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Preface

Physics is traditionally divided into smaller branches such as mechanics,
electricity and magnetism, thermodynamics, atomic physics and others.
Mechanics is usually further divided into two main parts:

1) mechanics of the particle, of a system of particles, and of the rigid body:

2) continuum mechanics.

Based on this division of physics, geophysics is also divided into analogous
branches: for details refer to the next chapter.

The present lecture notes represent an introduction to those parts of
mechanics of the Earth which, in physics, correspond to particle mechanics and
rigid body mechanics. In particular, we shall deal with the motions of the Earth,
with its gravity field and figure.

Most of the problems discussed in these lecture notes are the subject of one
of the geophysical disciplines, called gravimetry. However, gravimetry does not
include all the topics. Although gravimetry studies the Earth’s gravity field in
great detail, the other problems are usually studied elsewhere. Hence, the
motions of the Earth or satellite methods of investigating the gravitational field
are considered to be topics of astronomy rather than of geophysics. Problems of
the figure of the Earth also traditionally are a part of geodesy, although they
have much in common with gravimetry.

Consequently, the present lecture notes partly have an interdisciplinary
character, containing chapters from astronomy, geophysics and geodesy.
Contrary to specialized textbooks and monographs on these problems, our
explanation is more elementary. The specialized books often assume that the
reader is acquainted with extensive chapters on coordinate systems, celestial
mechanics, or the potential theory. We have tried to shorten these auxiliary
chapters and to start immediately with the mechanics of the Earth. It is only
assumed that the reader has passed the basic courses of mathematics and
physics which are usual at the faculties of natural or technical sciences. More
advanced passages of mathematics and physics which are needed here, such as
Legendre polynomials or mechanics in non-inertial reference frames, are
explained in separate chapters. Some chapters of the lecture notes are relatively
independent, so that they can also be used in other lectures.

For many years, I have read a course of gravimetry for undergraduate
students of geophysics at the Faculty of Mathematics and Physics of the Charles
University in Prague, Czech Republic. I have used the experience gained from
these lectures here, but the present text has mostly been extended substantially,
and several new chapters have been added.

These lecture notes have been written for the purposes of the post-graduate
studies in geophysics, organized by the Universidade Federal da Bahia,
Salvador, Brazil.

[ would like to thank the Centro de Pesquisa em Geofisica e Geologia,
Instituto de Fisica, and the Instituto de Geosciéncias for their support in



preparing this text. I wish to express my thanks especially to the CNPq
(Conselho Nacional de Desenvolvimento Cientifico ¢ Tecnologico) for
providing me with the fellowship which made my stay at the Universidade
Federal da Bahia possible. I would also like to express my gratitude to the
students and professors whose advice and comments contributed to improving
the text, in particular to Prof. Roberto Max de Argollo and Prof. Elpidio A.
Juch. 1 am especially obliged to Mr. Armando Guedes Vicentini for his
initiative in preparing the computer version of a substantial part of the notes,
and to Mr. Joaquim Bonfim Lago for his work in the technical preparation of
the text and figures. I also thank RNDr. Jaroslav Tauer, CSc for the language
revision of the text with an understanding of the subject, which made the text
more comprehensible in many places. My thanks are also due to my wife, Mrs.
Sarka Novotn4, for the technical preparation of several of the last chapters. I
shall also be grateful to every reader for any critical comments and remarks
concerning these notes.

Salvador, 1998 Oldrich Novotny



Introduction

Geophysics and Its Division

During the long historical development of Earth sciences, several independent
scientific disciplines have been constituted. The main of these Earth sciences
are: geodesy, geology, geophysics, geochemistry and geography (Fig 0.1).

| GEOSCIENGE]

[GEODESY | [GEOLOGY | [GEOPHYSICS | [GEOCHEMISTRY | [GEOGRAPHY ]
]

| [ I ]
PHYSICS OF THE | [soLip garrH | METEOROLOGY | | [HYDROLOGY]
AND IONOSPHERE [OCEANOGRAPHY |
rGRAVIMETRY—] ' GEOMAGNETISM GEOTHERMICS AND
] SEISMOLOGY ] AND GEOELECTRICITY M'I?;iﬁTé\;IIiTY OF

Figure 0.1: Earth sciences and branches of geophysics.

Geophysics (physics of the Earth) is a branch of physics which studies the
phenomena and processes occurring in the Earth and in its immediate vicinity
by means of physical methods. It also studies the effects which other celestial
bodies, in particular the Sun and the Moon, have on the Earth.

From the point of view of this broad definition, geophysics includes physics
of the solid part of the Earth and of its liquid and gaseous envelopes. In this
case we speak of geophysics in a broader sense. However, meteorology,
oceanography and hydrology are usually separated from geophysics as
independent scientific disciplines with specific problems and methods of
investigation. We then speak of geophysics in a narrower sense or of solid Earth
physics. Attention should be paid to a certain terminological inconsistency,
when solid Earth physics is understood to be the physics of the whole interior of
the Earth including its liquid parts, especially the liquid outer core.

Solid Earth physics is further subdivided into smaller disciplines after certain
analogies with physics. The main of these disciplines are (Bath, 1979):

1. Gravimetry: measurement of gravity and its interpretation;

2. Seismology: study of earthquakes and of the propagation of seismic

waves;

3. Geomagnetism and geoelectricity: electromagnetic field of the Earth;

10



4. Geothermics and radioactivity of the Earth: the thermal conditions and

heat sources in the Earth’s interior.

In addition to these disciplines, some others, which have a rather
interdisciplinary character, also belong to geophysics. On the boundary between
geodesy and geophysics, there are physical geodesy and the study of recent
motions. Between geology and geophysics, there are tectonophysics,
volcanology and geochronology (determination of the age of rocks and
geological processes). Of a common interest to astronomy and geophysics are
the motions of the Earth, satellite gravimetry, planetary physics and cosmogony
(study of the origin of the Solar System).

In the same way as physics, geophysics can also be divided using other
criteria, e.g., into theoretical and experimental geophysiscs, or into pure and
applied geophysics.

Geodesy and Gravimetry

The prevailing part of these lecture notes will be devoted to study of the gravity
field of the Earth. By “gravity field” we understand the superposition of the
gravitational field of the Earth and of the field of the centrifugal force which is
generated by the rotation of the Earth about its axis. Much attention will be paid
to the form of the equipotential surfaces of the gravity potential. We shall see
that the shape of these surfaces is closely related to the figure of the Earth. As a
result, many problems of geodesy and gravity blend together. We can say that
accurate geodetic measurements must be accompanied by gravimetric
measurements, and vice versa. Let us illustrate this on several simple examples
(Grushinskii, 1976).

A Celestial Pole

v | 90°-7 s \\
\

h
\
\

Figure 0.2: The influence of anomalous masses on the astronomical
measurement of geographic latitude y.

The measurement of the geographic latitude requires the angle between the
plumb line and the direction toward the celestial pole (in the Northern
Hemisphere in the neighbourhood of Polaris) to be measured. The geographic
latitude, y, is then the complement of this angle to 90° (Fig. 0.2). However, if
there is a pronounced concentration of masses (a hill, mountain range) in the
neighbourhood of the point of observation, these masses cause a deflection of
the plumb line (see the dashed lines in Fig. 0.2 denoting a hill and the deflected
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plumb line). As a result, a deviated value of the geographic latitude will be
obtained. Although the effect of a hill on the deflection of the plumb line can be
approximately estimated, we know nothing of the distribution of the masses
below the hill. Therefore, to determine the deflections of the plumb line more
accurately, more sophisticated methods had to be developed (we shall deal with
them below).

The deflections of the plumb line, caused by anomalous masses, also affect
the determination of the heights above sea level by means of levelling (Fig. 0.3).
The problem is that the levelling instrument is adjusted to the local horizontal
plane, but this plane is affected by the presence of anomalous masses.

Figure 0.3: The influence of anomalous masses on the determination of the
height above sea level by means of levelling.

However, gravity measurements cannot be carried out without accurate
geodetic measurements. For example, to construct gravity maps we must know
not only the geographic coordinates of the corresponding points, but also the
heights above sea level to be able to calculate the gravity reductions.

Methods of determining the figure of the Earth underwent long historical
development. We can divide them into three main groups: geometric,
gravimetric (physical geodesy) and astronomical methods (satellite geodesy).
The oldest of these methods are the geometric; we shall deal with them briefly in
the next chapter. The theoretical foundations of some of the gravimetric
methods were already laid in the 18" and 19" centuries, but these methods were
widely applied in the first half of the 20" century. The geometric methods enable
not only the shape, but also the linear dimensions of the Earth to be determined.
However, they can be used only on the continents. The gravimetric methods are
only able to determine the shape of the Earth, but their great advantage is that
they can also be applied on the oceans. The astronomical methods have rarely
been used in the past, as the use of the distant Moon was inaccurate for these
purposes. However, in connection with man-made satellites, these methods now
belong to the most important and most accurate.
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Chapter 1

Historical Review of the Study of the Figure of the
Earth

1.1 Ancient Mythical Notions

The history of the scientific study of the Earth began with the idea of a spherical
Earth. As this concept does not follow from everyday experience, it underwent a
long historical development (Fischer, 1975).

Some indications of the oldest notions about the Earth can already be found
in ancient myths. Of course, we should not try to infer any profound conclusions
from them, as the questions which we are interested in were not formulated in
these myths yet.

The oldest preserved written record is a Sumerian-Babylonian epic,
Gilgamesh, which is 5 000 years old. Gilgamesh is the name of a man who
cannot accept the death of his closest friend and the prospect of his own death
some day. He, therefore, decided to look for the secret of immortality. He knew
that he had immortal ancestors, Utnapishtim and his wife, who lived somewhere
far away. Gilgamesh decided to visit them and to learn the secret of immortality
from them. During his journey, full of dangers, he met the immortal gods, who
were not in any heaven, but right there among the human mortals. Also the
immortal couple did not live somewhere at the end of the world, but at a
forbidden place, which was inaccessible because of poisonous waters all around.
Gilgamesh managed to overcome these obstacles and at last he returned happily.

From the geodetic point of view we could consider this world as being
horizontally infinite, i.e. as if two-dimensional. A more complete notion of the
third dimension, the “above” appears later in connection with the formulation of
the concept of the sky as a hemisphere studded with stars.

For a long time, it was thought that the Earth had the form of a flat disk
which supports the hemispherical sky. This notion was accepted, e.g., by Homer
in the 9® century B.C. and by lonian philosophers still in the 6" century B.C.
However, what supports the disk, was a difficult question to answer. The
opinions of this problem gradually changed.

According to one mythical notion, the disk was upheld by four elephants who
stood on the back of a big turtle swimming in milk (which supported the
swimming turtle). Thales of Miletus (about 624 to about 543 B.C.) thought that
the disk rested on water. Anaximenes (about 585 to about 525 B.C.) maintained
it was held fixed at an infinite depth by air which was barred from escaping
upwards by the size of the disk. This infinite support was in contradiction with
the general notion that the invisible nightly paths of the Sun and stars were under
the Earth. It was necessary to assume that the Sun, from its setting in the west to
its rising in the east, returned around the side of the disk, e.g., along the northern
horizon. However, as it is dark at night, it was necessary to adopt another
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assumption that there had to be high mountains in the north which hid the Sun’s
nightly path.

Anaximander (611 to 547 B.C.) drew a bold and far-reaching conclusion
from these puzzling problems and from the observation of the circumpolar stars.
According to him, the Sun and stars completed circular paths even when not
seen. To make this possible, he had to remove the infinite support from under
the Earth and keep it floating freely, and he had to postulate an invisible
hemisphere for the invisible part of the celestial motions. Anaximander’s celestial
sphere revolved together with all the stars around an unattached, much smaller
Earth suspended at the centre. His Earth, as opposed to the celestial sphere, was
not spherical yet, but a low cylinder.

The description of these notions and speculative constructions undoubtedly
raises a smile in the present reader. However, we should realize that the manner
of thinking and of logical argumentation of the ancient philosophers did not
differ much from ours. A substantial difference existed only in the extent of
concrete knowledge. (Of course, differences did exist. In adopting new theories
we emphasize the role of experiments, whereas in antiquity, logical
indisputability was emphasized more). On the contrary, Anaximander's notion of
a freely floating Earth, or even the speculations about a spherical Earth, which
will be dealt with in the next section, should be admired. We should realize that
these speculations preceded by many centuries the famous discovery of
Newton's gravitational law, which fundamentally influenced our understanding
of the world that surrounds us.

1.2 The Spherical Earth

The concept of a spherical Earth is ascribed to Pythagoras (about 580 to 500
B.C.) and his school. Pythagoras did not arrive at the idea of a spherical Earth
on the basis of any observation, but apparently as a result of speculative
deliberations about the harmony of the world. As the sphere represents a perfect
form, the perfect world should also be constructed of planetary bodies of
spherical form.

At the time of Aristotle (384 to 322 B.C.) the spherical shape of the Earth
was generally known, but there was no really cogent proof thereof. Aristotle
himself claimed that all heavy bodies had a tendency to fall towards the centre of
the world, which led to a spherical configuration (again an interesting thought
containing a seed of the law of universal gravitation). Moreover, Aristotle
pointed out the changing horizon as one proceeded north, and the round shadow
of the Earth in lunar eclipses.

The speculations about the harmony of the Earth again seem to be very far
from contemporary physical ideas. But this is only a first impression. The idea of
harmony was used by Kepler in formulating his laws. The principle of simplicity
of the world was emphasized by many philosophers and physicists (Descartes,
Einstein and others). Even contemporary physics is full of various speculations
about harmony, only the word “harmony” is usually replaced by the word
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“symmetry”. The existence of various laws of conservation follows from
symmetries (invariances in transformations), and the idea of symmetry plays an
important role in the physics of elementary particles and elsewhere.

1.3 The Size of the Spherical Earth

The first measurement of the size of the Earth, based on a scientific and
sufficiently accurate method, was carried out by Eratosthenes (276 to 195 B.C.)
in Egypt. He knew that in Syene (now called Aswan) it was possible to see the
image of the Sun in a deep well at noon on the day of the summer solstice. This
meant that the zenith distance of the Sun was close to zero at that time, which
indicated that Syene was close to the Tropic of Cancer. Using a sun dial in the
form of a hemispherical bowl, he found that, at the same time in Alexandria, the
Sun’s rays and the vertical formed an angle of 1/50 of the full circle; we would
now speak of 1/50 of 360°, i.e. of an angle of 7°12’, see Fig. 1.1, where it is
denoted a.

-

SUN

Syene

Figure 1.1: Eratosthenes’ method of determinig the size of the Earth.

Assuming that both cities lie on the same meridian, it followed from
elementary geometry that the length of the arc between Alexandria and Syene
must be equal to 1/50 of the circumference of the Earth. He determined the
distance between Alexandria and Syene to be 5000 stadia. Opinions differ
whether this value was determined by Eratosthenes from the known travel time
of camel caravans, or in a more accurate manner from the Egyptian cadastral
maps, already existing at that time. The caravan could, according to
Eratosthenes, travel from Alexandria to Syene in 50 days, assuming that the
fairly constant speed of the camels was 100 stadia per day. By multiplying 5 000
stadia by fifty he obtained 250 000 stadia for the whole circumference of the
Earth. The figure 252 000 is also quoted as Eratosthenes’ result. The accurate
length of the Egyptian stadium is not known now; estimates usually vary
between 148 and 158 m. The circumference of 252 000 stadia then corresponds
to the length of the Earth’s quadrant within the interval of 9 324 to 9 954 km,
which is admirably close to the correct value of 10 000 km. Consequently,
Eratosthenes is often considered to be “the father of geodesy”. Many later
measurements did not yield such good results. (For example, at the time of
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Christopher Columbus, the Earth was considered to be much smaller; see Tab.
1.1 below.)

Obviously, Eratosthenes was lucky to have obtained such a good result. It
seems that some errors compensated one another. Firstly, Alexandria and Syene
do not lie on the same meridian, as Eratosthenes assumed (Syene also does not
lie precisely on the Tropic of Cancer at present, but at the time of Eratosthenes’
measurement it was very close to it). Furthermore, the determination of the
distance of both cities was not accurate, especially if derived from the speed of
camel caravans. Nevertheless, the principle of Eratosthenes’ method was
correct. We now refer to it as the arc measurement.

1.4 Triangulation

The oldest methods of determining the size of the Earth were inaccurate
especially in determining distances on the Earth’s surface. A basic change
occurred at the turn of the 16™ and 17" centuries, when triangulation was
introduced into geodesy as a distance-measuring procedure.

B
s

C
Figure 1.2: Trigonometric determination of distance AB.

Very often we encounter a problem that the distance between two points A
and B cannot be measured directly because there is an obstacle between them,
such as a river, high hill, dense forest, etc. The well-known trigonometric
method is then usually used (Fig. 1.2). We choose an auxiliary point C, measure
distance AC and at least two angles in triangle ABC. Distance AB can then be
determined by calculation.

If a larger distance is to be determined, a system of triangles can be used. We
speak then of triangulation, see (Fig. 1.3). Tycho Brahe used the idea of
triangulation already in 1589 to determine the distance of a small island from the
Danish mainland. (Tycho Brahe was then working in Prague at the court of
emperor Rudolph II. He carried out accurate astronomical measurements which
were used by Johannes Kepler in deriving his famous laws of planetary motions).

Although the principles of triangulation were known earlier, the decisive step
for introducing triangulation into geodesy was the invention of the telescope in
1609. (Galileo Galilei used the telescope for the first astronomical measurements
already in 1610. He discovered the largest four moons of Jupiter, i.e. the moons
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Io, Europa, Ganymedes and Callisto, which are now referred to as the Galilean
satellites of Jupiter). The telescope made it possible to measure even the angles
of large triangles accurately.

A1
A2

B1
B2

Figure 1.3: Principle of triangulation. Distance 4;4, is to be determined. If the
length of baseline B;B, and the angles in all triangles are measured, it is possible
to compute not only all sides of the triangles, but also distance 4,4, .

The first to apply triangulation for a better determination of the Earth’s
circumference using Eratosthenes’ method was Willebrord Snellius in 1615. He
measured a chain of 33 triangles on a nearly meridional arc in a region on the
Lower Rhein in the Netherlands, and combined it with the astronomic latitudes
at the endpoints. The resulting radius of the Earth, which was later slightly
corrected, differs only by few kilometers from the correct value (Tab. 1.1).

Table 1.1: The radius of the spherical Earth.
Author Radius, km

Eratosthenes 252 000 stadia, 148 m each 5936
158 m each 6337

Columbus 48214
Snellius corrected 6 368.7
Picard 6371.98

Examples are often presented to demonstrate how progress in basic research
influences the development of technology. Here we have the opposite case when
technical progress (the invention of the telescope) iniciated substantial changes
in basic research.

1.5 The Ellipsoidal Earth

The options provided by triangulation inspired the French Government to found
the Royal Academy of Sciences (Académie Royale des Sciences) in 1666, for the
purpose of improving maps and studying related problems.

One of the first tasks of the Academy consisted in an accurate measurement
of the size of the Earth, which was needed for establishing the scale for the
latitude-longitude grid. Jean Picard was assigned to this task. In 1669 and 1670

17



he measured an arc from a point near Paris northward to Amiens, and
determined astronomically the latitude difference at the endpoints. Picard’s
measurement was modern in several aspects. He measured a real base line with
the aid of wooden rods, used a telescope in his angle measurements and
logarithms in his computations. His chain consisted of 13 large triangles. The
significance of this measurement is enhanced by the fact that, when Newton
derived his famous gravitational law, he used Picard’s value for the size of the
Earth (Tab. 1.1).

Between 1683 and 1716 this arc was prolonged northward to Dunkerque (the
town known for the heavy fighting during World War II), and southward to the
Spanish border. The measurements were carried out by Philippe de Lahire and
mainly by the Cassinis (Dominique and Jaques). The measurements were already
sufficiently accurate that it was possible to try to determine not only the size of
the Earth, but the shape of the meridian as well. The measured arc was divided
into two parts, one northward from Paris, the other southward. When they
computed the length of a 1° meridional arc independently from both chains, they
came to the unexpected result that these lengths were different. This finding was
in contradiction with the conception of a spherical Earth. It could only be the
result of a deviation of the Earth from spherical shape, or of observational
errors. Nevertheless, it was a first indication that, for example, an ellipsoid could
approximate the figure of the Earth better than a sphere.

Another problem of these measurements was the fact that the length of the
arc, corresponding to 1° of latitude, decreased northward. Expressing lengths in
the present units, i.e. in meters, the length of the degree in the northern part of
the chain was 111 017 m, whereas in the southern part it was 111 284 m, which
was 267 m more (Heiskanen and Vening Meinesz, 1958). At first sight it seems
that the decrease of the length of a degree northward can be explained by a
decrease of the distances to the Earth’s centre, i.e. by the polar flattening of the
Earth. This would really be the case if the measured arcs corresponded to the
geocentric latitude. However, the situation is more complicated and, actually,
the opposite conclusion must be drawn from these measurements. Therefore, let
us analyse the problem in greater detail in the next section.

1.6 Geocentric and Geodetic Latitudes

Consider a straight line connecting point P with the Earth’s centre O (Fig. 1.4).
The geocentric latitude ¢ of point P is the angle between this straight line and
the equatorial plane. Geodetic latitude y is the angle between the normal to the
Earth’s ellipsoid at point P and the equatorial plane. The following relation holds

true between these latitudes:
2

a
tan.;u=b—2tanqp " (1.1)
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where a and b are the equatorial and polar semi-axes of the ellipsoid,
respectively. Formula (1.1) can easily be derived if we express the equations of
the corresponding ellipse in Cartesian coordinates, of its tangent and normal.

In measuring the latitude astronomically, the angle between the vertical and
the direction toward the celestial pole is determined (the northern celestial pole
lies in the neighbourhood of Polaris). The latitude is then the complement of this
angle to 90°. Since the vertical is close to the normal of the ellipsoid, the latitude
thus determined represents the geodetic latitude.

b

(-

Figure 1.4 The geocentric latitude ¢ and geodetic latitude y of point P. The
flattening is exaggerated.

Since the astronomical method of determining latitudes is also used in arc
measurements, such latitudes are geodetic. Consequently, a 1° meridional arc is
the arc between the corresponding normals to the ellipsoid. This means that in
arc measurements we determine the radius of curvature of the ellipsoid, but not
the distance from its centre. The result of the arc measurements in France, i.e.
the decrease of the length of a degree northward, must then be interpreted as a
decrease of the radius of curvature northward. Therefore, according to these
measurements, the Earth ellipsoid should be elongated in the polar regions, not
flattened.

The geodetic latitude is used in maps. On the other hand, in physics, where
spherical coordinates are often used, it is more convenient to work with the
geocentric latitude. Since the flattening of the Earth is relatively small, the
differences between the geodetic and geocentric latitudes are not very large, the

largest being 11.55 arc minutes around latitude 45° (go =449° 1e y = 45.1") .

1.7 Dispute about the Type of Earth Ellipsoid

The arc measurements on the territory of France challenged the millennia-old
concept of a spherical Earth. It became evident that it would be necessary to
abandon the deep-rooted notion of the geometrically ideal form, a sphere, for
the figure of the Earth. The considerations about the harmony or simplicity of
the world, which had played such an important role in forming the ancient
notions of the Earth’s shape, became an obstacle of further progress in the
second half of the 17™ century. This lesson from the history of geodesy should
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also be remembered. It illustrates the limitations of the “principle of simplicity”,
which has often been used in many branches of science (see comments in Section
1.2).

The results of the arc measurements in France, namely the decrease of the
length of a degree northward, indicated that the Earth was elongated at the
poles, i.e. egg-shaped, or lemon-shaped (Fig. 1.5). However, this result was in
contradiction with the new theories in physics which had been formulated,
mainly by Isaac Newton, nearly at the same time .

B
N

Cassinfs (a<b) Newton (a>b)

Figure 1.5: Shape of the earth: elongated or flattened at the poles?

Newton published his famous “Philosophiae naturalis principia mathematica”
in 1687. Apart from other results, he had formulated the law of universal
attraction there. He concluded that, as a result of the superposition of the
gravitational and centrifugal forces, the rotating Earth would have to be flatter in
the polar regions than near the equator (like a grapefiuit, versus the French
“lemon”).

This situation started an intense controversy between French and English
scientists. Frenchmen, particularly the Cassinis, defended their own measurement
and were inclined to keep the Earth egg-shaped. However, the English claimed
that the Earth must be flattened, as Newton had shown theoretically. This
conflict between the French “Earth elongators™ and the British “Earth flatteners”
aroused attention even outside technical circles.

Although Newton’s conclusions were derived from purely theoretical
considerations, two important observations supported them: 1) a change of the
oscillation period of the pendulum clock between Paris and Guyana (a change of
the clock rate); 2) the discovery of the rotation and flattening of Jupiter. Let us
add several details related to these observations.

Jean Richer had trouble adjusting his clock on his expedition to Cayenne,
Guyana, in South America. Although the clock had been regulated carefully in
Paris, it now lost 2 %4 minutes per day and the pendulum had to be shortened.

Dominique Cassini in Paris, himself an experienced observer, commented
critically on the difficulties of keeping correct time on expeditions, and required
extra care to be taken to overcome them. Nevertheless, observations by others
confirmed Richer’s experience. This supported Newton’s deductions that the
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centrifugal acceleration, due to the Earth’s rotation, and an equatorial bulge
diminish the intensity of gravity at the low latitudes.

The rotation and flattening of Jupiter were discovered by G. Cassini. Jupiter
is more than ten times larger than the Earth and rotates more than twice faster.
Consequently, Jupiter’s flattening is large enough to be recognisable in the
telescope.

1.8 Arc Measurements in Peru, Lapland and Some
Others

It became evident that the collision between geometric and dynamic findings
concerning the shape of the Earth could not be resolved by arc measurements at
mid latitudes. The Académie Royale des Sciences decided to resolve this
problem once and for all in a magnificently simple manner by sponsoring two
famous expeditions, which made history and brought fame to the Academy.

In 1735, the first expedition, led by Pierre Bouguer and Charles Marie de la
Condamine, was sent to Peru (now Ecuador) to measure the length of a
meridional degree close to the equator. In 1736, the other expedition, led by
Pierre L. M. Maupertuis, was sent to Lapland to make a similar measurement
near the Arctic Circle. The latter measurement was carried out in a region north
of the Gulf of Bothnia in the Baltic Sea (in the valley of the River Torneélven,
which forms the present border between Sweden and Finland; see Fig. 1.6).

Several well-known scientists participated in these expeditions, which
enhanced the scientific and public interest in these measurements. We shall
become acquainted with the name of Bouguer later in connection with the
Bouguer gravity reduction and Bouguer gravity anomaly. Maupertuis
formulated one of the principles in analytical mechanics, now referred to as
Maupertuis’ principle. Another famous participant in the Lapland expedition was
Celsius, who joined the expedition in Uppsala.

The places of measurement in Peru and Lapland were far enough apart for a
decisive distinction between a prolate (French) and an oblate (British) ellipsoid.
If a 1° meridional arc in Lapland were shorter than a 1° arc near the equator,
then the French would be right. However, the measurements of these
expeditions showed that the meridional degree in Lapland was longer, so that
the British were right. So the expeditions confirmed the flattening of the Earth at
the pole, as Newton had forecast. Maupertuis was praised upon his return by
Voltaire for having “flattened the Earth and the Cassinis”.

Some curious events also increased the dramatic character of the
measurements. For example, before the beginning of the measurements, two
identical standards of length were made in France, namely the Peru toise and
Lapland toise. It was intended to compare them again after finishing the
measurements. However, the Laplandian standard was lost as the ship carrying it
sank on the return voyage.

The first arc measurements in the Southern Hemisphere went through a
similar history as the measurements in the Northern Hemisphere, mainly due to
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the development of the prolate into the oblate ellipsoid. Let us give a few details
concerning this development.
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Figure 1.6: Arc measurement in Lapland 1736-1737 according to Outhier’s map
from the year 1736. (After Heiskanen and Vening Meinesz (1958)).
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After completing the arc measurements in Lapland and Peru, the Acadeémie
Royale des Sciences wanted confirmation of the new concept also from the
Southern Hemisphere. Consequently, in 1751, Nicolas de la Caille was sent to
make arc measurements in South Africa. He measured a short arc from Cape
Town north to Klipfontein, the length of which only slightly exceeded 1°. The
result indicated a considerable difference in the hemispheres, the Southern
Hemisphere being pointed towards the pole, i.e. having the shape of a prolate
ellipsoid. Only much later, in 1837, Thomas Maclear revealed errors and large
deflections of the vertical in the previous measurements. Maclear’s measurement
along a longer meridional arc confirmed the flattening of both hemispheres at the
pole.

Even the famous arc measurements in Lapland were not free of serious
errors, which could have had serious consequences (Tab. 1.2). The first value of
the meridional flattening, computed by Maupertuis, was 1/216.8; now we know
that it differs substantially from the correct value, which is 1/298.25.
Maupertuis’ error came to light in 1804 when the Swedish Geodetic Institute
rechecked his result. It was found that Maupertuis’ meridional degree was too
large by some 440 m, due to an accumulation of errors which happened to be all
in the same direction. On the one hand, this fortuitous error helped to settle the
dispute about the figure of the Earth at the time. The thing was that the large
flattening, found by Maupertuis, eliminated any doubts about the validity of
Newton's theory. On the other hand, if the error had been in the other direction,
the questions of the Earth’s shape and the verification of Newton’s theory might
have remained unanswered and undecided.

At this moment, to be historically fair, we should reject the strong attacks
against the Cassinis, mentioned above. Firstly, their conclusion about the egg-
shaped Earth was based on measurements, not on hypotheses (and from the time
of Galileo, the result of the experiment is considered to be the decisive criterion
of validity of any physical theory). Secondly, also other arc measurements
contained many inaccuracies and errors, as we have just seen. Many of these
problems were caused by the irregular shape of the Earth, which was discovered
later (see the next section).

The arc measurements in the 18" century, mainly the expeditions to Peru and
Lapland, played a fundamental role in the development of geodesy and physics.
Their significance is threefold:

1. They determined the figure of the Earth. Instead of one global parameter,
the radius of the spherical Earth, two parameters were introduced, the
semi-axes a, b of an ellipsoid of revolution, or the semi-major axis a and
the flattening @ = (a—b)/a .

2. They confirmed Newton’s theory of gravitation. Although Newton’s
theory explained Kepler’s laws, independent proof of the theory was
required. When the arc measurements in Peru and Lapland revealed the
polar flattening of the Earth, Newton’s theory was generally adopted.
From this point of view, the arc measurements were even more important
to physics than to geodesy. This important fact is not usually mentioned in
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the present textbooks of physics. The prediction and discovery of the
planet of Neptune is usually presented as a triumph and an excellent
confirmation of the validity of the Newtonian theory of gravitation.
However, the existence and position of this planet were predicted
independently by Le Verrier and Adams in 1846, i.e. more than a century
after the arc measurements by Bouguer and Maupertuis

3. Yet another physical aspect of the arc measurements is important, namely
the metrological, because these measurements led to the first definition of
the metre. On advice of the Académie Royale des Sciences, in 1791, the
metre was defined as a 10 000 000™ part of the Earth’s meridional
quadrant. To determine it, J.P.J. Delambre and P.F. A. Méchain
measured a long arc from Dunkerque to a point near Barcelona in 1792-
1798. It was combined with the arc in Peru, which yielded a flattening of
1/334.29. The length of the meridional quadrant, computed in toises, was
then set equal to 10 000 000 m by definition. Note that the length of the
meridional quadrant L is related to equatorial radius a and flattening « as

2
7 a a
=g b= =] s 1.2
1 az[l 2+16 ] (1.2)

The length of the equatorial radius in metres is then determined by this
formula (Tab. 1.2).

Let us add several comments to the first and later definitions of the metre.
The French original decision to establish such a natural unit, which would be
rigid and recoverable for all times, was evidently inconsiderate and impractical.
Even today we have problems in accurately determining the length of the
quadrant. Luckily, a certain duplicate definition of the metre was introduced in
1799, when the resulting relationship between the metre and toise (Toise du
Pérou) was fixed by law, and an accessible standard of the “legal” metre was
deposited in the National Archives in Paris. The intended natural length unit was
thus changed in essence to a conventional, the metre being defined as the
distance between two thin lines on a length standard. For this second definition,
the arc measurements actually became immaterial. This second definition of the
metre was used for a long time, until the second half of the 20" century. The
historical connection with the size of the Earth was further removed in the next
definition, in which the metre was defined in terms of the wavelength of a
spectral line of the krypton-86 atom (introduced in connection with the
International System of Units, SI). However, this definition was soon
abandoned. At present, the length of the metre is derived from the velocity of
light and the length of the second. The velocity of light in vacuum has now been

adopted by definition to be ¢ =299 792458ms™! precisely. This value of c,
p

together with the definition of the second, then determine the length of the
metre.
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Table 1.2: The dimensions of the Earth ellipsoid: a is the equatorial radius, & is
the flattening. The last column gives examples of the countries and regions
where the corresponding ellipsoid was still in use in the 1970’s or later.

Author Year a,m e Used in

Bouguer, Maupertuis 1738 6397 300 216.8
Delambre, Méchain,

Académie Royale 1799 6375730 334.29

Everest 1830 6377276345 300.8017 India

Bessel 1841 6377 397.155 299.1528 China, Japan

Clarke 1866 63782064 2949787  North America

Modified Clarke 1880 6378 249.145 293.465 Africa

Helmert (gravimetrically) 1901 - 298.3

Helmert 1907 6378 200 298.3

Hayford, 1910,

International Ellipsoid 1924 6378 388 297.0 West Europe

Krasovskii 1940 6378 245 298.3 Soviet Union

Buchar (Sputnik 2) 1958 - 2979

Reference Ellipsoid 1967 6378 160 298.25 Australia
South America

Geodetic Reference

System 1980 1980 6378 137 298.257
I.A.G. proposal 1995 6378 13649 298.256 42

Yet another fundamental contribution to geodesy and geophysics, which
should be mentioned, was made in the 18" century. In 1743, Claude A. Clairaut

derived a theorem which relates flattening « to the gravity variation and to the

centrifugal acceleration at the equator, w’a:

Ys=Ye 50>
a+-L it (1.3)
#s 2 7.

where 7, and y, are the gravity accelerations at the equator and pole, @ is the

angular velocity of the Earth’s rotation. The derivation of this important theorem
is described below in the chapter on the gravity field. The theorem enables the
flattening to be determined from measurements of the gravity acceleration.
Consequently, we already know two methods of determining the flattening of
the Earth, namely the arc measurement and the application of Clairaut’s
theorem. The third fundamental method, the satellite method, will be mentioned
further on in this chapter.
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1.9 The Geoid as the Figure of the Earth

The famous French arc measurements were followed by similar measurements in
other regions, and various numerical results were obtained. Inconsistencies in
the observational data were often found when the two final unknowns, the
equatorial radius and flattening, were to be determined from more than two
equations. These puzzling problems attracted the attention of many famous
contemporaneous mathematicians, and led to the development of new methods
in mathematics. In particular, adjustment theories were developed at the
beginning of the 19™ century. The so-called method of least squares,
independently developed by A. M. Legendre and C. F. Gauss, then became a
basic tool in the processing of geodetic measurements.

Careful measurements indicated that the discrepancy in lengths or positions
must be real, because it could not be explained by an accumulation of even
extreme observational errors. Gauss recognized that the large residuals were
caused by the irregular shape of the Earth, and proposed a new approach to
these problems. In 1828 he wrote (Fischer, 1975): “The arc measurement in
Hannover adds new confirmation to the now unquestionable truth that the
surface of the Earth does not have a quite regular shape.... What we call the
surface of the Earth in a mathematical sense, is nothing else but the surface,
which everywhere intersects the direction of gravity at right angles, and of which
the surface of the oceans is a part.

This does not prevent us, however, from considering the Earth as a whole to
be a spheroid of revolution, from which the real (mathematical) surface deviates
everywhere in larger or smaller, shorter or longer undulations... the ideal
spheroid of revolution would be the one where the computed directions of the
normals best agreed with the astronomic observations [today we would say
‘where the deflections of the vertical are minimized’]”.

F. W. Bessel supported Gauss’ ideas and elaborated them further. He
analysed in detail the difference between the physical (actual) and the
mathematical surface of the Earth. As the mathematical surface of the Earth he
proposed to adopt an equipotential surface of the gravity field. In 1837 he
wrote: ... irregularities of the mass distribution in the Earth’s interior produce
irregularities of the mathematical surface. All attractions together, combined
with the centrifugal force produce that surface, to which the geodetic work
refers ... one must still decide which of these surfaces should be the
mathematical surface of the Earth. The choice would ... actually be arbitrary if
the Earth were only a rigid body without an ocean. Since this, however, exists, it
is appropriate to adopt that one as the surface of the Earth, of which the ocean
surface is a part. Imagine the Earth covered by a net of channels connected with
the ocean and filled by it, then the surface of the calm water in them would
coincide with the mathematical surface of the Earth”.

In these words, Bessel very clearly described the surface which we now call
the geoid, and which we consider to be the mathematical surface of the Earth.
The term “geoid” was introduced later on, in 1872, by J. B. Listing. At present,
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the geoid is defined as that equipotential surface of the Earth’s gravity field
(attraction and rotation) which coincides best with the mean sea level.

In the conception of Gauss, the role of the mathematical surface of the Earth
was transferred from the ellipsoid to the geoid, but the ellipsoid (or a spheroid)
was retained as an approximation to the geoid. Gauss proposed to find a best-
fitting world spheroid by minimizing the deflections of the vertical. Many
authors attempted to derive the Earth ellipsoids in this way. Some results are
given in Tab. 1.2. For more details we refer the reader to the lists in Heiskanen
and Vening Meinesz (1958), Fischer (1975), and Grushinskii (1965. 1983).

The problem remained how to determine the distances between the geoid and
ellipsoid. Astro-geodetic methods could solve this problem, but only on the
continents. G. G. Stokes’ theorem (1849) made it possible to solve this problem
also on the oceans. It determined the distances between the geoid and ellipsoid
from gravity observations. The deviations of the geoid from the ellipsoid are
accompanied by deflections of the vertical from the normal to the ellipsoid. The
formulae for computing these deflections from the same gravity observations
were derived by F. A. Vening Meinesz (1928). These approaches accented the
role of gravity measurements in solving the geodetic problems, and opened a
new branch of science - physical geodesy.

A fundamental question, which has been repeatedly asked, is how accurately
the geoid can be determined. The opinions of this problem varied. Bessel was
rather sceptical when he wrote: “The extent of these undulations will not be
known, unless made the specific purpose of a measurement ...”. F. R. Helmert
(1884) was more optimistic and emphasized that “we gained some knowledge of
the figure of the Earth in general although its surface is not everywhere
accessible”. He ascribed this to “a very simple rule” of formation of the shape of
the Earth under the influence of the gravitation and of the centrifugal force. In
other words, theoretical analyses, based on the potential theory, should help us to
overcome some technical problems. Despite the great progress in these
investigations, some limitations of the classical approaches became more and
more evident. M. S. Molodenskii (1945) came to the conclusion that it is
impossible to determine the geoid only from measurements on the physical
surface of the Earth. Later on, a new method was developed where the geoid, as a
basic geodetic surface, was replaced by the so-called quasigeoid (Molodenskii et
al.. 1960). Discussions about these problems continue up to the present.

After the launching of the first man-made satellites of the Earth in 1957, a
new epoch began in geodesy, geophysics and other branches of science and
technology. Most of the present global data on the figure of the Earth and on its
gravitational field were obtained by satellite techniques.

We shall not give further details of the development of physical geodesy,
gravimetry, and satellite methods, since separate chapters are devoted to these
problems below. Only a brief review of the main events is given in the next
section.
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1.10 A Review of Important Discoveries and Events

We shall only list some of the important events in the development of geodesy,

gravimetry and study of the Earth’s motions. For further details we refer the

reader to Heiskanen and Vening Meinesz (1958), Pick et al. (1973), Fischer

(1975), Grushinskii (1965, 1983), and Bur$a and Pec (1993). The events, which

we have selected from the rich history of these investigations, are as follows:

6" century B.C. - Pythagoras - Concept of a spherical Earth.

3™ century B.C. - Eratosthenes - First successful measurement of the size of the
Earth.

2™ century B.C. - Hipparchos - Discovery of precession.

1589 - Tycho Brahe - First application of triangulation to a measurement of
distances.

1615 - Snellius - Introduction of triangulation into geodesy.

1669 - Picard - Arc measurement in northern France.

1672 - Richer - Change of the rate of pendulum clocks between Paris and
Guyana.

1673 - Huygens - Theory of the physical pendulum; application to measurement
of the free-fall acceleration.

1683-1716 - D. Cassini, J. Cassini - Arc measurement across the whole of
France; non-sphericity of the Earth.

1687 - Newton - “Philosophiae naturalis principia mathematica” published;
axiomatization of mechanics; law of universal gravitation; prediction of
polar flattening of the Earth; explanation of precession and tides.

1735 - - French arc measurement expedition to Peru.

1736 - - French arc measurement expedition to Lapland.

1743 - Clairaut - Clairaut’s theorem for determining the Earth’s flattening from
gravity observations.

1749 - Bouguer - Gravity in the Andes does not correspond to their mass.

1749 - D’ Alembert - Analytical theory explaining precession and nutation.

1791 - - Definition of the metre as a 10 000 000th part of the meridional
quadrant.

1792-1798 - Delambre, Méchain - First sufficiently accurate determination of the
dimensions of the Earth.

1798 - Cavendish - Laboratory measurement of the gravitational constant.

1818 - Kater - Construction of the reversible pendulum; gravity measurements
with this instrument.

1828 - Gauss - The irregular shape of the Earth was proved.

1830 - Everest - Everest’s ellipsoid.

1837 - Bessel - The equipotential surface of the gravity field (now called the
geoid) was proposed as the mathematical surface of the Earth.

1841 - Bessel - Bessel’s ellipsoid.

1849 - Stokes - Stokes’ theorem for computing the undulations of the geoid on
the basis of gravity observations.
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1851 - Foucault - Foucault’s pendulum; demonstration of the Earth’s rotation
with the aid of a long pendulum at the Pantheon in Paris.

1854 - Pratt - Attraction of the Himalayas is partly compensated by a mass
deficiency at depth; Pratt’s hypothesis of isostasy.

1855 - Airy - Airy’s hypothesis of isostasy.

1866 - Clarke - Clarke’s ellipsoid.

1869 - Zollner - Construction of the tiltmeter (Zo6llner horizontal pendulum);
measurement of tidal tilts of the vertical.

1872 - Listing - Introduction of the term “geoid”.

1887 - Sterneck - Construction of a four-pendulum instrument for relative
gravity measurements.

1889 - Dutton - Introduction of the term “isostasy”.

1891 - Newcomb - Discrepancy between the Euler and Chandler periods
explained by the elasticity of the Earth and motion of the waters of oceans
and seas.

1895 - - International Latitude Service (ILS) established; regular observations
began in 1899.

1898-1904 - Kiithnen, Furtwéingler - Absolute gravity measurements in Potsdam;
basis of the Potsdam gravity system.

1901 - Helmert - Helmert’s formula for normal gravity, gravimetric
determination of the Earth’s flattening yielded a value of 1/298.3, which is
surprisingly close to the present value.

1910 - Eétvos - Construction of the gravitational torsion balance.

1911 - - Bureau International de I’'Heure (BIH) founded in Paris.

1919 - - International Union of Geodesy and Geophysics (IUGG) established.

1924 - - Hayford’s ellipsoid (1910) adopted as the International Ellipsoid (at the

UGG Assembly in Paris).

1928 - Vening Meinesz - Vening Meinesz formulae for determining the
deflections of the vertical on the basis of gravity observations.

1929 - Vening Meinesz - Pendulum gravity measurements at sea.

1930 - - Cassinis’ formula for normal gravity adopted as the International

Formula (IUGG Assembly in Madrid). 1) Stpel

1932 - Tomaschek, Schaffernicht - Measurement of the tidal changes of the
magnitude of gravity acceleration.

1940 - Krasovskii - Krasovskii’s ellipsoid.

1945 - Molodenskii - Impossibility of determining the geoid from surface
measurements.

1957 - - First man-made satellite of the Earth, Sputnik 1, launched on October 4.

1957 - - Sputnik 2 launched on November 3.

1958 - Buchar - First determination of the Earth’s flattening from satellite
measurements (from the motion of the orbital node of Sputnik 2). The
value of the flattening, 1/297.9, differed significantly from the flattening of
the International Ellipsoid (1/297.0).

1960 - Molodenskii et al.- Molodenskii’s theory of the figure of the Earth.
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1962 - - International Polar Motion Service (IPMS) established, replacing the
ILS.

1967 - - “Geodetic Reference System 1967 (IUGG Assembly in Luzern,
Switzerland); the first reference ellipsoid, the flattening of which was
derived from satellite data.

1969 - - Laser corner reflectors installed on the Moon.

1976 - - LAGEOS (Laser Geodetic Satellite) launched.

1979 - - “Geodetic Reference System 1980 (IUGG Assembly in Canberra,
Australia).

1988 - - International Earth Rotation Service (IERS) began operating on January
1 (its central bureau is in Paris), replacing the IPMS.

1995 - - A new set of fundamental parameters (proposed at the IUGG Assembly
in Boulder, USA, but not yet adopted as a new reference system).

1.11 Present Values of Fundamental Constants

1.11.1 Explanation of some terms

Let us first explain certain differences between the terms “Earth ellipsoid”,
“reference ellipsoid” and “reference system”, although some of them have
already been used above.

The Earth ellipsoid is an ellipsoid approximating the geoid. The classical
method of determining the parameters of such an ellipsoid is the arc
measurement.

The reference ellipsoid is an Earth ellipsoid to which geodetic measurements,
computations and mapping are referred. The parameters of the reference ellipsoid
are often adopted on the basis of international agreements for a certain period of
time, until they are improved.

The flattening of the Earth is the flattening of the corresponding Earth
ellipsoid. In the classical geophysical literature, the flattening was usually
denoted by the letter . but recently it has often been replaced by the letter f. For

an ellipsoid of revolution with the semi-axes ¢ and b (a > b), the flattening is
defined as
a—b

pl

=

A reference system (or reference model) is formed from the parameters of a
reference ellipsoid by adding further global parameters. A standard reference
model of the Earth can be defined by the following parameters:

e cquatorial radius a,

o flattening «;

e mass of the Earth M;

e angular velocity of rotation w.
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Measurements by means of spacecraft and man-made satellites enabled little
accurate values of the quantities M and « to be replaced by more accurate values
of the geocentric gravitational constant GM and of a certain dimensionless
parameter J, in the development of the gravitational potential, which is

connected with the flattening; J, is the second-degree zonal geopotential
(Stokes’) parameter. The contemporary definition of a reference model is given
by the following quantities: a, J, , GM and @. The flattening can be determined

approximately from these quantities using the formula:

3, o
@=2"2"%6M -

We shall derive this formula below in the chapter on the gravity field.
1.11.2 Geodetic Reference System 1980 and its modifications

The Geodetic Reference System 1980 was adopted at the end of the year 1979
by the ITUGG General Assembly in Canberra, Australia. It is formed by the
following constants:

a=(6378137+2)m,
1, =(1082630+5)x107;
GM = (398 60047+ 005) x 10° m*s %,
w=7292115%x10"" rad s

For the flattening we then get

1
%= (298257 +0001)

The refined values of the above-mentioned constants (discussed
internationally at the ITUGG General Assembly in Boulder, USA, in 1995, but
not yet adopted as a new reference system) are as follows:

a=(637813649+010)m;
1, =(10826267+01)x107;
GM = (398 600 4418 +08) x 10° m’s %,
®=7292115x10"" rad s™".

For the flattening we then get
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1
(298256 42£0.00001) °

As a better approximation of the figure of the Earth it is possible to consider,
instead of the ellipsoid of revolution, a tri-axial ellipsoid. Its flattening ¢; in the

equatorial plane is small, o; = 1/ (91 026+ 10); the geographical longitude of the
longer equatorial semi-axis is A, = (14.929°+0.001°) W.

In addition to @, J, , GM and @, some other constants have been included in
the geodetic reference systems. The principal constants are given in Tab. 1.3.
Further details and references can be found in Moritz (1979) and Bur3a et al.
(1995). Note that we should speak of “fundamental parameters” rather than of
“fundamental constants”, since small time variations of some parameters are
involved (e.g., secular decreases of w and J; ).

1.11.3 Methods of determining the fundamental parameters (a
brief review)

The methods of determining some of the fundamental constants will be described

in detail in the next chapters. Nevertheless, as a supplement to Tab. 1.3, let us

also give a brief review of these methods here. Let us consider the individual

parameters in the order as they appear in Tab. 1.3:

¢ : At present the velocity of light is postulated as an accurate constant, from
which the length of the metre can be determined as a derived quantity (see
Section 1.8).

G : The gravitational constant is usually determined with the aid of a torsion
balance (Cavendish, 1798). Other methods are described in Sagitov (1969)
and Stegena and Sagitov (1979).

GM -

1. Approximately this parameter can be determined from the mean value of
gravity g and from the Earth’s radius 7 (a spherically symmetric Earth):

&= g
Putting g= 981ms2 and r=6370x10°m, we get GM=
=3981x10¥ m3s2. (Here we have neglected the centrifugal

acceleration.)
2. More accurately by means of Gawuss’ law:

[[gds = -azGM .
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3. Present methods are based on measurements of the motions of spacecraft

and geodetic satellites.

@ : This parameter is determined astronomically.
J, : This is the second-degree zonal (Stokes’) parameter. The gravitational

Ve

potential can be expressed as

G 2
= __Mlil_(g) Jsz(cosf?)F-..l :

r
@

3 1
where  P,(cos6) = Ec«os2 6 - > #=90°-p  (@=polar distance,

@ = geocentric latitude). Parameter ./, can be determined from the motion
of the orbital plane, or from the motion of the perigee of a man-made
satellite (from perturbations of the orbits).

- The classical determinations of the equatorial radius were based on arc

measurements. At present, satellite data are also used.
In the past this parameter was determined by averaging the surface gravity

data to satisfy the formula for normal gravity:

yE }'e(l+ﬁsin2 @) ;

where @ is the latitude, y, and f are the constants to be determined. At

present this parameter is derived from GM, @, J, , a.

: In the past: arc measurements.

Later: Clairaut’s theorem, i.e.

w’a’®

5

where S s the coefficient in the formula for normal gravity.

Now: satellite measurements (as a quantity derived from . GM, w, J,, a

see Subsection 1.11.1)

@, A, : From an approximation of the geoid by a tri-axial ellipsoid.
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Chapter 2

Motions of the Earth - Part I

The Earth is a part of the Solar System which is a part of the Galaxy. Together
with these systems, the Earth performs a series of motions. We shall, thereforc,
start the deseription of the motions of the Earth with the motions with respect to
remote astronomical surroundings. Then we shall proceed to motions of smaller
scales.

2.1 Motions with Respect to Background Radiation

The background radiation is the microwave radiation of the Universe at

frequencies of 10® to 10'° Hz. The radiation has all the characteristics of the
radiation of a black body at a temperature slightly below 3 K (2.735+0.060K) .
It is considered to be a remnant and one of the main proofs of the existence of

the Big Bang ((9—16) x 10° years ago). The radiation was predicted by G.

Gamow in 1948, and discovered by A. A. Penzias and R. Wilson in 1965.
Penzias and Wilson were awarded the Nobel Prize for this discovery in 1978.
Observations from airplanes (to suppress the radiation coming from the
atmosphere) revealed a small anisotropy of this microwave radiation. If we
consider the reference frame in which the background radiation is isotropic, then
the Solar System, the Earth and the instrument in the airplane move with respect

to this reference frame at a velocity of about 400 km s, (At this accuracy of
measurements we cannot distinguish the motion of the Earth round the Sun). It

theknown motion of the Solar System in the Galaxy is taken into account, we

can determine the motion of the central region of the Galaxy with respect to this

1

selected reference frame. We obtain a velocity of about 600 kms™ toward the

constellation of Sextant.

The selected reference frame, in which the background radiation is isotropic.
resembles, in some features, Newton’s absolute reference frame, the existence of
which was rejected by the theory of relativity. Does the existence of this selected
reference frame mean that we should revise our relativistic theories? We do not
know yet (Kalvoda, 1981).

2.2 Other Motions of the Galaxy

The Galaxy moves with respect to the local group of galaxies at a velocity of
about 100 kms™'. This group of galaxies moves toward the cluster of galaxies

in the constellation of Virgin at a velocity of about 1000 km s
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2.3 Rotation of the Galaxy

The central parts of the Galaxy rotate faster than the parts on its periphery. The
distance of the Solar System from the centre of the Galaxy is about 7 kpe. (Note
that 1 light year= 9.46 x 10'2 km = 0.307 pc). Thus 7 kpc is about 23 000 light
years. The period of revolution of the Solar System is about 200 million years
(190 million years is a more accurate value), and the velocity of revolution is
about 230 kms™".

Two interesting facts should be mentioned, because they may indicate

broader consequences:

I. There is an apparent coincidence between the period of the revolution of
the Solar System (200 million years) and the period of some geological
processes on the Earth. A possible explanation of this coincidence is still
lacking.

2. The position of the Solar System is close to the so-called co-rotation orbit
(the orbit where the velocity of revolving stars is the same as the velocity
of density waves which form the spiral arms of the Galaxy). This position
might play an important role in the origin of the Solar System.

2.4 Motion of the Solar System

This motion is understood to be the motion with respect to the nearest vicinity in
the Galaxy, i.e. with respect to the nearest stars. The Solar System moves

toward the constellation of Hercules at a velocity of about 20kms !

(determined spectroscopically from the Doppler effect). This motion can be
considered approximately as a straight-line motion.

—

2.5 Revolution of the Earth round the Sun

The orbit of the Earth round the Sun is called the ecliptic (Fig. 2.1). The well-
known motion along this orbit is characterized by the following parameters:

Mean distance from the Sun: 149.598 x 10° km (: 1 AU).
Period of revolution: 365d5h48'n465(~ 365 Y4 days).

Mean orbital velocity: 29.8 km g
Eccentricity e = 0.016 74 (nearly circular orbit).
Inclination of the Earth’s axis: 23°26’21"(~ 23%"); this causes the rotation

of the seasons.
Time of the passage through the perihelion (the closest point of the ecliptic to
the Sun): on or about January 2.
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aphelium perihelium
(~2™ January)

Figure 2.1: Ecliptic.

2.6 Rotation of the Earth

The second is defined so that the mean solar day has 86 400 seconds. However.
one rotation (about 360°) takes 86 164.09 s (sidereal day). Thus the solar day
has 86 400 s, whereas the sidereal day has 86 164.09 s.

The difference between the length of the solar and sidereal days is explained
in Fig. 2.2. Consider a point P on the Earth’s surface at noon on one day. After
completing a rotation of 360° (sidereal day), it will not be noon at point 7, but a
certain period of time will be required to complete the solar day. Consequently,
one year has 365 solar days, but 366 sidereal days.

Sun

\ solar da!
1"day 2™day

Figure 2.2: Explanation of the difference between solar and sidereal days. The
orbital and rotational motions of the Earth are indicated by arrows (the
inclination of the Earth’s axis is ignored).

Remember that the angular velocity (angular frequency) of the Earth's
rotation is
2

e 7292115% 10 %5 .
86 164.09 ELo= 108

w

The velocity of a point on the equator due to the Earth’s rotation is 465 ms- ",

and the centrifugal acceleration on the equator is 3.39 cm §7,
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2.6.1 Consequences and proofs of the Earth’s rotation

Astronomical observations give more or less indirect proof of the Earth's

rotation. But the rotation can be demonstrated directly by experiments carried

out on the surface of the Earth. The main experiments and phenomena arc as

follows:

a) The Foucault pendulum (shifting of the plane of the pendulum). This
experiment was first performed publicly by Foucault in 1851 (Pantheon in
Paris, a 28 kg sphere on a wire suspension 67 m long). The angle of the shift

o= ((u sin ¢)-.‘, where @ is the angular velocity of the Earth’s rotation. ¢

latitude, ¢ time. Thus, the shift depends on latitude; it is maximum at the poles
and zero at the equator (Fig. 2.3).

Northern Hemisphere Southern Hemisphere

— r—

_Figure 2.3: Change of the plane of motion of the Foucault pendulum.

b) Eastward deviation in free fall.
¢) Deflections of the trade winds, sea currents, and others (Fig. 2.4).

Figure 2.4: Deflections of motions on the rotating Earth due to the Coriolis
force.
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d) Decrease in weight when moving from west to east. This effect can be
demonstrated with the aid of a rotating balance.

¢) Gyroscopes etc.
Other motions of the Earth are connected with the time variations of its

rotation. Before describing them in Chapter 4, we shall study the effects of the
Earth’s rotation on mechanical processes on the Earth in the next chapter.
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Chapter 3

Mechanics in Non-Inertial Reference Frames

Physical measurements and observations are usually carried out in the reference
frames which are fixed with the Earth. Due to its rotation, such reference frames
are non-inertial. This affects the description of many processes studied in
physics, geophysics, meteorology, astronomy and other natural sciences. As
theses problems are usually mentioned in standard textbooks of physics only
marginally, we shall devote more attention to them in this chapter. From a
common point of view we shall derive the equation of motion of a particle in a
non-inertial reference frame, Euler’s dynamic equations for a rigid body, and
Liouville’s equations for a partly deformable body. Applications of these
equations in geophysics and meteorology will be discussed in this and in the
following chapters.

In preparing this chapter we have drawn on the textbooks by Kittel et al
(1962), Matveev (1986), Trkal (1956) and some others.

3.1 Time Variation of an Arbitrary Vector in Different
Coordinate Systems. Resal's Theorem

Consider two coordinate systems, one of which will be considered fixed.
Assume that the second system rotates, without translation, with respect to the
fixed system at angular velocity .

A
N
wAL

Figure 3.1: Time variation of a vector A which is constant in the rotating system.

Firstly, consider an arbitrary vector A which is constant in the rotating system
(Fig. 3.1); for example, the radius-vector of any point of the rotating body. We
wish to determine the time variation of this vector as seen from the fixed system.
In a short time interval A7, vector A, observed from the fixed system, changes
by vector AA , the magnitude of which is
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IAAl = p Ag = |Alsina Ag = |Ad x Al ,
where p is the distance of the endpoint of A from the rotation axis, A¢ is the
corresponding angle of rotation. Taking the directions of the vectors AA and
A¢ into account, it can be seen that

AA = Ad x A .
Dividing this by Af yields
AA  Ad
o O e O
At At

As At approaches zero, and considering ® = A¢ /d1, we arrive at

E-::(DXA ; 3.1

This formula yields the time derivative, as seen from the fixed system, of a
vector which is constant in the rotating system.

Secondly, let us generalise formula (3.1) also with respect to vectors which
are not constant in the rotating system. Thus, assume that vector A is variable in
the rotating system. Denote i, j, k the unit vectors of a Cartesian system which is
fixed in the rotating system, i.e. these vectors are constant in the rotating system,
and have the following components there:

i=(1,0,0); j=(0,1,0); k=(0,0,1). (3.2)

Decompose vector A in the rotating system as follows:

A=A+ Aj+ Ak, (3.3)

where A,,4,,4, are scalars. The time derivative of A with respect to the

rotating system (time variation as seen in the rotating system) is

A d dd, d
ﬁ j B Wi TV (3.4)
rot

—— i+ + k;
di dr ' de 1T da
the derivatives of the unit vectors in (3.3) are equal to zero as these vectors are
constant. Now let us calculate the time derivative of A with respect to the fixed
system. As vectors (3.2) are constant in the rotating system, we can use 3.1) to
obtain:
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di) : [dj) j (dk}
— = . & — = k . 35
[dr o Xi, P o xj, i1 o X (3.5}

Differentiating (3.3) again, we now arrive at

= i+ —2jr—Zk+ A (0 xi)+ 4, (0 xj)+ 4;(0 xk)-

[dA) _d4,. d4, dA4,

dr) g dr o de T de
dA o
[48) vofarenienn).

rot

where we have used (3.5) and (3.4). Consequently, we arrive at the final

formula:
(dA) [d A) + A (3.0)
ey o ) E— o X R 2.0
ds Jfix dt rot

This is the basic formula relating the time variations of a vector in two
coordinate systems. It is also called Resal’s theorem (Resal, 1884, Bur$a and
Pec, 1993). We shall use it many times in the following text.

To suppress the subscripts in formula (3.6), we shall also put

ER
dr/

and omit the subscript “rot”. Equation (3.6) then takes the form

A_£i+mxA (3.7
dt ‘ el )

As a special case of this formula, by substituting © for A, we have
= (3.8)

This indicates that the time variation of vector @ is the same in both systems.

It should be mentioned that the fixed system in this Section 3.1 need not be
an inertial system; the formulae here are quite general. However, in considering
the equations of motion in the next sections, we shall usually assume that the
fixed system is inertial.
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3.2 Equation of Motion of a Particle in a Non-Inertial
System

Again consider two coordinate system and assume that:
1. The fixed system is inertial (for Newton’s second law to hold true);

2. The origins of the systems are generally different.

Figure 3.2: Position of point P in the two systems: R and r are the radius-
vectors in the inertial and non-inertial systems, respectively.

Denote the Cartesian axes in the fixed system X, ¥, Z, and in the moving
system x, y, z (Figure 3.2). Denote r;, the radius-vector of the origin of the

moving system with respect to the fixed system. The position of an arbitrary
point P can be described by two radius-vectors, by R in the fixed system, and by
r in the moving system, where

— R=ry+r. (3.9)
We shall need the second derivative of this vector. In the first derivative,

R=f+r, (3.10)

the terms on the right-hand side could be expressed by means of Resal’s theorem

(3.7) as follows:

I"=‘%'+OJXI' =V 3:11)
0 df 0 0 - >

P=a—i r 3.12)
= ® Xr . 312
{1 ( .

However, we shall not usually apply Resal’s theorem to ¥y (we shall not
describe the time variation of r, from the moving system, as this would usually
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be impractical). We shall simply write f, =v,, where vy is the absoluic
velocity of the origin of the non-inertial system. Consequently,

g i § (3.13)
=W ~ r. I
0 df

In calculating the second derivative of R we shall apply Resal’s theorem to all
terms of (3.13):

R ¢ v +dr+ r}rmx[ +dr+mxr]
=— —_— X — —
arlYo g T ° Vo iy

d?r dr dv, .
=——+20 X +——+0 XV +0 xr+o x(oxr) .
d? dr dt

Newton’s second law in the inertial system,
mR=F | (3.14)

then yields the equation of motion in the non-inertial system in the following
form:

¥

d°r dr dvg :
mdtz =F -2mo xa~m[ 1 +O XVy+0O Xr+o x (o xr)} . (3:13)

The latter equation resembles the equation of motion in an inertial system
(3714), but in addition to the true force F, there are two other terms, the so-
called fictitious forces, on the right-hand side of the equation of motion:

d’r
m—=F+F, +F4|. (3.16)
dr~
The force
o i S
= - W= *
4 mm di mv, x®

: i ar . .. . .
is called the Coriolis force, v, = m being the velocity relative to the non-

inertial system. Force F,, representing the last term in equation (3.15), is called

the drifting force.
Note that the Coriolis force disappears if:

1) %:0 (v, :0),0r
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d "
2) FE is parallel to @ (v, is parallel to ® )

Consider a very important special case when both the origins of the
coordinate systems coincide, O = O,. Then v =0 and the equation of motion

(3.15) simplifies to

d’r F-2 dr ' mo x (o xr) (3.17)
m = —2Z2mo X— — R XTI — X x . .
dr? dz

The last term but one in the latter equation is called the Euler force,

F, =-mo xr
but this term disappears if the angular velocity of rotation @ is a constant vector
In considering mechanical phenomena on the rotating Earth, this term is usually
neglected, as it is smaller than the other terms. Nevertheless, some changes of’
the angular velocity of the Earth’s rotation will be discussed in the next chapter.

The last term in equation (3.17) represents the centrifugal force, which can
easily be verified as follows. From the vector relation

A x(BxC)=B(A-C)-C(A-B)
it follows that
®

o x(oxr)=ol@-r)-rlo-o)= mz[—(ﬁ- j-r}=—pa)2 .

W\

] @ | i s : oo . S
Since — is the unit vector at the rotation axis, term -—[—- ) is the projection
@ o\

of r onto this axis (Fig. 3.3). Consequently, p is the oriented distance from the
rotation axis, and —o x (® xr) = +0? p is the centrifugal acceleration.

el

=1
|
o

\
\
=l

I

l — ——

1 - 0. l0., 2
I - Ex(m” )

Figure 3.3: Explanation of the formula for the centrifugal acceleration.
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Note that in considering a non-inertial reference system with its origin on the
Earth’s surface, we must use general equation (3.15), not (3.17). For example
we have just seen that term [+m x (@ x r)] yields the whole centrifugal
acceleration only if vector r is measured from a point on the rotation axis.

Let us go back to formula (3.13) and to its interpretation. This formula
represents the time derivative of the sum (3.9) of two vectors. However,
formula (3.13) can also be interpreted as a certain generalisation of Resal’s
theorem (3.7) for the case when also a translation of the moving system is
considered. We shall return to this comment below in Section 3.5.

3.3 Equations of Motion of a System of Particles in an
Inertial System

The radius-vector of the centre of mass of a system of particles is defined as
(Fig. 3.4)

n n
Yomr; D mr;
i=1 =l

M >

R_

T oonm
me
i=]

where m; is the mass of the i-th particle, r; its radius-vector, and M the total
mass of the system.

Figure 3.4: A system of particles, and their centre of mass, 7.

The equation of motion of the i-th particle, following from Newton’s second
law, can be expressed as

dz r; s
m—s =F+ 2 F |, i=1,2,..m, (3.18)
J=l

J#
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where F}"" is the external force acting on the particle, and Fj; is the internal

force due to the j-th particle. Equations (3.18) represent n vector equations
which describe the system of # particles completely.

We shall now derive several special equations which follow from these
equations.

3.3.1 Impulse-momentum theorem

The summation of all equations (3.18) yields

d? r;
dr?

n n n n
> m; =Y F9+3>F,, (3.19)
i=l =1 1

i i=1 J=
J#

which can be expressed as

d2
ds?

[Z m,-rij = Z F,-(e) + z Z Fy. ;
f=] l‘=I i:] _,"—']
j#i

Assuming the validity of Newton’s third law, F; =-F, the resultant of the

internal forces vanishes, so that

PR L.
M*d—z—:zp}(') : (3.20)
!

i=1

Accordingly, the centre of mass moves as if the total mass of the system were
concentrated there, and the resultant of the external forces were acting on it.

Let us introduce other notations:
dr;

e linear momentum p; =m;v; = m,.F!—;

e the total linear momentum of the system,

n n K dr
i
P= ZP:‘ = Zm,-vf = me dt’
i=1 i=1 i=1
M

o and the resultant of the external forces, F'¢) = > F,(”) :
i=1

Equation (3.19) can then be modified to read
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d n dr" n (e) n n :

Ll [kl ) R N 100 F.

&Emi)-Sr 55
J#i

and (3.20) takes the form

i‘:: F(*’-] ‘

7 (3.21)

In this way we have derived the following important theorem:

Impulse-momentum theorem: 7The time variation of the total linear
momentum of a system is equal to the resultant of the external forces acting on
the system if the internal forces obey Newton'’s third law.

In the special case of Fle) =0, vector P is constant, which yields the
conservation of linear momentum.

3.3.2 Angular momentum theorem

Start again with (3.18) and multiply it from the left (vector multiplication) by
radius-vector r;:

d2 r; (e) n

r; X nm; e =y XE; +Z]r,- %Ky - (3.22)
. =
j#i

Let us introduce the following notations:
e angular momentum l; = r; Xp; = 1; XMV,
H n
e total angular momentum of the system, L = Z I, = E X, XMV

i=1 i=1

n
e total external torque N(") = Zr‘- X F.i(e) (turning momentum).
i=l

Assuming that the internal forces satisfy Newton’s third law, F; = —F it

r,-xF,}--t-rj ij,-z(r,-—-rJ-)xl*g- )

If Fj; is parallel to (r,- -r j), e.g., F; is a central force, the internal torques

vanish in summing the equations. The summation of equations (3.22) then yields

dL

W—N(") _ (3.23)
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We can formulate this resulting equation as follows:

Angular momentum theorem: The fime rate of change of the total angular
momentum of a system is equal to the fotal external torque if the internal forces
are central and obey Newton'’s third law.

Let us add three remarks to these theorems:

| The theorems were derived, under certain assumptions, from Newton's
second law.

2. The impulse-momentum and angular momentum theorems represent two
vector equations only. They are nof sufficient to describe the motions of
the system of » particles completely; other #—2 equations are needed.

3. The origin of the coordinate system, O, was arbitrary.

3.4 Equations of Motion of a Rigid Body in an Inertial
System

We postulate that the motion of a rigid body is completely described by the
impulse-momentum and angular momentum theorems (i.e. these theorems
represent its equations of motions). This can be verified by experiments. Thus,
we shall express the equations of motion of a rigid body in the form

2

R

dp

e =F 3.24¢

i or M i 4 (3.24a)
£t N 324
df == 2 ('~ )

where superscript () has been omitted and F = F'¢ is the resultant of the
external forces and constraints.

Consider the special case when the body is fixed at a point. Then any motion
is a rotation. Consider the fixed point to be the origin of a non-inertial system
which is fixed in the rigid body. The radius-vector of the centre of mass, R. is
then constant in the non-inertial system, so that

(95) R
d1 =@ X 2

inert

and equation (3.24a) takes the form

d
Ma}-(c) xR)=F ,
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which is the equation of motion of the centre of mass (a first-order differential
equation only).

3.5 Equations of Motion of a Rigid Body in a Non-
Inertial System. Euler’s Equations

Equations (3.24a) and (3.24b) using Resal’s theorem (3.7) yield

-qB+ P=F 3.25
13 oxP=F, (3.25a)
dL

Fﬂ:ﬂ xL=N . (3.25b)

These equations are the general equations of motion of the rigid body in a non-
inertial system, which do not require the rigid body to be fixed in the system. On
the other hand, the origin of the non-inertial system must be fixed in an inertial
system, since no translations are considered in Resal’s theorem. (In other words,
here we have used Resal’s theorem (3.7) but not a more general equation of type
(3.13)).

As a special case, let us assume that the rigid body is fixed at a point (see
Section 3.4). In equation (3.24b) describing the rotation we shall put

LI' = J,-;,wk 5 (326)

where I, is the i-th component of the angular momentum and J; are the
inertial coefficients. (Here we have taken equation (3.26) without any proof,
assuming that the reader knows it from a course of physics. It will be derived,
even for a more general case, in Section 3.6). Let us add another assumption
that the axes, fixed in the body, coincide with the principal axes. Then

L.=Aw,, L,=Bo,, L =Co,. (3.27)

where A, B, C are the moments of inertia, respectively. By substituting these
expressions into the x-component of equation (3.25b), we arrive at

dr,
45 +w,L, o, L,=N,,
or
dwx ¥
4= =~ (B-Co,o, =N, .
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If analogous equations are used to expressed the remaining two components, we
finally arrive at Euler’s dynamic equations:

dw, F

A v ~-(B-Qw,0, =N, ,
da, .

B—-(C - Aw,o, =N, , (3.28)
1dwz

(,W-—(A -B)w,w, =N, .

3.6 More General Equations of Motion in a Non-
Inertial System. Liouville’s Equations

Consider a body which is not absolutely rigid, for example, the solid Earth with
its fluid parts, such as the oceans, atmosphere or the outer core. We wish to
generalise Euler’s equations for such a body.

Let us return to the definition of the total angular momentum of a system of
particles (Section 3.3):

L= Zr,- Xmv, = er‘ X ;¥ .
Applying Resal’s theorem (3.7) and putting u; = dr; /d/ yields
L= Zm‘-rl- Xu, +me-rf x(m X r,-) ‘
Rearrangement of the last term, using the identity

Ax(BxO=B(A-C)-C(A-B) ,

L :merf xu, +(DZ:m,-r,-2 —Zm,-rf(r,- -m) :

yields

For a body with a spatial distribution of mass density p, analogously

Y= ij (rxu)dV+m_[[_|.p r-rdV—ﬁIpr(r-m)dV ‘

The i-th component of the total angular momentum
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L= I!Jp e X juy dV +w,-jl_[_|lpxkxk dV—-fipr,-xjmjdV ;

where we have used the Levi-Civita tensor € (Kittel et al., 1962). Putting
®; =@ ;0;, where J; is the Kronecker symbol, we can modify the angular
momentum to read

L) =1;0 ;@) +n) , (3.29)

where inertial coefficients /; (time dependent) and functions /; are defined by
I = _[Hp(xkxké‘,} —xjxj-)dV .
vV

h; :_m.p Sk X jUy, dv .
Vv

The equation of motion (3.25b) can now be modified to read

d
E(Iy-(o}- +h)t e 0,(Tyo +h)=N)|, (=1,2,3).  (330)

These are Liouville’s equations. If 1; , h and N are known, we can calculate ©.

For example, these equations are used to compute the changes of the Earth’s
rotation which are caused by the motions of atmospheric or oceanic masses.

As a special case of Liouville’s equations we can derive the general equations
for a rigid body. Putting /; = Oand /; = const., we arrive at

do;
J
L"'W+ G{fk COJ‘IHC(JJ = N]- ; (331)

These equations can be simplified further if the coordinate axes coincide with the
principal axes of inertia. The tensor of inertia then takes the diagonal form

F=

o O

0 0
B 0], (3.32)
0 C

and equations (3.31) reduce to Euler’s dynamic equations:

doy
dz

A _(B—(:)C!}zfo:;:NI 5
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d
B%—(C- Awso, = N, | (3.33)

d
C?af—-(A _B)ww, =N .

By replacing subscripts 1, 2, 3 with x, y, z, respectively, we arrive at Euler’s
equations in the form of (3.28).
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Chapter 4

Motions of the Earth - Part 11

4.1 Time Variations of the Vector of the Angular
Velocity of the Earth’s Rotation

Astronomical observations carried out from the surface of our planet are
affected by the Earth’s rotation. At first sight, the rotation seems to be a simple
phenomenon, but the increasing accuracy of astronomical observations has
revealed the complexity of this motion (BurSa and Pec, 1993; Vondrak,1983).

The secular changes of the direction of the Earth’s rotation axis in space,
although relatively slow, are of a considerable magnitude. As early as in the
second century B.C., the Greek astronomer Hipparchos discovered precession,
although this phenomenon was correctly interpreted by Kopernik much later
(16™ century). Periodic changes in the position of the rotation axis in space,
called nutation, were observed by Bradley in the middle of the 18" century.
Theoretically, precession was explained by Newton as an effect of the attractive
forces of the Sun and Moon on a spherically non-symmetric Earth. D’ Alembert
then published the first analytical theory, which also explained nutation, in 1749,

That the rotation axis could change its position in the Earth’s body (the
Earth’s poles can move), was first predicted theoretically by Euler. From the
first half of the 19" century, attempts began to determine such motions from
astronomical observations. In 1895 the International Latitude Service (ILS) was
founded, and regular observations of latitude variations at several stations of
approximately the same latitude, 39°N, began in 1899. In 1962, when the
number of these stations had increased, it was replaced by the International Polar
Motion Service (IPMS), whose headquarters were in Japan.

In 1911 the International Time Bureau (Bureau International de I’Heure,
BIH) was founded in Paris. Its original task was to maintain the international
time scale, based on the Earth’s rotation. However, soon afterwards it was
found hat the rotation speed (absolute value of ®) could not be considered a
constant either. This followed from the discrepancies between the Earth’s
rotation and ephemeris time, which is defined by the motions of the bodies of the
Solar System. The situation changed considerably in the 1950’s when the first
atomic clocks were constructed. The international uniform time scale is now
defined by a group of atomic clocks, and astronomical observations serve to
determine the irregularities in the rotation of the Earth.

To unite these measurements, the International Earth Rotation Service
(IERS) was founded in 1988. The main measuring techniques of this service are
as follows:

e VLBI- very long baseline interferometry;

e LLR - lunar laser ranging;
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e SLR - satellite laser ranging.
The uniform time is taken from atomic clocks.
The time variations of the vector of the angular velocity of rotation, ®, can be
divided as follows:
e variations in direction:
— precession and nutation;
— the Earth’s wobble (also called the motion of the poles, polar wobble,
Chandler wobble, or free nutation);
e variations in magnitude (changes of |@|, changes of the length of day):
— deceleration due to tidal friction;
— fluctuations;
— seasonal variations.

4.2 Precession and Nutation

The Earth’s axis of rotation is inclined to the axis of the ecliptic at angle
e=23°26'21", approximately 23 %°. The rotation axis is not fixed in space,

but its direction slowly changes. It describes a conic surface about the axis of the
ecliptic, with constant angle € between these axes. This motion of the rotation
axis is called precession (Fig. 4.1).

,reCassion cong

Figure 4.1: Precession of the Earth’s rotation axis.

As mentioned above, this motion had already been discovered in the 2™
century B.C. It causes the motion of the celestial pole and the motion of the
vernal point. The observed angular velocity of precession is 50.291” per year.
The period of precession is 25 770 years (Platonian year). If seen from the
“northern” ecliptic pole, the vector of the angular velocity of the Earth’s rotation
moves in the clockwise direction (Fig. 4.1).

Precession is a motion which is similar to the motion of a spinning top under
the influence of gravity. The first explanation of the causes of precession was
given by Newton. He explained that precession was a consequence of the
gravitational effects of the Sun and Moon (the effect of the planets is smaller)
on the flattened Earth.
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Figure 4.2: Interaction between the Sun and a flattened Earth,

Let us explain the effect of the Sun on the precession of the Earth’s rotational
axis. In our considerations here (and in all chapters which follow) we may
consider the Sun to be a point mass or a spherically symmetric body. Assuming
the Earth to be spherically symmetric, the Earth acts on the Sun with a central
force, and vice versa. However, the gravitational field of a flattened Earth is
non-central, so that the force exerted by the Earth on the Sun is slightly
deflected from the Earth-Sun line (Fig. 4.2). In addition to the central
component of the force, which is dominant, there is then also a perpendicular
component due to the equatorial bulge (tending to pull the Sun closer to the
plane of the Earth’s equator, i.e. “downward” in Fig. 4.2). The Sun reacts by
exerting not only a central force, but also a torque on the flattened Earth (Fig.
4.2). This torque acts about the axis in the equatorial plane which is normal to
the Earth-Sun line. It tends to pull the bulge into line with the instantaneous
Earth-Sun axis, i.e. to turn the Earth’s axis to become perpendicular to the
Earth-Sun line. However, this is not generally possible, since the Earth rotates
(the Earth’s axis is perpendicular to the Earth-Sun line only at the vernal and
autumnal equinoxes). Consequently, a precessional motion appears, as with the
spinning top.

Actually, there is a small difference between the precession of the Earth and
of the top. Namely, the precession of the Earth’s axis is not a permanent motion.
The precession is maximum at the solstices, when the Sun is at an angular
distance of 23 }4° from the equatorial plane, and it vanishes at the equinoxes,
when the Sun is directly above the equator. But the sense of the precessional
motion is the same at both solstices, so that, although it occurs in semi-annual
pulses, it has a cumulative effect.

The precession of the Earth’s rotational axis, caused by all the bodies of the
Solar System, is called general precession. 1t is subdivided into the luni-solar
precession due to the gravitational effects of the Moon and Sun, which
represents the dominant component of the precessional motion, and a much
smaller planetary precession due to the planets.

Besides the long-period precessional motion, there is a smaller short-period
motion of the Earth’s axis, called nutation. 1t is caused mainly by the motion of
the Moon (as the Moon’s orbit does not lie exactly in the plane of the ecliptic).
The main nutation term has a period of 18.6 years, its amplitude is 9.206” . The
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superposition of precession and nutation produces an undulatory motion, as if
the precessional cone in Fig. 4.1 were corrugated. Actually, there are several
nutations, as the orbits are elliptical and inclined.

Theory indicates that the mean angular velocity of precession, caused by the
Sun, is

s 3GC-AM
=222 S cos g @.1)

where G is the gravitational constant, @ is the angular velocity of the Earth’s
rotation, 4 is the equatorial and (' the polar moment of inertia of the Earth, My

is the mass of the Sun, rg is the distance of the Sun from the Earth, &g is the

inclination of the Earth’s axis to the ecliptic axis (see Chapter 12). Similarly for
the Moon,

- 3G C- A4 My,
Prron 200 C 1 COS M > (4.2

where the subscript M refers to the Moon. As a consequence of term M / r,
the effect of the Moon is about twice larger than the effect of the Sun; notice the
third power of the distance in the denominator. The sum of these contributions
from the Sun and Moon accounts for the substantial part of the observed
precession:

Dp, ¢ = 50291" per year . (4.3)

Ty
Since the astronomical parameters in formulae (4.1) and (4.2) are known, we

can use formula (4.3) to determine the ratio

C-A4
i
cC

4.4)

which is called the dynamic flattening of the Earth.

However, formula (4.3) is only approximate, because several factors have not
been considered (planetary precession, ellipticities and inclinations of the orbits).
A more accurate approach yields

H = (0003 273 76 £ 0.000 000 02) = (4.5)

305459 +0.002 °

The geophysical importance of precession is in the following:

1. The measurements of precession make it possible to determine dynamic
flattening H. It represents one equation for the determination of the
moments of inertia 4 and C. We shall see that the second equation is
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C-A4 :
5 =1082.64 x 107® g as  determined  from satellite

Ju =
2Ma

J
measurements. Consequently, C = H2 Ma® = 0330 702Ma* . For a

homogeneous sphere, C = 04Ma®. Hence, there must be an accumulation
of mass towards the Earth’s centre. The mass of the Earth and moment of
inertia C represent the basic constraints on the density distribution within
the Earth.

2. Precession contributes as an energy source to some geophysical processes
(geomagnetic dynamo).

3. We have seen that nutation causes variations of the inclination of the
Earth’s rotational axis, but these variations are relatively small and short-
period. However, some components of the planetary precession cause
more pronounced variations in the inclination. This is important for the
evolution of the climate, e.g., for the occurrence of ice ages. We shall
return to this problem below in this chapter.

4.3 Polar Motion

The rotation axis not only changes its direction in space, but its position also
changes slightly within the Earth’s body. This motion is called free nutation (but
it is not strictly a nutation), the wobble or the Chandler wobble. 1t causes a small
wandering of the geographical poles, variations of latitude and variations of the
heights of stars. Consequently, the geographical coordinates of points on the
Earth’s surface vary in time. It must be taken into account in determining the
mean geographical coordinates.

<30m

Figure 4.3: Wandering curve of the North Pole. (Simplified from BurSa and Pec
(1993)).

The pole moves along a complicated curve in the sense of rotation (Fig. 4.3).
This curve can be circumscribed by a circle whose radius on the Earth’s surface
is not larger than about 10 m. In other words, the angle « between the rotation
axis and the principal polar axis of inertia is less than 0.3”.
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The motion of the poles is composed of four components:

1. annual component (period of 12 months);

2. Chandler’s component with a period of about /4 months (425-440 days,
mean value of about 433 days);

3. small semi-annual component;

4. irregular components.

As mentioned above, the theoretical explanation of the polar motion was
given by Euler, as the motion of a force-free top. To simplify the corresponding
equations, let us assume that:

1. The Earth is a rigid body.

2. The coordinate system, fixed in the Earth, has its origin at the centre of
mass and axes ¥, y, z coincide with the principal axes of inertia, the z-axis
being close to the rotation axis.

3. For shorter periods of time (years) we can approximately neglect the
external torques caused by the Moon and Sun, ie. we shall put
N, =N, = N, =0. These torques are very small and have some effects

only over a longer time interval; see the precession and nutation.

4. The moments of inertia with respect to the principal equatorial axes are the
same, A = B (e.g., the Earth is rotationally symmetrical), but the moment
of inertia C with respect to the z-axis is different, C > A4 (as the Earth is
flattened at the poles).

Euler’s dynamic equations, describing the motion of the rigid body,

Ao, -(B-Cw,o, =N, ,

Bo, - (C-Aw,0, =N, , (4.6)
Co, —(4-Bw,o, =N,
then simplify to read
Ad, —(A-C)o,0, =0,
Ad, —(C - Aw,0, =0 , 4.7)

The last equation indicates that @, = @, = const. Differentiating the first
equation with respect to time,

A6, ~(4-C)oywy =0
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and substituting for @, from the second equation yields the equation of a
harmonic oscillator,

. (C-4)
(ox+( y )mga)xzo. (4.8)

Putting
C-4

Q="—"ay, (4.9)

the general solution of equation (4.8) can be expressed as

:ae:’ﬁlf +be—:§21 ,

wx
or

®, = Feos(Q +7) , (4.10)
and similarly

o, = Fsin(Qr+7) , (4.11)

where constants / and ¥ must be determined from the initial conditions. The
period of this motion is

T
T Q @ C-4
2z
However, — =1 day, so that
@y
A 4

=305 days| . (4.12)

laws =c_ 4~ Cc_4

We have just arrived at the following conclusion. If, for some reason, the
rotation axis does not coincide with a principal axis of inertia, it must rotate
about the principal axis (Fig. 4.4).

Figure 4.4: Free nutation of a rigid Earth.
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We have assumed that the Earth was rigid. However, the observed period is
longer, equal to Chandler’s period (433 days). This discrepancy was explained
by Newcomb (1891) mainly as a consequence of the elasticity of the Earth.
Thus, Chandler’s period can be used to obtain some information on the elasticity
of the Earth. (More specifically, on Love number %, see the next chapter.)
Theoretical periods calculated for several simplified models are given in Tab.
4.1.

Table 4.1. Theoretical periods of the polar motion.

Model Period (sidereal days)
Rigid Earth 305
Rigid mantle, liquid core 272 (Kelvin, 1876)
Elastic solid Earth 319
Elastic mantle, liquid core 401

The difference of the last value in Tab. 4.1 from Chandler’s period (about 30
days) seems to be caused by the effect of the ocean, which was not considered in
the computations. The table also indicates that the existence of a liquid core
could have theoretically been predicted at the end of the 19™ century, before the
seismological evidence appeared.

Finally, two remarks should be added:

1. The Chandler wobble is damped, with a damping time of around 30 years
(10-70 years). Consequently, after some time, angle « would approach to
zero. Therefore, there must be processes that excite the Chandler wobble
(earthquakes, meteorological or hydrological processes). The problem of
the excitation of the Chandler wobble still remains open.

2. Euler’s equations represent a system of non-linear differential equations.
Assuming N =0 and 4 = B, the system reduced to two linear equations.
For N=0 and 4 # B, the system remains non-linear, but the solution can
still be expressed in analytical form in terms of elliptical functions.

4.4 Other Long-Period Motions

There are also small variations in the orbital parameters of the Earth and in the
inclination of its axis (Koudelkova, 1993):

e eccentricity e varies from O up to 6 %, period ~ 100 000 years; (now

e=1.7%),

e inclination €= 23°26" +1°30’; period ~ 41 000 years; (now €= 23°26").

The time variation of the inclination € is caused by the inclination of the
orbital planes of the other planets to the orbital plane of the Earth. (As the
inclination of the Moon’s orbit causes nutation, these inclinations produce
additional contributions.)

These two motions play an important role in the changes of the climate, in
the occurrence of ice ages (Milankovich’s hypothesis). Meteorological
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modellings show that the development of the climate is controlled more by the
meteorological situation in summer than in winter. Consequently:

large € =  hot summer (and cold winters) =  warmer climate,

small € =  colder summers =  ice ages.

It seems that this simplified model can explain the main features of the last Ice
Age (Tab. 4.2):

Table 4.2. Correlation between the changes of the inclination of the Earth’s axis
and climatic changes.

Time Inclination Insolation Beginning and
(years) (compared with  duration of
the present)  climatic epochs
127 000 B.P. interglacial
125000 B.P. 23°48’ +13 % (12 000 years)
115000 B.P. 22°24’ -9% Ice Age
18 000 B.P. culmination of the Ice Age (~100 000 years)
11000B.P. 24°12' +10 % present
0 (now) 23°26’ 0% interglacial
5000 AP. next Ice Age
70 000 AP. next interglacial

4.5 Changes of the Length of Day

Several components can be distinguished in the changes of the magnitude of the
angular velocity of rotation, i.e. of |@|:

1. Secular deceleration of the rotation, caused by fidal friction. This
deceleration causes a prolongation of the day by 0.001 7 seconds per 100
years, i.e. the prolongation of the day by / sec per 60 000 years. It was
determined from astronomical data (eclipses) and from the growth of
corals. For example, in the Devonian period (~ 380 million years ago) a
year had about 400 days.

2. Fluctuations, which represent irregular variations of the Earth’ rotation
with periods of about 10-100 years. The fluctuations are probably caused
by geophysical phenomena (by motions within the Earth, which lead to
changes of the moments of inertia and, consequently, to changes of w).
For example, it is known that the Earth’s mantle and core rotate at
different velocities, but certain mechanical and electromagnetic couplings
exist between them. The changes in these couplings must then lead to
changes of the length of day.
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3. Seasonal variations, which are caused by meteorological factors (Figs. 4.5
and 4.6). In March, the angular velocity of rotation @ has a minimum (the
slowest rotation), and in July - August it has a maximum (the fastest
rotation). Moreover, a secondary minimum of @ occurs in November, and
a secondary maximum in January.
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Figure 4.5: Variations in the Earth’s angular velocity of rotation @ (lefi-hand
scale) and in the length of day 7' (right-hand scale); Q= 27/86400s. (After
Bur3a and Pec (1993)).
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Figure 4.6: Mean annual curve of seasonal diurnal variations in the length of day
calculated for the period 1962-1978. (Modified from Bur$a and Pec (1993)).

4.6 Dynamics of the Earth-Moon System

A more detailed theory should consider the Earth-Moon-Sun system, but the
effect of the Sun is smaller and, therefore, it will be neglected here.

Let us look at the Earth-Moon system from the northern side of the Moon’s
orbital plane (Fig. 4.7). Let us neglect the inclination of the Earth’s rotational
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axis, and assume simply that it is perpendicular to the orbital plane of the Moon.
Let us introduce the following notations: 7'is the centre of mass of the system, @
the angular velocity of the Earth’s rotation, @w; the angular velocity of the
orbital motion of the Earth and Moon about the common centre of mass 7, R the
distance between the centres of the bodies, o the lag of the tidal bulge of the

Earth relative to the Earth-Moon axis, M the mass of the Earth, m the mass of
the Moon, and C the moment of inertia of the Earth.

- R o).
T Moon (m)

Earth (M)

Figure 4.7: Situation characterising the dynamics of the Earth-Moon system.

In an inertial system, the Earth rotates from west to east, and the Moon
moves in the same direction. However, as @ > @;, it seems that the Moon
revolves round the Earth from east to west. As a result of energy dissipation, the
tidal deformation is not in phase with the position of the Moon (see lag angle J).
The Moon exerts a larger force on the nearer bulge than on the more distant
one. It produces a torque which tries to slow the Earth’s rotation. As a reaction,
a force is generated which pulls the Moon in the direction of its motion. Thus,
forces are generated which try to decelerate the Earth’s rotation and to
accelerate the Moon’s orbital motion. But any acceleration of a satellite in the
direction of its motion moves the satellite into a higher orbit where the orbital
angular velocity is smaller. Consequently, the lag of the tidal bulge causes a
decrease of @, increase of R, and (surprisingly) also a decrease of @; .

4.6.1 Basic numerical values

The following astronomical parameters, characterising the Earth, Moon and
their motions, will be used below (Bur$a & Pec, 1993; Bursa et al., 1995):

GM =398 60044 x 10° m3s~2,
Gm =4 90280 x10° m>s™2,
©=7292115x10"rad s |
w; =26619x10%rad s |
R=384400x10°m ,
C=80365x10""kgm? .



The observed data, concerning the dynamics of the system, are as follows:
a) From the growth of corals,

d
d—(;} =—(54+05) x 102 rad s™2 . (4.13)

b) From astronomical data (last 2 700 years),

d
—‘;’ =—(45+01)x102rad s72 . (4.14)

¢) From Lunar Laser Ranging (LLR, direct measurements),

dw ”
de = —(2588 + 05) century_2 = —1260 x 10_23 rad 5_2 > (4]5)

R
df

=(377+015)cm/year =119 x10 " ms™! . (4.16)
d) From perturbations of satellite orbits,
O=29% . (4.17)
4.6.2 Basic theory and equations

The basic theory of the Earth-Moon dynamics is based on the following
principles and assumptions:

M T m
R, R,

Figure 4.8: Position of the centre of mass of a two-body system.

1. The gravitational and centrifugal forces acting on the Moon have the same
magnitude.
Denote R; and R, the distances of the centres of the Earth and Moon,
respectively, from the common centre of mass, 7' (Fig. 4.8). It is well known
that

-
T Mm%

R

R
A M+m ~

(4.18)

where R = R; + R,. The balance between the centrifugal and gravitational
forces can then be expressed as
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GMm

2p _
moi Ry = 2 (4.19)
Using (4.18) yields Kepler’s third law (for a circular orbit),
IR =G(M +m) . (4.20)
By differentiating this equation with respect to time we obtain
—LR 2=—=0
20; 17 +3w; R 3y ;
which yields
dR 2 R dw
~ = ——L _ 383 cm/year . (4.21)

dr 3y, dt

This numerical value is in good agreement with value (4.16), which was
determined independently. Extrapolating this value back in time to the origin
of the Earth (4.5 billion years ago), we obtain a total change of 170 000 km,
i.e. half the present distance between the bodies. Although this extrapolation
is not fully justified, it indicates that tides and tidal friction have played an
important role in the evolution of the Earth and Moon.

. Conservation of the total angular momentum.

As we neglect the external torques (especially that exerted by the Sun), the
total angular momentum of the system remains constant. Neglecting also the

small angular momentum of the Moon’s rotation (: Cro L) , we have

Co + RMv, + Rymv, =const, (4.22)
el N o | S
rotational o) orbital

of the Earth ¢ o Farth  of the Moon

where v; and v, are the orbital velocities of the Earth and Moon,
respectively. As v; = Rjw; and v, = Ryo,, it follows from (4.18) and
(4.22) that

m 2 M A
o) sy M)’
o+, Mt +opm T const

ie.

Co+op R? = const . (4.23)

Mm
M +m
By differentiating this equation with respect to time and using (4.21) we
obtain
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; 1 Mm d -
%zgl?zﬁ;%:—4.5x10mkgmzs 2 (4.24)
Assuming C to be constant yields
dw 7 -2
Fre -56x10"*rad s . (4.25)

This value follows from the tidal dynamics of the Earth-Moon system,
assuming C = const. It is close to (4.13) but differs from (4.14).

If a more accurate theory of the Earth-Moon-Sun system is used, instead
of (4.25) we arrive at a higher value:

(d—"’) =(-61404)x10 P rad 52 . (4.26)

d? tidal

Considering (4.14) as the most probable value of the Earth’s rotation
deceleration, one can see that there is an accelerating process which partly (to
1/4) compensates tidal deceleration (4.26):

(d_"’) =(+16+04) x10 2 rad 572 . (4.27)

ds non—tidal

The corresponding change of the moment of inertia satisfies the equation

(d w] dC
3 +—w=0,
dz non—tidal di
which yields
‘;i’ =-18x10¥kgm?s . (4.28)

It indicates that a transport of mass toward the Earth’s centre must exist.
Various processes have been considered, such as melting of glaciers or
internal processes. Nevertheless, the problem remains open; the magnitude of
dC/dt is too large to be explained by a simple process. The decrease of C
with time is also in sharp conmfradiction with hypotheses on the global
expansion of the Earth; in an expanding Earth the moment of inertia should
increase, not decrease.

The decrease of C with time also seems to be supported by the
measurements of the change of the second-degree zonal geopotential
(Stokes) parameter
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Iy ———m—, (4.29)

where a is the equatorial radius of the Earth. The long-term variation in J;,
determined from satellite motions (LAGEOS and others), is

dJ
d—f = —(26+03) x 10~ century " . (4.30)
. The mechanical energy of the system is not conserved.

Dissipation processes transform a part of the mechanical energy into heat.
Neglecting the kinetic energy of the Moon’s rotation about its axis, the
mechanical energy of the Earth-Moon system is

o1 1., 1 5, GMm
,:EC0)2+EMVI tymvy =

4.31)

where the individual terms on the right-hand side represent the rotational
kinetic energy of the Earth, orbital kinetic energy of the Earth, orbital kinetic
energy of the Moon, and the potential energy of the system, respectively.
From analogies with (4.22) and (4.23) we arrive at

1 ., 1 5 5 Mm GMm
E=-Co®+—w?R - .
PP LR rem R

(4.32)

Substituting Kepler’s third law (4.20) into the second term on the right-hand
side yields
1 GMm
T s
E > Cw SR

(4.33)

The tidal dissipation of the mechanical energy is given by the derivative

dE _ ., do 1GMmdR
dr ~ T dr 2 R? dt

(4.34)

However, using (4.21), (4.24) and (4.20) produces

dR 2 Rdo, 2R do3M+m

- do_1
dt = 3w, dt = 3w, df R*Mm

" dt GMm -

2w, R*(

Consequently, formula (4.34) takes a very simple form:
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=(.T(a)—a)L)1—r;) . (4.35)

dFE
dr

Substituting (4.25) for the tidal deceleration in the Earth-Moon system, we
arrive at
dE

S, =32x 1012w . (4.36)

The higher deceleration given by (4.26) yields

dE

1 = 102 W . (4.37)

This power may be important in generating the geomagnetic field and heat

flow from the Earth’s interior. It contributes to these phenomena.

In conclusion it should be re-iterated that we have only just started with
accurate measurements of long-term changes of the Earth’s rotation.
Nevertheless, it is becoming evident that these investigations may throw a new
light on many fundamental problems of the evolution and dynamics of the Earth.
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Chapter 5
Earth Tides

Marine tides were already known in antiquity, but their scientific explanation
was only given by Newfon. He explained them as the effect of the gravitational
attraction of the Moon and Sun on the oceans. The largest difference between
the height of the high tide and low tide occurs in the Bay of Fundy, on the
eastern coast of Canada. The difference there is as much as 50 feet, but this is
the result of a resonance amplification in the coastal basin. In the open oceans
the difference is only a few feet.

However, there are also the tides of the solid parts of the Earth, called earth
tides, which represent the deformations of the solid Earth caused by the
gravitational fields of the Moon and Sun. The effect of the other celestial bodies
can be neglected. The tides cause specific motions of the Earth which were not
considered in the previous chapters.

There are several reasons why tides are studied in geophysics:

1. Tides cause periodic variations of the gravity field. Consequently, these
variations must be removed from accurate gravimetric measurements, i.e.
tidal corrections must be introduced.

2. Tides can be used to study some physical parameters of the Earth as a
whole, especially certain elastic parameters of the Earth. If the Earth were
rigid, the gravity variations could be calculated from the known positions
of the Moon and Sun. However, the Earth deforms under the influence of
tidal forces, so that the measured gravity variation slightly exceeds the
theoretical values calculated for a rigid Earth. This degree of amplification
characterises the elasticity of the Earth as a whole.

3. Tides contribute to some geophysical processes as sources of energy. We

have already mentioned the tidal power of about 3 x 101> W dissipated in
the Earth. Tides play a certain role in tectonic processes and in generating
the geomagnetic field.
In this chapter we shall present only the basic theory of the tidal phenomena.
More comprehensive treatments can be found in Melchior (1966, 1983), and
Pick et al. (1973).

3.1 Tidal Effects on a Rigid Earth

5.1.1 Origin of tidal forces

In this section we shall not consider tidal deformations of the Earth’s body yet,
but only deformations of equipotential surfaces. Let us consider the tides due to
the Sun; the Moon will be taken into account later. Thus, in order to simplify the
problem, let us adopt the following assumptions:

1. The Earth is rigid.
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2. The Earth revolves round the Sun along a circular orbit.

3. The Earth does not rotate about its axis. This means, for example, that any
bar fixed to the Earth preserves its direction with respect to the inertial
reference frame (see the motion of point 4 with respect to the Earth’s
centre in Fig. 5.1).

Assumptions 1 and 2 are relatively reasonable, but the third assumption
contradicts reality. We shall abandon this assumption later.

As a consequence of assumptions 2 and 3, all points of the Earth move along
circular orbits of the same radius, so that the centrifugal acceleration has the
same magnitude at all points (Fig. 5.1). Moreover, at a given time, centrifugal
accelerations are parallel at all points of the Earth. It means that at a given time
the centrifugal acceleration forms a homogeneous field.

Figure 5.1: Revolution of a non-rotating Earth around the Sun. The solid line
shows the orbit of the Earth’s centre, the dashed line is the orbit of another
point A.

Figure 5.2: Geometry for calculating the tidal potential of the Sun.

The situation shown in Fig. 5.1 is enlarged in Fig. 5.2 (the proportions again
are not preserved). Compare the forces acting at the following points of the
Earth: at the nearest point to the Sun, A4, at the Earth’s centre O, and at the most
distant point B. (Actually we shall not compare forces, but intensities, and they
are identical with accelerations in these parts of mechanics). As we have shown,
the centrifugal acceleration, F,, is the same at all points of the Earth, which

means that F,=F,(4)=F,(0)=F,(B). However, the gravitational
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acceleration, Fg, decreases from A to B. Both accelerations are balanced at the

Earth’s centre O, since we have assumed a circular orbit of the Earth about the
Sun. Consequently,

at0. F,=F,;

atd: F,(4)>F,(0)=F,(0)=F/(4), ieF>F,

atB. [k, <F,.
This causes the deformation of the equipotential surface as shown in Fig. 5.3.
Tidal bulges appear on both sides of the Earth (on the near side and on the far

side). Consequently, on the rotating Earth, the high tide and the low tide occur
twice a day (two ebbs and two flows).

Figure 5.3: Tidal deformation of the equipotential surface (solid line).

As the gravitational attraction of the Sun is a central force and the centrifugal
force forms a homogeneous force field, they cannot compensate each other
completely. The resultant force, the so-called fidal force, or tide-generating
force, is generally non-zero. The intensity of the tidal force (tidal acceleration) is

F,=F, +F, . 5.1
We shall first derive the expressions for the corresponding potentials.

S.1.2 Tidal potential

In physics it is usual to define potential V" as a scalar function which is related to
intensity F as

F=-gradV . (5.2)
The potential V, of the gravitational field of the Sun at point P is then

GM

A B (53)

where G is the gravitational constant, M the mass of the Sun, and p the distance
of point P from the centre of the Sun, § (Fig. 5.2).
The centrifugal intensity relates to the gravitational intensity as
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GM
F, =Fg(0)=?, (5.4)

where R=0S is the distance between the centres of the Earth and Sun.
Intensity F, at all points of the Earth is parallel to the instantaneous Earth-Sun
axis OS. Thus, the equipotential surfaces of the centrifugal potential (at a given
moment) are the planes which are perpendicular to the OS axis. Let us denote
this axis as the z-axis, put its origin at the Earth’s centre O, and orient it
positively toward the Sun. Let us select the equipotential plane passing through
the Earth’s centre O, i.e. plane z =0, as the surface of the zero centrifugal
potential. Centrifugal potential ¥, at point P will then be equal, since the field is
homogeneous, to product * F, -z ; here F, is the magnitude of the centrifugal
intensity, given by (5.4), and z is the coordinate of the point just introduced,
which characterises the distance of the point from the plane of the zero potential.
It remains to select the correct sign of the product. According to (5.2), the
intensity is oriented in the direction of the steepest descent of the potential.
Therefore, since intensity F, is directed in the negative sense of the z-axis,
potential ¥, must increase in the opposite direction, i.e. the positive sign is

appropriate. Moreover, let us express Cartesian coordinate z in terms of
spherical coordinates r and 6, where r is the radial distance from the Earth’s
centre, and @is the angular distance from the z-axis. Finally,

GM
V.(P)=F, -z:?rcow : (5.5)
The tidal potential is then
Vi =Vy +V, +const , (5.6)
LE.
GM GM
V.(P)=- ]:0 3t cos@ + const . (5.7)

Select the arbitrary constant that the tidal potential at the Earth’s centre is zero,
V(0)=0:

M GM
0=V,(O):—G—+0+const = const=—— .
R R
Consequently,
GM GM GM 1 1 rcosf
VAP)=~—p— +——=- e -
(P) s +greosf+—p TR R ] (5.8)
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We would like to express distance p in terms of the parameters which
describe the position of the perturbing body and the point of observation.
Applying the cosine theorem to triangle OPS, we arrive at

p° = R? —2rRcos@+r?

1
11 | (5.9)
S LA (r)z
= ECOS + R
Put #=r/R and
1
f(u,0059)=(1—2u0059+u2)-2 . (5.10)

Function f is a function of two variables, # and 6 (or cos@). Since u is a small
parameter, it will be sufficient to approximate function f by a few terms of its
Taylor series in u in the vicinity of u =0. Keeping parameter 6 fixed for this
moment, we can put

(@)= £(0)+ (5.11)

where f', f", etc., represent the partial derivatives of f with respect to u. It
follows from (5.10) that

fO=1,
3
Fu)= —%(l —2ucos€+u2)_5(— 2cos@+2u), f'(0)=cosf ,

5
” _ __1_ E 2\75 2
7 (1‘)—*2(— 2)(1—2ucos€+u ) 2(-2cosf+2u)° -

b |

1 —
-5(1—2uoose+u2) 2, f"(0)=3cos’>O-1. (5.12)

Consequently, the reciprocal distance 1/p, see (5.9), can be expressed as

1 1 r 1 ?‘2 2
;:E[I+ECOSB+5R—2(3GOS 6—1)+---} : (5.13)

By substituting this series into tidal potential (5.8), the first two terms of the
series vanish. Retaining only the first non-zero term yields
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GMr?
V(P =-— (3cos?0-1). (5.14)

This formula is usually modified by introducing the double angle 26. Using

2 5 1+cos26

cOS 9———2— ,
we finally arrive at
G 2
V,(P)= - f;'_; (Beos26+1)|. (5.15)

Before analysing the properties of the tidal potential, note that in the next
chapter we shall express series (5.11) in the form

flu) = iu”Pn(cosé') , (5.16)

n=0

where P,(cos6) are Legendre polynomials (of variable cos@). Equations (5.11)
and (5.12) indicate that

3 1
Py(cosé) =1, P(cosé) =cosf, P,(cosb)= Ecos2 6 - 5 (5.17)

In mathematics, astronomy, geodesy and geophysics we often introduce
potentials with opposite signs than in physics. We shall also do this here.
Changing the sign in (5.15) produces

2
V,(P) =+?;’; (3cos20+1) , (5.18)

but to preserve the correct direction of intensity we must express the tidal
intensity as
F, = +gradV; . (5.19)

The first term (5.18) of the tidal series yields the tides which are symmetrical
on both sides of the Earth. The next term, which is usually omitted, would
provide a small asymmetric contribution.

Using subscript S for the parameters of the Sun, we shall express the solar
tidal potential (5.18) as follows:

_ GMgr?

Vv
%57 4R}

(3cos265 +1)|. (5.20)
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Analogously, for the tidal potential due to the Moon,

GM 7
Vim = ——%L(SCOSMM + 1)

5.21
4R;, (521

where subscript M denotes the Moon.

Let us add an explanation concerning the latter formula. We should expect
the formula for the lunar tides to be similar to that for the solar tides. On the
other hand, the physical situation seems to be a little different, because we have
assumed that the Earth revolves round the Sun, but we cannot adopt the
assumption that the Earth revolves round the Moon. However, to be stricter, we
should say that the Earth does not revolve round the centre of the Sun, as shown
in Fig. 5.1, but that both the bodies revolve round a common centre of mass.
Formula (5.4) for the centrifugal acceleration need not be changed; it is correct,
it describes this very situation. (In other words, although Fig. 5.1 and our
descriptions were not accurate, the basic formula (5.4) was correct).
Analogously, the Earth and Moon revolve round a common centre of mass,
which substantiates the validity of formula (5.18) also for the lunar tides.

5.1.3 Properties of the tidal potential

Let us discuss some properties of the tidal potential (5.18). Firstly, we should
mention the dependence on the double angle, 26. This indicates the symmetry of
the tides, given by the leading term (5.18), with respect to plane &= 90°.
Consequently, the tides are the same on the near side and the far side with
respect to the perturbing body (the Sun or Moon). On the rotating Earth it
produces two high tides and two low tides a day.

Secondly, tidal potential (5.18) changes its sign for 3cos26+1=0, i.e. for &.
of about 55° (a more accurate value is § = 54.7°). For @ < 55° the potential is
positive, which yields the high tide (on a spherical cap with an apex angle of
109°). In the belt 55°< 8 <125° the tide is low, and for 125°< @< 180° the tide
is high again (Fig 5.4).

Figure 5.4: Regions of high tide (hatched caps) and of low tide (white belt).
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Thirdly, the parentheses in (5.18) indicate that tides are not symmetrical with
respect to their maximum and minimum values, because the values of
3cos28 + 1 vary between +4 and -2.

Fourthly, the tidal potential decreases with the third power of distance of the

perturbing body, i.e. as 1 R3 . Realising that the potential of a point source
=

decreases as 1/R, and the potential of a dipole as 1/R:2 , we see that the tidal

potential has the character of the potential of a quadrupole. Despite the large
mass of the Sun, it is responsible for the solar tides being about twice smaller
than the lunar tides. Considering the following values (Bursa et al., 1995),

GM =132712440x10%m? s72 |
Ry =1AU=14959787x10''m , (5.22)

GM, = 4902799 x10°m® 572 |
Ry, =384 400km ,

we arrive at the ratio

M M
=5 - 046—2L (5.23)

R} Ry
Consequently, the lunar tides are slightly more than twice higher than the solar

tides. Note that the same factor, M/ R3, also appeared in the formula for the
angular velocity of precession.

5.1.4 Vertical component of the tidal acceleration

The vertical component of the tidal acceleration causes variations of the gravity
acceleration. Denoting this vertical component by Z, and considering it to be
positive upward (Fig. 5.5), formulae (5.18) and (5.19) yield

&, GMr
Z=—avr~:ﬁ(3cos29+1) . (5.24)
The resultant gravity acceleration is then g-—Z, where g is the gravity
acceleration without tides. Using parameters (5.22) and the mean radius of the
Earth, r = 6 371 km, we arrive at the following numerical values (in xms™):

1
Zy =082 (cosZﬂM + E) ;s

(5.25)
1
Zg = 0_38[(:03295 +§) :
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The maximum difference for the lunar tides is 1.65,.'.&~:ms”2 and for the solar

tides 0.76ums 2 ; these values are the doubles of the coefficients in (5.25), as
the cosines may attain the values between —1 and +1. If the lunar and solar tides
add up, the maximum difference could be 241ums ™. These differences can

easily be detected by gravimeters and are of the same order of magnitude as the
gravity anomalies considered in gravimetric prospecting. Consequently, the tidal
acceleration must be taken into account in these measurements.

®

Figure 5.5: Decomposition of the tidal acceleration (F,) into the vertical (Z) and
horizontal (H) components.

5.1.5 Horizontal component of the tidal acceleration

Denote this component by A and consider it to be positive in the direction of
decreasing 6, i.e. towards the perturbing body (Fig. 5.5). Then

sin26 . (5.26)

These horizontal accelerations cause tilts of the vertical. The tilt, €, being a
small quantity, can be expressed as

H
e~tan e=— | (5.27)
g

Considering the mean gravity acceleration g =981 m s72 , We arrive at

€),=0017sin26, (arc seconds) .

€¢=0.008sin 26 (arc seconds) : (5.28)

These tilts represent measurable quantities, so that they must be taken into
account in precise astronomical and geodetic measurements.

The instruments used for measuring tilts are called tiltmeters. The classical
tiltmeters usually work on the principle of the horizontal pendulum (Zollner
pendulum and others). Many modern instruments measure tilts in terms of
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electrical quantities, such as electric current or capacity; for detailed descriptions
we refer the reader to Melchior (1966, 1983), and Pick et al. (1973).

5.1.6 Tidal deformations of equipotential surfaces

Consider a small change of the gravity potential, dU, corresponding to a small
distance, ds, along the vertical. Then |dU|=glds|, where g is the gravity
acceleration.

Consequently, the vertical displacement of an equipotential surface due to
tides can be expressed approximately as

=L (5.29)

A more detailed derivation of the latter formula will be given below. If the sign
of the tidal potential is given according to (5.18), the places of high tides are
characterised by positive values of V,. Consequently, positive values of

describe high tides, and negative  characterise low tides.
Substituting (5.20) to (5.22) into (5.29), and taking =6 371 km,

g=981ms™2, we arrive at the tidal deformations of the equipotential surfaces
near the Earth’s surface as follows:

1
iy= 26.8(00526‘M +§] in centimetres ,

1
s = 26.8[005293 +§J in centimetres . (5.30)

Thus, the maximum difference in the height due to the lunar tide is 53.6 cm, and
due to the solar tide 24.6 cm. When the maximum tides due to the Moon and
Sun coincide, the maximum difference in height is 78.2 cm.

Tides would have the amplitudes given above, if the Earth were ideally fluid,
and if there were no dynamic effects (resonances or delays due to inertia, and if
the attraction of the displaced masses were neglected as well). If the Earth were
rigid, its surface would not deform at all. As the physical properties of the Earth
are somewhere between these two extreme cases, the surface is partly deformed.
The magnitude of this deformation is determined by the physical properties of
the Earth. Therefore, the measurements of the deformations of the Earth’s
surface contribute to the knowledge of the physical parameters of the Earth. It
has been found that the effective deformation of the Earth’s surface amounts to
about 48 % of the theoretical deformations of the equipotential surfaces
mentioned above (theoretical geoidal deformations). Thus the maximum change
of the vertical position on the Earth’s surface is about 36 cm; further details will
be given below.
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Q L _________ U=U(Q)=V(P)

=V(P)

Figure 5.6: Geometry for the derivation of the tidal deformation &

Let us return to a more exact derivation of formula (5.29) for the tidal
deformation. Consider an equipotential surface of the gravity field without tides,
passing through point P (the solid line in Fig. 5.6). Denote this gravity potential
by V. By adding tidal potential V, (or another disturbing potential), the
equipotential surface of the resultant potential, U =V +V,, will shift (dashed

line). As the vector of displacement C is small,
r(Q)-V(P)=+g-C=-5¢, (531)

if g is considered to be positive downward and { upward. For the disturbed field
similarly
U(Q)~U(P) = (g +Fr)"; =-g¢ . (5.32)

Since U =V +V,; and U (Q) = V(Q) , the last equation yields

v(P)-[r(P)+7,(P)]=-g¢ ,

from which we immediately obtain equation (5.29).

Equation (5.29) has the same form as Bruns’ theorem, which will be derived
in the chapter on the geoid and which also relates the deformation of an
equipotential surface to a certain type of disturbing potential.

5.2 Angular Distance of Two Points on a Sphere

To study other tidal phenomena, we shall derive a very important formula of
spherical trigonometry for the angular distance of two points on a sphere.

We shall consider the general case of the angle between two arbitrary radius-
vectors. Consider two arbitrary points, P; and P,, in three-dimensional space,

and denote y the angle between their radius-vectors (Fig. 5.7). Denote the
Cartesian coordinates of P, and P, by x;, y;,2; and x5, y,, z,, respectively,

and their spherical coordinates by 7,8,,4 and r,, 6, 4,, respectively. The
following well-known relations hold true:
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x; =rsin6 cosdy , x, =r,siné cosi, ,
Yy =nsin@sind , y, =nsinésing, , (5.33)
2y =1 0086, , 2 =r,cosb, .

-

z

P,

<4

Figure 5.7: Angle y between two radius-vectors.

The corresponding radius-vectors of points P, and P, are:
ry =(x1=}’1,7»1) N ) :(xzpyz,zz) : (5.34)

It 1s evident that |r1|=\le‘ + ylz —Hz]2 =rn and |r2|:r2. We would like to

express the angle y between these radius-vectors in terms of the spherical
coordinates of points P} and P, .

Calculate the scalar product of vectors r; and r,, and substitute from (5.33):

I Ty = XXy + Y1 V) +212y = rlrz[cosgl cosé +siné sinb, cos(,ll ~ ﬂg)]

However, from analytical geometry we know that ©32)
rr = |r1 "rz[cosy ; (5.36)

By comparing (5.35) and (5.36) we arrive at the final result:
cosy = cosf cosf, +sinf sind cos(ll - /12) . (5.37)

5.3 Three Types of Tides

A very restrictive assumption in Section 5.1 was that the Earth does not rotate
about its axis. Now, let us abandon this restriction and assume that a rigid Earth
also rotates about its axis. To the forces acting at point P we must add the
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centrifugal force due to the Earth’s rotation. However, this force field is
included in the gravity field of the rotating Earth. This means that the values of
g, considered above, must be slightly modified by this centrifugal acceleration.
Consequently, the only substantial change consists in angle & (see Fig. 5.2 and
the formulae in Section 5.1), becoming a very complicated function of time.

Figure 5.8: Definition of quantities which appear in the formulae for the tides on
a rotating Earth.

Consider the tides due to the Moon. If we permit the Earth to rotate, an
observer at P moves through a varying potential field, and the potentials become
functions of time. In Fig. 5.8, point C is the pole of the celestial sphere, M is the
Moon, and P is the point on the Earth. The position of the Moon on the celestial
sphere with respect to the observer can be characterised by the declination, J,
and by the Moon’s hour angle, H. Denote the geocentric latitude of P by ¢.
Then, by applying formula (5.37) to spherical triangle CMP, the Moon’s
geocentric angular distance & can be expressed as

cos@ = sin ¢sin S + cos@cosS cos(H —180°) . (5.38)

After substituting this expression into tidal potential (5.14), changing the sign
of the potential and using relation cos® H = (1+cos2H)/2, we arrive at the
leading term of the tidal potential in the form

3 GMr2 2 2
Vy =T B [cos ¢gcos” dcos2H -

(5.39)

1 1
—sin2¢@sin2d cos H + B(Sin2 ¢ —gj(sinz 5—5):1 ;

The three terms on the right-hand side of (5.39) represent three types of tides
on the rotating Earth due to the Moon. A similar expression can be given for the
tidal potential due to the Sun.
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The individual terms in (5.39) vary differently with time, and with the latitude
- of P. The first term, containing cos2H , yields the semi-diurnal tide (the period
of half a lunar or solar day). This term is symmetric about the equator.

In the second term, factor cosH indicates a period of one (lunar or solar)
day, corresponding to the diurnal tide. This term is antisymmetric about the
equator, and vanishes if the disturbing body or the observer are at the equator.
At first sight, the appearance of such a diurnal term seems to be surprising, but
this can easily be explained (Fig. 5.9). We have emphasized the symmetry of
tides with respect to plane € = 90°, which means that the tides at points P and
Q are the same. If the disturbing body lies in the equatorial plane of the Earth
(Fig. 5.92), the observer at point P appears half a day later at point Q with the
same tidal potential. This situation is described by the semi-diurnal term.
However, if the rotation axis is inclined (Fig. 5.9b), the observer at P then

appears half a day later at point P*, where the tidal potential is different. Only
one day later does the observer return to the place of the same potential at P.
This explains the diurnal tide.

Figure 5.9: Explanation of the diurnal component of tides.

The third term in (5.39), varying only with &, yields tides of a long period.
This term has a period of 14 days in the lunar tides, and a period of 6 months in
the solar tides. A remarkable property of this term is that it yields a small
permanent high tide in the equatorial regions, and a permanent low tide in the
polar regions. Consequently, it slightly increases the flattening of the Earth. The
equipotential surface at the poles is displaced downwards by 28 cm, and
elevated by 14 cm at the equator. These values are small, but they play a certain
role in accurate determinations of the Earth's flattening and in some other
parameters. Therefore, it must be specified whether the effect of this term is
included or not. For example, the polar flattening of the Earth including this

term is & = 1/(298.256 42 +0,000 01), but without this term it is (the tide-free

value) a = 1/ (298.257 65+ 0.000 01). The permanent polar depression due to
this term can again be easily explained. We have seen that the high tide occurs
for angular distance 6 <54.7° (and symmetrically on the opposite side of the
Earth). Even if the Sun is maximally deviated from the Earth’s equatorial plane
by €=234°, the high tide reaches only to a latitude of 54.7°+234°= 781°.
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Consequently, a certain vicinity of the poles remains in the region of the low tide

all the time. In addition to these effects, the long-period variations due to this

term cause changes in the principal moment of inertia C. Consequently, we

should expect variations in the speed of the Earth’s rotation to have the periods

mentioned above. Such variations in the length of day have really been observed.
Figure 5.10 shows the signs of the individual terms in (5.39).

(O O

[

1) sectorial 2) tesseral 3) zonal

Figure 5.10: Three types of tides.

In reality the tides are even more complicated due the ellipticities of the orbits
and perturbations of the Moon’s motion. Consequently, the harmonic analysis of
the forces and harmonic analysis of tides are used to separate the individual
components (Doodson, 1921; Garland, 1965; Pick et al., 1973; Melchior, 1983).

5.4 Tidal Effects on an Elastic Earth

5.4.1 Love numbers

If an elastic Earth is considered, the tidal forces cause not only deformations of
the equipotential surfaces, but also deformations of the Earth’s surface.

Denote by U the gravity potential, and by g the gravity acceleration if there
are no tides. Denote by V; the tidal potential for a rigid Earth (tide-generating
potential), which has been considered in the previous sections. The resultant
gravity potential, including the tidal contributions, at a point of an elastic Earth
can then be expressed as

Uy =U+V, +V;-Vy (5.40)

where V; is the additional potential at the point due to the gravitational effect of
the transferred mass, and 7" is the change in the potential due to the vertical
displacement u of the observer.
Love (1909) showed that there is a proportionality between the additional
and generating potentials,
Vi=FkV, , (5.41)
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and between the vertical deformation of the Earth’s surface and the theoretical
vertical deformation of the equipotential surface, £, mentioned above,

u=hg . (5.42)

In other words, number 4 is the ratio of the height of the Earth’s tides to the
height of the corresponding static oceanic tides.

Constants / and k are called the Love numbers. In addition to them, also the
so-called Shida number, I, is introduced as the ratio of the horizontal
displacement in the solid Earth to the horizontal displacement of the
corresponding static oceanic tides. The Love and Shida numbers characterise the
deformations of the Earth due to the tidal forces, i.e. they characterise elastic
properties of the Earth as a whole. They depend on the density distribution and
elastic parameters within the Earth. More detailed calculations show that these
numbers also slightly depend on the period of the tidal component.

5.4.2 Determination of the Love numbers
Using (5.42) and (5.29), potential ¥,” can be expressed as
Vi'=gu=ghl=hv, . (5.43)

The resultant gravity potential (5.40) then becomes

U,=U+DV,, (5.44)
where
D=1+k-h|. (5.45)

Parameter D is called the diminishing factor, because D <1 as indicated by
measurements. Diminishing factor D can be determined by measuring the tilts
with tiltmetres. The measurements yield

=91 ; (5.46)

Another combination of the Love numbers can be determined by gravity
measurements. The change in gravity on an elastic Earth can be expressed as

&= G'% , (5.47)

where gravimetric factor G (magnification factor) is
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* 3
G =1+h-Zk|; (5.48)

we shall not derive the latter formula. (Note that the gravimetric factor is usually
denoted by G, but we have reserved the letter G for the gravitational constant).
This factor can be determined by means of sensitive gravimeters. Its approximate
value is

G =12 (5.49)
Equations (5.46) and (5.49) then yield

h=05 k=02 . (5.50)

However, there is a large scatter in the values of D and G~ determined at
various observatories.

According to Melchior (1966), the following numerical values seem to be
more probable:

D=068 , G =117,
h=062 , k=030, (5.51)
1=005 .

Another set of these numbers is as follows (Wahr, 1996):

h~06, k=03
I~0085, G =116 (also denoted as 5 = 1.16) .

Love number k£ can also be determined independently from the Chandler
period, from the variations of the Earth’s rotation, and from the tidal
perturbation of satellite orbits. The last method is the most accurate, yielding the
value £ = 0.290.

The Love numbers are related to the density distribution and elastic
parameters within the Earth. Hence, these numbers can be calculated for
different models of the Earth, and compared with observations. The first
calculations were carried out by Takeuchi in 1950. It was found that an estimate
of rigidity in the liquid core can be obtained by this method. Takeuchi concluded
that the rigidity in the core must be at least three orders lower than that in the

mantle (g ~0- 108 N 'm™2 in the core satisfied the data; z~ 10" N m™ in the
mantle).

In conclusion we should summarize the effects which were not considered in
this chapter. These are: dynamic effects in the ocean, dynamic effects in the solid
Earth (we have considered static tides only, which is substantiated by the fact
that the tidal periods are longer than the periods of the free oscillations of the
Earth), local effects and some others.
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Chapter 6

Legendre Polynomials and Associated Legendre
Functions

In many branches of physics, we encounter potentials which vary as 1/R , where

R is the distance from the source. In many applications, it is convenient to
expand such an expression into a series. The coefficients of such expansions
contain special functions called Legendre polynomials. In the previous chapter,
we have already seen the advantages of such an approach. Only one term of the
series was sufficient to describe the main properties of tides.

We shall start with a very special situation, which will be generalised later in
this chapter.

Legendre polynomials may be introduced in several equivalent ways: as
particular solutions of Legendre’s differential equation, by means of recurrence
relations, integral expressions, Rodrigues’ formula, generating function, in the
form of a finite series and some others. If any of these representations is adopted
as a definition of Legendre polynomials, the remaining representations can be
derived from this definition. Here we shall introduce Legendre polynomials by
means of a generating function, because such an approach has a very simple
physical interpretation.

6.1 Generating Function

Consider a special position of a point source of the gravitational or electrostatic
field, B, on the z-axis of a Cartesian coordinate system at unit distance from the
origin, i.e. B= B(O, 0, 1). We can imagine that this point is located at the
“north” pole of a unit sphere with its centre at the origin of the coordinate
system (Fig. 6.1).

X y

Figure 6.1: Introduction of the generating function of Legendre polynomials.
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Consider another point, P (observer), inside the unit sphere, and denote its
spherical coordinates by r, 8, 4, where r <1. Distance R between points P and
B, using the law of cosines (cosine rule), satisfies

R?* =1+r? —2rcosé , (6.1)
and, consequently, the reciprocal distance can be expressed as

1 1
R J1—2r0059+r2

(6.2)

Put u = cos@. Now expand the reciprocal distance into a series in powers of 7,

(6.3)

u

\[1 2ru +7* ZV”P (ﬂ)

the coefficient of the n-th power being denoted P, ( ;1). We shall show that
2

n

(p) are polynomials, so-called Legendre polynomials. The left-hand side of
equation (6.3) is called the generating function of Legendre polynomials:

)= g | 4

We consider equation (6.3) as the definition of Legendre polynomials in terms of
the generating function.

Let us derive the first few coefficients, Legendre polynomials, of the
corresponding series. Without expressing variable u explicitly for the moment,
the appropriate Taylor series reads

g (0) g"(0) ,

g(r) = g(0) + PSS (6.5)

where

g0)=1,

3
g'(r)=- (1 2ry+r) (—2p+2r), gQ=p,

5

g"(r)= —%(—g)(l —2rp+r2)_5(— 2p+2r)2 2
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—(1 ~2rp+ rz)_g , g"0)= 3u’-1.

Comparison of (6.3) with (6.5) yields

"
P,(1) = i[ £ ] (656)
r=0

and, consequently,

Bly=p, 6.7)

Figure 6.2: Legendre polynomials P,,( y) .
Let us add two remarks:

1. Although the polynomials on the right-hand sides of (6.7) are defined
along the whole real axis, Legendre polynomials are defined only in the
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interval (— 1, + 1) as a consequence of the geometric meaning of variable
M ie. u=cosé.

2. Functions P, as functions of variable & are not polynomials, but more
complicated functions (Fig. 6.3).

*]

0.0

Figure 6.3: Functions P,(cos).

6.2 Some Values and Special Properties

The graphs in Fig. 6.2 indicate some of the general properties of Legendre
polynomials, which will now be proved using definition (6.3):
a) Values for g =1. Inserting ¢ =1 into equation (6.3) yields

[+ o]

=3B ).

n=0

However, the left-hand side of the latter equation is the sum of the
geometric series,

l (=2}
me 2§ n
b

By comparing the right-hand sides, we see that

Pn(l) =1 (6.8)

for all values of n.
b) Values for g = —1. Definition (6.3) yields

1 [+ o]
—=>r"P,(-1).
n=0

147
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The left-hand side is also the sum of a geometric series,

1 c n
1—(—!’) = JPz}(—r) .
Hence
P,(-D=(-D". (6.9)

c¢) Parity. Replace u by (— ,u) in equation (6.3):

1 o0
———=3rnn).
1+2ru+r n=0

But the left-hand side may be expressed as

1 - n
e Bk

Consequently,

P(-1)=C1)"R(4)|.