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Preface 

Throwing a stone into water creates waves which propagate from the place of 
incidence. The amplitudes of these waves decrease rapidly with depth, so that 
their energy propagates practically only in the superficial layer. Consequently, 
these waves are referred to as surface waves. Note that water waves are 
frequently presented as the best-known type of waves, which we encounter in 
day-to-day use. However, the mathematical description of water waves is more 
complicated than the description of many other waves. 

The 'electromagnetic waves propagating along the surface of conductors 
(skin-effect) represent another type of surface waves. Analogously, surface 
elastic waves can propagate along the surface of an elastic substance. Similar 
waves, which are generated by earthquakes, artificial explosions and analogous 
sources, and pr~pagate along the Earth's surface, are referred to as seismic 
surface waves. 

Despite some similarities which water waves and seismic surface waves 
display, there are substantial differences in the forces producing them. The 
main force forming water waves is gravitation (or rather gravity, i.e. the 
superposition of the gravitational force and the centrifugal force due to the 
Earth's rotation). For this reason, these waves are referred to as gravitational 
waves on water. At short periods, the effect of the surface tension is also 
significant, so that in this case we speak of capillary-gravitational waves. As 
opposed to this, seismic surface waves are produced predominantly by elastic 
forces; the effect of gravity is substantially smaller and, therefore, this effect is 
often neglected. 

The most important information on the constitution of the Earth's interior 
has been obtained from studies of seismic body waves (longitudinal and 
transverse seismic waves propagating through the Earth). The division of the 
Earth into the Earth's crust, mantle and core, the later division into so-called 
Bullen zones, or the latest laterally inhomogeneous models of the Earth are all 
based predominantly on studies of seismic body waves. On the other hand, 
surface waves usually have the largest amplitudes on standard seismograms, 
and these waves also contribute considerably to the damaging effects of 
earthquakes. They, therefore, deserve the most attention. Nevertheless, some 
specific problems of an observational and theoretical nature caused that, 
initially, surface waves were considered in structural studies only 
exceptionally. Even now, in the present routine processing of seismograms at 
seismological observatories, surface waves are practically only used to 
determine the earthquake magnitude. 

Interest in applying surface waves to structural studies began to increase in 
the middle of the 20' century. The following factors contributed to this 
progress: 

the construction of long-period seismographs, which made it possible to 
observe surface waves in broad frequency bands; 
advances in the surface-wave theory, e.g., the introduction of matrix 
methods, which have made it easier to consider complicated multilayered 
models of the medium; 



the application of computers which, e.g., have made it possible to solve 
transcendental dispersion equations for surface waves quickly. 

Since then, surface waves have been used to treat many specific problems, 
such as: to study the existence and structure of the so-called low-velocity 
channel in the upper mantle; to distinguish between the continental and oceanic 
type of the Earth's crust; to determine the mean parameters of the Earth's crust 
in extended regions, including regions which are difficult to access (mountains, 
oceans, polar regions); to study lateral inhomogeneities in the Earth's crust, 
e.g., the position of faults. Another very promising application of surface 
waves seems to be the computation of complete synthetic seismograms by 
summirig surface-wave modes. Surface waves also find technical applications 
in non-destructive testing of materials, electro-mechanical transducers and 
many others. Moreover, the mathematical methods used in the theory of 
surface waves are also applicable to some problems of propagation of elastic 
body waves, electromagnetic waves (e.g., waves in the ionosphere), 
temperature waves, in the physics of thin layers, etc. 

Although surface waves are important from the scientific and practical 
points of view, less attention is usually paid to them in physics textbooks than 
to body waves. This is caused mainly by the more complicated physical 
character of surface waves. For example, it is dificult to imagine them in terms 
of rays propagating from the source. On the other hand, surface waves do not 
represent a principally new type of wave, but only an interference phenomenon 
of body waves. Therefore, the theory presented in these lecture notes can also 
be used in studies of other types of interference waves we encounter in 
seismology, physics and technical practice. 

These lecture notes have been written for the purposes of post-graduate 
studies in geophysics, in particular for the corresponding part of the course of 
lectures on the attenution and dispersion of seismic waves, organised by the 
Universidade Federal da Bahia, Salvador, Brazil. 

I would like to thank the Centro de Pesquisa em Geofisica e Geologia 
(CPGGRJFBA), Departamento de Geofisica Nuclear do Instituto de Fisica, and 
the Instituto de Geociencias for their support in preparing this text. I wish to 
express my thanks especially to the CNPq (Conselho Nacional de 
Desenvolvimento Cientifico e Tecnol6gico) for providing me with the 
fellowship which made my stay at the Universidade Federal da Bahia possible. 
I thank the MinistCrio de Educaqiio e Cultura, and the CPGG for their 
subsequent fellowships which helped me to extend and complete this text. I 
would also like to express my gratitude to the students and professors whose 
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Chapter 1 

Main Types of Elastic Waves and Their 
Properties 

In physics, waves are usually divided into progressive and standing waves. 
Seismic waves are also of these two types. Progressive seismic waves 
propagate away from seismic sources. In these lecture notes, we shall deal only 
with this type of waves. Standing seismic waves, known as the free oscillations 
of the Earth, represent vibrations of the Earth as a whole. These oscillations are 
generated by strong earthquakes. 

From the point of view of the spatial concentration of energy, waves can be 
divided into body waves and surface waves. Body waves can propagate into the 
interior of the corresponding medium, whereas surface waves are concentrated 
along the surface of the medium. Acoustic waves in air, or electromagnetic 
waves in vacuum are examples of body waves. Examples of surface waves 
have already been mentioned in the Preface. 

Note that, instead of surface waves, we should rather speak of a broader 
category of guided waves. Guided waves propagate along the surface of a 
medium (surface waves), along internal discontinuities, or other waveguides. 
Since seismic surface waves represent the most important type of seismic 
guided waves, we shall speak only of surface waves. 

In these lecture notes we shall deal with various types of elastic waves. In 
order to obtain an initial idea of them, we shall give a brief review here; see 
Tab. 1.1. The corresponding derivations will be given in the following 
chapters. 

Table 1.1. Principal types of progressive elastic waves. 

< longitudinal waves 

/ body waves 
transverse waves 

elastic waves 
Rayleigh waves 

surface waves < Love waves 

1.1 Body Waves 

It follows from the theory of elasticity that there are two principal types of 
elastic body waves: 
1) Longitudinal waves, also called compressional, dilatational or irrotational 

waves. In seismology, they are also called P waves (primary waves), 
because they represent the first waves appearing on seismograms. These 



waves involve the compression and rarefaction of the material as the wave 
passes through it, but not rotation. Every particle of the medium, through 
which the longitudinal wave is passing, vibrates about its equilibrium 
position in the direction in which the wave is travelling (Fig. 1.1). Sound 
waves are examples of waves of this category. 
Transverse waves, also called shear, rotational or equivoluminal waves. In 
seismology, they are also called S waves (secondary waves). These waves 
involve shearing and rotation of the material as the wave passes through it, 
but no volume change. The particle motion is perpendicular to the direction 
in which the wave is travelling (Fig. 1.1). 

Fig. 1.1. Deformations of the medium when body waves propagate from left to 
right: longitudinal wave (on the left), and transverse wave (SV wave, i.e. a 
vertically polarised S wave, on the right). (After Fowler (1 994)). 

The velocities of longitudinal waves, a, and of transverse waves, /3, in a 
homogeneous and isotropic medium are given by the formulae 

where A and p are the Lam6 coefficients, and p is the density. Coefficient p is 
the shear modulus, but coefficient A has no immediate physical meaning. 

Since Poison's relation, A = p , holds in many elastic materials, 

This relation is frequently used in seismology. 
Both longitudinal and transverse elastic waves can propagate in solid media. 

However, only longitudinal waves can propagate in liquids and gases; 
transverse waves cannot propagate in these media because p = 0 and, 
consequently, P = 0. 

In a homogeneous anisotropic medium, three different waves can propagate, 
namely one quasi-longitudinal and two quasi-transverse waves (PSencik, 1994). 

Elastic body waves are reflected and transmitted at the discontinuities of 
elastic parameters. This increases the number of waves which are observed on 
seismograms. 



1.2 Surface Waves 

Only longitudinal and transverse waves can propagate in a homogeneous, 
isotropic and unlimited medium. If the medium is bounded, another type of 
waves, surface waves, can be guided along the surface of the medium. These 
waves usually form the principal phase of seismograms. There are two types of 
surface elastic waves: 
1) Rayleigh waves. These waves are elliptically polarised in the plane which is 

determined by the normal to the surface and by the direction of propagation 
(Fig.- 1.2). Near the surface of a homogeneous half-space, the particle 
motion is a retrograde vertical ellipse (anticlockwise for a wave travelling to 
the right). 

2) Love waves. The particle motion in these waves is transverse and parallel to 
the surface (Fig. 1.2). As opposed to Rayleigh waves, Love waves cannot 
propagate in a homogeneous half-space. Love waves can propagate only if 
the S-wave velocity generally increases with the distance from the surface of 
the medium. 

(a) Rayleigh wave 

, . 

tij)] Love wave 

Fig. 1.2. The particle motion for surface waves: (a) Rayleigh waves and (b) 
Love waves. (After Fowler (1994)). 

The simplest medium in which Rayleigh waves can propagate is a 
homogeneous isotropic half-space. The velocity of Rayleigh waves in this 
medium, c, is slightly less than the transverse wave velocity, c = 0.9P, and is 
independent of frequency. Thus, Rayleigh waves in this simple model of the 
medium are non-dispersive. 

The simplest model in which Love waves can propagate consists of a 
homogeneous isotropic layer on a homogeneous isotropic half-space. Both the 
Rayleigh and Love waves in this model are already dispersive, i.e. their 
velocities are dependent on frequency. 

As we have already mentioned, elastic surface waves do not represent 
principally new types of waves, but only interference phenomena of body 



waves. Therefore, in principle, we could attempt to construct the wave field of 
surface waves (and of other guided waves) by summing body waves. However, 
this approach would be inconvenient if a large number of waves is to be taken 
into account (thin layers, large distances from the source). Therefore, a more 
appropriate mathematical description must be sought for surface waves, as well 
as for the other interference waves. 

We shall emphasise the interference character of surface waves in many 
places of these lecture notes, in order to gain a deeper insight into the formation 
of these waves, to understand their specific properties, such as their dispersion 
and polarisation better, and to be able to apply the same mathematical 
approaches (e.g., matrix methods) both to surface-wave and body-wave 
problems. 

1.3 Main Differences between Seismic Body Waves and 
Surface Waves 

Let us summarise the main properties of seismic body waves and surface 
waves, as observed on seismograms of distant earthquakes: 

1) Records of a seismic event begin with longitudinal waves, followed by 
transverse waves, and finally by surface waves. 

2) Surface waves usually have larger amplitudes and longer periods. 
3) Surface waves display a characteristic dispersion and polarisation. 
An example of a seismogram in shown in Fig 1.3. Other examples will be 

given below. 

Fig 1.3. The China earthquake of November 13, 1965, recorded at Kiruna, 
Sweden. The higher-mode Rayleigh waves are exceptionally pronounced (the 
waves with higher fiequencies at the beginning of the surface-wave group). 
(After BAth (1979)). 

1.4 Dispersion of Waves 

In these lecture notes we shall pay much attention to the dispersion of surface 
waves. 



We speak of the dispersion of waves if their velocity depends on frequency. 
A transient wave (a wave of a finite duration) changes its shape during 
propagation in a dispersive medium, because its individual spectral 
components propagate with different velocities. This distortion of waves causes 
some technical problems in the transmission of signals, and in the accurate 
measurements of their velocity. However, this phenomenon can be used to 
study the medium through which the waves have propagated. This has 
applications in seismology, but also in geomagnetism, physics of the 
magnetosphere and ionosphere, and in technical practice. 

There are two types of wave dispersion: 
material dispersion; 
geometrical dispersion. 

The material dispersion is due to the internal structure of substances. This 
type of dispersion is well known from optics, since the velocity of light in 
material media depends on frequency. This dispersion forms the basis of 
spectroscopy. The material dispersion of elastic waves is closely associated 
with their attenuation. This dispersion is usually relatively weak and, therefore, 
we shall not deal with it in these lecture notes. 

The geometrical dispersion is due to the interference of waves. We 
encounter this dispersion when waves propagate in thin layers, various 
waveguides, or along the surface of a medium. We shall study this dispersion 
in detail in these lecture notes. 



Chapter 2 

Historical Development of the Theory of 
Elasticity and of the Theory of Seismic Surface 
Waves 

Science is the knowledge of many, 
orderly and methodically digested and arranged, 

so as to become attainable by one. 
(J.F.W. Herschel) 

The theory of seismic waves is based on the theory of elasticity. In this chapter 
we shall deal with the historical development of these theories, especially with 
those aspects of the theory of elasticity which are closely related to the 
development of seismology. The theory of elasticity studies the behaviour of 
bodies subjected to forces, both as to their deformation as well as to their 
ultimate disruption under sufficiently large stresses. 

In preparing this chapter we have drawn mainly on the books by Love 
(1927), Love (191 I), Bith (1979), and the very comprehensive treatise by 
Todhunter and Pearson (1 886). 

2.1 Theory of Elasticity in the Seventeenth and 
Eighteenth Centuries 

The modem theory of elasticity may be considered to have originated in 182 1, 
when Navier first presented the equations for the equilibrium and motion of 
elastic solids. To understand the evolution of our modern conceptions, it is 
necessary to go back to the research of the seventeenth and eighteenth 
centuries, when experimental knowledge of the behaviour of strained bodies 
was gained and some special principles were formulated. 

The first memoir requiring notice is the second dialogue of the Discorsie 
Dimostrazioni matematiche by Galileo Galilei (1638). This dialogue not only 
gave the impulse, but also determined the direction which was subsequently 
followed by many researchers. Galileo formulated conditions with regard to the 
fracture of solids (rods, beams and hollow cylinders). The noteworthy feature 
of his discussion is his assumption that the fibres of a strained beam are 
inextensible. He endeavoured to determine the resistance of a beam, one end of 
which is built into a wall, at the moment it tends to break under its own or an 
applied weight. He found that, with increasing load, the beam bends around an 
axis perpendicular to its length and situated in the plane of the wall. The 
problem to determine this axis is referred to as Galileo's problem. Although 
Galileo did not give any mathematical relations between load and deformation, 
his work was pioneering in the theory of elasticity. 

Undoubtedly the next great landmark in the theory, initiated by Galileo's 
question, is the discovery of Hooke's law. This law provided the necessary 
experimental foundation for the theory. Hooke discovered this law in 1660, but 



did not publish until 1676. In 1678 he formulated this law as follows: "Ut 
tensio sic vis", i.e. "The power of any spring is in the same proportion to the 
tension thereof'. By "tension" Hooke understood, as he proceeded to explain, 
that which we now call "extension". Hooke did not probably apply this law to 
solving Galileo's problem. This application was made by Mariotte, who 
discovered the same law independently in 1680. Hooke in England and 
Mariotte in France then appropriated the experimental discovery of what we 
now term stress-strain relations. 

In the interval between the discovery of Hooke's law and that of the general 
differential equations of elasticity by Navier, the attention of the researchers in 
the elasticity theory was chiefly directed to the solution and extension of 
Galileo's problem, and the related theories of the vibration of bars and plates, 
and the stability of columns. Many famous mathematicians and physicists, such 
as James Bernoulli, Daniel Bernoulli, Euler, Lagrange, Coulomb, Young, took 
part in these investigations. Although many special problems were solved 
during this period, these investigations did not lead to broad generalisations. 
The situation was complicated mainly by unresolved problems concerning the 
constitution of bodies. According to the Newtonian conception, material bodies 
are made up of small parts which act on one another by means of central forces. 
Newton regarded the "molecules" to have finite sizes and definite shapes. 
However, his successors gradually simplified the "molecules" into material 
points. The conception of material points was found to be very useful in many 
branches of mechanics. However, its application to the problems of elasticity 
often led to oversimplified results. In particular, the conception of material 
points, between which central forces act, leads to a smaller number of elastic 
constants than those which are actually necessary to describe real media. 

Navier was the first to investigate the general equations of the theory of 
elasticity. He presented his memoir to the Paris Academy in 1821. He set out 
from the Newtonian conception of the constitution of bodies, and assumed that 
elastic reactions arise from the variations in the intermolecular forces which are 
due to changes in the molecular configuration. He regarded the molecules as 
material points, and assumed that the force between two molecules, whose 
distance is slightly increased, is proportional to the product of the increment of 
the distance and some function of the initial distance. His method consisted in 
forming an expression for the forces that act upon a displaced molecule, which 
then yielded the equations of motion of the molecule. The equations were thus 
obtained in terms of the displacements of the molecule. Navier assumed the 
material to be isotropic, and the equations of equilibrium and vibration to 
contain a single constant. We now know that an isotropic medium is 
characterised by two elastic constants. This demonstrates the simplifications 
arising from the conception of material points and central forces acting 
between them. 

2.2 Propagation of Light and the Theory of Elasticity 

In the same year, 1821, in which Navier's memoir was read to the Paris 
Academy, the study of elasticity received a powerful impulse from an 



unexpected branch of physics - from optics. Fresnel announced that the 
observations of the interference of polarised light could be explained only by 
the hypothesis of transverse vibrations. Until then the undulatory theory of 
light conceived of light waves as longitudinal waves of condensation and 
rarefaction in a hypothetical light ether, i.e. as waves similar to sound waves. 
Although examples of transverse waves were already known earlier, e.g., 
waves on water, or transverse vibrations of strings, bars, membranes and plates, 
in no case were they examples of waves transmitted through a medium. 
Therefore, the principal question, which had to be answered first, was whether 
transverse waves can propagate inside an elastic medium. The theory of 
elasticity, and, in particular, the problem of the transmission of waves through 
an elastic medium, then attracted the attention of two other French 
mathematicians of high repute, namely Cauchy and Poisson. The former was a 
supporter, the latter a sceptical critic of Fresnel's ideas. The development of the 
theory of elasticity was largely due to the work of these two scientists. Their 
studies closely linked the development of elasticity theory with the problem of 
light propagation. 

The present reader may be surprised that the problems of light propagation 
could influence the theory of elasticity. However, we should realise that the 
conception of the light ether was closely associated with the problems of 
elasticity. Electromagnetic waves were not yet known at that time, and it was, 
therefore, quite natural to consider light to be a specific type of mechanical 
waves. Only several decades later the conception of the ether was weakened by 
the theory of the electromagnetic field, and finally abandoned in the theory of 
relativity. Nevertheless, this unusual episode from the history of physical 
sciences is worth remembering. 

2.3 Mathematical Theory of Elasticity 

By the autumn of 1822, Cauchy had discovered most of the elements of the 
pure theory of elasticity. He had introduced the notion of stress at a point. He 
assumed that the stress state at a point is completely determined if the forces 
per unit area across all plane elements through the point were known. He had 
shown that, under simple assumptions, these forces could be expressed in terms 
of six components of stress. (Note that the same conception of stress is adopted 
in the present textbooks on continuum mechanics). Cauchy had also expressed 
the state of strain near a point in terms of six components of strain and 
determined the equations of motion. Assuming linear stress-strain relations, 
Cauchy derived the special form of these equations for isotropic solid bodies. 
The methods used in these investigations were quite different from those in 
Navier's memoir. In particular, no use was made of the hypothesis of material 
points and central forces. The resulting equations differ from Navier's in one 
important respect, namely Navier's equations contain a single elastic constant, 
while Cauchy's equations already contain two such constants. 

Cauchy then extended his theory to the case of crystalline bodies. He made 
use of the hypothesis of material points between which there are forces of 
attraction and repulsion. In the general case of anisotropy (termed "aelotropy" 



at the time), Cauchy found 15 true elastic constants; actually he found 21 
independent constants, but 6 of these constants expressed the initial stress and 
vanished identically if the initial state was one of zero stress. Cauchy also 
applied his equations to the question of the propagation of light in crystalline as 
well as in isotropic media. 

The first memoir by Poisson dealing with the problems of elasticity was 
read before the Paris Academy in 1828. Poisson obtained the equations of 
equilibrium and motion of isotropic elastic solids which were identical with 
those of Navier. The memoir is very remarkable for its numerous applications 
of the general theory to special problems. 

Cauchy and Poisson, as well as other researchers, applied the theory of 
elasticity, the former two had developed on the basis of material points and 
central forces, to many problems of vibrations and of statical elasticity. It 
provided the means for testing its consequences experimentally, but adequate 
experiments were made much later. 

Poisson (1831) used his theory to investigate the propagation of waves 
through an isotropic elastic solid of unlimited extent. He proved that two kinds 
of waves with different velocities could propagate in such a medium. He found 
that, at a large distance from the source of disturbance, the motion transmitted 
by the quicker wave was longitudinal, and the motion transmitted by the slower 
wave was transverse. This theory indicated that the ratio of these velocities was 

&:l . Poisson also considered the vibration of a sphere. 
Afterwards Stokes (1849) proved that the quicker wave was a wave of 

irrotational dilatation, and the slower wave was a wave of equivoluminal 
distorsion,characterized by differential rotation of the elements of the body. He 
also derived the well-known formulae for the velocities of the two waves, 

dm and m, where p denotes the density, ,LL the rigidity, and 

A + (213)~ the modulus of compression. These two velocities will be denoted 

here by a: and P. This is the first time that we have come across waves P and S, 
now so well known in seismology. Stokes also proved that the two waves were 
separated completely at a sufficiently large distance from the initially disturbed 
region. At shorter distances they are superposed for part of the time. Note that 
the "dilatational wave" is now also called the "longitudinal wave" or 
"compressional wave". Analogously, the "distortional wave" is also termed the 
"transverse wave" or "shear wave". 

Green (1839) was dissatisfied with the hypothesis of material points and 
central forces on which the theory was based, and he sought a new foundation. 
Starting from what is now called the principle of the conservation of energy he 
propounded a new method of obtaining the equations of elasticity. He derived 
the potential energy of the strained elastic body, expressed in terms of the 
components of strain, and then applied the methods which are used in 
analytical mechanics. Green stated that this approach "appears to be more 
especially applicable to problems that relate to the motions of systems 
composed of an immense number of particles mutually acting upon each 
other". He deduced the equations of elasticity, in the general case containing 21 
constants. In the case of isotropy there are two constants, and the equations are 



the same as those of Cauchy's first memoir. The revolution which Green 
effected in the elements of the theory is comparable in importance with that 
produced by Navier's discovery of the general equations. Kelvin supported the 
existence of Green's strain-energy function on the basis of the first and second 
laws of thermodynamics. 

The methods of Navier, of Poisson, and of Cauchy's later memoirs lead to 
equations of motion containing fewer constants than occur in the equations 
obtained by the methods of Green, and of Cauchy's first memoir. The 
questions in dispute are as follows: Is elastic anisotropy to be characterised by 
21 constants or by 15, and is elastic isotropy to be characterised by two 
constants or by one? The two theories were called the "multi-constant" theory 
and the "rari-constant" theory, respectively. The importance of the discrepancy 
was first emphasised by Stokes in 1845. He made the observation that 
resistance to compression and resistance to shearing are the two fundamental 
kinds of elastic resistance, and he definitely introduced the two principal 
moduli of elasticity. The two parameters are now called the modulus of 
compressibility and the modulus of rigidity. 

Much attention was also paid to the ratio of lateral contraction to 
longitudinal extension of a bar under tractive load. This ratio is often called 
"Poisson's ratio". From his theory Poisson deduced that this ratio must be 114. 
However, experiments on some materials did not support this result. The 
experimental evidence led Lam6 to adopt also the multi-constant equations, and 
after the publication of his book in 1852 they were generally adopted. 

We have already mentioned Poisson's discovery of longitudinal and 
transverse waves which can propagate through the interior of a solid elastic 
body. This theory takes no account of the existence of a boundary. When the 
waves from a source reach the boundary, they are reflected, but in general the 
longitudinal wave, on reflection, gives rise to both kinds of waves, and the 
same is true of the transverse wave. Any subsequent state of the body can be 
represented as the result of superposing waves of both kinds reflected one or 
more times at the boundary. Without mathematical analysis it is not easy to see 
what the properties of the resulting wave will be. In 1887, Lord Rayleigh 
discovered that a specific wave can be formed near the fi-ee surface of a 
homogeneous body. The wave has the following main properties: 

it propagates along the surface at a certain velocity, less than both a 
and p; 
it does not penetrate far beneath the surface because its amplitude 
decreases exponentially with distance from the surface; 
it is elliptically polarised in the plane determined by the normal to the 
surface and by the direction of propagation. 

In Lord Rayleigh's work the surface was regarded as an unlimited plane, and 
the waves could be of any length. Gravity was neglected, and it was found that 
the wave velocity was independent of the wavelength. Such waves have since 
been called Rayleigh waves, after the person who had discovered them 
theoretically. (Note that Love (191 1) called them "Rayleigh-waves", but the 
hyphen was later omitted). These waves belong to the category of so-called 



surface waves, since their propagation is practically restricted to a certain zone 
close to the surface of the medium. 

A noteworthy feature of the surface wave discovered by Rayleigh is that the 
vertical component at the surface is larger than the horizontal component. The 
ratio of the two is nearly 3:2, if Poisson's ratio is taken to be 1:4. This ratio 
appeared to be important in later seismological applications of Rayleigh's 
theory; see below. In the paper cited Rayleigh remarked: "It is not improbable 
that the surface waves here investigated play an important part in earthquakes, 
and in the collision of elastic solids. Diverging in two dimensions only, they 
must acquire at a great distance from the source a continually increasing 
preponderance." 

The German scientist A. Schmidt published a paper in 1888 in which he 
discussed the propagation of waves through the Earth's interior. He emphasised 
that in general the wave velocity must increase with depth in the Earth and as a 
consequence of this, the wave paths must be curved, and bent downwards. At 
about the same time, Knott in England investigated the energy of reflected and 
refracted waves. 

We have seen that the main types of waves, now regularly found on 
seismograms, had been discovered by mathematicians long before any seismic 
records were obtained. 

2.4 Beginnings of Seismology 

Seismology became an independent science around the turn of the nineteenth 
and twenties centuries. Its theoretical foundations, especially the theory of 
elasticity, had already been developed in the first half of the nineteenth century, 
as we have mentioned in the preceding section. However, the theoretical 
foundations and the observations of earthquakes were completely separated 
from each other until the end of the nineteenth century. Thanks to the 
construction of seismographs, it was then possible to combine the two 
disciplines. 

Observations of earthquakes and their effects have been made in populated 
areas as far as history goes. Reports on earthquakes exist at least as far back as 
1800 B.C. The first instruments for earthquake observations were the 
seismoscopes used in China about one century A. D. Information from ancient 
times, however, does not generally satisfy modern scientific requirements on 
observations. In order to express earthquake effects (so-called macroseismic 
observations) quantitatively, intensity scales were introduced. The first more 
commonly used intensity scale was proposed by De Rosi in Italy between 1874 
and 1878. Such a quantification of an earthquake by a single number was still 
too far from the requirements of the mathematical theory of elasticity. 

The most important breakthrough in the study of earthquakes and the 
Earth's interior was undoubtedly the installation of seismographs. In 1880 
seismographs were constructed in Japan by the Englishmen Gray, Milne and 
Ewing. They were mainly intended for recording Japanese earthquakes. The 
first record of a distant earthquake was obtained in 1889. This earthquake 
occurred in Japan and the record was made in Potsdam. 



Very soon it was noticed that the records of distant earthquakes displayed 
two very distinct stages, the first characterised by a very feeble motion, the 
second by a much larger motion. These stages were called the "preliminary 
tremor" and the "main shock" (the "main shock" was also often described as 
the "large waves" or sometimes as the "principal portion"). The idea that these 
two waves might be dilatational and distortional waves, emerging at the 
surface, took firm root among seismologists for a time. In the light of 
increasing knowledge this idea had to be abandoned. 

As mentioned above, Rayleigh suggested that the surface waves he had 
investigated might play an important part in earthquakes. This suggestion was 
not, at first, well received by seismologists, mainly because the records did not 
show a preponderance of vertical motion in the main shock. It was first 
systematically applied to the interpretation of seismic records by Oldham 
(1900). He recognised two distinct phases in the preliminary tremors, and 
showed that their travel times to distant stations correspond to the propagation 
through the body of the Earth of waves travelling with practically constant 
velocities. On the other hand, the main shock is recorded at times which 
correspond to the propagation over the surface of the Earth of waves travelling 
with a different nearly constant velocity. Oldham, therefore, proposed to 
identify the first and second phases of the preliminary tremors respectively 
with dilatational and distorsional waves, travelling along nearly straight paths 
through the body of the Earth, and he proposed to regard the main shock as 
Rayleigh waves. The suggestion that the first and second phases of the 
preliminary tremors should be regarded as dilatational and distorsional waves, 
transmitted through the body of the Earth, was generally accepted. However, 
the proposed identification of the main shock with Rayleigh waves was less 
favourably received for two reasons: partly on account of the difficulty already 
mentioned with regard to the ratio of the horizontal and vertical displacements; 
partly because observation showed that a large part of the motion transmitted in 
the main shock was a horizontal motion at right angles to the direction of 
propagation (these waves are now called Love waves). 

Lamb (1 904) considered in detail the waves produced by impulsive pressure 
suddenly applied at a point of the surface. The motion recorded at a distant 
point begins suddenly at a time corresponding to the arrival of the longitudinal 
wave. The surface rises rather sharply, and then subsides very gradually 
without oscillation. At the time corresponding to the arrival of the transverse 
wave a slight motion occurs. This is followed, at the time corresponding to the 
arrival of the Rayleigh wave, by a much larger motion, after which the motion 
gradually subsides without oscillation. The subsidence is indefinitely 
prolonged. 

Lamb's theory easily accounted for some of the most prominent features of 
seismic records, namely the first and second phases of the preliminary tremors 
and the larger disturbance of the main shock. However, it did not account for 
the existence of horizontal motion at right angles to the direction of 
propagation. Such motions are observed both in the second phase of the 
preliminary tremors and in the main shock. The existence of such motions in 
the second phase of the preliminary tremors could be accounted for easily by 



assuming a different kind of initial disturbance, for example by a sudden 
horizontal shearing motion, or by a couple applied locally. But no assumption 
as to the nature of the disturbance at the source was able to account for the 
relatively large horizontal displacements in the main shock which were 
transverse to the direction of propagation. Moreover, the theory did not account 
for the approximately periodic oscillations which were a prominent feature in 
all seismic records. Lamb suggested that these might be due to a succession of 
primitive shocks. Nevertheless, such an explanation seemed to be rather 
artificial. 

All the controversies between theory and observations were resolved in an 
excellent way by Love (1911). Instead of a homogeneous half-space, which 
was considered by Rayleigh and Lamb, Love considered an elastic medium 
consisting of a layer on a half-space. The main properties of surface waves in 
this medium already agreed with observations. In particular, he found that a 
new type of surface waves can propagate in a layer on a half-space. These 
waves are polarised in the horizontal plane perpendicularly to the direction of 
propagation, so that give a good explanation of the transverse motion in the 
main shock. Such waves have since been called Love waves. 

The propagation of Rayleigh waves in a layer on a half-space has been 
studied in many papers, starting with those by Bromwich (1898) and Love 
(191 1). Love found that the ratio of the horizontal and vertical components of 
these waves was already close to the observed values. For a review we refer the 
reader to Ewing et al. (1957); see also the papers by Bolt and Butcher (1960), 
and by Money and Bolt (1966). 

Rayleigh and Love waves in a layer on a half-space, and in all more 
complicated models of the medium, are dispersive. The dispersion equation for 
Love waves in one layer on a half-space was derived by Love (191 I), for two 
layers on a half-space by Stoneley and Tillotson (1 928), and for three layers on 
a half-space by Stoneley (1 93 7). 

We shall deal with Rayleigh and Love waves in the simplest models of the 
medium in Chapters 5 to 7, after explaining the necessary principles of 
continuum mechanics in Chapter 3 and of the theory of elastic waves in 
Chapter 4. 

2.5 Studies of Other Types of Surface Waves 

We have seen that the main shock (now called the "main phase" of a 
seismogram) was originally interpreted as a body wave, but later' it was found 
to be formed by surface waves. In particular, this seismic phase is formed by 
the fundamental modes (fundamental tones) of Rayleigh and Love waves. 
Similarly, also other waves on seismograms were at first interpreted as body 
waves, but later identified with surface waves. 

2.5.1 Channel waves and higher modes 

Press and Ewing (1952) found two short-period large-amplitude waves on the 
records of surface waves crossing North America. The existence of these waves 



was then also confirmed in other regions, but only if the path between the 
epicentre and the station was continental. Consequently, these waves have been 
used by some authors to determine whether the Earth's crust beneath a given 
area is continental or oceanic. They have sometimes been referred to as 
"continental waves". 

Press and Ewing (1952) originally interpreted these waves as multiply 
reflected waves in the granitic layer of the Earth's crust. The transverse wave 

with a velocity of about 3.5 kms-' and periods ranging from 0.5 to 6 s was 
thus termed the Lg wave, and the wave with the polarisation of Rayleigh 

waves, 'kith a velocity of 3.0 kms-' and periods of 8 to 12 s, was termed the 
R g  wave. A record of these waves is reproduced in Fig. 2.1. 

1 March 55 
i4:02:25 

Yukon Aftershock 

Fig. 2.1. Lg and Rg waves from the Yukon earthquake of March 1, 1955, 
recorded by a horizontal seismograph at Palisades. (After Ewing et al. (1957)). 

B5th (1954) distinguished two phases in the Lg train, and termed them Lgl 
and Lg2. His interpretation was influenced by Gutenberg's proposal of the 
existence of a low-velocity channel in the Earth's crust (Gutenberg, 1951). 
Bgth explained the Lgl as a wave reflected at the Earth's surface and refracted 
by the velocity gradient above the channel, whereas the Lg2 propagated along 
the axis of the channel. A modified explanation of the Lgl and Lg2, as waves 
propagating in two crustal low-velocity channels, was also proposed. 

Caloi (1953) identified a prominent phase, called Sa, with an arrival velocity 

of 4.4 krns-' and periods ranging from 10 to 30 s. This wave was explained by 
some investigators as a wave guided by the low-velocity channel in the 
asthenosphere (thus, Sa denotes an S wave in the asthenosphere). Press and 
Ewing (1955) suggested an explanation involving "whispering gallery" 
propagation in the mantle by multiple grazing reflections from the Mohorovicic 



discontinuity. The analogous wave with a vertical component was 
designated Pa. 

The interpretation of the above-mentioned waves as channel waves provides 
a good explanation of their velocities, but not of their amplitudes. Namely, a 
body wave confined to a low-velocity channel inside the crust or upper mantle 
should have small surface amplitudes, which contradicts observations. 
Therefore, a new interpretation was required. 

Oliver and Ewing (1957, 1958) were the first to suggest that channel waves 
were associated with higher modes of surface waves. In particular, the 
velocities and periods of the observed waves were associated with the extreme 
values of the group velocity for higher modes. Since then, this interpretation of 
"channel waves" has generally been accepted. For example, Anderson and 
Toksoz (1963) stated that "the continental Sa wave with periods of 14 to 20 s is 
unquestionably associated with the long-period maximum of the first higher 
Love mode .. . . The vertical component, sometimes reported, is probably 
associated with Rayleigh motion and the different designation is desirable". 

Note that the explanation of Lg, Rg, Sa and Pa waves as higher modes does 
not require the postulation of low-velocity zones. The computations of 
synthetic seismograms have demonstrated that these waves may exist in 
structures without any low-velocity channel. 

Hence, also other prominent seismic waves, namely Lg, Rg, Sa and Pa, 
which were originally interpreted as body waves, have finally been identified 
with surface waves. 

For more detailed references see, e.g., Kovach (1965), and Pec and Novotny 
(1 977). 

2.5.2 PL waves and leaking modes 

When broad-band seismograms became available, it was found that the P-wave 
group sometimes contained a long-period component, which was designated 
PL. At first, this long-period motion was attributed to the focal mechanism. 
However, PL waves were later identified with the high-velocity surface waves 
which correspond to complex roots of dispersion equations. These surface- 
wave modes with complex velocities are called leaking modes, since the 
imaginary part of their velocity is associated with the leakage of their energy 
into deeper parts of the Earth. Consequently, these waves can be observed only 
at epicentral distances shorter than about 2 000 krn. 

This interpretation leads to a surprising conclusion that even the initial part 
of a seismogram, which is traditionally explained in terms of body waves, may 
also contain a surface-wave component. 

A surface wave of a similar physical nature has also been observed in 
seismic prospecting in shallow water. The wave has the following 
characteristics: 

1) Large amplitudes and long duration. 
2) Numerous repetitions of the wave pattern, and even the character of 

almost pure sine waves in some cases. This indicates that the wave 
contains one or several discrete frequencies. 



3) Occurrence usually when a hard stratum exists at or near the sea floor. 
Burg et al. (1951) explained these waves as leaking modes. They stated that 

the waves propagated by multiple reflections at angles of incidence between 
the normal and the critical angle for total reflection, under the condition of 
constructive interference. A slight leakage of energy, which occurs with each 
reflection from the bottom, is compensated by automatic gain control. This 
causes the recorded amplitudes to remain approximately constant for many 
seconds. 

For more details we refer the reader, e.g., to Ewing et al. (1957). 

2.5.3 Microseisms 

Seismic noise, called microseisms, is permanently present on seismograms. 
This noise has numerous natural causes (sea waves, wind, variations of the 
atmospheric pressure), and civilisation causes (traffic, vibrations of heavy 
machines, swinging of high buildings). The most intensive microseisms usually 
have periods close to 6 s. 

The physical nature of microseisms is not quite clear, but in most cases they 
are composed predominantly of surface waves, including their higher modes. 

For details and references see, e.g., Ewing et al. (1957) and BAth (1979). 



Chapter 3 

Principles of Continuum Mechanics 

In this chapter we shall derive the basic equations of the theory of elasticity 
which are required in the theory of seismic wave propagation. To be able to use 
these equations with confidence, one must know their origin and derivations. 
Therefore, the discussion of the basic ideas here will be rather comprehensive 
and detailed. 

In preparing this chapter we have drawn mainly on the textbooks by Brdicka 
(1959), Fung (1965, 1969), Sedov (1973), and the lecture notes by Novotny 
(1 976). 

3.1 Mathematical Models in Physics 

In order to simplify the mathematical and physical description of studied 
phenomena, various simplifications and models are used, for example, 
simplified models of the medium, models of physical processes, various 
principles, etc. The usual idealisations of material objects in mechanics are the 
mass point (particle), rigid body, and continuum. The model of a continuum is 
used in mechanics when the deformations of a body cannot be neglected. 

The concept of a continuum is derived from mathematics. For example, the 
system of real numbers is a continuum since between any two particular real 
numbers there is another particular real number. Therefore, there are infinitely 
many real numbers between any two particular real numbers. 

The continuum in mechanics is a medium with a continuous distribution of 
matter. The molecular and atomic structures of matter are ignored in this model 
of the medium. In other words, a material continuum is a material for which the 
densities of mass, momentum, and energy exist in the mathematical sense. The 
mechanics of such a material is continuum mechanics. 

When the fine structure of matter attracts our attention, continuum 
mechanics cannot be used. In these cases we should use particle physics and 
statistical physics. The duality of continuum and particles resembles the 
situation in modern optics, in which light is treated sometimes as waves and 
sometimes as particles. 

Continuum mechanics is usually divided into: 
the theory of elasticity (we shall deal with this theory in this chapter), 
hydromechanics (the mechanics of fluids, i.e. the mechanics of liquids 
and gases), 
the theory of plasticity. 

The main advantage of the concept of a continuum consists in the 
possibility of applying the mathematical theory of continuous finctions, and 
dzflerential and integral calculi. 

The same body (e.g., the Earth) may be regarded as a mass point, rigid body 
or continuum in different physical problems. For example, in studying the 
motions of the Earth in the Galaxy, we shall probably consider the Earth to be a 



particle. In studies of its rotation, precession or polar wobble, we shall usually 
consider the Earth as a rigid body, or even as a continuum in detailed studies of 
these phenomena. In studying the deformations of the Earth due to the 
gravitational effects of the Moon and Sun, or in the theory of seismic waves, 
we consider the Earth to be a continuum; the Earth as a particle or a rigid body 
is not adequate to these purposes. 

3.2 Displacement Vector 

Real bodies are deformed by the action of forces. The description of the 
deformation is based on a comparison of the instantaneous state (volume and 
shape) of the body with some previous state, which will be regarded as an 
original state. In this section we shall study the corresponding displacements, 
and in the next section we shall seek some quantities which can be used to 
describe the deformations. 

Note that we shall speak of two types of points, which should be 
distinguished: mass points (particles) of a continuum, and points of an 
Euclidean space. At different times, a certain particle is located generally at 
different points of space. 

Fig. 3.1. Displacements of two neighbouring points, P and Q. 

Therefore, we shall compare a continuum in two states, namely in the 
original (unstrained) state, and in the deformed (new, strained) state. Introduce 
a Cartesian coordinate system, its origin being denoted by 0. (The description 
in curvilinear systems leads to certain problems, but in this chapter we shall not 
use curvilinear coordinates). We consider the reference frames to be right- 
handed, but this specification will only be needed later on, in particular in 
Eq. (3.65). 

Consider a particle at point P in the original state, which is moved to point 
P' in the deformed state (Fig. 3.1). Denote the radius vector of point P by 

x = (xl , x2, x 3 ) ,  and of point P' by y = (yl, y2,  yi). The new position, given 
by vector y, depends on the initial position x, on the acting forces, physical 
properties of the continuum and the time between the original and new states. 
In this section, we shall study only the first dependence, i.e. we shall study the 
general relations which, under certain assumptions, must be valid between the 



coordinates of the new and original states. Thus, we shall study the vector 
function 

Y = Y(X) , (3. la) 
or in terms of components, 

In this chapter we shall always assume that there is a one-to-one 
correspondence between the original and deformed configurations, i.e. that the 
inverse 'function exists: 

x = x(y) . (3 -2) 

The displacement of a particle from an original to a deformed position can 

be described by the corresponding displacement vector u = (ul , u2,  u3)  , 

We shall usually consider the displacement vector as a function of the 
coordinates of the original state: 

In this case we speak of the Lagrangian description of motion. 
However, we can also express the displacement vector as a function of the 

coordinates of the deformed state: 

In this case we speak of the Eulerian description. This description is frequently 
used in hydrodynamics. Here we shall use the Lagrangian description, with 
exceptions in Section 3.4. 

We shall assume that the displacement vector and its Jirst derivatives are 
continuous functions of coordinates. These assumptions will simplify many 
mathematical considerations. 

In a neighbourhood of point P, let us consider another point, Q, which will 
be displaced to point Q' in the deformed state (Fig. 3.1). The radius vectors of 
points Q and Q' are x + Ax and y + Ay , respectively. Using the Taylor 
expansion, we get 



where j = l ,2, 3 .  
To simplify the formulae which follow, let us introduce Einstein's 

summation convention: If any suffix occurs twice in a single term, it is to be 
put equal to 1,2 and 3 in turn and the results added. For example: 

standard notation summation convention 

An index that is summed over is called a dummy index. Since a dummy index 
only indicates summation, it is immaterial which symbol is used. Thus, 
AxkAxk in the last example may be replaced by h i h i ,  etc. 

Using this summation convention and neglecting the higher-order terms in 
(3.5), we get approximately 

Let us briefly discuss the consequences of the mathematical assumptions 
adopted above. The continuity of displacement u guarantees that an originally 
continuous body will also remain continuous during the deformation. The 
continuity of duj  /axk  guarantees the existence of the total differential of the 
displacement. Consequently, formula (3.6) can then be made as accurate as 
required by choosing point Q sufficiently close to P. This formula will play an 
important role in the theory which follows. 

On the other hand, we should also mention some places where the 
assumptions of continuity are not satisfied, in particular: 

cracks, faults, cavities, etc. (discontinuity of u), 
contact of solid and liquid media (discontinuity of the tangential 
components of u), 

a discontinuities of material constants (discontinuity of d u j / d x k  ); 

specific phenomena, namely the reflection and transmission of elastic 
waves, occur at these discontinuities. 

3.3 Strain Tensor 

3.3.1 Tensor of finite strain 

If the displacement is known for every particle in a body, we can construct the 
deformed body from the original. Hence, a deformation can be described by the 



displacement field. However, the displacement vector describes the translation, 
rotation and pure deformation (strain) of the medium. But we are not interested 
in translation and rotation; these motions are studied in detail in the mechanics 
of rigid bodies. We are only interested in those quantities which characterise 
the strain. There are two approaches to obtaining these characteristics: 

1) subtracting the translation and rotation from the displacement; 
2) considering changes in distances. 
The first approach is convenient and simple if only small strains are 

considered (Bullen, 1965; Ewing et al., 1957). However, in the case of large 
deformations of a continuum, the separation of translation, rotation and pure 
strain ib the displacement vector is much more complicated (Novozhilov, 
1958). Although we shall not consider large strains in the following chapters, 
we shall use the second approach because this approach is more general. 

It is evident that the change in the size and shape of a body will be 
determined in full if the changes in the distances of two arbitrary points are 
known. However, it will be more convenient to consider the squares of these 
distances instead of the distances themselves; see the discussion in Subsection 
3.3.2. 

Denote the distance between points P and Q in the original state by @ 
(Fig. 3.1). The square of this distance can be expressed as (if the summation 
convention is used) 

-2 PQ = A X - A x = A x i A x i .  (3.7) 

It follows from the quadrangle PP'Q'Q and Eq. (3.6) that 

By comparing the beginning and end of this equation, we see that 

We shall omit suffix P hereafter. 
Introduce the Kronecker symbol (Kronecker delta) 

1 for i = j ,  

Then, for example, Axk = qk Axi . 
Formula (3.8) can then be expressed in components as 



Consequently, 

2 P'Q' =Ay*Ay=AykAyk = 

Note that we have used different dummy indices, i and j, in the latter formula. 
Let us introduce nine quantities so, referred to as the components of the 

tensor ofjinite strain, by the relation 

-2 2 Since PQ = AxiAxi = 4jAxiAx , and P'Q' is given by (3.1 I), we get 

2 -2 P'Q' - PQ = ~ E ~ ~ A ~ ~ A x ~  

Taking into account that 

. 

we arrive at the following formula for the components 
strain: 

of the tensor of finite 

(3.14) 

The set of nine elements zu constitutes the tensor of Jinite strain. This 
tensor is also referred to as Green's strain tensor or the Lagrangian strain 
tensor. This tensor is obviously symmetric, i.e. E~~ = co. Consequently, only 
six of its components are independent. Let us write out in full two components 
of this tensor: 

du2 duI duI du2 du2 du3 du3 + + - -  - 1  , etc. 
d x I d x 2  dx,  2x2 d x 1 8 x 2  

Since the derivatives of the displacement vector have been calculated at 
point P, see (3.8), we shall also regard components so as defined at point P, 
and speak of the tensor of finite strain at point P. 



Fig. 3.2. Deformation of the neighbourhood of point P. 

We are seeking quantities which describe all strains in a small vicinity of 
point P, i.e. the changes in distances of any two points fiom this vicinity. We 
have so far only considered the distances from point P. Therefore, let us now 
consider two points, Q and R, in a vicinity of point P, but different from P 
(Fig. 3.2). Let the particles which are at points P, Q and R in the original state 
be displaced to P ' ,  Q' and R '  , respectively. Let the position of point R 
relative to P be determined by vector Ap, and the position of R' relative to 
P'  by Aq . According to (3.8), 

The vectors between points Q, R and Q' , R' are (Fig. 3.2) 

respectively. By inserting (3.16) and (3.8) into As , we get 

We have arrived at the formula for As which is quite analogous to (3.8) for 
Ay . By performing an analogous derivation as above between (3.8) and (3.1 O), 
we would obtain 

-2 2 
Q'R' - QR = 2sgAriArj . (3.19) 

This means that the change in the distance (actually in its square) of two points, 
both different from P, is also described by quantities E~ defined at point P. 
Hence, we have proved that the tensor of finite strain at a given point describes 
the strain of the small vicinity of this point in fbll. 

As mentioned above, we could also describe the strain in Eulerian 

coordinates. The inverse relation (3.2), i.e. x = x ( ~ ) ,  yields 



where the higher-order terms have been neglected. By substituting 
xi = yi - ui , we get 

Then 

Introduce another tensor of finite strain, vg, by the formula 

-2 -2 
P'Q' - P Q  =2vqAyiAyj . 

We then arrive at 

This tensor is very similar to gg, but the sign with the last term is opposite. 

Tensor rl, is called Almansi's strain tensor or the Eulerian strain tensor. We 

shall not use this tensor here. 

3.3.2 Other strain measures 

We should not assume that Green's and Almansi's strain tensors, defined 
above, are the only ones suitable for describing deformation. They are, of 
course, the most natural ones because the squares of distances can simply be 
expressed by means of Pythagoras' theorem. However, there are also other 
possibilities. 

We can use the set of nine first derivatives of the displacement field, 
arranged into the "deformation gradient matrix" with elements ag = dui/dxj . 
The symmetric part of this matrix is the matrix of infinitesimal strain, which 
will be introduced below. 

Other strain measures are Cauchy's strain tensor, 

Finger's strain tensor 



and their analogues in Eulerian coordinates. These tensors may be convenient 
for some special purposes. 

We have mentioned these other strain measures only as examples, but we 
shall not use them here. For further details we refer the reader to Fung (1969). 
Now we shall return to the traditional approaches. 

3.3.3 Physical meaning of the components of the tensor of finite 
strain 

a) Interpretation of , E~~ and E~~ . 
Consider an elementary abscissa, PQ, which is parallel to the xl -axis in the 

original state, i.e. Ax = (Ax1 ,0,0) ; see Fig. 3.3. As Ax2 = Ax3 = 0 ,  Eq. (3.12) 
takes the simple form 

Consequently, 

x2 

Fig. 3.3. Physical meaning of . 

The relative extension of the abscissa PQ is defined by 

Using (3.23), this extension can be expressed as 

~~=d1+2q,-1. 



Hence, component q characterises the relative extension of an element which 
was originally parallel to the xl-axis. Analogously, components E~~ and E~~ 

characterise the extensions along the second and third axes, respectively. 

b) Interpretation of q 2 ,  c13 and ~ 2 3  . 
Now let us consider two perpendicular vectors in the original state, 

A X  = (Ax, 0, 0 and = (0, Ax2, 0) ; see Fig. 3.4. The corresponding 

vectors Ay(') and A ~ ( ~ )  in the deformed state have, according to Eq. (3.10), 
the following components: 

The scalar product of these vectors is 

Fig. 3.4. Physical meaning of c12 . 

Denote by y, the angle between vectors Ay(l) and A ~ ( ~ ) .  The angle 

a,, = 90" - 9 represents the change of the right angle (decrease of the right 
angle) due to deformation. The scalar product can also be expressed as 

Using (3.23) to express /Ay(')/ and / A ~ ( ~ ) /  , we arrive at 



Hence, component c12 characterises the change of the right angle between two 
line elements, one of which was parallel in the original state to the xl -axis, and 
the second was parallel to the x2 -axis. The physical meaning of the remaining 
components .q3 and ~ 2 3  is analogous. 

3.3.4 Principal axes of strain 

Let us study the geometric changes of an infinitesimal vicinity of a point due to 
deformation. It follows from definition (3.12) of the strain tensor that 

Let us assume that, in the deformed state, this vicinity takes the shape of a 
sphere of radius C, i.e. the points on the surface of the vicinity satisfy the 

condition IAy/ = C . Equation (3.30) then takes the form 

where Ag = qj + 2 ~ ~ .  Equation (3.3 1) is the equation of a quadric in variables 

Axl, Ax2 and Axj. If follows from the physical character of the problem that 
this quadric is an ellipsoid (generally a tri-axial ellipsoid). Thus, a sphere in the 
deformed state is obtained from an ellipsoid in the original state. 

The opposite statement also holds true, which could be proved by applying 
Almansi's tensor (3.20). Thus, an infinitesimal sphere in the original state 
changes due to the deformation into a tri-axial ellipsoid. The axes of the 
corresponding ellipsoid are called the principal axes of strain. These axes, 
being perpendicular in the original state, remain perpendicular also in the 
deformed state. 

3.3.5 Tensor of infinitesimal strain 

The tensor of finite strain, gv, contains products of the derivatives of the 

displacement vector, dui/dxj . These products represent non-linear terms, 

which complicate the solution of many problems. However, in many 
applications, these quadratic terms may be neglected. 

We shall assume hereafter that the derivatives of the displacement are small, 
i.e. 



so that their mutual products are small quantities of the second order, which 
may be neglected in comparison with the derivatives themselves. In this case, 
the tensor of finite strain so simplifies to yield the tensor 

which is called the tensor of infinitesimal strain 
strain tensor. In speaking of the strain tensor only, 
tensor of infinitesimal strain (3.33). 

or Cauchy's infinitesimal 
we shall have in mind the 

The components of strain tensor eo have a simple physical meaning. If sl 
is small and the higher-order terms are neglected, Eq. (3.25) simplifies to read 

Thus, in the case of small deformations, components e l l ,  e22 and e 3 ~  are 
equal to the relative extensions of the line elements which, in the original state, 
were parallel to the coordinate axes. 

Furthermore, for small deformations it follows from (3.29) that 

Consequently, sin a12 is small and may be approximated by a12, so that 

Thus, component e12 is equal to half the change of the corresponding right 
angle. 

It can also be proved that, on condition (3.32), the difference between 
Green's and Almansi's tensors disappears, so that we can put 

Let us return to Eq. (3.6), which describes the displacements in the vicinity 
of point P. The first term on the right-hand side, u j  (P) , can be interpreted as a 

du : 
component of the translation of the whole vicinity, and term LAxk 

ax, 
describes the rotation and deformation of the vicinity. Therefore, if derivatives 
8uj /8xk are small (as we assume here), not only the deformations of the 

vicinity, but also its rotations are small. In this case, tensor su may be replaced 

by eo.  In other words, we may replace tensor sV by eu if both the 
deformations and also the rotations are small; small deformations alone are not 
sufficient for this simplification. 



1 small force 

small deformation, but large 
rotation of this part of the bar 

Fig. 3.5. Defomlatiotl of a bar or plate. 

For example, small defornmtio~js of bars or plates (due to small stresses) 
cannot one11 be described by eY if the elements of the body are rotated through 
angles which are not small; see Fig. 3.5. This situation often occurs with "one- 
dimensional" bodies (thin bars) or "two-dimensional" bodies (plates). In these 
cases we must use the tensor of liilite strain cg, not the tensor of infinitesimal 

strain eg .  111 "tllree-dinlensiol~al" bodies, e.g., within the Earth, small 
defor~llations may be described by e i j ,  since they are usually associated with 
small rotations. 

Consider a small parallelepiped in the original state, the edges of which 
coincidc with the principal axes of strain. Denote the lengths of the edges by 
d, , d Z ,  d3 ,  respectively. The volunle of the parallelepiped is V = dld2d3. In 
the deformed state, these edges will again be perpendicular, and their lengths 
will be (neglecting higher-order terms) 

respectively. Therefore, the new voiume will be ' b 

The ~?olunze dilrrtafiorz (cubical dilatation), defined by 
I). 

then reads 
Q = el + ez2 t q3 . 

The theory of quadratic surfaces indicates that the sum e l l  -t ez2 + e33 is an 
invariant, i.e. a quantity which is independent of the choice of the coordinate 
system (the frame remaining orthogonal). Consequently, quantity 9 describes 



the relative change of an arbitrary infinitesimal volume which surrounds the 
considered point. 

Dilatation Sr allows us to divide the deformation into the volurninal and 
shape parts. In the obvious identity 

denote the individual terms on the right-hand side by 

These expressions yield 

1 
fii = f i l  + f22 + f33 =-$qi = $  7 (3.43) 

3 
and 

in view of (3.40). Thus, the voluminal changes are described by tensor hj.  
Tensor gij describes the changes when the volume does not change, i.e. this 

tensor describes the shape changes. Tensor g is called the deviatoric (or 

distortional) strain tensor. 

3.4 Stress Vector and Related Problems 

3.4.1 Body forces and surface forces 

In particle mechanics, we study two types of interactions between particles: by 
action at a distance and by collision. An analogous division of forces is 
convenient also in continuum mechanics. Therefore, we shall divide the forces 
acting in a continuum into two groups according to their "action radius": 

1) Body forces, also called voluminal forces, which have a large action 
radius. Examples of body forces are gravitational forces, electromagnetic 
forces, inertial force (in dynamic problems), and also fictitious forces in 
non-inertial reference frames (Coriolis and centrifugal forces). 

2) Surface forces, which have a small action radius. Examples of such 
forces are hydrostatic pressure, aerostatic pressure, and forces due to the 
mechanical contact of two bodies. 

This separation of forces facilitates the formulation and solution of many 
problems because: 



1) the effect of forces with a small action radius may be approximated by a 
surface integral (surface forces) instead of a more complicated volume 
integral; 

2) body forces vanish in some limits, e.g., in Eq. (3.55) given below. These 
forces may also be neglected in some problems, e.g., in many problems 
of elastic wave propagation. 

3.4.2 Stress vector 

A deformed continuum at rest resembles a rigid body. Therefore, we shall 
assume that some notions and equations from rigid-body mechanics can also be 
applied in continuum mechanics. However, these analogies will be no more 
than basic assumptions. This approach will only facilitate the formulation of 
the basic equations of continuum mechanics, but cannot be regarded as a 
derivation of these equations. Namely, the general equations of continuum 
mechanics cannot, in principle, be derived from more special equations for a 
rigid body or a mass point. The validity of the general equations can be verified 
only by comparing their solutions with experiments. 

Let us start with the description of the stress state in a continuum. Consider 
a point, P, and an element of a surface, AS, drawn through this point (Fig. 3.6). 
Denote the normal to dS at point P by C . Vector 3 enables us to define the 
positive and negative sides of the element AS (upper and lower sides in 
Fig. 3.6, respectively). 

Fig. 3.6. Stress vector. 

In analogy to the static equilibrium of a rigid body, we shall assume that, in 
a deformed continuum at rest, the effect of all surface forces exerted across the 
small element AS is statically equivalent to a single force AH, acting at point P 
in a definite direction, together with couple AG, acting also at P about a 
definite axis. 

Let us indefinitely diminish surface element dS by any continuous process, 
always keeping point P within the element. From physical considerations it 
seems reasonable to assume that, in ordinary materials, vector AH/& tends to 

a non-zero limit, T('), whereas vector A G / B  tends to the zero vector. The 
vector 



is called the stress vector or traction at point P; see Fig. 3.6. Note that the 

direction of stress T(") need not coincide with the direction of normal 3. 
Vector T(") is the vector acting on the unit infinitesimal surface, the normal of 
which is 3 . The stress at P varies, in general, with the direction of normal 3 .  

Vector T(") can be decomposed into a normal component (in the direction of 
3 )  and a tangential (shear) component, which is perpendicular to 3 . We then 
speak of normal and tangential (shear) stresses, respectively. 

Analogously, body forces acting in a vicinity of point P are assumed to be 
statically equivalent to force AK and couple AL, acting at point P. In 
diminishing the volume A V  of the vicinity to zero, we shall assume that force 
AK/AV tends to a non-zero limit, F, whereas couple AL/AV tends to the zero 
vector. Force F is the body force acting on the unit infinitesimal volume. 

Note that, in some problems, also the couples of body and surface forces are 
assumed to be non-zero. In these cases we speak of moment media. There more 
complicated models are sometimes used to describe media with a characteristic 
microstructure, such as some composite materials, fibreglass, and others. These 
models have also been used in some studies of mechanical processes in the 
vicinity of an earthquake focus. If these couples are non-zero, fwther terms 
must be added in the conditions of equilibrium and the equations of motion, 
given below. However, so far no fundamental application has been found for 
the couple-stress theory, hence we shall not discuss it fiu-ther in this chapter. 

3.4.3 Conditions of equilibrium in integral form 

It is well-known from rigid-body mechanics that a rigid body is in static 
equilibrium if the total applied force and total applied torque are zero. 

We shall assume that an arbitrary part of a continuum, in the deformed state 
at rest, is in equilibrium under the same conditions as if this part were a rigid 
body. This means that we shall express these conditions of equilibrium in the 
following form: 

where Vis the volume of the part of the continuum, S is its surface, T(") is the 
surface force acting from the side of the outward normal 3 ,  F is the body 
force, and y is the radius vector of the point under consideration (in the 
deformed state, i.e. the Eulerian radius vector). The first of these equations 
requires the resultant force to be equal to zero, and the second equation requires 
the resultant torque to be equal to zero. The validity of these equations will be 
discussed in the next subsection, together with the equations of motion. 



3.4.4 Equations of motion in integral form 

Using D'Alembert's principle, the equations of motion can easily be obtained 
from the conditions of equilibrium by adding the inertial forces. 

Consider any portion of a material body. Let the volume of this portion at 
any time t be denoted by V = ~ ( t )  . Let y be the radius-vector of a particle, v be 
its velocity, and p be the density of the material at the corresponding point. 
Integral 

P = fffpv d v  
v 

is the linear momentum, and 

is the angular momentum of this part of the body. Derivative dP/dt is the 
corresponding inertial force. 

Hence, by adding the inertial terms on the right-hand sides of Eqs. (3.46) 
and (3.47), we arrive at the equations of motion of a continuum in the form 

It should be noted that no demand was made on domain ~ ( t )  other than that it 
must consist of the same material particles at all times. Equations (3.48) md 
(3.49) are applicable to any material body which may be considered as a 
continuum. Boundary surface S may coincide with the external boundary of the 
body, but it may also include only a small portion thereof.. 

Equations (3.48) and (3.49) represent the linear momentum theorem and the 
angular momentum theorem, respectively, applied to an arbitrary part of a 
continuum in the deformed configuration. These equations are also referred to 
as the laws of motion of a continuum, since they are considered to be valid 
generally. 

In other words, we postulate that the general equations of motion of a 
continuum have the forms (3.48) and (3.49). (We ignore the possible couples of 
body and surface forces, if any). As mentioned in Subsection 3.4.2, these 
equations cannot be derived fiom the simpler equations of motion for a mass 
point or a rigid body, since the continuum is a more general medium. We have 
only used some analogies fiom rigid-body mechanics in seeking a probable 
form of the general equations. The range of validity of Eqs. (3.48) and (3.49) 
can be estimated only by comparing the results of the theory, based on these 
equations, with experiments. On the other hand, the equations of motion of a 



rigid body and of a mass point follow from the general equations (3.48) and 
(3.49) as their special cases. 

Continuum mechanics is founded on Newton's laws of motion, and the 
generalisation of these laws for a continuum was given by Euler already in the 
18th century. However, the forms of the equations of motion which are usually 
used in practice (see below) were derived much later. 

3.4.5 One property of the stress vector 

Consider a surface element, AS, in the interior of a body, and denote the 

normal to it by I (Figs. 3.6 and 3.7). Let T(+) = T( ') be the stress vector 
representing the action of material from the positive side of element A S  on the 

material on the negative side. Similarly, T(-) = T(-") denotes the action of 
material on the negative side of AS on that on the positive side. 

In view of Newton's third law, vectors T(+) and T(-) are equal in 
magnitude and opposite in direction: 

Another way of stating this result is that the stress vector is a function of the 
vector normal to a surface. When the orientation of the normal vector reverses, 
the stress vector reverses too. 

Fig. 3.7. Stress vectors acting on opposite sides of a surface. 

Moreover, formula (3.50) also follows from the equation of motion (3.48). 
To prove this, let us shift surface element AS by a small distance 6 in the 
positive and negative directions of normal G ,  and consider the "pill box" 
between these two parallel surfaces (Fung, 1969). If 6 shrinks to zero, while 
A S  remains finite, the volume integrals vanish, as well as the contribution of 
surface forces on the sides of the pill box. Equation (3.48) then implies, for 
small AS, that 

T(+)As+T(-)AS = o , 
which yields (3 SO). 



3.5 Stress Tensor 

3.5.1 Components of the stress tensor 

In the previous Section 3.4 we introduced the basic assumption that the action 
of forces with a small "action radius" (surface forces) across any infinitesimal 
surface element can be described by a stress vector. Thus, to describe the stress 
state at a point, it is necessary to know the stresses acting on all infinitesimal 
surfaces drawn through this point. This means that surfaces of any shape 
should be considered. 

To simplifl the problem, we shall further assume that we can restrict 
ourselves to plane surfaces only. Thus, we adopt another assumption that the 
stress state at a point will be described if the stresses acting on all plane 
infinitesimal surfaces drawn through this point are known. We shall show in 
Subsection 3.5.2 that, on certain continuity assumptions, it will be even 
sufficient to know these stresses only on three perpendicular plane elements. 
For this purpose, we shall introduce suitable notations here. 

Consider plane element AS which is perpendicular to the i-th coordinate 
axis, so that its normal 3 is parallel to the i-th axis, and has the same 

orientation as this axis. Let T(') = (?$'I, T$') , T ~ " ) )  be the stress vector acting 
on this plane element. Introduce a new notation, 

where i, j = 1,2,3 ; see Fig 3.8. The array of nine quantities 5 will be called 

the stress tensor, and the individual quantities % will be ca!!ed the components 

of the stress tensor. 

Fig. 3.8. Introduction of the components of the stress tensor. 

Let us repeat the meaning of the individual subscripts in component zij. 
Subscript i indicates that the corresponding plane element is perpendicular to 
the i-th axis, i.e. its normal G is parallel to the i-th axis. Subscript j denotes the 
j-th component of the corresponding force. For example, zll, z12 and z13 are 



the components of the force acting on a surface element which is perpendicular 
to the first axis. Note that, according to (3.50), the force acting on the 
"negative" side of this element has the opposite components, i.e. - zl - z12, 

-z13. 

3.5.2 Cauchy's formula 

Now, we shall show that the nine components of stress tensor 7ij are sufficient 

to describe the stress state at a particular point. Let us consider point P and an 
arbitrary plane element drawn through this point. Denote the unit vector which 
is normal to the element by G = (vl , v2, v3) . Construct a small tetrahedron with 
one vertex at point P, three faces parallel to the coordinate planes, and the 
fourth face perpendicular to C ; see Fig. 3.9. Introduce the following notations: 
a is the area of the face with normal G , i.e. the area of triangle ABC, h is the 

1 
distance of triangle ABC from vertex P, V = - ah  is the volume of the 

3 
tetrahedron, a*, a2 and a3 are the areas of the triangles which are 
perpendicular to the individual coordinate axes, i.e. the areas of triangles PBC, 
PCA and PAB, respectively. Assuming the normal G to be a unit vector, 
161 = I ,  we have ai = a v i ,  i = 1,2,3. 

Fig. 3.9. Tetrahedron used to decompose the stress vector. 

The condition of equilibrium (3.46) for the tetrahedron can be expressed as 

where by the integration over a we understand the integration over triangle 
ABC, etc. In the integrals over o, , a2 and 03 we have used the negative signs 
because the outward normals of the individual triangles are opposite to the 
orientation of the corresponding coordinate axes; see the definitions of vectors 

T(') , T ( ~ )  and T ( ~ )  in Subsection 3.5.1. The i-th component of (3 S2) is 



Assume that the body forces and surface forces are continuous functions of 
coordinates. Then, according to ' the mean value theorem, Eq. (3.53) can be 
expressed as 

where P, , PI, P2, P3 are points on surfaces o , a l ,  a 2 ,  o3 , respectively, and 

P* is an interior point of the tetrahedron. Using oi = a v ,  and dividing 
through by a,  we have 

Let the tetrahedron shrink towards point P so that point P is kept as a vertex, 
and the direction of normal 3 is kept fixed during this process. In the limit 
h -+ 0 ,  since the forces are continuous, all the points in Eq. (3.54) tend to point 
P and the body force vanishes. Hence 

( v) I;, (P) = zji (P) vj . (3.55) 

Omitting the letter P, we finally get 

Thus, the stress vector T(") acting on a surface element with unit normal G 
is completely determined by the components of stress tensor zj i .  
Consequently, the stress state at a point is described in full by the nine 
components zji . 

We shall derive below that the stress tensor is symmetric (if the body and 
surface forces couples are zero), i.e. z,j = zj i .  Consequently, Eq. (3.56) will 
usually be expressed as 

This formula is referred to as Cauchy's formula. 
Finally, note that the body forces have vanished in Eq. (3.55), since they 

decrease proportionally to the volume, i.e. as h3,  whereas the surface forces 

decrease as h2 .  Since the inertial force is a body force, Eq. (3.57) also holds in 
dynamic problems. 



3.5.3 Conditions of equilibrium in differential form 

The conditions of equilibrium in differential form can be derived from the 
integral conditions of equilibrium in several ways. In the elementary 
derivation, the equilibrium of an infinitesimal parallelepiped is usually 
considered (Fung, 1969). Here we shall give a shorter derivation which is based 
on the application of Gauss' theorem. 

Gauss' theorem can be expressed as 

where A is a continuous vector with continuous derivatives, and G is the unit 
outward normal. Denoting the radius vector by y = (yl, y2, y3) and using 
div A = d A j  /dy , we arrive at another form of Gauss' theorem: 

The i-th component of the integral condition of equilibrium (3.46) is 

or, using (3.56), 

Putting Aj  = zji and using Gauss' theorem (3.59), the surface integral in 

(3.6 1) may be expressed as a volume integral: 

Since the integrand in (3.62) is assumed to be continuous, and volume V is 
arbitrary, integral (3.62) will be equal to zero only if the integrand is also equal 
to zero (see the explanation below). This yields the condition of equilibrium in 
the form 

Let us explain how we proceed from Eq. (3.62) to Eq. (3.63) in greater 
detail. Denote the integrand in Eq. (3.62) by 



and assume that this function is continuous. Assume further that there is a point 
P where function f is non-zero, say, positive: 

Since f is continuous and positive at P , this function must also be positive in a 
certain vicinity of this point, V . However, any integral of a positive function is 
positive, so that 

This contradicts Eq.(3.62), which must be satisfied for any volume. This means 
that our assumption (3.64) is wrong, and we must put f = 0 everywhere, 
which yields Eq. (3.63). 

Now, let us consider the second integral condition of equilibrium, i.e. Eq. 
(3.47). For example, for the first component we have 

Rearrange the surface integral in this equation by means of Cauchy's formula 
(3.57), Gauss' theorem (3.59) and the condition of equilibrium (3.63): 

After inserting this expression into Eq. (3.65), since several terms vanish, we 
get 

As the stress tensor is assumed to be continuous, we arrive at 



From the second and third components of Eq. (3.47), we would obtain 
r13 = 231 and z12 = 221, respectively. Consequently, we arrive at the condition 
of symmetry of the stress tensor, 

Note that the stress tensor is not symmetric in moment media (media with a 
microstructure) because additional terms are present in the integral condition of 
equilibrium. 

We have seen that the integral condition of equilibrium (3.47) does not yield 
a new differential equation, but only the condition of symmetry of the stress 
tensor. Using this symmetry, the condition of equilibrium (3.63) can be 
expressed as 

dzij 
4 + - = O .  (3.68) 

2~ 

When the difference between the Lagrangian and Eulerian coordinates may be 
neglected (see the discussion in the next subsection), we can express the 
conditions of equilibrium also as 

The conditions of equilibrium are frequently used in this form. 

3.5.4 Equations of motion in differential form 

In deriving the differential conditions of equilibrium, we first modified integral 
conditions (3.46) and (3.47) to Eqs. (3.62) and (3.66), respectively. To derive 
the equations of motion in differential form, it would, therefore, be sufficient to 
modify the inertial terms on the right-hand sides of Eqs. (3.48) and (3.49) to 
similar volume integrals. In other words, we would need to interchange the 
order of the differentiation with respect to time t and the integration over 
volume V. However, special care should be paid to this step because volume V 
also varies with time t; see Fung (1969). To avoid this problem, we shall derive 
the equations of motion in differential form directly from the differential 
conditions of equilibrium by applying D7Alembert's principle to them. 

The inertial force per unit volume is 

p being the density, v the velocity, and t time. Assume that the time variations 
of density p may be neglected. Velocity v, in Lagrangian coordinates, is a 
function of the form v = v(xl , x2, x3, t) , where coordinates xl , x2, x3 describe 



the original position, i.e. they are independent of time t .  Consequently, the total 
derivative with respect to time is equal to the corresponding partial derivative: 

where u is the displacement vector. 
According to dYAlembert's principle, the equation of motion can be obtained 

from the condition of equilibrium, in our case from Eq. (3.68)' by adding the 
inertial force. Consequently, 

Since yk = xk + uk , the following relation holds between the derivatives of 
the stress tensor in Lagrangian and Eulerian coordinates: 

Assuming that the products of the derivatives are small and may be neglected, 
relation (3.73) simplifies to read 

This means that the difference between the Lagrangian and Eulerian 
descriptions vanishes in this case. 

The equations of motion of a continuum can then be expressed in the 
following final form: 

This is one of the most important equations in continuum mechanics, and the 
basic equation in the theory of elastic waves. 

To complete the description, let us also derive the equations of motion in 
Eulerian coordinates. The velocity of an element of a continuum in these 
coordinates is a function of the type 

The derivative of its i-th component with respect to time t is then 



Consequently, the equation of motion in Eulerian coordinates can be expressed 
as 

In the cases when the last term on the right-hand side may be neglected, this 
equation takes a form similar to Eq. (3.75). However, this last term cannot be 
neglected in many problems of hydrodynamics, which causes the 
corresponding equations to be non-linear and, consequently, difficult to solve. 

3.6 Stress-Strain Relations 

3.6.1 Rheological classification of substances 

We have not yet considered the relations between strain and stress, but such 
relations will be needed in solving the equations of motion. The relation 
between strain and stress depends on the type of substance and on many other 
factors. This is different for gases, liquids and solids, but there are great 
differences even between substances of the same phase. The study of these 
relations is the subject of rheology. The relations between strain and stress in 
real substances may be very complicated, so that various simplified models are 
introduced in rheology. 

Let us briefly describe the main properties of elastic, viscous and plastic 
substances. 

A substance is said to be elastic if the strain completely vanishes on removal 
of load. A special type of elastic substance is a linear elastic substance, in 
which the strain and stress are directly proportional. 

A substance is said to be viscous if any force, however small, produces 
strains in the substance which increase indefinitely with time. Hence, time 
enters into the relation between the strain and stress. Liquids are examples of 
such materials. A special type of viscous substance is the so-called Newtonian 
substance (Newtonian liquid), in which a linear relation exists between the 
stress and the rate of strain. 

A plastic substance starts to flow only when a certain stress limit is 
exceeded. Plastic behaviour is exhibited, e.g., by metals under very large 
pressure and by many macro-molecular materials. 

Many materials, such as asphalt, pitch, glass and others, exhibit intermediate 
properties between the properties of solids and liquids. A simple model for 
these materials is a visco-elastic substance, which combines the properties of a 
Newtonian viscous liquid and of a linear elastic material. We mention t h s  
model here, since some properties of rocks may also be described as properties 
of visco-elastic substances, e.g., the attenuation of seismic waves in rocks. 



However, hereafter we shall restrict ourselves only to a linear elastic 
continuum. 

3.6.2 Generalised Hooke's law 

The classical Hooke's law describes deformation only in the direction of the 
acting force. However, we have seen that strain and stress are complicated 
quantities of a tensor character. Therefore, we shall generalise the classical 
Hooke's law by assuming that a general linear relation exists between the stress 
and strain tensors: 

This relation is referred to as the generalised Hooke's law, and quantities Cw 

are called elastic coefficients. Relation (3.77) describes well the behaviour of 
many substances, such as crystals and many other anisotropic materials. As a 
special case, it also describes the properties of many isotropic substances. 

The total number of coefficients Cgk1 is 34 = 81. However, as a 

consequence of the symmetry of the stress and strain tensors, the number of 
independent elastic coefficients reduces to 6 x 6 = 36. Moreover, the elastic 
coefficients are also symmetric with respect to interchanging of the first and 
second pairs of the subscripts, i.e. Cijkl = Cklij, which follows from energetic 

considerations. In this way, the number of independent elastic coefficients 
reduces to 21. This number of elastic coefficients appears in the triclinic 
crystallographic structure. For crystals of a higher symmetry, the number of 
independent coefficients reduces further, so that the monoclinic structure is 
characterised by 13 independent elastic coefficients, rhombic by 9, and cubic 
by 3 independent elastic coefficients. 

An isotropic medium, which has the same properties in all directions, is 
characterised by 2 elastic coefficients. The Lam6 coefficients, il and p, are 
usually used in theoretical papers as these two coefficients. The generalised 
Hooke's law for an isotropic medium then takes the form 

where 9 = divu = el + e22 + e33 is the volume dilatation. Coefficient p can be 

identified as the shear modulus (rigidity), but coefficient il has no immediate 
physical interpretation. 

The independent elastic coefficients are usually sought by analysing the 
changes of these coefficients under various rotations of the coordinate fiame 
(Brdicka, 1959; Fung, 1965; PSencik, 1994). We shall not perform these 
tedious calculations here, but we shall only briefly derive Hooke's law for an 
isotropic medium in the form of (3.78). We shall start by assuming that the 
deformation of an isotropic body consists of two independent parts, namely of 
a dilatation part and a shearing part. This idea was adopted in the middle of the 
19'!' century on the basis of extensive experiments. 



We have proved that the tensor of infinitesimal deformations e, can be 
divided into dilatation and shearing parts, 

see Subsection 3.3.6. An analogous identity can also be applied to the stress 
tensor, 

2..  = p.. + q. .  
s 1J v y  (3.80) 

where 

According to these analogies we may expect stresses p, to produce changes of 

volume, and stresses q, to produce changes of shape. Therefore, we shall 

assume that two coefficients exist, kl and k 2 ,  where kl expresses the 
proportionality between the dilatation parts of the stress and strain tensors, and 
k2 expresses the proportionality between the shearing parts: 

p.. 9 = k ,  f q.. = k2g. .  s y  9 U '  (3.82) 

By inserting these expressions into Eq. (3.80) and using the definitions of fi,. 
and gY in Eq. (3.79), we obtain 

Introducing a new notation for the elastic coefficients, 

we immediately arrive at formula (3.78). 

3.7 Equations of Motion 

The general equation of motion (3.75) cannot be used in practice unless the 
relation between stress and strain is specified, e.g., in the form of the 
generalised Hooke's law (3.77). Here we shall specify the equations of motion 
for a homogeneous isotropic medium. 

3.7.1 Equations of motion for a homogeneous isotropic medium 

Insert Hooke's law for an isotropic medium, i.e. Eq. (3.78), into the equation of 
motion (3.75): 



d2u. 4 +'[nab, 8~ + p [ % + 3 j ] = p +  ax, dxi a t  . 

This equation is sometimes called the Navier-Green equation. 
For a homogeneous isotropic medium, i.e. assuming elastic coefficients il 

and p to be constant, we get 

Remember the following notations: 

where v2 is Laplace's operator. Equation (3.86) can now be expressed in 
terms of displacements as 

This equation represents the i-th component ( i  = 1,2,3) of the following vector 

By the Laplacian of a vector we understand the application of the Laplacian to 
the individual components, i.e. 

equation, 

However, it should be noted that such a simple definition of v 2 u  may be 
introduced only in Cartesian coordinates. For example, in spherical or 
cylindrical coordinates it has a more complicated form. 

d2u 
~ + ( / l + p ) ~ r a d d i v u + , u ~  u=p- 

a t2  
. (3.89) 



Equations (3.88) and (3.89) are the required equations of motion for a 
homogeneous isotropic medium. Further, if F is replaced by a body force, g, 
which is related to the unit mass, i.e. 

F = p g  , 
equation (3.89) takes the form 

This f o b  of the equation of motion is frequently used in the theory of seismic 
waves. 

3.7.2 Wave equations 

Let us derive two special forms of the equation of motion for a homogeneous 
isotropic medium, known as the wave equations. Neglect the body force F in 
Eq. (3.89),. which is acceptable in many problems of wave propagation. Apply 
the divergence operator to this equation and change the order of the derivatives 
in the second and third terms: 

d2 (div u) 
(A + ,u)div gad  divu + pv2 divu =p 

dt 

Since the Laplacian v2 = div grad, we arrive at a scalar wave equation for 
volume dilatation 9 = div u , 

where the velocity of propagation of dilatation changes (longitudinal waves, 
compressional waves) is 

Similarly, again put F = 0 ,  denote S2 = curl u and apply the operator curl to 
Eq. (3.89). We shall arrive at a vector wave equation, 

where the velocity of the propagation of distortion changes (transverse waves, 
shear waves) is 



It follows from these equations that two types of elastic waves can 
propagate in a homogeneous isotropic medium, namely longitudinal and 
transverse waves. We shall use wave equations (3.93) and (3.95) many times in 
the following chapters. 

3.8 A Review of the Most Important Formulae 

From the seismological point of view, let us summarise the most important 
formulae which have been derived in this chapter: 

the expression for the tensor of infinitesimal strain eV in terms of 
displacement vector u, 

e the equation of motion of a continuum, 

e the generalised Hooke's law, 

e the generalised Hooke's law for an isotropic medium, 

e the equation of motion for a homogeneous isotropic medium, 

the wave equations for a homogeneous isotropic medium, 



Chapter 4 

Separation of the Elastodynamic Equation in a 
Homogeneous Isotropic Medium 

In these lecture notes we shall restrict ourselves to media which are piecewise 
homogeneous and isotropic. Nevertheless, the equation of motion (3.89) for 
their homogeneous and isotropic parts is still rather complicated. This equation 
is more complicated than the equations which are traditionally solved in the 
courses of mathematical physics. The standard methods of solving partial 
differential equations, such as the separation of the individual variables, cannot 
be immediately applied to solve Eq. (3.89). We shall, therefore, attempt to 
express its solution as a sum of solutions of simpler equations. This can be 
accomplished, e.g., by introducing suitable potentials. 

Potentials are auxiliary functions which are frequently introduced in 
mathematics and physics to facilitate the solution of complicated problems. For 
example, the well-know gravitational and electrostatic potentials enable us to 
describe the corresponding fields by one scalar function instead of three 
components of intensity. The velocity potential in hydrodynamics, or the 
Lagrangian and Hamiltonian in analytical mechanics are examples of 
analogous auxiliary functions. Electromagnetic potentials make it possible to 
reduce Maxwell's equations to simpler equations in many problems. Similarly, 
we shall introduce elastodynarnic potentials in order to reduce the equation of 
motion (3.89) for a homogeneous isotropic medium to two simpler wave 
equations. 

Elastodynamic potentials are frequently used in studying Rayleigh waves, 
since these waves contain both longitudinal and transverse components of 
motion. However, Love waves can usually be studied directly in terms of 
displacements, because these waves are simpler than Rayleigh waves. 

4.1 Wave Equations in Terms of Potentials 

Consider the equation of motion for a homogeneous isotropic medium without 
body forces: 

a2u  
( I  +,n)gad divu + ,nv2u = p- . 

a t  

Assume that the displacement vector is continuous together with its first 
derivatives. This vector can then be decomposed into irrotational and 
solenoidal parts (Arfken, 1 WO), 



where 9 is a scalar potential and @ is a vector potential. By inserting this 
expression into the equation of motion (4.1) and interchanging the order of 
some operations, we obtain 

This equation will be satisfied if the expressions in the square brackets are 
constants. In a special case, when these constants are zero, we arrive at the 
wave equations 

where 

are the longitudinal and transverse wave velocities, respectively. This means 
that the scalar wave equation (4.3) describes longitudinal waves (compressional 
waves, P waves), and the vector wave equation (4.4) describes transverse 
waves (shear waves, S waves). 

Note that non-zero constants, which we have omitted in Eqs. (4.3) and (4.4), 
would describe static deformations of the medium. Since we shall not solve 
static problems, we shall consider the wave equations without these terms. 

4.2 Expressions for the Displacement and Stress in 
Terms of Potentials 

Various coordinate systems are used in the studies of elastic wave propagation. 
In studying plane waves or waves generated by line horizontal sources, 
Cartesian coordinates are usually used. Cylindrical coordinates are commonly 
used to describe waves generated by a point source in a layered medium, and 
spherical coordinates are used in many problems of wave propagation in 
spherical models of the Earth. 

Let us restrict ourselves to Cartesian coordinates only. We shall usually 
consider the coordinate axes x and y to be horizontal, the z-axis to be vertical 
and positive downwards (Fig. 4.1). 

Let u, v and w be the Cartesian components of displacement vector u, i.e. 

u = (u, v, w). According to (4.2), these components can be expressed in terms 
of potentials as 



Fig. 4.1. The usual orientation of the Cartesian system. 

In formulating boundary conditions, we shall also need the components of 
the stress tensor, rg.  For an isotropic medium, they are given by Hookeys law 
in the form of (3.78), i.e. 

r, = ~ $ 4 ~  + 2 p ,  . (4.7) 

In the following chapters we shall consider models with horizontal 
boundaries and interfaces, i.e. with planes which are perpendicular to the z- 
axis. The stress vector acting at these planes has components z,, , z, and z,, . 
For an isotropic medium, using (4.7) and (3.33), we obtain 

These stress components can be expressed in terms of potentials by inserting 
(4.6) into (4.8). However, we shall not need these general expressions, as we 
shall solve various special problems only. 

4.3 Special Expressions for Wave Fields Which Are 
Independent of One Cartesian Coordinate 

Very often a wave field is independent of one coordinate, say the y-coordinate. 
This means that, at a given time, the wave parameters are constant along any 
line which is parallel to the y-axis. The derivatives of all quantities with respect 
to y are then zero. This situation occurs, for example, if a plane wave with a 
constant amplitude propagates in an arbitrary direction in the (x, 2)-plane. 

Let us confine ourselves to this special case of the wave field being 
independent of the y-coordinate, Displacement vector u is then a function of 

the remaining two coordinates, x and z, and of time t, i.e. u = u(x, z, t )  . Putting 
all derivatives with respect to y equal to zero, displacement components (4.6) 
simplify to read 



The expressions for the stress components in terms of potentials can now be 
obtained by inserting (4.9) into (4.8). 

Equations (4.9) indicate that the elastodynamic potentials are now separated 
into two groups. Namely, potentials p and vy appear only in displacement 

components u and w, whereas ryx and vZ appear only in displacement 
component v. Consequently, the wave motion in the (x ,  2)-plane, described by 
components u and w, is now quite independent of the motion which is 
perpendicular to this plane. Thus, we can decompose the wave field into the 
corresponding two parts and investigate them separately as two independent 
wave phenomena. 

Now, express vector potential @ as a sum of two vectors, 

The displacement vector can then be expressed as 

U = u p - s v  + U s H  7 

where 

u p-sv = (u, 0, v) = grad p + curl YSv , 

... 
usx = (0, v, 0) = curl y s ~  . 

Vector represents a wave motion polarised in the (x, z)-plane and 

consisting of a longitudinal wave (P wave, described by potential 9) and a 
transverse wave polarised in this vertical plane (SV wave, described by 
potential wy) .  Vector U S H  represents a transverse wave polarised in the 
horizontal plane parallel to the y-axis. 

Let us summarise the corresponding formulae for the P-SV and SH 
problems. 

4.3.1 P-SV problems 

The solutions of P-SV problems are frequently formulated in terms of 

potentials, i.e. in terms of potentials p and GSv = (0, y/, , 0) . Omitting the 

suffices SV and y, we shall express the potential for the SV waves simply as 

J = (0, y, 0). Potentials 9 and ylmust satisfy the wave equations 



Since we have put yx = yz = 0 ,  displacement components (4.9) simplify 
further to read 

By inserting these expressions into stress components (4.Q we get 

where we have substituted for v 2 ~  from wave equation (4.14a). 

4.3.2 SH problems 

In solving SH problems, we shall use displacement component v directly. This 

will be simpler than to use two potentials ylx and yz . Namely, if u = (0, v, 0) 
and &/dy  = 0, we get 

du 0 dw 
divu=-+-+-=0, 

dx dy dz 

and the equation of motion (4.1) for a homogeneous isotropic medium 
simplifies to the shear wave equation for component v: 

Hence, instead of the vector wave equation (4.4) for shear potential 1,2, it is 
sufficient to solve the scalar wave equation (4.17) for displacement v. 

The stress components now take the form 

4.4 Plane Waves 

It is well known that a general transient wave can be expressed as a 
superposition of harmonic waves by means of the Fourier integral. Moreover, 
cylindrical and spherical waves may be composed of plane waves by means of 
other integral transforms (Aki and Richards, 1980; Ewing et al., 1957; PSencik, 
1994). Consequently, we shall restrict ourselves to plane harmonic waves only. 



Fig. 4.2. Propagation of a plane wave. 

Consider a general expression for a plane harmonic wave, 

where q is a Cartesian component of the wave field (a component of 
displacement, stress or potential), A is its constant amplitude, w the angular 
frequency, t the time, s the distance along the ray from a reference wavefront, a 
the velocity of propagation. 

Fig. 4.3 Distance along a ray. 

Assume that the rays are parallel to the (x, z)-plane of a Cartesian 
coordinate system (Fig. 4.2). Consider the ray passing through the coordinate 
origin, 0. Denote by y the angle between the ray and the positive direction of 
the z-axis. Consider another point on this ray, P. Its distance from point 0 can 
be expressed as 

s=s l  +s2 =xsiny +zcosy ; (4.20) 

see the detail of triangle OPQ in Fig. 4.3. A plane harmonic wave, propagating 

in the (x, z) -plane obliquely downwards at angle y, can now be expressed in 
the well-known form as 



It can easily be verified that this function satisfies the scalar wave equation 
(4.3). Thus, plane waves represent simple solutions of the wave equations. 

We have denoted the velocity of propagation, i.e. the velocity along the 
rays, by a. Denote by c the apparent velocity with which the same wavefiont 
propagates along the x-axis (Fig. 4.4). Let the wavefiont pass through origin 0 
at time t  = to ,  and through points P and R at time t  = to + At .  It follows from 
triangle ORP that 

Consequently, 

Fig. 4.4. Relation between the apparent velocity, c, and the body wave 
velocity, a. 

Using (4.22), plane wave (4.21) can also be expressed as 

where f (i) = A exp(- iW 7) . Expression (4.23) has the form of a wave 

which propagates in the direction of the x-axis with velocity c, and whose 
amplitude varies with the z-coordinate. We shall usually express surface waves 
in this form. We shall also see that surface waves do not represent principally 
new types of waves, but only interference phenomena of body waves. The 
apparent velocity c of the body-wave propagation will be the velocity of the 
corresponding surface waves which propagate along the surface of the medium. 
Hence, formula (4.22) relates surface wave velocity c to the corresponding 
body wave velocity a. 



4.5 Surface Waves as Superpositions of Body Waves 

In the following chapters we shall study surface waves propagating in various 
types of media. We shall always seek the solution in the form of a surface 
wave, and substitute this form into the equations of motion and boundary 
conditions. These approaches are mathematically exact, but rather formal. 
Many readers would probably require a deeper physical insight into the 
problems. For this reason, we shall also interpret surface waves as a 
superposition of body waves. However, it should be noted that these 
superpositions may be rather complicated, because not only homogeneous 
body waves, but also inhomogeneous waves have to be usually included (see 
below). 

In this section we shall give a preliminary analysis of the problems which 
are common to all special cases studied in the following chapters. These 
remarks should reveal the physical mechanisms which lead to the formation of 
surface waves. 

Consider a layered medium consisting of homogeneous and isotropic layers. 

x y -plane, and the Let the surface of the medium coincide with the ( , ) 
interfaces of the layers be parallel to the surface (for details see Fig. 8.1). 
According to Snell's law, expression (4.22) remains constant even after the 
reflection and transmission of the ray at the interfaces: 

1 s h y l  sin y, -- - - - ... Y 

C "1 a m  

where the subscripts indicate the ordinal number of the layer. 
Consider the whole group of reflected and transmitted waves associated 

with a given plane wave. As a result of their interference, the wave field in each 
layer can be expressed as the sum of two body waves, one propagating 
obliquely downwards, and the other propagating obliquely upwards. The rays 
of the first wave in the m-th layer make angle y, with the positive part of the 
z-axis, and the rays of the second wave make the same angle with the negative 
part of the z-axis; see (4.24) and Fig. 4.5. As a generalisation of (4.21), the 
wave field in the m-th layer can be expressed as 

where 
W W 

-i-zcos y,, i-z cos y,, 
f, (z) = A; e + A, e , (4.26) 

and c is given by (4.24). We have denoted the amplitude of the downgoing 

wave by A;, since its direction of propagation has a positive z-component. 

Analogously, the amplitude of the upgoing wave has been denoted by A,.  



From (4.23) and (4.25) we see that a single plane wave, as well as the wave 
field produced by this wave in a layered medium, are described by similar 
formulae, which differ only in the depth-dependent amplitudes. 

Fig. 4.5. Two systems of waves in the m-th layer. 

It follows fiom (4.25) that the harmonic waves interfering in each layer form 
a wave which propagates along the x-axis. Since the velocity c along the x-axis 
is the same in all layers, as a consequence of Snell's law (4.24), we obtain a 
plane harmonic wave in the whole layered medium, which propagates in the 
direction of the x-axis. However, the amplitude of the resultant wave varies 
with depth z, see (4.26). Moreover, if total reflections occur at some of the 
interfaces, the energy of the waves propagates in a waveguide along the 
surface. We then speak of a surface wave. 

Snell's law (4.24) can be generalised to any vertically inhomogeneous 
medium, where velocity a is a general function of depth z, a = a(z) . Then 

and the above interpretations of surface waves can also be extended to this type 
of medium. Note that quantity p = l/c is called the parameter of a seismic ray. 



Chapter 5 

Rayleigh Waves in a Homogeneous Isotropic 
Half-Space 

Consider a homogeneous, isotropic and elastic half-space. Let a be the 
longitudinal wave velocity, ,tl the transverse wave velocity, p the density and 

p = pa2 the shear modulus in this half-space. Assume the surface of the half- 
space to be free, i.e. without stresses. Introduce a Cartesian coordinate system 

whose (x, y )  -plane coincides with the surface of the medium, and the z-axis is 
positive downwards (into the medium, Figs. 4.1 and 5.1). 

Rayleigh (1887) investigated the problem whether there may be a wave 
which propagates along the free surface of the half-space, and its amplitude 
becoming negligible at a distance of few wavelengths from the free surface. He 
proved theoretically that such a wave can exist. This wave, since called the 
Rayleigh wave, is polarised in the plane which is determined by the normal to 
the surface and by the direction of propagation. For historical remarks we refer 
the reader to Chapter 2 and to the proceedings by Ash and Paige (1985). Here 
we shall perform the corresponding derivation using elastodynamic potentials. 

direction of 
propagation 

Fig. 5.1. Particle motion in the 
Rayleigh wave. 

The formulae which will be derived in Sections 5.1 and 5.2 have a more 
general validity; we shall also use them in some sections below. The concrete 
situation for a half-space will be specified by the boundary conditions in 
Section 5.3. 

5.1 Potentials for a Plane Harmonic Rayleigh Wave 

Consider the potential for longitudinal waves, q, and the potential for 

transverse waves, t+? = ( 0 ~ 1 ,  0), in the form of plane harmonic waves 
propagating in the x-direction with an identical, but unknown velocity, c: 

where w is a given angular frequency, f (z) and g(z) are unknown functions, 
describing the depth-dependent amplitudes (see Section 4.5). 



We do not know in advance whether the solution of ow problem may be 
sought in the form of (5.1). This must be verified by inserting these expressions 
into the wave equations and boundary conditions. However, if these equations 
and conditions are satisfied, we shall conclude that the corresponding surface 
wave can exist. 

Potentials (5.1) must satisfy the following wave equations: 

Inserting expressions (5.1) into these partial differential equations, we obtain 
ordinary differential equations for unknown functions f (z) and g(z) : 

These equations resemble the equation of a harmonic oscillator. Hence, their 
general solutions can be expressed as 

where k = w/c is the wave number of the surface wave, 

and A-, A+ ,  B-,  B+ are arbitrary constants which must be determined fkom 
the boundary conditions. We have thus arrived at the potentials for plane 
harmonic Rayleigh waves in the form 

It will also be convenient to express these potential simply as 

q I = @ - + O f ,  r y = y - + y + ,  
where 

ibz i(wt-kx) @- = A-e e , Y- =B-e iksz e i(wt-kx) , 



Let us interpret velocity c as the apparent velocity with which the wavefiont 
of a plane longitudinal wave propagates along the x-axis (Fig. 4.4). This body 
wave propagates (along the ray) with velocity a,  and makes angle 5 with the z- 
axis. According to (4.22), this angle is given by 

Inserting this expression into r, one gets r = cot<. Potential 0- of the 
longitudinal wave can then be expressed as 

x sin &-z cos t  

0- = A-e (5.9) 

see similar expressions (4.25) and Fig. 4.5. This body wave propagates 
obliquely upwards, so that its direction of propagation has a negative z- 

component. Consequently, we have denoted its amplitude by A- and its 

potential by 0- . Potential 0' can be expressed as 

xsinc+zcosf 

0' = A'e 1 
which describes a wave propagating obliquely downwards. Formula (5.7a) thus 
represents the decomposition of surface wave (5.6a) into two body waves. A 
similar interpretation can be given for potential y. 

5.2 Displacement and Stress Components 

By inserting potentials (5.7) and (5.8) into displacement components (4.15), 
one gets 

Denote 

y = 2(p/c)' , 6 = y - 1 . 

The following expressions, appearing in the stress components, can then be 
simplified as follows: 



Stress components (4.16) can then be expressed as 

5.3 Boundary Conditions 

We shall require the following boundary conditions to be satisfied: 
1) The surface of the medium is free (the stress components vanish there), i.e. 

- - r,, - rzy - rzz = 0 for z  = 0 . (5.14) 

Note that 2 ~ y  = 0 identically in this case. 
2) The amplitudes diminish to zero at large distances from the surface, i.e. 

f  ( z )  -+ 0 , g(z)  -+ 0 for z  -+ co . (5.15) 

We impose this condition so that the resultant wave has the character of a 
surface wave. 
Let us begin with the analysis of the second boundary condition. If c > a 

and c > p, radicals r and s are real, so that amplitudes f ( z )  and g(z) are 
oscillating functions for z  + a .  This is inconsistent with boundary condition 
(5.15). Consequently, we must assume c < a and c < P ,  which yields 
imaginary values of r and s. Let us choose the positive imaginary values of 
these radicals: 

Then 
-kraz f ( z ) = A - e  + ~ + e " * ' ,  g(z)  = B-~-"*z  + ~ ' e " "  . (5.17) 

The terms containing A- and B- decrease exponentially as z  -+ a , which 

satisfies conditions (5.15). However, the terms with A+ and B+ increase to 

infinity, which is physically implausible. Thus, we must put A+ = B+ = 0 .  

Putting simply A = A- and B = B- , we have 



Hence, we have arrived at the conclusion that the longitudinal and transverse 
waves forming our surface wave are inhomogeneous (exponentially decreasing 
with distance from the surface). 

Omitting the equations v = 0 and zT = 0 ,  which are satisfied identically, 
displacement components (5.1 1) now become 

and stress components (5.13) take the form 

where @- and Y - are given by (5.1 8). 
Boundary conditions (5.14) at z = 0 yield the equations 

This is a homogeneous system of equations (their right-hand sides are equal to 
zero) for the unknown amplitudes A and B. 

5.4 Velocity of Rayleigh Waves 

The system of Eqs. (5.21) has a non-trivial solution if the corresponding 

determinant is equal to zero. This yields, after multiplying by (4Jy 2 ) ,  the 
Rayleigh equation, 

where we have substituted for r* and s* from (5.16). After rationalisation, 

quantity (~18)~ can be factored out, and the Rayleigh equation takes the form 

This equation has a solution c = 0 ,  which describes a static situation. We are 
not interested in this solution. Thus, the expression in the square brackets in 
Eq. (5.23) must be equal to zero: 



Consider a very important special case of Poisson's relation, A = p .  Then 

a = &O, and Eq. (5.24) becomes 

This equation represents a cubic equation in the unknown c2 /p2  . It could be 
solved, e.g., by applying Cardan's formulae. However, it can easily be verified 

that one of the roots is ( c / ~ ) ~  = 4 . Consequently, Eq. (5.25) can be expressed 
as 

This equation has three real roots (c/,B)~ = 4 ,  2 + 2/&, 2 - 2/&. The first 
two of these roots do not satisfy the condition for the decrease of amplitudes 
with depth, i.e. the condition c < P .  These roots do not satisfy the original Eq. 
(5.22), as they are the result of squaring this equation (they satisfy this equation 
except for a change of sign). The last root yields the velocity 

which satisfies all requirements. 
Hence, the equations of the theory of elasticity (the wave equations and the 

boundary conditions at the free surface and at infinite depth) admit the 
existence of a surface wave which propagates along the surface with velocity 
c c p < a,  and which is polarised in the vertical plane passing through the 
direction of propagation. This wave is referred to as the Rayleigh wave. 

5.5 Polarisation 

Root ( c / ~ ) ~  = 2 - 2/&, i.e. velocity (5.27), yields 

and the first of Eqs. (5.21) becomes 



Introducing a new amplitude factor D = k4 , displacements (5.19) take the 
form 

= -iD(e-0.847kz - 0.577 e-0.393kz i(wt-kc) 
)e Y 

(5.30) 

w = D(- 0.847 e -0.393kz ei(wt-kw) -0.847 + 1.468 e ) 

The motion at the free surface (z = 0) is then 

which shows that the ratio of the vertical amplitude to the horizontal is 
approximately 3 : 2 . As mentioned in Chapter 2, this result was not confirmed 
on the first seismograms, which caused problems in their correct interpretation. 

Retaining the real parts of Eqs. (5.31), the displacement components at the 
free surface are 

This means that the Rayleigh wave is elliptically polarised, the motion being 
retrograde, i.e. in the anti-clockwise direction when the wave propagates from 
left to right (Fig. 5.1). Note that the particle motion in waves on water is 
opposite, i.e. prograde. 

The velocity of Rayleigh waves in a homogeneous isotropic half-space is 
constant, independent of frequency. We then say that the wave is non- 
dispersive. From the point of view of dispersion, Rayleigh waves in a 
homogeneous isotropic half-space represent an exceptional case of surface 
waves. We shall see below that surface elastic waves in more complicated 
media are usually dispersive, i.e. their velocity is dependent on frequency. 

5.6 Non-Existence of Love Waves in a Homogeneous 
Half-Space 

To complete the discussion of surface elastic waves in a homogeneous half- 
space, we should verify whether a surface wave of the SH type can propagate in 
this medium. Thus, let us consider the displacement vector in the form 



The wave equation (4.17) for transverse waves and the condition at infinite 
depth then yield 

v = A e  -h*zei(mt-kx) . , 

see the analogous expressions (5.18). For the stress component .t, we get 

However, the boundary condition at the free surface, i.e. t, = 0 for z = 0 ,  
yields A = 0 .  

Hence, no surface wave of the Sf? type can propagate in a homogeneous 
half-space. This was another controversy with real seismograms, as we have 
mentioned in the historical review in Chapter 2. To explain the presence of 
Love waves on seismograms, it was necessary to consider more complicated 
models of the medium. 



Chapter 6 

Love Waves in a Layer on a Half-Space 

Consider a medium which consists of a homogeneous and isotropic layer of a 
constant thickness, lying on a homogeneous and isotropic half-space. Assume 
the layer and the half-space to be perfectly elastic and a welded contact to exist 
between them (Fig. 6.1). Denote by f i  the velocity of shear waves, pl the 

density and ,q = pig the shear modulus in the layer, by a, fi and the 
corresponding parameters in the half-space, and by H the thickness of the layer. 
Assume the velocity in the layer to be lower than that in the half-space, i.e. 
f i  < A .  Introduce again a Cartesian coordinate system whose (x, y)-plane 
coincides with the surface of the medium, and the z-axis is oriented into the 
medium (downwards). 

We wish to find out whether surface waves of the SH type can propagate in 
this medium. In other words, we are seeking surface waves which are polarised 
in the horizontal plane perpendicularly to the direction of propagation. 

Fig. 6.1. Model 
half-space. 

of a layer on a 

6.1 Expressions for Displacements 

Consider a plane harmonic wave which propagates along the x-axis, is 
polarised along the y-axis, and its amplitude varies generally with depth z. 
Denote by w its angular frequency (a given value), and by c its velocity of 
propagation along the x-axis. We consider velocity c to be unknown, but the 
same in the layer and in the half-space; see the discussion in Section 4.5. Thus, 
assume the displacement vectors in the layer, ul  , and in the half-space, u2 ,  to 
be of the form 

u .  = ( u .  ,, v .  , Y  w. ) i = l , 2  , (6.1) 
where 

Ul =u2 =w1 =w2 = o ,  (6.2) 



These displacements must satisfy the equation of motion (4.1) for a 
homogeneous and isotropic medium. However, in view of the special form of 
these displacement vectors, the equation of motion reduces to the wave 
equations (4.17) for transverse waves: 

By inserting displacements (6.3) and (6.4) into these wave equations, we obtain 
the following ordinary differential equations for the unknown depth-dependent 
amplitudes f (z) and g(z) : 

see analogous equations in Chapter 5. The general solutions of Eqs. (6.6) can 
be expressed as 

where k = w/c is again the wave number of the surface wave, 

and A, B, C, D are arbitrary constants which must be determined from the 
boundary conditions. Thus, 

6.2 Boundary Conditions 

Now we shall add boundary conditions, which determine the properties of the 
wave field at the boundaries. We shall consider the following boundaries and 
conditions, which must be satisfied at any place of the corresponding boundary 
and at every time: 
1) Surface of the medium, z = 0 .  We assume the surface of the medium to be 

free, i.e. all stress components vanish there, see (5.14). Since now 
z, = z,, = 0 identically in view of (4. IS), we have just one condition: 

for z = O ,  



where ( T ~ )  denotes the stress component in the layer. 
1 

2) Interface between the layer and half-space, z = H. We require all 
displacement and stress components to be continuous across this interface. 
The continuity of displacements follows from the assumption of the welded 
contact between these media, and the continuity of stresses follows fiom the 
property (3.50) of the stress vector. Since displacements (6.2) are zero, and 
displacements vl and v2 are independent of y, see (6.3) and (6.4), we need 
consider only the following two conditions: 

vl = v2 for z = H , (6.11) 
and 

=(Tv)2 for Z = H  . 

The latter condition yields 

a 1  a 2  
H x ' P 2 - & -  for z = H . 

3) Inznite depth, z -+ oo . We shall require the displacement to diminish to zero 
at large depths, i.e. 

v2(z)+0 for z-+oo.  (6.13) 

This condition guarantees that the wave under consideration will have the 
character of a surface wave. 
First, let us consider the last condition (6.13) at infinite depth. If c > fi , 

radical s2 is real, and g(z) is an oscillating function. This contradicts 
condition (6.13). Consequently, we must assume c < A ,  which yields the 
imaginary value of s2. Assume this radical to have a positive imaginary part: 

The first term in g(z) then tends to zero for z -+ oo, whereas the second term 
increases exponentially. Therefore, in order to satisfy boundary condition 
(6.13), we must put D = 0 . Thus, 

2 
Note that had we chosen the opposite sign in (6.14), i.e. s2 = -id1 - (CIA) 
we would have had to put C = 0 ,  and D would be non-zero. 

The boundary condition at the free surface, Eq. (6.10), is satisfied if 
d f l d z  = 0 for z = 0 , which yields A = B . Consequently, 



where we have introduced a new constant E = 2 A .  
The remaining boundary conditions (6.1 1) and (6.12) now yield 

where 
Q = h , H  

Equations (6.17) represent two equations for the unknown coefficients E and B. 
Another quantity, which still remains to be determined, is velocity c. 

6.3 Dispersion Equation and Its Solutions 

Equations (6.17) represent a system of two homogeneous equations (their right- 
hand sides are zero). Such a system has a non-trivial solution if the 
corresponding determinant is zero. This yields the equation 

By returning to the initial notations, this equation can be expressed as 

Hence, the condition of the existence of a non-trivial solution yields the 
equation for determining velocity c. We have thus proved that surface waves of 
the SH type can propagate in a medium consisting of a layer on a half-space, 
and their velocity c is given by Eq. (6.20). These transversally polarised surface 
waves are called Love waves. 

Since Eq. (6.20) also contains angular frequency w, velocity c depends not 
only on the parameters of the medium, but also on frequency. This means that 
Love waves propagating in a layer on a half-space are dispersive. Equation 
(6.20) represents the well-known dispersion equation (dispersion relation, 
period equation) for Love waves in this model of the medium. 

The curve showing the dependence of velocity on frequency (or period) is 
called the dispersion curve. Since dispersion equation (6.20) contains a 
periodic function (function tangent), the number of branches of the 



corresponding dispersion curves is infinite. The individual waves are called 
modes of the surface wave. 

This situation can be demonstrated better on the equation which is inverse to 
(6.20): 

where n = 0,1,2, . . . . Note that values n < 0 do not satisfy this equation, 
because' its left-hand side is positive. The branch for n = 0 is called the 
fundamental mode, the branch for n = 1 is the first higher mode, etc. The 
fundamental and higher modes of surface waves are analogous to the 
fundamental tone and overtones in acoustics. 

Dispersion equation (6.20), resp. (6.21), represents an implicit equation in 
velocity c. This is a transcendental equation which must be solved, for a given 
model of the medium and a given angular frequency, by a numerical method. 

Velocity c, considered above, is called the phase velocity. We shall see later 
that this velocity is not sufficient to describe the wave propagation in 
dispersive media. Another velocity, called the group velocity, must also be 
introduced. Namely, if two harmonic waves with different frequencies interfere 
in a dispersive medium, the carrier wave then propagates at one velocity (phase 
velocity), and the modulation wave propagates at another velocity (group 
velocity). The phase velocity thus describes the propagation of the individual 
peaks and troughs of a wave. It can be shown that the group velocity describes 
the propagation of energy. We shall discuss these problems in detail in 
Chapter 1 1. 

The group velocity, U, is given by 

Its reciprocal value is 

which yields 

In order to compute the group velocity by means of this formula, the derivative 
d c/d w must be determined by numerical differentiation, or by some analytical 
method. We shall return to this problem at the end of this chapter. 

Figure 6.2 shows the dispersion curves of Love waves for a simple model of 
the Earth's crust and upper mantle with the parameters: 



where pl and fi are the densities in the layer and in the half-space, 

respectively. The corresponding shear moduli are ,q = p,a2, i = 1,2. 
It can be shown that dispersion equation (6.20) has real roots c only within 

the interval 4 5 c I & ; see Fig. 6.2. These modes with real phase velocities 
are called normal modes. 

However, the higher modes have continuations also for Icl> &, but the 
roots are complex. The imaginary part of the corresponding phase velocity 
describes the leakage of energy from the layer into the half-space, which causes 
an exponential decrease of amplitudes with increasing distance x. These waves 
are thus called leaking modes; see Section 2.5. 

Fig. 6.2. Velocities of Love waves in medium (6.24) as functions of period T. 
Curves co and Uo are the phase and group velocities for the fundamental 
mode, cl and U1 for the first higher mode, and c2 and U2 for the second 
higher mode. (After Novotny (1 972)). 

6.4 Derivation of the Dispersion Equation from the 
Condition of Constructive Interference 

We shall show that the dispersion equation (6.20) for Love waves in a layer on 
a half-space can also be derived from the condition of constructive interference 
of SH waves which propagate in the layer by multiple reflections (see, e.g., 
Savarensky (1 975)). 

Consider the same elastic medium as shown in Fig. 6.1, and a plane 
harmonic SH wave propagating in the layer by multiple reflections (Fig. 6.3). 
Assume that the angle of incidence, yl : is large enough, so that total reflections 
occur at the bottom of the layer. The wave energy is then confined to the layer. 



Consider the wavefront passing through points A and D, and calculate the 
phase difference between these points when the wave propagates along path 
ABCD. Let the displacement at point A be a harmonic motion of unit 
amplitude, 

V ( A )  = eiwt . (6.25) 

At point D the wave has the amplitude 

where V(B)  and V(C) are the reflection coefficients at the corresponding 
points, and L is the length of path ABCD. 

We shall first derive the formulae for the reflection coefficients. 

Fig. 6.3. Interference of SH waves in a layer. 

6.4.1 Reflection and transmission of SH waves 

Let us consider two homogeneous isotropic half-spaces in a welded contact. 

Let the (x, y)-plane coincide with the interface between the half-spaces 
(Fig. 6.4). Denote the shear-wave velocity and shear modulus in the first half- 
space by & and ,q , respectively. The corresponding parameters in the second 
half-space are and ,u2 . 

Consider a plane harmonic SH wave propagating in the first half-space and 
incident at the interface at angle yl . Without loss of generality, we may put its 
amplitude equal to unity. The displacement vector for the incident wave is then 

u = (0, v, 0 )  , where 

w being the angular frequency, and t the time. 



Fig. 6.4. Reflection and transmission of an SH wave. 

Assume that this incident wave generates a reflected SH wave and a 

transmitted SH wave. Denote the angles of reflection and transmission by y; 
and y2 , respectively. The displacement vector for the reflected wave, u R  , and 
for the transmitted wave, uT , can then be expressed as 

( x sin y2; cos y2 
iw, t- 

U T  =(o, VT, o), V T  =we 

W R  and, wT being the angular frequencies of the corresponding harmonic 
waves. 

The resultant displacement in the first half-space is composed of the incident 
and reflected waves, ul = u  + u R ,  and the displacement in the second half- 
space is formed by the transmitted wave only, u2 = u T .  For their non-zero 
components, i.e. the y-components, we get 

( x nin y2; con y2 
iwr t -  

v2 = VT = We 

As boundary conditions, we shall require the continuity of all displacement 
and stress components at the interface. The continuity of displacements now 
reduces to the condition 

vl = v2 for z = 0 , (6.30) 
which yields 



x sin yl x sin y2 

e = We (6.3 1) 

Since this condition must be satisfied at any instant of time, the angular 
frequencies of all waves must be identical, i.e. w~ = wr = w . Moreover, this 
condition must be satisfied at any point of the interface, i.e. for all values of x. 
Consequently, the exponential factors in (6.3 1) must be identical, which yields 
Snell's law: 

sinyl siny; sin y2 ----- - - 
Pl P2 a 

(6.32) 
PI 

In particular, the angle of reflection must be equal to the angle of incidence, 

y; = yl . Boundary condition (6.31) then simplifies to 

The continuity of the stress vector across the interface can be expressed as 

a1 a 2  
PI - = P2 for z = 0 

dz 

By inserting displacements (6.29) into this equation, and taking into account 
(6.32), we obtain 

Equations (6.33) and (6.35) represent two equations in two unknown 
coefficients, namely reflection coefficient V and transmission coefficient W. 
Their solution yields 

,/- - ,u2 Jxz&- 
(6.36) 

where we have substituted for cos y2 from Snell's law, 

and introduced the corresponding refraction index, n = f i  /& . 



In the next subsection we shall need the reflection coefficients for two 
special cases, namely for total reflection and for the reflection at a free surface. 
Let us derive the corresponding formulae for these cases. 

a) Total refection. Assume the velocity in the second half-space to be 
higher than that in the first half-space, i.e. 4 < and n < 1 . Let the angle of 
incidence yl exceeds the critical angle y, = arcsinn . In this case, 

The positive sign on the right-hand side yields a transmitted wave whose 
amplitude indefinitely increases as z -+ co. Therefore, we must choose the 
negative sign: 

Ir sin yl = -z .Jn sin yl - n . (6.39) 

This yields the transmitted wave which exponentially decreases with depth z. 
Such waves are called inhomogeneous waves, or evanescent waves. 

Inserting (6.39) into reflection coefficient (6.36) yields 

This coefficient is of the form 

where a = and b = ,u2 \I-. It is now evident that the 

absolute value of the reflection coefficient is equal to unity, I v ~  = 1, which 
indicates that total reflection occurs. The reflection coefficient can now be 
expressed as 

V = em , (6.42) 

where the phase shift, denoted by 29, satisfies the formula 

The effect of the phase shift is to increase the time factor fiom t to t + 29/w, 
regardless of the choice of axes and direction of propagation. Formula (6.43) 
can be replaced by a simpler one. It follows from trigonometry that 



sin 2 9  2 sin p cos p 
tan2p = - - - 2 2 .  (6.44) 

~ 0 ~ 2 9  cos p -sin p 

Formulae (6.43) and (6.44) have a similar structure, so that we may put 
a = cosp , b = sin p . Angle p is then given by 

Hence, the reflection coefficient of SH waves for overcritical reflections 

( y l  > y, ) is given by formulae (6.42) and (6.45). 
b) Reflection at a p e e  surface. If the second medium is the vacuum, then 

p2 = 0 and reflection coefficient (6.36) becomes unity, 

Now it follows from (6.29) that the amplitude of the resultant motion at the free 
surface is twice as large as that of the incident wave. 

6.4.2 Condition of constructive interference 

The reflection coefficient at point B in Fig. 6.3 is given by (6.42) and (6.45), 
and the reflection coefficient at the free surface is equal to unity. Thus, 
displacements (6.26) can be expressed as 

where p is given by (6.45). 
The constructive interference at wavefront AD occurs if the interfering 

waves are shifted in phase by an integer multiple of 2n, i.e. when the phases at 
points A and D differ by this value. Using (6.25) and (6.47), this condition can 
be expressed as 

wL 
- 2 p + - = 2 n n ,  

PI 
(6.48) 

n being an integer. 
Express length L in terms of the angle of incidence, yl , and the thickness of 

the layer, H. Since the length of path ABCD is equal to the length of BCE 
(Fig. 6.3), 

- - 
L =  BC+CE . (6.49) 

It follows from Fig. 6.3 that 



From triangle BCE, since the angle at vertex C is 2yl, we get 

Consequently, 

Equation (6.48), after dividing through by two, can now be expressed as 

Taking the tangent of both sides of this equation, and substituting from (6.45), 
we get 

For a given model of the medium and a given angular frequency w, this 
equation determines the angle of incidence, yl ,  for which constructive 
interference occurs. 

Introduce the velocity c with which the wavefront propagates along the 
surface. Analogously with (4.22), 

After some simple algebra, Eq. (6.52) yields the dispersion equation (6.20) for 
Love waves in this medium. If the angle of incidence yl exceeds the critical 
angle for the total reflection at the bottom of the layer, i.e. if sinyl > fi /A , 
phase velocity c is real and less than a. This yields normal Love modes. If the 
angle of incidence is less than the critical angle, leakage of energy from the 
layer into the half-space occurs, and this yields leaking Love modes. 

We have arrived at the conclusion that the dispersion equation (6.20) for 
Love waves represents the condition of constructive interference of SH waves 
which propagate by multiple reflection in the layer. This proves (for this simple 
medium) the physical interpretation of Love waves as interfering SH waves. 



6.5 Methods of Computing the Group Velocity 

Assume that phase velocity c is computed, by solving the corresponding 
dispersion equation, as a function of angular velocity w. In order to determine 
group velocity U for a given w, it is sufficient to determine the derivative 
dcldw and substitute it into (6.23). If the phase velocity is computed as a 
function of period, c = c(T), a formula analogous to (6.23) can be used. 

Derivative dcldw can be computed by numerical differentiation or by 
applying analytical methods. Although numerical differentiation is simple in 
principle, its application is less accurate and also slow, because the 
transcendental dispersion equation must be solved repeatedly in computing 
each difference. Therefore, many authors prefer analytical methods, which 
require only one solution of the transcendental equation per frequency. These 
methods can be divided into two groups: 

variational methods (Meissner, 1926; Harkrider, 1968, 1970; Takeuchi 
and Saito, 1972; Novotny, 1976a); 
methods based on the implicit function theorem (Novotny, 1970; 
Harkrider, 1970; Schwab and Knopoff, 1972). 

The variational technique is based on the Rayleigh principle, which states 
that the kinetic and potential energies, averaged over a cycle, are equal. We 
shall not describe the details of this method here. 

A dispersion equation represents an implicit equation in the unknown phase 
velocity c. Therefore, derivative dcldw (and also the derivatives of c with 
respect to the parameters of the medium) can be calculated analytically on the 
basis of the implicit function theorem (Novotny, 1970; Schwab and Knopoff, 
1972). From the theoretical point of view, this method is simpler than the 
variational method, because the Rayleigh principle is not needed here; only the 
form of the dispersion equation must be known. The formula for the group 
velocity for our special case of Love waves in a layer on a half-space, derived 
by this method, can be found in the paper by Novotny (1971). However, this 
formula is somewhat "asymmetric". Here we shall derive a better, equivalent 
formula, using the modified approach proposed by Harkrider (1 970). 

In studying surface waves in layered media, Harkrider (1 970) considered the 
wave number, k = w/c , as the unknown quantity instead of phase velocity c. In 
a similar way, let us replace c by k in Eq. (6.20). This dispersion equation can 
then be expressed as 



Keeping the parameters of the model fixed, let us differentiate Eq. (6.54) with 
respect to w: 

This yields (the implicit function theorem) 

By differentiating the dispersion functionf; given by (6.55), one gets 

(6.58) 
where 

Since U = l/(d kld a), we arrive at the following simple formula for the group 
velocity of Love waves in our model of the medium (Novotny, 1999): 

Hence, the group velocity may be computed in the following two steps: 
1) For a given model and a given angular frequency, the phase velocity is 

determined by solving the dispersion equation (6.20) by some numerical 
method. 

2) This value of the phase velocity is inserted into formula (6.60), which 
immediately yields the group velocity. 



Chapter 7 

Rayleigh Waves in a Layer on a Half-Space 

Consider the same medium consisting of a layer on a half-space as in 
Chapter 6; see Fig. 6.1. Denote by al the longitudinal wave velocity, the 
transverse wave velocity, pi the density, Al and p, the Lam6 constants, and H 
the thickness of the layer. Denote the corresponding parameters in the half- 
space by a2, &, h, & and p2 ,  respectively. Assume that al < a2 and 

A <A- 
We shall study the properties of harmonic Rayleigh waves propagating in 

this medium. We shall proceed in a way similar to that in Chapter 6, but instead 
of one displacement component we shall use two potentials. In view of these 
analogies, we shall omit some details here. However, in order to simplify the 
expressions for the boundary conditions, we shall use other forms for the 
general solutions of the wave equations. 

7.1 Expressions for Potentials 

Consider a plane harmonic surface wave which propagates along the x-axis, 

and which is polarised in the (x, z)  -plane. Denote again its angular frequency 

by w, and its velocity (phase velocity) by c. Assume the displacement vectors 
in the layer, ul  , and in the half-space, u 2 ,  to be of the form 

where u, and w, are independent of coordinate y. According to the 
discussion in Chapter 4, this displacement field can be 
potentials for longitudinal waves, prn , and transverse waves, 

avrn Wrn = + -  aprn awrn 
urn =--- dx dz ' dz dx ' 

where these potentials must satisfy the wave equations 

2 1 a2% V prn =-- 
1 d 2 y m  , v Z Y m = y ~ .  a? a t2  Prn a t  

described by the 
ly, , in the form 

Let us seek the potentials in the form of plane waves which propagate in the 
direction of the x-axis at velocity c, and their amplitudes decrease to zero at 
large depths. Assume the potentials to be of the form 



where velocity c is the same in both media and for both potentials. By inserting 
these potentials into wave equations (7.3), we obtain ordinary differential 
equations for f,(z) and g,(z) . Their general solutions, in analogy with (5.4), 
can be expressed as 

where k = w/c is the wave number of the surface wave, 

- + a,, a,, b, , b i  are arbitrary constants, and m = 1,2 . The individual terms in 
(7.5) could again be interpreted in terms of body waves propagating obliquely 
upwards and downwards; see the discussion in Section 4.5. 

Since we are interested in surface waves only, we must again assume that 
radicals r2 and s2 are imaginary: 

Consequently, the phase velocity must satisfy the condition c < & 

. (7.7) 

< a2, and 

we must put a; = b i  = 0 in order to eliminate the exponentially increasing 
terms in the half-space. 

For the sake of brevity of some further expressions, it will be convenient to 
modify the general solutions (7.5) as follows: 

a) in the layer, replace the exponentials by cosines and sines; 
b) in the half-space, replace coordinate z by z - H . 

Consequently, 

f (z) = A cos(klz) + B sin(k, z) , f 2 ( 2 )  = Ce -kr;(z-H) , 
(7.8) 

g1 (z) = ~ c o s ( b , z )  + E sin(blz) , g2 (z) = F ~ - ~ ; ( Z - ~ )  . 

It is evident that the new constants are related to the previous as: 

and similarly for the constants in gl and g2 . Denoting 

we arrive at the following general expressions for the potentials: 



p, = (A cos 4 + B sin ~ ) e ' ( ~ - ~ )  , p2 = ~ e - ~ e  i(wt -kx) Y 

(7.1 1) 

y, = ( ~ c o s  q + E sin ll)ei("-") , y2 = Fe-"e i(wt- kr) 

7.2 Displacements and Stresses 

The displacements in the layer and in the half-space are given by Eqs. (7.2) and 
(7.1 1). After performing the corresponding differentiation and omitting the 

common factor e , we obtain 

wl = -k[rl ( A  sin c - B cos c) + i(D cos q + E sin q)] , (7.12) 

These expressions also follow immediately from the analogies with (5.1 I), 
if definitions (5.8) and relations (7.9) are taken into account. In particular, the 
following correspondence between the expressions in (5.11) and the 
expressions in (7.12) for the layer exist: 

@ - + 0 +  -+ Acosc+Bsinc,  0--0+ -+i(~sinc-Bcosc)  , 
(7.13) 

Y- + Y+ + Dcosq+ Esinq,  Y- -Y+ - + i ( ~ s i n q -  ~ c o s q )  , 

Put 
2 

Y, = 2(&lc) and 6 m = y m - l .  (7.1 4) 

The stress components can be obtain by inserting (7.10) and (7.1 1) into general 
formulae (4.16). However, we can obtain them directly from (5.13), using 
relations (7.13). We arrive at 



7.3 Boundary Conditions 

We have already considered the conditions that the amplitudes tend to zero as 
the depth tends to infinity, i.e. 

f2 (z )+0 ,  g2(z)+0 for z + m .  (7.16) 

These conditions have led to a; = b i  = 0 .  
In order to determine the remaining six constants, A to F, we need six 

further boundary conditions. As these conditions, we shall require the stresses 
to be zero at the fiee surface, i.e. 

(rzx)l = 0 ,  (T,)~ = 0  for Z = O  , (7.17) 

and the displacements and stresses to be continuous at the interface between the 
layer and the half-space, i.e. 

for z = H .  
At the fiee surface, z = 0 , we have 5 = 7 = 0 ; see (7.10). Using (7.15), 

boundary conditions (7.17) yield 

Before considering the boundary conditions for z = H ,  let us denote 

and take into account that < = x = 0 for z = H . Using (7.12) and (7.19, 
boundary conditions (7.18) yield 

where p = pz /pl . 



7.4 Dispersion Equation 

Equations (7.19) and (7.21) represent a system of six homogeneous equations 
in six unknown constants A to F. This system has a non-trivial solution if the 
corresponding determinant equals zero. This condition represents the 
dispersion equation for determining the unknown phase velocity c. 

Many authors have formulated the dispersion equation for our problem in a 
similar form, i.e. as the condition that a sixth-order determinant equals zero; for 
a review see Ewing et al. (1957). A simpler dispersion equation in the form of a 
third-order determinant was used by Bolt and Butcher (1960), and by Money 
and Bolt (1966). We shall also attempt to reduce the number of equations 
before calculating the determinant. 

We have replaced the usual expressions (7.5) for amplitudes by expressions 
(7.8), which contain trigonometric functions. This has simplified the boundary 
conditions at the free surface, which yielded simple equations (7.19). 
Consequently, one constant can easily be eliminated from each of these 
equations. We shall eliminate constants B and E, which stand with the sines in 
(7.8) and (7.1 I), i.e. 

where G = 4 / y l  . Using these relations, boundary conditions (7.21) can be 
expressed as 

~ ( r ~ s i n ~ + ~ s ~ ~ s i n ~ ) - i ~ ( ~ c o s ~ - c o s ~ ) - r ~ ~ - i ~ = ~  , 
(7.23) 

i ~ ( y , r ,  sin P + 4 ~ s ; '  sine) + ~ 6 ,  (cos P - c o s ~ )  - ipy2r;C + p& F = 0 , 

Aq(cos P - c o s ~ )  + iD(qGrcl sin P + ylsl sine) - p&C - i p y z s ; ~  = 0 . 

In this way, we have reduced the problem to four equations. Multiply the 
second of these equations by imaginary unit i, the fourth equation by (- i) , and 
introduce new unknowns 2 = iA and c = -iC. The system of equations for 
the unknowns 2, D, c and F will have a non-trivial solution if the 
corresponding determinant is equal to zero, i.e. 

cos P - GcosQ - Grcl sin P - sl sin Q 1 s; 
rl sin P + Gsrl s ine  GcosP -cosQ r2 1 

* 

ylrl sin P + 4 ~ s ; '  sin Q 4 (cos P - cos Q) py2r; ~ 6 2  

- 4 (cos P - cos Q) 6, Grc1 sin P + yls, sin Q - p& - ~ ~ 2 s ;  



The quantities for the layer appear in the first two columns of the 
determinant, and the quantities for the half-space in the remaining two 
columns. It will, therefore, be convenient to develop this determinant, 
according to Laplace's theorem, in terms of the minors from the first two 
columns. The corresponding cofactors will be the minors from the remaining 
two columns with the appropriate signs. 

Consider the elements of the matrix in (7.24), and denote the element in the 
i-th row and j-th column by aV . Denote the minor of the second order, which is 
constructed fiom the element in the i-th and j-th rows and the k-th and I-th 
columns, by 

see Dunkin (1965) and Fuchs (1 968). 
In constructing the minors, let us consider the ordinal numbers of the rows, 

i.e. the pairs (i, j) , in the following order: 

Therefore, there are six minors of the second order which can be constructed 
fiom two columns of a fourth-order matrix. 

According to Laplace's theorem, Eq. (7.24) can be expressed as 

where L1 to L6 are the second-order minors constructed from the first two 
cohmns of (7.24), containing the parameters of the layer, and Hl to H6 are 
the corresponding cofactors, constructed from the third and fourth columns and 
containing the parameters of the half-space. 

The layer minors can be expressed as 

= q[( l+ G)(I - cos PCOSQ) + G~I-T'  sin P s;' sine] + ylrl sin P sl s i n e  , 



= bi2[2(1 - cos PCOSQ) + G2r;' sin P srl  sing] + yfr1 sin P sl s ing . 

The corresponding cofactors are 

Note that in our case, minor a must be multiplied by (- 1) 1:: i+ j+k+l in order 

to obtain the corresponding cofactor. For example, 

Finally, let us mention two properties of Eqs. (7.27) to (7.29) which have a 
more general validity: 

Firstly, since we have found that L5 = L2 and H5 = H2, dispersion 
equation (7.27) can be simplified to read 

A similar property appears also in the general case of Rayleigh waves in a 
multilayered medium. This enables us to replace the so-called Smatrices of the 
sixth order by the reduced Smatrices of the fifth order; see Chapter 9. 

Secondly, in calculating the minors we have also obtained squares cos2 P, 

sin2 P , cos2 Q, sin2 Q , but always in the combinations 



so that these squares are not contained in the final formulae (7.28). The S 
matrices, mentioned above, do not contain these squares either. This property 
leads not only to the simplification of the formulae for L1 to L6, but is very 
important from the computational point of view. Namely, at high frequencies, 

P and Q become imaginary since c < 4 < al . Then cos P = cos(iP*) = 

= cosh P* and sin(iP*) = i sinh P* , and 

For large P* , the last expression contains the subtraction of large exponential 
terms, which .cancel out analytically, but cause a loss of significant figures 
when evaluating this term numerically. For example, if determinant (7.24) were 
computed routinely by being developed in terms of the elements of the first 
row or first column, these quadratic terms would be present in the development 
and their subtraction would lead to a loss of accuracy at high frequencies. 
Many previous formulations of the dispersion equation for Rayleigh waves 
contain this drawback; see the review by Ewing et al. (1957). The solution in 
the form of Eqs. (7.27) to (7.29) removes this loss-of-accuracy problem. We 
encounter the same situation also in the case of Rayleigh waves in a 
multilayered medium; see Chapter 9. 

7.5 Another Form of the Dispersion Equation 

Without derivation we shall present another formulation of the corresponding 
dispersion equation, which is close to that used by Novotny et al. (1996). The 
formulation derived in the preceding section is a little simpler, but the 
formulation given below is more convenient for the derivation of analytical 
formulae for the group velocity. 

We consider the same model and notations as at the beginning of this 
chapter. Denote again by p = p;! /pl the ratio of densities, and by k = o /c  the 
wave number of the surface wave. It can be verified that the dispersion 
equation (7.39, given below, can be obtained from Eq. (7.30) by multiplying 

the latter equation by factor [- ~ ~ , 8 , ~ / ( 4 c ~ ~ ) ] .  

Introduce the following quadratic quantities: 

Denote further 



y l = B I K ,  y 2 = B 2 K ,  6 1 = ~ f ~ y  & = B ~ K ,  

* * 
y l l = y l - Q / 2 ,  y21=y2-Q/2 , o = r 2 S 2 ,  (7.32) 

pl = c o s ~ ,  p 2 = r l s i n P ,  p3 = ( s i n ~ ) / q  , 

q1 = COSQ , 42 = s1 s i n e ,  43 = ( s i n ~ ) / s ~  , 

w, = l -p lq l  , w2 =p2q2,  w3=p393. 

Introduce the following expressions for the half-space, 

h l = p ( y ~ , - 4 o ) ,  h2=r;Q2/4, h3=y21-B20,  

and for the layer, 

The dispersion equation for Rayleigh waves in a layer on a half-space can then 
be expressed as 

Since phase velocity c may attain values both higher and lower than the 
layer velocities al and 4 ,  quantities rl and sl may be real or pure imaginary. 
This fact must be taken into account when writing the computer programme. 
For pure imaginary values of rl or s ly the trigonometric functions in (7.32) 
will be replaced by the corresponding hyperbolic functions. Moreover, the 
quantity p3 becomes indeterminate if r, is close to zero. The same applies to 
q3 when sl is close to zero. The corresponding expansions should be used in 
these cases. 



Chapter 8 

Matrix Methods for Love Waves in a Layered 
Medium 

Matrix methods were used in the theory of elasticity, first in solving static 
problems; see the review by Pestel and Leckie (1963). Later on, Thomson 
(1950) and Haskell (1953) introduced these methods into seismology. In this 
chapter,we shall derive a modification of the Thomson-Haskell matrices for 
Love waves. 

8.1 Model of the Medium 

Consider a medium consisting of n - 1 homogeneous and isotropic layers with 
plane-parallel interfaces lying on a homogeneous and isotropic half-space 
(Fig. 8.1). Denote the half-space as the n-th layer. All the layers and the half- 
space are assumed to be perfectly elastic. Assume the surface of the medium to 
be free, and a welded contact to exist at the individual interfaces. 

an-1 Y Pn-1, ~ n - 1 ,  dn-1 
zn 

. 
Fig. 8.1. Model of a 

y z a n ,  Pn, p n  layered medium. 

In the m-th layer, denote by a, the compressional wave velocity, P, the 
shear wave velocity, p, the density and dm the thickness of the layer. Denote 
by an, ,bn and pn the corresponding parameters in the half-space. Denote the 
depths of the individual interfaces by z, = 0 (free surface), z2,. . . , z, . Thus the 
m-th layer has the upper boundary at depth z,, and the lower boundary at 
depth z,+~. It is evident that dm = z,+~ - z, . Assume that the velocities in the 
individual layers are lower than the corresponding velocity in the half-space, 
i.e. am < a n ,  Pm <Pn for m=1,2 ,..., n-1. 

Note that longitudinal wave velocities have no influence on Love waves, so 
that parameters al to an will not appear in the formulae of this chapter. 
However, we shall need them in the next chapter in studying Rayleigh waves. 



8.2 Matrix for One Layer 

Consider a plane harmonic wave which propagates in the direction of the x- 
axis, which is polarised along the y-axis, and its amplitude decreases to zero at 
infinite depth. This surface wave, with transverse polarisation in the horizontal 
plane, will again be called the harmonic Love wave. 

Hence, let us consider the displacement vector in the m-th layer 

(rn = 1,2,. . . , n) in the form 

w being the angular frequency, c the velocity of the surface wave along the x- 
axis, and fm(z) the depth-dependent amplitude. We assume that w is given, 
but c and f, (z) are unknown. 

As mentioned in Section 6.5, simpler analytical formulae for the group 
velocity can be derived if the wave number is used as the unknown function 
instead of the phase velocity. Therefore, as opposed to the explanation in 
Chapter 6 ,  we shall formulate the theory in this chapter in terms of the wave 
number (although we shall not deal with the group velocity). Thus, express 
displacements (8.2) as 

i(wt-kx) 
vm = fm(z)e > (8.3) 

where k = w/c is the wave number of the surface wave. These shear 
displacements must satisfy the wave equations for shear waves 

that is 

see Chapter 4. By inserting (8.3) into this equation, one gets the following 
ordinary differential equation for fm(z) , which is analogous to Eqs. (6.6): 

Its general solution can be expressed in any of the following forms 



where 

Moreover, introduce 

Qm = dmsm . 

Note that quantities s, defined by (8.8) and by (6.8) differ by factor k. 
The individual general forms of (8.7) differ only in the choice of the 

arbitrary constants. For example, 

C, = Em exp(- ismzm) , G, = Em + Fm , etc. 

The general form (8.7a) is simple, but not convenient in formulating boundary 
conditions. For this purpose, it is convenient to shift the coordinate origin 
always to the top of the particular layer (Haskell, 1953). Fuchs (1 968) achieved 
the same effect by using the general solutions in form (8.7b) and keeping the 
coordinate origin fixed at the free surface. Although this form of the general 
solutions is frequently used in the literature, we shall use it only in the half- 
space, i.e. for m = n . In the layers we shall use the trigonometric form (8.7~). 

The constants in (8.7) are different in the individual layers, and must be 
determined from boundary conditions. Thus, these constants play the role of 
auxiliary parameters which must be determined (eliminated) by these 
conditions. In the matrix methods we try to eliminate these auxiliary 
parameters at the very beginning, and to express them in terms of the 
"physical" quantities which are used in boundary conditions (which are 
continuous at the interfaces). This simplifies the formulation of the boundary 
conditions and the derivation of the dispersion equation. In our case, we shall 
replace these constants by the displacement and stress at the upper boundary of 
the corresponding layer. 

Since the expressions for displacements v, and stresses ( T ~ )  in all layers 
m 

and in the half-space contain the same exponential term exp[i(wt - k)], we 
shall omit this term hereafter. Consequently, 



where we have simply put z, instead of z,, . ( )m 

Now we are seeking the relation between the displacement and stress at the 

upper aqd lower boundaries of the rn-th layer. At the upper boundary (z = z,), 

At the lower boundary (z = z,,) , 

By expressing Gm and Hm from (8.11) and inserting them into (8.12), we 
arrive at 

(Tm ), 
( ~ m  )znl+, = (vm C O S Q ~  + --- sinem , 

Pm Sm 

We shall rearrange these relations in matrix form, as is usual in linear 
algebra. Let us remind the reader that the product of a matrix b with a column 
vector a yields a column vector c, the elements of which are the scalar products 
of the rows of matrix b with vector a, i.e. 

where 

c1 = bl lal + b12a2 , c2 = b21al + b2,a2 . 

Relations (8.13) may then be expressed in the following matrix form: 



The column vector 

the elements of which are the displacement and stress, will be called the 
displacement-stress vector. Denoting the corresponding matrix by 

relation (8.14) may be expressed as 

This expresses the required relation between the displacement and stress at the 
upper and lower boundaries of the corresponding layer. The quantities at the 
lower boundary are obtained from the quantities at the upper boundary by 
multiplying by matrix a, . 

Two properties of matrix a, should be noted: 
t h s  matrix is symmetric with respect to the secondary diagonal, i.e. 

( a m  )22 = ( a m ) l l ;  

its determinant is equal to unity, det a, = 1. 
We shall also use the inverse relation to (8.17). According to the general 

rule, for a second-order matrix 

its inverse matrix is 

The reader can check that the product of matrices (8.18) and (8.19) indeed 
yields the unit matrix. 

By applying this rule to matrix a,, we arrive at 

where the inverse matrix b, = a is 



1 
c0sQrn , sin Qm 

P m  s m  
~ m s m  sin Qm , cos Qm 

The striking similarity between matrix a, and its inverse bm has deeper 
physical causes. Namely, the transition to the inverse relation for the 
displacements and stresses actually means a change in the orientation of the z- 

axis. In this case, thickness dm must be replaced by (-dm) and Qm by 

(- em); Consequently, the cosines in the principal diagonal of a, will not 
change, and the sines in the secondary diagonal will change their signs. 

8.3 Matrix for a Stack of Layers 

The condition of the continuity of the displacement and stress at the interface 
of the m-th and (m - 1) -st layers may be expressed in vector form as 

By alternately using (8.22) and (8.17), we can express the relation between the 
displacement and stress at the boundary of the half-space and at the surface: 

Introducing the product of the matrices 

one gets 

Hence, the matrix for the stack of layers is obtained as the product of the 
matrices for the individual layers. 

For the inverse relation we obtain 

where 



8.4 Expressions for the Half-Space 

For c > &, amplitude fn(z) in the half-space would be an oscillating function 
of depth z. Such a wave would not have the character of a surface wave. 
Therefore, we shall assume that c < Pn . The corresponding radical (8.8) then 
becomes 

It then follows fiom (8.7b) and (8.3) that the displacement in the half-space, if 
term exp[i(at - la)] is again omitted, takes the form 

The first exponential term in this expression tends to zero for z + coy but the 
second term tends to infinity. Therefore, we must put F, = 0 ,  so that 

The stress in the half-space is then 

In particular, at the top of the half-space (z = z,), 

8.5 Dispersion Equation 

8.5.1 Traditional formulation 

By inserting (8.32) into (8.23), one gets 

Finally, using the boundary condition at the free surface, (rl) = 0 ,  the latter 
Zl 

equation may be expressed as the system of equations 



for the unknown quantities En and (vl) . This system of homogeneous 
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equations has a non-trivial solution if the corresponding determinant is equal to 
zero, i.e. , 1 

This is the required dispersion equation for Love waves in a layered medium. 
For a given model of the medium and a given value of angular velocity w, this 
equation serves to compute wave number k or phase velocity c of Love waves. 
Since this is a transcendental equation, some numerical method must be used to 
solve it; see Section 8.6. 

By inserting for si , dispersion equation (8.35) takes the form 

We keep the negative signs on the left-hand side of the dispersion equation, so 
that the left-hand side is negative for the values of c below the fundamental 
mode, and positive between the fundamental mode and the first higher mode, 
etc. 

Note that the left-hand side of the dispersion equation is usually called the 
dispersion function. In our case, the dispersion function is 

As a special case, let us derive the dispersion equation for Love waves 
propagating in one layer on a half-space, i.e. let us consider the special case of 
n = 2 . In this case, matrix A is equal to the matrix for the layer, A = a , . 
Consequently, it follows from matrix (8.16) that 

Dispersion equation (8.35) then takes the form 

which agrees (after dividing by w2) with the dispersion equation which we 
have derived in Chapter 6. 



8.5.2 Formulation in terms of the inverse matrices 

If the dispersion equation is satisfied, the system of homogeneous equations 
(8.34) has an infinite number of solutions. We can chose one unknown 
arbitrarily, and calculate the other unknown. 

Therefore, let us normalise the solution by putting the amplitude at the top 
of the half-space to unity, i.e. En = 1.  By inserting this value into (8.32) and 
(8.26), we obtain 

where matrix B is given by (8.27) and (8.21). The boundary condition at the 

fiee surface, i.e. ( r l )  = 0 ,  then immediately yields the dispersion equation in 
=I 

the form 

B~~ - p n ~ i ~ 2 2  = 0 . (8.41) 

This formulation of the dispersion equation has the following advantages: 
1) Its derivation is simple, no determinant is computed. The dispersion 

equation is simply the condition of zero stress at the surface. 
2) The matrix multiplication from the bottom to the surface is more stable 

numerically in computing the amplitudes at higher frequencies (when 
c < ,B, in some deeper layers). We shall not prove this here. This property 
may be important in computing energy integrals and synthetic seismograms 
of Love waves. 
There is, of course, a close relationship between dispersion equations (8.41) 

and (8.35). Since matrix B is inverse to A, it holds that 

see (8.18) and (8.19). However, the determinant of a matrix product is equal to 
the product of the individual determinants, so that 

Since all det a, = 1, we also get det A = 1 . Consequently, 

By putting = - A21 and = Al into Eq. (8.41), we immediately arrive 
at Eq. (8.35). We have thus proved that these two dispersion equations are 



analytically equivalent. Nevertheless, they may differ in some numerical 
properties. 

8.6 Comments on Some Numerical Problems 

For a given model of the medium and a given frequency, we may start the 
computation of the dispersion curve for the fundamental mode by choosing a 
small value of c, e.g., a value which is slightly above the minimum shear 
velocity in the model (usually slightly above A). For the selected value of c 
we compute the quantities k, s,, Q, and matrix a, in each layer, and the 
matrix product a,a,-~. . . a l  in a loop from the first to the (n - 1) -st layer. The 
value of the dispersion function f is then given by (8.37). Iff is negative, we 
increase the value of c by a given step, and repeat the calculation until the 
dispersion function changes sign. We then refine the position of the root, e.g., 
by halving the intervals, or by another numerical method, until the required 
accuracy is achieved. The value of the phase velocity, found in this way, is then 
used as the starting value for the next frequency, etc. When the dispersion 
curve for the fundamental mode is determined, we can proceed to computing 
the first higher mode, etc. 

Two situations must be distinguished in computing the elements of the layer 

matrix a,. First, if c 2 Pm (k < co/Pm), then the elements contain 
trigonometric functions, see (8.16). Second, for c < P,, quantity s, becomes 
purely imaginary, and the trigonometric functions must be replaced by 
hyperbolic functions according to the formulae cos(ix) = coshx and 
sin(ix) = i sinh x . Note that the elements of matrix a, remain real even in this 

case, because fimction sin Q, occurs there in the combinations (sin Q,)/s, 
and s, sin Q, . 

Moreover, for small absolute values of s, , expression  sin^,)/% must be 
replaced by its Taylor series. 

If c < P, and the frequency or thickness dm are large, overflow may occur 
in computing the hyperbolic functions. Several approaches have been proposed 
to avoid this problem. A simple method consists in reducing the matrix by 
dividing it by a large exponential term. This reduction changes the value of the 
dispersion function, but not its sign and the position of its root. 

The listing of the corresponding computer subroutine can be found in 
Proskuryakova et al. (1 98 1). 

We have described the calculations which are based on matrices a,. 
Inverse matrices b, can be used in an analogous way. 



8.7 Other Forms of the Dispersion Equation. Thomson- 
Haskell Matrices 

In the original paper by Haskell (1953), the layer matrix is introduced by the 
relation 

where 3, is the velocity of the displacement, i.e. 1;, = dv,/dt = im,. 
Multiplying the first of Eqs. (8.13) by ik, and introducing the dimensionless 

we arrive at the Thomson-Haskell matrix, 

i i - - cosQ, , sin Qm 
am - 

The dispersion equation then takes the form 

where - 
A = zn-l ... z2z1 . 

Matrix Z,, as opposed to matrix a,, is more complicated, because it 
contains both real and purely imaginary elements. This can be expressed 
schematically as 

It can easily be verified that the product of matrices of this type again yields a 
matrix of the same type (Haskell, 1953). Consequently, all computations based 
on the Thomson-Haskell matrices can be performed in real arithmetic only (the 
imaginary units may be ignored), but some formulae for the matrix 
multiplication must be modified. 

The appearance of the purely imaginary elements in the Thomson-Haskell 
matrices is surprising, but has a very simple physical explanation (Novotny, 
1973). Namely, displacement v, and stress zm are fbnctions with the same 



phase, which yields real matrix a,. However, velocity lj, is shifted in phase 
by 90" with respect to v, and z, , which represents the multiplication by the 
imaginary unit. Consequently, purely imaginary elements appear in the 
corresponding matrix. 

Knopoff (1964) used another approach. He expressed all the boundary 
conditions as one system of equations, and required the corresponding large 
determinant to be equal to zero. By applying Laplace's theorem, he expressed 
this determinant in terms of matrices of the second order. However, the 
matrices for odd and even layers have different forms, which is the 
disadvantage of this method. The physical interpretation of Knopoff s matrices 
in terms of modified displacement-stress vectors was given by Novotny (1 974). 



Chapter 9 

Matrix Methods for Rayleigh Waves in a 
Layered Medium 

Following the main ideas from the preceding chapter, in this chapter we shall 
derive the basic matrices for Rayleigh waves. These matrices will be more 
complicated than those for Love waves, because we must now consider four 
boundary conditions at each interface. 

We shall consider the same model of the medium as in Section 8.1. 
However, we shall not formulate the problem for the unknown wave number, k, 
but we shall return to the usual formulation in terms of the phase velocity, c; 
see Proskuryakova et al. (1981). In fact, we shall generalise the formulae for 
Rayleigh waves in a single surface layer (Chapter 7) to a multilayered medium. 
The reformulation of the method for the unknown wave number will be the 
subject of a future study. 

9.1 Basic Notations and Formulae 

Consider a plane harmonic Rayleigh wave of angular velocity m, propagating 
in a layered medium in the direction of the x-axis at velocity c. Denote by 

k = m/c the corresponding wave number, and by u, = (u,, 0, w,) the 
displacement vectors in the m-th layer, m = 1,2,. . . , n . 

In analogy with (7.6) and (7.7), introduce the quantities 

in the layers, i.e. for m = 1,2, . . . , n - 1 , and 

in the half-space. It will be more convenient to replace coordinate z by z - z, 
in quantities (7.1 O), i.e. to introduce 

for m =  1,2 ,..,, n-1, and 



For the sake of brevity, denote the stress components in the m-th layer by 

T, = (rZx), and om = (%), . In view of (7.12), (7.14) and (7.13, the 

displacements and stresses in the layers can be expressed as 

urn = -k[i(A, cost, + B, sin(,) + s, (- Dm sin qm + Em cos ?,)I , 

om = prn w [dm ( A ,  cos $ + B, sin &, ) + iyrnsrn (Dm sin rl, - E m  cos %)I Y 

and in the half-space as 

where we have again omitted the common factors e i (mt-b) , and put 

2 
y, = 2 ( ~ ,  / c )  and 6, = y, - 1 

9.2 Matrix for One Layer 

At the top of the m-th layer, i.e. for z = z, , 6, = q, = 0,  and formulae (9.5) 
simplify to read 



At the bottom of the m-th layer, i.e. for z = z,,,, formulae (9.5) take the 
form 

)ZllZ+1 
= -k[i(A, cos P, + Bm sin P,) + s,(- Dm sine, + Em COSQ,)] , 

(w~)zllZ+l 
= -k[rm(Am sin Pm - B, cos P,) + i ( ~ ,  cos Qm + Em sin Q,)] , 

(9.9) 

= pmo2[6,(~m cosPm + B, sin P,) + iy,s,(~, sinQm - Em cos~,)]  , 

dm = zm+, - z, being the thickness of the layer. 
Eliminate the coefficients A, and Em from the first and fourth equations in 

(9.8), i.e. express them in terms of displacement urn and stress o;, at the top of 
the layer: 

A, = 
iym )zllZ ( o m  )zlll -- 

6 urn zl,l '(om )zl,l 
2 , E m =  + 2 -  (9.11) k P mw smk pmsmm 

Analogously, express B, and Dm from the second and third equations in 
(9.8): 

By inserting these coefficients into (9.9), we obtain the relations between the 
displacements and stresses at the bottom and at the top of the layer. However, 
instead of the displacements and stresses themselves, it will be convenient to 
consider, e.g., the following quantities: 

see Proskuryakova et al. (1981). After some simple algebra, the relations 
between these quantities at the bottom and top of the layer can be expressed in 
the following matrix form: 



where matrix a, is of the fourth order and its elements are (Proskuryakova et 
al., 1981): 

( a m ) l l  =(am)44 =~rncosPrn -6rncosQrn 7 

1 ( am ) 12 = (a,)34 = 6,r; sin P, + y,s, sinem , 

(a,),, = pi' ( r i l  sin P, + s, sin Q, ) , 
( ) = (a,)43 = y,r, sin P, + 6,s;' sine, , 
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(a,)22 = (a,)33 = -6, C O S P ~  + yrn C O S Q ~  , 

Note that matrix a, is symmetric with respect to the secondary diagonal, 
and all its elements are real (for real values of w and c) even if c < a, or 

c < a. In this case, r, becomes imaginary, r, = i r i  , and P, = ikrid, = i ~ i ,  
* -1 cos P, = cosh P; , r, sin P, = -ri sinh P, , r, sin P, = (sinh ~ i ) / r i  . Similar 

formulae hold true for cos Q, , s, sin Q, and sil sin Q, if c < 8, . 
Rayleigh waves are elliptically polarised, so that displacement u and stress 

z = rzx are in the same phase, but shifted by 90" with respect to w and 
a = rZz. This fact is taken into account in (9.14), where u, and z, are 
multiplied by the imaginary unit i. Consequently, all elements of matrix a, are 
real. If we considered the displacements and stresses alone, the corresponding 
matrix would contain both real and purely imaginary elements. Also the 
original Thomson-Haskell matrices contain both real and purely imaginary 
elements (Haskell, 1953). 

Finally, let us add a comment on the choice of the general solutions of wave 
equations. In the preceding chapter, we considered three equivalent general 
forms, given by formulae (8.7a, b, c). We then selected the trigonometric form 
(8.7~). Analogously, in this chapter we have chosen the general expressions for 
displacements and stresses in terms of trigonometric functions; see (9.5). This 
form is very convenient, because we have sin 6, = sin rl, = 0 at the top of the 
layer, so that the right-hand sides of (9.8) always contain only two of the 



unknowns A,, Bm , Dm, Em . Consequently, the system (9.8) of four 
equations can be reduced to two systems of two equations, which is much 
easier to solve. If exponential terms were used in (9.5), all four unknowns 
would appear on the right-hand sides of (9.8), and an inverse matrix of the 
fourth order would have to be calculated (Haskell, 1953; Fuchs, 1968; 
Proskuryakova et al., 1981). In this chapter we have succeeded in simplifying 
the problem by a convenient choice of general solutions (9.5). 

9.3 Boundary Conditions and the Matrix for a Stack of 
Layers 

We shall require the displacements and stresses to be continuous at the 

individual interfaces. Consequently, also quantities ik-'u, - kw, ~ - ~ a ,  

iru-2 r must be continuous; see (9.14). The relation between these quantities at 
the top of the half-space and at the free surface can then be expressed by the 
matrix product 

A = an-l ... a2a1 ; (9.16) 

see a similar discussion in Section 8.3. 

9.4 Expressions for the Half-Space and the Dispersion 
Equation 

Specify quantities (9.6) for the top of the half-space, where z = z,, and 
6, = xn = 0.  The continuity of components (9.13) at the top of the half-space 
can then be expressed in the matrix form as 

where matrix A is given by (9.16). However, we assume the surface of the 
medium to be free, so that we must put al = zl = 0 for z = zl . Moreover, 

introduce new unknowns El = i ( ~ ~ ) ~ ,  / k  , )Sil = - ( w ~ ) ~ ~  /k , G, = -Cn and 

Hn = -iFn . Equations (9.17) can then be expressed as 



This is a system of homogeneous equations in the unknowns El, GI, Gn and 
Hn . This system has a non-trivial solution if the corresponding determinant is 
zero: 

This is the desired dispersion equation for the unknown phase velocity, c. 
It will be convenient to decompose the determinant in (9.19) with respect to 

the first two columns according to Laplace's theorem. We shall proceed in a 
way analogous to that in Section 7.4, because dispersion equation (9.19) is 
similar to the special dispersion equation (7.24). Denote the minors of matrix A 
according to (7.25), and arrange them in the order given by (7.26). Equation 
(9.19) can then be expressed formally in the same form as Eq. (7.27), i.e. 

where L1 to L6 are now the second-order minors constructed from the first 
two columns of (9.19), and HI to H6 are the corresponding cofactors, 
constructed from the third and fourth columns and containing the parameters of 
the half-space. 

Minors L1 to L6, characterising the contributions of the stack of layers, are 
given by 

see notation (7.25). 
The corresponding cofactors are similar to cofactors (7.29), but in (9.19) we 

have interchanged the third and fourth rows and their signs. Thus, 

The computation of the phase velocity, therefore, proceeds in the following 
way. For a given value of w and a trial value of phase velocity c, we compute 



layer matrices (9.15) in a loop from the first to the (n - 1) -st layer. Some 
problems of programming the layer matrices have already been mentioned in 
Section 8.6, so that we shall not repeat them here. In the same loop we also 
compute the partial products a,a,-~ . . . a in (9.16). When matrix A for the 
stack of layers is obtained (only the first and second columns are needed), we 
compute expressions (9.21), (9.22) and the left-hand side of Eq. (9.20). The 
procedure is then repeated with a modified value of c, until the required 
accuracy is achieved. 

The matrix method, just described, is relatively simple, but leads to loss-of- 
accuracy problems at high frequencies. Consequently, other forms of the 
dispersion equation for Rayleigh waves are desirable. 

9.5 Matrices of the Sixth Order 

Dispersion equation (9.20) contains the second-order minors of matrix A. In 
principle, we can determine these minors in two ways: 
a) We can determine matrix A as the product of layer matrices a,, and then 

compute the minors of A using (9.21). The original Thornson-Haskell 
method for Rayleigh waves was also formulated in this form (Haskell, 
1953). However, this approach leads to the computational problems 
mentioned above. 

b) We can determine the minors for all layer matrices a,, and then use these 
minors to construct the minors of matrix A directly. This method is based on 
the application of associated matrices, which are studied in advanced 
courses of the matrix theory; see, e.g., Gantmakher (1953).These matrices 
were also described in detail by Dunkin (1 965). 
Although both methods are equivalent theoretically, they differ substantially 

in their numerical properties. It was found that method b) yields more accurate 
results; see the historical remarks in Section 9.6. Consequently, methods a) are 
not in use now. 

9.5.1 Associated matrices 

Minors L1 to L6,  given by (9.21), were constructed from the first and second 
columns of matrix A. These minors may be considered as the first column of a 
new matrix, A ,  composed of all the minors of A. The second column of x 
will be composed of the minors from the first and third columns of A, etc. Six 
pairs can be formed from the ordinal numbers of the rows and columns of 
matrix A, i.e. combinations 12, 13, 14,23,24 and 34. Consequently, matrix A ,  
composed of these minors, is of the sixth order (6 rows and 6 columns). 

Consider a general matrix A of order n, and construct its minors of order m, 
where m < n .  The matrix composed of these minors is referred to as the 
associated matrix. We shall denote this associated matrix by A.  Note that the 
associated matrices, composed of the second-order minors (m = 2), are also 
referred to as Gmatrices, delta matrices, determinant matrices (Pestel and 
Leckie, l963), or second compound matrices (Thrower, 1965). 



The usefulness of associated matrices is closely related to their properties in 
matrix multiplication. Namely, the following important theorem holds true. 

Let matrix C be the product of matrices A and By 

The same relation then holds between the corresponding associated matrices, 
i.e. - - 

C = A . B .  (9.24) 

We shall not prove this theorem here. The reader may verify it, e.g., for our 
special case of n = 4 and m = 2.  

9.5.2 Associated matrices in the Rayleigh-wave problem 

Again consider matrix A for the stack of layers, given by (9.16). The 
corresponding Gmatrix can be expressed, according to the above-mentioned 
theorem, as - - - A = KU-, . . . a2a1 , (9.25) 

where Zm denotes the Gmatrix associated with layer matrix a, . 

Omit subscript m in the symbol (a,) for the minors of layer matrix a,, 

given by (9.1 5), i.e. denote 

These minors are arranged in the associated matrix K, as follows: 

For a moment, also omit subscripts m in elements (&)g , and introduce the 

following notations (see the similar abbreviations in (7.32)): 



- 1 
p1 = cos P, , p2 = r, sin P, , p3 = r, sin P, , 

(9.28) 

Inserting elements (9.15) into (9.26) and (9.27), after some algebra we arrive at 

see Proskuryakova et al. ( 1  98 1) .  
By multiplying these associated matrices we obtain immediately associated 

matrix A, given by (9.25). In fact, only the first column of this resultant matrix 
is needed. This first column contains minors Ll to L6,  i.e. Li = Ail ,  
i = 1 to 6 ,  which are needed in dispersion equation (9.20). 

This method of computing minors L1 to L6 is more accurate than their 
determination from the elements of matrix A. The numerical advantage of 
associated matrices P, over the original layer matrices a, is in that the 

2 associated matrices do not contain quadratic terms cos2 P, , sin2 P,, cos Q, 

and sin2 Q, ; see the discussion in Section 7.4. 
Since the third and fourth rows and columns of matrix 3, are similar to 

each other, this delta matrix of the sixth order may be replaced by a reduced 



delta matrix of the fifth order (Watson, 1970). The listing of a subroutine, 
which is based on the reduced delta matrices, can be found in Proskuryakova et 
al. (1981). Since the passage from matrices 6 x 6 to matrices 5 x 5 is of no 
principal importance from the computational point of view, we shall not 
present these reduced matrices here. 

9.6 Historical Remarks and Other Formulations of the 
Dispersion Equation 

Various methods of computing the dispersion curves of Rayleigh waves in a 
layered medium have been proposed. They can be divided into several groups 
which we shall briefly comment on below. 

9.6.1 Thornson-Haskell matrices and their modifications 

The present matrix methods of computing theoretical dispersion curves of 
surface waves began with the paper by Thomson (1950), dealing with body 
waves in layered media. Haskell(1953) introduced a new notation and worked 
out matrix formulations of the dispersion equations for Rayleigh and Love 
waves in layered media. However, it soon became evident that the Thomson- 
Haskell matrices for Rayleigh waves lead to loss-of-accuracy problems at high 
frequencies (Dorman et al., 1960; Press et al., 1961). At first, these problems 
were solved, e.g., by simplifying the model of the medium at high frequencies 
(by including some deeper layers into the half-space), or by computing with 
double accuracy. However, these approaches did not solve the problem in 
principle. 

Similar numerical problems were also known from solutions of some 
engineering problems, e.g., from computations of high eigenfiequencies of 
technical structures; see the review in Pestel and Leckie (1963). One possibility 
of solving these problems was passing from the original matrices to the 
associated matrices, which were composed of second-order minors of the 
original matrices (minors 2 x 2 ). This experience was used by Thrower (1965) 
to solve the problem of Rayleigh waves. Instead of the original 4 x 4 matrices, 
he formulated the problem in terms of the associated 6 x 6 matrices, and 
obtained better numerical results. 

Dunkin (1965) came independently to the same conclusion that the 
numerical problems in the Thomson-Haskell matrices could be overcome by 
applying associated matrices. He found the sources of numerical instabilities in 
a more concrete form, namely in subtracting squares of exponential terms, 
which cancel out analytically, but lead to a loss of accuracy when the minors 
are evaluated numerically; see the discussion in section 7.4. Since these 
subtractions are eliminated analytically in the associated matrices, these 
matrices yield more accurate results. 

Watson (1970) reduced Dunkin's 6 x 6 matrices to 5 x 5 matrices; see again 
Section 7.4. 



9.6.2 Knopoff"~ method 

Molotkov (1961) derived recurrent formulae which made it possible to 
calculate the minors of the system of boundary conditions immediately. He 
applied this method to a body-wave problem, but possible applications to 
Rayleigh-wave problems were evident. It was recognised only later that 
Molotkov's method solves the computational problems mentioned above, and 
is equivalent to the multiplication of matrices of the fifth order (e.g., the 
matrices proposed by Watson (1970)). 

Another method of computing the determinant in the system of boundary 
conditions was proposed by Knopoff (1964); for further details we refer the 
reader to Schwab (1970), and Schwab and Knopoff (1972). Knopoff succeeded 
in expressing the corresponding determinants for Rayleigh and Love problems 
by means of the products of matrices for individual layers. Knopoff himself 
considered his methods only as an alternative to the method of Thomson and 
Haskell. However, Dunkin (1965) recognised that Knopoffs technique 
removed the computational problems contained in the Thomson-Haskell 
matrices. Abo-Zena (1979) further modified Knopoff s for computing at high 
frequencies, but this modification requires much longer computer time. 

Knopoff s matrices have different forms for odd and even layers, which 
represents a small disadvantage. Nevertheless, many authors prefer Knopoff s 
method, e.g., in computing synthetic seismograms by the modal summation 
method (Panza, 1985; Panza and Suhadolc, 1987; Urban et al., 1993). 

9.6.3 Computing reflection and transmission coefficients 

Another effective approach to calculating the dispersion curves of surface 
waves is founded on the use of reflection and transmission coefficients. This 
approach was first applied to studies of electromagnetic waves in the 
ionosphere. Kennett and his co-workers modified and further developed this 
method with regard to the problems of elastic waves in layered media. These 
methods not only efficiently solve the dispersion problem of surface waves, but 
also explicitly display the physical mechanism of surface wave formation, i.e. 
constructive interference. For further details we refer the reader to Kennett 
(1983), Luco and Apse1 (1983), and Chen (1993). 



Chapter 10 

Matrix Formulations of Some Body-Wave 
Problems 

In Chapters 8 and 9 we used matrix methods to study the propagation of 
surface waves in layered media. However, matrix methods may be used to 
study many other problems of wave propagation in layered media, such as the 
propagation of elastic body waves, temperature waves, or electromagnetic 
waves. Even the paper by Thomson (1950), the first paper dealing with matrix 
methods in the theory of elastic waves, was devoted to a problem of body 
waves. 

In this chapter, we shall demonstrate the application of matrix methods to 
two simple problems of SH waves, and we shall then solve the analogous 
problems for P waves. 

10.1 Motion of the Surface of a Layered Medium 
Caused by an Incident SH Wave 

Consider the same layered medium as in Chapter 8. We shall again study the 
propagation of plane harmonic waves of the SH type in this medium but, as 
opposed to the case of Love waves, we shall consider the homogeneous waves 
in the half-space. 

Consider a plane, harmonic SH wave which propagates in the half-space 
obliquely upwards and is incident at the stack of layers from below (Fig. 10.1). 
Again denote its angular frequency by w, and its angle of incidence in the half- 
space by y,. We are interested in the motion at the free surface, which is 
produced by this incident wave. 

Fig. 10.1. Incidence of an SH wave at a stack of layers. 

- 
n 

SH wave 

The solution of the wave equation in terms of plane, harmonic SH waves 
may be expressed in several forms, see (8.7). As the general expression for the 
displacement vector in the half-space we shall use form (8.7b), i.e. 

SH wave 
z 



zn being the depth of the boundary of the half-space, c the horizontal velocity, 
which is related to the angle of incidence by Snell's law, 

k = u>/c the horizontal wave number, and 

It follows from the discussion in Section 4.5 that Vn- represents a wave 

propagating obliquely upwards (incident wave), and V: represents a wave 

propagating obliquely downwards (reflected wave). Thus, coefficient A, is the 

amplitude of the incident wave (a given value, e.g., unity), and A; is the 
unknown amplitude of the reflected wave. 

The corresponding shear stress in the half-space is 

The displacement-stress vector in the half-space may then be expressed in 
matrix form as 

The inverse matrix to Tn is 

Hereafter we shall again omit the common exponential terms ei('Zt-"). At 

the top of the half-space, i.e. for z = zn , we then get Vn- = A,, V; = A;, and 
the inverse relation to (10.6) takes the form 



However, the displacement-stress vector at the top of the half-space is related 
to that at the free surface by (8.25), i.e. by 

where matrix A is the product of the layer matrices, given by (8.24). Equation 
(1 0.8) then becomes 

Note that matrix A is real, but matrices T;' and D are complex. 

Assuming the surface of the medium to be free, (r,) = 0 ,  the first equation 
21 

in (1 0.10) becomes 

A, = Dl 1 ( ~ 1 ) ~ ~  * (10.11) 

Putting the amplitude of the incident wave equal to unity, A, = 1, the desired 
displacement at the free surface is simply 

This solves our problem. 
Note that this displacement refers to the point at the surface which lies 

above the point of incidence in the half-space (Fig. 10.1); both points have the 

same horizontal coordinate x, because the same exponential term ei("-'a) has 
been omitted in all displacements and stresses. Note further that the motion at 
the surface depends not only on the angle of incidence, but also on frequency, 
because angular frequency w enters matrices a, . 

Let us recapitulate the computational process. For a given model of the 
medium, and given values of w and y, , we compute c from (1 0.3), k = w/c , 

matrices a,, given by (8.8), (8.9) and (8.16), then matrices A, T ~ I  and D. The 
result is given by (1 0.12). 

The formulae given above cannot be applied immediately to the important 
special case of normal incidence, when y, = 0 and horizontal velocity c 
becomes infinite. However, it is easy to reformulate the problem in terms of the 
parameter of the seismic ray, p = l/c, or wave number k. It is, therefore, more 
convenient to replace formula (10.3) by 



w sin y, 
k = 

P n  
Y 

retaining all the remaining formulae without change. 

10.2 Reflection and Transmission Coefficients of SH 
Waves for a Transition Zone 

The reflection and transmission of plane waves at a plane interface of two 
homogeneous and isotropic half-spaces belongs to the basic problems of wave 
propagation in many branches of physics. Here we shall restrict ourselves again 
to the case of SH waves. However, instead of a simple interface of two half- 
spaces, we shall consider the more complicated case of a transition zone 
between these half-space. 

We shall assume that the transition zone is formed by (n - 1) homogeneous 
and isotropic layers, separated by parallel interfaces; see Fig. 10.2 and the 
notation in Fig. 8.1. The transition zone is sandwiched between two 
homogeneous isotropic half-spaces. The upper half-space is denoted as the 
zero-th layer, the lower as the n-th layer. Denote the shear modulus and shear 
wave velocity in the upper half-space by and Po, respectively. 

Fig. 10.2. Reflection and transmission of an SH wave at the transition zone. 

Here we shall study a problem similar to that in the preceding section, but 
instead of the vacuum above the fiee surface in Fig. 10.1, we now consider an 
elastic half-space. Moreover, we shall assume that the incident wave 
propagates in the upper half-space, i.e. that it is incident at the stack of layers 
from above. 

Thus, assume the incident SH wave to be plane, harmonic and propagating 
in the upper half-space Denote its angular frequency by o and the angle of 
incidence by y o .  Analogously to (10.13), introduce the horizontal wave 
number, k, by the relation 

w sin yo 
k = 

Po 



We shall express the displacement vector in the upper half-space, analogously 
to (10.1) and (10.2) for the lower half-space, as 

uo =(0,v0,0), v0 = v i  +vc , (10.15) 
where 

+ -isoz i(wt-kx) V ,  = AoeisOzei(au-bi) , V: = A. e e 9 (10.16) 

and 

Displacement vo+ describes the incident wave, and V i  the reflected wave. 
The displacement-stress vector for the upper half-space is analogous to 

(10.6) for the lower half-space: 

At the boundary of the upper half-space (z = z, = 0) , this vector takes the form 

By using the continuity of this vector at the interface z = z l ,  and inserting 
(10.19) into Eq. (10.10), one gets 

Assume that no waves propagate upwards in the lower half-space 

(Fig. 10.2), i.e. put A, = 0 .  Moreover, put the amplitude of the incident wave 

equal to unity, A$ = 1. Equation (10.20) then becomes 

which represents two scalar equations, 

O=El1Ao+El2 ,  A i = E 2 1 A i + E 2 2 .  (10.22) 

This yields the reflection coefficient for the transition zone in the form 



and the transmission coefficient 

These formulae solve our problem. 
The latter formula can also be expressed as 

+ det E A, =-, 
El 1 

where detE is the product of the determinants of matrices T;', A and To. 

Since det Tcl = - 1/(2ipnsn), det A = 1, det To = -2i,4so, 

Other simple formulae for the reflection and transmission coefficients can be 
obtained from the inverse relation to (10.21): 

where matrix 

F = E - I  = T ~ I B T ,  . 

Note that matrix B = A-I is given by (8.27) and (8.21), and matrix ~ i '  is 
similar to (1 0.7). Equation (1 0.27) yields the following very simple formulae 

It is easy to verify that formulae (10.23) to (10.25) are equivalent to 
formulae (10.29). Namely, according to (8.19), the inverse matrix to matrix E 
is 

Thus, 

El2 F12 = -- El 1 F -- .  
det E ' 22 - det E 



By inserting these relations into (10.29) we obtain (10.25) and (10.23). 
Although the above-mentioned formulae are equivalent theoretically, they 

may yield different numerical results. In particular, if total reflection occurs in 
the transition zone, the trigonometric functions in the corresponding layer 
matrix a, are replaced by hyperbolic functions, and the elements of this 
matrix may become large in absolute value. Consequently, the resultant matrix 
E may also contain large elements. The computation of the transmission 

coefficient A: by means of (10.24) then requires the subtraction of large 
numbers, which may be accompanied by a considerable loss of significant 

figures.' The computation of A; by means of (10.26) or (10.29) is more 
accurate. 

10.3 Spectral Ratio of the Horizontal and Vertical 
Components of P Waves 

Now we shall study a problem similar to that in Section 10.1, but for an 
incident P wave. We again assume that this wave is plane and harmonic. 

Express the potentials of longitudinal and transverse waves in the half-space 
as 

p , = c q - + q + ,  f i = ~ , - + u ; l , + ,  (10.31) 

where, according to (5.7) and (5.8), 

ikr,, (z-z,,) , q" = A:e -ik% (z-z,,) On- = Aie , 
(10.32) 

ik(z-zn)  , tp+ = pe -ihn (z-z,,) Y,- = BLe , 

but we have omitted the common term e '("-") in these potentials. Here we 
have put 

an W c=- 
sin y, 

, k = - , , = , sn = , (10.33) 
C 

where cc, is the angular frequency and y, the angle of incidence of the P wave. 
Introduce the motion-stress vector in the half-space with elements (9.13). 

According to (5.11) and (5.13), this vector may be expressed in terms of 
potentials (1 0.32) as 

iu, / k 

where c, = (r, ), , rn = (% ), , and matrix T, is 



The inverse matrix is (Proskuryakova et al., 198 1) 

The inverse relation to (10.34) at the top of the half-space (z = 2,) can be 
expressed as 

iu, / k iul / k 

where we have used (9.1 6). 
Assuming that only a P wave is incident in the half-space, i.e. no S wave 

propagates upwards in the half-space, we put B, = 0. Moreover, we again 
assume the surface of the medium to be free, i.e. ol = = 0 for z = zl . 
Equation (1 0.37) then takes the form 

where we have put uo = ( u * ) ~  and wo = (wl) . For a given angular frequency 
21 

m, angle of incidence y, and amplitude A, for the potential of the incident P 
wave, Eq. (10.38) represents four scalar equations in the unknown 
displacements at the surface, uo and wo, and the amplitudes of the reflected P 

and S V  waves in the half-space, A; and B; . This solves the problem which is 
analogous to that in Section 10.1. 

However, we can solve yet another problem, when the angle of incidence is 
again known, but the amplitude of the incident wave is unknown. To eliminate 

the unknown A,,  consider only the second scalar equation in (10.38): 



This yields the following simple formula for the ratio of the horizontal and 
vertical displacements at the free surface: 

This ratio depends on w, y, and the parameters of the medium, but not on the 
amplitude of the incident wave. 

Many authors have used this approach to study the structure of the Earth's 
crust under seismic stations. If the epicentral distance and depth of an 
earthquake are known, the angle of incidence y, below the seismic station can 
be estimated from the travel-time curves (Richter, 1958). For a chosen model, 
ratio (10.40) can then be computed as a function of w, and compared with the 
measured spectral ratio. The parameters of the model are then modified unless 
a satisfactory fit with observations is achieved. This enables us to determine a 
layered structure under a seismic station fkom the observed spectral ratio. 

Note that deep earthquakes have been recommended for this purpose, in 
order to reduce the effects of possible layered structures in the vicinity of the 
source. The same method, using seismic sources in boreholes, may be applied 
to study shallow structures in seismic prospecting. 

60.4 Reflection and Transmission Coefficients of P and 
SV Waves for a Transition Zone 

The reflection and transmission of P and S V  waves in layered structures has 
been studied, e.g., by Thomson (1950), Molotkov (1961), Ratnikova and 
Levshin (1 967), Fuchs (1 968), Cerveny (1 974), Kind (1 976), Kennett (1 983), 
Luco and Apse1 (1 983), Molotkov (1 984), Chen (1 993). 

Fig. 10.3. Reflection and transmission of a P wave at the transition zone. 

In this section we shall solve a problem similar to that in Section 10.2, but 
for an incident P wave. As opposed to Fig. 10.2, the incident P wave generates 



two reflected waves in the upper half-space, and two analogous transmitted 
waves in the lower half-space (Fig. 10.3). 

In addition to potentials (10.3 1) and (1 0.32) for the lower half-space, denote 
the analogous potentials of longitudinal and transverse waves in the upper half- 
space by 

P O = % - + % + ,  'yo=q, -+++,  (10.41) 
where 

Q = AG eihoz , 54f=AOe  + -i& 9 

(1 0.42) 

5 = B G ~ ~ ~ o '  , y$ = B : ~ - ~ ~ o ~  

Since we now assume that the incident wave propagates in the upper half- 
space, subscripts n in (10.33) must be replaced by subscripts 0: 

a 0  W c=- 
sin yo 

, k = - , ro = d m ,  so = dm , (10.43) 
C 

where w is again the angular frequency and yo the angle of incidence of the P 
wave. 

The motion-stress vector in the upper half-space is analogous to (10.34). At 
the boundary of this half-space, i.e. at depth z = zl = 0 ,  it takes the form 

where 

To = 

Considering the continuity of the motion-stress vector at depth zl and inserting 
(10.44) into (10.37), we obtain the following relation between the amplitudes 
in the lower and upper half-spaces: 

where matrix E is 



Ti1 being given by (10.36). 
Assuming that only a P wave is incident in the upper half-space, we put its 

amplitude A$ = 1, and B; = 0 for an incident S V  wave. Moreover, we assume 

that no waves propagate upwards in the lower half-space, i.e. A, = B i  = 0 .  
Equation (1 0.46) then becomes 

This represents four scalar equations: 

The first two equations yield the reflection coefficients for P and S V  waves: 

where E denotes the second-order minor of matrix E containing rows i, j, il, 
and columns k, 2; see notation (7.25). The transmission coefficients, after 
substituting (10.50) into (10.49), can be expressed as 

ijk 
is the third-order minor of matrix E composed of rows i, j, k, and 

columns I ,  my n. 



Since the reflection coefficients are expressed in terms of the second-order 
minors of matrix E, they can be computed effectively by means of the 
corresponding delta matrix, 

- 1"" E = T i  ATo , (10.52) 

where delta matrix A is described in Subsection 9.5.2, and delta matrices Ti1 
and To can be derived from matrices (10.36) and (10.45) in a similar way. 

The formulae for the transmission coefficients are more complicated. The 
computation of the corresponding third-order minors was analysed in detail, 
e.g., by Cerveny (1974). Some other formulations of this problem can be found 
in the papers and books mentioned at the beginning of this section. 
Nevertheless, all these approaches yield rather complicated formulae. However, 
in the previous chapters we have found several times that some problems can 
be formulated effectively in terms of inverse matrices, i.e. by multiplying the 
corresponding matrices from the lower half-space upwards. 

Thus, let us apply inverse matrices also to our problem. The inverse relation 
to (10.48) is 

where matrix 
1 1 -1 1 -1 F - E -  = T i  A T, = T i  a ,  . . .a;! ,~,  ; (10.54) 

note that matrix Ti1  is analogous to (10.36), and matrices a,' can be derived 
from matrices a,, given by (9.15). The last two equations in (10.53) yield the 
transmission coefficients in the form 

For the reflection coefficients we then obtain 

Formulae (10.55) simplify considerably the computation of the transmission 
coefficients in comparison with formulae (10.51). It is now sufficient to 
compute matrix F and the corresponding delta matrix P .  The convenient 



formulae (10.55) and (10.56) for the transmission and reflection coefficients 
have been derived here for the first time. 

The derivation of the reflection and transmission coefficients for an incident 
S V  wave would be similar. Only the horizontal velocity in (10.43) would be 

given by c = Polsin yo , and in (10.46) we would put Aof = 0 and Bof = 1. 
Note that the method described above cannot be applied to the important 

case of normal incidence, yo = 0 ,  because velocity c becomes infinite, as well 
as some elements of the layer matrices and of matrix To. Therefore, the 
problem should be reformulated to include the normal incidence, too. 

10.5 Some Other Studies 

In these lecture notes we were unable to solve many other theoretical problems, 
such as the propagation of elastic waves generated by a point source in a 
layered medium (Ewing et al., 1957; Takeuchi md Saito, 1972; Brekhovskikh, 
1973; Aki and Richards, 1980; Ben-Menahem and Singh, 1981 ; Kennett, 1983; 
Molotkov, 1984), computation of the partial derivatives of the phase and group 
velocities with respect to the parameters of the medium (Brune and Dorman, 
1963; Novotny, 1970; Rodi et al., 1975; Urban et al., 1993), computation of 
synthetic seismograms using the reflectivity method (Fuchs and Miiller, 1971; 
Kind, 1978; Kind and Odom, 1983) and with the modal summation method 
(Kennett, 1983; Panza, 1985; Panza and Suhadolc, 1987; Florsch et al., 1 %I), 
surface waves in general vertically inhomogeneous media (Levshin, 1973), 
surface waves in anisotropic media (Crampin, 1970; Crampin and Taylor, 
1971; Martin and Thomson, 1997; Thomson, 1997), or surface waves in 
laterally inhomogeneous media (Keilis-Borok, 1989). 



Chapter 11 

Wave Propagation in Dispersive Media 

In this chapter we shall study the interference of waves in several special cases, 
and then derive the basic formulae for determining the phase and group 
velocities from observed waves. 

11.1 Superposition of Two Plane Harmonic Waves in a 
Non-Dispersive Medium 

Consider two plane harmonic waves of angular frequencies wl and 02 

propagating along the Cartesian axis x at velocity c which is the same for both 
waves. Denote by ul and u2 the displacements or other parameters of these 
waves (particle velocities, accelerations, stresses, electrical intensities, etc.). 
For simplicity, assume both waves to be of the same amplitude, A. Then, for 
example, 

u, = A sin[cq (t - xlc)] , u2 = A sin[ru, (t - xlc)] . (11.1) 

Since 
a + j 3  a-fl 

sina + sinp = 2sin-cos- 
2 2 , 

the superposition of the two waves may by expressed as 

Assuming the frequencies to be close to each other, i.e. 

= w + A c c , ,  02 = o - A D ,  
one gets 

u=2Asinw t-x c cosAw t-x c . [ ( 1 ,  [ ( I)] 
"Carrie; wave" amplitude-"modulated 

travelling wave 

The resulting wave has the character of biases. In this case, the carrier wave 
and the modulating wave propagate at the same velocity, c. 

11.2 Superposition of Two Plane Harmonic Waves in a 
Dispersive Medium 

Assume the velocities of the two waves to be different, and denote them by cl 
and c2 , respectively. Instead of (1 1.1) we now have 



u l = A s i n o  [ l (  t - x c  1 111 , u2=Asinw2 [ ( t - x c 2  ) I  
Introducing the wave numbers 

k, =w,/c, , k, = @ 2 / ~ 2  , 

the individual waves can be expressed as 

and the resulting wave is 

Again assume close frequencies and wave numbers: 

w2 = o - A m ,  k2 =k-Ak 
We then obtain 

u = 2 A sin(wt - kx) COS(AW t - ~k i) = 2 A cos[Aw(t - Ex) ] sin(wt - kx) . 
\ , 

envelope 

(11.11) 
The envelope propagates at velocity 

In the limiting case for small Aw and Ak , we arrive at the important formula 

Velocity U is called the group velocity. In our case, this is the velocity of 
propagation of the envelope. This velocity is generally different from velocity 
c = w/k , which is called the phase velocity. 

We can surnrnarise these results as follows: The individual peaks and 
troughs of the resulting wave propagate at the phase velocity, whereas their 
envelope propagates at the group velocity. 



Hence, the propagation of waves in a dispersive medium cannot be 
described by one velocity only, but we must use two velocities. Generally, the 
group velocity is the velocity of propagation of energy (Brillouin, 1960). 

Let us add several other formulae for the group velocity. Inserting w = kc 
and k = 2n/A into (1 1.13), we get 

where A = 2x1 k is the wavelength. Using the reciprocal relation to (1 1.13), 

and inserting k = w/c , we obtain other important formulae: 

where T = 2 n / o  is the period and f = 1/T the frequency. These formulae can 
be used to detennine the dispersion curve of the group velocity if the dispersion 
curve of the phase velocity is known. 

11.3 Propagation of a Plane Wave with a Narrow 
Spectrum 

Again consider the propagation of plane waves along the x-axis. Let f ( t )  be 
the time h c t i o n  of the corresponding wave characteristics (displacement, 
pressure, etc.) at the origin x = 0 .  Under certain general conditions, this 
function may be expressed as the Fourier integral, 

where spectrum ~ ( w )  is defined by 

If function f ( t )  is real, which we shall assume here, its spectrum for 

negative w is complex conjugate, i.e. s(- w) = S(w)  . Function (1 1.17) can 
then be expressed as 



This represents the decomposition of function f into harmonic components. 
Each of these components propagates at its own velocity c = c(w) , and at 
distance x # 0 takes the form 

iw t-xjc) ~ ( x ,  w) = s(w)e ( . 

We shall assume that the wave propagation obeys linear equations, i.e. the 
individual harmonic components propagate independently of each other. The 
superposition principle then holds true, and the resulting wave is given by the 
summation (integration) of the individual components: 

1 
CO 

1 
00 

f (x, t )  = - Re I ~ ( w ) e ' ~ ( ' - ~ ~ ~ )  d w = -Re I~(w)e'("-") d o , (1 1.20) 
7r 0 

7r 
0 

k = w/c being the wave number. 
If the medium is non-dispersive, i.e. c = const., it follows from (1 1.20) that 

the shape of the wave does not change during propagation: 

11.3.1 Form of a wave with a narrow spectrum 

Now let us consider wave propagation in a dispersive medium, assuming the 
signal under consideration to have a non-zero spectrum only in a narrow 
neighbourhood of angular frequency wo. Wave (1 1.20) can then be expressed 
as 

1 
wo+Aw 

f(x,t)=-Re I ~ ( r u ) e ' ( ~ ~ - ~ ) d w  . (1 1.22) 
wg-Aw 

Replace the wave number by the first two terms of its Taylor series in the 
neighbourhood of wo : 

For the sake of brevity, denote k(wo ) by ko , and derivative (d k/d w) by wo 
l/Uo. Moreover, assume that spectrum ~ ( w )  varies only slowly in the 



neighbourhood of wo, so that it may be approximated by s(wo). Function 
(1 1.22) can then be expressed approximately as 

Denote the integral in (11.24) by A.  Since wo and Uo are constant on 
integrating over w, this integral can be easily calculated. We obtain 

where the function sinc is defined as 

sin x 
sincx = - . 

This function is frequently used in the theory of signal propagation. Note that 
sinc0 = 1, and for 1x1 > 0 this function is oscillating with decreasing 
amplitudes. 

Thus, the resulting wave (1 1.24) represents a carrier harmonic wave of 
angular frequency wo which is modulated by function sinc. The carrier wave 
propagates at velocity co = wo /ko , whereas its envelope propagates at velocity 

uo. 
Note that instead of the Fourier integral in form (1 1.19) we could use the 

general form (1 1.17). However, if a spectrum is non-zero in the neighbourhood 

of wo, it is also non-zero in the corresponding neighbourhood of (- wo). 
Consequently, we would have to consider two integrals, namely one from the 

vicinity of wo and the other from the vicinity of (- wo). The sum of these 
integrals would yield the same result as (1 1.24). 

11.3.2 Simple methods of determining the phase and group 
velocities from observations 

As a practical result of the theoretical considerations given above, we can 
propose suitable methods for determining the phase and group velocity from 
observations. Therefore, assume that a source of waves, located at the origin 
x = 0 ,  has generated a wave with a narrow spectrum. (Note that this case is not 
typical of seismic waves, because earthquakes usually generate seismic waves 
with broad spectra; see below). 

The phase velocity, as defined above, is the velocity with which the 
individual peaks propagate. However, the amplitudes of the individual peaks 
vary during the propagation. Therefore, we must observe the wave at two 



distances xl and x2, and correlate their records, i.e. for each peak on one 
record we must find the corresponding peak on the second record. Denote the 
arrival times of a selected peak at the two distances by tl and t 2 ,  respectively. 
The phase velocity can then be determined as 

The determination of the group velocity is even simpler, because only one 
point of observation is required. Namely, function (1 1.24) attains its maximum 
values if the argument of function sinc is zero, which yields 

Thus, in order to apply this simple formula to determine the group velocity, we 
must know epicentral distance x, and determine travel time t when the 
maximum amplitudes appear on the record. 

The simple formulae (1 1.27) and (1 1.28) for the practical determination of 
the phase and group velocities follow from expressions (1 1.24) and (1 1.25), 
which are valid only for waves with narrow spectra. Nevertheless, we shall see 
below that formulae (1 1.27) and (1 1.28) have a more general validity. 

11.4 Propagation of a Plane Wave with a Broad 
Spectrum 

In the previous section we were able to estimate the wave-form, given by 
integral (1 1.20), analytically assuming the spectrum to be concentrated in a 
narrow frequency interval. Now we shall consider the opposite extreme when 
the spectrum is very broad. This case describes the typical situations in 
seismology better, because the motions at a seismic source are usually of short 
duration and, consequently, display a broad spectrum. We shall show that, 
under certain assumptions, it will again be possible to derive an approximate 
analytical expression for the corresponding integral (1 1.20). In particular, if 
either the distance x, or time t is large, the estimate of integral (1 1.20) can be 
obtained by applying the asymptotic method of stationary phase. 

11.4.1 Asymptotic expressions for large distances 

Let us perform the asymptotic estimation of integral (1 1.20) for large x. For 
this purpose, express this integral as 

1 
00 

f (x, t )  = -Re I5'(w)eY" d w , 
x o  

where 



Assume that functions ~ ( w )  and @(o) do not vary very rapidly with w, i.e. 
~ ( w )  is approximately constant, and @(a) is approximately a linear function 
of w. For large x, the integrand in (1 1.29) is then a rapidly oscillating function, 
whose amplitude varies only slowly with w. Consequently, the contribution to 
the integral fiom one half-period of this function is nearly compensated by the 
contribution of the opposite sign from the next half-period, etc. These 
contributions approximately cancel each other and, therefore, may be 
neglected. This compensation is not sufficiently complete only at places where 
the above-mentioned assumptions are not satisfied. 

Consider the Taylor expansion of function @ in the neighbourhood of 
angular frequently wo : 

1 
@ ( w ) = ~ ( w O ) + @ f ( ~ O ) ( w - w O ) + ~ @ 1 1 ( w O ) ( ~ - w o ) 2 +  ... , (11.31) 

where 

U being the group velocity, defined by (1 1.13). The approximately linear 
character of function @, assumed above, is perturbed at places where the linear 
term in (1 1.3 1) is not large enough in comparison with the higher-order terms. 
The largest deviation .from linearity occurs at points where this linear term 
vanishes, i.e. where the first derivative of @is zero. These points are referred to 
as points of stationary phase. 

Assume that function 0, for given values of x and t, has only one point of 
stationary phase, and specify expansion (11.31) for this point. Then 

@'(wo) = 0 ,  and (1 1.32) yields 

see the formally identical formula (1 1.28). Hence, we have arrived at a very 
simple and important formula for estimating the group velocity. Namely, 
according to (1 1.34), the ratio of epicentral distance x to travel time t yields the 

group velocity for the angular frequency of the stationary phase, ~ ( 0 ~ ) .  
However, we do not know yet, how to determine this fkequency fiom the 
seismogram. Let us deal with this problem. 



A significant contribution to integral (11.29) comes only from the 
neighbourhood of stationary point wo , where expansion (1 1.3 1) takes the form 

Neglecting the higher-order terms in this expansion, and inserting it into 
(1 1.29), one gets approximately 

wo+Aw 1 

dm] , (1 1.36) 
wo-Aw 

where ko = k(oo) and (mo - Am, wo + A@) is the interval where expansion 
(1 1.35) can be used. Using the substitution 

we get 

where 

and the positive sign in the argument of the exponential applies if @"(wo) > 0 ,  

and the negative if @"(ao) < 0 .  If epicentral distance x is large, integration 

limit Au is also large (assuming @"(mO) + 0). For large u, the integrand in 
(1 1.38) is a rapidly oscillating hc t ion .  Thus, the corresponding integral will 
not change significantly if the integration limits are extended to +a. This 
yields Poisson's integral 

The derivation of this integral may be found in the textbooks of mathematical 
analysis. Using (1 1.33), we finally arrive at 



11.4.2 Properties of the asymptotic solution 

The expression in the square brackets in (1 1.41) represents a harmonic wave of 
angular frequency wo. Thus, we have arrived at the result that, at large 
distances x from the source and at any time t, the wave may be approximated 
by a harmonic wave. When we proceed to another time t (or another distance 
x), angular frequency wo will change. Thus, the seismogram at a large distance 
has the character of a quasi-harmonic wave whose period gradually varies. This 
agrees rather well with observations; see the examples of seismograms in the 
next chapter. 

The amplitude of the wave also varies, which is described by the square root 
in (1 1.41). This formula indicates that large amplitudes may be expected at 
periods which are close to the extremes of the group-velocity dispersion curve, 
since d U/d w = 0 there. However, formula (1 1.41) itself cannot be used at 
these points, because it yields infinite amplitudes. 

At these extremes of the group velocity, not only @'(wo) = 0 ,  but also 

@"(wo) = 0. Consequently, the next term, containing the third derivative 

@"'(wo), must be taken into account in (1 1.35). An analytical estimate of 
integral (1 2.29) can be obtained even in this more complicated case, but the 
resulting formula contains the Airy function. The large-amplitude waves 
corresponding to these extremes are thus referred to as Airy phases. 

Yet another property should be mentioned. Namely, as the wave packet 
extends in time during propagation, its amplitudes must diminish. This is 

expressed by the factor 1 in (1 1.41). This factor appears here although 
only the propagation of plane waves is being considered. Note that further 
factors leading to a reduction of amplitudes with distance, which we do not 
consider here, are the geometrical spreading of the wave-fiont, reflections and 
attenuation. 

The asymptotic solution (1 1.41) allows us to derive the classical, graphico- 
numerical methods of determining group and phase velocities from 
observations; see the following Sections 1 1.5 and 1 1.6. 

11.5 The Peak and Trough Technique for Estimating 
Group Velocities from Observations 

We have already derived the simple formula (1 1.34) for determining the group 
velocity. Now we already know that wo represents the angular velocity of the 
harmonic wave which approximates the seismogram at the chosen time. This 
means that wo represents the instantaneous angular frequency of the dispersed 
wave train. Thus, by determining the travel time and instantaneous period for a 
selected point on the seismogram, we obtain one point of the group-velocity 
dispersion curve. 

The practical procedure, referred to as the peak and trough technique 
(Ewing and Press, 1952), may be as follows. After smoothing the seismogram, 



in order to suppress the noise and other waves which perturb the wave train, we 
measure the travel times of the peaks, troughs, or zero-crossings. The 
successive peaks, troughs, or zero-crossings are indexed and their arrival times 
are plotted as a function of index number. Periods (half-periods) are then 
estimated from the slope of this curve. 

Note that it is usually difficult to determine the arrival times of the peaks 
and troughs accurately. Since the times of the zero-crossings are usually better 
defined, these times are used more fi-equently. 

Since time t in formula (I 1.34) is the travel time between source and 
receiver, the dispersion curve determined in this way characterises the structure 
of the medium between these points. In other words, by interpreting such 
dispersion curve we obtain a mean model of the medium between source and 
receiver. 

Examples of group-velocity dispersion curves, obtained by this simple 
method, will be given in Chapter 12. 

11.6 The Peak and Trough Technique for Estimating 
Phase Velocities from Observations 

Denote by A(w0) the amplitude and by q(wo) the phase of the complex 

number s(wo) in (1 1.41): 

$00) = ~ ( w o  )e id%) (1 1.42) 

The complex function in the square brackets of (1 1.41) can then be expressed 
as 

where c(wo) = wo/ko is the phase velocity for angular frequency wo , and 

is the time shift. According to (1 1.43), the phase velocity can be estimated by 
using the formula 

However, in this case the phase shift at the source, d w o ) ,  must be known. 
This shift can be computed if the earthquake mechanism is known, but this 
information is available only for some strong earthquakes. 

Therefore, the usual method of determining the phase velocity is not based 
on observations at one station, but seismograms of two stations are used. These 



stations must be located along a profile which passes through the epicentre 
(Fig. 11 .I). 

u 
unknown - 

known 

Fig. 1 1.1. Position of the source, 0, and two seismic stations. 

Let the seismograms at the source, first station and second station be 

described by functions f (t) , f (xl , t) and f (x2, t) , respectively. The 
seismograms at the stations are schematically shown in Fig. 11.2. 

Fig. 11.2 Seismograms at two epicentral distances xl and x2, where x2 > XI. 

(After Savarensky (1975)). 

Consider, e.g., peak MI on the first seismogram and the corresponding peak 
Mi on the second seismogram. Denote the instantaneous periods at these 

peaks by q and lj' , respectively. As opposed to the case in Section 11.3, these 

periods are now slightly different (Ti > T i ) .  According to (1 1.41) and (1 1.42), 
the condition of the same phases at points M, and Mi can be expressed as 

where we have omitted identical factors i. 4 4  on both sides, q(w1) and 

a ( ~ i )  are the phase shifts at the source, t1 = t ( ~ , )  and ti = t ( ~ i )  the 
instants of the corresponding peaks, wl = 2n/q , and mi = 2n/q . If the 
distance between the stations is relatively small (not exceeding several 
wavelengths), we may expect angular frequencies wl , mi, and periods q , 



to be close to each other, and replace them by the corresponding mean values. 
Equation (1 1.46) then simplifies and yields the following approximate formula 
for estimating the phase velocity: 

Note that this formula is very similar to (1 1.27), 
velocity to the mean period. 

(1 1.47) 

but now we assign the 

As mentioned above, the group velocities computed by using formula 
(1 1.34) characterise the structure between the source and seismic station. As 
opposed to this, the phase velocities computed by using formula (11.47) 
characterise the structure between the seismic stations, because the differences 
of their epicentral distances and of travel times are used. Examples of 
dispersion curves, determined by means of formula (1 1.47), will be given in 
Chapter 12. 

Note that the records at two stations can also be used to estimate the group 
velocities between the stations, but graphical methods are not suitable for this 
purpose. Namely, for a point on one seismogram, we must find the point on the 
other seismogram with the same instantaneous period. If the point on the first 
seismogram coincides with a peak or trough, the corresponding point on the 
second seismogram generally does not coincide with a peak or trough, so that 
its position cannot be determined accurately by graphical methods. More 
convenient methods of estimating group velocities from seismograms of two 
stations will be mentioned in Section 11.8. 

11.7 Determination of Phase Velocities from Fourier 
Spectra 

We shall again consider observations at two stations, as in the previous Section 
11.6, but instead of seismograms we shall use the corresponding Fourier 
spectra (Fig. 11.1). Denote the Fourier spectra at the source, at the first and 
second stations by ~ ( w )  , S, (w)  and S2 (w )  , respectively. The seismograms at 
the stations are related to the source spectrum by formula (1 1.20) if 
propagation of plane waves is being assumed. Thus, 

where k = 1,2, and the relation between the spectra is 



Express the latter formula explicitly for k = 1 and k = 2 ,  and eliminate the 
unknown source spectrum S(W) . This yields 

Hence, the amplitude spectra at the stations are identical, lS2(a)1 = I S ~ ( W ) ~ ,  
since we have used the plane-wave approximation, but the phase spectra differ 

. This difference in the phase spectra may be used to 

determine the phase velocity. 

Compute spectra S1 (o) and s2 (0) from the known seismograms f (xl , t )  

and f ( x2 ,  t )  , respectively: 

where again k = 1,2, pk (a) and qk (0) are the real and imaginary parts of the 
spectra. These functions are thus known at both stations. By comparing the 
phases in (1 1.50), one gets 

92 (4 arctan ------ = arctan (1 1 .52) 
p2 (4 

where m is an integer. This yields the final formula for the phase velocity in the 
form 

The unknown integer in (1 1.53) represents the number of wavelengths 
which can be laid between the stations. In practice, we usually compute the 
phase velocities for m = 0, + 1, + 2 ,  etc., and select the curve which seems to be 
most realistic. The correct value of m can best be determined at long periods, 
where the distances between the individual curves are large. Supplementary 
data, such as the velocities of body waves or group velocities of surface waves, 
can also facilitate the selection of the correct value of m. 

W 
~ ( 0 )  = (x2 - X I  ) 

q1 (a) arctan ----- - arctan --- q2(W) + 2mn 
PI  (4 p2 (4 

11.8 Time-Frequency Analysis 

(1 1.53) a 

Observed waves are frequently composed of several components, and the 
problem of their separation arises. If observed waves are well separated in time, 
e.g., P and S waves on seismograms, they can be analysed in the time domain. 



If a wave is composed of two or several harmonic components, the best 
separation and analysis can be performed in the frequency domain. However, 
we also encounter mixed situations, when the ffequency content of a wave 
varies with time. A combined analysis, i.e. a time-frequency analysis, must 
then be applied. Seismic surface waves are typical examples of waves 
displaying this time-frequency dependence. 

The peak and trough technique, described above, is the classical time- 
frequency analysis technique for estimating surface-wave velocities. It is 
evident that this technique is designed exclusively for estimating the dominant 
frequency at a given time. This technique fails if the wave does not exhibit a 
simple quasi-sinusoidal character, which may be caused by seismic noise, 
interference of modes, interference in the neighbourhood of group velocity 
minima or maxima, etc. In these cases, a spectral estimation needs to be 
applied. Moreover, the dispersion curves determined by the peak and trough 
method usually display a scatter, due to the inaccurate determination of periods 
by numerical differentiation. Hence, some smoothing procedure is also 
required. 

Many contemporary time-frequency analysis techniques are based on the 
concept of dynamic spectra. The dynamic spectrum of a function f (t) is 
defined as a linear transformation of the form 

where function K determines the character of the transformation. 
Two special cases of this transformation should be mentioned, namely: 

-iwr . a) the Fourier transform if ~ ( w ,  t, r )  = e , 

b) the identical transformation if ~ ( o ,  t, r )  = 6(t - r) , which yields the 

original function, ~ ( w ,  t )  = f (t) . 
The dependence of function K on t and r  is frequently assumed in the form 

of the difference (t - r)  , e.g., 

Many authors have used function g in the Gaussian form, which yields the 
optimum resolving power (Dziewonski et al., 1969; DobeS, 1981). A suitable 
form of function K can then be, for example, 

a being the parameter controlling the width of the filter. 



Assume that we have computed and plotted the absolute value of the 

dynamic spectrum, N o ,  t)l, as a function of o and t. For a given t, the 

maximum value of this function along the w-axis determines the dominant 
angular frequency oo. By inserting these values into (1 1.34), we obtain one 
point of the group-veIocity dispersion curve. 

Instead of time t, we can use a new variable, u = x/t , where x is the 

epicentral distance. The ridge of the ( u , w ) -plot then yields directly the 

dispersion curve of group velocity, U = ~ ( o )  . 
In comparison with the peak and trough techniques, the method just 

described enables us to determine the observed dispersion curves with higher 
accuracy and in broader frequency intervals, and also to separate and analyse 
higher modes. 

Another variant of the above-mentioned method is the autoregressive 
spectral analysis, also known as maximum entropy spectral analysis, which 
usually provides higher spectral resolution. Recently, a new category of time- 
frequency analysis techniques, called time-frequency distributions, have 
appeared in the literature. In particular, the Wigner and Choi-Williams 
distributions have become very popular. For details we refer the reader to the 
review by KocaogIu and Long (1 993). 



Chapter 12 

Examples of Structural Studies by Surface Waves 

The most detailed information on the structure of the Earth's crust can be 
obtained from studies of seismic body waves, e.g., by means of seismic 
reflection methods or by deep seismic soundings. Studies of seismic surface 
waves can only be used to construct mean structural models between epicentre 
and station, or between two station. However, if surface waves from many 
earthquakes are recorded at several stations, tomographic methods make it 
possible to reveal also many structural details (Levshin and Ritzwoller, 1995; 
Rial et al., 1997). 

Surface waves can be used to study extended regions of continents and 
oceans, including high mountains, polar regions, or thick forests. Even in the 
regions where the crustal structure is known from body-wave studies, the 
surface-wave method may bring independent structural information, in 
particular (Novotny, 1997): 
a) As opposed to deep seismic soundings, dispersion curves contain 

information predominantly on the distribution of shear-wave velocities. 
b) The surface-wave method is an efficient and inexpensive method of 

studying the upper mantle structure if seismograms of distant earthquakes 
are used. 

c) High-quality observations of surface waves can be used to study some 
structural details, such as low-velocity zones, or anisotropy. 

d) Shallow structures to depths of several hundred metres can be studied by 
short-period surface waves generated by explosions. 
We shall demonstrate briefly some of these applications on the following 

examples. 

12.1 Short-Period Surface Waves Generated by 
Explosions and Their Interpretation 

Short-period surface waves have been used by many authors to study the 
uppermost crustal structure; see the papers by Astrom and Lund (1993), or 
Ruud et al. (1993), where further references can be found. Here we shall 
reproduce some results of studying short-period surface waves in the West 
Carpathians by Holub and Novotny (1 997). 

Fig. 12.1. Vertical (Z) and radial (H, )  seismograms recorded at an epicental 
distance of 3.6 krn from one of the shot points in the West Carpathians. 



During deep seismic soundings (DSS) along the international profile VI, 
which crossed the boundary of the Czech Republic and Slovakia, seismic 
waves were recorded also by broad-band seismographs. In the regions of 
sedimentary basins, these seismographs recorded, apart from body waves, slow 
short-period Rayleigh waves (Fig. 12.1). The observed group-velocity 
dispersion curves, determined by the peak and trough method, are shown in 
Fig. 12.2. Simple models, consisting of one or two layers on a half-space, were 
sufficient to explain the observed dispersion. The velocities in the individual 
models are rather different, but all the models exhibit a significant velocity 
discontinuity at depths of 50-70 m, which has not been recognised by the 
previous body-wave studies. 
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Fig. 12.2. Dispersion curves of short-period Rayleigh waves for several 
segments of the DSS profile VI: U is the group velocity, T the period, the 
points denote the observed values, and the lines represent the theoretical 
dispersion curves. 

12.2 Surface Waves Generated by Earthquakes and 
Their Application in Studies of the Earth Crust and 
Upper Mantle 

Hundreds of papers have dealt with studies of the crustal and upper mantle 
structure by surface waves. Of the classical papers which considerably 
influenced further development, we would mention, e.g., the papers by Dorman 
et al. (1960), Brune and Dorrnan (1963), Anderson and Toksoz (1963), or the 
review by Kovach (1 965). Here we shall present only two recent examples. 



Cratan Saa Francisco , 

Fig. 12.3. The shear-wave velocity cross-sections for the Siio Francisco craton 
in south-eastern Brazil, derived from the group-velocity dispersion curves (the 
figure inside). (After Marchioreto and Assumpgiio (1997)). 

Earthquakes from regional distances have been used to study the upper 
crustal structure in a region of south-eastem Brazil by Marchioreto and 
Assumpgiio (1997). The results for the Siio Francisco craton are reproduced in 
Fig. 12.3. The dispersion curves in the period range from 0.6 to 3.4 s yielded 
structural models to a depth of about 4 km. 

Fig. 12.4. A record of an earthquake in Southern Italy, obtained at Uppsala 
with the long-period EW-components seismograph (Press-Ewing). The 
epicentral distance is 18.3" . The waves of large amplitudes are Love waves. 



Several Italian earthquakes were used to study surface waves propagating 
along profile Prague (Czech Republic) - Uppsala (Sweden) by Novotny et al. 
(1997); see Figs. 12.4 and 12.5. The surface-wave dispersion was used to verify 
the structure of the Earth's crust, known from nearby profiles of deep seismic 
soundings, and to study the uppermost mantle. 
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Fig. 12.5. Phase velocity dispersion of Rayleigh waves (R) and Love waves (L) 
for the Prague-Uppsala profile. 

We hope that these few examples have demonstrated sufficiently the 
possibilities and limitations of the surface-wave method in structural studies. In 
these lecture notes, we have not discussed other seismological applications of 
surface waves, e.g., in studies of earthquake mechanisms, in studies of lateral 
inhomogeneities, such as vertical faults, and some others. Nevertheless, the 
increasing number of broad-band instruments, used at seismic observatories 
and in field measurements, and the progress in the theory of surface waves 
indicate extending possibilities of the future research of seismic surface waves. 
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