0:0662
SPEM 0:380 0:171 0:0612 1:00 0:373 0:0592
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S
R1 R2

I

R3

II

Figure 5.9: The model of two quarter-spaces with irregular grid, which is
denser along the interface and the surface. The highlighted dashed line is
the interface.
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Figure 5.10: Seismograms for w component in receiver R1 for two
quarter-spaces model with irregular grid.
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Figure 5.11: Seismograms for w component in receiver R2 for two
quarter-spaces model with a irregular grid.
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Figure 5.12: Seismograms for w component in receiver R3 for two
quarter-spaces model with irregular grid. The vertical dashed line sep-
arates the time without(left) and with(right) reections from the edges of
the model.



66 CHAPTER 5. NUMERICAL EXPERIMENTS

5.1.3 Low-velocity layer

Model with regular grid

This model is set as it is shown by �gure 5.13. It is on a regular grid with
the same grid steps �x = �z = 4:0 m in both directions. The interface
is lying between horizontal lines l = 31 and l = 32, closer to l = 32
("l = 31:75"). This model has a symmetry along the left hand side, and
Stacey's boundaries with tapers along the bottom and the right-hand
edge. The results compared with SPEM are at �gures 5.14, 5.15, 5.16.
The parameters are in table 5.6.

Table 5.6: The meaning of the variables are the same as in table 5.3

�I �I �I �II �II �II f �max

2000 1155 1000 3000 1732 2000 22

�t �x �z Nt K L
0:0005 4:0 m 4:0 m 4000 512 242
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S(0,4)
R1(480,0) R2(1380,0)

I

R3(932,168)

(0,0) (2000,0)

(0,960) (2000,960)

II

(0,123) (2000,123)

Figure 5.13: Low-velocity layer (coordinates in metres).
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Figure 5.14: Seismograms for w component in receiver R1 for low-velocity
layer model with a regular grid. The vertical dashed line separates the
time without(left) and with(right) reections from the edges of the model.



5.1. PLANE FREE SURFACE 69

0.00 0.40 0.80 1.20 1.60 2.00

-1.00

-0.50

0.00

0.50

1.00

R2

SPEM

PSi-2 - regular grid

Figure 5.15: Seismograms for w component in receiver R2 for low-velocity
layer model with a regular grid.
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Figure 5.16: Seismograms for w component in receiver R3 for low-velocity
layer model with a regular grid.
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Model with irregular grid

This model of the low-velocity layer was tested on the irregular grid as
shown in �gure 5.17: The grid step �x = 4:0 m applies for the whole
model. The �rst 308 grid steps between the horizontal lines l = 1 and
l = 309 are of �z = 0:4 m. The interface is lying exactly in the middle
of the grid step between grid lines l = 308 and l = 309. The grid steps
between horizontal grid lines l = 309 and l = Lmax are �z = 4:0 m.

Thus the grid step is abruptly increased by 1 : 10 at horizontal grid
line l = 309. The parameters of the model are in table 5.7

Table 5.7: The meaning of the variables is the same as in table 5.4

�I �I �I �II �II �II f �max

2000 1155 1000 3000 1732 2000 22

�t �xmin �zmin �xmax �zmax Nt K L
0:0001 4:0 0:4 4:0 4:0 4000 512 519

Table 5.8: Relative normalizing factors nR as in table 5.1.1

method nR1u nR2u nR2u nR1w nR2w nR2w
PSi� 2 regular grid 0:596 0:648 0:0198 1:00 0:944 0:0504
PSi� 2 irregular grid 0:601 0:665 0:0187 1:00 0:932 0:0571
SPEM 0:602 0:679 0:0195 1:00 0:944 0:0645

The results of the computation are compared with SPEM in �g-
ures 5.18, 5.19, 5.20. Moreover, we computed the same model, but with
a grid that is denser just 5 grid lines along the interface (on both sides),
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and 5 grid lines along the surface, again with the grid step contrast 1 : 10,
analogous to the vertical interface in the two quarter-spaces model on the
irregular grid. The results, not shown here, almost identical to the ones
presented, are not disturbed by any of the reections from the bottom
and the right-hand side of the model until the time indicated in the
�gures by the dashed vertical line.

The improvement, in comparison to the same model on the regular
grid, is quite signi�cant now, as proved by a very close agreement with
the SPEM (see also 5.8).

S R1 R2

I

R3

II

Figure 5.17: The model of low-velocity layer with irregular grid, which is
denser within the layer. The highlighted dashed line is the interface.
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Figure 5.18: Seismograms for w component in receiver R1 for low-velocity
layer model with irregular grid.
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Figure 5.19: Seismograms for w component in receiver R2 for low-velocity
layer model with irregular grid.
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Figure 5.20: Seismograms for w component in receiver R3 for low-velocity
layer model with irregular grid.
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5.2 Topographic features

5.2.1 Step-like surface of homogeneous half-space

In this model we investigated the down-step surface of the homogeneous
half-space with an explosive line source, which is denoted by S. The
receivers R1; R2; R3 were placed as shown in �gure 5.21. The grid of the
model is regular, with grid step �z = �z = 1:0 m. The time function
for the explosive source was a �nite-duration approximation to Dirac's
delta function (Aboudi, 1971), with duration time T = 0:003 s. There are
no arti�cial reections in the model, because the arrival time of possible
reections from the boundaries is greater than that of the time window.
The parameters of the model are in table 5.9

Table 5.9: The meaning of the variables is as in table 5.1

�I �I �I f �max

5000 5000=
p
3 1000 1000

�t �x �z Nt K L
0:0001 1:0 1:0 350 320 100

The results were compared with Hong & Bond (1986) in �gures 5.21,
5.22, 5.23, where the model is computed by �nite di�erences. Their
method is homogeneous, that is the internal grid-points scheme di�ers
from that for the free surface and/or the interface. Moreover the corner
grid points are using special formulas (see table 5.2.1).

Our model was exactly the same as that of the referenced paper (here-
after called "original data"), including the employed grid steps. There-
fore, the numerical dispersion due to the coarse grid (Alford, Kelly & Boore,
1974) appears in both results. The original data for the seismograms, and
positions of the receivers and source, were retrieved from a printed copy.
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Table 5.10: The FD formulations used by Hong & Bond(1986), "node"
denotes "grid point".

Node type : Formulation used :

body node Bond(1983)
free� surface node Illan(1975)
surface corner Illan(1975)

The seismograms were scanned, and digitized. Therefore the accuracy of
the original data has been substantially a�ected. Note that the normal-
izing factors for the receivers R2 (table 5.11) are very small, and this also
e�ects the accuracy of the non-normalized seismograms digitized origi-
nal data. Nevertheless, the close agreement of our solution with that of
Hong & Bond (1986) is obvious.

Table 5.11: Relative normalizing factors have the same meaning as in
table 5.1.1

method nR1u nR2u nR2u nR1w nR2w nR2w
PSi� 2 1:00 0:49 0:42 0:53 0:16 0:13
ORIGINAL DATA 1:00 0:46 0:41 0:47 0:14 0:13
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S(100,20)

R1(133,0)

R2(173,14)

I

R3(193,14)

(0,0)

(300,14)

(0,100) (300,100)

(163,0)

Figure 5.21: Step-like surface of homogeneous half-space (coordinates in
metres).
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Figure 5.22: Seismograms for u component in receiver R1 for down-step
surface model with a regular grid.
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Figure 5.23: Seismograms for u component in receiver R2 for down-step
surface model with a regular grid.
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Figure 5.24: Seismograms for w component in receiver R3 for down-step
surface model with a regular grid.
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5.2.2 Ridge-like surface of homogeneous half-space

Because the e�ective parameters are obtained by geometric averaging,
the free topographic surface is not smooth (in contrast to the internal
boundaries), but it is composed of elementary steps. Therefore we must
approximate the non-planar surface by an irregular meshing. The grid
is denser in places with signi�cant topographic features, and coarser in
places with a horizontal (or vertical) free surface. We investigated about
10 di�erent kinds of grids for this model, three of them are presented
below.

The ridge is symmetrical, and the line explosive source is placed on
the vertical symmetry plane at the base of the ridge (see �gure 5.25,
or the details in �gures 5.26 , 5.27). Therefore, we use the symmetry
condition for the explosive source (4.29, 4.30), and it is applied at the
left-hand side of the model. The receivers R1::R12 are located on a free
surface with a constant horizontal spacing of 166:66 m, the R1 receiver
is on the top of the ridge (see �gures 5.26 , 5.27).

The model is large, and so there are no arti�cial reections arriving
to any of the receivers during the de�ned time window.

The source time function in all the ridge-like models is:

f(t) = (b� 0:5)exp(�b) ; (5.2)

b = [�(t� ts)=tp]
2 ;

with tp = 0:4875s; ts = 0:4875 s .

The time window was t 2 (0s; 4:0s) The surface shape is (Bouchon, 1989):

s(x) = h(1:0� a)exp(�3a) (5.3)

a = (x=l)2 ;

with h = 375 m, l = 1000 m ,

where h and l denote the height and the half-width of the hill.
The equation (5.3) is applied for x 2 (0; l), while s(x) = 0 for x > l.
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(0,-366.7)

(0,5000)

(5000,0)

(5000,5000)

S

Figure 5.25: The model of the ridge. The vertical coordinate of the upper
left corner might di�er in cases of a di�erent meshing. (coordinates in
metres).

Coarse grid model M1 (regular grid)

The parameters of the model are shown in table 5.12. The detailed
view at the model surface is in �gure 5.26, and the seismograms are in
�gures 5.28 and 5.29.

Fine grid model M2 (regular grid)

The parameters of the model are shown in table 5.13. The detailed view
of the model surface is in �gure 5.27. The seismograms are displayed in
�gures 5.28 and 5.29, where they are compared with the results for the
coarse grid.

The results computed for the model M2 on the regular �ne grid (see
table 5.13) were compared with the results obtained from S.Ga�et com-
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Table 5.12: The meaning of the variables is as in table 5.1

�I �I �I f �max

2000 1000 1000 5:4

�t �x �z Nt K L
0:008 33:33 33:33 500 150 150

Table 5.13: The meaning of the variables is as in table 5.1

�I �I �I f �max

2000 1000 1000 5:4

�t �x �z Nt K L
0:0016 6:667 6:667 2500 750 660

puted by the Boundary equation Integral Method (Ga�et & Bouchon,
1989). The comparison is in �gures 5.33, 5.34 with original data denot-
ing the solution of S.Ga�et.

The agreement is not close, and that is why we agreed with S. Ga�et
on the continuing investigation of the problem for this and similar models.



5.2. TOPOGRAPHIC FEATURES 85

0.00 200.00 400.00 600.00 800.00 1000.00

0.00

100.00

200.00

300.00

400.00

prescibed surface

FD approximation

R1

R2

R3

R4

R5

R6
R7

S

Figure 5.26: The detail of the ridge for a coarse grid �x = �z
:
= 33:33 m

(coordinates in meters).
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Figure 5.27: The detail of the ridge for �ne-grid model �x = �z
:
=

6:67 m (coordinates in meters).
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Figure 5.28: Seismograms for the coarse-grid and �ne-grid models,both
on a regular grid.
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Figure 5.29: Seismograms for the coarse-grid and �ne-grid models,both
on a regular grid.
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Fine grid model M3 (irregular grid)

In this model, there is also a �ne grid, with the smallest grid step of
�x = �z = 3:333 m, but the horizontal lines are dense from the top
of the hill to the depth of two �ne-grid steps under the horizontal plane
free-surface level. Then the grid steps increase 10 times at once. This
means that two grid steps under the surface the ratio of the second and
third grid step under the surface is 10, and from this place to the end of
the model the grid is again regular with grid step �z = 33:33 m. The
described type of the transition from a �ne to a coarse grid is shown for
the horizontal grid lines (�gure 5.30). In this model, there is a change
of the vertical lines meshing abrupt as well, but the transition from the
�ne to the coarse grid is at the horizontal distance of x = 1000 m. The
parameters of the model are shown in table 5.14. The results for the
irregular �ne-grid model are in �gures 5.31 and 5.32, where they are
compared with the results for the regular �ne grid.

Table 5.14: The meaning of the variables is: �I ; �I - P, S wave velocities
(m=s); �I -density (kg=m3); f �max -the frequency (Hz) at which the abso-
lute value of the spectrum is 1% of the maximum spectral value; �t -time
step (s); �xmin;�zmin;�xmin;�zmin are the minimum and the maxi-
mum grid steps (m) appearing in the model; Nt -number of time steps;
K;L -number of vertical and horizontal lines in the model

�I �I �I f �max �t
2000 1000 1000 5:4 0:0008

�xmin �zmin �xmax �zmax Nt K L
3:333 3:333 33:33 33:33 10000 290 195

The comparison shows that the abrupt change in the grid density
doesn't yield any signi�cant change in the seismograms. The computa-
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z

x

Figure 5.30: The grid in this �gure is made abruptly coarser in the z
direction, and smoothly in the x direction.

tion is done with the time step that is determined by the minimum spa-
tial step, maximum velocity and the stability condition (section 3.3.6).
Therefore, such time step is rather small for those zones of the model
where the spatial step is large. Although there is appearing the small
ratio �t

�x
in this model (Alford, Kelly & Boore, 1974), no visible increase

of the dispersion has been found in our results.

We also computed the same model with a smooth change of �x,
and �z grid steps. The principle of the smooth change is shown in
�gure 5.30, where it is just shown for the vertical lines. The change
started at x = 1000:0 m for �x = 3:333 m, and it ended at x = 1166:7 m,
with �x = 33:33 m after 13 varying grid steps. The length of grid steps
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increased as a geometric series with factor q
:
= 1:2. The �z grid step was

treated in the same way, the change started at Z = 6:666 m, and ended
at z = 111 m, the proportions of the change were the same as for �z.
The results of this model were also quite similar to those of model M3,
with only negligible di�erences.
Thus the abrupt change in the grid density doesn't a�ect the results in
comparison with either those of the model with the smooth change of
grid density, so those with a regular grid.

Model M4 (regular grid)

This model is exactly the same as model M2, but the source is placed
at a depth of z = 40:0 m. This is because we received the results for
comparison computed for this source depth by the Boundary Integral
Equation Method (BIEM) (Ga�et & Bouchon, 1989). Nevertheless the
di�erence between The BIEM synthetics contain high frequency oscil-
lations. The question is, whether the oscillations in the BIEM results
would be smaller in case of �ner sampling of the surface, which now
goes from 14 m (for high frequencies) to 47 m (for low frequencies) (per-
sonal communication with S. Ga�et). Model with the �nest irregular
grid computed by the PSi� 2 had grid step along the topography equal
to 3:333 m.
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Figure 5.31: Seismograms for the �ne-grid models with regular and irreg-
ular grid.
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Figure 5.32: Seismograms for the �ne-grid models with regular and irreg-
ular grid.
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Figure 5.33: Seismograms for the �ne-grid model on irregular grid com-
pared with results obtained from the Boundary Integral Equation Method.
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Figure 5.34: Seismograms for the �ne-grid model on a regular grid com-
pared with results obtained from the Boundary Integral Equation Method.
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5.2.3 Ramp-like surface of homogeneous half-space

The model is a 45� ramp. The inclined surface is approximated by el-
ementary steps, as in 5.2.2 (see also �gure 5.35). The width and the
height of the ramp is 640:0 m. The grid step of �x = 5:00 m is used in
the whole model. The grid step of �z = 5:00 m is used from the top of
the model to the grid line z = 10:0 m, from this grid line to the bottom
of the model the grid step is �z = 10:00 m. The source is a plane P
wave incident vertically from below, and realized by vertical body forces
applied along a horizontal grid line. The vertical position of this line is
at z = 345 m (�gure 5.35, where denoted as "source line"). On the left
and right hand side of the model we apply the "symmetry condition"
(4.29, 4.30) (i.e. symmetry in the w component, and antisymmetry in
the u component). The bottom of the model is treated by Stacey's non-
reecting boundary condition combined with the taper of 40 grid points.
The source time function is:

f(t) = sin
�
2�t

ts

�
� 1

2
� sin

�
4�t

ts

�
; (5.4)

with ts = 0:06 s, the duration of signal.

The time window for the source time function is ts, the time window for
the computation is 1:5 s. Model parameters are in table 5.15. The results
for the u and w component are in �gures 5.36, 5.37, respectively.

The intention of this experiment was to compare its results with the
solution by Jih et al (1988), but has not yet been possible for some
uncertainties in the model constitution, and in the boundary conditions.
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Table 5.15: The meaning of the variables is the same as in table 5.37

�I �I �I f �max �t
5020 2898 2100 50:0 0:0006

�xmin �zmin �xmax �zmax Nt K L
5:0 5:0 5:0 10:0 2500 1000 470
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R1
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S O U R C E L I N E (D E P T H = 3 4 5 M)

(-2500,345) (2500,345)

Figure 5.35: The ramp-like surface of homogeneous half-space. The thin
dotted line represents the prescribed function of the surface shape, the
continuous line is the model approximation to this function. The ele-
mentary steps are just schematic i.e. their number and their relative
size di�ers from the computed model. The highlighted dotted-and-dashed
"source line" represents the line along which the vertical body forces of the
source is applied to generate a vertical incident plane wave. (coordinates
in metres)
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Figure 5.36: Seismograms for the ramp-like surface of homogeneous half-
space, incident P wave.
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Figure 5.37: Seismograms for the ramp-like surface of homogeneous half-
space, incident P wave.
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5.2.4 Step-like layer of low velocities underlain by

homogeneous half-space

The model we investigate here is speci�ed by �gure 5.38. The block
denoted as I is a low velocity layer with a step-like surface, and it is
underlain by block II, a homogeneous half-space with a step-like inter-
face. We computed it both on regular and irregular grids (speci�ed later),
and the results were compared with the SPEM method (Seriani, Priolo,
Carcione & Padovani, 1992). The SPEM results were obtained after
personal communication with E.Priolo. The topography of this model,
and the position of the interface, the source (S), and the receivers (R1 ..
R8) is in �gure 5.38. The line source is realized by a vertical body force
on the surface. The source time function is:

f(t) =
a0 + a1t+ a2t

2

d0 + d1t+ d2t2
[b0�cos (b1 + b2t)]�exp[c1(t�c0)+c2(t�c0)2] ; (5.5)

with

a1 = a2 = b2 = c1 = d1 = d2 = 0 ,
b0 = c0 = d0 = 1 ,

a0 = 1000, b1 = 22, c2 = 3:6 .

The source time function was also retrieved from E.Priolo in the form of
the Fortran code function. Thus the time function is the same as that
used for the SPEM model for comparison (Seriani, Priolo, Carcione &
Padovani, 1992). The time window for the source time function is 0:2s,
while that for the computation being 0:6s.

For both sides and the bottom of all computed models, we used
Stacey's non-reecting boundary conditions joined together with tapers
of 40 points.

Model S1 (regular grid)

The grid step is the same in both directions �x = �z = 2:40 m, thus
there are 20 vertical grid steps between the receivers R2 and R3, and
with the other receivers being analogous. The results are presented in
�gures 5.40, and 5.41. The parameters are listed in table 5.16.
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Figure 5.38: The model of the step-like layer (coordinates in metres).

Model S2 (irregular grid)

The grid step is the same in both directions, �x = �z = 2:40 m, while 5
grid steps along the interfaces, as well as along the free surface, the grid
steps are �x = 0:48 m and/or �z = 0:48 m, as shown in �gure 5.39.
The grid steps change abruptly.

The results shown in �gures 5.40, and 5.41 are compared to the regular
grid model S1, described previously. The parameters are in table 5.17.

The results in �gures 5.40 and 5.41 scarcely di�er from one another.
At receiver R2, there is a numerical instability appearing in the time
that is indicated by the dashed-line frame in �gures 5.40 and 5.41. The
instability appears due to the actual length of the time step in model S2.
The detailed description of this occurrence, and the way in which it is
possible to stabilize the solution is in section 3.3.6, subsection I.
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Table 5.16: The meaning of the variables is the same as in table 5.3

�I �I �I �II �II �II f �max

2000 1200 2100 3000 1750 2300 22

�t �x �z Nt K L
0:0005 2:4 2:4 1200 653 408

Table 5.17: The meaning of the variables is the same as in table 5.4

�I �I �I �II �II �II f �max

2000 1200 2100 3000 1750 2300 22

�t �xmin �zmin �xmax �zmax Nt K L
0:0001 0:48 0:48 2:4 2:4 6000 663 443

We also made a computation employing special formulas for the cor-
ners with receivers R2, and R4. The value for each displacement compo-
nent is retrieved by a linear extrapolation for the "outer corner" (receiver
R2), or by a linear interpolation for the "inner corner" (receiver R4). The
described model with the interpolated/extrapolated surface corners was
computed on either the regular and the irregular grid. The agreement
with the results from model S1 and/or model S2 was also very close, the
curves were not negligible from each other in the scale of �gure 5.40.

In �gures 5.42 and 5.43, there is a comparison of our results computed
for model S1 with those obtained for the same model by the SPEM
method. The di�erence appears for the Rayleigh wave that is propa-
gating along the vertical free surface downwards. The SPEM method
results were repeated also for a �ne-grid model, and they did not di�er
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I

II

Figure 5.39: The step-like layer model with �ne grid along the interfaces
and surface. The interface is represented by the highlighted line inside
the model. The positions of the source and receivers remain unchanged
with respect to �gure 5.38.

from the presented ones (not shown here; personal communication with
E.Priolo).

Since the solution by PSi � 2 scheme is convergent as the spatial step
decreases (models S1, S2), and the same is also valid for the SPEM
method (as reported by E.Priolo), we think, that the di�erence between
the PSi�2 and the SPEM method is not due to the accuracy problems
of PSi � 2 at the planar free-surface parts. Another indication for this
statement is the close agreement of PSi� 2 and SPEM results for the
planar-surface models.

The di�erence might be caused by di�erent approximation of the cor-
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ner, in PSi� 2 and SPEM . Our solution is supported by the fact, that
it has been found insensitive of di�erent corner formulations, it agreed
with homogeneous FD method rather well, and the solution is consistent
with the free-surface condition in sense of section 3.3.5. On the other
hand, the SPEM is a more accurate method, in general. Therefore, the
disagreement needs further investigation.
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Figure 5.40: Comparison of synthetics from models with regular and irreg-
ular grids. The dashed frame indicates the instability caused by violating
the condition of stability 3.44 (described in section 3.3.6, subsection I).
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Figure 5.41: Comparison of synthetics from models with regular and irreg-
ular grids. The dashed frame indicates the instability caused by violating
the condition of stability 3.44 (described in section 3.3.6, subsection I).
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Figure 5.42: Synthetics from the model with regular grid compared with
the SPEM results.
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Figure 5.43: Synthetics from the model with regular grid compared with
the SPEM results.
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Chapter 6

CONCLUSION

In this thesis the PSi� 2 FD scheme for the irregular grid models (het-
erogeneous formulation) has been derived. This scheme transforms to
the PS � 2 scheme (Zahradn��k, 1995) in case of regular grid.

The stability condition for the time step, described in 3.3.6, become
more restrictive for irregular grid. This phenomenon is detailed in sec-
tion 3.3.6, subsection I.

The PSi � 2 is unstable in cases shown in �gures 3.7, and 3.8. The
instability appears due to the heterogeneous formalism, and consequently
to the geometrical averaging when evaluating the e�ective parameters
(even in case when the stability condition for the time step �t is ful�lled).
To stabilize the model, further steps in the model approximation to the
prescribed surface must be employed. These arti�cial modi�cations of the
surface form are speci�ed in section 3.3.6, subsection II, and indicated
in �gures 3.7, and 3.8.

The PSi� 2 was tested on models with plane topography and plane
interfaces (see section 5.1). The irregular grid models had denser grid
meshing along the interface (�gures 5.9, 5.17), and the surface. The re-
sults were compared with the SPEM method computations for the same
models (Priolo, Zahradn��k 1994). An improvement of the agreement of
the two methods, when going from the regular coarse grid to the �ne ir-
regular grid, has been found, especially for the model of the low velocity

111



112 CHAPTER 6. CONCLUSION

layer.

For the step-like surface of a homogeneous half-space we compared
the PSi� 2 results (model on the regular grid) with results obtained by
FD homogeneous formulation (Hong & Bond, 1986). The results show
a close agreement as far as the accuracy of the data, retrieved from a
printed copy, makes it possible.

For the ridge-like surface of a homogeneous half-space we have shown
the convergency of the results for model on �ne irregular and �ne regular
grids. The results were compared with those obtained from the Bound-
ary Integral Equation Method (BIEM) (Ga�et & Bouchon, 1989), and
a certain disagreement has been found. The di�erence is greater for the
w component of the displacement. The BIEM synthetics contain high
frequency oscillations. The question is, whether the oscillations could be
smaller in case of �ner sampling of the surface, which, in this compari-
son, goes from 14 m (for high frequencies) to 47 m (for low frequencies)
(personal communication with S. Ga�et). Model with the �nest irregular
grid computed by the PSi� 2 had grid step along the topography equal
to 3:333 m.

The step-like layer of low velocities underlain by a homogeneous half-
space was computed for the regular coarse grid and for the irregular
grid with �ner meshing along the interfaces, and the free surface (see
�gure 5.39). The results for these two models almost did not di�er.
However, the PSi�2 di�ers form the synthetics computed by the SPEM .
The previous experiments have shown , that the agreement of these two
methods for the planar free surface models (even with discontinuities)
has been very close. The di�erence appears for the Rayleigh wave that
is propagating along the vertical free surface downwards. This may lead
to conclusion, that this wave is created by unsatis�ed free-surface corner
condition, but this is unlikely because both methods have self similar
results for models with �ner grids. Moreover, we also computed the
models on the regular coarse and the irregular �ne grid with corner points
(receivers R2; R4) obtained by extrapolation, and/or interpolation, and
the results had again a very close agreement. It is also to mention that
our theoretical analysis of the consistency with the free-surface conditions
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indicates, that the PSi� 2 approximation to the corners is applicable.
The reasons of the di�erence between our PSi � 2 solution and the

BIEM and SPEM approaches is not yet clear, and the investigation
should continue.
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