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Preface

During the long historical development of the Earth sciences, several
independent scientific disciplines have been constituted, such as geodesy,
geology, geophysics, geochemistry and geography. Geophysics (physics of the
Earth) is a branch of physics which investigates, by means of physical
methods, the phenomena and processes occurring in the Earth and its
immediate vicinity. According to analogies with physics, geophysics is further
subdivided into smaller disciplines, such as gravimetry, seismology,
geomagnetism and geoelectricity, geotermics and radioactivity of the Earth.

Seismology deals with earthquakes and with propagation of mechanical
waves generated by earthquakes and by artificial sources. Similarly to other
physical disciplines, seismology can also be divided into theoretical and
observational (experimental) seismology, or into pure and applied seismology.
In the present lecture notes we pay the main attention to theoretical aspects of
pure seismology, although seismological observations and some problems of
applied geophysics are also briefly discussed.

Seismological observations can be divided into two groups: macroseismic
observations and instrumental (microseismic) observations. By the
macroseismic observations we understand the observations of the effects of
earthquakes on people, animals, construction objects and nature objects. No
special instruments are used in macroseismic observations.

The construction of automatically registering seismographs in the second
half of the 19™ century extended the possibilities of earthquake research
tremendously. The seismographs made it possible to obtain the time
dependence of earthquake vibrations, and also to register seismic waves of
distant earthquakes. This opened possibilities for global studies of earthquakes,
including earthquakes in uninhabited regions, such as oceans, high mountains
and others. This progress in observational techniques has gradually turned
seismology into the main discipline of studying the Earth’s interior. Seismic
methods also play a dominant role in many problems of geophysical
prospecting.

The present text was prepared for the lecture “Seismology” which I read in
1998 and 1999 for post-graduate students at the Universidade Federal da Bahia
(UFBA), Salvador, Brazil.

In preparing this text we have drawn mainly on the manuscript by Cerveny
(1989), the lecture notes by Psencik (1994), and also on the textbooks by Béth
(1979), Bullen and Bolt (1993), Fowler (1990), Richter (1958) and the lecture
notes by Cerveny (1976, 1978). The text in the present lecture notes is more
elementary than in the most textbooks mentioned above but, on the other hand,
we have paid considerable attention to the mathematical and physical
foundations of the corresponding seismological methods. We have attempted to
emphasise relations to analogous problems in physics, rather than to describe
seismological applications in detail. We hope that this text might be useful for
many students of physics which start to specialise in geophysics. Nevertheless,
some complicated formulae and their derivation (e.g., the Zoppritz equations)



have been included into the text, although they are usually omitted in the
standard textbooks.

Chapter 1 contains basic information on earthquakes, their effects, intensity
scales, physical causes and problems of their predicting. Chapter 2 deals with
the instrumental observations of seismic waves and with the elementary
methods of their interpretations. The next three chapters are devoted to the
computation of seismic rays and travel times in inhomogeneous media; the
corresponding theory is based on Fermat’s principle and on some analogies
with analytical mechanics. Since the theory of seismic waves is based on
continuum mechanics, in Chapter 6 we summarise the basic relations of
continuum mechanics and their derivation. Chapters 7 to 11 deal with various
types of elastic waves in homogeneous media, and Chapter 12 with the
reflection and transmission of plane elastic waves at a plane interface. A more
detailed description of the ray theory, including the computation of amplitudes,
is given in Chapter 13.

The selection of the material in this lecture notes was partially influenced by
the scientific orientation of the students, and so it does not cover all directions
of the contemporary seismological research. Since the lecture “Attenuation and
Dispersion of Elastic Waves” is also read to the students of the UFBA, we have
omitted the theory of surface waves and matrix methods in seismology; we
refer the reader to the lecture notes by Novotny (1999). Furthermore, we do not
deal with free oscillations of the Earth, seismic instruments, interpretation of
seismic data, and the constitution of the Earth. Only fragments of these
problems are mentioned in the text. The reader may find a detailed description
of these problems in the above-mentioned textbooks or other specialised
literature.

The text of the lecture notes did not pass any language revision, which it
necessarily needs.

I am very obliged to Prof. Vlastislav Cerveny for substantial contributions to
this text. Prof. Cerveny offered me his manuscript, which forms essential parts
of many chapters. I would like to express my gratitude also to the students and
professors of the UFBA who contributed by their questions and comments to
improvements of the text. To my wife, Sarka Novotna, I am obliged for the
technical preparation of the text and figures. I shall be grateful to every reader
for any critical comments and remarks to this text.

I would like to thank the Centro de Pesquisa em Geofisica e Geologia
(CPGG/UFBA), Departamento de Geofisica Nuclear do Instituto de Fisica, and
the Instituto de Geociéncias for providing me with favourable conditions for
preparing this text. I wish to express my thanks especially to the CNPq
(Conselho National de Desenvolvimento Cientifico e Tecnolédgico), to the
Ministério de Educacdo e Cultura, and to the CPGG for providing me with the
fellowships which made my stay at the Universidade Federal da Bahia
possible.

Salvador, 1999
Oldrich Novotny
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Chapter 1

Earthquakes

Earthquakes arise through a sudden release of energy within some confined
region of the Earth. This energy is usually elastic strain energy, but may also be
the gravitational energy, kinetic energy, chemical energy, etc.

Several types of earthquakes can be distinguished. The main of these types
are as follows:

e Tectonic earthquakes, which are caused by the release of elastic strain energy.
These earthquakes occur when the stresses in some region inside the Earth
have accumulated to a value which exceeds the strength of the material. This
leads rapidly to a fracture along some fault. The strongest world earthquakes
belong to this category.

e Volcanic earthquakes. Many earthquakes of this type are often observed in
volcanic regions, but they are usually small.

e Deep-focus earthquakes, indicating subduction zones (slabs) and having a
similar character as tectonic earthquakes.

e Induced earthquakes, which are caused by a human activity.

Two basic terms related to the earthquake are the earthquake hypocentre and
epicentre. The point where the rupturing process starts is called the hypocentre
and the relevant time is called the hypocentral time. The hypocentre coordinates
and the hypocentral time can by determined from seismometric records (from
the first arrivals of seismic waves) by the procedure called the localisation of
earthquakes. The vertical projection of the hypocentre onto the Earth's surface
is called the epicentre. Both the hypocentre and epicentre are points.

In investigating the earthquakes, the following types of observations are used:
e macroseismic observations;

e instrumental observations using a world system of seismic stations;

e instrumental observations in the epicentral region.

1.1. Examples of large earthquakes

In order to form an idea on possible effects of earthquakes, let us give
examples of some large earthquakes. The list given below contains earthquakes
which were very strong from the point of view of their effects or released
energy. The loss of lives is denoted by the sign  followed by the corresponding
number. The quantity M, called the earthquake magnitude, characterises the
strength of the earthquake from an energetic point of view. This quantity will be
introduced later.

1556,279. -China, Province Shensi, ¥ 830 000. The largest catastrophic
earthquake known from the historical times.

11



1737,
1755,

1891,

1897,

1906,

1908,
1920,

1923,

1948,

1952,
1960,

1963,

11.10. - India, Calcutta, 300 000

1.11. - Portugal, Lisbon, ¥ 60 000. The sea wave, called the tsunami,
reached the height of 20 m. Many people running to the coast after the
earthquake were drowned in the great sea waves. The earthquake was
felt up to central Europe; the mineral springs at the Teplice spa (Czech
Republic) changed for several days.

28.10. - Japan, Mino Owari, ¥ 7 200. A block was displaced at a length
of about 100 km, horizontal displacements of up to 4 m, vertical ones of
up to 7 m. It indicated a shear mechanism of strong earthquakes, which
contradicted the hypotheses explaining earthquakes as underground
explosions. This fact played an important role in the development of
seismology.

12.6. - India, Assam. Visible amplitudes of the ground motion of up to
30 cm. Felt on an area of 4 million square kilometres;, on an area of
75000 km’ all houses were damaged. Acceleration of up to 0.5g,
macroseismic intensity /o = 12 grades (see below), M = 8.7. The number
of victims was relatively small (¥ 1425).

18.4. - USA, San Francisco, ¥ 750, M = 8.2. Fissures in the ground,
horizontal displacements of up to 7 m. The earthquake occurred in the
region of the San Andreas fault, which is geologically very active.
Observed on an area of 10° km*; damage of 524 million dollars. A great
fire on the second and third days damaged practically the whole city.
Survey retriangulations led to elastic-rebound theory of earthquakes,
proposed by Reid. (If a new similar earthquake occurred at the same
place now, damage would be much higher. Consequently, detailed
monitoring and other investigations are carried out in the region of the
San Andreas fault and other regions of California).

28.12. - Italy, Messina, ¥ 83000, M = 75 A well investigated
earthquake, 0.2 g, tsunami of 12 m..

16.12. - China, Province Kan-su, ¥ 100 000, A/ = 8.5. About 700 000
houses damaged.

1.9. -Japan, Kwanto, great Japanese earthquake, + 142 800,
M = 8.2. Destruction in Tokyo and Yokohama. About a million houses
destroyed or heavily damaged; damage of 2.8 billion dollars. Tsunami of
13 m. Earthquake Research Institute (Tokyo) founded as a consequence.
5.10. - USSR, Turkmenia, Ashkhabad, M = 7.6. Reports on
anomalous behaviour of animals before the earthquake. An earthquake
prediction programme adopted by Soviet seismologists in consequence.
4,11 - USSR, Kamchatka. The first observation of free oscillations of
the Earth generated by this earthquake.

22.5. - Chile, 5 700, M = 8.5. Damage of half a billion dollars. One of
the strongest earthquakes of the 20" century.

26.7. - Yugoslavia, Skopje, ¥+ 1074, M = 6.0, $ 300 million. A
seismological institute for the Balkan region founded.
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1964, 28.3. - Alaska, Anchorage, ¥ 131, M = 8.6, $ 538 million. A huge
earthquake from the point of view of released energy. (A Wiechert
seismograph at the Prague seismic station, at a distance of many
thousands of kilometres, fell out of its bearings).

1966, 26.4. - USSR, Uzbekistan, Tashkent, $ 300 million. A relatively weak,
but shallow earthquake immediately below the city; construction of a new
Tashkent. Changes in the contents of radon in underground waters were
observed before the earthquake.

1970,31.5. - Peru, ¥ 52000, M = 7.8, $ 507 million. A stony avalanche,
released by the earthquake, buried the town of Yungai (a Czechoslovak
alpinist expedition on Huascaran died under this avalanche).

1972, 23.12. - Nicaragua, Managua, ¥ 5 000, $ 800 million.

1975,4.2. - China, Haicheng, M = 7.3. The first predicted earthquake (on
the basis of hydrological and other precursory phenomena). Evacuation
of people preceded this destructive earthquake.

1976, 6.5. - Italy, Friuli, ¥ 1 000, A/ = 6.5, $ 2 billion.

1976,27.7. - China, Tangshan, ¥ 665 000, A/ = 7.6. The town of Tangshan
with 1.6 million inhabitants was practically destroyed, and a great damage
occurred also in the vicinity, which is densely inhabited. The greatest
earthquake of this century according to its effects.

1977,4.3. - Romania, Bucharest, ¥ 1581, M = 7.2, $ 800 million. A little
damage even to a distant nuclear power plant Kozloduy in Bulgaria; so
that more strict building codes for nuclear power plants were adopted in
some countries as a consequence.

1988, 7.12. - USSR, Armenia, Spitak, 1 25 000.

1.2. Macroseismic observations

By macroseismic observations we mean field observations and observations
of the effects of earthquakes by people (not by seismometers). The principal
macroseismic effects of earthquakes are summarised in Tab. 1.1.

Table 1.1. Principal macroseismic effects of tectonic earthquakes; from Richter
(1958).

Effect on Primary Secondary permanent Secondary transient

Terrain  Regional warping, etc. Landslides (slumps, Visible waves
Scarps flows, avalanches, Perceptible shaking
Offsets lurches)

Fissures, mole tracks, Secondary fissures
other trace phenom- Sand craters
ena Raising of posts and
Elevation or depression piles
of coasts: changes in
coast line
Water Damming; waterfalls; Changes in well levels
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diversion Earthquake fountains

Sag ponds Water over stream
Changes in wells, banks
springs Seiches
Tsunamis
Seaquakes

Works of Offsets, and destruction Most ordinary damageCreaking of frame
construction or damage by rending to buildings, chim- Swaying of bridges
and

or crushing; buildings, neys, windows, plas- tall structures

bridges, pipe lines, ter
railways, fences, roads,
ditches
Loose objects Displacement (includingRocking

apparent rotation) Swinging
Overturning, fall, Shaking
projection (horizontal Rattling

or vertical)
Miscellaneous Clocks stop, change Nausea
rate, etc. Fright, panic
Glacier affected Sleepers wakened
Fishes killed Animals disturbed
Cable breaks Birds disturbed
Trees shaken
Bells rung
Automobiles,
standing
or in motion,
disturbed
Audible sound
Flashes of light

The macroseismic intensity, usually denoted by 7, characterises the strength of
the earthquake at a given place on the basis of its macroseismic effects. A
number of different macroseismic scales have been set up for determining the
macroseismic intensity.

The first widely adopted scale was the Rossi-Forel (R.F.) scale, which was set
up in 1883, and had ten grades. However, an enormous range of intensity was
put together at the highest level, X, and the description of some effects was too
specifically European. These defects were largely removed in the Mercalli-
Cancani-Sieberg scale (commonly abbreviated MCS). The original version of
this scale was put forward by Mercalli in 1902 at first with ten grades, later with
twelve grades following a suggestion by Cancani who also attempted to express
these grades in terms of acceleration. An elaboration of the scale was published
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by Sieberg in 1923. Further modifications of the MCS scale were proposed by
seismologists in the USA and Europe.

At present, the most commonly used macroseismic scales are as follows:

e MM... Modified Mercalli Scale, (modified by Wood and Neumann in 1931),

12 grades, used in the USA,

e MSK .. Medvedev-Sponheuer-Karnik scale (1964), 12 grades, used in Europe;
e JMA __Japan Meteorological Agency scale, 7 grades, used in Japan.

The scales MM and MSK are very similar. The general characteristics of the
MM scale are given in Tab. 1.2.

An up-dated version of the MSK scale was proposed by the European
Seismological Commission in 1992 (Griinthal, 1993). The main changes in the
up-dated scale are as follows: the effects on new types of constructions have
been added (constructions from reinforced concrete and others), some
irregularities in the scale have been removed (a large step between the previous
grades VI and VII), and a systematic quantification of earthquake effects has
been introduces, which facilitates a statistical processing of macroseismic data.

Table 1.2. Modified Mercalli scale of intensity (abridged); from Bullen and Bolt
(1993).

I. Not felt except by a few under especially favourable circumstances.

1. Felt only by a few persons at rest, especially on upper floors of buildings.
Delicately suspended objects may swing.

111, Felt quite noticeably indoors, especially on upper floors of buildings, but
many people do not recognise it as an earthquake. Standing motor cars may
rock slightly. Vibration like passing of truck. Duration estimated.

IV. During the day felt indoors by many, outdoors by few. At night some
awakened. Dishes, windows, doors disturbed, walls make creaking sound.
Sensation like heavy truck striking building. Standing motor cars rocked
noticeably.

V. Felt by nearly everyone, many awakened. Some dishes, windows, etc.,
broken; a few instances of cracked plaster; unstable objects overturned.
Disturbance of trees, poles, and other tall objects sometimes noticed.
Pendulum clocks may stop.

VI. Felt by all; many frightened and run outdoors. Some heavy furniture moved;
a few instances of fallen plaster or damaged chimneys. Damage slight.

VII. Everybody runs outdoors. Damage negligible in buildings of good design
and construction; slight to moderate in well-built ordinary structures;
considerable in poorly built or badly designed structures; some chimneys
broken. Noticed by persons driving motor cars.

VIIL. Damage slight in specially designed structures; considerable in ordinary
substantial buildings, with partial collapse; great in poorly built structures.
Panel walls thrown out of frame structures. Fall of chimneys, factory stacks,
columns, monuments, walls. Heavy furniture overturned. Sand and mud
ejected in small amounts. Changes well water. Disturbs persons driving
motor cars.
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1X. Damage considerable in specially designed structures; well-designed frame
structures thrown out of plumb, great in substantial buildings, with partial
collapse. Buildings shifted off foundations. Ground cracked conspicuously.
Underground pipes broken.

X. Some well-built wooden structures destroyed; most masonry and frame
structures destroyed with foundations, ground badly cracked. Rails bent.
Landslides considerable from river banks and steep slopes. Shifted sand and
mud. Water splashed (slopped) over banks.

XI. Few, if any, (masonry) structures remain standing. Bridges destroyed. Broad
fissures in ground. Underground pipe-lines completely out of service. Earth
slumps and land slips in soft ground. Rails bent greatly.

XII. Damage total. Waves seen on ground surfaces. Lines of sight and level
distorted. Objects thrown upward into the air.

In processing the macroseismic observations, the following maps and
parameters are usually determined:

a) Maps. The macroseismic intensities / observed at individual geographic
locations are shown in the map, either by numbers or by various symbols.

b) Isoseismal curves. In the maps, the isoseismal curves are the boundaries
between the observations of different intensity. For example, the isoseismal
curve 7 is a boundary of all observations of 7° and higher. In other words, it
separates observations of intensity 6° and 7°. An example of a map with
isoseismal curves is given in Fig. 1.1.

Q
Hradec Kralové

Fig. 1.1. The map of macroseismic intensities for the earthquake of December
21, 1985, in Western Bohemia, Czech Republic; magnitude 4.6.
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¢) Macroseismic epicentre. It is the region of highest observed macroseismic
intensities. The macroseismic epicentre may be situated at a different place
than the instrumental epicentre.

d) The macroseismic epicentral intensity Jo. It is the macroseismic intensity at
the macroseismic epicentre. It characterises the strength of the earthquake.

¢) The averaged radii of isoseismal curves. The averaged radius of the
isoseismal curve I, is usually denoted by 7, .

f) Shape of isoseismal curves. Usually these curves are not accurately spherical,
which is a consequence of the geological structure and fault mechanism.

1.3. Problems of a physical interpretation of
macroseismic intensity

The classification of earthquake effects by means of the macroseismic grades
is important from social and economic points of view. It is also used for
purposes of earthquake insurance, since insurance companies in many countries
cover the damage caused by earthquakes if the macroseismic intensity exceeds a
certain grade, e.g. grade VI. On the other hand, this “intensity” is not capable of
simple quantitative definition, since it describes the earthquake effects in rather
qualitative terms. Consequently, an interpretation of the macroseismic grades in
terms of some physical quantities, such as the maximum acceleration or others,
represents a complicated and problematic task. The problem consist in the fact
that the macroseismic intensity depends in a complicated way not only on
ground accelerations but also on the periods, duration and other features of the
seismic waves. For example, the high-frequency shaking during the earthquakes
in Western Bohemia (Fig.1.1) produces strong sound effects, which frighten
people, but causes relatively a little damage to buildings, whose resonant
frequencies are much lower.

Nevertheless, efforts have been made to associate the macroseismic intensity
with accelerations or other parameters of the local ground shaking. These
relations have usually been based on the Weber-Fechner psychological law,
which-states that the feelings perceived by the human sense organs increase
with an arithmetic sequence if the corresponding physical quantity (amplitude,
concentration) increases with a geometrical sequence. Cancani assumed that a
similar law holds also between the macroseismic intensity and acceleration of
the ground motion, i.e. the macroseismic intensity increases with an arithmetic
sequence if the acceleration increases with a geometrical sequence. As an
illustration, we give the corresponding relation in Tab. 1.3; since buildings are
more sensitive to horizontal accelerations, this component of the acceleration is
considered there.
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Table 1.3. The association of the macroseismic intensity / with the horizontal
acceleration aj, in the Mercalli-Cancani-Sieberg scale.

1 ah(mm/sz)
1 0-25
II 25-50
III 5-10
v 10-25
A% 25-50
VI 50 -100
VII 100 - 250
VI 250 — 500
IX 500 — 1000
X 1000 - 2500
XI 2500 — 5000
XII > 5000 (=0.5 g)

The above-mentioned law can be expressed as

logipa =501 +c, (1.1)

where a is the acceleration, / the macroseismic intensity, and b, ¢ are constants.
The relation in Tab. 1.3 is described approximately by the parameters b = 1/3
(three grades of intensity correspond to one order of acceleration) and ¢
between —0.3 and —0.4 (if the boundary between grades I and I, ie.
a, =25 mm/ s* | is characterised by the intensity / = 1.5, etc.) Richter (1958)
has presented similar values, »=1/3 and c¢=—1/2, but very different values
have been obtained by other authors. We can conclude that, despite of many
attempts, this effort has not been successful and reliable formulae of type (1.1)
have not been found. At present, such formulae are not usually used. For
example, in the European Macroseismic Scale 1992, any relations of type (1.1)
have been abandoned.

Another important problem is the decrease of macroseismic intensity with
distance from the source. First, let us derive several formulae for the energy of
harmonic waves. Consider a unite volume of density p performing harmonic
oscillations:

u= Asinwt , (1.2)

where u is the instantaneous displacement, 4 the amplitude, @ the angular
frequency, and  the time. The instantaneous kinetic energy of the unit element
is

—pu :—pa)zA2 cos’® wt "
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and the mean kinetic energy, averaged over a cycle, is

1 242
—po~ A
i >
since
{ 2z 1 2z 27z 1
— |cos’xdx=— [sinzxdx:——J‘(cosszrsin2 x)dx:— :
27 27 5, 4 3 Z

Assuming the mean kinetic and potential energies to be the same (virial
theorem), the mechanical energy of the unit element (the energy density ) is

¢ =—patd? =277(4)T)" , (1.3)

where 7'is the period. Thus the energy density is proportional to the square of
the amplitude, & ~ A%

Consider a point source of spherical harmonic waves in a homogeneous,
perfectly elastic medium. Denote by 7 the distance from the source. Since the

flux of energy through any sphere with its centre at the source is the same, we
have

47r* &(r) = const.

Consequently, £(r) ~1/r?, and the amplitude of a spherical harmonic wave
decreases with distance as

Ang, (1.4)

K being a constant.

E A P

H
Fig. 1.2. The situation considered in the derivation of Gassmann’s formula.

Using the notations given above, the amplitude of the acceleration in a

harmonic wave is @4 . For a given frequency, formulae (1.1) and (1.4) yield

K" —log,r =5l , (1.5)
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where K~ is a constant; K = logm(a)zK) =,

Let us compare the macroseismic intensity /; at the epicentre £ with the
intensity / 4 at an epicentral distance A, see Fig. 1.2. Denoting the focal depth
by 4 and using Eq. (1.5), we have

K™ —log;gh="bl, ,

K" —logyo(h? +42)" = bl .

By subtracting these equations and putting b = 1/3, we arrive at Gassmann’s
formula:

2
%(1O —IA):logm(lJr—AhT} _ (1.6)

This formula can be used for estimating the local depth /# from macroseismic
data. It follows from this formula that, for a given difference of macroseismic
intensities, a larger distance A between the isoseismals indicates a greater focal
depth 4. In other words, dense (resp. sparse) isoseismals indicate a shallow
(resp. deep) earthquake focus. This qualitative conclusion follows, of course,
also from simple geometrical considerations.

As a certain generalisation, a number of formulae of the type

A? L
a(Iy-14)=logy ) (1.7)

have been constructed for various regions, where a and 4 are constants to be fit
(h may be interpreted as the focal depth). Note that all these formulae assume
predominantly circular isoseismals. Since relations (1.7) are based on the
problematic relation (1.1), all these formulae should be used with caution.

It is evident that the determination of the focal depth (and also the other
parameters of the source) should be preferably based on instrumental
observations. However, it happens very often that instrumental observations are
not available from a close vicinity of the epicentre, and then formulae (1.7)
should be used to obtain a first, rough estimate of the focal depth.

Some of the formulae in this section are now rather of a historical value.
Nevertheless, we have paid them certain attention since similar logarithmic
relations became very popular in studies of earthquakes, and many of them are
still in use. We shall meet several of them below in this chapter.
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1.4. Seismometers and seismic stations

The simplest instruments for recording earthquakes are called_seismoscopes.
They register earthquakes, but not the time dependence of the ground
movement. The first seismoscopes had already been constructed in ancient
China; Zhang-Heng, AD 132.

Seismographs record the ground movement at a particular point of the Earth's
surface during an earthquake, as a continuous function of time.

First actually working seismographs were constructed by J. Milne in Japan
around 1890. The seismographs are usually pendulums with some damping. The
first seismographs were usually constructed as horizontal reverse pendulums
with mechanical or optical registration. Later on, Golitsyn introduced
electromagnetic seismographs, ie. seismographs with electromagnetic
registration. An important part of all seismographs is a good timing,

(1) JAS Benioff, 1.0's

{2) BXS Wood-/.nderson
(31 BKS Sprengnether, 15 s
165 (4) BXS Sprengnether ULP

{ultre-tong pesiod), 100 s

10

10°

Magnification

10?
\

10} Co . -
10° A \ 1 ;
01« HaXR0- . 7 100 1000
o © * Pariod (s) )

Fig.1.3. Magnification curves for the seismographs operated at Jamestown and
Berkeley, California: 1) Benioff, 1.0 s; 2) Wood-Anderson; 3) Sprengnether,
15 s; 4) Sprengnether (ultra-long period), 100 s. Times refer to the resonant
periods of the pendulums. Taken from Bullen and Bolt (1993).

The properties of the seismograph are usually characterised by the
magnification curve of the seismograph: This curve shows the magnification of
the harmonic ground motion versus period. The maximums of the magnification




curve are situated at resonant periods. According to the character of these
curves, the following types of seismographs are usually distinguished:
e short-period seismographs (resonant period close to 1 s);
e long-period seismographs (resonant period greater than 20 s);
e ultra-long-period seismographs (resonant period greater than 100 s); see Fig.
1.3.
Actually, seismologists are interested even in a broader range of periods, from
T = 0.01 s (frequency f = 100 Hz) for local earthquakes to 7' = 3300s (f =
0.0003 Hz) for free oscillations of the Earth. They also wish to record

amplitudes in a range of 120 decibel (106 :1).

The new developments in seismometry, from about 1970, are broad-band
seismometers (broad ranges of frequencies and amplitudes). They are
characterised by modern freed-back servosystems, usually with digital
recording, and by a flat magnification curve.

Also quite different types of seismometers exist, such as Benioff strain meters
or tiltmeters.

For a reliable determination of the position and further parameters of an
earthquake, observations of one seismic stations are usually insufficient.
Therefore, systems of seismic stations are commonly used. Let us mention some
of these systems:

a) World-wide systems. The world system of seismic stations (~2000 stations)
is not homogeneous (different instruments, different quality, non-
homogeneous distribution of stations). Examples of world-wide systems are
as follows:

e WWSSW (World Wide Standard Seismic Network): Homogeneous
instrumentation, short-period and long-period instruments, but non-digital
registration (photographic registration). The system contains about 200
stations.

e World wide digital systems, which have been built recently, e.g, GDSN
(Global Digital Seismic Network), and several others.

b) Local. systems They serve for the following purposes:

e To record weak distant earthquakes (e.g., nuclear explosions).

e To study local seismicity. Some local array are actually very small, e.g. in
mines to follow rockbursts, etc.

Standard seismic stations determine, for each recorded wave, the following
three parameters: arrival time, maximum ground amplitude, prevailing period.
They send the data to international seismic centres.

Some preliminary processing of these data may be done at the station
(preliminary determination of the epicentral distance from the difference
between the arrival times of transverse and longitudinal waves, preliminary
magnitude). The definitive processing is done at international centres.

International seismic centres perform:

a) localisation of earthquakes, including the determination of the hypocentral
fimes;

\e)
[\



b) determination of the magnitudes of earthquakes, or of some other
instrumental quantities which characterise the strength of earthquakes.

The recent broad-band world-wide digital systems yield considerably more
useful data, namely complete digital seismograms. Such complete seismograms
are sent on magnetic tapes or telemetred to seismic centres, where they are
processed in a considerably more sophisticated way.

1.5. Earthquake magnitude

The magnitude of an earthquake is an instrumental measure of the strength of
the earthquake. The magnitude was first used by Richter, so that the earthquake
magnitude scale is also popularly called the Richter scale.

The magnitude is mostly determined from the maximum ground motions
(amplitudes) of individual waves using the relation

M= 1ogf;+o(A,h)+zc,. L (1.8)
(i)

where A is the maximum ground amplitude in micrometers, 7 the corresponding
period, A the epicentral distance, /# the focal depth, G(A,h) an empirical
calibration function (calibration curve), ¢; are various corrections, mainly a
station correction. The logarithm in the formula is the ordinary logarithm to the

base 10, i.e. log(4/T) = logio(A/T). The same logarithms are used in the rest of
this chapter.

The calibration curve J(A,h) reduces the amplitudes observed at the

epicentral distance A to some reference epicentral distance (according to the
original definition it was the epicentral distance of 100 km). The intention is to
obtain the same magnitude from stations at different epicentral distances. The
magnitude is thus a number characteristic of the earthquake and independent of
the location of the recording station. From this point of view, the magnitude
differs substantially from the macroseismic intensity, which depends on the
place of observation (the macroseismic intensity characterises the earthquake
effects at the given place).

To determine O’(A ,h) , the amplitude-distance curves 4 = A(A4) must be first

found. The calibrations curves have an international character, they are
approved and recommended by international organisations (e.g. by the
International Association of Seismology and Physics of the Earth Interior,
TASPEI).

Several types of magnitude have been set up. The most important of them
are as follows:

Mg surface wave magnitude (determined from seismic waves of periods

~ 20 sec);



ny, body wave magnitude (periods ~ 5 - 10 sec);

M;  local magnitude.

The local magnitude was originally set up by Richter. It is based on the
records of the torsion Anderson-Wood seismometers with the resonant period
T, = 08 s and static magnification J”= 2800. Thus, the local magnitude M is
based on considerably higher frequencies (7y =08 s) than the other two
magnitudes. Its numerical value is rather close to the value of the macroseismic
intensity /.

If we speak on magnitude M, without specifying the type, we usually mean
M = M . Typical values of seismic magnitudes are as follows:

the highest observed magnitudes M~09;
earthquake catastrophes : M=>3g,
weak earthquakes » M<4;
microearthquakes : M<3.

In case of very small earthquakes (rockbursts in coal mines), we may even have
M<O0.

An approximate empirical formula for the relation between the magnitude M
and the epicentral macroseismic intensity /, has the form

2
M~-3—I(J +12 logh—-11, (1.9)

where } is the focal depth in kilometres. Thus, for 4 ~ 10 km, we have roughly
2
M==1y,
370
At the end of this section, let us add several historical remarks. Richter set up
the local magnitude in 1935 for earthquakes in southern California. He

originally defined the magnitude by the relation

A(4)

4o(4)

M =log = log A(4) —log 4y(4) , (1.10)

where A is the maximum trace amplitude for a given earthquake at a given
distance A as recorded by the standard Anderson-Wood instrument (the
parameters of which are given above), and 4 is that for a particular earthquake
selected as standard. The reference level 4, was taken to be one micrometer at
a distance of 100 km. This specification means that, for example, an earthquake
recording with trace amplitude of 1 mm measured on a standard seismogram at
100 km, is assigned the magnitude M = 3.

The passage from the original formula (1.10) to the contemporary formula
(1.8) went through several steps. First, a calibration function ¢ = —log A4, as a
function of epicentral distance A was established on the basis of observed
amplitude-distance curves. Then, in order to unify measurements carried out by
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different instruments, the amplitudes on standard seismograms were replaced by
the amplitudes of the ground motion. Finally, the amplitude 4 was replaced by
the ratio A/T . The quantity 4/7 has the advantage of being simply related, in
theory at least, to the mechanical energy of its wave group; see formula (1.3).
Let us also mention some terminological and mathematical motivations,
leading to the introduction of the earthquake magnitude, as described by Richter
(1958): “The term magnitude was selected by analogy with the corresponding
usage in astronomy. The scale of star magnitudes is also logarithmic, though on
a less simple basis; in a sense it is reversed, since the greater the magnitude the
fainter the star. The earthquake magnitude scale follows the more obvious
course of assigning the larger number to the larger earthquake. Logarithmic
scales are in use in other fields; examples are the decibel scale in acoustics and
the pH scale for hydrogen-ion concentration”. As we have seen in Sec. 13,
even in seismology there were previous attempts to introduce a logarithmic
relation, namely a relation between macroseismic intensity and acceleration.

1.6. Other instrumental measures of the strength of
earthquakes

The magnitude, being rather a simple and rough measure of the strength of
an earthquake, is not sufficient for some purposes. Therefore, also other
instrumental measures of the strength of earthquakes have been introduced. We
shall describe here two of them.

1.6.1. Seismic moment

The seismic moment, M, is an analogue of the moment of a force (torque)
in rigid body mechanics. For a simple fault source it can be expressed as

My =puhu), , (1.11)

where y is the rigidity of the medium, Au is the average rupture displacement
along the rupture plane, and X is the area of the rupture plane. The dimension
of the seismic moment is newton.meter, [ A/, ] = N.m. The maximum observed
values of M|, are around 10%* N.m.

In some cases, the seismic moment can be estimated simply by substituting
field measurements into (1.11). For example, for the 1906 San Francisco

earthquake, putting u =4 x 10" N/ m? , rupture length L = 400 km, rupture
depth # = 10 km, fault offset Aw = 5 m, we get the seismic moment of about

8 x10% N.m,
However, the seismic moment Af,, is more frequently determined from the
Fourier amplitude spectrum § of the complete seismogram. A typical shape of
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such a spectrum is shown schematically in Fig. 14. The frequency
corresponding to the intersection of the horizontal low-frequency asymptote
and the sloping high-frequency asymptote is called the corner frequency and is

generally denoted by f;,. For f > f;, the spectrum usually decays as f 2 for
f < fy it is flat. Thus, the displacement spectrum near the source may be
described approximately by three basic parameters: the spectral amplitude at
zero frequency, the corner frequency and the spectral slope at frequencies above
the corner frequency (on a log-log plot). It can be shown that each of these
parameters is a measure of basic properties of the source, namely the source
power, fault length and source time function, respectively.

The seismic moment M, can be determined from the spectrum for f < fj.

For example, in the case of SH waves, if the source radiation pattern is not
considered, we can use the simple formula

MO = 47[pﬂ3rSO >

where p is the density of the medium, /3 the shear wave velocity, r the distance
of the receiver from the source, and S, the low-frequency asymptote of the

amplitude spectrum.

logls|

So

fo log/

Fig. 1.4. A schematic form of the amplitude spectrum of the ground motion
displacement: fis the frequency, |S | the Fourier amplitude spectrum.

The advantage of the seismic moment over the magnitude consists in the fact
that the magnitude is saturated at M ~8—86, i.e. the magnitude does not
distinguish well between big earthquakes. As an example, let us mention the
following two earthquakes:

e California, 18.4.1906, Mg =83, M, = 10°' Nm;

e Chile,  22.5.1960, Mg =83, M, =24 x 10" Nm.
Thus, in terms of the seismic moment, the earthquake in Chile was about 240
times greater than the earthquake in California, but in terms of the magnitude
they were the same.

Recently, also the so-called moment magnitude A, has been introduced. Tt
is evaluated from A/ by the relation




M,, =067log M, —6.03, (1.12)

where M, is given in N.m. For the above example, we would obtain M, =38.0
for California and M,, = 9.6 for Chile.

The advantage of M over M, is that its determination is considerably
simpler; it does not require computation of spectra. Many station are equipped
only with non-digital seismographs, and the computations of spectra requires
digitalisation of records.

1.6.2. Seismic energy

The seismic energy, FEg, is the energy released during the earthquake in the
form of seismic waves. It does not represent the total energy released by the
earthquake, as a part of the energy is also released in the form of heat, etc. The
seismic energy is probably less than 50 per cent of the total energy released by
the earthquake (perhaps ~ 1/3).

If we wish to be more strict, we must define some reference sphere with its
centre at the hypocenter and calculate the energy flux through this sphere. If we
take a sphere with a different radius, the complete energy flux may be different
due to absorption. Riznichenko introduced the radius of the reference sphere of
100 km.

Determination of the seismic energy from seismic records is very
complicated, and many simplifying assumptions must be made. In spite of that,
Eg has been determined for many earthquakes. An approximate empirical

relation between K¢ and M has the form
logEg =524 +144M (1.13)

where [ is in joules. A unit increase in M thus corresponds to a 28-fold
increase in energy. For large earthquakes, M~85, we obtain
Eg ~10'7 —10'8 J.

As an example, let us derive here a very simple formula for determining the
seismic energy from seismic records. Consider a receiver inside a homogeneous
medium at a distance r from a point source which radiates seismic waves
symmetrically in all directions (this assumption of spherical symmetry about the
focus is of course not realised with actual earthquakes). The energy flux
through a sphere with its centre at the source and passing through the receiver
is Sce, where S =4zr” is the area of the sphere, ¢ is the velocity of seismic
waves, and ¢ is the energy in the unit volume, given by (1.3). The total seismic
energy FEg is then obtained by the integration over time (time duration of the
oscillations on the seismogram):
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Eg :87r3r2,o_"cA2T—2 dr .

In particular, for observations at the epicentre we must put 7= h, where h is the
focal depth. Formulae of this type formed the basis for assessing energy in
earthquakes. Tt should be noted that 4 denotes the amplitude in the incident
waves, but it is assumed that this amplitude is of the same order as that of the
observed ground motion. (Since the motion on the Earth’s surface is the
superposition of incident and reflected waves, in a more exact approach the
observed amplitudes should be recalculated to obtain the amplitudes of the
incident waves, see Chap. 5).

Assuming the maximum value of A/T to be a characteristic of the whole
seismogram, and all seismograms to have a comparable time duration, it follows
from the above-mentioned relation that logkg ~ 2log(A/ r )max ~2M .

Consequently, we get approximately
logEg =¢; +e, M,

where ¢, ~ 2. The more accurate value of this coefficient in (1.13) is lower.
—-1250

i

i ffﬁ‘“‘"’""“

cm/s?
o

r

cm/s

cm
o

i L

20 L . 1
0 5 10 15 20 25
Time (s)

Fig. 1.3. Ground motions recorded on the abutment of Pacoima Dam in the
1971 San Fernando, California earthquake From top: acceleration, velocity,
displacement. (Taken from Bullen and Bolt (1993)).
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1.7. Seismic instrumental observations in epicentral
regions

There are several types of seismic system for observations in epicentral
regions:

a) Systems with standard short-period seismometers (see Sec. 1.4). They are
used to fast localisation of earthquakes, determination of magnitudes, etc.

b) Systems of accelerometers (strong motion seismology). Their characteristics
are as follows: waiting regime, high frequencies, small magnification. Such
systems make it possible to investigate details of rupture processes
(asperities, barriers, etc.). They are broadly used in seismic engineering. Note

that the maxima of the acceleration may reacthm/ s? | the velocity about
1 m/s, the displacement several meters. These values may be even higher for
catastrophic earthquakes. A typical record of an accelerometer is shown in
Fig. 1.5; the velocity record and the displacement record are obtained by
integration.

1.8. Seismicity

The word seismicity” is used in different meanings. Usually, seismicity is
understood to mean seismic activity. It can be related to the whole Earth, or to
a selected region.

Seismic activity of the world (or of a selected region) is described by the
group of the following five parameters, corresponding to individual earthquakes
(five parameters for one earthquake):

o, A h position of the hypocentre,

H hypocentral time,

Mor Iy or My or Eg  some parameter measuring the intensity of the
earthquake.

Thus, the seismic activity is a 5-dimensional function. Several of its projections
are described in the following subsections.

1.8.1. Maps of epicentres

The map of epicentres shows the projection of earthquake hypocentres onto
the (¢, A)-plane. These maps may be related to a selected range of depth,
selected range of magnitudes, and selected time interval.

A world map of epicentres is shown in Fig. 1.6 for the time interval 1961-
1967, depths of 0-100 km, and magnitudes M > 4. The figure shows that the
great majority of earthquakes are concentrated in several belts:
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Fig.1.6.Geographical distribution of earthquakes.
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e The circum-Pacific belt, including the regions of New Zealand, New
Guinea, Philippines, Japan, the Kurile Islands, Kamchatka, the Alentian
Islands, Alaska, and the western regions of North and South America.
About 80 per cent of the total energy released in earthquakes comes from
earthquakes in this belt.

e The Mediterranean-Himalayan belt, passing from the region of Portugal
and north Africa through Italy, Greece, Turkey, Central Asia, the
Himalayan region to Indonesia, where it joins the first belt. The energy
released in earthquakes from this belt is about 15 per cent of the total.

e Other belts, mainly along mid-oceanic ridges, which clearly indicate
boundaries of lithospheric plates.

The maps of epicentres represent a basic material for plate tectonics. Such

maps are also of primary importance for earthquake engineering.

1.8.2. Depth distribution of earthquakes

The data on the depth distribution of hypocentres represent a basic material
for place tectonics. The position of hypocentres of deep earthquakes indicates
the subduction of lithospheric plates.

According to the focal depth, A, earthquakes are traditionally divided as
follows:

1) Shallow earthquakes (/<60 km). The great majority of earthquakes
originate within this depth interval. About 85 per cent of the total energy
released in earthquakes comes from these earthquakes. All the strongest
earthquakes belong to this category.

2) Intermediate _earthquakes (h~60-300km). About 12 per cent of
earthquake energy is released in these earthquakes.

3) Deep-focus earthquakes (4~ 300—700km). These earthquakes commonly
occur in the so-called Benioff zones, that dip into the Earth. Such zones are
found in the regions of Japan, Vanuatu (the New Hebrides), the Tonga
Islands, Alaska, along the South American Andes, and in some other regions.
The greatest focal depths are of about 700 km (a more accurate estimation
gives h ~ 680km). At greater depths, no earthquakes have been observed.
Only about 3 per cent of the total earthquake energy comes from the deep-
focus earthquakes.

1.8.3. Time sequences of earthquakes

The earthquakes are not usually isolated in time and space. If we consider a
specified locality, we can follow the time sequences of earthquakes. The
standard time sequence is as follows: foreshocks, main shock, aftershocks.

There are also different time sequences. For example, the time sequence of
volcanic earthquakes usually does not contain a dominant main shock. We then
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speak on earthquake swarms. Similar earthquake swarm may be sometimes
observed even in non-volcanic regions.

1.8.4. Magnitude - frequency relations

These relations characterise the time frequency of earthquakes as functions
of magnitude. The corresponding empirical relations are usually assumed to
have the form

logN =a—-bM, (1.14)

where N is the number of earthquakes for some interval around the magnitude
M in a given region (or for the whole Earth), and for a selected time interval
(e.g. one year). Particularly the quantity 4 is of a great importance in seismology
(it 1s also used for purposes of earthquake prediction).

The relation (1.14) for the whole Earth, the time interval equal to one year,

and the magnitudes in the range (M -05 M+ O.5> , has the form
logN =873-115M . (1.15)

It can be seen from this relation that the number of earthquakes increases more
than 10 times when the magnitude is decreased by one.
In general, the number of earthquakes to be felt (mb S 4) is about 20 000 on

the whole Earth within one year. The number of earthquakes with A > 8 is one
or two within one year.
In addition to N, it is also interesting to study the quantity

EZNES 5 (116)

which represents the seismic energy released in the region under consideration
(or on the whole Earth) in a selected time interval and magnitude range. Using
(1.13) and (1.15), we obtain

loge = 1397 +029M (1.17)

for the whole Earth, time interval equal of one year, and <M - 05 M+ O.5> )

It follows from formula (1.17), since the coefficient with M is positive, that
the most energy is released mainly in several big earthquakes. With decreasing
M, energy & decreases.

The total seismic energy released within one year on the whole Earth is about

5x10'77.

W
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1.8.5. Migration of earthquakes

The seismically active regions often slowly move from a place to a place. We
speak on a migration of earthquakes. (This term does not have anything
common with the migration in seismic prospecting!).

136 0 1920 1810 196 0
Fig. 1.7. Cumulative graph (Benioff curve) for one region of the Mediterranean
Sea (The Ionic Islands). The regions of higher seismic activity are clearly
visible.

1.8.6. Cumulative graphs of seismic energy

We can sum up a power of the seismic energy released in individual

earthquakes, Z(E < )n, as a function of time in some region or on the whole
)
Earth. Most commonly, we consider Y ./Eg , ie. n= 1/2. Such cumulative
Q)
graphs are known also as the Benioff curves. They show the periods of higher
seismic activity and seismically quiet periods. They are influenced mainly by
largest earthquakes. An example of the cumulative graphs is shown in Fig. 1.7.

The square of energy, usually used in the cumulative graphs (n =1/ 2), can

be substantiated by the following considerations. It is known from continuum
mechanics that the density of elastic energy, accumulated in a deformed elastic
medium, can be expressed as
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£ = —2—’[,]61] = Eci]-kleklelj ,

here e;; is the strain tensor, z; is the stress tensor, ¢y, the elastic coefficients,

and 7; = cypey according to the generalised Hooke’s law (Chap. 2). Thus, the

elastic energy is a quadratic function of deformation, so that ,/Eg is a measure

of deformation. Further, since it is assumed that tectonic processes lead to a
gradual increase of deformation, it is natural to study the cumulative value of

E¢ as a function of time.

1.8.7. Seismic gaps

By a seismic gap we call a region of temporarily decreased seismic activity,
with a strong seismic activity in its vicinity. The seismic gap is often a place
where the movement of the lithosperic plate remains fixed locally for some time,
whereas the plate moves in the vicinity. Assuming a uniformity of crustal
displacements, it indicates an increasing stress (cumulating of stress). It is a very
dangerous region; the seismic gap may be a place of a future great earthquake.

1.8.8. Local effects. Seismic microzoning

The same earthquakes has often strong effects at one place, and small effects
at some other close place. The differences are mainly due to topographic,
geological and soil conditions close to the Earth’s surface. Very dangerous are,
for example, sedimentary basins. A great role is played by resonance effects in
the uppermost layers. It depends strongly on the prevailing frequencies of the
movements.

The mapping of normalised expected seismic effects (assuming the same
incident seismic wave) is called seismic microzoning. Microzoning maps have a
great importance in seismic engineering.

1.8.9. Seismic risk

In a simplified way, we can say that the seismic risk is the probability that the
earthquake effects at a given locality will exceed some critical value within a
given time interval (e.g. within 10 years, 50 years, etc.).. It is investigated using
probability methods. It has as great importance in seismic engineering. As an
example, we give a map of seismic risk in Fig. 1.8.

A similar quantity is the seismic hazard, which describes the probable
economic loss (expressed in money) caused by earthquakes at a given locality
within a given time interval. The seismic hazard depends, besides the seismic
risk, also on population density and other factors. Methods of seismic hazard
assessment belong also to the main problems of seismic engineering.
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Fig. 1.8. A seismic-risk map for the Union States, prepared in 1976 to 1977.
The contours indicate effective peak, or maximum, acceleration levels (values
are in decimal fractions of gravity) that might be expected to be exceeded
during a 50-year period. (From Bullen and Bolt (1993)).

1.8.10. Induced seismicity

Earthquakes can also be caused by human activity. Such earthquakes may be
connected with:

e Excavation of mines, which causes rockbursts. They are, in fact, small

tectonic earthquakes.

o Filling of large water reservoirs, dams, etc. (such as Aswan in Egypt).

e Injection of fluids in deep wells.

e Large underground (mainly nuclear) explosions.

The induction mechanism is as follows. The regional strain release is
triggered by small changes in the local stress field (caused by human activity).
This leads to a fracture or to a fault slip.

1.9. Tsunamis

After certain earthquakes under the sea, very long water waves are
sometimes generated. They are called tsunamis (from Japanese). On the open
sea, their amplitudes do not exceed several meters (usually they do not exceed
1 m), their wavelength is of the order of hundreds of kilometres and the velocity
of several hundreds of kilometres per hour. They may be, however, very
dangerous close to the shore, particularly in bays of U or V shape. They can
reach even a height of about 20-30 m and destroy all structures. In the Pacific
Ocean, a warning system is organised (SSWWS - Seismic Sea Wave Warning
System, with its centre at Honolulu).
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1.10. Extraterrestrial seismology

Seismometers have already been installed also on two celestial bodies,
namely on the Moon and Mars.

Moon (6 sites, 1969). The seismometers detected 600 - 3 000 moonquakes
per year. Three types of moonquakes have been recognised:

e Impacts of meteorites and other bodies.

e Shallow moonquakes (2 <100km) .

e Deep moonquakes (% ~ 800 — 1000km) . The cause of these moonquakes is
not known.

The main differences of the lunar seismograms, in comparison with the
terrestrial seismograms, are higher frequencies and longer duration of the
records (often over one hour); see Fig.1.9. It indicates a greater scattering and
lower attenuation of seismic waves in the Moon (it may be attributed to the
absence of water on the Moon).

Mars (2 seismometers, 1976). The seismograms were complicated due to
strong winds and oscillations, but at least one event is considered to be a
marsquake.

L.PZ et e

10 min
1973:156: 1100 - 1973 : 072 : 0800 1972 : 134 : 0850

Fig. 1.9. Seismogram from three types of moonquakes recorded at the Apollo
16 station. LPX, LPY, and LPZ are the three long-period components, and SPZ
is the short-period vertical component. The first column shows a deep-focus
moonquake; the center column, a shallow moonquake; the third column shows
records of the impact of a meteoroid on the lunar surface. (From Bolt (1988)).

36



1.11. Prediction of earthquakes

Earthquakes are a very complex phenomenon and their prediction is rather
complicated. Under the prediction, we normally understand the prediction of:
a) the position, b) the time, ¢) the magnitude; of future earthquakes. The most
complicated is the prediction of the time of an earthquake. A very weak external
trigger may initiate a rupture, as soon as the stress conditions are favourable for
a generation of an earthquake.

Many possible forecasting symptoms have been investigated in detail. Still,
however, no clear prediction possibilities have been found. Seismology studies
primarily the time changes of the following parameters:

e seismic regime of the locality under consideration (number and intensity of

weak earthquakes as a function of time);

e seismic velocities, particularly the changes of the vp /vy ratio,

e strain and stress fields;

e ground water level (or intensity of springs);

e chemical composition of the underground water (particularly the

concentration of radon);

e electric conductivity and other electromagnetic quantities;

e moreover, anomalous behaviour of animals is also studied.

Several earthquakes were actually predicted, e.g., in Haicheng, China, M =
7.3, on February 4, 1975. The city of Haicheng was avacuated several days
before the earthquake, and then it was destroyed by the earthquake. This is,
however, more or less an exception, since many other predictions were not
successful.

The problem of the prediction of earthquakes remains open, probably for a
long time.

1.12. Mechanism of an earthquake

1.12.1. Elastic rebound theory

Reid studied the San Andreas fault before and after the 1906 San Francisco
earthquake. He concluded that the earthquake motion is due to waves radiated
from a spontaneous slippage on active geological faults. His explanation of the
earthquake is now called the elastic rebound theory of earthquakes. According
to this theory, the tectonic earthquake occurs in such a region inside the Earth
where the stresses have accumulated to the point exceeding the strength of the
material.

1.12.2. Double couple model

It is now common to infer the character of faulting in an earthquake from
observed distributions of the polarities of the first onsets of longitudinal waves
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(P waves), arriving at the Earth surface. The first onsets of P waves are called
anaseismic (compressional) and denoted by “+” if the direction is away from the
epicentre. In the opposite case, when the first arrival is towards the epicentre,
they are called kataseismic (dilatational) and denoted by “~”. In the definition,
we always consider the component of the displacement vector into the line
connecting the epicentre and the point of observation (Fig. 1.10).

Anaseimic Kataseismic

+ P
. compression, C . dilatation, D

E E

Fig. 1.10. Polarities of the first onsets of longitudinal waves: E is the epicentre,
P is the point of observation.

The anaseisms and kataseisms can be plotted into a map. For a vertical fault
and a homogeneous Earth, the distribution of the signs may be as shown in Fig.
1.11. This is a typical quadrant distribution of anaseisms and kataseisms. We
may separate the regions of “+” and “~ by lines, which are called nodal lines.

A - /
" .
- 7 %
: 4
o \\\/ +
o P +
gl BN N
/ - \\ Fig. 1.11. Quadrant distribution of

= N anaseisms and kataseisms for an
earthquake on a vertical fault.

Such a polarity pattern can be explained by a point source represented by a
system of forces at the source. In our case, the best representation is obtained
by two couples of equal and opposite moment, and the forces of one couple
being at right angles to the other couple. The forces of the couples are oriented
along the nodal lines (Fig. 1.12). We speak on a double couple model.

If we assume that the fault is vertical and the medium is homogeneous, one
nodal plane then contains the fault. However, it is not possible to determine,
from P wave observations only, which nodal curve of the two contains the fault.

An alternative system of forces which would explain the observations of
compressions (+) and dilatations (-) is shown in Fig. 1.13. Here P denotes
pressure, 7' tension. The hatched quadrants correspond to tension, the
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remaining, not hatched quadrants denote pressure. Such a simple system of
forces has a very appealing geological interpretation and is often used to study
the distribution of tensions and pressures within seismically active regions using
the fault plane solutions for earthquakes.

A A
a) ____ _!_ b)
A i
< T
= vy eI — F’
F F F
+ vl — }
A’ 4

Fig.1.12. a) Plan view of horizontal displacement on vertical fault A— A’ or F--
F' and resulting distribution of compressions (+) and dilatations (-); b)
corresponding fault-plane diagram. (According to Bullen and Bolt (1993)).
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Fig. 1.13. An alternative explanation of the quadrant distribution of P wave
onsets.

1.12.3. Source mechanism estimation. Fault plane solutions

The faults within the Earth, however, are not in general vertical. Even more,
the Earth is not homogeneous, and the rays, along which the energy of P waves
propagates, are not straight lines. For this reason, the situation is usually more
complicated than shown above.

The “+” and “~” observations and the nodal lines are usually projected on the
so-called focal sphere (Fig. 1.14). This sphere has its centre at the hypocentre
H, and the radius equal to unity. Usually only one half of the focal sphere (the
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lower hemisphere) is considered. The stations observing “+” or are
projected upon the focal sphere by ray tracing. The focal sphere, with the
observed “+” and “-”, is then processed and the nodal lines are constructed.
After this, the focal sphere is again projected onto a horizontal plane by some
sort of stereographic or other projection. The nodal lines are no more straight
lines in this case, and the angle between them is not the right angle. The results
may be, for example, as shown in Fig. 1.15. The hatched areas again show the
compression (tension 7) and the non-hatched the dilatation (pressure P).

P

surface

ray

sphere

Fig. 1.14. Projections of the signs of the onsets of seismic waves onto the unit
sphere.

Such fault plane solutions are then plotted into maps at relevant epicentres
(or, at least, they are in some way connected with the epicentres); see an
example in Fig. 1.16. In general, such maps show focal mechanisms in some
region. The focal mechanisms are not distributed randomly, but usually very
systematically. They indicate the stress conditions in the given region.

Fig. 1.15. Fault plane solutions for tectonic earthquakes.

1.12.4. Other source parameters and their estimation

From seismic measurements, it is also possible to get other information about
the source, partly theoretically and partly empirically.
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In the preceding sections, we have learned how to determine the magnitude
M, seismic moment M, seismic energy Fg¢ and the focal mechanism (fault
plane solution). Here we shall discuss the determination of some other,
additional quantities.
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Fig.1.16. Earthquake mechanisms in the region of the Kurile Islandis, 1977-83.
For each earthquake under consideration, the date and magnitude are shown.
(According to Kanamori and Dziewonski).
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An integral and more detailed characteristic of the physical process along the
fault plane, related to a point source approximation, is the moment tensor A,

(4, j =1, 2, 3). The moment tensor is symmetric, M = so that we have

Ji>
six independent components. The moment tensor is a function of time (or of the
frequency, if we work in the frequency domain). The moment tensor can be
obtained from observations of complete seismograms, not only from travel
times and amplitudes.

Another useful information on the parameters of the source may be obtained
from the Fourier amplitude spectrum of the complete earthquake seismogram
(Sec. 1.6). It is the corner frequency f,,, which can be used to estimate the

dimension of the rupture plane ¥. In general, by a semiempirical method, the
following relation was derived for the average length L of the rupture plane,

L-ort (1.18)

Jo '
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where f is the shear wave velocity (if f, is in Hz and £ in km/s, then L is in
km). For big earthquakes, observed f,, may be close to 0.01 Hz, and we obtain

L~10" km.
Remember formula (1.11) for the seismic moment My, 1.e. My =uAu X.

Writing approximately X = I?, we obtain roughly

M,
Al = T
pPBL

(1.19)

This gives an average rupture Au if M, is determined from the low-frequency
asymptote of the amplitude spectrum (Sec. 1.16) and L from (1.18). As an

example, for big earthquakes (MQ s J % Nm), we obtain Au~10° 10" m.

For smaller earthquakes (MO ~ 1010 Nm), we obtain L~1km and

Au ~0.1m
Let us now consider a circular fracture of a radius p. By theoretical methods,
it is possible to find the relation between the seismic moment A, and radius p:

16
M() :——AO- p3 5

= (1.20)

where Ao is the stress drop (the stress prior to the earthquake minus the stress
after the earthquake). As p can be approximately determined in the same way as
L, the above relation can be used to determine Ao. The stress drop can also be
calculated by other methods, e.g. from the seismic energy:

_AO-MO

E 1.21
S 2 (1.21)
This relation can be used to calculate Ao if E¢ and M, are known, or to
calculate Eg if Acand M|, are known.
Stress drops for many earthquakes have been estimated. The values range

from 10° to 10’ Pa.

1.12.5. Recent developments in the investigations of the
mechanism of the seismic source

1) Experimental data. The material used in recent studies of the seismic source
is usually as follows:
e Complete seismograms (in a digital form), containing a broad range of
amplitudes and frequencies.
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e Accelerograms (also in a digital form) recorded close to the source. Such
investigation in epicentral regions are called the strong motion seismology.
System of such seismograms, obtained by array measurements, are also
used.

e Measurements of slow movements of the plates.

e Measurements of other physical fields in epicentral regions (electric,
magnetic, geothermic, etc.).

e Laboratory measurements and investigations of the fracturing process, etc.

2) Problems. The main problems which are studied are as follows:

e The details of the rupture process along the rupture plane and in time.
Studies of barriers and asperities. Studies of the duration of the rupture
process, including specific phenomena, such as slow earthquakes (duration
of the rupture process for many tens of seconds) or quiet earthquakes (they
do not generate body and surface waves, but excite free oscillations of the
Earth).

e The kinematics and dynamics of the moving dislocation source. Moment
tensor, radiation pattern, directivity, etc.

e The physical mechanism of fracturing.

e The relation of tectonic processes to physical processes along the rupture
plane.

e Relation to other physical fields. The possibilities to use such studies for
the prediction.

From a theoretical point of view, the theory and numerical modelling of the
physical processes in the seismic source, particularly the generation of seismic
waves by a tectonic source, are based mostly on general representation
theorems (Aki and Richards, 1980).

1.13. Hypotheses and theories on the origin of
earthquakes

1.13.1. Review of main hypotheses

A great number of models have been proposed for explaining the earthquake
phenomena. Let us mention models of the following authors (more details can
be found in Gokhberg et al., 1982):

¢ 1910 Reid elastic rebound theory;

e 1967 Ulomov model adopted after the 1966 Tashkent
earthquake;

e 1968 Riznichenko energy model,

e 1971 Myachkin et al. unstable avalanche crack generation;

® 1972 Nur dilatancy-diffusion model;

e 1974 Stuart diffusionless dilatancy model,

® 1974 Brady
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e 1979, 1980 Dobrovolskiy ~ model with an inclusion;

e 1979, 1980 Gold methane model.

The most of the present models of earthquake phenomena have been
influenced by the pioneering work by H. F. Reid, who investigated in detail the
1906 San Francisco earthquake. His research resulted in the elastic rebound
theory of earthquakes; see the description given above in this chapter. This
theory formed a framework of all theories which followed. A further support for
these hypotheses came later from the concepts of the tectonics of lithospheric
plates. At the same time, i.e. in the 1960™ and 1970", some countries adopted
extensive programmes of predicting earthquakes (Japan, the former Soviet
Union, the USA). It further increased the interests in theories of earthquake
phenomena. Let us describe briefly the main models of that time.

The model of the unstable avalanche crack generation, proposed in the
USSR, is based on extensive laboratory experiments on fracturing of rocks.
When a rock is deformed under an increasing stress, cracks start to develop
inside the material at a certain moment. Some of these cracks are then joining
together, forming a main fault, whereas the others are closing. Along the main
fault, the rupture of material then occurs.

The dilatancy-diffusion model, used in the USA and other countries, is
similar to the previous model, but a great importance is ascribed to the role of
water. According to this model, the preparation of an earthquake goes through
the following stages:

1) Building up of elastic strain.

2) Dilatancy. The opening of cracks leads to an increase of volume. This

phenomenon is called the dilatancy.

3) Diffusion. An influx (diffusion) of water into the cracks leads to a
decrease of the strength of the material (the material can slip on wet
surfaces).

4) Earthquake.

In some later models, the role of fluids is even greater. For example, Gold’s
hypothesis emphasises the importance of the release of gases in geodynamic
processes. The hypothesis explains the earthquakes by the vertical transport of
methane from the mantle. However, observations have not proved this
hypothesis. Nevertheless, it opened space for similar speculations on a possible
role of other gases, such as carbon dioxide, water vapour, and even hydrogen in
certain cases. These questions are still open, despite of the fact that many
observations seem to support these hypotheses.

1.13.2. Earthquake phenomena and properties of complex
systems

The complexity of earthquake phenomena led seismologists also to detailed
investigations of analogous complicated models and processes. Let us mention
two of them.
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1) Brittle fracturing of rocks. Contrary to many slow geological processes,
the earthquake are characterised by very fast motions. Therefore, it seems
that the earthquake could be considered as a brittle fracturing of rocks.
Such fracturing experiments can easily be performed at many laboratories.
These laboratory experiments have revealed many important factors of the
fracturing process, e.g. the role of inhomogeneities of the material,
existence of tensile cracks at the ends of the fault, space and time
development of the fracturing process, acoustic emission, changes of
physical parameters in deformed materials, etc. Nevertheless, some
authors hesitate to adopt the brittle fracturing of rocks as an appropriate
model of tectonic earthquakes, since principal differences also exist
between these phenomena. In particular, the following differences should
be mentioned:

a) Earthquakes often repeated practically at the same place. Such a
phenomenon is not known from the laboratory experiments where the
fracturing process proceeds to new places. To explain the repetition of
earthquakes at the same place, we must admit the existence of
sufficiently fast healing processes which join the material at the fault
and restore the previous situation (mineralised water, heat, pressure).

b) Redistribution of stresses in solid materials proceeds at the velocities of
seismic waves, i.e. at the velocities of the order of kilometres per
second. Consequently, the aftershocks should follow the main shock
within several seconds. However, the observed aftershock sequences
often last from many days to many months. Hence, some slow
processes controlling the redistribution of stresses are needed. The
diffusion of fluids seems to be one of possible candidates.

Thus, we may conclude that the brittle fracturing of rocks, as a model of

tectonic earthquakes, requires substantial modifications and supplements.

2) Deterministic chaos. Many phenomena in nature contain deterministic and
pronounced random components. In this case we often speak about the
deterministic chaos. Such a situation occurs in many non-linear systems,
where small changes of boundary or initial conditions may lead to
substantial changes in the solution. A small change of some parameter
may trigger a series of further processes. As a typical example, we could
mention the meteorological phenomena. It is supposed that earthquakes
belong also to this category of processes. For example, the space and time
distribution of earthquakes exhibits certain deterministic features (e.g. a
concentration of earthquakes along main geological faults), but also quite
random components. The information on these distributions is contained
in seismic catalogues. Hence, many seismologists are convinced that these
catalogues and some maps should be sufficient for estimating a probable
position and time of future earthquakes if the deterministic chaos is better
understood. On the other hand, other investigators are more sceptic and
rely rather on monitoring of various parameters, such as deformations,
tilts, stresses, changes of physical parameters, water level, composition
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and radioactivity of underground waters, etc. However, such
measurements are more complicated and more expensive.

1.13.3. Meditations on the research of earthquakes

David Hilbert, one of the greatest mathematicians of the 20™ century,
organised famous seminars on atomic physics in Heildelberg in the 1920™ and
1930™. On opening the seminars, he often asked the question: “Can anybody tell
me what the atom is?” Such a provocative, apparently naive and simple question
then stimulated very deep discussions on various aspects of the atomic research
and on the essence of atomic phenomena. It contributed significantly to the
progress in atomic physics.

Paraphrasing Hilbert, we should also ask the question: “Can anybody tell us
what the earthquake is?” However, such a question is not heard at seminars on
earthquake phenomena, since seismologists are probably convinced that the
principles of the earthquake phenomena are well known, and only some details
need to be added. Nevertheless, our failures in predicting earthquakes indicate
something else, namely that our research is still more or less in a blind alley and
enters into particulars, so that we are unable “to see the wood for the trees”. It
may indicate that we have not recognised some of the fundamental phenomena
yet.

Kitaygorodskiy, a Russian physicists, has divided the physical theories into
three categories according to their quality. He has distinguished the theories
which:

1) describe;

2) explain;

3) predict.

Let us demonstrate this classification on examples from celestial mechanics:

1) Ptolemaios' theory. It is a typical example of a theory of the first category.
This theory described the planetary motions quite formally by means of
the so-called epicycles. An independent system of epicycles was needed
for each planet.

2) Kepler’s theory. Kepler reduced the number of necessary rules to the
three well-known laws, which explain the planetary motions.

3) Newton’s theory of gravitation. This theory is capable of predicting new
phenomena. Let us mention the famous discovery of the planet Neptune
by Leverrier and Adams in 1846. At present, this theory is used also for
predicting the trajectories of space-crafts and artificial satellites.

In comparison with celestial mechanics, our present earthquake theories are
rather primitive. They can be included into the first or, the second category of
Kitaygorodskiy’s classification. And for an earthquake theory of the third
category, we are still waiting.

The main practical goal the research of earthquakes is earthquake prediction.
Certain predictions can be made on any level of the scientific knowledge, but
their precision and reliability depends fundamentally on the quality of the

46



scientific theory used. Also three categories of the prediction theories,

analogous to the above-mentioned classification, can be distinguished (Bullen

and Bolt, 1993):

1) descriptive prediction, using processes of interpolation and extrapolation
(e.g. predictions based on the hypothesis of seismic gaps);

2) inductive prediction, requiring a general theory (elastic rebound theory,
dilatancy-diffusion theory);

3) deductive prediction, using a more detailed general theory, from which
consequences are determined as logical or mathematical steps (in
earthquake prediction we have not arrived at this stage yet).




Appendix A:

MACROSEIMIC INTENSITY SCALE

(very simplified description with a schematic summary)

Abbreviations: P - people, O - objects, B - buildings, N - nature

Notation Effects Effects on
POBN
L Not felt =
Registered by instruments only.
II.  Scarcely felt o s
Felt by people at rest on upper floors.
1. Weak ++ -
Felt by people at rest.
Slight swinging of hanging objects.
IV. Largely observed ++—=
Felt by many people.
Swinging of hanging objects.
Rattling of dishes, glasses, windows, doors.
V.  Strong +++ =
Some dishes, windows, etc., broken.
Cracks in plaster.
VI.  Slightly damaging +++ -
Furniture may be shifted.
Fall of pieces of plaster.
VII. Damaging + 44 =
Fall of chimneys. Cracks in many walls.
VIII. Heavily damaging -+ o b 2
Failure of individual walls (non-structural ones).
Changes in well water.
IX. Destructive ++++
Partial structural failure.
Cracks in the ground.
X.  Very destructive ++++
Many masonry buildings destroyed.
Ground badly cracked, rails bent.
XI. Devastating + &+ +

XII. Completely devastating

Many buildings of reinforced concrete destroyed.
Broad fissures in ground.

++++
Practically all structures above and below ground are
destroyed.

Changes in the face of the landscape.
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Appendix B:
Translation of the macroseismic questionnaire which is used by the Geophysical
Institute of the Czech Academy of Sciences, Prague

MACROSEISMIC QUESTIONNAIRE

Glosses: [ N []
YES NO IDON’TKNOW,ICAN’'T ANSWER

EIIPIOVIIBIIE v s s snmmnnnnn s 55 somnnnors 5 55 ABNSHSFFE §o § REEEHE TS 15 SREVEVEYY § SRR RY YR YIS
T L R SR RN ——
phone:.. ... .................
Earthquake: year......... month. ... day.......... | T 1 . minute..........
place of observation: municipality................... town []
Street..........ooiiiiiiiian, village []
BUBIIE, +  sconais 15 15 5.2 mcarmon v

type of the building: wood [1 stone [ brick [] prefab []
reinforced concrete [1 another [

foundation of the building: normal [1 on a plate [] on piles []
ground: clay [1 rock [1 filling [1 another [

Description of the macroseismic effects on the man:
observer’s position: he was standing [] sitting [1 lying []
observer’s feeling: loss of equilibrium [] swinging [] surprise [
unpleasant feeling [1 suspense [! anxiety[] fear[]
panic [1 wakened [

how many people observed the shock: all [] most [1 several [1 only you [l
I don’t know [

accompanying sounds: boom [1 wvibration [] hum [1 whistle []
sounds similar to an explosion [

sounds similar to a movement of a heavy truck or tank []
other data on accompanying sounds: ...
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Description of the macroseismic effects on furnishing:

hanging objects: swinging [] turning [1 fall []

dishes: clinging [1 rattling [1 fall []

water in containers: oscillated [] spilled [

windows: rattling [] swung open or shut [

doors: rattling [1 swung open or shut [

pendulum clock: stopped [1 started going [1 lost or gained [

light pieces of furniture: swinging [1 displacement [] overturning []
heavy pieces of furniture: swinging [1 displacement [1 overturning [
bells rang: small [ large [

Description of the macroseismic effects on buildings:

damage to the roof [1 cracks in plaster [1 cracks in a wall []

fall of pieces of plaster [1 fall of a wall [] collapse of a building [
damage to chimneys: cracks [ turning [1 fall [

Description of the macroseismic effects on the earth’s surface:

landslides [] cracks in sand [1 cracks in clay [1 cracks in rock [

change of the water level in wells [1 change of water streams [

other changes: ... ... ... ...

Other supplementary data:

We ask you for kindly filling up and sending the questionnaire. Your data
will be used for investigating earthquakes and earthquake risk on our territory.
We also ask for the names of other persons who can give further information as
observers, especially if they live in another place. Give your address and
telephone number always, even if you have not felt the earthquake.

We emphasise that every, even the least report has its value for further
processing. We are interested also in negative observations (see above), in
information on previous earthquakes, reports in chronicles, etc. We thank you
for your willingness and co-operation, which enables us to collect valuable data
for studying the seismicity of the Czech Republic.

Geophysical Institute, Acad. Sci. of the Czech Republic

Seismological Department, Geophysical Inst., Acad. Sci. of the Czech Republic,
Bocni 11, 141 31 Prague 4

e-mail:  seis@ig.cas.cz http;//seis.ig.cas.cz
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Appendix C:

Hang this up. ~ Follow these tips.

27 things to help you survive an earthquake
Californians are constantly aware of the potential of an earthquake creating
damage and creating dangerous conditions. So if we don’t properly prepare, the
next quake may cause greater personal damage than necessary. Each item listed
below won’t stop the next earthquake but it may help you survive in a better
way.

4 basics to do during an earthquake

1) STAY CALM.

2) Inside: Stand in a doorway, or crouch under a desk or table, away from
windows or glass dividers.

3) Outside: Stand away from buildings, trees, telephone and electric lines.

4) On the road: Drive away from underpasses/overpasses; stop in safe area;
stay in vehicle.

6 basics to do after an earthquake

1) Check for injuries - provide first aid.

2) Check for safety - check for gas, water, sewage breaks; check for downed
electric lines and shorts; turn off appropriate utilities; check for building
damage and potential safety problems during after shocks such as cracks
around chimney and foundation.

3) Clean up dangerous spills.

4) Wear shoes.

5) Turn on radio and listen for instructions from public safety agencies.

6) Don’t use the telephone except for emergency use.

14 survival items to keep on hand

1) Portable radio with extra batteries.

2) Flashlight with extra batteries.

3) First Aid Kit - including specific medicines needed for members of your
household.

4) First Aid book.

5) Fire extinguisher.

6) Adjustable wrench for turning off gas and water.

7) Smoke detector properly installed.

8) Portable fire escape ladder for homes/apartments with multiple floors.

9) Bottled water - sufficient for the number of member in your household.

10) Canned and dried foods sufficient for a week for each member of your
household. Note: Both water and food should be rotated into normal meals
of household so as to keep freshness. Canned goods have a normal shelf-
life of one year for maximum freshness.

11) Non-electric can opener.
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12) Portable stove such as butane or charcoal. Note: Use of such stoves should
not take place until it is determined that there is no gas leak in the area.
Charcoal should be burned only out of doors. Use of charcoal indoors will
lead to carbon monoxide poisoning.

13) Matches.

14) Telephone numbers of police, fire, and doctor.

3 things you need to know
1) How to turn off gas, water and electricity.
2) First Aid.
3) Plan for reuniting your family.

The best survival is a prepared survival

American Red Cross
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Chapter 2

Observations of Seismic Waves

The mechanical waves which are generated by earthquakes or explosions can
propagate through the interior of the Earth’s and along its surface. These
waves, called seismic waves, are recorded by seismograph station the world
over, provided that the released energy at the source has been big enough.

The record of a seismograph is called the seismogram. Seismograms usually
show complicated wave motions, and may be of long duration (minutes,
hours), especially in the case of distant earthquakes.

The term of the “teleseism” is frequently used in this connection. A
teleseism is an earthquake recorded by a seismograph at a great distance. By
international convention, this distance is required to be over 1 000 km from the
epicentre. The distance over 1 000 km is thus also referred to as the teleseismic
distance. Earthquakes recorded nearer the recording station are ‘near
earthquakes™ or “local earthquakes” (Richter, 1958).

2.1 Structure of a Seismogram

A schematic form of a seismogram of a distant earthquake is shown in Fig. 2.1,
and an example of a real seismogram is shown in Fig. 2.2.

M

|
{
j

final phase

initial phase i main phase

Fig. 2.1. A schematic form of a seismogram.

The first record of a distant earthquake was obtained in 1889. This
earthquake occurred in Japan and the record was written in Potsdam, Germany.
At first, the complicated form of seismograms was ascribed to the complexity
of earthquake sources. However, as soon as further experimental data were
accumulated, an alternative explanation was adopted, namely that the initial
disturbances at earthquake sources were relatively simple and of short duration,
but the recorded complexity arose between hypocentre and station.
Consequently, the waves of different types, travelling along different paths and
at different velocities, had to be considered in order to explain the observations.
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It was found very soon that the records of distant earthquakes showed two
very distinct wave groups, the first being characterised by a very feeble motion,
the second by a much larger motion. These parts of the seismogram were
termed the “preliminary tremor” and “main shock”, respectively. Note that the
“main shock™ was also termed “large waves”, the “principal portion” or
“principal earthquake”. These two part of the seismogram were at first
interpreted as longitudinal and transverse waves, known from the theory of
elasticity. However, this interpretation had to be modified when Oldham
(1900) recognised two distinct parts in the preliminary tremor.
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Fig. 2.2. An earthquake in China on November 13, 1965, recorded at Kiruna,
Sweden. The distance between the neighbouring time marks represents

1 minute. The higher-mode Rayleigh waves are exceptionally pronounced.
(After Bath (1979)).

Note that the individual parts of the seismogram, or even the individual
waves, are frequently referred to as seismic phases. Thus, we may speak of the
initial, principal (main) and final phases of a seismogram, etc. (Fig 2.1).

An international terminology, based on Latin designation, was adopted for
reporting the normal type of a seismogram. The following abbreviations were
introduced for the individual seismic phases:

P (undae primae) for the primary waves (first waves, the first preliminary
tremor);

(undae secundae) for the secondary waves (the second preliminary tremor);
(undae longue) for large, long-period waves of the principal phase;

(undae maximae) for the maximum of the seismogram;

(cauda, or coda from Italian) for decreasing later waves;

(finis) for the approximate end of the recorded disturbance.

Special notations are also used to describe the type of the onset of a seismic
phase:

i (impetus) denoting a sharp onset when the beginning of the seismic

phase is clearly seen;

e (emersio) denoting a gradual onset.

The letters i and e are written before the letters P, S and others, denoting the
corresponding seismic phases. For example, iP denotes a sharp onset of the
P phase, eP denotes a gradual onset of the P phase, etc. These abbreviations are
frequently used in seismic bulletins.

ARG
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In the following sections of this chapter we shall give the physical
interpretation of the individual seismic phases in terms of seismic waves
propagating within the FEarth. The corresponding solutions of the
elastodynamic equations will be derived in the following chapters.

2.2 Body Waves

Seismic body waves propagate through the body of the Earth. It follows from

the theory of elasticity that there are two principal types of body waves:

1) Longitudinal waves, also called compressional, dilatational or irrotational
waves. These waves involve compression and rarefaction of the material as
the wave passes through it, but not rotation. The particles of the medium,
through which the longitudinal wave is passing, vibrate about the
equilibrium position in the same direction as the direction of wave
propagation (Fig. 2.3). These waves are the analogue of sound waves in the
air. Longitudinal waves are identified with the P phase on seismograms.
Consequently, longitudinal waves are also commonly called P waves.

2) Transverse waves, also called shear, rotational or equivoluminal waves.
These waves involve shearing and rotation of the material as the wave
passes through it, but no volume change. The particle motion is
perpendicular to the direction in which the wave is travelling. These waves
are identified with the S phase on seismograms, so that they are usually
termed S waves. The §wave motion can be split into a horizontally
polarised motion termed SH and a vertically polarised motion termed SV

T
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s

Fig. 2.3. Deformations of the medium when body waves are passing from left
to right: P wave (on the left), and SV wave (on the right). (After Fowler
(1994)).

Body waves are reflected and transmitted at interfaces where the elastic
coefficients and/or density change. This increases the number of waves
recorded on seismograms (see below).

2.3 Surface Waves

In a homogenous, isotropic and unlimited medium, only longitudinal and
transverse waves can propagate. If the medium is bounded, another type of
waves, so-called surface waves, can be guided along the surface of the
medium. Surface waves do not penetrate deeply into the medium, the depth of
their penetration being usually comparable with the wavelength. These waves
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usually form the principal phase of the seismogram. There are two types of

surface elastic waves:

1) Rayleigh waves, named after Rayleigh, who predicted their existence in
1887. The particle motion in these waves is confined to a vertical plane
containing the direction of propagation (Fig. 2.4a). Near the surface of a
homogeneous half-space this is a retrograde vertical ellipse (anticlockwise
for a wave travelling to the right). Thus, Rayleigh waves are elliptically
polarised waves. These waves can therefore be recorded by both the vertical
and horizontal components of the seismometer. Rayleigh waves are denoted
by LR or R (L for long; R for Rayleigh).

2) Love waves, named after Love, who predicted their existence in 1911. The
particle motion of these waves is transverse and horizontal, so that they can
only be recorded by horizontal seismometers (Fig. 2.4b). Love waves are
denoted by LQO or Q (Q for Querwellen, German, meaning “transverse
waves”). As opposed to Rayleigh waves, Love waves cannot propagate in a

homogencous half-space. Love waves can exist only if, general, the -
wave velocity increases with depth. These waves propagate by multiple
internal reflections of horizontally polarised S waves (SH waves) in a near-
surface medium. Hence, Love wave represents the interference phenomenon
of SH waves.
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Fig. 2.4. The particle motion for surface waves: (a) Rayleigh waves and (b)
Love waves. (After Fowler (1994)).

Seismic surface waves are generated best by shallow earthquakes. Deep
earthquakes and nuclear explosions do not generate comparable surface waves.
The absence of strong surface waves on seismograms is thus used as one
criterion for discriminating nuclear explosions from earthquakes.
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2.3.1 Some differences between body waves and surface waves

Surface waves are usually larger in amplitude and longer in duration than body
waves. Surface waves arrive after main P and S waves, because their velocities
are lower than those of body waves. The larger amplitudes of surface waves
can easily be explained in the following way.

Consider harmonic oscillations of a unit volume in an elastic medium:

u= Acos(at) ,

where u is the displacement, 4 its amplitude, @ the angular frequency and ¢ the
time. The kinetic energy of this volume element is

1 (du)? 1
Ep(d—?) =5pa)2A2 sin” o |
p being the density. Calculate the mean value of this energy, averaged over a

cycle. As the mean value of sin” x is

1 %2 1
E 6|.sin2xdx=§ ,

the mean kinetic energy of the volume element is
E, = : pw’ A% .
4

According to Rayleigh’s principle, the mean kinetic energy and mean elastic
potential energy are the same. Consequently, the mechanical energy (the sum
of the kinetic and potential energies) of the vibrating element is

1
=5pa)2A2 . 2.1)

Thus, the amplitude of a harmonic wave is proportional to the square of this

energy density, A4 ~ JE .

As the energy in body waves diverges in three dimensions, whereas the
energy in surface waves only in two dimensions (Fig. 2.5), surface waves
acquire a continually increasing preponderance at a great distance from the
source. Let us give a rough estimate of this effect.

At distance x from a source, O, the area of a spherical wavefront is 47zx2;
see Fig. 2.5a. By conservation of energy, the energy density in a body wave at

distance x is thus proportional to 1/ x2 . Consequently, its amplitude is
proportional to 1/x. As opposed to it, the area of a cylindrical wavefront is
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2/mxz, where z characterises the depth of penetration (Fig. 2.5b). By
conservation of energy, the energy density of a surface wave at distance x is
thus proportional to 1/x , and the amplitude to 1/ Jx . Hence, the amplitudes of
body waves decrease with the distance from the source approximately as 1/x,

whereas the amplitudes of surface waves decrease approximately as 1/ Jx .
Note that these amplitude estimates are only approximate, because many
effects have not been taken into account, such as the influence of
inhomogeneities of the medium, absorption and dispersion.

a) b)

Fig. 2.5. Propagation of the energy of (a) body waves and (b) surface waves.

Surface waves are not, in principle, a new type of waves but only a result of
interference of body waves. As we have already mentioned, Love waves
originate from interference of SH waves. Rayleigh waves are formed by
interfering P and SV waves. However, the interfering waves, forming both
Love waves and Rayleigh waves, include also so-called inhomogeneous body
waves (see the next chapters). Inhomogeneous waves are connected, e.g., with
the total reflection; such waves are generated in the faster medium when the
total reflection occurs in the slower medium. Since inhomogeneous waves
diminish with the distance from the interface, the amplitudes of surface waves
are also reduced at large depths. The decrease depends mainly on the
wavelength. For the fundamental modes of surface waves, the amplitudes at a
depths of one wavelength are of the order of 0.1 of the surface amplitude
(usually 0.1 to 0.2 of the surface value).

The depth of penetration of fundamental modes may be estimated by the

value of A/3, A being the wavelength. As the velocities of surface waves,

generated by distant earthquakes, are about ¢ =4 km s~!, another simple rule of
thumb may be proposed, namely that the depth of penetration

h=~

W |

(24
3

in kilometres is numerically equal to period 7 in seconds. Thus, we may say
roughly that, e.g., a surface wave with a period of 50 s penetrates to a depth of
about 50 km, etc. Therefore, surface waves with periods lower than about 50 s
may be used to study the Earth’s crust, and surface waves with longer periods
to study the mantle structure.
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Distance

We have already mentioned the differences between body and surface waves
in their wvelocities, periods, amplitudes, polarisation and the paths of
propagation. However, there is another remarkable feature of surface waves,
namely their dispersion. Although body waves in real media are also
dispersive, the dispersion of surface waves is much more pronounced; see
below.

2.3.2 Dispersion of surface waves

Surface waves are usually dispersive, which means that their velocity depends
on frequency. This is the consequence of their interference character. The only
exception of non-dispersive surface waves are Rayleigh waves in a
homogeneous half-space. Love waves do not exist in this simple medium.
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Fig. 2.6. Propagation of dispersive surface waves: (a) spreading of the wave
train with the distance from the source; (b) phase- and group-velocity
dispersion curves for the example shown in (a). (After Fowler (1994)).

The dispersion causes that a wave train changes its shape as it travels (Fig.
2.6). The first surface waves to arrive are of those frequencies that have the
highest velocities. The waves of the other frequencies arrive later according to
their velocities. Consequently, seismograms at increasingly larger distances
from an earthquake are increasingly spread out.

Surface waves propagating in the Earth have generally higher velocities for
long periods, and lower velocities for short periods. This is closely related to
the general increase of the P- and S-wave velocities with depth. Namely, as
surface waves with long wavelengths (long periods) penetrate to larger depths,
their velocities are influenced by the medium with higher body-wave
velocities. Consequently, long-period surface wave acquire higher velocities
than short-period waves (Fig. 2.6). A real seismogram, beginning with long
periods which gradually decrease, is reproduced in Fig. 2.7. Since the waves in
this case propagated approximately from south to north, the surface waves
recorded with the EW-component seismograph are Love waves.
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Fig. 2.7. An earthquake in Italy on May 11, 1984, recorded at Uppsala,
Sweden. The epicentral distance was about 2 000 km. (After Novotny et al.
(1997)).

The velocity with which any particular phase travels (e.g., a peak or trough)
is called the phase velocity. However, the periods of peaks and troughs are not
constant, but increase as the wave travels. This is shown in Fig. 2.6a by the
dashed curves which link the subsequent peaks 4, B, C and D. The phase
velocity of a selected peak (say peak A) at any particular distance is the slope of
the dashed curve at that distance. The slopes of all these dashed lines indicate
that, in this example, the phase velocity increases with period (Fig. 2.6b).

The drawing of the curves which link the subsequent peaks or troughs
represents a very simple method of determining the phase velocities from
observed seismograms. Consider two seismograms recorded along a profile
which passes through the epicentre. The following approximate formula for
computing phase velocity ¢ may then be used (Savarensky, 1975):

I+ T Ay —A
0(1 2): 2701 2.2)

v/ ty —t

where A; and A, are the epicentral distances of the corresponding stations
(measured along the great circle arc linking station and earthquake), #; is the
arrival time of a particular peak at the first station, 7 is its period, #, and 7,
are the arrival time and period of the same peak at the second station. Note that

this phase velocity is ascribed to the mean period (Tl +7, )/2 Such an
approximation is sufficient in most applications. Another, relatively simple
method of determining phase velocities from observations uses the phase
spectra of the corresponding seismograms; we shall not derive the
corresponding formula here.

We have seen in the previous examples that a smoothed seismogram of
surface waves has a character of a quasi-harmonic wave with a variable period.
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Therefore, at any time we may speak of the instantaneous period of the surface
wave. The points of the same instantaneous periods in Fig. 2.6a are linked with
the solid lines (in this example, these lines are the straight lines with slopes U,
U, and Ujy). The slopes of these lines define another velocity, termed the
group velocity. We shall denote it by U. Since it is difficult to find visually the
same instantaneous periods on two seismograms, this method of determining
the group velocity, as indicated by the solid lines in Fig. 2.6a, is not usually
used in practice. Various time-frequency analyses are usually used for this
purpose.

It can be shown that the energy of surface waves, associated with a
particular period, propagates with the group velocity (Brillouin, 1960). It
follows from the corresponding theory that the group velocity is given by the
relation (Bullen, 1965; Savarensky, 1975; Novotny, 1999)

U=dw/dk , (2.3)

where @ is the angular velocity, k = w/c the wavenumber, and ¢ the phase
velocity. Considering the reciprocal value,

we arrive at another formula for the group velocity,

c

U=W ) 2.4)
e
Other formulae are as follows:
6 ¢ de
Uzl__f__d_cz +Z£=c—ﬂﬁ, 2.5
cdf edT

where fis the frequency, 7 the period, and A = ¢T the wavelength.

2.4 Free Oscillations of the Earth

Large earthquakes excite free oscillations of the Earth, when the Earth vibrates
like a giant bell. These oscillations were first recorded after the large
earthquake in Kamchatka in 1952, but their periods were first determined after
the large earthquake in Chile on May 22, 1960.

There are two independent types of free oscillations: toroidal, or torsional,
oscillations (7) and spheroidal oscillations (S). Toroidal oscillations are
perpendicular to the radius vector (with its origin at the Earth’s centre), but
spheroidal oscillations have generally both radial and tangential components.
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The simplest spheroidal oscillation is a purely radial motion. Both types of
oscillation have an infinite number of modes (or, as in music, overtones).

Free oscillations can be detected by strain meters, tiltmeters and gravimeters
(gravimeters are able to record spheroidal vibrations only). Standard
seismometers are not suitable for detecting these long-period motions.

Like all free vibrations, free oscillations of the Earth are standing waves.
The spheroidal waves arise through mutual interference of propagating
Rayleigh waves, and the toroidal oscillations arise from Love waves in the
same way. Therefore, the spheroidal oscillations represent a discrete long-
period continuation of Rayleigh waves, whereas the toroidal oscillations
represent an analogous extension of Love waves. By measuring the periods of
free oscillations, the dispersion curves of surface waves can be extended out to
the maximum period of about 3 200 s for the S modes and to about 2 000 s for
the 7" modes.

The periods of free oscillations depend on the distribution of elastic
parameters and density within the Earth. The observations of free oscillations
contributed to improving the velocity models and, especially, the density
models of the Earth.

2.5 Microseisms

A certain type of seismic noise is permanently present on seismograms. This
noise is known as microseisms. There are various sources of microseisms, such
as sea waves, meteorological factors (variations in the atmospheric pressure,
wind), traffic, vibrations of heavy machines, swinging of high buildings and
others. Relatively intensive microseisms have periods of about 6s. The
amplitudes of microseisms usually decrease with depth below the surface.
Hence, to reduce microseisms, seismometers are frequently located in
boreholes.

The physical nature of microseisms is not quite clear. They seem to consist
of Rayleigh and Love waves, including their higher modes. At some places, the
body-wave component of microseisms is also significant.

Localities with a low level of microseisms are required for placing seismic
stations, accelerators of elementary particles, electron microscopes and other
precise instruments. Investigations of microseisms have also been used in
seismic microzoning. It has been found, for example, that the places with a
high level of microseisms usually coincide with the places where increased
macroseismic intensities are observed during earthquakes.

2.6 Travel-Time Curves of Body Waves

The first processing of a seismogram usually consists in determining the arrival
times of the individual seismic phases which can be recognised. The arrival
times are written into a column in the preliminary seismic bulletin. If the type
of some phases can be determined (e.g., P or S), this type is also written in the
preliminary bulletin.
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Fig. 2.8. Page from seismological station bulletin, Budapest, June 5, 1951.
(After Richter (1958)).

If the onsets of the P- and S-phases are clearly seen on the seismogram, the
epicentral distance of the earthquake can be determined from the time
difference between the arrival times of these phases. Then, if the epicentral
distance is known, the earthquake magnitude can also be determined. The

preliminary seismic bulletins are regularly sent to the international
seismological centres.
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Fig. 2.9. Graph of travel times of seismic phases identified in the IASPEI 1991
Seismological Tables. (After Stacey (1992)).
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The seismological centres carry out the localisation of earthquakes, i.e.
computing the geographical coordinates, depth and origin time for each
earthquake. As usual, these localisations are based only on the first arrivals of
P waves. The results of the localisations are then sent back to the seismic
stations to be used in preparing their final bulletins. Many new data are added
into these bulletins, such as the identifications of further seismic phases,
epicentral distances, azimuths, earthquake magnitudes, etc. An example of a
final seismic bulletin is shown in Fig. 2.8.

The seismological centres also calculate the tables and graphs of the travel
times for the individual seismic phases as functions of the epicentral distance
(Figs. 2.9 and 2.10). An example of such tables for several epicentral distances
is given in Tab. 2.1. These tables and graphs are used at seismological stations
to determine epicentral distances and to identify further seismic phases.

The following simple rule, referred to as Laska’s rule, may be used to
estimate roughly the epicentral distances of distant earthquakes:

A=(tg=tp)-1, (2.6)

where epicentral distance A is given in megametres (thousands of kilometres),
and the arrival times 7¢ for the S wave and ¢p for the P wave are given in
minutes. For example, if 7¢—fp is 10 minutes, Laska’s rule yields an

epicentral distance of 9 000 km. In this case, Tab. 2.1 yields a more accurate
value of A =80°=8890km.

Table 2.1. Travel times (min:sec) of several seismic phases for a focal depth of
25 km. After the tables by Richter (1958); the travel times for A =103° have
been extrapolated.

A° P S S—P PcP SeS
0 0:04 0:08 0:04 15:30
10 2:28 4:17 1:49 15:39
20 4:34 8:12 3:38 16:04
30 6:11 11:05 4:54 9:08 16:45
40 7:36 1339 6:03 9:32 17:39
50 8:55 16:03 7:08 10:11 18:42
60 10:06 18:19 8:13 10:50 19:53
70 11:12 20621 9:09 1132 21309
80 12:11 22:11 10:00 12:17 22:30
90 13:00 23:49 10:49 13:01
100 13:46 25:14 11:28
103 14:00 25:40 11:40

2.7 Elementary Interpretation of Travel-Time Curves

One of the most important problems in seismology since the beginning of the
20™ century has been the determination of travel times with the highest possible
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accuracy. Such travel-time curves have been required for the following
principal reasons:

e These curves find practical applications in localising earthquakes; see the
previous section.

e Travel-time curves can be used to determine the distribution of seismic
velocities within the Earth; see below. This velocity distribution
represents fundamental information on the internal structure of the Earth.

Here we shall deal briefly with elementary interpretations of travel-time
curves. More accurate methods will be described in Chapter 3. These methods
will enable us to construct the rays of individual seismic waves and to
determine the distribution of seismic velocities within the Earth with a higher
accuracy.

The most important branches of the travel-time curves are those for the
direct P wave and the direct S wave; see Figs. 2.9 and 2.10. As usual, the
epicentral distance in these figures is expressed as the angular distance (as the
angle between the radius vectors of epicentre and receiver, the radius vectors
being constructed from the Earth’s centre).

2.7.1 Seismic division of the Earth

When the epicentral distance approaches about 103° (for ordinary shallow
earthquakes), the rays of both P and S waves graze a discontinuity. This
conclusion follows from the fact that beyond this distance the amplitudes of P
and S waves decrease rapidly. This discontinuity is the boundary of the Earth’s
core. The part of the Earth above this discontinuity is called the Earth’s mantle.
Another part of the Earth, called the Earth’s crust, can be distinguished on the
basis of observations of near earthquakes. Hence, on the basis of the properties
of the P- and S-wave travel times, we immediately arrive at the basic division
of the Earth into the Farth’s crust, mantle and core. This division represents
the simplest seismic model of the Earth.

Both P and S waves can propagate in the Earth’s crust and mantle. However,
only P waves can propagate in the core (more accurately, in the outer core),
whereas no S waves propagating in the core have been observed. Since
transverse waves can propagate is solids and not in liquids, we may
immediately conclude that the Earth’s crust and mantle are solid, but the outer
core is liquid. We shall see later that the inner core is again solid.

2.7.2 Travel times in a homogeneous sphere

Now, let us derive elementary quantitative estimates following from the travel
times in Tab. 2.1. Assume the outer part of the Earth to be homogenous up to
the core. Seismic rays are then straight lines, and elementary geometry can be
used. The situation is shown in Fig. 2.11.

Consider source O and receiver 4 to be located at the Earth’s surface, and
denote their distance by s (Fig. 2.11a). It follows from triangle OCB that
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8 el 29)
)= sm2, (2.

where R is the Earth’s radius and A the angular epicentral distance. Since
s =vt, where v is the velocity and ¢ the corresponding travel time of the wave
propagation from O to 4, we get the following equation for the travel-time
curve:

2R . A
= —g8in= . (2.8)
v

2
O
A

1 Y

a) b)

Fig. 2.11. Propagation of a direct wave inside a homogeneous Earth: O is the
source, A the receiver, B the central point of the abscissa OA4, C the Earth’s
centre, R the Earth’s radius, A the angular epicentral distance, s the direct
distance between the source and receiver, 4 the source depth (4 =0 in the left
figure).

This is a very simple example of the equation of a travel-time curve, where
the travel time is expressed by an analytical formula. Later on, we shall
encounter more complicated situations when it will not be possible to express
the travel time explicitly, but only in a parametric form.

In geophysics we frequently speak of forward problems and inverse
problems. By a forward problem we understand the determination of a certain
physical quantity (gravity or magnetic anomaly, travel time, synthetic
seismogram, etc.) for a given model. The opposite problem, i.e. the
determination of the parameters of a model from measured data, is called the
inverse problem.

Equation (2.8) represents a very simple example of solving a forward
problem. For a given model of the medium, i.e. for given values of R and v, Eq.
(2.8) makes it possible to calculate travel time ¢ as a function of epicentral
distance A.

Express Eq. (2.8) as an equation for the unknown velocity v:

2R . A
y=—sin . 2.9)
t 2

68



Assuming the Earth’s radius R to be known, this equation solves the
corresponding inverse problem, i.e. makes it possible to determine the
unknown velocity v. In other words, Eq. (2.9) solves the inverse problem for
the travel time of a direct wave propagating in a homogeneous sphere from a
surface source (Fig.2.11a). This is an exceptionally simple case of solving
inverse problems. Most seismic inverse problems are much more complicated,
and their solution cannot be expressed in an explicit form. These problems
usually lead to systems of algebraic or differential equations, which are
frequently non-linear.

Put R =6370km for the mean radius of the Earth. Insert the travel times
from Tab. 2.1 into Eq. (2.9), and ignore the fact that these travel times
correspond to the source depth 4 =25km, whereas in Eq. (2.9) we assume
h = 0. The velocities obtained for the individual epicentral distances are given
in Tab.2.2. It can be seen that the velocities increase with the increasing
epicentral distance. This means that the velocities of both P and S waves
increase with depth, which is, however, in contradiction with our initial
assumption on the homogeneity of the medium.

If the velocities in the mantle increase with depth, the seismic rays are not
rectilinear, but curved and convex downward; see Fig.2.13 below.
Consequently, a more advanced theory of wave propagation is needed to
interpret the observed travel-time curves. Nevertheless, the velocities in
Tab. 2.2 indicate approximately the range of velocities in the crust and mantle,

namely the P-wave velocities vp = 7-12kms™", and the S-wave velocities

vg ~4—7kms™'. A more detailed distribution of these velocities is shown in
the graphs at the end of Chapter 3.

Table 2.2. Interpretation of the travel times from Tab. 2.1 under the assumption
of rectilinear seismic rays: A is the epicentral distance, vp and vg are the mean
velocities of P and S waves.

A° vp(kms_l) vS(kms"l)
10 7.5 4.3
20 8.1 4.5
30 8.9 3.0
40 9.6 3.3
50 10.1 5.6
60 10.5 5.8
70 10.9 6.0
80 11.2 6.2
90 115 6.3
100 11.8 6.4
103 119 6.5

In Fig. 2.11a we have considered a surface source only. The corresponding
formulae may easily be generalised to a source at depth 4 (Fig. 2.11b). From
the cosine theorem,
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s> =R> +(R-h)?* -2R(R-h)cosA , (2.10)

and using
.2 A
1—-cosA =2sin 5 (2.11)
we get
h A
5 =4R2(1—E) sin25+h2 , (2.12)

which is a generalisation of Eq. (2.7) for a non-zero source depth, 4. The
equation of the travel-time curve now takes the form

LS (RO (i)z
l = - \/ l—R sin 2+ R . (2.13)

The application of this formula to the travel times in Tab. 2.1 yields the results
which are very similar to those in Tab. 2.2, so that we shall not present them
here.

Simplified estimates can also be obtained for the depth of the core-mantle
boundary, still assuming the medium above the boundary to be homogeneous.
If the seismic ray at the epicentral distance of 103° grazes this boundary, it
follows from Fig. 2.11a that the radius of the core is

r, = Rcos(l 03°/ 2) ~3970km. Consequently, for the depth of this

discontinuity below the FEarth’s surface we get d, =R-r. ~2400km.
However, if we consider seismic rays curved downwards, this depth will be
larger than 2 400 km.

Another simple estimate of the core depth follows from the travel times of
seismic waves reflected at the core-mantle boundary. For example, the travel
time of the ScS wave (the S wave which was reflected at the core-mantle

boundary and returned back again as the S wave) is 15730° = 930s for A =0°
(Tab. 2.1). Considering the mean velocity of S waves in the mantle to be about

6.5kms™! (see the last column in Tab. 2.2), we get the length of the
corresponding ray s =930x 65km =6045km. The depth of the core-mantle
boundary is one half of this length, i.e. d, ~3000km. This estimate is already
very close to the correct value of this depth, which is 2 900 km.

2.8 Principal Seismic Discontinuities in the Earth

In addition to the main branches of the travel-time curves for P and S waves,
many other branches can be seen in Figs. 2.9 and 2.10. These further branches
are connected mainly with the existence of discontinuities, at which seismic
waves are reflected and transmitted (refracted). The main of these
discontinuities are:

e the Earth’s surface;

e the Mohorovicic discontinuity, separating the Earth’s crust and mantle;
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e the core-mantle boundary (CMB);

e the inner-core boundary (ICB), separating the outer and inner cores.
The seismic model of the Earth, marked by these seismic discontinuities,
consists of the Earth’s crust, mantle, outer core and inner core (Fig. 2.12).

Fig. 2.12. Seismic model of the Earth. The depths are given in thousands of
kilometres. (After Richter (1958)).

The Mohorovicic discontinuity, briefly called the Moho, marks the base of
the Earth’s crust. This subcrustal discontinuity was discovered by
A. Mohorovicic in 1909 on the basis of seismograms of an earthquake with its
epicentre in Croatia not far from his station at Agram (now Zagreb). The depth
of the Moho on the continents is around 35 km, but large regional variations in
this depth exist; from less than 25 km in some basins to more than 60 km in the
regions of high mountains. This indicates the tendency of the Earth’s crust to
attain the isostatic equilibrium according to Airy’s model (Heiskanen and
Vening Meinesz, 1958; Novotny, 1998). The Moho is seismically less
pronounced than the Earth’s surface or the CMB, i.e. the waves reflected from
the Moho are weaker than reflections from the Earth’s surface or from the
CMB.

The notion of a “thin” crust overlying a molten interior of the Earth was
current and popular for a long time till the second half of the 19" century. This
notion had to be modified when the measurements of tidal deformations of the
Earth and measurements of the motions of the poles (variations of latitudes)
allowed to calculate the mean rigidity for the whole Earth. It appeared that the
Earth has a mean rigidity of the same order as that of steel. This means that a
substantial part of the Earth must be solid. Nevertheless, the mean rigidity is
small. If the whole Earth were composed of material similar to the rocks of the
crust, its mean rigidity would be much larger than the observed mean. Wiechert
concluded than there must be a large interior part of the Earth, the properties of
which should approach those of a liquid, and it might be in the form of a
central core. However, the radius of this core remained undetermined. The first,
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sufficiently accurate value of this radius was obtained by B. Gutenberg in 1913
at Gottingen on the basis of seismic observations. He found that the depth of
the surface of the core is very close to 2 900 km. Seismic studies also brought
direct evidence that the core is at least partly fluid, as expected by Wiechert,
since it does not transmit transverse waves.

The existence of another important boundary below the 5 000 km depth was
suggested by Miss I. Lehmann in 1936 in Copenhagen. Lehmann’s paper;
called P', has probably the shortest title in science. This discovery perhaps
would have rated a Nobel Prize in physics for the analogous detection of a new
atomic particle (Bolt, 1988). Additional seismological work in the next decades
has indicated that the inner core is a solid body as opposed to the liquid outer
core. This conclusion follows from investigations of seismic body waves and,

independently, also from observations of the periods of free oscillations of the
Earth.

2.9 Principal Types of Seismic Waves Propagating
within the Earth

In this section we shall restrict ourselves to body waves of teleseisms. We shall
not distinguish here the Earth’s crust, but we shall consider it as a part of the
mantle. The individual waves connected with the discontinuities within the
Earth’s crust will be discussed in the next Section 2.10.

Travel lime ——>

Fig. 2.13. Vertical section through half the Earth, showing the propagation of
the longitudinal waves from a source in the left corner of the figure. The core-
mantle boundary is marked by a circular arc at a depth of 2 900 km and the
transition to the inner core by a shaded zone at about 5 000 km depth. (After
Gutenberg; from Béath (1979)).
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The various individual wave groups on seismograms represent direct waves
and various combinations of reflections and refractions. Each wave is denoted
by a particular combination of symbols, chiefly letters, which stand for the
successive segments of the ray in order from source to station. Some of the
possible ray paths for seismic waves penetrating the Earth are shown in Fig.
2.13 and in simplified forms in Figs. 2.14 and 2.15. In the mantle and core, the
velocities increase with depth, so that the rays bend away from the normal.
However, the decrease of the velocity at the mantle-core boundary causes that
the rays refracted into the core are bent towards the normal.

The notation of seismic waves went through certain historical development,
which should briefly be mentioned. The type of a wave along any segment was
denoted by P for longitudinal and S for transverse waves. Thus, the direct
longitudinal and transverse waves in the mantle (their rays are convex
downwards) were denoted simply as phases P and S, respectively. Reflection at

the surface of the Earth was indicated simply by the succession of the chief
symbols, PP, SS, PS and SP; see Fig. 2.14. Multiple reflections at the surface
were denoted by PPP, SSS, etc. This notation of seismic waves in the mantle
has been retained up to now.

Outer Core

PKIKPPKIKP

Manlle

sSP

Fig. 2.14. Some of the possible ray paths for seismic waves penetrating the
Earth. (After Fowler (1994)).

All incidences of a wave at the surface of the core were originally denoted
by the small letter ¢, which was included into the code of the wave.
Consequently, a longitudinal wave which passed down through the mantle and
was reflected at the core surface back into the mantle as a longitudinal wave
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was designated PcP. A transverse wave reflected back as a transverse wave
was designated ScS. For converted waves reflected at the core surface, we have
analogous notations PcS and ScP (a wave is called a converted one if it changes
at an interface from a longitudinal wave into a transverse wave or vice versa).
These notations are also used at present.

Now, consider waves penetrating into the outer core. A longitudinal wave
which passed down through the mantle and the outer core and then up through
the mantle was originally denoted, according to the above-mentioned rule, by
PcPcP. The other similar combinations are as follows (note that only P waves
can propagate in the liquid outer core): ScPcS, PcPcS and ScPcP. These
notations are logical and sufficiently elementary, but rather long and not easy
to be quickly decoded. Since the letter P surrounded by letters ¢ from left and
right denotes a longitudinal wave in the outer core, the group cPc was later
replaced by one letter, K (Kern from the German, meaning core). Therefore, the
above notations are now abbreviated as follows: PKP, SKS, PKS and SKP.
Analogous separate notations were later approved officially also for the
longitudinal and transverse waves passing through the inner core.

2.9.1 Direct and transmitted waves

Consequently, the present situation in denoting the longitudinal and transverse
waves within the Earth can be summarised as follows (Tab. 2.3):
e letters P and S are only used to denote the waves in the mantle;
e K denotes a longitudinal wave in the outer core (transverse waves do not
propagate there);
e [and J denote longitudinal and transverse waves in the inner core.

Table 2.3. Notation of longitudinal and transverse waves in different parts of
the Earth.

mantle outer core inner core
longitudinal wave P K 1
transverse wave S - J

Fig. 2. 15. Simplified diagram showing rays for P, P' = PKP, P" = PKIKP .
(After Richter (1958)).
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Thus, the waves passing through the inner core are designated PK/KP, PKJKP,
etc. Still briefer notations have also been introduces, such as P’ for PKP and
P" for PKIKP, see Fig. 2.15. However, now these very brief notations are not
usually used.

2.9.2 Reflected waves

As mentioned above, the reflections from the outer side of the core are denoted
by the letter ¢, which is inserted into the code of the corresponding wave.
Analogously, letter i is used to denote reflections from the outer side of the
inner core (Figs. 2.9, 2.10 and Tab. 2.4). Moreover, reflections from the upper
side of the Moho are denoted by letter M. For example, the wave PMP is the
longitudinal wave reflected from the Moho. Note that this wave has frequently
been used to determine the thickness of the crust in deep seismic soundings.

Table 2.4. Waves reflected only once from the outer sides of the main
discontinuities: CMB is the core-mantle boundary, ICB is the inner-core
boundary, and the symbol is the letter included into the wave code.

Discontinuity Symbol Examples
CMB ¢ PcP, ScS
ICB i PKiKP, SKiKS

Reflections from the inner sides of the discontinuities are not indicated by
interposing specific letters. These reflections are evident from the succession of
the chief symbols (Fig. 2.14 and Tab. 2.5).

Table 2.5. Waves reflected only once from the inner sides of the main
discontinuities.

Discontinuity Examples
Earth’s surface PP, SS, PS, SP, SKSP
CMB PKKP, SKKS, PKKS, SKKP
ICB PKIIKP, SKIIKS
P
0

Fig. 2.16. Waves P and pP propagating from source O.

In addition to the reflections already mentioned, special types of reflections
at the surface of the Earth are denoted by small letters p and s, such as pP, pS,
sP or 58S, see Figs. 2.14 and 2.16. The wave pP travelled up from the focus as a
P wave, was reflected at the Earth’s surface close to the focus and continued as
a P wave to the observer (Fig. 2.16). As opposed to it, wave PP started to travel
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down from the focus and was reflected at approximately half a way between
the focus and observer (Fig. 2.14). For shallow earthquakes, it is usually
difficult to distinguish the phase pP from phase P. However, for deep
earthquakes, these phases can be distinguished, and the difference of their
travel times is frequently used to determine the focal depth.

2.10 Seismic Waves at Short Epicentral Distances

At short epicentral distances, the wavefield is influenced significantly by the
structure of the crust, and further branches of the travel-time curves may be
distinguished. There is a critical epicentral distance, generally in the range from
100 to 150 km, where seismograms change their character. Stations at shorter
distances register the P and S waves as initial sharp phases followed by smaller
motion. Beyond the critical distance, the order of theses phases is reversed. The
P and S waves begin there with relatively small and long-period motion,
designated P, and S,, which is followed by a larger and shaper impulse of a
shorter period. Mohorovicic found that the travel-time curve of £, is
continuous with that for the P wave at teleseismic distances (continuous with
the normal P wave, which substantiates the notation by P,). The sharp phase

was called him P . The apparent velocity of P is about 6 km s7!, of P, about

8 kms™! (the velocities found in 1909 were lower).

Fig. 2.17. Travel-time curves of P and P,, and their interpretation according
to Mohorovicic. (After Richter (1958)).

The simplest form of the explanation adopted by Mohorovicic is shown in
Fig. 2.17. Neglecting the curvature of the Earth, consider a layer of constant
velocity vy, overlying a half-space of constant velocity v,, where v; <v,. In

our case, v; =6kms ' and v, =8kms™'. The wave P is interpreted as the
direct wave propagating to the recording station (through the medium of the
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lower velocity). The wave P, is refracted horizontally below the discontinuity,
where the velocity is higher. Consequently, there is a critical distance beyond
which the higher velocity compensates for the longer path, and P, arrives

before P . Since the angle of refraction is 90°, the angle of incidence above the
boundary, i, is given by sini =v,;/v, =0.75, whence i =49° approximately.
The theoretical travel-time curve for P, is a straight line with slope 1/v, . The

travel-time curve for P is a hyperbola asymptotic (at large epicentral distances
A) to a straight line through the origin with slope 1/v; .

It should be, however, noted that the explanation of the refraction like that
postulated for P, has serious theoretical complications. Such waves, which
propagate along the interface in the faster medium and radiate their energy
back into the slower medium, really exist but their theory is rather complicated.
They are called the head waves; we shall return to this problem in the next
section.

Later studies revealed further complexity of seismograms at short epicentral
distances, which led to subdividing the crust into more layers. In Europe,

Conrad observed a small sharp impulse between P, and P with the apparent

velocity near 6.5 km s, which he named P". The corresponding discontinuity
is referred to as the Conrad discontinuity. Jeffreys and others accepted the
Conrad discontinuity as separating predominantly granitic layer above it from a

basaltic layer. According to this interpretation, P propagates in the granitic
layer, and P" is connected with the basaltic layer. Consequently, an alternative
notation, P,, was also proposed for P, and P, for P*. A schematic
representation of these notions is shown in Fig. 2.18. Note that analogues to

P, P and P, have also been found in the S-wave group of seismograms.

0 a) R 0 b)

. FWM 15km ¢ water R | Skm
P £ p*  Dbasalt / 5 km
18 km

basalt M P

n

M

P

n

Fig. 2.18. Principles of wave propagation in the classical models of the
continental crust (a) and the oceanic crust (b): F'is the focus, R the receiver, O
the Earth’s surface, C the Conrad discontinuity, M the Mohorovicic
discontinuity. (Modified after Bath (1979)).

Later studies of the crustal structure have not confirmed the existence of the
Conrad discontinuity in many regions. Also the petrological division of the
crust into the granitic and basaltic layers seems to be oversimplified and far
from reality. Nevertheless, significant differences have been found in seismic
properties of the upper and lower crust. Seismic reflection methods have
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revealed that the upper crust is rather transparent for seismic waves, whereas
the lower crust is more reflective. This can be explained by different physical
properties of the upper and lower crust. The upper crust is considered to be
brittle, which is also in agreement with the appearance of many earthquakes in
this part of the crust. As opposed to it, the lower crust is considered to be
ductile, containing sliding surfaces which reflect seismic waves.

2.11 Head Waves

The P, wave, as show in Fig. 2.17, belongs to a special category of waves
which are referred to as head waves. These waves cannot be explained in the
framework of the geometric theories of wave propagation, such as geometric
optics or geometric seismic (as the zero-approximations of the ray theory).
Head waves do not also exist in any theory of plane waves.

a)
Fig. 2.19. Waves generated by a point source, O, at an interface of two
homogeneous media: a) wave surfaces in the standard ray approximation; b)
wave surfaces in exact wave theories, including the head wave.

In order to explain head waves, we must consider spherical waves. To
simply the problem, consider a point source located at an interface of two
homogeneous media (Fig. 2.19). Along the opposite sides of the interface, the
waves propagate at different velocities. At a certain time, the wave propagating
in the slower (upper) medium arrived at point A, whereas the wave in the faster
(lower) medium arrived at more distant point B. The corresponding wave
surfaces are shown in Fig 2.19a. A rather complicated situation occurs along
the abscissa AB. According to the standard ray theory, the medium under 4B
moves but the medium over 4B remains at rest, because (in this simple ray
theory) the energy of seismic waves does not propagate perpendicularly to the
rays “tubes”.

The situation along abscissa 4B in Fig 2.19a is, however, inconsistent with
the usual physical notions, which require the continuity of the displacement
and stress at the interface. Also according to Huygen’s principle, each point of
the wave surface becomes a source of elementary waves. Hence, according to
this principle, the disturbance propagating along OB generates elementary
waves which propagate also into the upper medium. The envelope of these
waves forms a new wave, termed the head wave, having a conical wave surface

78



as shown in Fig. 2.19b by abscissa BC (and by the symmetrical abscissa in the
left part of the figure).

It can easily be shown that angle y between the ray of the head wave and the
normal to the interface is the critical angle. This follows from triangle OBC,
becouse

ocC v

iny = — =1 2.14
0BT v, (2.14)

where v; and v, are the velocities in the upper and lower media, respectively.
Formula (2.14) is the special form of Snell’s law for the critical angle.

Head waves can be described in the framework of higher approximations of
the ray theory or other exact wave theories. Although the travel-time curve of
the P, wave can be interpreted as that of a head wave, some inconsistencies
are encountered in their amplitudes. Namely, the observed P, waves are
stronger than the theoretical head waves generated at an interface of two
homogeneous media. In order to overcome this problem, more complicated
models of the medium must be considered. For example, if the velocity under
the discontinuity increases slightly with depth, an interference head wave of a
higher intensity appears in such a medium, which can explain the observations.
Also some other waves propagating in vertically inhomogeneous media have
properties similar to those of P, waves, in particular refracted waves; see the
next chapter.
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Chapter 3

Simple Ray Theory, Based on Fermat’s Principle

The contemporary theory of elastic waves is based on the theory of elasticity,
whose basic equations were derived by Navier, Cauchy and Poisson in the
1820"™; for details we refer the reader to the review in Novotny (1999). The
theory of light propagation is based on the theory of the electromagnetic field,
which was formulated by Maxwell even later, in 1873. The earlier theories of
wave phenomena had, therefore, to start from other, simpler laws. The most
important of them is Fermat’s principle.

3.1 Fermat’s Principle

According to the original formulation from the 17" century, Fermat's principle
states that a disturbance propagates between two points along the path for
which the travel time is minimum:

— =min.|, (3.1)

where ds is a path element and v the corresponding velocity. A generalised

form of Fermat’s principle will be given in the next section, but the simple

form (3.1) will be sufficient in many cases.

Fermat’s principle lost much of its previous importance when the more
general theories, the theory of elasticity and the theory of the electromagnetic
field, were worked out. Namely, Fermat’s principle can be derived from these
general theories as a special relation, valid under certain conditions. We shall
deal with these problems later on. Nevertheless, in solving some special
problems, Fermat’s principle still represents a valuable basic relation. Its
advantages are as follows:

e Relative simplicity of the basic equations. We shall see that Euler’s
equations for the extremal of Fermat’s functional are much simpler than the
equations of motion of a continuum.

e Fermat’s principle can be applied to very general models of the medium,
including complicated three-dimensional models.

e Universal applicability of Fermat’s principle to wave phenomena in various
branches of physics. The equations for rays and travel times, which will be
derived in this and the next chapters, can be applied not only to seismic
waves, but also to acoustic waves in the atmosphere, acoustic waves in the
ocean, propagation of light, radio waves, and to some other problems.

On the other hand, Fermat’s principle has also serious disadvantages, in

particular:

e This principle does not describe the wave field in full. It describes only
some so-called kinematic characteristics of the wave field (rays, travel
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times), but not dynamic characteristics (amplitudes, polarisation). In order to
estimate amplitudes, additional “laws” or rules must be added to Fermat’s
principle. We shall discuss them at the end of this chapter.

e Fermat’s principle describes the propagation of a separate disturbance,
assuming its velocity is known. However, we encounter also more
complicated problems when the velocity must be determined at the
beginning (waves in anisotropic media, and others), or the wave field is of a
complicated chapter. For example, one velocity is not sufficient to describe
the propagation of dispersive waves, but two velocities, the phase and group
velocity, are needed. However, only one velocity is considered in Fermat’s
principle.

3.2 Fermat’s and Hamilton’s Principles

Generally, many various waves may arrive at a receiver, such as a direct wave,
refracted waves, reflected waves and others. To describe this situation,
Fermat’s principle (3.1) must be generalised. We shall formulate Fermat’s
principle in the following generalised form.

A disturbance propagates between two points along the paths for which the
travel time is stationary, i.e. for which the variation of integral (3.1) is zero:

5[£=0. (.2)

The curve which satisfies this condition is called the extremal of Fermat’s
functional. This curve can be obtained as a solution of a system of differential
equations known as Euler’s equation. Let us give a general formulation of these
equations.

Consider a function F :F(x,yj,y}) which is a function of an

independent variable x and of certain functions y; =y j(x) and of their

o dy,(x) : ;
derivatives y’; = ix where j=1,2, ..., n. For the functional
B
1=[F(x,y,.9)dx . (3.3)
A

its extremal satisfies the following equations:

d(oF)_oF o
dx\ oy} 5yj_ ' 3

These equations are referred to as Euler’s equations. Before deriving this
important theorem, let us remind certain analogies with analytical mechanics.
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A very general principle of mechanics, Hamilton's principle, states that a
system of particles moves in such a way that the corresponding action,

)
J2(g;.d;.1)dr (3.5)
h

is stationary, 1.e.

)
5[tlg;.q;.1)dr=0; (3.6)

h

here L =T -V is the Lagrangian, T the kinetic energy, /" the potential energy,
q;=q,;(1) are generalised coordinates, ¢;=dgq;/ds are generalised

velocities, ¢ is the time, and j=1,2, ..., n, n being the number of degrees of
freedom. It is well known from analytical mechanics that the extremals of
functional (3.5), i.e. the trajectories of particles, satisfy Lagrange’s equations

of the second kind:
dr\2q;) oq; '

Since functionals (3.3) and (3.5) are similar, the validity of Euler’s equations
(3.4) immediately follows from Lagrange’s equations (3.7).

It should be noted that the analogy between Fermat’s and Hamilton’s
principles is not only accidental. Indeed the apparatus of analytical mechanics
can be extended to continuum mechanics, but we shall not use this complicated
theory here.

In this chapter we shall draw main attention to the equations of seismic rays.
For a given model of the medium, these equations can be obtained directly
from Fermat’s principle, using Euler’s equations. This approach will be used
systematically in the next chapter. However, for the special models of the
medium which will be considered in this chapter, we shall also use a more
elementary method. At first, we shall use Fermat’s principle to derive Snell’s
law, and then we shall derive the equations of rays from Snell’s law. This
elementary approach does not require the knowledge of the calculus of
variations, or analytical mechanics.

Nevertheless, the application of Euler’s equations represents a general
method of solving many problems. Therefore, we shall begin with their
derivation.

3.3 Derivation of Euler’s equation for an extremal

To simplify the problem which was formulated above, consider function

F=F (x, v, y’) to be a function of an independent variable x, and only of one
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. o d y(x) .
unknown function y(x) and of its derivative y'(x) = Ay Let function F be

continuous with all derivatives which will be needed.
Thus, consider the integral

I= jF(x,y,y’)dx : (3.8)

X1

where F is a known function of the indicated variables x, y, and y’, but the
dependence on y is not fixed, i.e. function y(x) is unknown (Arfken, 1970).
This means that although the integral is from x; to x, the exact path of
integration is not known (Fig 3.1).

N

y

B(xz,yz)
1)

A(xbyl)

\ 4

Fig. 3.1. A varied path.

We are seeking the path of integration between points 4 and B to minimise
integral I. Strictly speaking, we shall determine extreme values of /, i.e.
minima, maxima or saddle points. Denote by y, = y,(x) the unknown path for
which / is an extremum.

Compare the value of 7 for our (unknown) optimum path with the values
obtained from neighbouring paths. Two possible paths (from an infinite
number of possibilities) are shown in Fig. 3.1. The difference between two
paths for a given x is called the variations of y, and denoted by oy .

Consider an arbitrary path between point 4 and B, and denote the difference
between this path and extremal yo(x) by n(x). Moreover, consider all paths
with similar deviations from the extremal, which are described by the equation

wx,a) = yo(x) + anlx) | (3.9)

a being a parameter. We assume function 7(x) to be arbitrary except for two
restrictions:

e 7(x) is differentiable;

o n(xl):n(xz):O . (3.10)
The extremal is the curve for & =0, i.e. y(x,a = 0) = y,(x) . Integrals (3.8) for
these paths are now functions of our new parameter «:
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I(a):xj-F[x,y(x,a),y’(x,a)]dx : (3.11)

X

In other words, for a fixed function 7(x), curves (3.9) and integrals (3.11) are

functions of parameter « only. Consequently, the condition for the extremal
among these curves can be expressed as the condition for an extremum of

function /() in differential calculus, i.e.

{dl(a)} we (3.12)
da 20

The dependence of integral (3.11) on o is contained in y(x,a) and

y’(x,a); note that y and y’ are treated as independent variables in function F.
Therefore,

dr Jrdy Jrd
(“) j OF FVC) . (3.13)
dy da é’y da
It follows from Eq. (3.9) that
dy Jy dy dnlx)
S e el s . 3.14
oo™ G dx GL1e
Equation (3.13) then becomes
d1 " oF OF d
(@) _ —n(x)+—ﬂ dx (3.15)
da oy oy' dx
Integrating the second term by parts, one gets
2dn(x) OF OF |xy 73 d oF
e = S 3.1
JFae gy dx =m0 J(x)d o (3.16)

The first term on the right-hand side vanishes by (3.10) and Eq. (3.12) becomes

BOoF d OF
J‘[a—y—agjn(x)dx— . (3.17)

In this form o has been set equal to zero.

84



The process just described can be repeated for other forms of function n(x) .

Since 77(x) is arbitrary, Eq. (3.17) will be satisfied if the bracketed term itself
is identically zero:

oF_d OF _
Jy dxdy

(3.18)

Namely, assume the bracketed term to be non-zero, e.g. positive, at a point X"

This term is then positive also in a certain vicinity of x" as the consequence of
the continuity of the corresponding functions. Choose function n(x) to be
positive in this interval and equal to zero outside. The left-hand side of Eq.
(3.17) is then positive, which contradicts the right-hand side. Therefore, the
bracketed term cannot be non-zero, but must satisfy Eq. (3.18). This equation
represents the condition for our extremum. This is a partial differential
equation, known as Euler’s equation.

3.4 Derivation of Snell’s Law from Fermat’s Principle

At first we must derive the trivial fact that the rays in a homogeneous medium
are straight lines. Thus, consider the velocity, v, to be constant. Fermat’s
principle (3.1) can then be expressed as

1B
= {ds=min. (3.19)
vA

It is evident that this integral is minimum if the curve connecting points 4 and
B is an abscissa.

Medium 1

Interface

Medium 2

\ 4
Fig. 3.2. A path connecting two points in different media.

Now, consider two homogeneous media separated by a plane interface
(Fig 3.2). Denote the corresponding velocities by v; and v,, respectively.

Consider a fixed point A(xl,zl) in the first medium (z; is negative), and a

fixed point B(xz ,zz) in the second medium. Choose arbitrarily point C(x, 0) at
the interface, and calculate the travel time ¢ along path ABC:
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p=t(x) =L 42 = + . (3.20)

Vi " V1 %)

This time is minimum if its derivative is zero:

dit x—-x; x-—x, sinij sini
dx  vis Vo8) Vi V)

where we assume x,<x<x,, as show in Fig. 3.2. Thus, it follows from
Fermat’s principle that Snell’s law must hold true at an interface of two
homogeneous media.

3.5 Seismic Rays and Travel Times in a Horizontally
Layered Medium

Consider a medium which is composed of homogeneous, isotropic and parallel
layers, as shown in Fig. 3.3. Denote the velocity and thickness of the m-th layer
by v,, and d,,, respectively. The velocity v, is the velocity of P waves or S
waves according to the type of the corresponding seismic wave.

1 .1 Vi dl

2 M Vz T d2

\

Y

z

Fig. 3.3. Model of a layered medium and a seismic ray.

Let us now consider a wave without any reflection point (only
transmissions). Denoting the angle of incidence in the m-th layer by i,,, we
have from Snell’s law that

sini sini sini
le—2 o B p, (3.22)
Vl V2 A%

The quantity p remains constant along the whole ray. We call it the ray
parameter.
The inverse of p,
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L_ Vm (3.23)
p sini, '

C&=

is called the apparent velocity. It represents the velocity of propagation of the
wavefront along the x-axis (horizontal axis); see more detailed discussions
below. In the theory of surface waves, the velocity ¢ represents the phase
velocity of the corresponding surface wave.

Xm

U
SN .
=

Fig. 3.4. Passage of a wave through the m-th layer.

Consider the passage of the wave through the m-th layer at an angle of
incidence i,,. The corresponding increment of the epicentral distance, x,,, and
of the travel time, 7,,, are as follows (Fig. 3.4):

) sini pv
x, =d, tani, =d 2 —-d L ,
m m m m COSim m ll—pzvz
m
(3.24)
N dn’l dm

T - = =

m 3 "
Vi Vi COSLy ll—pzv,i

If the wave passes through the first to the n-th layer, we must sum up the
individual contribution:

n n dem
x(20, )= Xoxy = p 22—,
m=1 m=14/1—=p~v,,
(3.25)
n n d
TE I S
m=1 m=1V,, l—p Vi

For the wave which is reflected at the bottom of the n-th layer back to the
surface, if the source and receiver are on the surface, we obtain the value two
times greater:

" y,d . d
wp)=2p) —=2n_  Hp)=2>—2m  (3.26a)b)

m:lﬁl—pzvi m=lvmﬂl—pzv,i

The computation of the travel time of the reflected wave at a given

epicentral distance x proceeds as follows. We choose an incidence angle i; in
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the first layer, compute the ray parameter p using (3.22), and insert into (3.26a).

Since the computed epicentral distance x( p) does not generally agree with the
given value x", we must change the value of i, (or directly p). We repeat this

process until x( p) is close to x with the required accuracy. Finally, the value

of p, found in this way, is inserted into (3.26b) in order to obtain the travel
time.

This example demonstrates the usual situation which we encounter in
computing theoretical travel-time curves. Let us, therefore, describe briefly the
general situation.

For a given model of the medium, the travel-time curve is the dependence of
travel time ¢ on epicentral distance x:

t=tx) . (3.27)

However, this function can be expressed explicitly only in very simple cases.
Usually, the equation of a travel-time curve is expressed in a parametric form
as

} = r(p) g X= x(p) . (3.28a,b)

If we are to determine the travel time for a given distance x, we must first solve
equation (3.28b), usually by some numerical method, i.e. to compute the

inverse function p = p(x). By inserting this value into (3.28a) we arrive at the

desired travel time, = r(p(x)). In this way we eliminate the auxiliary
parameter p.

x/2 x/2

Fig. 3.5. Reflected wave in a single layer.
The travel-time curve for a reflected wave can be expressed in an explicit

form only in the case of one layer, n=1. In this case, parameter p can be
expressed explicitly from Eq. (3.26a), and Eq. (3.26b) then yields

\/xz +4d12
[, (3.29)
V1

Note that this equation also follows immediately from Fig. 3.5, because
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252 2 2
= v1 —v1 (x/2) +di .

3.6 Seismic Rays and Travel Times in a Vertically
Inhomogeneous Medium

In many applications, the Earth may be considered as a spherically symmetric
body, i.e. as a body in which the physical parameters are dependent only on the
radical distance from the centre; see the next chapter. If seismic waves do not
penetrate to large depths, even the Earth’s curvature may be neglected and the
physical parameters may be considered as functions of one Cartesian
coordinate only (depth). In this section we shall study seismic rays and travel-
time curves for such a medium. A special case, when this medium is
approximated by a system of homogeneous layers, has already been discussed
above.

Hence, consider a medium in which the velocity is a function of only one
Cartesian coordinate, v =v(z). Since coordinate z will usually represent the
depth, we shall speak of a vertically inhomogeneous medium.

3.6.1 Generalisation of formulae for a layered medium

A vertically inhomogeneous medium can be obtained as a limiting case of a
layered medium, which was considered in Section 3.5, if the thicknesses of the
homogeneous layers become infinitesimal. Consequently, all the results from
Section 3.5 can be generalised to the vertically inhomogeneous medium. In
particular, by generalising Eq. (3.22) we arrive at Snell’s law for a vertically
inhomogeneous medium in the form

sini(z) 3
W) P

(3.30)

w

where the ray parameter p is a constant along the ray. Therefore, Eq. (3.30)
represents the equation of a seismic ray in a vertically inhomogeneous
medium. For a given initial point and a given value of p, this equation
determines the form of the corresponding ray.

dz ds
Fig. 3.6. Infinitesimal segment

e of a seismic ray.

Consider an infinitesimal part of a seismic ray in a vertically
inhomogeneous medium (Fig. 3.6). When a wave has passed through a path ds,
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the corresponding increments in the epicentral distance, dx, and in the travel
time, dz, are

dx=dzt () d _Slﬂ._d __IL_
X Zlani\z ZCOSl Zm 3
(3.31)
dz dz

flF= = .
’ v(z)cosi(z) v’l—pzvz

The other formulae are summarised in the left column of Tab 3.1 at the end of
this chapter. The last formulae in the table are the parametric equations of the
travel-time curve for the case of the source and receiver on the surface of the
model:

d
O A f

depth z,, in these formulae is the largest depth of penetration of the ray, i.e. the

(3.32)

depth of the turning point, where the ray starts to return to the surface. Since
the descending and ascending segments of the ray are symmetrical, factor 2
stands in front of the integrals. Note that Egs. (3.32) can be obtained
immediately as the generalisation of Egs. (3.26) by replacing the summation by
integration.

3.6.2 Direct derivation of the equation of a ray from Fermat’s
principle

In Subsection 3.6.1, see also Tab. 3.1, we have derived the equation of a
seismic ray in a vertically inhomogeneous medium using Snell’s law. Here the
same equation will be derived from Fermat’s principle using the corresponding
Euler’s equation.

In the previous subsection we have used the z-coordinate as the independent
variable (integration variable). Thus, let us express the path element ds as
(Fig. 3.6)

ds=vdx2 +dz2 =/(x")2 +1dz , (3.33)

where x’ = dx/dz. Fermant’s functional can then be express as

2 ds B\H (x’)2 -
/-‘;v(z) = I t(z) dz= IF(z,x(z),

x'(z))dz , (3.34)

A

F(z,x,x’):$\/1+(x’)2 . (3.35)

where
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Since coordinate x does not enter explicitly into F (it is a cyclic coordinate
in the terminology of mechanics), Euler’s equation takes the following simple

form
O_i(ﬂFj oF _d|oF 596
T dz\ox') oOx  dz|ox' |’ '

Consequently, derivative JF/dx' must be equal to a constant. Denoting this
constant by p, we have

| x'
p=——p——, (3.37)
Vl+ (x’)2
which is the equation of a seismic ray. This can be expressed as
d
e i (3.38)

d Z ’1 _ pzvz ’
Let us add a geometrical interpretation to Eq. (3.37). It follows from Fig. 3.6

that x’ = d x/d z = tani . Thus, 41 +(x’)2 =1/cosi , and

sini  sini(z)
p =T B
v v(z)

(3.39)

Equations (3.38) and (3.39) are the same as the corresponding equations in
Tab. 3.1.

3.7 Seismic Rays and Travel Times for a Medium with a
Constant Velocity Gradient

Assume velocity v to be a linear function of depth z:

v(z) = vo[l 4 ﬁ(z - ZO)] (3.40)

for z>z,, where v, and S are constants. Without loss of generality we may

put z5 =0 and x(zo) =0 in (3.40). Therefore, we assume

w(z) = vo(1+ ) (3.41)
for z>0 (Fig. 3.7).
Calculate epicentral distance x; which corresponds to depth z;. It follows
from (3.31), and also from the integral expressions in Tab. 3.1, that

91



21

2.2 2 |
x =x(z)= pollef) NP AT )
0 \/I— pzvg (l +ﬂz)2 — VB

This equation can be expressed as

L1 1 (1+ jz
X —— =] &= | =42z .
LB\ p2v? pvipt \B

After squaring, we arrive at the equation of a circle,

(xl —xc)2 +(zl —zc)2 = R?, (3.43)

where the coordinates of its centre, x, and z,, and its radius R are given by

1 1 1
Xpo=" -1,z,=-—,R= : (3.44)
© B\ p™vi © B pvop
O O X X P
0 > o = 2=
v(z)
Zl """
Zpl T T
V i
/
a) b)

Fig. 3.7. Medium with a constant velocity gradient: a) velocity cross-section; b)
seismic ray of a circular form.

Thus, the ray in a medium with a constant velocity gradient is an arc of a

circle. In particular, the coordinates of the turning point T(x Pt p) are

X, SK, ==

1 1 1 1
-1,z,=z +R:—(—~—lj . (3.45)
e gy pPve F B\ pvg

The distance of point P where the ray again crosses the x-axis is

. . (3.46)
B\ p*v;
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Formulae (3.44) to (3.46) make it easy to construct the ray geometrically.
For the corresponding travel time we get from (3.31) that

|

dz
r=1(z)= (3.47)
0 vy 1+ﬁz \/l—p Vo 1+ﬁz)
Using the usual substitution
\/1—]) v2(1+p) =1-1, (3.48)
we obtain
| | h
—1jdt—1j(1 ljd—l[l———t} (3.49)
N g Ji2—0) T 2pwy Nt T 2= 2ol 21 '
0 0
where

£ = 1w fl— 28 t1:1—\[1—p2v5(1+ﬁzl)2 . (3.50)

Note that the formulae derived above cannot be used for =0, i.e. for a
homogeneous medium. In this case, expressions (3.44) become infinite, and
(3.49) becomes indeterminate of the type 0/0. Consequently, the expressions
for x; and 7, given by (3.42) and (3.49), must be replaced by some

expansions for ‘ ,B~ close to zero.

3.8 Seismic Rays and Travel Times for a Medium with a
Linear Quadratic Slowness

Another vertically inhomogeneous model, for which the rays and travel times
can be calculated analytically, is described by the relation

1
v2(2)

—a-bz, (3.51)

where v, is the velocity, z the depth, and a, b are constants. Since the reciprocal
value of velocity, 1/v, is called the slowness, relation (3.51) describes the
quadratic slowness as a linear function of depth z. Relation (3.51) can also be
expressed as

v(z) = \/T—T/z s (3.52)

where v, and y are new constants.
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We shall solve a similar problem as in the previous section, but instead of
the velocity distribution (3.41) we shall consider relation (3.51). Assume again
the ray to begin at the coordinate origin, and calculate epicentral distance x

and travel time 7; which correspond to depth z;, i.e.

J- pvdz

1—pv J.wll—pv

where v =v(z) is given by (3.51) or (3.52). Let us divide the numerator and

(3.53)

denominator in the first integrand by v, in the second integrand by v2, and
substitute from (3.51):

(3.54)

; j I(a bz)d z
b \/a p - 0yVa— P> —bz

The integral for x, can immediately be calculated, and the integral for z; can

be obtained by integrating by parts. We shall arrive at the following simple
formulae

£
b

x1=—

z 9 z
a—p2 —bz]j_o ; 0= i[(bz—a—2p2)\/a—p2 —bz] 1 .(3.55)

These formulae are even simpler than the formulae (3.42) and (3.49) for a
constant velocity gradient, as square roots only must be evaluated in (3.55).
Consequently, many authors have approximated vertically inhomogeneous
media by system of layers with linear quadratic slownesses.

3.9 Another Derivation of the Equation of a Seismic
Ray in a Vertically Inhomogeneous Medium

We have already derived the corresponding equation of a seismic ray by two
methods, namely from Snell’s law in Subsection 3.6.1, and from Fermat’s
principle in Subsection 3.6.2. In the latter derivation we used the z-coordinate
as an independent variable. It is quite natural, because the velocity is a function
of the same variable, v = v(z) . In the case, Fermat’s functional does not contain
the dependent coordinate x, which leads to a substantial simplification of
Euler’s equations.

Here, we shall describe the third derivation of the same equation of a
seismic ray by introducing the x-coordinate as an independent variable. Now,
let us express the path element as

ds=vdx2+dz2 =1+(z")2 dx , (3.56)
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where z' =dz/dx. Then

B B
d \/1
I > J. +(Z dze _fF(x,z(x),z’(x))dx (3.57)
4v(z) v(z) b
where
' 1 N2
F(x,z,z)=;6 1+(z")" . (3.58)
Euler’s equation now takes the form
_d_[ﬂ_F_j F _, 550
dx\ 2oz’ oz '

However, this equation cannot be easily simplified although function ¥ does
not contain variable x explicitly. To explain this problem, let us remind a
similar situation in mechanics.

If Lagrangian L(q j(t), q; (1), t) does not contain the time explicitly, it is

better to consider the Hamiltonian. Introduce the generalised impulses

oL

P=—, (3.60)
ey
and the Hamiltonian
n
H=Yp4,-L= Zﬁ . (3.61)
=1 g,
J
First, let us differentiate the Hamiltonian with respect to time:
dH d| JL 0”L . oL JL 0”L ﬁL
dr dt ﬁqj ﬁq é’qj é’qj o o

here we have used the Finstein summation convention and Lagrange’s
equations (3.7). Consequently, if the Lagrangian does not depend on time
explicitly, ie. AL/Jt =0, the Hamiltonian is constant, H = 0. (The
Hamiltonian is equal to the mechanical energy, H = T +V , which is conserved
in this case).

Since function F, given by (3.58), does not depend on x explicitly, it follows
from the analogies from analytical mechanics that

oF
oz’

'~ F (3.63)
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is equal to a constant. Denoting this constant by (— p) , we have

OF 1
p=F-z2'—=——"F——=. (3.64)

7' Y W1+(z')?

This can be expressed as

dz ll_pzvz

i e , (3.65)
which agrees with Eq. (3.38).

In Chapter 5 we shall consider further independent variables in Fermat’s
functionals, such as the length of the ray, s, or travel time 7. Wee shall not
consider these formulations here, because in the special case of v = v(z) they
lead to more complicated equations.

It should also be noted that different types of differential equations are
obtained in the individual cases. Euler’s equation (3.59) is a second-order
differential equation. Since function F is independent of variable x, it is
possible to replace this equation by a first-order differential equation (3.65), i.e.

dz(x) ~ 1—p2v2(z)
dx pv(z)

~0 . (3.66)

Nevertheless, this differential equation is not easy to solve, because this is a
non-linear equation (with the exception of the trivial case of v(z) = const.).

However, if the last equation is reformulated for the inverse function x = x(z),
the situation simplifies substantially:

dxa) __pld) (3.67)

4z 1-p?(2)

see Eq. (3.38). This is a very simple differential equation as the unknown
function is not contained in the second term. The solution can be written
immediately in the form of an integral:

| pv
= == 1\ 3.68
x(Zl) X(ZO)+Z{ {——1—p2v2 Z ( )

see Tab. 3.1. Therefore, for analytical or numerical computations, formulae
(3.38) and (3.68) should be used.

96



3.10 A Review of the Formulae for Vertically
Inhomogeneous Media and Spherically Symmetric

Media

The basic formulae are contained in the following Tab. 3.1.

Table 3.1. Equations of rays and travel-time curves.

Medium

Vertically inhomogeneous
Velocity: v=v(z)
Contributions in terms of i:

dx = dztani(z)
dz

dg=s——==
‘ vcosi(z)

Snell’s law (equation of a seismic ray):

sini(z)
v(z)
= sini(z) = pv

Contributions in terms of p:

dx=d Sini_d pv
* Zcosi— z /1—p2v2
dz
dz=

v/l —pzv2

Integral expessions:

(zp —xzo, _[ pvdz

Equation of the travel-time curve:

\/—T
(zp Zop IVW

Spherically symmetric

v =v(r)

rd®@ = drtani(r)
dr

dr=——m
¢ vcosi(r)

rsini(r) B
v(r)

= sini(r) = £
3

dr sini dr pv
d @l = =g
rocosi ro 2 52,2
rdr
dz=




3.11 Appendix: Rays and Travel Times for a Convex
Velocity-Depth Distribution

We have derived analytical formulae for seismic rays and travel times for two
types of an inhomogeneous medium:

1) for the velocity as a linear function of depth, given by (3.41), see

Section 3.7;

2) for a linear quadratic slowness, given by (3.51), see Section 3.8.
These velocity-depth distributions have been used by many authors. In the first
case, the second derivative of velocity with respect to depth 1s zero, vilz) =0,
In the second case, the velocity is a concave function of depth, v'(z) > 0.

However, the velocity-depth distribution at shallow depths is usually
convex, v"(z) <0, i.e. the velocity gradient near the Earth’s surface is large,
and then gradually decreases with depth. As a better approximation to this
velocity-depth distribution we could consider, e.g., the following function:

Wz) = vy 1+ B (3.69)

where v, and S are again constants, z is the depth. Let us derive the equations
of rays and travel times for this velocity function.
Denote again the parameter of a ray by p, see (3.30). Introduce a new

variable, namely velocity v = v,4/1+ fz , instead of depth z. Since

__wB__viB,,
2J1+ Bz 2v

dv , (3.70)

the indefinite integrals for epicentral distance x and travel time 7 become:

2 jv (‘ 2")

X .[ Lidd dz s d
— i f——— —— = — Vv,
\ll—pzv2 P"gﬂ \ll—p2v2
(3.71)
_[ dz 2 I dv
T= = .
v4/l —]92v2 V(%IB y1 —pzv2
Integrating by parts, the epicentral distance can be expressed as
xX=— 22 [v\/l—pzv2 - j\/l—pzv:2 dv]:
pvo B
(3.72)

= - 1 [V\H—pzvz —larcsin(pv)} .
p

2
pvo B
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For the travel time we immediately obtain

2

pvip

= arcsin(pv) ) (3.73)

Assume that the ray begins at the coordinate origin, where x =z=7=0
and v = v,. At a depth z;, denote the velocity by

vy =voa/l+ 2 - (3.74)

It follows from (3.72) to (3.74) that the epicentral distance, x|, and travel time,
7, , corresponding to this depth are

Vi

Xy = %w[arcsin(PV)—Pv\H —p2V2] , T = 2 [arcsin(pv)] %

. .
PV B Vo

Vo
(3.75)
These relatively simple formulae solve our problem for the velocity
distribution given by function (3.69).
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Chapter 4

Seismic Rays and Travel Times in a Spherically
Symmetric Medium

In this chapter we shall consider the Earth as a spherically symmetric body, i.e.
as a body in which the physical parameters are dependent only on the radical
distance from its centre.

4.1 Seismic Rays in a Medium Consisting of Concentric
Spherical Layers

A simple model which takes the sphericity of the Earth into account is
composed of spherical concentric layer. Here we shall assume each of the
layers to be homogeneous and isotropic. The seismic rays in each layer are then
straight lines. At the spherical interfaces we shall assume that the same laws of
reflection and transmission hold as if the interface were approximated locally
by the tangent plane. (It follows from more detailed considerations that the
approximation by tangent planes is applicable if the radius of curvature is much
larger than the wavelength). Seismic rays can then be constructed
geometrically. We shall derive the corresponding formulae for this purpose.

Fig. 4.1. A seismic ray in a spherical layer.

Consider the wave propagation in the first layer along abscissa AB
connecting the outer and inner boundaries (Fig. 4.1). Their radii are denoted by
r, and r,, respectively. The angles made by the radius and the ray in the first

layer are denoted by i; at point 4,and i{k at point B. Since the layer is spherical,

these angles are different, i > i;. A simple relation between them follows from
the sine theorem applied to triangle ABO:
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. . P
sini; sinf  sini
-—F-=1 (4.1)
%) n n

/3 being the internal angle in triangle ABO at vertex B.
Snell’s law, applied at point B (at the interface of the first and second
layers), yields
sini{  sini
—l -2 (4.2)
L4 ¥g

Combining (4.1) and (4.2), we arrive at the generalised Snell’s law for a
spherically layered medium:

rsini;  rysini

m=aams (4.3)
1 ]

Quantity p is called the ray parameter in a spherically layered medium. This is
a constant along the whole ray in this medium. For a given model of the
medium and a given initial angle i;, Eq. (4.3) makes it possible to construct the
whole ray. Consequently, this equation is also referred to as the equation of a
ray in a spherically layered medium.

4.2 Equations of Seismic Rays and Travel Times in a
Spherically Symmetric Medium

A medium in which the velocity is dependent only on the spherical coordinate »
(distance from the Earth’s centre) is called the spherically symmetric medium

or radially symmetric medium. The velocity in this medium is thus v = v(r) .

4.2.1 Generalisation of formulae for a spherically layered
medium

Snell’s law (4.3) for homogeneous spherical layers can be generalised to a
general spherically symmetric medium as follows:

rsini(r)
O

w

4.4)

where p is a constant characterising the particular ray. This generalised Snell’s

law represents the equation of a seismic ray in a spherically symmetric
medium.

Consider an infinitesimal part of a ray in a spherically symmetric medium
(Fig. 4.1). When a wave has passed through a path ds, the corresponding

increments in the angular epicentral distance, d®, and in the travel time, dz, are
given by
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dr ) dr sini dr pv
d@z——tanz(r) ==,
4 r coSi r 2 2.2
4.5)

dr rdr
veosi(r) . [,2 %2 '

The other formulae are summarised in the right column of Tab. 3.1. The last
equations in the table are the parametric equations of a seismic ray in a
spherically symmetric medium for the source and receiver on the surface:

dr=

R
rdr

R
o(p)=2p [—23 - [—l0r
A o e S N e

where R is the Earth’s radius and 7, is the radial distance of the turning point
from the Earth’s centre (the deepest point of the ray); see Fig. 4.1.

ds ﬂdr
4 d @ /'\
"
de R
a) b)

Fig. 4.1. Rays in a spherically symmetric medium: a) an infinitesimal segment;
b) a whole ray.

(4.6)

4.2.2 Direct derivation of the equation of a ray from Fermat’s
principle

It follows from Fig. 4.1 that

ds=y(rd@)? +dr? =\r2@? +1dr , “.7)
where @' =d @/ dr . Fermat’s functional is

B

B
[F(r,@, 0)dr= j—l—\/rz@’z +1dr (4.8)
y V@)
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and the corresponding Euler’s equation takes again a simple form:

0——‘1—(%) _é’_i__(i_(é’Fj 40
T dr\oe) /e dr\se') s

Therefore, the last derivative must be a constant,

_OF 1 rle @.10)
P20 "y [ 29211 '
which may be expressed as
de pv

(4.11)

dr . /rz_pzvz )

Again, let us express Eq. (4.10) in terms of angle i. It follows from Fig. 4.1
that

- rd@® o
ani = = :
l dr r
Inserting it into Eq. (4.10) we get
r tani rsini
p= = = ) (4.12)
vytan“i+1 b

Equations (4.11) and (4.12) agree with Eqgs. (4.5) and (4.4).

4.3 Determination of the Ray Parameter from
Observations. The Bendorf Equation

4.3.1 Determination from the travel-time curve

The ray parameter p can be determined from the travel-time curve of the
seismic wave. To demonstrate it, let us consider the situation as show in
Fig. 4.2 for a plane surface of the Eatrh.

Denote by v, the velocity near the Earth’s surface and by i, the angle of
incidence of a seismic wave at the surface. Further, denote by c the apparent
velocity with which the wavefront propagates along the surface. Consider the
wavefront AB which, after an infinitesimal time dt, is displaced by a distance
ds=vydt to point C. Its projection onto the Earth’s surface moves from point
A to point C by a distance d A = cd¢. From the triangle ABC we have
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sinig = — = —2—=—-2 (4.13)

wavefront at time #,+ds

wavefront at time £

ray

Fig 4.2. Situation for the derivation of the Bendorf equation.

Consequently, for the ray parameter p = (sinio ) / vy we get

d¢

== (4.14)

This is the Bendorf equation for a vertically inhomogeneous medium. Thus, the
ray parameter p can be obtained as the derivative of the travel-time curve at the
corresponding epicentral distance A; see Fig. 4.3.

ﬂ\f M

) B b) ®
Fig. 4.3. Determination of the ray parameter p as the derivative of the travel-
time curve: vertically inhomogeneous medium, p = (sinio ) / vg =tany; b)
spherically symmetric medium, p = R(sinio ) / Vo =tano .

Moreover, it follows from (4.13) that
1

p=—. (4.15)
€
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Thus, the ray parameter p is the reciprocal value of the apparent velocity with
which the wavefront propagates along the Earth’s surface.
Now, let us consider a spherically symmetric Earth. In this case

dA=Rd®, where R is the Earth’s radius and @ is the angular epicentral
distance. Inserting into (4.13) we get

ﬁ_RsiniO_ 4R
d@_ VO _pa (’ )

where p is the ray parameter for a spherically symmetric model. Equation
(4.16) is the Bendorf equation for a spherically symmetric model. It enables us
to determine the ray parameter p again as the derivative of the travel time
curve; see also Fig. 4.3b.

4.3.2 Direct determinations of the ray parameter

Instead of numerical differentiation of the travel-time curve, its derivative can
be estimated from differences of the travel times observed at a group of closely
distributed seismic stations, called a seismic array. Such measurements yield
more accurate values of the ray parameter than the differentiation described
above.

An estimate of the ray parameter can even be obtained from observations of
one station only, if a three-component record is available. In this case the angle
of incidence i, can be determined by means of polarisation analysis. If the

surface velocity v, is known, we can then calculate the ray parameter p.

4.4 Interpretation of Travel-time Curves of Refracted
Waves in a Spherically Symmetric Model. The
Wiechert-Herglotz Method.

So far we have solved only so-called forward seismic problems, i.e. for a given
model of the medium and a given source we have calculated seismic rays and
other characteristics of the wave field. By inverse seismic problems we mean
opposite processes, i.e. determinations of the parameters of the medium and of
the source from observed data, such as travel-time curves, dispersion curves,
seismic amplitudes or whole seismograms.

Solutions of inverse problems are generally more complicated than solutions
of forward problems. Inverse problems frequently lead to complicated systems
of equations which are often non-linear, badly conditioned, etc. Only in
exceptional cases, the solution of an inverse problem can be found in an
analytical form. We shall describe here one of these exceptional cases. It will
be the Wiechert-Herglotz method for interpreting travel-time curves of
refracted waves in a spherically symmetric model. As a result of interpreting a
travel-time curve by this method, we obtain a radial distribution of velocity,
v=v(r).
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We shall restrict ourselves to the special case in which the ratio »/ v(r)
decreases continuously with depth. The rays are then convex downward. Their
parameters read Eq. (4.4).

Assume a travel-time curve of P or S waves to be known for epicentral
distances from @ =0 to a distance ® . According to the Bendorf equation
(4.16), we obtain the corresponding ray parameters p by differentiating the
travel-time curve. Therefore, we assume that function p = p(®) is also known.

Al Oy

0

0 E,

5 b)
Fig 4.4. Graphs illustrating the Wiechert-Herglotz method: a) travel-time
curve; b) seismic ray.

Consider an epicentral distance @), such that 0 < @, < ®"; see Fig. 4.4. The
seismic ray arriving at this distance has its deepest point 7; (turning point) at a
radial distance r;, which is unknown. Denote the velocity at this depth by

2 :v(rl). Since the angle of incidence at this point is 90°, for the ray
parameter we have, see (4.4),
A

ple)="+. (4.17)

14|

Since p(@l) can be determined from the Bendorf equation,

p(&)= (&%j . (4.18)

the ratio /v, is known. We need another equation to determine 7, and v,
separately. We shall derive such a formula, which will enable us to determine
the radial distance r; independently.

Denote the Earth’s radius by 7, and the velocity at the surface by v . It will
be convenient to introduce function 7(r), defined by the above-mentioned
ratio

n(r) =r/v(r) . (4.19)
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At the surface this function attains value 7, =7, /v, , and at the deepest point
T, the value 7 =r/v; ; see also the review of notations in Tab. 4.1.

Table 4.1. Notation used for different radial distances of the turning point, 7,,.
Function 7 is defined by (4.19)) p is the ray parameter, @ is the epicentral
distance.

r, n=r/v(r) p=1r) é(p)
0 M =7/vo o 0
r n n o
n m=n/v h &y

We assume that 7, >7; and that 7(r) is a monotonously decreasing
function when moving from the Earth’s surface to the deepest point T,
(Fig. 4.5).

77 N
o

n
T

4

O rl 14 ro
Fig 4.5. Function 7(r) = r/v(r).

It follows from (4.6) that
2pdr

op)= |———.
O [ — p?

where we have denoted the radial coordinate of the turning point by r,,. Since

(4.20)

we assume a unique correspondence between r and 7, we may consider the

inverse function, r = r(n) , and perform the integration with respect to 7:

(4.21)

where the lower bound of the integral is 7,, =7, / v(rm) =P
Equation (4.21) has the form of Abel’s integral equation whose solution
determines 7 as a function of r. There is a general theory of solving this type of
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integral equations. However, we shall not use this general theory here, but we
shall derive the solution for our special case only

Apply the operation

m -2

(p>-n2) ap

(4.22)
T

to both sides of Eq. (4.21). This represents the integration over the seismic rays

from the ray arriving at @ to shorter epicentral distances up to @=0. We
obtain

_@dp o

\/pi jd!\/p—i/n 2d:7d

2p dr
mdnn{r\/pz - nEn* - p? an'? o

In the last step we interchanged the order of integration. Since we integrate
over a triangular domain, the integration bounds must be modified according to
Fig 4.6.

p ' / _ p N N
g PER p=n
"/ : M/ :

ooy T Moy o g

Fig. 4.6. Integration over the triangular domain in (4.23). The arrows indicate

the first (inner) integration: a) the inner integration with respect to 7; b) the
Inner integration with respect to p.

In integrating on the left-hand side of Eq. (4.23), we shall use the formula

dx
j = h_lxzarcoshlen(x+\/x2—l).
N

(4.24)
Integrating by parts, we obtain
o
@a.rcoshﬁ} - J'—a;rcosh( J [z d?] g .
{ My p 9P Id” d j\/(p -t )n* - p?)
(4.25)
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The first term on the left-hand side of Eq. (4.25) is zero, because @ =0 for
p =1 (see Tab. 4.1. and formula (4.21)), and arcosh(l) =
Now, calculate the last integral in (4.25). Since 2p in the numerator is the

derivative of p2 , let us introduce the substitution u = p2 and notation

2 2
Nl 771—r12 > N=772=r—
Vi v
Then, since 1> 7,
I‘I 2pdp _ du
(= a2 )m? - p?) i (= M) )

(4.26)
du

Ty

Denoting a = (N—Nl)/Z and w= u—(N+ Nl)/2, we obtain

Im [ WT -7z . 4.27)
I\/—a_—w arCSIIl . T

Consequently, Eq. (4.25) becomes (see the changes of the integration bounds in
Tab. 4.1)

rod
J‘arcosh—ad@ = ﬂj—r = ﬁlnﬁo—
0 Th y T n

Finally, we arrive at

)
p 1 p(0)
In-2 = — jarcoshp(@l)d@ . (4.28)

n

This is the famous Wiechert-Herglotz formula for determining the radial
distance r; of the turning point (deepest point) of the ray which arrives at
epicentral distance @,. Therefore, in order to calculate this radial distance, we
must determine the derivatives of the travel-time curve, p(®), and to compute
an integral over the epicentral distances from @ =0 to @,.

If r, is known, the corresponding velocity v, =v(r1) can be determined
from (4.17). This process can be carried out for any 7 in the range
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ro2r =r", where r* corresponds to the maximum epicentral distance @".

We have thus found a method for determining the velocity as a function of the

radial distance.

Although the Wiechert-Herglotz method is a powerful method of studying
the Earth’s interior, it has some limitations, in particular:

1) Only spherically symmetric models can be obtained by this method (a
modification for a vertically inhomogeneous medium also exist). Lateral
inhomogeneities of the medium cannot be studied by this method.

2) The method fails at depths where no rays have the turning points, i.e. in low-
velocity zones. Such problems occur in the asthenosphere at depths of about
200 km, and also in the transition zone between the outer and inner cores.
As opposed to it, the large decrease of velocities when passing from mantle

to core does not cause principal problems. Namely, a travel-time curve reduced

to the surface of the core can be constructed by subtracting the PcP travel times
from the PKP travel times. The Wiechert-Herglotz method is then applied to
the reduced travel-time curve to obtain the velocity structure in the Earth core.

In spite of the limitations mentioned above, the Wiechert-Herglotz method has

led to fairly precise determinations of seismic velocities throughout most of the
Earth.
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Chapter 5

Seismic Waves in More Complicated Models of
the Medium

In this chapter we shall deals only with several selected problems of wave
propagation in complicated media, which are closely related to the problems
discussed in the previous chapter. A more detailed description of the wave
propagation in complicated media can be found in specialised literature, e.g., in
the lecture notes by Psencik (1994) and by Popov (1996).

5.1 Mathematical methods of studying the propagation
of seismic waves

The theory of seismic waves is now an extensive discipline, in which various
methods of mathematical physics are used. The mathematical methods in the
theory of seismic waves can be divided into the following main groups:

a) numerical solution of the equation of motion;

b) wave methods;

¢) approximate methods.

Each of these methods has certain advantages and disadvantages. A choice of
the method for solving a particular problem depends on our computational
possibilities, development of the theory, and required accuracy. Let us briefly
discuss the main properties of the individual methods.

Direct numerical solutions of the elastodynamic equations are usually based
on the method of finite differences or the method of finite elements. These
methods make it possible to compute the complete wave field. However, only
relatively small models can usually be considered, because the number of
numerical operations increases enormously with the increase of the dimensions
of the model. Moreover, various numerical instabilities of these methods
represent also serious problems. We shall not deal with these methods here.

The wave methods are based on analytical solutions (the so-called formal
solutions) of the elastodynamic equations. Such solutions can be found in the
case of some simple models of the medium, e.g., for models in which the
velocity is dependent on one coordinate (depth) only. In the case of a point
source, the solution is usually given in the form of a line integral in the
complex plane or along the real axis. The corresponding integration is very
difficult to perform for two reasons:

1) the integrand is complicated, and has various singularities along the

integration path;

2) the integrand is usually rapidly oscillating.

Consequently, the corresponding integrals have been calculated exactly only in
exceptional cases. The wave methods do not provide us with expressions for
individual waves, but yield the wave field as a whole. For this reason, they are
especially convenient in the studies of wave phenomena where interference
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plays an important role, e.g., in studies of surface waves, waves in media
containing thin layers, reflection and transmission at transition layers, etc.
Typical representatives of the wave methods for layered media are so-called
matrix methods. Their detailed description can be found, e.g., in the lecture
notes by Novotny (1999).

The most important methods in seismic prospecting and in many other
applications (see the previous chapter), are approximate methods, such as the
ray method and its various modifications. In the ray methods, the individual
waves (such as direct, reflected, refracted, head waves, etc.) are studied
independently of each other. In spite of many limitations of these methods,
they are usually very fast from the computational point of view, and applicable
to very complicated models of the medium. At present, ray methods are
practically the only methods which make it possible to compute the wave
propagation in three-dimensional models of the medium.

We shall demonstrate below the possibilities of the ray method on several
typical problems.

5.2 Seismic Rays in 2-D Media; the Lagrangian
Approach

Consider an inhomogeneous medium where the velocity, v, is a function of two

Cartesian coordinates, x and z, i.e. v =v(x, z). We shall speak of a two-

dimensional medium (2-D medium). As before, we consider the z-coordinate to
be the depth, and the x-coordinate to be a horizontal coordinate.

We shall derive the equations of seismic rays again from Fermat’s principle.
In this case, Fermat’s functional is of the form

B
[ ds (5.1)
A

V(x, z) ’

where ds is a path element,

ds=vdx? +dz? ; (5.2)

see (3.1) and (3.33). As the independent variable we may choose varies
quantities, and accordingly we may write

dign= 1+(E)2d - 5.3
s = ix X = (5.3a)
= l+(d—x)2d - 5.3b
- dZ Z_ (‘ )

(%}2 dr= (5.3¢)

s
Q-A|CL
N Ra
~—_

™
+
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dx)2 (dz)z
- | = | ds= 5.3d
\/(ds "\ds g (539)
(dx)2+(dz)2d oy
g -— 3e
do) "\do) 7"
where 7 is the travel time, s is the length along the ray, i.e. ds=vdr and

5= jvdr. Quantity o is defined by o= Ivds, do=vds=v*dr. This

quantity resembles the angular momentum in the mechanics of particles.

Let us derive the equations of seismic rays for the individual cases
mentioned above. In this section we shall use Euler’s equations, i.e. the
analogues of Lagrange’s equations of the second kind in analytical mechanics.

We shall restrict ourselves only to the rays in the (x,z) -plane.

In order to compute the travel-time curves, the corresponding equation for
the travel time must be added to the equations of seismic rays.

5.2.1 Independent variable x

If the x-coordinate is chosen as the independent variable, see (5.3a), the
integrand in (5.1) takes the form

o, o), 29 = L

) (5.4)

and Euler’s equation reads

o (o) e, "
dx\ 2z oz <)

This yields the equation of a seismic ray in the following form

d Z 2 I(1
(——/T]V( 7ol oo

We have obtained one ordinary differential equation of the second order for the
unknown function z=z(x). On integrating this equation we encounter

problems with the rays which are close to the vertical, because very large
increments Az correspond to a given increment Ax.

5.2.2 Independent variable z

In this case, we can write the equations which are analogous to (5.4) and (5.5),
but with the interchanged role of variables x and z. Consequently, we get
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d o 5 (1
E[;——WJ = 1+(x')2 E(;} =0 . (57)

Problems now occur at places where the rays are close to the horizontal.

5.2.3 Independent variable

The problems with vertical or horizontal rays, mentioned above, can easily be
removed if the travel time is used as the independent variable, see (5.3¢c). The
integrand in (7.1) may then be expressed as

/ 2 ! 2
F(r, x(7), z(7), x'(7), z'(z‘)) = %ﬁ)—) >

where x'=dx/dz and z'=dz/d7z. For a seismic ray we now obtain two
equations:

(5.8)

i X —\/x’2+z’2£l:
dr(v /(x:)2+(zl)2J ()" +{z) &’x(vj 0,

d z' 2. 22 (1)
E[V ,(x’)2+(z’)2J_ () +(2)7 é’z(v)_o'

Since x’' and z' are the x- and z- components of velocity , respectively, it

holds that \/(x')2 +(z')* =v. Hence, Egs. (5.9) may be simplified to read:

dz\,2dr Vax\v) " dr v2dr Vvt '

An equivalent form of these equations is as follows:

(5.9)

d(idijrl&v 0 1(1012) 1y
vox 0 dr

L AR | 2P g, 5.
dr\y2dr v2dr Yy 2z . (31}

5.2.4 Independent variable s

Quite regular increments along the ray can be obtained if the length along the
ray, s, is used as the independent variable; see (5.3d). Analogously to (5.9) we

get
L3 & o o 2 L) o
ds[v /(x,)2+(z,)2J ()7 +(z) é’x(v) Uy
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301_( =g ]_m;_@ -

¥ +(z’)2

where x' =dx/ds and z’' =dz/ds are the directional cosines. Consequently,

J(x)? +(z')* =1, which follows also directly from (5.2) if both sides are
divided by ds. Hence, the equations of a seismic ray simplify to read

CEEC I (VY (T E ) (VR
ds\vds) ox\v) 7 ds\vds) dz\v) | (312)

This form of the equations of a seismic ray has frequently been used in
numerical solutions. Note that Egs. (5.12) also follow immediately from Eqgs.
(5.10); it is sufficient to divide Egs. (5.10) by v and to write vdr =ds.

5.2.5 Independent variable o

In the case of the independent variable o, we could proceed analogously as in
the previous cases, and take into account that

e (T T -

do do) —v\\ds ds

This leads to a simpler form of the final equations. We can obtain the
corresponding equations directly by dividing Egs. (5.12) by v and writing
do=vds. We get

dx lz(_l_j_o d’z lﬁ(L)_o 513
do? 2Of’xvz_’dd2 20”Zv2_' 2:13)

If function 1/ v2 (quadratic slowness) is, e.g., a linear function of coordinates,
simple analytic solutions for a ray can be found. However, the usual way of
solving the equations of a seismic ray is a numerical solution. Various standard
methods, e.g., the Runge-Kutta method or Hamming predictor-corrector
method can be used for this purpose.

Let us demonstrate a simple analytical solution of Egs. (5.13) on the case of
the vertically inhomogeneous medium which has already been considered in

Section 3.8, i.e. a medium with a linear quadratic slowness. Thus, assume 1/ 7
to be of the form (3.51), i.e.

1
— =a-bz, (5.14)
v
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where a and b are constants. The solutions of Egs. (5.13) can then be expressed
as

b
x=ko+k,, z=—Zo-2 +q10+4q, , (5.15)

ki,ky, q and g, being constants. Consider a ray passing through the
coordinate originx =z =0. At this point, put =0 and denote by &, the
angle which the ray makes with the z-axis. Under these initial conditions, we
obtain k, =g, =0, and

dx dx sin &, dz COS O,
o8 (), ae(t)_ -8 e
o/ 50 vds/ g Vo do =0 v

where v is the velocity at z=0, 1.e. vy = 1/ Ja . Eliminating parameter o
from Egs. (5.15), we arrive at a very simple equation of a seismic ray:

Z:—észrz—ix , (5.17)
or
z=——b———x2+(c0t5)x (5.18)
4asin’ &, o '

Compare these equations with Egs. (3.55), where we calculated epicentral
distance x as a function of depth z. If the role of these coordinates is
interchanged, even a simpler function, namely quadratic function (5.17), is
obtained. Hence, it is very convenient to approximate a vertically
inhomogeneous medium by a system of layers with the velocity distribution of
the form (5.14) in each layer. The computation of seismic rays is then very fast.

5.3 Other Descriptions of Seismic Rays in 2-D Media;
the Hamiltonian Approach

The equations of rays, derived in the previous section, are differential equations
of the second order. They may be replaced by a system of differential equations
of the first order. At first, let us again remind some analogies with analytical
mechanics.

Lagrange’s equations of the second kind, see Section 3.2, represent a system
of n differential equations of the second order, where n is the number of
degrees of freedom. These equations can be replaced by a system of 2n
equations of the first order, called Hamilton’s equation, in the following way.

Introduce generalised momentum p; by the relation

oL

o= (5.19)
aq

D
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instead of generalised velocity ¢ ;, and the Hamiltonian H = H| (q jaDj ,t) :

n
H=)p4;,-L, (5.20)
j=1

instead of the Lagrangian L= L(q 7ol j,t). For the derivatives of the

Hamiltonian we get

aq ; _é’qj

6H  OL d(ﬁLJ dp;

“ailag,) " T

oH 9, OJL %;
= tp =4,
op; M op; 94 0p;

where we have used Lagrange’s equation (3.7) and definition (5.19). In this
way we arrive at Hamilton’s equations,

oH . oH

J g i B — 521

Using the analogies from analytical mechanics, we shall rewrite the
equations of seismic rays, derived in the previous section, in Hamiltonian
forms.

5.3.1 Independent variable x
Using function F'in the form (5.4), we shall introduce

oF z'

IR UR (5.22)
Oz vyl +(z’)2

where z' = dz/d x . Equations (5.22) and (5.6) can then be expressed as

dz P,V dp,

1 é (1)
L , - L), (5.23)
d 1_p22v2 dx ’1—]922\72 Oz \v

Denote by & the angle which the ray makes with the positive part of the z-
axis. This means that & is the angle of incidence on the horizontal plane which
passes through the corresponding point; we consider angle ¢ in the bounds
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—7<8<x. Then z' =cots, y1+(z')* =Vsins, p, =(cosd)/v, and Egs.
(5.23) take the form

E3 _ oot @—1[ Ly @] (5.24)
dx %9 4y Ty % sin2s9z) .
5.3.2 Independent variable z
Now, let us introduce
x’
(5.25)

Pe=—T———;
1+ ()2

where x' = dx/dz. Equations (5.25) and (5.7) yield the following equations:

fr_ oy _ Gm 131
- p2y?  dx /1—p§v2 Ox\v/ ’

which are very similar to Egs. (5.23).
Since x' =tand, p, = (sind)/v, we may write Eq. (5.26) also in the form

(5.26)

83  tand @—1( T aﬁj (5.27)
dz_an > dz v\ cos?s Ox an oz) '

5.3.3 Independent variable 7

If travel time 7 is used as the independent variable, Eqgs. (5.11) can be
expressed as

d_x_ 2 dpx_ _l_ﬁ
dz VP 4 Ty
(5.28)
E_ 2 dpz_ lél)_
ar P Tar TTvaer
Denoting an element along the ray by d s =vd 7, we have
) 5_1)_{_ld_x 5_%_1% __sin5 _cos5
0= vaz® "0 gy pdg’ x5 g » P25 -
Equations (5.28) then yield
8 sing, 2= coss6 X 4sindD, SZoveoss|, (529
dT—vsm 4 cos dc+sm P dz_—vcos : (5.29)
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where we have eliminated term Jv/&r in d p, /d7 and d p,/dz, which gives
only one equation for d&/dz. System (5.29) has frequently been used to
compute seismic rays in 2-D media. The initial conditions for this system are as
follows: x =x,, z=2zy, and § =&, for 7 =17;. This system consists of only
three equations, has no singularities, and works quite reliably. The computation
of the trigonometric functions, however, extends the computer time, which
represents the only disadvantage of this system of equations.

5.3.4 Independent variable s

A 1dx l1dz .
Putting p, = T and p, = S ds’ equations (5.12) may be expressed as
dx dp, & (1)
ds P Tds T o\
(5.30)
dz dp, & (lj
ds P20 a5 T e\

Note that p, and p,, introduced here, differ from those in Eq. (5.28).

Equations (5.30) also follow immediately from (5.28) if we divide Egs. (5.28)
byvandput ds=vdr.

5.3.5 Independent variable o

Equations (5.13) can also be expressed as

dx dp, 15(1)
do P> 4o T2ax\,2)°
(5.31)
dz dp, 1&’(1)
do P70 Tdo T 20,2

This is also a convenient system for computing seismic rays. Since

do=vds=v? dz, in order to compute the travel time, we must add the
equation

dr 1
e (5.32)
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Chapter 6

Basic Concepts and Formulae of Continuum
Mechanics

In this chapter we shall summarise the basic concepts and equations of the
theory of elasticity which are required in the theory of seismic wave
propagation. For details we refer the reader, e.g., to Fung (1965, 1969), and the
lecture notes by Novotny (1999). This chapter represents a simplified version
of the corresponding chapter from these lecture notes.

6.1 Mathematical Models in Physics

In order to simplify the mathematical and physical description of studied
phenomena, various simplifications and models are used. The wusual
idealisations of material objects in mechanics are the mass point (particle),
rigid body, and continuum. The model of a continuum is used in mechanics
when the deformations of a body cannot be neglected.

The continuum in mechanics is a medium with a continuous distribution of
matter. The molecular and atomic structures of matter are ignored in this model
of the medium. The main advantage of the concept of a continuum consists in
the possibility of applying the mathematical theory of continuous functions,
and differential and integral calculi.

When the fine structure of matter attracts our attention, continuum
mechanics cannot be used. In these cases we should use particle physics and
statistical physics.

6.2 Displacement Vector

Real bodies are deformed by the action of forces. The description of the
deformation is based on a comparison of the instantaneous state (volume and
shape) of the body with some previous state, which will be regarded as an
original state. In this section we shall study the corresponding displacements.

Fig. 6.1. Displacements of two neighbouring points, P and Q.
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Therefore, we shall compare a continuum in two states, namely in the
original (unstrained) state, and in the deformed (new, strained) state. Consider
a particle at point P in the original state, which is moved to point P’ in the
deformed state (Fig. 6.1). Denote the radius vector of point P by

X= (xl,xz,x3) , and of point P’ by y= (yl ,yz,y3). The new position, given
by vector y, depends on the initial position x, on the acting forces, physical

properties of the continuum and the time between the original and new states.
The displacement of a particle from an original to a deformed position can

be described by the corresponding displacement vector u = (ul LUy ,u3) .
u=y—-x. (6.1)

We shall usually consider the displacement vector as a function of the
coordinates of the original state:

u=y(x)-x, ie u= u(x) . (6.2)

In this case we speak of the Lagrangian description of motion.
However, we can also express the displacement vector as a function of the

coordinates of the deformed state, u=y—-x=y- x(y), e u= u(y) . In this
case we speak of the Eulerian description. This description is frequently used
in hydrodynamics. Here we shall use the Lagrangian description, with
exceptions in Section 6.4.

In a neighbourhood of point P, let us consider another point, O, which will
be displaced to point Q' in the deformed state (Fig. 6.1). The radius vectors of
points Q and Q' are x+Ax and y+ Ay, respectively. Using the Taylor
expansion, we get

u;(Q) =u;(x; + Axy,xy + Axy,x3 + Axz) =

3 (0u; 3 (0u;
j J
—u (X, %0, %3 )+ Y| —= A +..o=u;(P)+ Y | —=| Ax;+..,
uj(x1,%9,%3) Z[Of,xk] k u;(P) Z(o”xJ k

k=1 (x1,%2,%3) k=1

where j=1,2,3.

To simplify the formulae which follow, let us introduce Einstein’s
summation convention: If any suffix occurs twice in a single term, it is to be
put equal to 1, 2 and 3 in turn and the results added.

Using this summation convention and neglecting the higher-order terms in
(6.3), we get approximately

ﬁuj
uj(Q)=uj(P)+ === Axy . (6.4)

%
s p
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We shall assume that the displacement vector and its first derivatives are
continuous functions of coordinates. The continuity of displacement u
guarantees that an originally continuous body will also remain continuous
during the deformation. The continuity of Ju; / Ox, guarantees the existence

of the total differential of the displacement. Consequently, formula (6.4) can
then be made as accurate as required by choosing point Q sufficiently close to
P. This formula will play an important role in the theory which follows.

6.3 Strain Tensor

If the displacement is known for every particle in a body, we can construct the
deformed body from the original. Hence, a deformation can be described by the
displacement field. However, the displacement vector describes the translation,
rotation and pure deformation (strain) of the medium. But we are not interested
in translation and rotation; these motions are studied in detail in the mechanics
of rigid bodies. We are only interested in those quantities which characterise
the strain. There are two approaches to obtaining these characteristics:

1) subtracting the translation and rotation from the displacement;

2) considering changes in distances.
We shall use the second approach because this approach is more general.

6.3.1 Tensor of finite strain

It is evident that the change in the size and shape of a body will be determined
in full if the changes in the distances of two arbitrary points are known.
However, it will be more convenient to consider the squares of these distances
instead of the distances themselves. Therefore, we shall characterise the
deformations by quantities &; which are defined by the relation

PO -PO" =25;Ax,Ax; 6.5)

where PQ is the distance between points P and Q in the original state, and

P'Q' is the distance between the corresponding particles in the deformed state
(Fig. 6.1).

The square of distance PO can be expressed as (if the summation
convention is used)

PO” = Ax- Ax = Ax,Ax, . (6.6)

It follows from the quadrangle PP'Q’'Q and Eq. (6.4) that

u(P) + Ay = Ax + u(Q) = Ax+u(P) + (;ﬂj Ax; .

LR 4
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By comparing the beginning and end of this equation, we see that

Ju
Ay = Ax + (——j Ax; . (6.7)
ZIV

We shall omit suffix P hereafter. Formula (6.7) can then be expressed in
components as
Ju;

Ay; = Ax; +—Ax (6.8)
5x

Consequently,

—9 é’uk é’uk
é’ i 5)‘:]

Note that we have used different dummy indices, i and j, in the latter formula.
Thus,

o é’u Juy.

; Ox; é’x o"x 4

=) omg Ol
PO - PQ =0f)—xAxiAxk+

Change again the dummy indices to obtain the products Ax;Ax; in all terms:

u; Ou; 0”_ Ouy Axi A
ox; Ix é’x Ix

PQ”-PQ° =

By comparing this expression with (6.5), we arrive at

(6.10)

)

1|y +5uj+0"uk ouy,
=2\ ox, " ox,  ox; ox,)

The array of nine quantities &; is called the tensor of finite strain, and the

]

individual quantities ¢;; are called the components of the tensor of finite strain.

ij

This tensor is symmetric, i.e. &; = &; .

Since the derivatives of the displacement vector have been calculated at
point P, see (6.7), we shall also regard components & as defined at point P,

and speak of the tensor of finite strain at point P.
6.3.2 Tensor of infinitesimal strain

The tensor of finite strain contains products of the derivatives of the
displacement vector, Ju; / Jx ;. These products represent non-linear terms,

which complicate the solution of many problems. However, in many
applications, these quadratic terms may be neglected.
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We shall assume hereafter that the derivatives of the displacement are small,
l.e.
Ou;
Ox

<21, (6.11)

so that their mutual products are small quantities of the second order, which
may be neglected in comparison with the derivatives themselves. In this case,

the tensor of finite strain ¢&; simplifies to yield the tensor

e, = —| —— 4 —=
vy o2 Ox; Ox

]

(6.12)

w

which is called the tensor of infinitesimal strain. In speaking of the strain
tensor only, we shall have in mind the tensor of infinitesimal strain (6.12).

6.3.3 Physical meaning of the components of the strain tensors

Consider an elementary abscissa, PQ, which is parallel to the x;-axis in the
original state, i.e. Ax = (Ax;,0,0); see Fig. 6.2. As Ax, = Ax3 =0, Eq. (6.5)
takes the simple form

lAy|2 ~|Ax)? = 2811(Ax1 )2 .

Consequently,
|ay| = {1+ 26, Ax,; . (6.13)
X9 X2
/Q
Ay
P A @ P
X1 X1
X3 X3

Fig. 6.2. Physical meaning of &;.

The relative extension of the abscissa PQ is defined by

_ |Ayl —|Ax|

U= (6.14)
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Using (6.13), this extension can be expressed as

Hence, component &;; characterises the relative extension of an element which
was originally parallel to the x;-axis. Analogously, components &, and &33
characterise the extensions along the second and third axes, respectively.

Furthermore, if &;; is small and the higher-order terms are neglected, Eq.
(6.15) simplifies to read

Elzﬂl‘l‘zgll—lzl‘f‘gll_l:gllzell . (616)

Thus, in the case of small deformations, components e;;, e); and e;; are

equal to the relative extensions of the line elements which, in the original state,
were parallel to the coordinate axes.

X9 R X2

Ax(z)

' AW Q0

X1 x]

X3 X3
Fig. 6.3. Physical meaning of &, .

Now let us consider two perpendicular vectors in the original state,
AxY = (Ax;,0,0) and Ax? = (0, Ax,,0); see Fig. 6.3. The components of

the corresponding vectors Ay(l) and Ay(z) in the deformed state can easily be
obtained from Eq. (6.8). For the scalar product of these vectors we then get

1 2
Ay(l) Ay(z) = Ayl( )Ayl( ) = 2812AX1AXZ 5

a detailed derivation can be found in Novotny (1999). However, this scalar
product can also be expressed as

Ay® . Ay® = ‘ Ay® “ Ay<2>‘COS¢, ’
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@ being the angle between vectors Ay(l) and Ay(z). Comparing both

expressions for the scalar product, and using (6.13) to express |Ay(1)| and

ay®

, We arrive at

2812
J1+28 1428

cosQ = (6.17)

Introduce the angle a;, = 90° — ¢, which describes the change of the right
angle (decrease of the right angle) due to deformation. For small deformations,
formula (6.17) then yields

sinay, =cos@ =2&, =2ep, .
Consequently, sina;, is small and may be approximated by a4, , so that
O1p = 2612 s (618)

Thus, component e}, is equal to half the change of the right angle between two
line elements, one of which was parallel in the original state to the x;-axis, and
the second was parallel to the x, -axis. The physical meaning of the remaining
components e;3 and e,; is analogous.

6.3.4 Volume dilatation

Consider a small parallelepiped in the original state, the edges of which are
parallel to the coordinate axes, and have lengths d, d,, d;, respectively. The
volume of the parallelepiped is V' = d;d,d5. In the deformed state, these edges
will have the lengths (neglecting higher-order terms)

dl +e”d1, dz +622d2, d3 +e33d3 >
respectively. Therefore, the new volume will be
V'= d1d2d3 (1 + ell)(l +€9 )(1 + 633) = V(l +é;; +téyxy + 333) . (619)

The volume dilatation (cubical dilatation), defined by

9= , (6.20)

then reads

19 =€ +922 +e33 . (621)

Strictly speaking, the new volume can be expressed by formula (6.19) only
if the edges of the parallelepiped coincide with the so-called principal axes of
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strain (these axes remain perpendicular also after the deformation). However, it
can be shown that the sum e;; +e,, +e33 is an invariant, i.e. a quantity which
is independent of the choice of the coordinate system. Consequently, quantity
9 describes the relative change of an arbitrary infinitesimal volume which
surrounds the considered point.

6.4 Stress Vector and Related Problems

6.4.1 Body forces and surface forces

In particle mechanics, we study two types of interactions between particles: by

action at a distance and by collision. An analogous division of forces is

convenient also in continuum mechanics. Therefore, we shall divide the forces
acting in a continuum into two groups according to their “action radius™:

1) Body forces, also called voluminal forces, which have a large action radius.
Examples of body forces are gravitational forces, electromagnetic forces,
inertial force (in dynamic problems), and also fictitious forces in non-inertial
reference frames (Coriolis and centrifugal forces).

2) Surface forces, which have a small action radius. Examples of such forces
are hydrostatic pressure, aerostatic pressure, and forces due to the
mechanical contact of two bodies.

This separation of forces facilitates the formulation and solution of many
problems because:

1) the effect of forces with a small action radius may be approximated by a
surface integral (surface forces) instead of a more complicated volume
integral;

2) body forces vanish in some limits, and may also be neglected in some
problems, e.g., in many problems of elastic wave propagation.

6.4.2 Stress vector

A deformed continuum at rest resembles a rigid body. Therefore, we shall
assume that some notions and equations from rigid-body mechanics can also be
applied in continuum mechanics. However, these analogies will be no more
than basic assumptions. This approach will only facilitate the formulation of
the basic equations of continuum mechanics, but cannot be regarded as a
derivation of these equations. Namely, the general equations of continuum
mechanics cannot, in principle, be derived from more special equations for a
rigid body or a mass point. The validity of the general equations can be verified
only by comparing their solutions with experiments.

Let us start with the description of the stress state in a continuum. Consider
a point, P, and an element of a surface, AS, drawn through this point (Fig. 6.4).
Denote the normal to AS at point P by v. Vector v enables us to define the

positive and negative sides of the element AS (upper and lower sides in
Fig. 6.4, respectively).
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= T(V)

e

Fig. 6.4. Stress vector.

In analogy to the static equilibrium of a rigid body, we shall assume that, in
a deformed continuum at rest, the effect of all surface forces exerted across the

small element AS is statically equivalent to a single force AH, acting at point P
in a definite direction, together with couple AG, acting also at P about a
definite axis.

Let us indefinitely diminish surface element AS by any continuous process,
always keeping point P within the element. From physical considerations it
seems reasonable to assume that vector AH/AS tends to a non-zero limit,

TV = lim —=— (6.22)

whereas vector AG/A4S tends to the zero vector. Vector T is called the
stress vector or traction at point P; see Fig. 6.4. Note that the direction of stress

T™ need not coincide with the direction of normal ¥. Vector T is the
vector acting on the unit infinitesimal surface, the normal of which is v . The

stress at P varies, in general, with the direction of normal v. Vector T can
be decomposed into a normal component (in the direction of v) and a
tangential (shear) component, which is perpendicular to v. We then speak of
normal and tangential (shear) stresses, respectively.

Analogously, we shall introduce the body force, F, acting on the unit
infinitesimal vicinity of point P.

6.4.3 Conditions of equilibrium in integral form

It is well-known from rigid-body mechanics that a rigid body is in static
equilibrium if the total applied force and total applied torque are zero.

We shall assume that an arbitrary part of a continuum, in the deformed state
at rest, is in equilibrium under the same conditions as if this part were a rigid
body. This means that we shall express these conditions of equilibrium in the
following form:

[[Tvas+ [[[Frav =0, (6.23)
S 14
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ﬂ(yxT<V))dS+ [[J[G=xF)ar=o0, (6.24)

S

where V is the volume of the part of the continuum, S is its surface, T is the
surface force acting from the side of the outward normal v, F is the body
force, and y is the radius vector of the point under consideration (in the
deformed state). The first of these equations requires the resultant force to be
equal to zero, and the second equation requires the resultant torque to be equal
to zero.

6.4.4 Equations of motion in integral form

Using D’ Alembert’s principle, the equations of motion can easily be obtained
from the conditions of equilibrium by adding the inertial forces.

Consider any portion of a material body. Let the volume of this portion at
any time ¢ be denoted by ¥ = V(¢) . Let y be the radius-vector of a particle, v be

its velocity, and p be the density of the material at the corresponding point.
Integral

P= jyjjpvdr/

is the linear momentum, and

L= [[Jlyxpv)av

|4

is the angular momentum of this part of the body. Derivative dP/d¢ is the
corresponding inertial force.

Hence, by adding the inertial terms on the right-hand sides of Egs. (6.23)
and (6.24), we arrive at the equations of motion of a continuum in the form

[frass f[feavy =< fffwar . 629
[[yxT)as+ [[foxB)ar == [[fsxm)ar.  ©26)

It should be noted that no demand was made on domain 7 (¢) other than that it
must consist of the same material particles at all times. Equations (6.25) and
(6.26) are applicable to any material body which may be considered as a
continuum. Boundary surface S may coincide with the external boundary of the
body, but it may also include only a small portion thereof..

Equations (6.25) and (6.26) represent the linear momentum theorem and the
angular momentum theorem, respectively, applied to an arbitrary part of a
continuum in the deformed configuration. These equations are also referred to
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as the laws of motion of a continuum, since they are considered to be valid
generally.

6.5 Stress Tensor

6.5.1 Components of the stress tensor

In the previous section we introduced the basic assumption that the action of
forces with a small “action radius” (surface forces) across any infinitesimal
surface element can be described by a stress vector. Thus, to describe the stress
state at a point, it is necessary to know the stresses acting on all infinitesimal
surfaces drawn through this point. This means that surfaces of any shape
should be considered.

To simplify the problem, we shall further assume that we can restrict
ourselves to plane surfaces only. Thus, we adopt another assumption that the
stress state at a point will be described if the stresses acting on all plane
infinitesimal surfaces drawn through this point are known. We shall show that
it will be even sufficient to know these stresses only on three perpendicular
plane elements.

Consider plane element AS which is perpendicular to the i-th coordinate

axis, so that its normal v is parallel to the i-th axis, and has the same
orientation as this axis. Let T = T](i) , Tz(i), 3(i)) be the stress vector acting

on this plane element, and introduce a new notation for its elements,

g5 =T, (6.27)

where i, j =1, 2, 3; see Fig 6.5. The array of nine quantities Ty will be called

the stress tensor, and the individual quantities 7; will be called the components
of the stress tensor.

T12 2 ¢ T(z)
0
713 m - 721
Y Y1
Y3 V3

Fig. 6.5. Introduction of the components of the stress tensor.

Let us repeat the meaning of the individual subscripts in component 7.

Subscript i indicates that the corresponding plane element is perpendicular to
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the i-th axis, i.e. its normal Vv is parallel to the i-th axis. Subscript j denotes the
Jj-th component of the corresponding force. For example, 7y, 71, and 73 are

the components of the force acting on a surface element which is perpendicular
to the first axis.

6.5.2 Cauchy’s formula

Now, we shall show that the nine components of stress tensor Ty are sufficient

to describe the stress state at a particular point. Let us consider point P and an
arbitrary, infinitesimal plane element drawn through this point (Fig. 6.6).

Denote the unit vector which is normal to the element by v = (vl Vo, v3) , and

the stress vector acting on the element by T,

Y
2 1% T(V)

N
Y3

Fig. 6.6. Stress vector acting on a plane element.

If normal v coincides, e.g. , with the direction of the first axis, then
T (P) =1 (P) = <f11= 712> 713)13 ;

see definition (6.27). Thus, in this case, stress vector T is described by three
components of vector T Analogously, if normal v coincides with the
direction of the second or third axes, the corresponding vectors T are equal
to T® and T®, respectively.

For a general orientation of normal v, it seems to be evident that the
corresponding stress tensor T must be a combination of all three vectors

T s T s TG , and that the contribution of these vectors should be weighted
according to the projections of vector v onto the individual axes. Therefore,

T(V) = T(I)Vl +T(2)V2 +T(3)V3 5

where we have omitted the letter P. For the i-th component of the stress vector
we thus get
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I;(V) =TV + Ty; Vo + T34 V3 = le- Vj 3 (628)
A more exact proof of this relation, based on the application of the condition of
equilibrium (6.23), can be found in the literature mentioned at the beginning of
this chapter.

Hence, the stress vector k% acting on a surface element with unit normal
v is completely determined by the components of stress tensor 7.
Consequently, the stress state at a point is described in full by the nine
components 7 ;.

We shall see below that the stress tensor is symmetric (in usual materials),

ie. 7; = 7;;. Consequently, Eq. (6.28) will usually be expressed as

T =g, . (6.29)

This formula is referred to as Cauchy’s formula.
6.5.3 Conditions of equilibrium in differential form

The conditions of equilibrium in differential form can be derived from the
integral conditions of equilibrium in several ways. In the elementary
derivation, the equilibrium of an infinitesimal parallelepiped is usually
considered (Fung, 1969). Here we shall give a shorter derivation which is based
on the application of Gauss’ theorem.

Gauss’ theorem can be expressed as

[[Javaar = [[4,a5= [[avas = [[4,;d5, (6.30)
4 S S S

where A is a continuous vector with continuous derivatives, and v is the unit
outward normal. Denoting the radius vector by y=(y;,¥5,y3) and using
divA =74, / dy; ., we arrive at another form of Gauss’ theorem:

04,
JV”;yde= gAjvde . (6.31)

The i-th component of the integral condition of equilibrium (6.23) is

[[57as+ [[[Fav=0 (6.32)

or, using (6.28), ’ g
[[ev;as+ [[[Fav=0. (6.33)

S V
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Putting 4; =7 and using Gauss’ theorem (6.31), the surface integral in
(6.33) may be expressed as a volume integral:

%, v -
jyjj( o~ F}j dv=0. (6.34)

J

Since the integrand in (6.34) is assumed to be continuous, and volume V' is
arbitrary, integral (6.34) will be equal to zero only if the integrand is also equal
to zero (see the explanation below). This yields the condition of equilibrium in
the form
or 7
EFE+——=0. (6.35)
y;

Let us explain how we have proceeded from Eq. (6.34) to Eq. (6.35) in

greater detail. Assume that there is a point P * where the integrand in (6.34) is
non-zero, say, positive. Since we assume this integrand to be continuous, there

is a vicinity, v*, of point P* where the integrand is also positive. The integral

taken over V' is then positive. This contradicts Eq.(6.34), which must be
satisfied for any volume. This means that the integrand must be zero.

Now, let us consider the second integral condition of equilibrium, 1.e. Eq.
(6.24). For example, for the first component we have

(7 335 )as+ [[[(v2F5 - y3F)dv =0 . (6.36)
S vV

Rearrange the surface integral in this equation by means of Cauchy’s formula
(6.29), Gauss’ theorem (6.31) and the condition of equilibrium (6.35):

”(y2T3(V) —yﬂs_(”))dS =H(J’2Tj3"j —J’3T12Vj)d5 =
S 8

= IV” 5(y271'3)_5(3;37{2) = J’meﬁ A Y B Fz)]dV :

9y Yj
After inserting this expression into Eq. (6.36), since several terms vanish, we

.[JI(TB = T32)dV =0.

As the stress tensor is assumed to be continuous, we arrive at

=% -
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From the second and third components of Eq. (6.24), we would obtain
713 = 73; and 7}, = 7y, respectively. Consequently, we arrive at the condition
of symmetry of the stress tensor,

We have seen that the integral condition of equilibrium (6.24) does not yield
a new differential equation, but only the condition of symmetry of the stress
tensor. Using this symmetry, the conditions of equilibrium (6.35) can be
expressed as

2
F+—=0. (6.38)
o”yj

These conditions relate to the deformed state, i.e. to the Eulerian coordinates. If
the difference between the Lagrangian and Eulerian coordinates may be
neglected (see below), we can express the conditions of equilibrium also as

o"rl-j
E+
Loox

=0|. (6.39)

J

The conditions of equilibrium are frequently used in this form.

Let us explain when the conditions of equilibrium (6.38) may be replaced by
(6.39). Since y, =x; +u;, the following relation holds between the
derivatives of the stress tensor in Lagrangian and Eulerian coordinates:

OTyn  OTwn . O Ol

Ox; Oy, Oy, Ox;

(6.40)

Assuming that the products of the derivatives are small and may be neglected,
relation (6.40) simplifies to read

Oy Oy
g e | (6.41)

Ox oy

This means that the difference between the Lagrangian and Eulerian
descriptions vanishes in this case.

6.5.4 Equations of motion in differential form

The inertial force per unit volume 1s

Finer = _i(pv) 3 (6-42)
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p being the density, v the velocity, and ¢ time. Assume that the time variations
of density p may be neglected. Velocity v, in Lagrangian coordinates, is a
function of the form v = v(x;,x,,x3, ), where coordinates x;,x,,x; describe
the original position, i.e. they are independent of time ¢. Consequently, the total
derivative with respect to time is equal to the corresponding partial derivative:

dv ov A*u

pooo_ v v cou 6.43
ner pdt pO')t pﬂtz > ( )

where u is the displacement vector.

According to d’ Alembert’s principle, the equation of motion can be obtained
from the condition of equilibrium, in our case from Eq. (6.39), by adding the
inertial force. This yields the equations of motion of a continuum in the
following final form:

. Ox At | ’

This is one of the most important equations in continuum mechanics, and the
basic equation in the theory of elastic waves.

To complete the description, let us also give the equations of motion in
Eulerian coordinates. Since these coordinates are also functions of time, the
inertial force contains further terms, and the equation of motion in these
coordinates takes the form

o oy, O 6.45
! = + . s 2

The last term in this equation cannot be neglected in many problems of
hydrodynamics, which causes the corresponding equations to be non-linear
and, consequently, difficult to solve. From this point of view, Egs. (6.44) in
Lagrangian coordinates, which we shall use in these lecture notes, are simpler.
Consequently, as opposed to hydrodynamics, we shall be able to solve many
simple problems in analytical forms.

6.6 Stress-Strain Relations

6.6.1 Rheological classification of substances

The relation between strain and stress depends on the type of substance and on
many other factors. This is different for gases, liquids and solids, but there are
great differences even between substances of the same phase. The study of
these relations is the subject of rheology. The relations between strain and
stress in real substances may be very complicated, so that various simplified
models are introduced in rheology.

135



Hereafter we shall restrict ourselves only to linear elastic substances. A
substance is said to be elastic if the strain completely vanishes on removal of
load. A special type of elastic substance is a linear elastic substance, in which
the strain and stress are directly proportional.

6.6.2 Generalised Hooke’s law

The classical Hooke’s law describes deformation only in the direction of the
acting force. However, we have seen that strain and stress are complicated
quantities of a tensor character. Therefore, we shall generalise the classical
Hooke’s law by assuming that a general linear relation exists between the stress
and strain tensors:

Tij = Cijklekl g (646)

This relation is referred to as the generalised Hooke’s law, and quantities Cjjy
are called elastic coefficients. Relation (6.46) describes well the behaviour of
many substances, such as crystals and many other anisotropic materials. As a

special case, it also describes the properties of many isotropic substances.

The total number of coefficients Cyy 1s 3* =81. However, as a

consequence of the symmetry of the stress and strain tensors, the number of
independent elastic coefficients reduces to 6x 6 =36. Moreover, the elastic
coefficients are also symmetric with respect to interchanging of the first and
second pairs of the subscripts, i.e. Cjy = Cjy;» which follows from energetic

considerations. In this way, the number of independent elastic coefficients
reduces to 21. This number of elastic coefficients appears in the triclinic
crystallographic structure. For crystals of a higher symmetry, the number of
independent coefficients reduces further, so that the monoclinic structure is
characterised by 13 independent elastic coefficients, rhombic by 9, and cubic
by 3 independent elastic coefficients.

An isotropic medium, which has the same properties in all directions, is
characterised by 2 elastic coefficients. The Lamé coefficients, A and u, are
usually used in theoretical papers as these two coefficients. The generalised
Hooke’s law for an isotropic medium then takes the form

where 9§ = divu = e;; + ey, + €33 is the volume dilatation. Coefficient 4 can be

identified as the shear modulus (rigidity), but coefficient A has no immediate
physical interpretation.

The independent elastic coefficients are usually sought by analysing the
changes of these coefficients under various rotations of the coordinate frame
(Fung, 1965; Psencik, 1994). We shall not perform these tedious calculations
here, but we shall only briefly derive Hooke’s law for an isotropic medium in
the form of (6.47). We shall start by assuming that the deformation of an
isotropic body consists of two independent parts, namely of a dilatation part
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and a shearing part. This idea was adopted in the middle of the 19" century on
the basis of extensive experiments.
Introduce the Kronecker symbol (Kronecker delta)

5 1 fori=j, £ 4%
¥ 710 fori=j. e
The obvious identity

1 1

allows us to divide the deformation into the voluminal and shape parts. Denote
the individual terms on the right-hand side of (6.49) by

1 1
Jy = 59511 s &5 =8y _5'9511 (6.50)
These expressions yield
1
fi=lu+/n +f33=§'95n':l9 , (6.51)
and
1
gi=¢;—790;=¢;-8=0. (6.52)

3

Thus, the voluminal changes are described by tensor f;. Tensor g describes

the changes when the volume does not change, i.e. this tensor describes the
shape changes. Tensor g;; is called the deviatoric (or distortional) strain tensor.

The identity analogous to (6.49) can also be applied to the stress tensor,

where

K =1y + Typ -+ 733 - (654)

1
py =3x8, 4y =Ty — K0y,

According to these analogies we may expect stresses p;; to produce changes of
volume, and stresses g to produce changes of shape. Therefore, we shall

assume that two coefficients exist, k; and k,, where k; expresses the
proportionality between the dilatation parts of the stress and strain tensors, and
k-, expresses the proportionality between the shearing parts:

3. 2P P y gp

py=kify., q;=kyg; - (6.55)
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By inserting these expressions into Eq. (6.53) and using the definitions of f;
and g; in Eq. (6.50), we obtain

1
7y = kify +lagy = (ki —k2)96; + kaey
Introducing a new notation for the elastic coefficients,
1
A= g(k1 —ky), 2u=ky,

we immediately arrive at formula (6.47).

6.7 Equations of Motion for an Isotropic Medium

The general equation of motion (6.44) cannot be used in practice unless the
relation between stress and strain is specified, e.g., in the form of the
generalised Hooke’s law (6.46). Here we shall specify the equations of motion
for an isotropic medium.

Insert Hooke’s law for an isotropic medium, i.e. Eq. (6.47), into the equation
of motion (6.44):

UL PP . 1 1 i 6.56)
J Ox ; U 'uﬁxj Ox; —Pé,tz- (®.

This equation is sometimes called the Navier-Green equation.
For a homogeneous isotropic medium, i.e. assuming elastic coefficients A
and y to be constant, we get

PY o i L 6.57)
! e + + = : :
¢ ox; # ﬁxJZ. é’xiﬁxj P A2 (

1
Remember the following notations:

é’ul 5’u2 5’u3 _ 0”1/{]

lSl:dwu:é’xl +0”x2 +é’x3 COx;
(6.58)
Fu,  Fu, FPu, Fu (0”9 o9 a&j
é’sz. = 7x2 pw; + o”x32 =V, gradd = By’ Bxy” Pzl

where V? is Laplace’s operator. Equation (6.57) can now be expressed in
terms of displacements as
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u; Pu.  Fu.
E+(1 2 L = L, 6.59
i+ +”)o”x,ﬂxj o TP (6.59)

This equation represents the i-th component (i =12, 3) of the following vector
equation,

0»,2

F + (/1+,u)gradd1vu+yv u—pé)2 .

(6.60)

Equations (6.59) and (6.60) are the desired equations of motion for a
homogeneous isotropic medium.
Further, if F is replaced by a body force, g, which is related to the unit mass,
1.8.
F=pg, (6.61)
equation (6.60) takes the form
Pu

pg+(/1+,u)gradd1vu+uV2u pé) 5 -

(6.62)

This form of the equation of motion is frequently used in the theory of seismic
waves.

By the Laplacian of a vector we understand the application of the Laplacian
to the individual components, i.e.

V2u = (V2uy, V2, V2us5) | (6.63)

However, it should be noted that such a simple definition of VZu may be
introduced only in Cartesian coordinates. For example, in spherical or
cylindrical coordinates it has a more complicated form.

6.8 Wave Equations

Let us derive two special forms of the equation of motion for a homogeneous
isotropic medium, known as the wave equations. Neglect the body force F in
Eq. (6.60), which is acceptable in many problems of wave propagation. Apply
the divergence operator to this equation and change the order of the derivatives
in the second and third terms:

7 (le u)

(/1 + ,u) div grad divu + ,uV2 divu=p P
t

Since the Laplacian V2 = div grad, we arrive at a scalar wave equation for
volume dilatation & =divu,
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V39 =——r|, (6.64)

where the velocity of propagation of dilatation changes (longitudinal waves,
compressional waves) is

A+2u
a I

o= (6.65)

Similarly, again put F = 0, denote Q = curl u and apply the operator curl to
Eq. (6.60). We shall arrive at a vector wave equation,

viQ = 179 (6.66)
B ot | '

where the velocity of the propagation of distortion changes (transverse waves,

shear waves) is
Y7,
A= =l 6.67
,/ P (6.67)

It follows from these equations that two types of elastic waves can
propagate in a homogeneous isotropic medium, namely longitudinal and
transverse waves. We shall use wave equations (6.64) and (6.66) many times in
the following chapters.

6.9 Equations of Motion for Anisotropic Media

Let us go back to the generalised Hooke’s law (6.46), and express the strain
tensor ey, in terms of the displacement vector, i.e. in the form (6.12):

1 é’uk ﬂul
Ty = Ecijkl };+a : (6.68)

The equation of motion (6.44) then takes the form

PR S e (é’uk+0”ulj sl
oo, | T\ oy, Yo ) | A

We shall show that both terms in the square brackets are identical. Rearrange
the second term by using the symmetry of the elastic coefficients, Cjjy = Cyjyg

and exchanging the dummy indices k and !/:
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é’ul 0”74[

ﬁuk
= Cy T, C

g 5xk

The equation of motion may then be simplified to read:

i % Pu;
F+ [C ”k}=;7 < (6.69)

ﬁxj UL ox, ot

This is the equation of motion for an inhomogeneous anisotropic medium. This
is the most general equation of motion which will be considered in these
lecture notes.

If the elastic coefficients are constant, Eq. (6.69) becomes

F+C Fu__ O 6.70
i ijkl 5’xj~0"x1 _po,.,tz . ( . )

This is the equation of motion for a homogeneous anisotropic medium.

6.10 A Review of the Most Important Formulae

From the seismological point of view, let us summarise the most important
formulae which have been derived in this chapter:

o the expression for the tensor of infinitesimal strain e; in terms of

i

_Lfow o) i 15
=2\ ax, " o) 612)

1

displacement vector u,

the equation of motion of a continuum,

L B 6.44
i Of;x] _p ﬁfz H ( o )

e the generalised Hooke’s law,
Tij = Cl-jklekl : (646)

Hooke’s law for an isotropic medium,

ij

the equation of motion for a homogeneous isotropic medium,
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7u

F+(/1+,u)graddivu+,uV2u = 5—2— :
t

(6.60)

e the wave equations for a homogeneous isotropic medium,

1 5*9 A+2
Vi9=——s, a=,/ = (6.64, 6.65)
a” ot P

va-—22, p= 5 (6.66, 6.67)
t p

Ry Sl T (6.70
PV ox ox, T o -70)
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Chapter 7

Special Forms of the Elastodynamic Equation

In this chapter we shall deal with simple forms of the elastodynamic equation,
especially with its special forms for a homogeneous and isotropic medium.
Even in this special case, the corresponding equation of motion, given by
(6.60), is still rather complicated. This vector equation represents a system of
three coupled partial differential equations. These equations are more
complicated than the equations which are traditionally solved in the courses of
mathematical physics. The standard methods of solving partial differential
equations, such as the separation of the individual variables, cannot be
immediately applied to solve Eq. (6.60). We shall, therefore, attempt to express
its solution as a sum of solutions of simpler equations. This can be
accomplished, e.g., by introducing suitable potentials.

Potentials are auxiliary functions which are frequently introduced in
mathematics and physics to facilitate the solution of complicated problems. For
example, the well-know gravitational and electrostatic potentials enable us to
describe the corresponding fields by one scalar function instead of three
components of intensity. The velocity potential in hydrodynamics, or the
Lagrangian and Hamiltonian in analytical mechanics are examples of
analogous auxiliary functions. Electromagnetic potentials make it possible to
reduce Maxwell’s equations to simpler equations in many problems. Similarly,
we shall introduce elastodynamic potentials in order to reduce the equation of
motion (6.60) for a homogeneous isotropic medium to two simpler wave
equations.

7.1 Separation of the Elastodynamic Equation in a
Homogeneous Isotropic Medium

Consider the equation of motion for a homogeneous isotropic medium without
body forces:
. 5 J 2“
(}L+,u)gradd1vu+yv u=,o-0’)—2 : (7.1
4

We have already found two special forms of this equation, namely the wave
equations (6.64) and (6.66) for the quantities ¢ =diva and Q =curlu,
respectively. Here we shall derive the same equations in terms of potentials.

7.1.1 Wave equations in terms of potentials

Assume that the displacement vector is continuous together with its first
derivatives, and the vector and derivatives vanish at infinity. According to
Helmholtz’ theorem, this vector can then be decomposed into irrotational and
solenoidal parts (Artken, 1970),
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u=gradp+curly , (7.2)

where ¢ is a scalar potential and ¥ is a vector potential. By inserting this

expression into the equation of motion (7.1) and interchanging the order of
some operations, we obtain

) _ Py
grad{(ﬂ+2,u)vzqo—pgi— + curl ﬂvzl//_p_ﬁtT =0,

This equation will be satisfied if the expressions in the square brackets are
constants. In a special case, when these constants are zero, we arrive at the
wave equations

1 o”zgo
V2p=—21 (7.3
" a? or? )
vig L2 (7.4)
N B> ot | '

where

A+2u y7,
= = |[— 7.5
a ,/ . B \/; (7.5)

are the longitudinal and transverse wave velocities, respectively. We have
arrived at the wave equations for potentials ¢ and y . The scalar wave equation
(7.3) describes longitudinal waves (compressional waves, P waves), and the
vector wave equation (7.4) describes transverse waves (shear waves, S waves).

Note that non-zero constants, which we have omitted in Egs. (7.3) and (7.4),
would describe static deformations of the medium. Since we shall not solve
static problems, we shall consider the wave equations without these terms.

Elastodynamic potentials are frequently used, e.g., in studying Rayleigh
waves, since these waves contain both longitudinal and transverse components
of motion; for details we refer the reader to the lecture notes by Novotny
(1999). However, some simpler problems, such as the reflection and
transmission of SH waves or the propagation of Love waves, are usually
studied directly in terms of displacements. Some problems may be formulated
without substantial differences both in displacements and in potentials (e.g., the
reflection and transmission for the P-SV problem, see below).

7.1.2 Expressions for the displacement and stress in terms of
potentials

In order to formulate boundary conditions, and for other purposes, it is also
necessary to express the displacements and stresses in terms of the
elastodynamic potentials. Here, we shall restrict ourselves to Cartesian
coordinates only.

144



Let u, v and w be the Cartesian components of displacement vector w, i.e.

u= (u, v, w). According to (7.2), these components can be expressed in terms
of potentials as

5(” 0’,‘//y . ﬁWx

_p ov. Ny  _Op ovi Oy

= = 4 ,
“= ok y Oz’ Y oy Jdz  Ox° Y= T ox oy
: (7.6)

In an isotropic medium, the components of the stress tensor, 7;;, are given
by Hooke’s law in the form of (6.47), i.e.

7, = A95; +2 ey . (7.7)

These stress components can be expressed in terms of potentials by inserting
(7.6) into (7.7). However, we shall not need these general expressions, as we
shall solve various special problems only.

7.2 Wave Motion Dependent on One Cartesian
Coordinate only

Consider the equation of motion in the form (7.1), i.e. the equation of motion
for a homogenous isotropic medium without body forces. We have shown that
special cases of this equation are as follows:

a) the wave equation for dilatational waves, Eq. (6.64);

b) the wave equation for distortional waves, Eq. (6.66);

¢) the wave equations for potentials, Eqs. (7.3) and (7.4).
We have identified the dilatational waves with longitudinal waves and the
distortional waves with transverse waves but, in fact, we have not proved it yet.
Here we shall prove it for special cases of plane waves.

We shall modify and solve the equation of motion (7.1) for the special case
when the displacement vector is dependent, in addition to time #, on one
Cartesian coordinate only, say coordinate x. Thus, consider the displacement

vector u=(u, v, w), where u:u(x, t), v=v(x, t) and w:w(x, t). This
describes the propagation of plane waves along the x-axis; component u

represents a longitudinal wave, and components v and w a transverse wave (or
two transverse waves). Now we get

di ou H ov . ow  Ou 72 Fu Fu Fu Fu
ivps—f=—p—m— = + + =
ox oy oz ox’ N axr oyt o oxt

and the equation of motion (7.1) yields the following equations for the
individual components:
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(/1 5 )o"zu F*u v v FPw  w a8
+ = : = , = . :
Mo TP g2 Ha2 =P a2 Hox? ~ P a2

These equations can be expressed as

o 1 & 7 1 5° 7 1 &
Ju i oV L T=-—22 . (19ab0)

ox2 o’ oxd prox’ oxt R ox

These are wave equations where velocities « and £ are given by Egs. (6.65)
and (6.67), respectively. Hence, we have proved that the longitudinal wave
propagates at the same velocity, @, as dilatational waves. Consequently, we
may identity dilatational waves with longitudinal waves. In a similar way we
may identity transverse waves with distortional waves.

We have not found yet general solutions of the one-dimensional equations
(7.9). Consider Eq. (7.92) only, because the solution of the remaining equations

will be analogous. Since « is a constant, introduce a new variable, &= ar,
instead of time ¢. The corresponding equation then takes the form

3u B Fu (7.10)

oxt asr '
Thus, the only condition imposed on the displacement component u is that the
second derivatives with respect to x and & are identical. Consequently,

component z must be a function of a linear combination of x and &, e.g., a
function of a variable

s=x+ké+q , (7.11)

where & and g are constants. We may then write

ou JOu u  u ou JOu u  u

— a7 ______k2

ox 35’ ox2 o5t o s g o5t

By inserting these expressions into Eq. (7.10), we get k? =1, so that k = +I.
Therefore, the general solution of Eq. (7.9a) has the form

u(x,t)=Fl(x—at+q1)+F2(x+at+q2) 5 (7.12)
where F; and F, are arbitrary functions, but functions of those variables as

indicated. Dividing the arguments by «, we may express the general solution
also in the form

u(x,t)=f1(t—§+t1j+f2(t+§+t2) . (7.13)
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The first terms in (7.12) and (7.13) represent a plane wave propagating in the
positive direction of the x-axis, and the second terms represent a plane wave

propagating in the opposite direction. Both waves propagate at velocity «
(Fig. 7.1).

Fig. 7.1. Propagation of plane waves along the x-axis.

Very important special cases of the general solution (7.13) are harmonic

waves:
x x
u(x 5 t) = 4; cos[a)l (t Y + tlﬂ + 4, cos{coz (t + p + tzﬂ , (7.14)

where 4; and A4, are the amplitudes, and @;, @, the angular frequencies.
Instead of cosines we could also write sines. However, more frequently, we
shall write the expressions for harmonic waves in exponential form:

u(x, 1) = Ae'@=x1a) | poian(t+xfa) (7.15)

where the complex constant exp(ia)ltl) and exp(ia)ztz) have been included

into amplitudes 4 and B, respectively. It is one advantage of the exponential
form (7.15). However, amplitudes 4 and B are generally complex. The second
advantage, which is more important, consist in the fact that derivatives of
(7.15) have a simpler form than derivatives of (7.14). However, real harmonic
waves must be considered as real or imaginary parts of the corresponding
complex wave.

7.3 Wave Motion Independent of One Cartesian
Coordinate

In the previous section we studied the wave motions which are dependent on
one Cartesian coordinate only, i.e. independent of two Cartesian coordinates.
We formulated the problem in terms of the components of the displacement.

If the wave motion is a function of two or three Cartesian coordinates, it is
usually more convenient to formulate the problem in terms of potentials, which
are related to the displacement by Egs. (7.2) and (7.6). We shall usually
consider the Cartesian coordinate axes x and y to be horizontal, the z-axis to by
vertical and positive downward (depth); see Fig. 7.2.
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Fig. 7.2. The usual orientation of the Cartesian system.

In many problems, the wave propagation may be considered as independent
of one Cartesian coordinate, say the y-coordinate. In this case, the wavefield is
identical along the straight lines which are parallel to the y-axis. In other words,
the derivatives of all quantities with respect to y are zero. The displacement
vector u is now a function of the remaining two coordinates, x and z, and of
time £:

u=u(xz1) . (7.16)

Consequently, the potentials are functions of the same variables. Displacement
components (7.6) now simplify to read

dp Oy, Oy, Oy, _@f’wy
B m: & & & ox

Uu

(7.17)

It can be seen from these expressions that potentials ¢, y,, ¥, and v,
describing the wave propagation, are now separated into two groups. Namely,
potentials ¢ and y, appear only in the displacement components u and w,
whereas y, and yw, appear only in the displacement component v.
Consequently, the wave motion described by components u and w, 1.e. the
motion in the (x, z)-plane, is now quite independent of the motion which is

perpendicular to this plane. Hence, we can decompose this wave motion into
the corresponding two parts and investigate them separately as two independent

wave phenomena. Thus, let us write the vector potential  as the sum of two
vectors,

W=Vsy +Wsn (7.18)
where
!/-j.SV . (03 l//ya 0)7 l/_/.SH = (Wx: O: !//Z) - (719)

The displacement vector can then be expressed as

U=up gy +Ugy , (7.20)
where

up_gy =gradp+eurlygy =(u,0,w), ugy =curlygy = (0, v, 0) . (7.21)
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Vector up_g, represents the wave motion which is polarised in the (x, z)-
plane. This motion consists of a longitudinal wave (P-wave, described by
potential ¢) and a transverse wave polarised in the (x, z)-plane (S-wave
polarised in the vertical plane, thus denoted by SV). Vector ug, represents a
transverse wave which is polarised horizontally along the y-axis.

In solving P-SV problems, we usually use potentials ¢ and
vsy = (0, ¥,, 0) . Omitting the suffices SV and y, i.e. writing

v=0,v,0), (7.22)
we arrive at

o N

Jdo Iy
u= =—+—
ox Oz’

=0 = .
v ¢ W 0”Z+§x

(7.23)

Note that the vector potential is sometimes chosen with the opposite sign, i.e.
w=(0,—w ,0), so that the corresponding terms in (7.23) have also the

opposite signs.

In solving SH problems, we shall work directly with the displacement
component v. The potentials will not be needed in these cases.

A special type of waves which are independent of the y-coordinate are plane
waves, the rays of which are parallel to the (x, z)-plane, i.e. perpendicular to the
y-axis. The wave surfaces of such waves are parallel to the y-axis (Fig. 7.3).

= x

projection of wave surfaces

zy rays
Fig. 7.3. A plane wave propagating in the (x, z)-plane.

A special type of these plane waves are the harmonic plane waves
propagating in the (x, z)-plane. Let us derive the expressions, for example, for a
longitudinal plane harmonic wave propagating in the (x, z)-plane. Choose the
coordinate system in such a way that the ray at a point of observation, B, passes
through the origin of the coordinate system (Fig. 7.4).

= x

zy

Fig. 7.4. Propagation of a wave in a positive direction of the x- and z-axes.
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Denote by y the angle between the ray and the z-axis; in cases of horizontal
discontinuities it will be the angle between the ray and the normal, called the
angle of incidence. The longitudinal potential (using analogies with the one-
dimensional solution in Section 7.2) can then be expressed as

@(x,2,1) = 4eili=5%) " (7.24)

where A4 is a constant amplitude, ® the angular frequency, « the longitudinal-
wave velocity, and s the distance from the origin. It follows from Fig. 7.4 that

§=58 +8, =xsiny +zcosy , (7.25)
so that

ia)(t—x siny+zcosy)
@ . (7.26)

@ = Ae

Such expressions for plane harmonic waves are used in many applications, €.g.,
in the problems of reflection and refraction (see the corresponding chapter
below). It can easily be verified that this potential satisfies the wave equation
(7.3).

If the same angle yis measured from the negative part of the z-axis, e.g., for
a reflected wave, the coordinate z in (7.26) must be replaced by (—=z):

) ( xsiny—zcosy]
o} t=————
* o

o =A"e . (7.27)

This situation is shown in Fig. 7.5. Formula (7.27) can also be obtained

immediately by replacing angle ¥ in (7.26) by 7/* =180°-y; then

sin;/* =siny and cosy* =—cosy .
X B
¥ —7
X
Yz

Fig. 7.5. Propagation in a direction having a positive component into the x-axis
and a negative component into the z-axis.

In should be noted that the coefficients at the coordinates x and z in (7.26)
are the directional cosines of the direction of propagation. Denote the angles

between this direction and the coordinate axes by 6, ,J, , 6, , respectively. In
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the case which is shown in Fig. 7.4, we have 6, =90°~y, 6, =0 and 6, =y .
Consequently, the unit vector in the direction of propagation is

N= (Nx, Ny NZ) = (cos5x ,C086,,, cos5z) = (siny, 0, cosy) . (7.28)

Using these directional cosines, formula (7.26) may be expressed as

. ( xNx+zNz)
o\ t—————
a

@ = Ae (7.29)

A further generalisation of this formula will be used in the next chapter.
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Chapter 8

Plane Waves

In the previous chapter we derived the simplest solutions of the elastodynamic

equation in special forms of plane waves. We considered the direction of

propagation to have been parallel either with a Cartesian coordinate axis, or
with a coordinate plane. As the next basic problem, which is traditionally
considered in the textbooks of optics, acoustics and other wave phenomena, we
should study the reflection and transmission of plane waves. However, before
doing it, we shall study also other solutions of the elastodynamic equation for
homogeneous media. These solutions are important not only in the theory of
seismic waves, but some of them find direct applications in seismic
prospecting. We shall deal with them in this chapter and in several chapter
which follow. We shall begin with a more detailed treatise on plane waves.

Plane waves do not exist in real media but they are good approximations of
waves generated by distant sources. One of the advantages of the plane-wave
approximation consist in the fact that their source need not be considered,
which simplifies the solution of many problems.

The study of plane waves is important for several reasons, in particular:

a) The behaviour of plane waves is simple, so that many properties of the wave
propagation may be demonstrated on them.

b) More complicated waves, such as spherical or cylindrical waves, can also be
expressed as superpositions of plane waves. The particular wave is
expanded into plane waves, and each plane wave is propagated through the
medium to the receiver. At the receiver, all the plane-wave contributions are
again synthesised to form the solution of the original problem.

¢) Many properties of plane waves can be used locally even in studies of more
complex waves, such as waves in slightly inhomogeneous media. Studies of
these waves by means of high-frequency asymptotic methods, such as the
ray method, are based on many analogies with the plane-wave solutions.
Since a general time signal can be decomposed into individual harmonic

components by means of the Fourier transform, we shall pay a special attention

to the propagation of harmonic waves. The opposite approach, i.e. the
investigation of plane waves in the time domain, has been described in detail
by Psencik (1994). Each of these approaches has some advantages and
disadvantages. The investigation in the frequency domain (harmonic waves)
seems to be simpler from the pedagogical point of view, and represents the
common approach also in other branches of physics, such as optics or
electromagnetism in material media. This approach should be preferred in the
situations when the wave velocity depends on frequency. In seismology, we
encounter this situation in investigations of surface waves, in problems of the
reflection and transmission at thin layers, and some others. This situation is
quite common in optics, where the velocity of light in materials depends on
frequency. On the other hand, the advantage of the description in the time
domain (transient waves) consists in the fact that the results may immediately
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be compared with observed seismograms. In particular, this is convenient in
studying over-critical reflections, when the reflected pulse changes its shape.

8.1 Plane Waves in a Homogeneous Isotropic Medium,
Propagating in a General Direction

Instead of x, y, z, in the chapter we shall denote the Cartesian coordinates by
x;,%, and x3, respectively. Consider a plane wave propagating in the
direction which is given by a unit vector

N=(Ny, Ny, N;), N=yNZ+NZ+NF=1. 8.1)

This vector is parallel with the rays and positive in the direction of propagation;
it is perpendicular to the wave surfaces.

Denote the velocity of propagation by ¢ and the displacement vector by
u=(uy,u,,u3). If follows from the analogy with formula (7.29) that a plane
wave must be a function of the variable

; lel+N2x2+N3X3 ; kak
T=1I— = —=—"== .

(8.2)

c C

Therefore, let us seek the components of the displacement vector in the form

ul-(xl , Xy ,x3,t) =U1~F(t— -
where N is a given unit vector, ¢ is an unknown velocity, U; are amplitude
factors (“amplitudes” of the individual components), and F is an arbitrary
function describing the form of the wave, but identical for all there
components.

Consider the elastodynamic equation without body forces in the form (7.1).
Its i-th component may be expressed as

é’zu : 521,{

(2+4) é’xié’;cj =

é’zu,- 8.4)
ot '

i

2
5xj

=p

Insert the trial displacements (8.3) into this equation, and omit PF / 7% inall
terms (assuming this derivative to be non-zero). We get

NN, N2+ NE4ND
(/’L+,u)Uj . + uU; 2 =pU, .
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Multiply this equation by ¢?/p. Since |N|=1, we arrive at the following
system of there equations (z’ =12, 3) -

J y

[l+y
P

NN, +%§U}U. — 25U, . (8.5)

However, we have four unknowns in this system, namely amplitudes U;, U,,
U;, and velocity c.
Denote the quantity in the square bracket of Egs. (8.5) by

A+ u

7,

These quantities are the elements of a symmetric matrix, i.e. I'; =I";;, which
is called the Christoffel matrix for an isotropic medium. Introduce the vector
U= (Ul, U,, U3) and the scalar A=c?2. Equations (8.5) can then be
expressed in the following matrix form,

IU=AU, (8.7)

where I' is the Christoffel matrix. We have arrived at the so-called eigenvalue
problem for matrix I'.

The eigenvalue problems, studied in detail in linear algebra, consist in the
following. For a given matrix, in our case for matrix I', we seek non-zero
values of A (eigenvalues) and the corresponding vectors U (eigenvectors)
which satisfy the matrix equation of type (8.7).

8.1.1 Eigenvalues of the Christoffel matrix

Let us begin with the determination of the eigenvalues. Express Egs. (8.5) as
(-2 )u, =0 (8.8)

This is a system of linear homogeneous equations (their right-hand sides are
equal to zero). Such a system has a non-trivial solution if the corresponding
determinant is equal to zero:

2
Iy —c Iy I3
Thi Thy—&& Ty |=0. (8.9)
I35 I'sp 33 —c?
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This determinant is called the Christoffel determinant, and Eq. (8.9) is called
the Christoffel equation. This equation is a cubic equation for determining the

unknown c¢2.

The formulae just derived are also summarised below in Tab. 8.1 (only the
summation index j, used here, is replaced by £ in the table, in order to obtain a
better correspondence to the case of anisotropic media).

Before calculating the Christoffel determinant, let us introduce the following
abbreviations:

A+
PYSLAN S (8.10)
P P
Elements (8.6) can then be written as
T, =eN;N; +p5; . (8.11)

The Christoffel equation (8.9) may now be expressed as

(eN? + B2 = )(eNF + B2 2| eN? + % — )+ 2 NENINT -
(N2 + 8% = ?)e2NENE —(eN? + 2 - c?)e*NINE -
—(eN32 + B —cz)elezsz =0.

Since many terms cancel out, we get
(ﬂz —02)3 +(,82 —c2)2e<N12 +N2 + N32> =0.

Considering again that N is a unit vector, and inserting from (8.10), we obtain
the Christoffel equation in a very simple form:

2
(M—cz)[ﬂ—&] =0 (8.12)
P p

It can be seen that all terms containing the components of vector N have
dropped out in Eq. (8.12), so that velocity ¢ is independent of the direction of
propagation. We should expect such a result, since we consider an isotropic
medium here.

We could even use this fact for a simple derivation of Eq. (8.12). Since the
medium under consideration is isotropic, we can restrict ourselves to a special

choice of vector N. For example, putting N = (1, 0, 0) , elements (8.11) take the
following simple form:

F11=eNi2= P 5 F22:F33:%, I, =0 f()r l;t]
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The Christoffel equation (8.9) then immediately yields Eq. (8.12).
Equation (8.12) has one root

A+2
e (8.13)
P
and one double root
) H
5, =— (8.14)
2,3 0

These values are the desired eigenvalues of the Christoffel matrix (8.6). The
corresponding velocities are

A+2u \/ﬁ
¢ = / R (8.15)
1 ) 2.3 P

These velocities coincide with the velocities « and S for longitudinal and

transverse velocities, discussed above. The negative velocities, i.e. (— cl),

(— c2’3) which also satisfy Egs. (8.12) to (8.14), represent only the propagation

in the direction opposite to N.

Hence, we have proved that the velocities of plane waves in a homogeneous
isotropic medium can attain two values given by formulae (8.15). This proof
has been quite general, not restricted to special cases discussed in Chapter 7.

8.1.2 Eigenvectors of the Christoffel matrix

Now, let us proceed to the analysis of eigenvectors. It follows from the theory
of linear operators that the eigenvectors are mutually perpendicular. Here we
shall not give the algebraic proof of this general statement, but we shall explain
it briefly on the basis of geometric considerations. An exact proof of the
properties of eigenvectors will than be given for the special matrix (8.6).

Consider a linear transformation with a symmetric matrix. Such a
transformation of a vector yields a new vector which has generally a different
length and direction. Consider vectors U of a constant length, but of arbitrary
orientation. Their endpoints form a spherical surface. By a linear
transformation, such as I'U, the spherical surface transforms into an ellipsoidal
surface. Along the axes of the ellipsoidal, the original vectors were only
extended or contracted, but not rotated. Such vectors are the required
eigenvectors, since they are transformed in to vectors of the same direction. It
thus follows from the general theory that the polarisation of the wave
propagating at velocity ¢; is perpendicular to the polarisation of the second
wave propagating at velocity ¢, 3.

Without using the general theory of linear transformations, we shall seek the
eigenvectors directly for the special form of the Christoffel matrix (8.6).
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Firstly, let us consider the solution in the form of a longitudinal wave, i.e. a
wave polarised along the direction of propagation:

U=iN, (8.16)

where k is a constant. Inserting U; = kN into Eq. (8.5) and omitting the
constant £ on both sides, we get

A+
0

Since N;N; =1, we arrive at the conclusion that the equation will be satisfied

if ¢? satisfies Eq. (8.13). Thus, we have proved that the wave propagating at
velocity ¢; = « is a longitudinal wave.
Secondly, assume the displacement to be perpendicular to the direction of
propagation, i.e.
UN=U;N;=0. (8.17)

In this case, Eq. (8.5) will be satisfied if ¢? satisfies Eq. (8.14),1e. c= . We
have proved that the wave propagating at velocity ¢, 3 = is a transverse

wave. The polarisation of the particle motion in this wave is not determined by
Eq. (8.17), so that it may be arbitrary (linear polarisation, elliptic polarisation).

Table 8.1. A comparison of formulac for plane waves propagating in
homogeneous isotropic and homogeneous anisotropic media. The formulae
which have the same form for both cases are written in the middle the
corresponding lines.

ISOTROPIC ANISOTROPIC
Equation of motion (i-th component):
(/1_'_#) 0”2uk +ﬂ0”2u,~ _ pé’zui c. a”zuk _ 0”2ul-
oxox, Yo a0 TWMoxox P o

) N, X,
Form of the solution: u, =U, F(t - ———j
c

Equation of motion for plane waves (i-th component):
(rik = czé}k)Uk =0

Christoffel matrix:
Aty )7 |
Ig= P N;Ny "‘;@k > L' :;CijkleNl
2
L =& I'o I3
Christoffel equation: I [y — @ I'; |=0
2
I3 I3,  Iyz—c
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8.2 Plane Waves in a Homogeneous Anisotropic
Medium

Now we shall solve the analogous problem as in the previous section, but for
an anisotropic medium. The main steps of the derivation are briefly described
in Tab. 8.1. Here we shall describe the derivation in detail.

Consider the equation of motion for a homogeneous anisotropic medium,
i.e. Eq. (6.70), but neglect the body forces. The equation then becomes

C é’zuk B é’zui 8.18)
where Cj;; are the elastic coefficients in the generalised Hooke’s law.
We shall seek a solution again in the form of a plane wave, see (8.3):
mem
Uy :UkF(t_———c—'—_) s (819)

By inserting this form into the equation of motion (8.18) and multiplying by
c? / P, we get
(Ty — 28, U, =0, (8.20)

where the elements of the Christoffel matrix now read
Ty =p  CjuN N, . (8.21)

The Christoffel matrix is again symmetric, I';; =1, . The Christoffel equation,
i.e. the condition of solvability of Egs. (8.20), is formally identical to Eq. (8.9):

2
I'y—c I}y I3
Iy Tap—s* Ty |=0. (8.22)
2
I3 I'sy Lyg =&

From the Christoffel equation (8.22) we can calculate the velocity of

propagation, ¢, if the elastic parameters Cj;;, density p and the direction of

propagation N (described by the directional cosines N,,) are given. The
Christoffel equation is a cubic equation for 2,

S —pPct+0c* -R=0, (8.23)
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where P, O and R are the so-called invariants of matrix I". The formulae for P,
0 and R could be obtained by rewriting Eq. (8.22) into the form (8.23).

The cubic equation (8.23) has generally three roots for ¢?. It can be shown
that all these roots are real (Psencik, 1994). Therefore, three different plane
waves, with generally three different velocities, can propagate in an anisotropic

homogeneous medium. Each root yields two velocities, ¢ =+v ¢? , which

represent two plane waves propagating at velocity |c| in two opposite

directions. Since P, Q, R are functions of N,,, the velocities of the wave

propagation are dependent on the direction of propagation.

Since the Christoffel matrix I' is real and symmetric, its eigenvectors are
mutually perpendicular. This means that the three different plane waves differ
not only in their velocities but also in their polarisation, i.e. in the orientation of
the eigenvectors, which specify the directions of the particle motion. In can be
shown that the eigenvectors in an anisotropic medium (the polarisation of the
waves) are generally neither parallel nor perpendicular to the direction of
propagation N.

Usually, the wave with the highest velocity, whose polarisation is closest to
the direction of the phase normal N, is called the quasi-longitudinal, quasi-
compressional or gP wave. The other two waves are called the quasi-
transverse, quasi-shear or ¢S waves (¢SI and gS2).

Further details on the propagation of plane waves in homogeneous
anisotropic media can be found in the lecture notes by Psencik (1994).

The main differences between the plane waves in isotropic and anisotropic
media can be summarised as follows:

1) Two plane waves with different velocities can propagate in a homogeneous
isotropic unlimited medium, namely the longitudinal wave and transverse
wave. In an anisotropic medium, generally three independent plane waves
with different velocities can propagate, one quasi-longitudinal and two
quasi-transverse waves.

2) In an anisotropic medium, the velocities of the individual plane waves
depend on the direction of propagation. In an isotropic medium, these
velocities are independent of the direction of propagation.

3) In isotropic media, the polarisation direction (displacement vector, particle
motion) is either parallel to the direction of propagation (in longitudinal
waves), or perpendicular to this direction (in transverse waves). The
polarisation of longitudinal waves is linear, that of transverse waves is
generally elliptical. The polarisation of waves in anisotropic media is, in
general, linear and has a general direction. The polarisation neither coincides
with the direction of rays in the case of quasi-longitudinal waves, nor is
perpendicular to the rays in the case of quasi-transverse waves.

4) The velocity of the propagation of the phase front (phase velocity, denoted
by ¢ above) and the velocity of the propagation of energy (group velocity)
are equal in isotropic media. In anisotropic media, the phase and group

velocities are generally different; the corresponding derivation can be found
in Psencik (1994).
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Chapter 9

Spherical and Cylindrical Waves

In this chapter we shall solve the wave equations in spherical and cylindrical
coordinates. As the first problem, we must transform the Laplace operator into
these coordinates. It will be the subject of Section 9.1. The reader who knows
the corresponding formulae, in particular formula (9.28), may proceed to
Section 9.2.

9.1 Basic Vector Operators in Orthogonal Curvilinear
Coordinates

Many physical problems can better be solved in curvilinear coordinates than in
Cartesian coordinates. We shall restrict ourselves to orthogonal curvilinear
coordinates (their coordinate lines at any point are mutually perpendicular).
The most important orthogonal curvilinear coordinates are spherical
coordinates and cylindrical coordinates.

Denote Cartesian coordinates by x, y, z. Introduce spherical coordinates r,
3, A, where r is the radial coordinate, ¢ the angular “polar” distance, and A
the longitude (“geographical” longitude); see Fig. 9.1a. The relation between
these coordinates is given by the well-know formulae:

x=rsindcosd, y=sindsind, z=rcos9 . 9.1
The coordinate lines of spherical coordinates are rays from the coordinate

origin (along which the radial distance r varies only), “meridians” (variation of
4 ), and “parallels” (variation of 1).

7 Z
P
: P
9 7 : & §
A 2
X X
a) b)

Fig. 9.1. Spherical coordinates (a), and cylindrical coordinates (b).

The relation between the Cartesian coordinates and cylindrical coordinates
P, 4, z 1s given by the following formulae (Fig. 9.1b):

Xx=pcosA, y=psind, z=z; 9.2)
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the identity z = z means that we identify the Cartesian coordinate z on the left-
hand side with the cylindrical coodinate z on the right-hand side.

9.1.1 Lamé’s coefficients

We shall compare various quantities at a given point, P, and at neighbouring
points. Therefore, let us consider an infinitesimal change of position, described

by vector ds= (d %dp dz) . Let us express this vector in orthogonal
curvilinear coordinates. Denote these coordinates generally by ¢q;, ¢, and g3.

Ae,

q>

Fig. 9.2. Decomposition of an
infinitesimal vector, ds, in an
orthogonal curvilinear system (the
projection onto the first coordinate
line is shown only).

Introduce the unit vectors e;, e,, e; which are tangent to the curvilinear

coordinate lines at the considered point (Fig. 9.2). Express vector ds in this
local Cartesian system as

dS:eldsl"'ezdSz +e3dS3, (93)

where coordinates ds;, ds, and ds; have the dimension of length. They
represent the infinitesimal arcs (lengths) along the individual curvilinear
coordinate lines. Denote the corresponding increments in the curvilinear
coordinates by dg;, dg, and dgs, respectively. It is evident that there must
be a proportionality between these quantities:

dsl :H]dq] 5 dS2 = H2 dq2 5 dS3 = H3 dq3 i (94)

The coefficients H; to Hj are referred to as Lamé’s coefficients (they should

not be confused with the elastic Lamé coefficients, A and p).

Omitting subscripts in (9.4), we may introduce the following definition of
Lamé’s coefficients. Lamé’s coefficient H, corresponding to curvilinear
coordinate g, is defined by the relation

5= 77dq). -

where ds is the length of an element along the coordinate line ¢, and dq is the
corresponding increment in this coordinate.
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Hence, if coordinate ¢ is a length, Lamé’s coefficient is then equal to unity,
H=1. This is the case of the spherical coordinate r, and of cylindrical
coordinates p and z. However, if coordinate g is an angle, Lamé’s coefficient is
the radius of curvature (because ds = Rd g, R being the radius of curvature,
and d ¢ the element of the angle).

Let as specify relation (9.5) for spherical coordinates. Put ¢; =7, g, =9,
g3 = A, and write the arcs along the coordinate lines as

ds,=H,dr, dsg=Hgd$%, ds; =H,;dA. (9.6)
It follows from geometrical considerations that
ds, =dr (an arc along a radial coordinate line);
dsg =rd8 (an arc along a meridian, 7 being its radius);

ds; =rsin$dA (an arc along a parallel], rsin$ being its radius).

Comparing these relations with (9.6), we arrive at the following expressions for
Lamé’s coefficients for spherical coordinates:

HI”:l? H3=r, HA=rSin19. (97)

Using these Lamé’s coefficients, we can express easily, e.g., a volume
element in spherical coordinates, the edges of which are ds, , dsg, ds;:

dV =ds.dsgds; =H,HgH,;drd$8dA =rlsin9drd9di . (9.8)

The term r2sing is the well-known determinant of the transition from
Cartesian to spherical coordinates.
Analogously, for cylindrical coordinates we get

Hp=1> Hy=p, H, =1]. {2:9)

For a volume element we obtain
dV=H,H;H,dpdAldz=pdpdidz . (9.10)

Of course, we could obtain the expressions for Lamé’s coefficients also
quite formally from the transformation relations (9.1) and (9.2). A length
element in Cartesian coordinates can be expressed as

ds= \/(dx)2 +(dy)* +(d2)? . (9.11)

Differentiating the transformation relations (9.1), we get
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dx =drsin9cosA+rcosddIcosd—rsinésinAdAa ,
dy=drsin%sind +rcosddJsind +rsindcosid i , (9.12)
dz=drcos$—-rsingd9 .

Insert these expressions into (9.11). Since many terms drop out, we obtain

ds=(dr)? +(d9)? +(rsingd 1)* . (9.13)

Writing this formula as

as=(H, dr) +(Hy 48) +(H, dA) (9.14)

we arrive at Lamé’s coefficients (9.7).
The formulae for cylindrical coordinates are simpler:

dx=dpcosi—psinAdA, dy=dpsini+pcosidd, dz=dz. (9.15)

Formula (9.11) then takes the form

ds=(dp) +(pdA)* +(dz)? (9.16)
which yields Lamé’s coefficients (9.9).

9.1.2 Gradient in orthogonal curvilinear coordinates

Consider a scalar function of coordinates, U, ie. U =U (x, ¥, z) or
U=U (ql, qs, q3). The change of function U, corresponding to the change of

position given by vector ds = (d x,dy, dz) , can be expressed as

=42+ 4,+ %4 9.17)
=—dx+— —dz . .
ox T oy YT e 0

note that this formula is valid only if the derivatives JU/dx, JU/Jy and
OU |5z are continuous functions of coordinates which we shall assume here.
The expression on the right-hand side of (9.17) is then referred to as the total
differential. In the curvilinear coordinates we may write analogously

dU é’Ud +é’Ud aUd (9.18)
= ——d gy +—— N ) I
oq, I ag, T2 5g, O

The right-hand side of (9.17) represent the scalar product of two vectors,
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ou ou ou
dU =

—0,)7,é,—y,z](dx,dy,dz)z(gradU).ds , (9.19)

where the vector

ou oUu oUu

gradU = (E’ o"_y , ZJ (9.20)

is called the gradient of scalar function U. Let us seek the analogous
expressions for this vector in orthogonal curvilinear coordinates.

Multiply and divide the individual terms in formula (9.18) by the
corresponding Lamé’s coefficient. This yields the equivalent formula

dU 1Of’UHd lOF,UHd +1é’UHd
= m———— i — 5
H, 74, 194 H, 54, 249> H; 845 3443

which represents the scalar product of two vectors,

dU—(——l—ﬁU Lo Lﬂ]j(H dgy, Hydq,, Hydgs) . (9.21)
“\H, g, H, 8q," H; 3g3)" ! Gaafia=Satan > B
Thhe second vector on the right-hand side is vector ds, in view of (9.4) and
(9.3). This vector is expressed in the coordinate system which is defined by
vectors e;, e, e3 (Fig. 9.2). It then follows from (9.19) that the first vector in
(9.21) must be the desired gradient. Hence, we have arrived at the conclusion
that the gradient may be expressed in orthogonal curvilinear coordinates as

4t e 0”U+e2 5U+e3 ou
gradU = —— + —= 2 .
H, dq, H, dq, H; dq;

(9.22)

Omitting the subscripts, the component of the gradient into coordinate line ¢ is

thus
1 U

(grad U)q ~ 52 (9.23)

9.1.3 Divergence in orthogonal curvilinear coordinates

We shall derive the formula for the divergence of a vector in orthogonal
curvilinear coordinates by using the integral definition of the divergence,
because this definition is not related to a concrete coordinate system.

Consider a point P and a small volume V" which surrounds this point. Denote
again the surface of this volume by S. Let A be a vector which is continuous
together with its derivatives within V. Apply Gauss’ theorem (divergence
theorem) to this vector in volume V:
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[[[aivadr = [[a.vds, (9.24)
|4 S

where v is the unit outward normal to the surface element dS, see Eq. (6.30).
According to the mean-value theorem, the volume integral in (9.24) may be
expressed as

(divA)Q v,

where Q is some point in volume V. Pass to the limit for ' — 0, but keep point
P still inside of V. Point O then approaches P, and we arrive at the following
integral definition of the divergence at point P:

T
divA = lim= [[A.7ds . (9.25)
v—oV S

Consider point P to be a vertex of an infinitesimal rectangular body
(“parallelepiped”), the edges of which coincide with the curvilinear coordinate
lines (Fig. 9.3). Let ¢q1, q,, g3 be the coordinates of point P, and Agy, Aq,,
Ag; the increments of coordinates along the edges of the body. We shall apply
formula (9.25) to this body.

a0 | e ——
2 - ! e
. ; .
7 —
A
s T s
- L~
Ag, o 1 e
P -
. <

/ P Aql 91
//q3

Fig 9.3. Volume element to which the divergence theorem is applied.

First, consider the contributions from the faces which are perpendicular to
coordinate lines gq;. Face §; is characterised by coordinate gq;, and face S f by

coordinate ¢; + Ag;. The outward normals to face S; coincide with the
positive directions of coordinate lines g;, but the outward normals to face S

are of the opposite directions. Consequently, the contribution of these surfaces
to the integral in (9.25) is

I = [[avds+ [[Avds= [[#4,d5- [[4,d5 .
Sy N sy S
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Consider a rectangular surface element dS which is perpendicular to coordinate
line ¢, and its edges are d s, and ds3. Using formulae (9.4), we get

dS=ds,ds; = HyH;dg,dgs .
Contribution /; then becomes

Gr+Aq; q3+4q;
Iy = [(“111‘121[13)(11+Aq1 —(A1H2H3)ql}d% dgs ,

92 q3

where subscripts g; + Agand g; indicate that the first term 4;H, H; is taken
at points of coordinates (‘]1 +Aq1,9>, q3), whereas the second term at points

of coordinates (q1 g2, q3). Using the mean-value theorem of differential
calculus, the integrand in the square brackets may be expressed as

5(A1H2H3)
—‘—é,ql Aq,

where the derivative is taken at a point of coordinates (ql +9Aq91,95, q3) ; the
value of 9 lies in the interval 0 < 3 <1, but varies with g, and g3.

According to the mean-value theorem of integral calculus, a surface integral
of a continuous function is equal to the function value at some internal point
multiplied by the surface. Thus

Aq1Aq,Aq5
oq, :IP* 1792743

1

where Pl* is some point in the body. Similar expressions may be obtained for
the integrals over the remaining surfaces.

The volume element, in view of (9.4), is dV =ds;ds,ds; =
= H{H,H;dq,dq, dq;. Using again the mean-value theorem, the volume of

the whole body is V' = (H1H2H3) » A41Ag9,Aq3, where Py is some point of
4
the body. Insert these expressions into formula (9.25), reduce quantities Aq,

Ag,, Agqz, and shrink the body towards point P, still keeping this point as a
vertex of the body. This yields the divergence at point P in the form

1
divA =
H\H,H;

o
oq;

o o
(H2H3A1)+%(H1H3A2)+%(H1H2A3)} . (9.26)
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This is the general formula for the divergence in orthogonal curvilinear
coordinates.

9.1.4 The Laplacian in orthogonal curvilinear coordinates

The Laplacian of a scalar U is defined by

V2U =div gradU . (9.27)

Putting A = gradU , and using the formulae (9.22) and (9.26) for the gradient
and divergence, we arrive at

vV2U =

1 [ o ( HyHs an+ i (H]Hg, o”U]+ 2 (Hle 5Uﬂ
HH,Hy | og,\ H, dq,) Jq,\ H, Jq,) g5\ H; Oq;

(9.28)
This is a very important formula for the Laplacian in orthogonal curvilinear
coordinates.
Let us specify the latter formula for spherical coordinates. Inserting Lamé’s
coefficients (9.7) into this formula, we get

” 1| a( ,0U 1 6. oU 1 U
VU__EF 7',’7+ — S — +s1?§;’_ﬂ,—2— - (9.29)

We shall also need a special form of this formula for the case when scalar U is
a function of coordinate  only, i.e. U = U(r) . Then

- 0”2U 28U 7530)
Tt v o ’
For cylindrical coordinates, formula (9.28) takes the form
FU 16U 1 0”2U U
v? Us—Fd—F—5 > (9.31)

op* pop  p* oA =

For the special case of the axial symmetry of function U, i.e. U =U ( p) , one
gets

FU 16U
ViU=—F+——. 9.32)
op®  p op

We should mention a similar form of expressions (9.32) and (9.30), with the
exception of the coefficients of the last terms.

Let us add a remark to the special formulae (9.30) and (9.32). These
formulae are very similar, with the exception of the coefficients with the last
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terms. This is a consequence of a more general formula, namely formula (9.42),
which will be derived in the next subsection.

9.1.5 An elementary derivation of the Laplacian for spherically
symmetric and axially symmetric functions

Here we shall perform a brief derivation of special formulae (9.30) and (9.32),
without referring to the general formulae (9.28).
Consider a function U which depends on the spherical coordinate r only,

U =U(r) . This coordinate is related to the Cartesian coordinates x, y, z by the

formula
=yx?+y? 422 . (9.33)

On differentiating this formula, one gets

or 2 & 3 & 9.34)
ox r’ 8y r’ dz r’ .
Since U is a function of 7 only, we have
ou oUu dr U x
—— e ey (9.35)

ox Oor ox orr’
U é’(é’ij 52U(_j2 oU 5() U x* &U(l xzj

e BE\DF F) R Br o 52 2 or

r r3

(9.36)
The formulae for 5*U / dy* and U / Jz* are analogous. For the Laplacian,

0”2U 0”2U U

ViU = 9.37
é’xz o"y 52 ( )
we then get formula (9.30).
In cylindrical coordinates we have
p=vx2+y? (9.38)
which yields
2 o
LE e (9.39)
dx p Oy p
For a function U =U ( p) we then get, in analogy with (9.36),
FU UK o”_U(l ﬁj ..
o5 ap* p? dp\p p? '
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and the similar expression for 0”2U/ dy?. Since U / Jz% =0 now, the
Laplacian (9.37) yields formula (9.32).
The derivations just described may easily be generalised to the n-

dimensional case. Consider a function U = U(r), where 7 is the radius vector
in the n—dimensional Euclidean space. Instead of (9.34) we now have

N I N (9.41)

In view of formula (9.36), which holds true for all x; to x,, the Laplacian
takes the following form:

,. U U FUxE+..+x2 U(n xt+..+x2
ViU=—F5+..+—5="3 > + = 3 .
oxi ox, Or r or \r r

Taking into account (9.41), this yields
U n-18U
ViU = : 9.42
ﬂrz * r Oor ( )

As the special case of this formula for n=3, we get formula (9.30) in
spherical coordinates, and for n =2 we obtain formula (9.32) in cylindrical
coordinates (if we write p instead of 7). This can be explained in the following
way. A spherically symmetric function is a function defined in a 3—dimensional
space, and so n=3. However, a function in cylindrical coordinates which is
independent of coordinate z is, in fact, a function defined in a 2—dimensional
space (in the plane z = 0). Thus, we must put n=2.

9.2 Spherical Waves

Consider the wave equation for the scalar potential ¢,

1 0”2¢
Vip=—— 9.43
@ 7 a2 (9.43)

where « is the longitudinal-wave velocity (a constant). Let us seek the solution

of this equations in the special form ¢ = (p(r, t), where 7 is the distance from

the coordinate origin, and ¢ is the time. Using formula (9.30) for the Laplacian,
the wave equation (9.43) becomes

Fo 28p 1 Fo
— =Lt —=T 44
o r o 2ol ©44)
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Introduce a new function @ =r¢ . Since

Pl Sp D _dp o
. S | .. 9.45
or prr or’ o2 or g or’ 2:43)

the wave equation (9.44) may be rewritten as

Q

1 Ve (r(p) 1

— (9.46)

5%
roort a? e

Multiplying this equation by 7 (since the coordinate r is not a function of time),
we finally get

(9.47)

1
ot a? ort

This equation for r¢ has the same form as the well-known wave equation
(7.9a) for waves propagating along one Cartesian coordinate. Analogously to
the solution (7.13) in the Cartesian coordinates, we can express the general
solution of Eq. (9.47) in the form

go(r,t)=-}1:f1(t—§+t1)+%f2(t+§+l‘2) : (948)

where f| and f, are arbitrary functions, characterising the form of the wave,
and ¢, t, are arbitrary constants. For the special case of #; =#, = 0, we have

r r

olr.1)= % fl(t - —) + % B (r & —) . (9.49)

a a

It follows from the expression (9.49) that the surfaces of a constant phase
T =txr/a = 7, are spherical in this case, the centre of the sphere being at the
origin of the coordinate system The wave with the sign “~” represents an
expanding wave propagating in the direction from the origin. Its wave surface
extends with increasing time. The wave with the sign “+” represents a
contracting wave with a diminishing wave surface. In an unlimited

homogenous medium, we shall consider only the first solution, i.e.

7

olr, 1) = ! f(z - —] : (9.50)

r a

The solution of this form is called the spherical wave.
Analogously for a harmonic spherical wave, we have

170



olr,1,0) = Zel19), (9.51)

where @ is the angular frequency and 4 is a constant.

One important fact should be pointed out, namely the decrease of the
amplitudes of spherical waves with distance. While the amplitudes of plane
waves do not change during the propagation, the amplitudes of spherical waves
decrease as 1/r, see formulae (9.50) and (9.51). This fact is easily
understandable, because the wave surfaces of a spherical wave are expanding,
as opposed to the wave surfaces of plane waves.

In Chapter 2 we have derived the decrease of amplitudes of spherical waves
(body waves) on the basis of certain considerations on the conservation of
energy. Here, we have derived this decrease directly from the wave equation.

Spherical waves play a fundamental role in the theory of elastic waves and
in seismic practice, too. Formula (9.50) gives the so-called fundamental
solution of the wave equation. This solution is similar, e.g., to the function 1/7,
representing the fundamental solution of Laplace’s equation in gravimetry. If
the sources of seismic waves are located inside a certain homogeneous region,
it is then relatively easy to express the source function as an integral
superposition of spherical waves. Moreover, if we observe seismic waves at a
large distance from a source, the dimensions of the source may usually be
neglected, and a spherical wave itself yields a good approximation to the wave
field.

The importance of spherical waves is also emphasised by Huygens’
principle, which is frequently used not only in optics, but also in some methods
of seismic prospecting. Huygens’ principle states that every point of a medium,
at which a disturbance has arrived, can be considered as a new source of a
disturbance which propagates from this point in the form of a spherical wave.
These waves are superposed in such a way that their envelope determines the
resultant wave surface in any later time instant. The mathematical formulation
of Huygens’ principle is given by Kirchhoff’s formula, which will be derived
in the next chapter.

9.3 Cylindrical Waves

After discussing the simplest waves in Cartesian and spherical coordinates, let
us consider the case of cylindrical coordinates. Denote these coordinates by p,

A, z; see Fig. 9.1b and formulae (9.2). We shall see that some properties of
cylindrical waves are substantially different from the properties of plane or
spherical waves. Consequently, we shall restrict ourselves to harmonic waves
only. Moreover, we shall consider longitudinal waves only.

Let us, therefore, study whether a longitudinal, harmonic, cylindrical wave,
dependent on coordinate p and time ¢ only, may propagate in a homogeneous
isotropic medium. Let us seek its potential in the form

go(p, t, a)) = @(p, co)eia” , (9.52)
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where @ is the angular frequency.
Since the Laplacian is now given by (9.32), the wave equation (9.43) takes
the form

e e (9.53)

Inserting function (9.52) into this equation, we obtain the following Helmholtz
equation for cylindrical waves:

o 1do
—d 5 +;E+k D=0, (9-54)
Yol

where k = w/a .
Modify the latter equation by introducing a new variable £ = ko . Since

dp _dodé do d'o ,d'@

dp d&dp T dET dp? T der

equation (9.54) yields (after dividing by kz)

dz(p+1d—@+¢—o (9.55)
dg2 £de '

This is a special form of Bessel’s equation.
9.3.1 Bessel functions

The famous Bessel’s equation has the form (Abramowitz and Stegun, 1972)

Cw 1w b ) o 9.56
1.2 Tz dz 2 W= .56a)

or, after multiplying by x2,

dzw dw
2 2 2
X A2 +x +(x —-n )w—O . (9.56b)

dx

Its solution, finite for x = 0, is the Bessel function of the »n-th order,

w(x) = J,(x) . (9.57)

172



The graphs of several Bessel functions of low orders are shown in Fig. 9.4. The
Bessel functiongoscillate but are not periodic. The amplitude of ‘{1 (x) is not

constant but decreases asymptotically as 1/ Jx .

1 w0k

Ji(x)

Fig. 9.4. Bessel functions of the first kind, Jo(x), Jl(x), and Jz(x). (After
Arfken (1970)).

Let us give several important formulae for Bessel functions:
a) Integral representation:

1 T 1 2 4
JO(x) _ ; Iezxcosﬂ dd = Z jeiucos(/’t—)() da, (9.58)
0 0

where y is an arbitrary constant.

b) Ascending series:
1 1 % (1 s}
) ) G2
+

T R ST T

(9.59)

¢) Asymptotic expansion for large arguments (x — ) :

7, (x) fg\/% cos(x - n-;f - 9 . (9.60)

In particular for n=0,

Jo(x) «f\/% cos(x —9 . (9.61)

It follows from Fig. 9.4 and from the last formula that function J,(x)
resembles a “damped” cosine function.
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9.3.2 Harmonic cylindrical waves and their properties

It can be seem that Eq. (9.55) is a special form of Bessel’s equation for n=0.
Consequently,

@=Jo(kp) .

and the potential of the corresponding cylindrical harmonic wave may be
expressed as

o(p,t, ) = 4Jo(kp)e™™ , (9.62)

where k = @/ and 4 is an arbitrary constant.

Since we assume that potential ¢ is independent of the z-coordinate, solution
(9.62) may be regarded as the fundamental harmonic solution of the wave
equation in the two-dimensional space. Note that we have considered only
harmonic cylindrical waves, as opposed to a general form of plane and
spherical waves, discussed above. This has deep physical reasons, which
become evident from the comparison of the fundamental solutions in Tab. 9.1.

Table 9.1. Fundamental harmonic solutions of the wave equation in one-, two-
and three-dimensional media: 4 is a constant, @ the angular frequency, c the
velocity (¢ = « for longitudinal waves, ¢ = 8 for transverse waves), k = @/c
the wavenumber, and x, p, r are the distances from the source, respectively.

Medium Fundamental solution
1 _ D A ei(a)t—kx)
2-D A Jo(kp) e
3 _ D ﬁ ez’(a)t—kr)
r

It can be seem from this table that the fundamental solution for a 2—-D
medium differs substantially from waves in 1-D and 3-D media. The
fundamental wavesin 1 =D and 3 - D media have the form

ﬁi(mt—kd)

o

where d is the distance from the source (d = x and d = r, respectively) and fis
an amplitude ( f = 4 and f = 4/r, respectively). In these cases, the angular

frequency w enters only the exponential factors, not amplitude /. As opposed to
it, the variation of the amplitude in a 2 - D medium depends on frequency.
Consequently, the fundamental waves in 1-D and 3—D media (plane and
spherical waves) are non-dispersive, whereas the waves in 2—D media
(cylindrical waves) are dispersive. The dispersion causes that the wave changes
its form during the propagation, e.g., a narrow impulse becomes broader with

increasing distance. This property applies generally to all types of waves in
2 —D media.
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Assuming the conservation of the mechanical energy, in Chapter 2 we
derived that the amplitudes of cylindrical waves (surface waves) decreased

with distance from the source as 1/ \/; . Formulae (9.62) and (9.61) give even a

better estimate of this decrease, namely that the amplitude of a cylindrical
harmonic wave, a, decreases at large distances as

a~1/\kp , (9.63)

k = w/a being the wavenumber. This confirms the decrease of a harmonic

wave as 1/ \/; but, moreover, it yields a similar dependence on frequency.

Therefore, since short-period waves decrease more rapidly than long-period
ones, the wavefield at large distances becomes gradually long-periodic. (In real
media, this decrease of the amplitudes of short-period waves is further
emphasised by their higher attenuation).

Although formula (9.63) is valid for cylindrical waves in a homogeneous
unlimited medium, to some extent this also applies to surface waves
propagating in a homogeneous half-space or in a layered medium. For
example, this explains the long-period character of surface waves at large
epicentral distances.
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Chapter 10

Solutions of the Wave Equation in Integral
Forms

In the previous two chapters we studied the simplest solutions of the wave
equation. Now we shall proceed to more complicated solutions of this equation.

In mathematics, complicated functions are frequently expressed in the form
of integrals or infinite series. Both these representations are also used in the
theory of elastic waves. In this chapter we shall deal with some integral forms
of the solution of the wave equation. The solutions in the forms of infinite
series will be studied in Chapter 11.

Our methods of solving the wave equation will be very similar to the
methods in gravimetry, where simpler equations, Laplace’s or Poisson’s
equations, are solved. Therefore, let us remind some of these gravimetric
problems.

First, consider the gravitational field of a point mass m. According to
Newton’s gravitational law, its potential at a distance r from the source is

U(r) = - Gm/r , where G is the gravitational constant. If the mass is distributed

in a finite volume ¥ with density p, the gravitational potential (according to the
superposition principle) is

U(P) =—G”I§dV , (10.1)
14

where r is the distance of the mass element, dm = pdV , from the point of

observation, P. If the distribution of density is known, the problem of

determining the gravitational field reduces to the problem of computing the

integral in (10.1).

However, we known the density within the Earth with a low accuracy only.
Consequently, we cannot compute the interior field accurately. Nevertheless,
the situation is better in studying the exterior field (at least in principle).
Namely, we can avoid the unknown density and to use other data. There are
two basic possibilities:

a) Using Green’s second theorem, the exterior field may be expressed by
means of two integrals over the surface of the Earth (instead of the volume
integral (10.1)). For this representation we must know potential U and its
normal derivative SU /Jn on the Earth’s surface (see Section 10.2).

b) According to the multipole-expansion theorem, the field may be expressed
in the form of a series, the coefficients of which are determined from surface
or satellite measurements.

In this chapter we shall describe approach a). First, we shall deal with the
corresponding mathematical theory, then we shall mention the gravimetric
applications, and finally some analogous seismic problems will be solved.
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10.1 Green’s Theorems

First, we shall derive Green’s first theorem, which will be used later on. We
assume that the reader is familiar with Gauss’ theorem. Therefore, we shall
start with this theorem but we shall not prove it here.

A summary of the main equations, which will be derived here, is given in
the left column of Tab. 10.1; see below.

10.1.1 Gauss’ theorem

Let ¥ be a finite volume, bounded by a surface S. The surface should satisfy
certain properties, e.g., be composed of smooth parts. Consider a vector
A= A(x, y,z) which is continuous together with its first partial derivatives

within 7 and on boundary S. Gauss’ theorem, also called the divergence
theorem, then states that

[[[avaar = [[4,ds], (10.2)
14 S
where
diva = 24 2y O (10.3)
= -+ 5 <
a ox " oy oz’

and A, is the component of vector A in the direction of the outward directed
normal to surface S. Gauss’ theorem can be expressed in words as follows: The
integral of the divergence of a vector field over a region of space is equal to the
integral over the surface of that region of the component of the field in the
direction of the outward directed normal to the surface (Kellogg, 1967).

Gauss’ theorem makes it possible to transform a certain volume integral into
a surface integral.

10.1.2 Green’s preliminary formula

Let us apply Gauss’ theorem to a vector aA where a = a(x, y,z) is a scalar
function. First, let us calculate div(aA) :

A
div(eA) = é(:ix) + 5(Zyy) + 5(21;12)
B a( b4, 94, ﬁAZJ ba ba ba

— A +—A,+— A4, .
0"x+0"y+0"z " on x+5y v o

We have arrive at the well-known vector identity,

div(aA) = adivA + A -grada|. (10.4)
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Now, apply Gauss’ theorem to the vector (a¢A) , and use (10.4):

[[[(adivAa+A-grada)dV = [[as,ds . (10.5)
Vv S

We shall rewrite this theorem for a special vector field A, namely for a
conservative field (described by a scalar potential W). Thus, consider scalar
functions U, V such that

a=U, A=gradW , (10.6)

where U, W are uniquely defined and continuous together with their first and
second derivatives. By inserting (10.6) into (10.5) we get

([foviwar+ [[[gmav)-(emam)ar - [foZas|. a0

This is the so-called Green’s preliminary formula. This is also written in the
following form (Pick et al., 1973):

oU oW U W U oW ow
IV”{E e e é,zjlde .LJUEdS—JJJUvszV. (10.8)
10.1.3 Green’s first theorem

Interchange functions U and W in Green’s preliminary formula (10.7), and
subtract the corresponding equations. This yields Green'’s first theorem:

I”(UVZW—WVZU)dV= II(U%—W%JM . (10.9)
4 S

This theorem represents a generalisation of Gauss’ theorem, but for
conservative fields only. For W = const., theorem (10.9) yields Gauss’ theorem
for a conservative field A = grad U :

jyﬂszdV = y%—ds . (10.10)

10.1.4 Green’s second theorem
Let us choose function W in Green’s first theorem as follows:

w=1r, (10.11)
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where 7 is the distance from a fixed point, P. Since function W is singular at
point P, we must distinguish whether point P is inside the volume ¥, on its
surface, or outside.

Fig 10.1. The region used to derive
Green’s second theorem.

First, consider point P inside V; see Fig. 10.1. Select a small sphere with its
centre at P, and exclude it from region V. Denote the radius of the sphere by &,

its volume by v and surface by o. Denote the volume V" without the sphere by
V —v, and apply Green’s first theorem to it. The volume /' —v is bounded by
two surfaces, namely by the surface S with its outward normal n and by the

surface o with normal n’. Since the normal n’ must be outward with respect
to volume ¥ —v, its orientation is inwards the sphere. Therefore, instead of
one surface integral in Eq. (10.9), we must consider two integrals, one over §

and the other over o. As function 1/r satisfies Laplace’s equationin V' —v, i.e.

Vz(l/r) =0, we can write Green’s first theorem in this special case in the

o5 {3)ae-

Let us rearrange the expressions on the right-hand side of the latter equation.
Since normal n’ has the direction opposite to the radial coordinate », we have

2. o)1 @B m
on'\r)  or\r) 27 Sn Or

Taking into account that » = ¢ on o, the right-hand side of Eq. (10.12), which
we shall denote by I, may be expressed as

following form:

‘ﬂﬁszdV‘Q% ( )dS’L”r on ii’ij

(10.12)

iz jUda+ H—da . (10.13)

Considering the continuity of U and JU/Jdr, we may apply the mean value
theorem to the latter integrals, which yields
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1 1(oU
I=—U(P)Ane? +_(Ej dme® (10.14)

2
£ & P
where P, and P, are some points on surface o.

Now, let us shrink sphere v to point P, i.e. pass to the limit for £ - 0. The
second term in (10.14) vanishes, and so

I=47zU(P) . (10.15)

The first integral in Eq. (10.12) over volume V' —v then becomes the integral
over the whole volume V. We can extend the integration over the whole
volume without problems, although the integrand is singular. In order to show
it, let us consider the corresponding integral over sphere v:

J=[[lvuav.

As the consequence of the continuity of the second derivatives of U, these
derivatives are limited. Therefore, there is a finite constant A, such that

|V2U|< M. Then

1
VU
r

515 1

dstjv”%‘i.

Let us calculate the latter integral in spherical coordinates , 3, A. If holds that
dv=r?sinddrd9dA ;see formula (9.8). We get

d enrx
[J== ] Jrsingdragar =225 .
000

v

Therefore, J = 0 for e = 0.
Consequently, for an internal point P, Eq. (10.12) may be expressed in the
following final form:

_ HEVZU‘W‘ ”U—j—n(%)dS+ ”%Z—ZdS=47zU(P) . (10.16)
V S S

This is Green'’s second theorem for point P inside volume V.

If point P is located on the surface of volume V, i.e. on surface S, we must
remove only a hemisphere from volume V. Consequently, we shall obtain
27zU(P) on the right-hand side of Eq. (10.16). Finally, it point P is outside V,
we do not need to exclude any sphere or hemisphere, so that the right-hand side
of Eq. (10.16) will be equal to zero.

180



Consequently, we arrive at the following complete form of Green’s second
theorem:

. 21 L oU Az U(P), Pinside V,
—m—VZUdV—”U—(—)dS+”——dS= 27U(P), PonS,
r on\r r on )
4 S S 0, P outside V.
(10.17)

Note that, from the point of view of applications, the most important of
these forms is the form for the internal point P, i.e. Eq. (10.16).

It follows from (10.16) that a function which is continuous together with its
first and second derivatives cannot take an arbitrary value at a given point P. Its
value, U(P), is closely related to the behaviour of this function in a certain
vicinity of this point. Even, the integrals on the left-hand side of (10.16) may
be interpreted as Newtonian potentials for a volume distribution, double layer
and single layer, respectively.

10.1.5 Special forms of Green’s second theorem for the
gravitational field

Denote the intensity of the gravitational field by E, and the gravitational
potential by U, E=-gradU. Let us restrict ourselves only to volume

distributions of mass. Assume that the density, p, satisfies certain conditions
which are sufficient for the validity of Poisson’s equation,

V2U = 47Gp , (10.18)

where G is the gravitational constant. For example, the density should have its
second derivatives continuous, or to satisfy Holder’s conditions, which are
weaker (Pick et al., 1973). Inserting Poisson’s equation (10.18) into the volume
integral of Green’s second theorem for the internal point, i.e. into Egs. (10.16)
and (10.17), we arrive at

U(P)=—Gm§dV—%[-”U0%doS+£;j %?—ZdS . (10.19)
14 S S

This is Green’s second theorem specified for the gravitational field. Note
that the point P, where we calculate the gravitational field, must be located
inside the region V. However, this region may be rather arbitrary, and so the
masses generating the gravitational field may be all inside V, all outside V] or
even partially inside and partially outside (Fig. 10.2). Let us discuss these cases
separately.

a) All masses inside V. Assume all masses to be contained in a bounded region

V,, which lies inside the integration domain V; sec Fig. 10.2a. In this case,
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point P may be either outside or inside V,,. Since density p is non-zero in
volume V,, only, the volume integral over ¥ in Eq. (10.19) reduces to the
integration over V,, only. Let us extend the region V' so that it becomes a
sphere of a large radius R with the centre at P. The quantities on the surface
of the sphere can be estimated as follows:

AR

R

TR R’ én OR R

0”(1) 0”(1) 1 GM JU JU GM

1 1 41
¥ R’ On

r

where M is the total mass in V,,. Therefore, the integrands in both surface

integrals in (10.19) can be approximated by GM, / R?, and the integrals
themselves by 4zGM/R . For R tending to infinity, these surface integrals
vanish, and we arrive at

u(p) =G [f[Zar . (10.20)

m

We have obtained the well-known formula for calculating the gravitational
potential if the distribution of density is known. Therefore, Green’s second
theorem (10.19) includes this important formula as a special case.

a) b) <)

Fig. 10.2. Mutual position of the masses and the integration domain in
Greens’s second theorem (10.19). Volume V is the integration domain, S its
surface, P a point inside V where the gravitational field is calculated, V,, the
region where the masses are distributed.

b) All masses outside V. It happens very often that the distribution of masses is
not known. The gravitational field inside the masses then cannot be
calculated. However, the external field can be calculated if compensatory
information is known. Namely, outside the masses, Poisson’s equation
(10.18) becomes Laplace’s equation,

VU =0, (10.21)

which can be solved if appropriate boundary conditions are given.
Green’s second theorem makes it possible to solve this problem in an
integral form. If p =0 inside V, see Fig,10.2b, Eq. (10.19) yields
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ﬂUO,,n( )d +—j %Z—st (10.22)

This solution is relatively simple; this is the sum of potentials of a double
layer and of a single layer. However, two functions must be known on
surface S, namely potential U and its normal derivative JU/Jn . It can be
seen that the position of point P influences these integrals through the
reciprocal distance, 1/r , and the normal derivative of 1/7 .

It is well-known that Laplace’s equation can also be solved if only one of
the above-mentioned functions is known on S. The formulation for a given
U on surface S is called Dirichlet’s problem, and its solution may be
expressed as

U(P) _——HU@ds (10.23)

where function G is called Green’s function (sometimes it is also called
Green’s first function). Instead of two integrals in Eq. (10.22), here we have
only one integral. However, this apparent simplification is compensated by a
more complicated integrand; the simple function 1/r in Eq. (10.22) is
replaced here by Green’s function, which is more complicated and
dependent also on the shape of surface S. Analytical expressions for Green’s
function G; are known only for very simple forms of surface S.

If U /n is given on S, we speak of Neumann’s problem. Its solution
may be expressed as

1 U
U(P) =Z7;J]G2%dS+UO, (10.24)
S

where U, is a constant. Function G,, called Neumann’s function, is
generally more complicated then 1/, and depends also on the shape of S.
Since functions G; and G, generally differ from function 1/7, potentials
(10.23) and (10.24) cannot be interpreted as potentials of a double and
single layer, respectively.

Formulae of type (10.22) to (10.24) play a fundamental role in the
classical theory of the Earth’s gravity field and shape of the Earth (Pick et
al., 1973).

¢) Only a part of the masses inside V. This situation is shown in Fig. 10.2c.
The potential at point P can also be determined if density p is known inside
region V only (and unknown outside), and if U and JU/dn are known on
surface S.
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10.2 Inhomogeneous Wave Equations and Helmholtz
Equations

In the following sections of this chapter, we shall solve the inhomogeneous
equation of motion for a homogeneous isotropic medium, i.e. the equation
containing body forces:

5*u

(/1 + ,u) grad divu +,uV2u+pg = pEE .

(10.25)

Express the displacement u and body force g in terms of potentials ¢, v, g and
p as follows:
u=gradp+curly , g=gradqg+curlp . (10.26)

The equation of motion (10.25) then takes the form

s . 3y
grad (/1 + Zy)Vzgo + pq —p}—tzg} + curl[uvzw + op —pang} =0. (10.27)

This equation will be satisfied if the expressions in the square brackets are
equal to zero; see the analogous discussion in Subsection 7.1.1. This yields the
following inhomogeneous wave equations:

7 A+2
?Viprq=2L, 4= |21 (10.28)
ot p

Py Y7

292,

Vy +p = R = . 10.29
BViy +p 5 B ,/p ( )

Let us consider only the first of these equations, Eq. (10.28), and rewrite it

in the frequency domain. Therefore, let functions ¢ and ¢ be harmonic
functions (harmonic components of a general signal):

(D(XI s X9 5 X3, 1 a)) = @(xl s Xp , X3, a))eiwt 5
(10.30)
q(xl T B a)) = Q(xl ; X5 5 X5 5 a))eia” ,
where @ is the angular frequency, and functions @, O depend on the

coordinates and . By inserting these expressions into Eq. (10.28), we arrive at
the inhomogeneous Helmholtz equation:

a*Vio+0+0?@=0. (10.31)
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10.3 Helmholtz Formulae

In Section 10.1 we specified Green’s first theorem for function W =1/r , which
represents the fundamental solution of Laplace’s equation. This gave Green’s
second theorem, which yields a general solution of Poisson’s equation. Thus,
starting with a simple solution of Laplace’s equation (a homogeneous
equation), Green’s first theorem enabled us to obtain a solution of Poisson’s
equation (an inhomogeneous equation).

In this section we shall derive analogous relations between the solutions of
the homogeneous and inhomogeneous Helmholtz equations. Therefore, we
shall seek an analogue of Green’s second theorem for the Helmholtz equation.
The main formulae, which will be derived in this section, are also summarised
in the right column of Tab. 10.1.

10.3.1 Helmholtz inner formula

Consider again a closed surface S (Fig. 10.1). Denote the outward normal to
this surface by n and the volume inside the surface by V. We shall calculate the
wavefield at a point P. Assume the function Q, introduced in (10.30), to be

limited at this point. Let some functions @ and (2 be continuous in V together
with their first and second derivatives. Green’s first theorem for these functions
may then be expressed as

[[[(ev22-avie)ar = jj(@%%—gi—f] s . (10.32)
4 8

Function @ will be the unknown solution of the inhomogeneous Helmholtz

equation (10.31). As function 2 we shall choose the spatial part of the
expression for a spherical wave, i.e.

1 .
Q="=e (10.33)

where k = w/a is the wavenumber, and r is the distance from point P. Using
the Laplacian in spherical coordinates, see (9.30), it can easily be verified that

function (2 satisfies the corresponding homogeneous Helmholtz equation
(without body forces):

V20+k%0=0. (10.34)

Note that function W, given by (10.11), and this function 2 differ only by the
factor exp(—ikr). These functions represent the fundamental solutions of the

corresponding homogeneous equations.
It follows from Egs. (10.31) and (10.34) that the integrand on the left-hand
side of (10.32) is
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V- N D=00/a” . (10.35)

Green’s first theorem (10.32) then takes the form

= [[Jondr = Q(QE —Q%] ds . (10.36)

First, let us consider point P inside volume V. In this case, however, we

cannot write Green’s first theorem in the form (10.36), because function (2 is
singular at point P. Therefore, we shall again exclude a small sphere with its
centre at P from volume V, as shown in Fig. 10.1. Using the same notations as
in Fig. 10.1, equation (10.36) now becomes

éﬂ!QﬂdV—if(@?—n—Q“JdS H( ,]do. (10.37)

Calculate the integral on the right-hand side of this equation. i.e. the integral

over sphere o. Since normal m’ has the opposite direction to the radial
coordinate r, one gets

602 62 [1 ik]_4, 00 o0
By &r e

= e

r r

Moreover, for points on surface o we have r = . The integral on the right-
hand side of Eq. (10.37), denoted by I/, then becomes

el 1 ik 1 (0D
Fep ,kgL_z J.[@da+;_y@d0'+g£j&da] : (10.38)

The following process is analogous to that in Subsection 10.1.4. Since we
assume functions @ and JS@/Jr to be continuous, and the area of the sphere is

o =4ze?, the second and third integrals in (10.38) will vanish in the limit for
& — 0. The first integral yields

I =47z0(P) . (10.39)

Equation (10.37) then yields

@d(P) =

H{ — = ;(e_;krnds. (10.40)
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This formula is called the Helmholtz inner formula, sometimes also the

Kirchhoff formula for harmonic waves. Let us remind that function @ is the
spatial part of the longitudinal-wave potential; see Egs. (10.30) and (10.31).
Hence, the Helmholtz inner formula makes it possible to calculate the potential

function @ at a point P inside a closed surface S if the body forces are known
inside S and functions @ and d@/Jn on S (see Fig. 10.3a). The unknown
distribution of body forces outside S is compensated here by the knowledge of
@and JD/Sn on S.

O unknown
QO known
S ‘w
! S
' Pe
4 4
a) b)

Fig. 10.3. Regions to which the Helmholtz formulae are applied: a) inner
formula; b) outer formula.

10.3.2 Helmholtz outer formula

Now, consider point P to be located outside a closed surface S (Fig 10.3b). Let
us apply Eq. (10.36) to the outer region. Analogously to the previous case,
construct a spherical surface o around point P, and let the radius of the sphere,
&, tend to zero. Moreover, construct another spherical surface, Sp, with its
centre at P and of a radius R. Let radius R be large enough, so that the whole
surface S lies inside Sy . Denote the volume between surface S and S, by V'.
Surface S is the inner boundary, and S the outer boundary of this volume. On
the outer surface Sp we have &/dn = o/Jr , where r is the distance from P. On
the inner surface S we must take the inward normal, n’, because this is the
outer normal with respect to volume /'. Formula (10.40) will be preserved
also in this case if V'is replaced by V', normal n by n’, and the corresponding
integral over surface Sy is added, i.e. the integral

—ikr —ikr
o"(D 1 D 1 @ _;
” 02| | las=—f (é—+1k@) e ds
r ﬁr 0"r r 47 s or r rz
R

(10.41)

Since the area of sphere Sy is 47R? , it can be seen that none of the terms in
the latter square brackets vanishes generally when R — «o. However, these
terms will vanish if we assume that the following two conditions hold true:
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. (o@
lim r(é’—+ik@j =0, |ro|<Mm, (10.42)

r—»00 r

where M is a real constant. These two conditions play a fundamental role in the
theory of propagation of harmonic waves in unlimited media. They are called
the Sommerfeld radiation conditions or simply the radiation conditions. We
shall return to their discussion at the end of this chapter.

Provided the Sommerfeld radiation conditions are valid, integral I, will

vanish for R — . From Eq. (10.40) we then arrive at the resultant formula for
the case of point P outside S:

1 —ikr 1 —ikr a¢ 0') —ikr
o(P)= — fV[er - dV+EJ;j{e — “Cpan'Le - HdS (10.43)

This formula is called the Helmholtz outer formula. Let us repeat that V' is the
volume outside surface S, and n’ is the inward normal to S; see Fig. 10.3b.

10.4 Kirchhoff Formulae

Let us rewrite the Helmholtz formulae into the time domain. Since they are
formally identical (with the exception of V' and n’), we shall rewrite only the
inner formula (10.40).

First, modify Eq. (10.40) by performing the differentiation in its last term:

” _,k,[mcp 02 (1%;]{_@@}“
r on on r on
(10.44)
Multiply both sides of the latter equation by exp(iat), and perform the Fourier
integration with respect to @ from (—o) to (+), @ being the angular
frequency. In fact, the integration from 0 to + oo is sufficient as we assume the

seismic signals to be real functions; see below. Before interpreting the results,
let us repeat some basic formulae of the Fourier transform.

o(P) =

10.4.1 Basic formulae of the Fourier transform

Consider a function f(f) satisfying, e.g., the following conditions (called the
Dirichlet conditions):
+00
1) The function is absolutely integrable, i.e. _ﬂ f@|de < M.
2) Within each finite interval, the function has only a finite number of maxima,
minima and discontinuities of the first order (the discontinuities where the
limits from the left and right are finite).
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Seismic signals usually satisfy these conditions. Under these conditions, the
following integral exists:

Flo)= [f()e ™ dr, (10.45)

This function F(w) is called the Fourier spectrum of function £(z).
The inverse Fourier transform has the form

() = %_i Flo)e™ do . (10.46)

If function f(¢) is real, which we shall assume here, its spectrum for negative

@ is complex conjugate, F(—w) = F (w), and the inverse Fourier transform
may be expressed as

1 +00 _
f()==Re [F(0)e™ dw . (10.47)
7
0
Two basic properties of the Fourier transform, which we shall need below,
are given in Tab. 10.2.

Table 10.2. Some properties of the Fourier transform.

Function Spectrum
f() F(o)
flt-1) e Fl)
df(®) _

T la)F(a))

10.4.2 Integration of the Helmholtz formulae

Let us go back to the integration of (10.44). According to Tab. 10.2, the
multiplication of a spectrum by exp(—ikr) = exp[— iaJ(r/ a)] corresponds to the

time shift by r/a in the time domain, and the multiplication by i@ in the last
term corresponds to the differentiation with respect to time (note that
ik =iw/a). Consequently, in view of relations (10.30), Eq. (10.44) can be
expressed in the time domain as

olp) = e+ [ 2] b2 (8) - 2] 2| 2 s

(10.48)
The quantities in the square brackets denote that time ¢, after carrying out the
corresponding operation, has been replaced by ¢ —r/c . Thus,
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d-dor-2). (25

l=ofx0-2). [ %] (%)

As the consequence of the time shift ¢ —r/a, the latter quantities in the
square brackets are often called the retarded potentials. Hence, the potential at
point P and time ¢ is not determined by the quantities in volume V" and on
surface S at the same time ¢, but at some previous times. The corresponding
time delay is equal to the travel time from the particular point to the point of
observation, P.

Formula (10.48) represents the most common form of the so-called
Kirchhoff formulae, which are widely used in methods of seismic prospecting,
especially in migration methods.

When applying the Kirchhoff formulae we must take into account the
important fact that these formulae are based on the wave equation and on the

(10.49)

=t-r[ct

assumption of a constant velocity, ¢. In other words, these formulae have been
derived under the assumption that the medium is homogeneous and isotropic.
In inhomogeneous or anisotropic media, these formulae are not valid, but must
be generalised. Instead of the Kirchhoff formulae, the so-called elastodynamic
representation theorems are then obtained. Of course, such theorems have
much more complicated form (Aki and Richards, 1980; Psencik, 1994).

10.5 Sommerfeld Radiation Conditions

Let us return to a brief discussion of the radiation conditions (10.42). The first
condition, i.e.

. oD
lim r(0,)—+ik@j =0, (10.50)

r—>0 r

says that sources in a bounded region can generate only divergent waves
outside this region, not convergent waves. Let us demonstrate this fact on the
case of spherical waves. Consider a divergent spherical wave with potential

. 1.
= d)el(dl‘ = z(a)t—-kr) .
Pa a

oD |
(2 ua) oo
or

7

For this wave we get

which approaches zero as 1/r for » — . Contrary to it, for a convergent
spherical wave,
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s g | R
0, = Dol :;et(a)t+ ) ’

0] - 1) .
r(—— + ik@] = (Zik = —je”” ,
or r

which does not approach zero for » — .

we get

The second radiation condition, |r@ 1 < M, requires the amplitudes of the

waves to decrease at least as 1/7 for r — .

10.6 Advantages and Disadvantages of Solutions in
Integral Forms

In Section 10.1 we found the solutions of Poisson’s and Laplace’s equations by

means of integral representations which were based on Green’s first theorem. A

similar approach was used in Sections 10.3 and 10.4 to solve the

inhomogeneous Helmholtz and wave equations, respectively. These solutions
have the following advantages:

e From the formal point of view, the corresponding integral solutions are

- relatively simple and elegant,

e The boundary surface S may be of a general shape.

On the other hand, this method has the following disadvantages and

limitations:

e The shape of surface S, over which the integration is performed, must be
known (this is not satisfied, e.g., in some gravimetric problems}

e Both the potential and its normal derivative must be known on the boundary
of the integration domain, S. This limits the applicability of the method. For
example, the classical boundary problems for Laplace’s equation, the
Dirichlet and Neumann problems, cannot be solved immediately by this
method, because only one of the above-mentioned functions is given on the
boundary.

e Numerical integration, which must generally be used to evaluate the
corresponding integrals, is not very convenient from the computational point
of view. This integration may be rather time consuming, and the
corresponding algorithms may be complicated.

Since these integral methods solve only a certain category of problems, also
other methods must be considered.
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Chapter 11

Solution of the Helmholtz Equation by the
Separation of Variables

In the previous chapter we found the solutions of the corresponding equations
in the integral forms which were based on Green’s theorem. Another general
method of solving partial differential equations is the Fourier method of
separation of variables. In this method we attempt to solve a partial differential
equation under the assumption that the solution may be expressed as a product
of several functions, each of which depends on one coordinate only (or on a
restricted number of coordinates). In this way we obtain particular solutions
only. However, by the summation or integration of these particular solutions,
we may obtain general solutions.

The separation of variables is frequently used when the solution is sought in
an infinite region or in a region which is bounded by surfaces which coincide
with coordinate surfaces of an orthogonal coordinate system.

In this chapter we shall apply the method of separation of variables to the
Helmholtz equation in Cartesian, cylindrical and spherical coordinates. A brief
review of the main formulae for Cartesian and cylindrical coordinates is given
in Tab. 11.1.

We shall restrict ourselves to the propagation of longitudinal waves in a
homogeneous isotropic medium. The corresponding potential ¢ satisfies the
wave equation

2
Vip-—22 (11.1)
a“ ot

where « is the velocity of longitudinal waves. Consider only harmonic waves,
i.e. the potential in the form

o=@, (11.2)

where w is the angular frequency, and @ is a function of coordinates only. The
wave equation for longitudinal waves then simplifies to the following
Helmholtz equation:

Vio+kio=0|, (11.3)

where k, = @/« is the wavenumber.

11.1 Separation of Variables in Cartesian Coordinates

Consider the Helmholtz equation in Cartesian coordinates (for longitudinal
waves):
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’o Fo Fo
52+5y2+§2+ka@=0, (11.4)
X z

and solve it by the separation of variables. Hence, let us seek function® in the
form

@(x, y,z,0) = X(x) Y(y) 2(2) , (11.5)

where function X depends on coordinate x only, ¥ on coordinate y only, and Z
on coordinate z only. Moreover, functions X, ¥, Z depend also on parameter @
and on some other constants of separation, which will be specified later. By
inserting expression (11.5) into the Helmholtz equation (11.4), we get

d* x d’y ¢z
T+ XL+ XY ——5 + kL XVYZ =0 ; (11.6)
dx dy dz

YZ

note that here we could replace the partial derivatives by the normal
derivatives, because each of functions X, Y, Z depends on one coordinate only.
Dividing this equation by the product XYZ, one gets

ideJrlszJrldzZ
X dx? Ydy?r Z a4z’

+k2=0. (11.7)

The first term of the latter equation is a function of x only, the second of y
only, and the third of z only (&, is a constant). Thus, we can introduce three

constants of separation, k,, k, and k,, in such a way that

1d>x , 1d’v , 14’z
Xad TR ygr T gtk 9

It follows from Eq. (11.7) that these constants must satisfy the condition
ko =kI+k;+k2, (11.9)

and so only two of them are independent.

Instead of one partial differential equation (11.4) we have obtained three
ordinary differential equations (11.8). The latter equations represent the
equations of harmonic oscillators:

d* X d?y a2z
+k2X =0, —+k2¥=0, —=+k2Z=0.  (11.10)
dx? ¥ dy2 ¥ dz? :

Their solutions are very simple:
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Wy Fe (11.11)

where C to H are arbitrary constants.
As the independent constants, let us choose constants &, and k. Constant

k, is then dependent on them:

k, = k2 —k2 k2 = \/(w/a)2 —kZ -k . (11.12)

Formulae (11.5) and (11.11) yield particular solutions of the Helmholtz
equation. The general solution of the Helmholtz equation (11.4) can be
constructed as the superposition of all particular solutions over all possible
values of &, and k:

+00 +00

1)2 J‘ J‘A(kx’ky,w)eikxx+ikyy+ikzzdkxdky 5

Qr

@(x,y,z,a)) =

(11.13)
1 +00 +00 i " o
ik x+ik y—ik,z .
o _L _£B(kx,ky,w)e Y Ak, dky

+

the constants (27) ™ could be included into functions 4 and B, but we write
them in front of the integrals in order to obtain expressions which are similar to
the two-dimensional inverse Fourier transform.

The latter integrals play an important role in some procedures in seismic
prospecting. The following properties of these integrals should be pointed out:
1) Integrals (11.13) represent the expansion of a harmonic wavefield into

elementary plane waves. If the z-axis is oriented downwards (z = depth),

then the first integral, after multiplying by exp(iot), will be composed of
plane waves propagating obliquely upwards, and the second integral of
plane waves propagating obliquely downwards.

2) As mentioned above, the integral representation (11.13) has the form of the

2 —D Fourier integral, where x, y are the original variables, and %, ky are

the transform variables. Note that %, is not a transform variable, as it is
related to &, and k), by (11.12).

3) The signs with iwt, ik, x and ik,y are arbitrary. We have chosen them “+”,

[

but they may be chosen “~”, or mixed, e.g. it —ik,x —ik,y. Since the
corresponding integrals run from —oo to +oo, all negative and positive
values are always included.

In Sections 11.2 and 11.3 we shall describe two important applications of
the integral representation (11.13).
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11.2 The w - kK Migration

Integral expression (11.13) is frequently used in the downward and upward
continuations of the wavefield. Since the downward and upward continuations
form an important part of a migration procedure, we speak of the w —k
migration (if frequency f =w/(27) is used). First, let us describe the
migration in the frequency domain.

Assume, for example, that the spectrum of a measured wavefield at the

Earth’s surface (z = 0) corresponds to a wave propagating upwards, i.e. from
below. This may be, e.g., a wavefield reflected from some discontinuity. We

then have to put B(kx,ky,a)) =0, because this term represents downgoing
waves. Formula (11.13) then becomes

+00 +00

D(x,y,2,0) = (ke oy o) I g dk, . (1114)

—00 —00
For the spectrum of the recorded field at z =0 we thus get

+00 +00

@(x ,0, a)

ik x+ik
(keoky @)™ dk, dk, . (1115)

—00 —c0

We have arrived at a formula which appears in the theory of the two-
dimensional Fourier transform. Let as remind the basic formulae of this
transform.

Consider a function of two Cartesian variables, f (x, y), satisfying certain

general conditions (seismic signals usually satisfy these conditions).The 2 — D
Fourier spectrum of this function is defined by

+00 +00

F(kx,ky)z [ [rGey)e™ Y dxdy . (11.16)

—00 —00
The inverse transform is of the form

+00 +00

fx.y (koo Je™ 57 dk, d i, . (11.17)

—00 —00

It follows from the comparison of formulae (11.17) and (11.15) that function
A is the 2 - D spectrum of function @. The definition (11.16) then yields

+00 +00

(kx,ky,a)) [ [o(x.y.0,0)e ™™ dxdy . (11.18))

—00 —0
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Since the function @(x, y,O,a)) at the Earth’s surface is known, we can use

(11.18) to determine A(kx,ky,a)). Inserting this function into (11.14) we

obtain the integral expression for the downward continuation of the wavefield
spectrum.

In the time domain, we must add the corresponding Fourier transform for
computing the spectrum at the surface,

+00
D(x,y,0,0) = [p(x,y,0,1)e™ ™ dr , (11.19)

—0o0

and the inverse transform for computing the time signal at depth z,

+00
¢(x,y,z,t)=$ [o(x,y,2,0)e do . (11.20)

The sequence of the computations is, therefore, as follows. From the wavefield

at the surface, (o(x, y,O,t), we compute the corresponding spectrum (11.19),

the 2-D spectrum (11.18), then spectral amplitude (11.14), and finally
(11.20), which yields the desirable downward continuation of the wave field.

11.3 Expansion of a Spherical Wave into Plane Waves.
The Weyl Integral

Using the integral expression for the wavefield derived in Section 11.1, we can
also derive an expansion formula of a spherical wave into plane waves.

Consider a spherical harmonic longitudinal wave propagating in a
homogeneous medium at a constant velocity « (for transverse waves we would
take velocity f):

go(r,t,a)) = %eiw(t"r/a) , (11.21)

see Eq. (9.51) where we have put 4 =1. Denote the expression without the
time term by

) (11.22)

7

where k, = w/a, and 7 is the distance of the observation point from the point
source. To find the expansion formula, we shall use the general expression
(11.13), where £, is given by (11.12).

Now we shall consider a point source at the origin of the coordinate system,
x=y=z=0, and the receiver in the region z>0. As the z-axis is oriented
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downwards, the wave propagating in the half-space z > 0 due to a point source

at z= 0 1s downgoing and, consequently, we shall put A(kx Ky ,a)) = 0. Thus,

T T8tk 0)e ™ ar, ak, . 12

e )2 -

@(x Y.z, a)

For z=0, we get

+:-|?+.<i_0B( . y’ ) ikyx+iky,y dkxdky . (11.24)

—00 —00

@(x y,0, a) 5
@7)

This expression has again the form of a 2—D inverse Fourier transform.
Consequently, function B can be expressed as

+00 +00

B(kx,ky,a)): [ [o(x.y.0,0)e ™™ dxdy . (11.25)

—00 —00

Function @ in the latter integral is defined by (11.22), where

P= \lxz + y2 +z2 . For z =0, this function becomes

D(x,7,0,0) = ¢ HaV3 7 (11.26)

)Cz +y2

The corresponding function B(kx,ky,a)), given by (11.25), now takes the

form

+00 +00

Htkyo)= | [ 0y i

—00 —00

Formulae (11.27) and (11.23) solve formally the problem of the decomposition
of a spherical wave into plane waves, but it is desirable to find a simpler

expression for B(kx k@ )
Introduce polar coordinates as follows:

Xx=pcosd, y=psind, (11.28)
ky=kcosy , k,=ksiny, k*=k;+k; .

Since the surface element in polar coordinates is dS = ,pdpdA, integral
(11.27) takes the form
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027 )
B(kxaky,w)= [] o Plkarkeos(v)] g g 5 (11.29)
00

First, we shall perform the integration with respect to p:

(oo}

2 e—ip[ka+k cos(i-y/)]
B(kx’ky’a)): (')[d;t —i[ka+kCOS(/1'“l//)] 3 . (22
p=

However, the integrand in the latter formula does not tend to a limit for p — o

if the expression £k, +k cos(/l = 1//) is real, because the exponential is

oscillating. To avoid this problem, the following approaches may be used:

1) We may assume that the medium is very slightly absorbing, i.e. velocity o is
complex-valued and 1/ has a small negative imaginary part. The integrand
in (11.30) then vanishes for p — o, and we get

127[ da 2 d77
Bekyo) =g b retizy) =" S ivhany - Q130

2) For a pure real a, the Cauchy theorem may be applied to transform the path

of integration into the complex plane. If &, + kcos(l - l//) is positive, the
path of integration is transformed from the real axis to the infinite arc and
imaginary axis of the fourth quadrant. The contribution from the infinite arc
vanishes, and the integration along the negative part of the imaginary axis
yields again formula (11.31). If %, +kcos(/1—1//) is negative, we shall
transform the path of integration into the first quadrant.
Integral (11.31) can be found in tables of integrals (or, e.g., the substitution
g= cos(n/ 2) can be used to transform the integrand into a rational function).

One gets

zjf dn 27

o ko +kcosy /ké—kz '

Further details of this derivation can be found in the book by Tygel and Hubral
(1987) and in the lecture notes by Psencik (1994). Taking into account that

k, = \/(a)/a)z —R2 -k = k2 -K2 K2, (11.33)

Bk, kyo00) =~ 27k, . (11.34)

(11.32)

we arrive at

Thus, formulae (11.22) and (11.23) finally yield
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e =L+ojo+ojo L rtss=iyy—ikz b g (11.35)
27 k S

—0—co £

r

where we have taken the opposite signs in the terms ik,x and ik,y in the

exponents. In fact, we have replaced &, by (— kx) and k, by (— ky), which

does not change the value of the integral. Formula (11.35) represents the
expansion of a spherical wave into plane waves. This is known as the Weyl
integral.

Since k, may attain real or pure imaginary values, the superposition (11.35)
contains two types of plane waves, namely the so-called homogeneous and
inhomogeneous waves. We shall discuss them in connection with the
Sommerfeld integral in Section 11.5.

11.4 Separation of Variables in Cylindrical Coordinates

Consider the Helmholtz equation for longitudinal waves, i.e. Eq. (11.3), in

cylindrical coordinates p, A, z. Using formula (9.31) for the Laplacian in
cylindrical coordinates, we get

Fo 150 Lo”chJré’ch
op* pop p* oA* 7

+k20=0 . (11.36)

A general solution of this equation is briefly described in Tab. 11.1. Here we
shall restrict ourselves only to the solutions which are independent of

coordinate A, i.e. to the solutions which are axially symmetrical with respect to
the z-axis. The Helmholtz equation then simplifies to read

lo 100 o
b ——t——+ k2D =0 . (11.37)
zZ

a

Let us solve the latter equation by the separation of variables. We shall seek
the solution in the form of the product

@(p,z) = R(p)2(2) , (11.38)

where function R depends on p only and function Z on z only. Moreover, all the
functions depend also on the angular frequency @ and on a certain parameter of

separation. Insert this form of @ into Eq. (11.37), and divide the equation by
RZ. We get

ldzR 1dR| 14d*z ,
+——+k;=0. (11.39)
R\ dp? pd,o Z dz
%f_—/
ke K2
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Introduce a separation constant k? as indicated. The solution of the partial
differential equation (11.37) then reduces to two ordinary differential
equations:

d’R 1dR

—— = R =0, (11.40)
dp® pdp

&2 i3 .3

= ~(k2-k2)z=0. (11.41)

The first equation, according to the analogy with Eq. (9.54), has a particular
solution

R=Jo(ko) , (11.42)

and the second equation has a particular solution
Z = A(k)e” + B(k)e™ ™ , (11.43)

v=yk?-k2 . (11.44)

The general solution of the Helmholtz equation (11.37) can then be
expressed as

where

o(p,z,0)= [Jo(kof{ A(k.0)e” + B(k,w)e ™ }dk , (1145
0

where A(k, @) and B(k, w) are arbitrary functions. They must be determined

from boundary conditions. Note that we could introduce v' =+/k2 — k2 , so

that v =iy’ and the exponentials in (11.45) would be replaced by exp(iv'z)
and exp(—iv'z), respectively.

11.5 The Sommerfeld Integral

The Weyl integral represents the expansion of a spherical wave into plane
waves. Similarly, we can expand a spherical wave into cylindrical waves. This
expansion into cylindrical waves is given by the Sommerfeld integral. In
applications, the Sommerfeld integral has been used even more frequently than
the Weyl integral.

In order to derive the Sommerfeld integral, the general solution (11.45) in
cylindrical coordinates is usually used. We can again consider a point source at
the origin of the coordinate system, p =z =0, and the receiver in the region

z>0. For large k the square root k% — k2 is real. In order to obtain a limited

integrand for z >0, we must put A(k,a))z 0. Analogously to the Fourier

202



transform, which we used to determine the function B(kx,ky,a)) in Section

11.3, now we could determine the function B(k,a)) by means of the Fourier-
Bessel transform. The following procedure would be very similar to that used
in Section 11.3 in deriving the Weyl integral. However, we shall not describe
this derivation here. Since we have already derived the Weyl integral, it will be
simpler to use the known form of this integral, and transform it into cylindrical
coodinates.

Therefore, introduce polar coordinates (11.28) into the Weyl integral (11.35)
and express k, in the form (11.33):

i 1‘?2” 1

Using the integral definition (9.58) of the Bessel function J, i.e.

, o 2513
e—tkpCOS(l//—l)“lZ ki—k kdkd v (1 146)

2z

12 ot
Fo@)=5- feroooslv-2) gy (11.47)
0

the Weyl integral can be expressed as

e—-ikar

=1_jJ (kp)—l——e"'z\"‘é"‘zkdk . (11.48)
a 2 .2
is K-k

a

r

We have performed the derivation for z>0. Since the derivation for z<0
would be analogous, we shall replace z by | z| in the latter formula. Moreover,
let us introduce

vk —k2 =i k2 - k> . (11.49)
We then arrive at the final expression for a spherical wave in the form

1w, 1 kdk
;e"kar=6[J0(kp)e_V|zl —., (11.50)

This is the famous Sommerfeld integral. Let us repeat that r is the spherical

coordinate, p and z are cylindrical coordinates, r =4/ ,o2 +z2, Jy the zero-
order Bessel function, k£ the integration variable, v is given by (11.49), and
ky,=0/a.

We have already mentioned that the superpositions given by the Weyl and
Sommerfeld integrals contain two types of waves. For k <k, the exponential
in (11.50) is oscillatory, which corresponds to usual waves, called
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homogeneous waves. However, for k >k, , the waves decay exponentially

with increasing |z| These latter waves are called inhomogeneous waves. The

superposition of homogeneous waves alone would give only a finite value of
the wavefield at the source of spherical waves. The presence of inhomogeneous
waves produces the necessary singularity at the source.

Hence, we have found that inhomogeneous waves constitute an important
part of spherical waves. We shall see in the next chapter that inhomogeneous
waves are also produced from homogeneous plane waves at the total reflection.

11.6 Separation of Variables in Spherical Coordinates

In spherical coordinates, the Helmholtz equation (11.3) reads

1 é’(za@jJr 1 a(, 35¢)+ 1 azq>+k2q) 0 {(115D)
1o K ~0 (1L
2ol o)  2sn909\09) il g o2 @ ’

see formula (9.29) for the Laplacian. We shall seek a separated solution in the
form

o(r, 9,2) = R(r) ©(89) A(2) . (11.52)
Inserting this form into Eq. (11.51) and multiplying by r? / @ yields

1 i(- 5
Osind dg\>"

ii( 2 4R

Rdr 7 -———)+k02{r2+

d@) 1 d%4
dr

=0. 11.53
49) T Asis 4 2 U= | )

Since coordinate A is contained only in the term /1_1(d2 A/ d /12), this term

must be constant. Denoting this constant by (— mz), we arrive at the first
ordinary differential equation
d? A
dA*

+m?A=0. (11.54)

Its particular solution is
A(2) = 4e™™ + Be™m* | ' (11.55)

A and B being constants. From the natural requirement on function A that it
must be periodic,

AL +27) = A(4) , (11.56)

we can deduce that m must be an integer.
Introduce a new variable u=cosd instead of 4. Since d u=-sin9d 9,
equation (11.53) may now be expressed as
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1d(,dR) ,, 1d NdO| m

EE(}‘ d—r)+kar r=—(1-12)5= |- ~0. (11.57)
It is now evident that the first two terms of this equation must be equal to a
constant, K, and the remaining two terms must be equal to the constant (- K).

If we put K =I(I+1), [ being an integer, the remaining ordinary differential
equations take the form

ddr(r %?) [k2r? =1 +1)]R =0, (11.58)
2
dd,u[(l p )Zﬂ [l(l+l)— - }@ 0. (11.59)

The latter equation is well known, e.g., from gravimetry. Its solutions are
associated Legendre functions,

O(n) = P (1) = P (cos 9) . (11.60)

Note that these functions are usually defined by the relation

LY
x2) A" Bl (11.61)

dx™

Pr(x) =(1-

where

P,(x)= 4 [(x2 —1)”} (11.62)

2”n'dx

are Legendre polynomials. The products P (cos $)e™* and P/ (cos9)e ™
are called the spherical surface harmonic functions.
Let us modify Eq. (11.58) by introducing a new variable =k ,r. We

obtain
,d2R
] +2§—+[§ 11 +1)|R =0 (11.63a)

or

(11.63b)

R L2dR { 1(1+1)R .
dc? §dC

This is again a well-known differential equation in mathematical physics. Its
solutions are spherical Bessel functions:
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ilg)= \/%Jln/z(f) . m(¢)= \/;—”;-Nm/z(g) . (11.64)

Another possible pair of linearly independent solutions is as follows:

0= (S0, Q=0 arey

Here J, and N, are the Bessel functions of the first and second kind (N, is

also called the Neumann function), H ,(11) and H, ]Sz) are the Hankel functions of
the first and second kind.

Thus, the elementary solutions of the Helmholtz equation (11.3) in spherical
coordinates may be expressed as the following combinations:

jl(kar) . eim}t
{”1 (kar)}Pl (cos 3){6% l} . (11.66)

Such solution are widely used in seismology (e.g., in the theory of the free
oscillations of the Earth). The constants of separation are / and m. The sum
over / and m is again a solution of the Helmholtz equation.

For further details we refer the reader to the lecture notes by PSencik (1994).
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Chapter 12

Reflection and Transmission of Plane Elastic
Waves at a Plane Interface

12.1 Reflection and Transmission as a Special Problem
of Wave Propagation

In the preceding chapters we investigated waves which propagated in
homogeneous media. If a wave strikes a boundary or interface, new conditions,
so-called boundary conditions, must be added to the differential equations of
motion. These boundary conditions must be determined from observations or
from the integral equations of motion, which are more general than the
differential equations of motion.

From the mathematical point of view, the problem consists in the following.
In Chapter 6 we derived the differential equations of motion under the
assumptions that the displacements and stresses were continuous together with
their first partial derivatives. Moreover, we assumed the validity of Hooke’s
law. However, these requirements are in contradiction at places where the
elastic coefficients are discontinuous. For example, assuming the first
derivatives of the displacement to be continuous, and applying Hooke’s law at
a material discontinuity, we obtain discontinuous stresses. Or conversely,
assuming continuous stresses at such discontinuities and the validity of
Hooke’s law, we must admit discontinuous derivatives of the displacement.
Therefore, some of the continuity conditions (or the validity of Hooke’s law)
must be abandoned at the discontinuities. We shall usually keep the continuity
of the displacement and stress, but abandon the continuity of their derivatives.
However, this means that the differential equations of motion do not hold at
discontinuities of elastic parameters. Consequently, we can solve these
equations in the regions without discontinuities, but at a discontinuity we must
sew the particular solutions together on the basis of boundary conditions.

It is well-established fact that a disturbance of any kind propagating in one
medium and impinging upon an interface gives rise, in general, to reflected and
refracted (transmitted) waves. Since the term “refracted wave” is frequently
used to denote another type of waves (see Chapters 3 and 4), here we shall
prefer the term “transmitted wave”. Therefore, we shall speak of the reflection
and transmission of waves at interfaces. The problem of the reflection and
transmission of waves belongs to the basic problems in all branches of physics
which deal with wave phenomena.

Knott (1899) seems to have been the first to derive the general equations for
the reflection and transmission of elastic waves at plane interfaces. Another
formulation of this problem was developed by Zoeppritz in 1907, but partly
because of his death in 1908, his paper was not published until 1919; see
Zoeppritz (1919). The Zoeppritz equations then became very popular and have
been frequently used.

207



12.2 Model of the Medium and Boundary Conditions

Consider a medium which consist of two homogeneous and isotropic half-
spaces in contact. Assume the media to be perfectly elastic and the contact to
be welded, i.e. the displacement is continuous across the interface. Denote by
ay, f; and p; the compressional wave velocity, shear wave velocity and
density in the first half-space, respectively, and by «,, £, and p, the
corresponding parameters in the second half-space.

Consider an incident plane wave propagating in the first half-space. The
point where a selected ray strikes the interface, choose as the origin of a

Cartesian coordinate system (x, ¥, z) . Let the x- and y-axes be in the plane of

the interface, and the z-axis be perpendicular to this interface and directed into
the second half-space (Fig. 12.1). The incident ray and the z-axis determine a
plane which is called the plane of incidence. Choose the x-axis in this plane.

incident wave reflected wave

Medium 1

Interface

Y

7

Medium 2 1

Fig. 12.1. The -coordinate
transmitted wave system and seismic rays.

z Y

As usual, denote the displacement vector by u= (u, v, w) and the stress

tensor by 7 (with its components z,,, 7,,,, etc.). The following subscripts will
be attached to these quantities in order to distinguish the individual wavefields:
e no subscript or subscript 0 for the incident wave;
R for the reflected wave;
T for the transmitted wave;
1 for the resultant wavefield in the first half-space;
2 for the resultant wavefield in the second half-space.
At the interface we shall generally require the followings boundary
conditions to be satisfied:

1) the displacement vector to be continuous across the interface, i.e.

u;=u, for z=0; (12.1)

2) the stresses acting at the interface (at the plane z = 0) to be continuous:

(sz)l = (sz)z ’ (sz)l =(sz)2 3 (Tzz)l =(TZZ)2 for z=0. (12.2)
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12.3 Reflection and Transmission of SH Waves

Consider a plane harmonic wave of the SH type which is impinging on the
interface from the first half-space (Fig. 12.1). Denote its angular frequency by

o and the angle of incidence by i;. Without loss of generality we may put its
amplitude to unity. Therefore, let the displacement in the incident wave be

u=(0,v,0), (12.3)

. x siniy +zcosi;
V= v(x,z,t) =exp|iw| f — . (12.4)

where

A

12.3.1 Expected forms of the reflected and transmitted waves

In order to satisfy the boundary conditions we shall assume that, in agreement
with observations, an incident SH wave gives rise to a reflected wave and a
transmitted wave of the same SH type, and that the rays of the reflected and
transmitted waves remain in the plane of incidence. If we are able to satisfy the
wave equations and all boundary conditions, it will confirm our assumption
that such waves really exist.

Therefore, we shall introduce two new waves, generated at the interface:

1) a reflected plane harmonic wave, up = (O, VR, O) , where

) xsinfe—zcos{e
vp = Aexpliwg| t - 7 ; (12.5}

2) a transmitted plane harmonic wave, uy = (0, vr, O) , Where

(12.6)

xsin,4zcos, ﬂ
— 5 )|

Vp = Bexp[ia)T(t =

In expressions (12.5) and (12.6) for the reflected and transmitted waves, we
have denoted the angular frequencies by wp and @z, the angles of reflection

and transmission by ilR and i,, and the amplitudes by 4 and B, respectively.
All these quantities must be determined. Remind that the reflection coefficient
is defined by the ratio of the amplitudes of the reflected and incident waves.
Analogously, the transmission coefficient is the ratio of the amplitudes of the
transmitted and incident waves. Since we assume the unit amplitude of the
incident wave, amplitude 4 is directly equal to the reflection coefficient, and B
is the transmission coefficient.
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12.3.2 Application of the boundary condition on the continuity
of displacement

The wavefield in the first half-space is composed of the incident and reflected

waves, i.e. Uy =u+up = (O, Vi, O) , where

) xsinij + zcosi; . xsinfz—zcosf2
Vi =V+Vg =exp|io| t — A + Aexp|iwg| t - A

(12.7)
The wavefield in the second half-space is formed by the transmitted wave only,

U, =ur = (O, vy, O), where

In, + 2 Ccos
Vo =Vp = Bexp{in(t—xsmﬁzgo—zj} . (12.8)

The vector boundary condition (12.1) now reduces to one scalar condition,
vp=v, for z=0, (12.9)

because u; =u, and w; = w, are satisfied identically. Inserting (12.7) and
(12.8) into (12.9) yields

eXp{iw(t : xsmilﬂ + Aexp ia)R(t - xSianJ = Bexp{ia}T(t - xsmzﬂ .
A B B

(12.10)
This boundary condition must be satisfied at any time and at any place along
the x-axis. This will be satisfied if the corresponding exponential terms are
identical, i.e. their arguments are identical. The independence from time yields

which represents the well-known fact that the reflected and transmitted waves
have the same frequencies as the incident wave. The independence from
coordinate x yields

sini sinilR sini,

A A B

(12.12)

Consequently, the angle of reflection is equal to the angle of incidence, z'lR =1,

and instead of i{ we shall write only i; . The condition for the angle i, is the
well-known Snell’s law.

The results, at which we have just arrived, may be summarised as the so-
called reflection/transmission laws (R/T laws):
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I) The rays of the reflected and transmitted waves remain in the plane of
incidence. (Here we have taken this property as an empirical fact; we
have not derived it. Its derivation from the equations of motion and
boundary conditions would require a more detailed analysis of the
problem).

) The angle of reflection equals the angle of incidence, ilR =i, see
Fig. 12.1.
IIT) The angle of transmission satisfies Snell’s law:

sin ll sin 12

& B

(12.13)

Note that these reflection/transmission laws have been specified here for SH
waves, but they have a more general validity.

Since all exponential terms in the boundary condition (12.10) are now
identical, this condition reduces to

l1+A=B. (12.14)
This is one equation for the unknown reflection and transmission coefficients.

The second equation for these coefficients will follow from the continuity of
stress.

12.3.3 Application of the boundary condition on the continuity
of stress

Hooke’s law for an isotropic medium, i.e.

296, + 4 2 2 (12.15)
ST ox o) :

now yields the stresses in (12.2) in the form

(é’w . o"u) . (é’w o"v] Oy
= S — e —— = ) + —— —4 o
P = oy T o Ty T H oy Oz oz

( au  Ov é’w] ow
=]

Tz =

—+——+—|+2u—=0 12.16
0"x+0”y+0"z M ’ ( )

where we have omitted the subscripts 1 and 2. In the last expression we have
taken into account that the displacement v is independent of the y-coordinate,
so that Jv/Jdy=0. Since 7,, and 7,, are identically equal to zero, three
boundary conditions (12.2) reduce to one condition, namely
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vy My
0z

—= f =0 . 12.17
=t or z ( )

Inserting displacements (12.7) and (12.8) into this condition, and omitting the
identical exponential terms, we get

L sost (1 4) = B%cosiz . (12.18)
1

We shall rewrite this equation in two forms. First, inserting 14 = py ,812 and

=P ,822 , We obtain
|- 4= p2brcost (12.19)
PP cosiy

The solution of the system of Egs. (12.14) and (12.19) can then be expressed in
a “symmetrical” form as

e P15 cosiy — po 3, cosiy B 20 cosiy
013 cosiy + py 3 cosiy o1, cosiy + py 3 cosiy

(12.20)

Second, introduce the index of transmission for shear waves, n= /5, .
Equation (12.18) then gives

oo (12.21)
14 COSi;

Since sini, = (sinil )/n according to Snell’s law, the solution of Egs. (12.14)
and (12.21) can now be expressed in terms of the angle of incidence as follows:

1—sinZi, — n? —sini
H 1~ Mo i

A = >
,ul\/l—sinz i1 + 1 \/n2 —sin® i
2 wll—sinzi
B -l ‘ (12.22)

2

,ul\/l—sin2 i +,uz\/n2 —sin”

If n>1, i.e. in the case of the transmission towards the normal, formulae
(12.22) give the reflection and transmission coefficients for any angle of
incidence from the interval (0,90°). If n<1 (transmission away from the
normal), these formulae can be used only for the case of sini; <n. Their

modification for larger angles of incidence will be described in the next
section.

A very important case is the so-called normal incidence when the angle of
incidence is equal to zero. Formulae (12.20) then attain a very simple form:
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PR T R .- M (12.23)
pB+ P pB+ P

It should be noted that the R/T coefficients, derived here, are independent
of frequency. Therefore, we could also solve this problem in the time domain
(Psencik, 1994). However, the solution in the frequency domain has been
simpler (the exponentials can easily be differentiated, etc.).

It can be shown that the reflection and transmission on more complicated
structures, such as a thin layer or a transition zone, depend also on frequency.

These more complicated problems are usually solved by matrix methods; see
Novotny (1999).

12.4 Total Reflection of SH Waves

Consider the case of f; < f,,i.e. n<1.]It follows from Snell’s law that

sini, = %sinil , (12.24)
1

so that the transmission occurs away from the normal, i, >i;. In this case,

there is the so-called critical angle of incidence, z’l* , for which the angle of
transmission i, is equal to 90°. Putting sini, =1 in (12.24) we get the
following formula for the critical angle:

B
siniy =—=n. (12.25)
B
| a
>—
i2 Jl.z = 900
a) b) c)

Fig. 12.2. Reflection and transmission at different angles of incidence:
a) subcritical; b) critical; ¢) overcritical.

If we vary the angle of incidence from small values to large values, three
specific situations occur (Fig. 12.2):

a) Subcritical incidence, i; <i: . In this case, the angle of transmission i,
satisfies the condition i; <i, <90°; see Fig 12.2a. A usual transmitted
wave, called homogeneous wave, propagates in the second medium.
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b) Critical incidence, i} = iy . In this case, the angle of transmission i, = 90°,
which means that the transmitted wave in the second medium is parallel to
the interface; see Fig 12.2b.

¢) Overcritical incidence, i >z’ik . In this case we have sini; >n; see Fig.
12.2c. Let us discuss this situation in detail.
For an overcritical angle of incidence, formula (12.24) yields sini, >1, and
so the angle of transmission i, must be complex-valued. This also leads to an

imaginary value of the square root n* —sin’ i; in formulae (12.22).
Therefore, we must put there

Jn? —sin?i; =+iqsin%i; —-n? . (12.26)

The correct sign in the latter expression must be selected on the basis of
physical considerations as follows.

Consider expression (12.8) for the transmitted wave for the case of i; > i; .
Since

i
CoSiy = /1 sm 11 \/ —sin?i] =£—4/s sin’ zl—n
n

the displacement vy is

vr = Bexp[ia)T(t - xs;lilﬂ -exp{— iwé(ii\/sinz i —n? )}, (12.27)

Since coordinate z is positive in the second medium, the sign “+” would yield
an exponentially increasing wave for an increasing distance from the interface.
This is physically inadmissible (for z— c the wave would have infinite
amplitudes and, consequently, an infinite energy), and so we must choose the

sign “~". Thus
Jn? —sin?i; = —iysin? i, —n® | (12.28)

(Note that the sign “+” had to be chosen in the case of the opposite orientation
of the z-axis). The amplitude of the wave in the second medium is now
exponentially decreasing with the distance from the interface. Such waves are
called inhomogeneous waves or evanescent waves. It follows from (12.27) that
the corresponding wave propagates in the direction of the x-axis with the
velocity ¢ = f /sini; . Therefore, the inhomogeneous transmitted wave (12.27)
may be expressed as

vr = Bexp{—— a)é\/sinz I = n’ }exp{ia)(t = %)} . (12.29)
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For the overcritical incidence, the reflection and transmission coefficients
(12.22) now take the form

4 \[l —sin® i +ity \/sin2 i —p?

yl\/l—sinz i —i,uxz\/sin2 i —n?
B 2y1,/1—sin2 i (12.30)

41— sin? i =ity \/sin2 i —n? ‘

Denoting a = yy4/1- sin’ i1, b=1p \/s,in2 ij = n’ , we may write the reflection

coefficient as

4

>

a+ib
A=

) 12.31
a—ib ( )

Since this is the ratio of a complex number to the complex conjugate number, it

A‘ =1. Since the

amplitude of the reflected wave (its absolute value) is equal to the amplitude of
the incident wave, i.e. the whole energy of the incident wave is returned back
into the first medium, we speak of the total reflection.

Writing the reflection coefficient also as

follows that the absolute value of A4 is equal to unity,

A=|ale?,
we get
2ab

|A}=l, tangoz———az_b2 ,

where a, b have been defined above. Thus, the total reflection does not change
the amplitude (the absolute value) of the reflected wave, but causes its phase
shift with respect to the incident wave.

The expression for the phase shift may even be simplified. Write the
numerator and denominator of (12.31) as

a+ib=ce” | a-ib=ce " , (12.32)

where ¢ = \/az +b?% and
b ,Lzm/sinz i —n?
tany =—= :
e ﬂl'\‘l—Sinz l]

Inserting (12.32) into (12.31) yields

(12.33)

A=e" | (12.34)
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which means that ’AI =1 and the phase shift is ¢ =2y, where y is given by

(12.33). Formulae (12.33) and (12.34) are used, e.g., in the theory of Love
waves in deriving dispersion equations from the condition of constructive
interference (Savarensky, 1975; Novotny, 1999).

Note that the total reflection is frequently explained in the textbooks of
elementary physics as a phenomenon when no waves propagate in the second
medium. This is an oversimplified description, used in geometrical optics and
analogous geometrical theories. In physical theories we must admit the
existence of waves also in the second medium in order to be able to satisfy the
boundary conditions. Namely, if the first medium is in a harmonic motion, it is
not possible for the second medium to be completely at rest. In popular words,
the incident wave must always penetrate into the second medium, at least a
little, in order to “find out” how to propagate further. However, as follows from
(12.29), the exponential decay of inhomogeneous waves depends on frequency.
Consequently, the “depth” of penetration of high-frequency inhomogeneous
waves into the second medium may be very small. This substantiates the fact
that, in many problems, these waves may be neglected.

12.5 Reflection of SH Waves at a Free Surface

A very important problem is the reflection of seismic waves at the Earth’s
surface. Therefore, consider a homogeneous and isotropic elastic half-space. In
Fig. 12.3 this medium is represented by the lower half-space, z > 0. Denote the
shear wave velocity, density and shear modulus in this half-space by £, o and
1, respectively. The upper half space is the vacuum. Note that the same results
would be obtained for the reflection of SH waves if the upper half-space were
the air or another fluid, because shear waves do not propagate in fluids.

Free boundary

=
X

Fig. 12.3. Reflection of SH

incident SH o reflected SH waves at a free surface of
an elastic solid.

Let a plane harmonic SH wave of an angular frequency @ be impinging on
the free boundary at an angle i; (Fig. 12.3). The reflection coefficient 4 could
be obtained immediately from formulae (12.20) or (12.22) as their special case
when the second medium is the vacuum. By putting £ =0 and g, =0 in
these formulae, we arrive at the result that the reflection coefficient is equal to
unity,

A=1. (12.35)
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Nevertheless, it will be instructive to derive this simple result from the
beginning.

Assume again that the plane of incidence coincides with the (x,z) -plane.

The displacement vector for the incident SH wave is then u = (0, v, O) , where

. X sini; —zcosi
v =exp|io| t — F; . (12.36)

Let us seek the reflected SH wave in the form up = (O, Vg, 0) , Where

12.37
F; (12.37)

) xsinij +zcosi;
vp = Aexplio| t — :

here we have already taken into account that the angular frequency of the
reflected wave and the angle of reflection are equal to the corresponding
quantities for the incident wave. This follows from the same considerations as
in Section 12.3.

The resultant displacement in the half-space, which we shall denote by

u; = (O, Vi, O) , is composed of the incident and reflected waves, u; =u+uy.
Thus
VI =Vv+vp. (12.38)

Since the boundary of the half-space is free, we have no constraint on the
displacement there. In other words, as opposed to the problem in Section 12.3,
here we shall not consider any condition of type (12.1), concerning the
displacements. The only boundary condition at the free surface will be the
requirement that the corresponding stress component should be zero:

vy
T =,u?Z—:O for z2=0. (12.39)

This one boundary condition corresponds to one wave which is generated at the
boundary, namely the reflected SH wave. Inserting (12.36) to (12.38) into
(12.39), we arrive again at the result that 4 =1.

Since the amplitude of the reflected wave is equal to the amplitude of the
incident wave, the motion on the surface is

_» . x sini; B
v; =2exp|io| t — 5 for z=0. (12.40)

Hence, the amplitude of the motion at the free surface is twice larger than the
amplitude of the incident SH wave. This fact must be taken into account in
interpreting seismic observations.
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12.6 Reflection and Transmission of P Waves at an
Interface between Two Liquids

In the section we shall discuss another simple problem of reflection and
transmission, namely the reflection and transmission of plane harmonic waves
at a plane interface between two homogeneous liquids. Since no shear waves
can propagate in liquids, we shall consider an incident P wave, and only two
waves generated at the interface, i.e. a reflected P wave and a transmitted P
wave (Fig. 12.4).

The elastic properties of the media under consideration are described by
Lamé’s coefficients 4;, 4,, and densities p;, p,, respectively. Since the

shear moduli are now equal to zero, 4 = u, = 0, the velocities of P waves are

ay =4/p and oy =\ A /p; -
12.6.1 Expressions for displacements

Two approaches have been used in the literature to study the reflection and
transmission of P waves, namely the formulation in terms of potentials
(Chapter 7), and the formulation directly in displacements. The former
approach seems to be a little simpler, because each wave is described by one
potential only, whereas two displacement components must be considered in
the latter approach. However, the former approach yields only the reflection
and transmission coefficients for potentials, which must further be transformed
into the coefficients for displacements. Here we shall use the second approach,
which leads directly to the reflection and transmission coefficients for
displacements.

Ay
. . A
Medium 1 bl 4
Interface -
; X
AN
Medium 2 i ) y
eam 12 Fig. 12.4. Reflection and
transmission of a P wave at
z an interface of two liquids.

Denote the angle of incidence by i, the angle of reflection by ilR , and the
angle of transmission by i, . Further, denote the “vector” amplitudes for the
incident, reflected and transmitted waves by A, A; and A,, respectively

(Fig. 12.4). This means that 4y =|A,| is the amplitude, and the direction of
A determines the polarisation of the incident wave (particle motion in the
incident wave). Vectors A; and A, have analogous meanings.
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The analogous discussion as in Section 12.3 would yield that the frequencies
of the reflected and transmitted waves are equal to the frequency of the incident

wave, that the angle of reflection is equal to the angle of incidence, ilR =i, and
the angles of incidence and of transmission are related by Snell’s law:

sini;  sinip (12.41)
o ey '

Therefore, assume the displacements in the individual waves in the following

forms (Fig. 12.4):
Incident wave:

uy =A, exp{ia}(t =

Reflected wave:

X Simniy 'I'ZCOSZ1 A _(A i 0.4 )
5 0= oSz, U, 4y COSty ),
&

) X sini; —zcosi; .y .
up =A;exp za)(t— - J , Ay =(A1 siniy, 0, — 4y coszl) ;
1

Transmitted wave:

xsini, +zcosi,

ﬂ A, =(4,siniy , 0, 4, cosiy ) .

(12.42)
The resultant displacement in the first half-space, which we shall denote by

ur =A, exptia)(l‘ = s

u; = (”1 , 0, wl) , is composed of the incident and reflected waves, whereas the

displacement in the second half-space, u, :(uz,O, wz), is formed by the
transmitted wave only:

u;=uy+tup, Uy =UuUr. (12.43)
12.6.2 Boundary conditions at a liquid-liquid interface

As boundary conditions we shall require the continuity of the normal
components (z-components) of the displacement and stress:

w=w, for z=0, (12.44)
(z..), =(r.), for z=0. (12.45)

As opposed to the boundary conditions (12.1) for a welded contact of two
solids, here we do not require the continuity of the x-components of
displacements, since liquids may slide along the interface. Thus, u; may differ
from u, at z=0. Analogously, we would not require the y-components of
displacement to be continuous although, in this case, we assume v; =v, =0
everywhere. Moreover, since x =0 in liquids, shear stresses vanish there, and
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the first and second boundary conditions in (12.2) are satisfied identically.
Consequently, only the boundary conditions (12.44) and (12.45) must be taken
into account at the liquid-liquid interface.

Since the boundary condition (12.44) must be satisfied for any coordinate x,
all exponential terms in (12.42) must be identical for z =0, which yields
Snell’s law (12.41). This boundary condition then immediately yields the
equation

Ay cosiy — A cosiy = A, cosiy (12.46)

It follows from Hooke’s law that

. ow
7, =Adivu+2u— . (12.47)
oz

In liquids, where u =0, we have
7, = Adivu . (12.48)

The boundary condition (12.45) can then be expressed as

Aldivug +divag| =4 divay for z=0. (12.49)
It holds that
. ﬁuo 5w0 iw : i i
divu, = E-l- e AO(— —OZJ(smz i +cos? zl) 5 (12.50)

where we have omitted the exponential term at the last expression. Since
/11 = lolal2 , We get
A divuy = —iopoq A4y , (12.51)

where the corresponding exponential term should again be added. Considering
similar expressions for divuy and divur, Eq. (12.49) yields

prag (4o + 41) = pray 4y (12.52)
12.6.3 Reflection and transmission coeficients
Equations (12.46) and (12.52) are the desired equations for computing the

amplitudes 4; and 4, . Introducing the reflection coefficient R, = 4;/4, and
the transmission coefficient R, = 4, /4, , these equations may be expressed as

(l - Rl)cosi1 = R, cosi, ,
(12.53)
(1+R1)p1a1 =R,pa, .
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The solution of this system of equations is

o, COSiy — P10y COSi 2p 1 cosi
P 1~ P19 2 po_ 1 1 (12.54)
)y COSI| + Py cosiy & 0> Qy COSIy + pyoy COSiy | ’

R,

Introducing so-called acoustic impedances, Z; = pja; and Z, = p,a,, the
resultant formulae are also written as

Z, cosiy — Z; coSiy 27, cosiy

~ Zycosiy +Z cosiy 2 Z,cosiy +Z; cosiy

1 (12.55)

It should be pointed out that coefficients (12.54) and the coefficients (12.20)
for SH waves have rather similar forms. It can be seen that the positions of the
terms cosi; and cosi, in (12.20) and in (12.54) are identical. However, apart
from the different velocities, formulae (12.20) contain the combinations
o5 cosi; and p, 3 cosiy only, whereas formulae (12.54) contain Z; cosip,
Z, cosiy and Z, cosi;.

12.6.4 Reflection and transmission for the normal incidence

For the special case of the normal incidence, when i; =i, =0, formulae
(12.54) become

PO — P

2p$0
7 = » Ry=
POy + Py

R ,=— L
PO + Py

(12.56)

These formulae are similar to the formulae (12.23) for the normal incidence of
SH waves, but the signs of the reflection coefficients are opposite. Therefore,
we may say that the processes of the normal incidence of SH waves on a solid-
solid interface, and of P waves on a liquid-liquid interface represent two
analogous phenomena. The sign difference may be ascribed to the different
orientations of reflected waves. Namely, the orientation of the displacement
vectors for the incident and reflected SH waves was identical, coinciding with
the positive direction of the y-axis (Section 12.3). However, for the normal

incidence (il = O) , the vector A for the incident P wave is directed along the
z-axis downwards, whereas the orientation of vector A, is opposite (Fig. 12.4).

12.6.5 Reflection of P waves at a free surface of a liquid

Consider a similar problem as shown in Fig. 12.3 (see Section 12.5), but for P
waves propagating in a homogeneous liquid. Since now the second medium is
the vacuum, the reflection coefficient for P waves at a free surface of a liquid

can be obtained from (12.54) by putting a, = 0. We get

R =-1. (12.57)
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Note again that this reflection coefficient is analogous to the corresponding
reflection coefficient for SH waves, see (12.35), but its sign is opposite.

Finally, let us study the motion of the free surface. It follows from (12.57)
that 4; = —4,, and formulae (12.42) and (12.43) yield the displacement vector

for z =0 in the form u; = (ul, 0, wl), where

=0, wy = 24p(cosi; Jexp|ia] ¢ - 222 12.58
up=0, w = Ocoszl)exp io| t - - . (12.58)

Hence, due to the superposition of the incident and reflected P waves, the
motion of the free surface of a liquid has only a vertical component.

12.7 Reflection and Transmission of P waves. The
Zoeppritz Equations

Now we shall consider a more complicated problem than in the previous
section. We shall return back to the model consisting of two homogeneous and
isotropic solid half-spaces in a welded contact (Section 12.2).

Consider a plane harmonic P wave incident on the interface from the first
half-space (Fig. 12.5). Choose again the plane z=0 to coincide with the

interface and the (x,z) -plane to coincide with the plane of incidence.

SV
P N S
i |41
1 Y x
=
2
2 P
\sz Sy
Z

———» direction of propagation —— polarisation (amplitude)
a) b)
Fig. 12.5. The coordinate system and the seismic rays for the case of an

incident P wave. The arrows indicate: a) the directions of propagation; b) the
polarisation.

12.7.1 Displacements and boundary conditions

We shall again denote the displacement vector by u = (u,v,w) , to which the

corresponding subscripts and superscripts will be added for the individual
waves. In particular, denote the displacement vector for the incident wave by
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g = (1,0, wp) (12.59)

by u; the resultant displacement in the first half-space, which is composed of
the displacements for the incident and reflected waves. Analogously, the
resultant displacement in the second half-space, composed of transmitted
waves, will be denoted by u, .

Since the incident P wave has non-zero displacement components into the x-
and z-axes, also the resultant displacements u;, w;, u, and w, will be

generally non-zero. Consequently, the stress components (sz) . (rzz) 0 (sz) 5

and (7 will also be non-zero. We may expect that only the following
zZZ 2

boundary conditions will be satisfied identically:

vy =v, =0, (sz)1 =(sz)2 =0 . (12.60)

Therefore, the following boundary conditions are to be satisfied for z=0:

up =1, (12.61a)
Wy =W, (12.61b)
(sz)l = (sz)z > (12.610)
(ze)y =2y - (12.61d)

In order to satisfy these four boundary conditions, we must assume that four
waves are generated at the interface, namely a reflected P, transmitted P, but
also a reflected SV and transmitted SV. For the incident P wave, denote its
angle of incidence by i; and the “vector” amplitude by A, (Fig. 12.5b). This

means that 4, = ’ AO‘ is the amplitude, and the direction of A determines the

direction of the particle motion (see also Section 12.6). Introduce analogous
notations for the reflected and transmitted waves: e; and A; for the reflected
P, f1 and B, for the reflected SV, e, and A, for the transmitted P, f, and
B, for the transmitted SV (Fowler, 1990). Each of these vectors could be
chosen as shown in Fig. 12.5b or in the opposite direction. We have chosen
their orientations so that each vector would have a positive component into the
x-axis.

Considerations, similar to those in Section 12.3, lead to the generalised
Snell’s law:

sini; sine; sinf; sine, sinf, (12.62)
o o B ) B |

Although e; =i;, we shall use both angles in order to distinguish terms
belonging to the incident and reflected P waves.

223



As in the previous section, we shall solve the problem directly in terms of
displacements, not in terms of elastodynamic potentials. Therefore, assume the
displacements of the individual waves in the following forms (Fig. 12.5b):
Incident P:

uy =A, exp[ia)(t -

xsini; + zcosi L )
L 1) 5 AO =(A0 Sy ,0, AO COSZ]) i

@]
Reflected P:
ufg =A, exp[ia)[t - xsinel;zcosel } , A= (Al sine;, 0, — 4, cosel) .
Reflected SV ]
uy =B, exp{iw(z‘ = xsinflngCOSflﬂ , By = (Bl cosf1,0, By sinfl) '
Transmitted P:

. N
xsine, +zcose i
2 2] , A, =(A2 sine, ,0, 4, cosez) :

uIT) =A, exp{ia)[t -

ay |
Transmitted SV:
SV 3 XSinf2 +ZCOSf2 .
uy =B,explio| - 3 , BZ:(Bzcosfz,O,—stmfz).
(12.63)
12.7.2 Continuity of displacements
The resultant displacement in the first half-space is then
u, =uy+uk +uy’, (12.64)
and in the second half-space,
u, =ul +uy’ . (12.65)

The boundary conditions (12.61a) and (12.61b) for z =0, after omitting the
identical exponential terms, now yield the vector equation

For the x- and z-components of this equation we get from (12.63) that

Ag sinij + A4 sine; + By cos f; = A, sine, + B, cos f5 , (12.67)
A cosiy — Ay cose; + By sin f] = 4, cose, — B, sinf, . (12.68)

12.7.3 Continuity of stress

As introduced above, see (12.59), the x- and z-components of vector u, have
been denoted by u, and w, respectively. We shall use similar notations also
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for the components of the other vectors u%, uy, uf, u‘;V , u; and u,. The

boundary condition (12.61c) may then be expressed as

,ul[j (Wo +Wg +w;§V)+ jz(uo +up +u£V)}_

(12.69)
17 o
—,uz{é7 (wT +W;V)+ P (uT +ugV)} for z=0.
Inserting expressions (12.63) into this condition, we obtain
i M b . la’
A 2iy + Ay sin2 ~—B 2fi=—-—"4 2e, ——B 2
051( o0 SIn2i; + 4; sin el) ) 1 €082 f1 & 5 sin2e, 3 5 COS2 f5
(12.70)
The last boundary condition (12.61d) can be expressed as

0’? é’Wz

Adivay + 24 —— 0,)2 =L divuy + 2 —— 5, (12.71)

for z=0, where 4, i (i =, 2) are Lamé’s elastic parameters. Analogously
to Subsection 12.6.2, calculate the divergences of the displacements for the
individual waves. For z =0, omitting the identical exponential terms on the
right-hand sides of the following expressions, we get

Suy & ;
divug = 22 220 _ 22 40 divub =-24,, divul =0,
ox Oz o o
(12.72)
divu? =—2 4, , divu¥ =0 .

129}
We could expect the zero values of the divergence for SV waves, because
div u is equal to the volume dilatation, but shear waves are not connected with
volume changes. Now, denote the contribution of the incident wave to the

expression in (12.71) by Ty, i.e.

o
Ty = Ay divug + 24 222 | (12.73
0 1 0 T <H 2

This may be expressed as (we still put z =0 and omit the exponential terms)

T, =a—1AO[ﬂ,1 +244 coszzl] = —;;Ao[ﬂl +20 =2 szll] ”
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Since (/11 +2ﬂ1) = p1a12 , 1 =p B and siniy = (al/ﬂl)sinfl according to
Snell’s law (12.62), we get the following simple expression:

Ty = —iwpyoq Ay cos2 fi . (12.74a)
Similarly

TR =—iopog Ay cos2f;, Tf =—iwpyondycos2f, , (12.74bc)
For the contributions of the shear waves we have

SV

p .
T =2 % =24 B, sin f; %cosfl = iwp BB, sin2f; , (12.74d)
T3 =iwp, BB, sin2f, . (12.74e¢)

Consequently, the boundary condition (12.71) yields

— pro 4o cos2 f1 — prog 4; cos2 f + p A By sin2 f; =
=—py0y 4y cos2 fr + oo S Bysin2 f5 . (12.75)

12.7.4 The Zoeppritz equations

Finally, boundary conditions (12.61), i.e. Egs. (12.67), (12.68), (12.70) and
(12.75), may be expressed as (Fowler, 1990):

A, siney + By cos f; — A, sine, — B, cos fy = —A,sini |, (12.76a)
Ay cose; — By sin f + 4, cose, — B, sin f, = Ay cosiy , (12.76b)

Ayy W, sin2ey + BiW cos2 fi + Ay, W, sin2e, + ByW, cos2 f5 = Ayy W sin2i
(12.76¢)

AIZI C052f1 - BIVVI Sin2f1 = A222 COS2f2 + BZVVZ Sin2f2 = —A()Z] costl
(12.76d)

where
Li=po, Zy=pa,
Wi=pf. W=ph (12.77)
n=blar, =5/ .

Equations (12.76) are referred to as the Zoeppritz equations for an incident P
wave. They can be used to compute the amplitudes of reflected and transmitted
waves if the angle of incidence i; and amplitude 4, of the incident P wave are
given, and the remaining angles are determined from Snell’s law (12.62).
Generally, these equations must be solved numerically.
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Let us remind that Egs. (12.76a) and (12.76b) have come from the
conditions of the continuity of the horizontal and vertical displacements, and
Egs. (12.76¢) and (12.76d) from the continuity of the horizontal and vertical
stresses at the interface.

Let us specify the reflection and transmission coefficients for the important
case of normal incidence on the interface, i.e. for the angle of incidence i; = 0.
In this case, the other angles are also equal to zero, and the Zoeppritz equations
(12.76) reduce to

Bl "‘Bz = 0 5
A+ 4, = 4, , (12.78)
BIVVI G B2W2 = O 5

AIZI = A222 = —Aozl 5

It follows that no shear waves are generated in this case, B; = B, =0. The
reflection coefficient 4;/4, and transmission coefficient 4, /A4, for P waves
now read

A _ZL-Zi P - p

Ay Z,+Z; por+poq ]

(12.79)

Note that the last formulae are identical with the formulae (12.56) for the
normal incidence of P waves at the interface of liquid media.

Let us discuss in greater detail how the special equations for a liquid-liquid
interface, derived in Section 12.6, follow from the Zoeppritz equations (12.76)
for a solid-solid interface. Firstly, omit the first equation (12.76a), which is not
valid for a liquid-liquid interface (displacement u may be discontinuous there).
Secondly, omit the third equation (12.76c), which is satisfied identically since
7, =0 in liquids. Then, omit the terms corresponding to SV waves in the
remaining two Zoeppritz equations. Taking into account different notations, i.e.
replacing e; by i; and e, by i,, Eq. (12.76b) becomes Eq. (12.46). The last
equation (12.76d) requires certain modifications because it contains angles f;
and f, for SV waves. However,

cos2f; =1-2sin® f; = 1—2(51/051)2 siniy ,

and a similar formula holds for cos2f,. Therefore, for 5 = 5 =0 we must
put cos2 f; =cos2f, =1, and Eq. (12.76d) yields Eq. (12.52).

12.7.5 Numerical examples and their discussion

There are extensive tables and graphs of various reflection and transmission
coefficients; see, e.g., the graphs in Ewing et al. (1957). Here we shall consider
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only the coefficients of the PP type (a P wave is incident, and the reflected P
wave is considered). In seismic prospecting, these very coefficients are most
important. Let us consider only the case when the velocity below the interface
is higher than the velocity above it, i.e. if n =)/, <1.

The reflection coefficients of the PP type have a different character for
interfaces with a weak velocity differentiation (n ~ 0.6—1.0) and for interfaces
with a strong velocity differentiation (n < 0.6). Two typical examples of the
PP reflection coefficients are shown in Fig. 12.6 (Cerveny, 1976). In both

cases, the shear wave velocities and densities satisfied the following
conditions:

@ _ 9% J3 P

— S, —=],
b B P>

For a comparison, the reflection coefficients for a liquid-liquid interface (and

again for p;/p, =1) are shown in the figure by dashed lines; see formulae

(12.54). It can be seen that for the normal incidence (il = 0), the reflection
coefficients for solid and liquid media are identical; see (12.56) and (12.79).

1 ne il mbl bl

/ n=0.8

— e S

0 T 1y

0° 10° 20° 30° 40° 50° 60° 70° 80° 90°
’ ARVNERY
//A [ \\\\////
N )

\\/// n=04%
0 FREE

0° 10° 20° 30° 40° 50° 60" 70° 80" 90°

Fig. 12.6. Reflection coefficients of the PP type for the coefficients of
transmission n = 0.8 and n =04 . (After Cerveny (1976)).
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For i; > 0, the reflection coefficient for solid media is always smaller than
that for liquid media. This difference is connected with the generation of SV
waves in solid media, which carry away a part of energy. This difference is
pronounced especially in the case small indices of transmission.

At first, let us discuss the reflection coefficient for a weak velocity
differentiation (n=0.8). Typical examples of such discontinuities are the
discontinuities within the Earth’s crust, e.g., the Mohorovicic discontinuity and

others. In our case, the critical angle is i;‘ ~53°; see the arrow in Fig. 12.6.

Undercritical reflections (z‘l <if ) show a different behaviour from overcritical

reflections (il B iik ), the overcritical reflections being considerably stronger

than the undercritical ones. This fact has been well confirmed in seismic
practice, i.e. in studies of the reflections from the Mohorovicic discontinuity.
These reflections are usually observed at larger epicentral distances only, from
50-70 km farther.

In the case of a strong velocity differentiation (n =04 in Fig. 12.6), even
the undercritical reflections are relatively strong. For larger angles of incidence,
the situation is rather complicated. If 3, > ¢, in addition to the so-called first

critical angle i;‘ , there is also the second critical angle i; = arcsin(al / ﬂz)

Their values in our case are if =235° and i: " ~44°; see the arrows in the
figure. The reflection coefficient has usually a deep minimum between these
critical angles, and a broad maximum is formed immediately behind the second
critical angle.

12.8 Reflection and Transmission of SV Waves

Let us consider a similar problem as in the previous section, but for an incident
SV wave. Denote its angle of incidence by j; and the vector amplitude

(polarisation vector) by B, as shown in Fig. 12.7. For the reflected and
transmitted waves we shall use the same notations as in Fig. 12.5.

SV

Medium 1

Interface

Medium 2

Fig. 12.7. Reflection and
transmission of an incident
SV wave.
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Snell’s law now reads

sinj; sine; sinf] sine, sinf,

,51_051_,31_052_/32

(12.80)

The displacement vector for the incident SV wave now takes the form

xsin j; +zcos jj

B

ﬂ B, = (B, cos ji;,0,— Bysinjy) ,

(12.81)
but the expressions for the reflected and transmitted waves are identical with
those in the previous section; see (12.63). Consequently, the left-hand sides of
the Zoeppritz equations (12.76) will remain without any changes, but the right-
hand sides will be different. Let us attempt to determine these right-hand sides
without performing the corresponding calculations.

It follows from the comparison of vector A, with vector B, that the

u, =B, exp{ia)(t ~

expression (— Ay sinil) on the right-hand side of (12.76a) must now be

replaced by (— B, cosjl) , and 4 cosi; in (12.76b) by (— By sinjl). The new
right-hand sides of (12.76¢) and (12.76d) would follow from more complicated
calculations. However, the right-hand sides of the Zoeppritz equations may also
be determined directly on the basis of the following similarities.

Firstly, write the left-hand sides of the Zoeppritz equations (12.76). The
vector A for the incident P wave has a similar direction as vector A, for the
transmitted P wave (positive components into the x- and z-axes). Consequently,
the right-hand sides of (12.76) are analogous to the terms for the transmitted P
wave on the left-hand sides (to obtain the right-hand sides, it is sufficient to
replace e, , A,,etc., by ij, Ay, etc.).

In a similar way we can obtain the Zoeppritz equations for an incident
SV wave. It follows from Fig. 12.7 that the right-hand sides must be analogous

to the terms for the transmitted SV wave. Therefore, the term (— B, cos f2) on
the left-hand side of (12.76a) indicates that the right-hand side should be

(— B cos jl) , etc. Finally, we get (Richter, 1958)

Ay sine; + By cos f; — 4, sine, — B, cos f, = —B, cos J;
Ay cose; — By sin fi + 4, cose, — B, sin f, = =By sin jj (12.82)

A1y 1Wy sin2ey + BiWj cos2 fi + Ay y, W, sin2ey + BoW, cos2 fr = By cos2

AIZI COSQ.fl = BII/VI sianl = AzZz 0052f2 + B2W2 Sin2f2 = B()PVI sianl

where we have used notations (12.77), and the angles of reflection and
transmission are given by Snell’s law (12.80).
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12.9 Reflection of P and SV Waves at a Free Surface

Very important special cases of the Zoeppritz equations (12.76) and (12.82) are
the equations for the reflection of P and SV waves at the free surface of the
Earth (see the analogous problem for SH waves in Section 12.5). In these cases,
in general, an incident P or SV wave produces both reflected P and reflected SV
waves.

Many authors have solved the problem of the reflection of plane waves at a
free surface. For example, the reflection coefficients for the elastodynamic
potentials and for the energy of waves can be found in Ewing et al. (1957).
However, for practical applications, the most important reflection coefficients
are those for displacements. Here we shall derive these coefficients from
special forms of the Zoeppritz equations given above.

It should be noted that no constraints are now imposed on the displacements
at the surface. The only two boundary conditions are the requirements that the
stresses at the surface be zero.

12.9.1 Reflection of P waves

Consider a homogeneous and isotropic half-space with a free boundary
(without stresses). Denote the compressional wave velocity, shear wave
velocity and density in this half-space by «;, £, and p;, respectively.

surface

A

incident P
SV Fig. 12.8. Reflection of a
P wave at a free surface.

Let a plane harmonic P wave, propagating in the half-space obliquely
upwards, be incident at the free surface (Fig. 12.8). Denote again the angle of
incidence by i;, the angle of reflection for the P wave by e;, and for the SV
wave by f]. Introduce the polarisation vectors of the individual waves, A,
A, and A,, as show in the figure. The displacement vector u, for the

incident wave, uk for the reflected P wave and uy for the reflected SV wave
can then be expressed as

xsini; —zcosi;

u, =A, exp[ia)(t - H , Ag= (Ao siniy, 0, — 4 cosil) ;

a
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xsine; +zcose;

ﬂ, A, =(A1 siney, 0, 4; cosel) "

(12.83)

):|, BIZ(B]COSfl,O,_BISinfl).

ufé =A, exp[ia)(t = o
1

xsin f; + zcos f;

b

u}gV =B, exp{ia)(t -

This problem can be considered as the special case of the problem from
Section 12.7 if the second medium is the vacuum, and the half-spaces in
Fig. 12.5 are reversed (however, the orientation of the z-axis is still
downwards). Therefore, omit the first two Zoeppritz equations (12.76a,b),
because they concern the displacements, and put 4, = B, =0 in the remaining
two equations. After dividing Eq. (12.76¢) by W], and Eq. (12.76d) by Z,, we
arrive at the following equations for our problem:

Al}/l Sin2e1 + Bl COSZfl = A071 Sin2i1 =
(12.84)
Ajcos2 fi — Byy;sin2 f; = —A4gcos2f;,

where e; =i}, angle f; is determined by Snell’s law (12.62) and ¥, = £,/ ¢; -
Note that the orientation of the z-axis has not influenced the form of the final
equations (12.84), although the z-components of the displacements in (12.63)
and (12.83) are of the opposite signs.

The solution of Egs. (12.84) may be expressed in the following simple form:

4, y12 sin2i; sin2 f] — cos? 21
Ay y?sin2i;sin2f, +cos>2f;

(12.85)
B 2y sin2i; cos2 f]

Ay y?sin2i;sin2f; +cos?2f;

These are the desired formulae for the reflection coefficients when a P wave is
incident at a free surface.

12.9.2 Reflection of SV waves

In a similar wave as in the preceding subsection, we can solve the problem for
an incident SV wave (Fig. 12.9).

Denote the angle of incidence of the SV wave by j, and the corresponding
displacement vector by

xsin j; —zcos jj

b

H, B =(Bocosj1,O,B0 sinjl) :

(12.86)

u, =B, exp{ico(t =
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The displacements for the reflected waves, u§ and u‘;’;V , are given by the same
expressions as in (12.83).

surface

incident SV
Fig. 12.9. Reflection of an
SV wave at a free surface.

Now we shall simplify the Zoeppritz equations (12.82) for an incident SV
wave. Omit again the first two equations, and put A4, =B, =0 in the
remaining two equations. This yields the two following equations,

Al}/l Sin2el =+ Bl COS2f1 = BO COS2j1 5
(12.87)
Al C052f1 = Bl}/l Sin2f1 = Bo}/l Sin2j1 5

where f] = j;, angle e, is determined by Snell’s law (12.80) and y; = £,/ ¢ .
The solution of Egs. (12.87) may be expressed in the following simple form:

Al 71 Sin4j1

By cos?2j; +y#sin2j; sin2e;

(12.88)

B, cos? 27, —712 sin2 j; sin2e;

By  cos?2j, +y?sin2j, sin2e,
These are the reflection coefficients for the case of an incident SV wave.
12.9.3 Motion at the free surface

We derived in Section 12.5 that an incident SH wave produced the motion of
the free surface with the double amplitude.

In the case of an incident P or SV waves, the motion of the free surface also
differs from the motion in the incident wave due to the contribution of the
reflected waves. However, now the situation is more complicated, because two
reflected waves contribute to the surface motion. Moreover, as opposed to the
simple reflection coefficient 4 =1 for an SH wave, the reflection coefficients
(12.85) and (12.88) depend also on the angle of incidence.

In order to obtain the components of the displacement for a given
superposition of waves at the Earth’s surface, the incident wave must be
multiplied by certain functions, called the conversion coefficients.
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Incident P waves. For the case of an incident P wave, it follows from
(12.83) that the resultant displacement at the surface (z = 0) is

(w),_, =1, exp{,-m(t - xsm’lﬂ . Ui=(Un0.m),  (1289)
- a
where
U, = 4y sini; + 4; sine; + Bycos f; ,
(12.90)
Wi = —A4,cosij + Ay cose; — By sin f] .
Denote the denominators in the reflection coefficients (12.85) by
D= 712 sin2i; sin2 f] + cos? 211, (12.91)

and insert these coefficients into (12.90). After rearrangements, using Snell’s
law (12.62), we obtain

24, cosiy 24, cosi;
U, =Tsm2f1 , M= ——D—cos2f1 i (12.92)

Express the displacement vector wu, for the incident wave as
u = (uo, 0, wo). In view of (12.83), it then holds for the angle of incidence i;
that
o

tanil = — .
Wo

(12.93)

Angle i; is also called the actual angle of incidence. The analogous ratio for

the resultant components of the surface motion determines another angle, v,
which is called the apparent angle of incidence. This angle is thus defined by
the relation

Ul
tany = ——- . (12.94)
m

By inserting (12.92) into this formula, we arrive at the simple relation tany =
=tan2f],i.e.

w=2f . (12.95)
Consequently,

2
cosy = cos2f; = 1-2sin” f; =l——2[ﬂj sin”i; .
L

This yields the important relation
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1_
sini, = % —Czoﬂ , (12.96)

which is sometimes referred to as Wiechert’s relation; see the references in
Ewing et al. (1957). Hence, the actual angle of incidence i; can be determined
from the observed displacements by means of (12.94) and (12.96).

Note that Wiechert’s relation may be expressed in the following simpler
form as

o
sini; = z,llsin% . (12.97)

We could obtain this formula immediately from (12.95) as follows:

.y . |
sin—— = sin f; = —sini; ,
2 (04]

Incident SV waves. For an incident SV wave, we get the resultant
displacement at the free surface in the form

(ul)zzo=U1exp{ia{t—xszjlﬂ, U, =(U,0,m),  (12.98)

where
U, = Bycosj; + A sine; + By cos f1 ,
(12.99)
W, = By sin j; + A; cose; — Bysin f] ,
and 4, B; are given by (12.88). After rearrangements one gets

2B,cos 2B,cos
lonjlcos2j1, W]=°4D£712 sin2e; ,  (12.100)

where D is the denominator in the reflection coefficients (12.88), i.e.
D =cos®2j, +y{ sin2j; sin2e . (12.101)
The apparent angle of incidence, in view of (12.86), is now

W sin2e
tanl,u:——lzy2 :
U~ "1eos2j

(12.102)

Note that instead of the angles of incidence, i; for P waves and j; for SV
waves, many authors have used their complements, [; =90°-i; and
J; =90°—j;; see Bullen (1965), Ewing et al. (1957), Savarensky (1975).
Angles I and J; are called the angles of emergence.
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Chapter 13
Ray Methods

A comprehensive description of the contemporary formulations of the ray
method in seismology can be found in the lecture notes by Psencik (1994).
More advanced methods, in particular the Gaussian beam method, are
described in the lecture notes by Popov (1996). Consequently, in this chapter
we shall discuss the ray method only briefly, emphasising its physical
foundations, advantages, disadvantages, and some interesting aspect from the
historical development of this method. Since the methods of computing seismic
rays and travel times have already been described in Chapters 3 to 5, here we
shall pay the main attention to the ray method for amplitudes.

13.1 Methods of Solving the Elastodynamic Equations
for Inhomogeneous Media

The properties of elastic waves are described by the equations of motion of an
elastic continuum (Chapter 6). These equations of motion are also called the
elastodynamic equations. In the previous chapters we derived various exact
solutions of these equations for homogeneous media, including the contact of
homogeneous half-spaces. The solutions were expressed in the form of simple
analytical formulae, in integral forms or in the form of infinite series.

Now we shall deal with the solution of the elastodynamic equations for
inhomogeneous media. However, for general inhomogeneous media, analogous
formulae for exact solutions are not know. In these cases we can use two
approaches:

e To solve the elastodynamic equations numerically, e.g., by the finite
difference (FD) or finite element (FE) methods. In principle, these numerical
methods can yields accurate results, but cannot be applied to large models of
the medium. For models whose dimensions exceed several wavelengths,
these methods become extremely time consuming.

e To solve the elastodynamic equations approximately, e.g., by ray methods.
We shall deal with these methods in this chapter.

However, we shall not consider quite general inhomogeneous media, but we
shall restrict ourselves to media with slowly varying elastic parameters and
with smooth interfaces. Therefore, we shall not consider diffraction phenomena
at edges, corrugated boundaries, etc., or interference phenomena in thin layers,
although the corresponding theories also exist. Under the words “slow
variation” and “smooth interface” we shall mean certain comparisons with the
prevailing wavelength. Namely, if the elastic parameters do not vary very much
within a distance of one wavelength, we intuitively expect that such a medium
may be considered as nearly homogeneous (quasi-homogeneous, locally
homogeneous). The wavefield will then have similar properties as in
homogeneous media, e.g., it will be approximately separated into the waves of
longitudinal and transverse types. Analogously, if the wavelength is much
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shorter than the radius of curvature of an interface, in studying the reflection

and transmission of waves it will be possible to approximate the curved

interface by the tangent plane.

We shall thus restrict ourselves to short-wavelength approximations or,
which is the same, to high-frequency approximations of wavefields. The ray
method yields this type of approximate solutions.

The ray method was developed originally for the applications in optics,
acoustics and radiophysics. Only later it was applied and developed for the
purposes of seismology. This method is known under various names, such as
the geometrical seismics (derived from “geometrical optics™), asymptotic ray
method, the ray series method.

The ray method represents a powerful method of solving wave propagation
problems in rather general inhomogeneous isotropic and/or anisotropic media.
As the main advantages of the ray method we should point out the following
properties:

e The ray method is applicable to inhomogeneous media.

e It is computationally effective and fast. For example, no evaluation of
integrals is contained in the method (such as the complicated integrals of the
Sommerfeld type).

e The wavefield is separated into individual waves, which increases the
physical insight into the wave propagation process and facilitates its deeper
understanding.

e It represents the basis for other related, more sophisticated methods, such as
the Gaussian beam method, the paraxial ray method, the Maslov method,
etc.

On the other hand, the ray method has also some disadvantages and
limitations, in particular:

e [t is only approximate. Moreover, the ray method itself does not allow to
estimate the accuracy of the results, which represents a serious drawback of
this method. Consequently, the results of the ray method must be compared
with various “standard” solutions, i.e. with analytical solutions of simpler
problems, or with the solutions obtained by the FD or FE methods.

e The ray method yields inaccurate results, or even physically implausible
results, in some special regions, called singular regions (regions of caustics,
of critical points, in transition zones between illuminated and shadow
regions).

e It is applicable only to smooth media, in which the characteristic dimensions
of inhomogeneities are considerably larger than the prevailing wavelength
of the considered waves. Thus it cannot be used to study the diffraction of
waves at edges, small inclusions in the medium, or corrugated boundaries.

e Since the wavefield in the ray method is separated into individual waves, the
method cannot also be used to study interference waves (surface waves,
guided waves, waves in thin layers).

e Some other types of waves cannot also be studied by the ray method. For
example, head waves do not exist in the zero-approximation of the ray
theory, and so higher approximations are needed for their study.
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In order to increase the accuracy of the ray method and to overcome some of
its limitations, more sophisticated methods, mentioned above, have been
developed. These methods do not describe the wave propagation solely along
an isolated ray, but also in a small vicinity of the ray. This corresponds better to
the physical reality, e.g., to the Huygens principle.

13.2 Conservation Laws in the Physical World

The first formulations of the ray method did not proceed from the
elastodynamic equations, but were based on other general laws of physics. A
question therefore arises what are the relations between these different
descriptions of the same wave phenomena. An excellent analysis of these
relations in physical problems was given in the textbook by Kittel et al (1962),
pp. 133-134, from which we reproduce the following passages:

“In the physical word there exist a number of conservation laws, some exact
and some approximate. A conservation law is usually the consequence of some
underlying symmetry in the universe. There are conservation laws relating to
energy, linear momentum, angular momentum, charge, number of baryons ...,
strangeness, and various other quantities ...

If all the forces in a problem are known, and if we are clever enough and
have computers of adequate speed and capacity to solve for trajectories of all
the particles, then the conservation laws give us no additional information. But
they are very powerful tools which a physicist uses every day. Why are
conservation laws powerful tools?

1. Conservation laws are independent of the details of the trajectory and,
often, of the details of the particular force. The laws are therefore a way of
stating very general and significant consequences of the equations of motion. A
conservation law can sometimes assure us that something is impossible. Thus
we do not waste time analyzing an alleged perpetual motion device ...

2. Conservation laws have been used even when the force is unknown; this
applies particularly in the physics of elementary particles.

3. Conservation laws have an intimate connection with invariance. In the
exploration of new and not yet understood phenomena the conservation laws
are often the most striking physical fact we know. They may suggest
appropriate invariance concepts ...

4. Even when the force is known exactly, a conservation law may be a
convenient aid in solving for the motion of a particle. Many physicists have a
regular routine for solving unknown problems: First we use the relevant
conservation laws one by one; only after this, if there is anything left to the
problem, will we get down to real work with differential equations, variational
and perturbation methods, computers, intuition, and the other tools at our
disposal.”

We have paid much attention to these general problems, because the
historical development of the ray method also followed some of these trends.
We shall attempt to show it briefly below.
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In order to demonstrate these relations, let us mention an example from
mechanics. It is well known that the motion of a particle is described in full by
Newton’s Second Law,

r_ g (13.1)
m—=F, .
ds?

if the acting force F, initial position and initial velocity are given. However, in
solving many problems we use also the law of conservation of mechanical
energy, '

Ey +E, =const., (13.2)

E} being the kinetic energy and E, the potential energy of the particle. Let us

remind that the conservation law (13.2) represents a consequence of the
equation of motion (13.1), i.e. it may be derived from this equation, if the force
field is conservative (Kittel et al., 1962). Hence, Newton’s Second Law is a
more general law than the conservation of mechanical energy. The scalar
equation (13.2) for the conservation of energy cannot compete with the
vectorial equation of motion (13.1), which represents three scalar equations.
Only in the cases of one-dimensional motions, these equations may be
equivalent. In more complicated problems, the law of the conservation of
energy can yield only the absolute value of the particle velocity, but not its
direction.

We shall encounter a very similar situation in computing the amplitudes of
seismic waves by the ray method.

13.3 Ray Approximations

Various approximate expressions for the displacement vector of elastic waves,
which are used in the ray method, are called ray approximations. The ray
approximations are used both in the frequency domain (for harmonic waves)
and in the time domain.

The approximation in the frequency domain is more obvious physically.
This corresponds to the assumption of a high frequency, @ — co. This
approximation has widely been used in optics, acoustics, to study the
electromagnetic waves in the ionosphere, etc. However, for direct applications
in seismic prospecting, the ray approximation in the time domain is more
important (Cerveny, 1978; Psencik, 1994). Nevertheless, here we shall pay
attention especially to the ray approximation in the frequency domain, as it is
simpler from the theoretical point of view (see also Popov (1996)). The ray
approximation in the frequency domain was used for the first time by
Sommerfeld and Rung in 1911 to study the propagation of electromagnetic
waves.

As mentioned above, we shall restrict ourselves to the waves in
inhomogeneous media which, at high frequencies, resemble waves in locally
homogeneous media. Therefore, let us recapitulate the formulae for the main
types of waves in homogeneous media, i.e. for plane, spherical and cylindrical
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waves. For example, the potential of longitudinal harmonic waves may be
expressed as follows (see also Tab. 9.1 in Section 9.3):

1) For a plane wave propagating in the (x, z) -plane,

. xsiny+zcosy
o t————

@ = Ae - (13.3)
2) For a spherical wave,
A ia)(t—i)
pr=—2e @’ (13.4)
"
3) For a cylindrical wave,
0 = AJo(kp)e'™ . (13.5.2)

Replacing the Bessel function by the Hankel function and using its
asymptotic expression for large arguments, we get

. p
2 o ————
p=A /nTpe ( & 4) . (13.5b)

Note that the factors 4 in these expressions are constants or functions of @
only.

It can be seen from these formulae that the displacement vector for harmonic
P waves, but also for harmonic S waves, may be expressed in these cases in the
following common form:

) ia)(t—r(x,,, ))

uH(xm,t, a)):A(xm,a) e " (13.6)

where the vector function A(xm, a)) is still dependent on @. However, for

large w this function varies more slowly with the variations of coordinates than
the corresponding exponential term. We can thus assume that this function
tends to a finite limit for @ — . Consequently, for large @ we may write
approximately

uy(x,,t0)= UO(xm)e"“’("’(xm)) . (13.7)

This is the final form for the displacement vector in the ray approximation in
the frequency domain.

It is evident that many objections could be risen against the considerations
given above. Nevertheless, many important conclusions, with valuable
practical applications, may be derived from formula (13.7). Moreover, this
formula represents the better approximation, the higher is the frequency. In
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order to increase the accuracy of this formula, we could express function

A(xm . a)) in the form of the asymptotic expansion in the powers of ol

U2(x,,) +... - (13.8)

L]
(o)

Analogous asymptotic series will be considered below. In the following two
sections we shall use only the zero term, i.e. approximation (13.7). We shall
speak of the leading term of the ray series, or of the zero-order ray

approximation. Here we use the zero superscript with U’ only to obtain the
consistent notation with the notation which will be introduced below.
We shall assume the vector U° to be generally complex, but function 7 to

be real. Note that function 7 is also assumed to be complex in some
formulations of the ray method (in the ray theory with a complex eikonal), but
we shall not consider these formulations here.

Vector U is called the ray vector complex amplitude or ray vector complex
U°

amplitude coefficient (factor). Its absolute value, , 1s called the ray

amplitude. The m-th component of vector U, ie U ,?1 , 1s referred to as the ray
complex amplitude of the m-th component of displacement.

Function T(xl, %5, x3) is called the eikonal or the phase function. This is
the travel time which the wavefront, passing through the coordinate origin,
needs for arriving at the point with coordinates x;, x,, x3.

We may expect the ray approximation to be a convenient approximation to
the waves which are close to plane or spherical waves. This follows from the
comparison of the ray approximation (13.7) with formulae (13.3) and (13.4).
However, the application of (13.7) to approximate cylindrical waves may be
more problematic. Namely, the amplitude in the cylindrical wave (13.5b) tends

to zero for @ — o (k — ), but we are interested in a non-zero limit Ul.

13.4 Energy of Elastic Waves

The density of mechanical energy is defined by
E=E,+E,, (13.9)

where E; is the density of kinetic energy and E, the density of potential
energy. For small deformations of a continuum, these densities read

1 1

5 p=75 (13.10)

lj >
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where p is the density of the medium, v; = #; are the components of velocity,
o0, the components of the stress tensor and e; the components of the tensor of
infinitesimal strain. Here we have denoted the stress tensor by oy;, in order to

avoid the confusion of the previous notation 7;; with the eikonal 7. We shall

not derive the above-mentioned expression for E,; this derivation is not

elementary, but may be found in many textbooks on continuum mechanics, see
also Aki and Richards (1980).

Let us calculate the mechanical energy of a plane harmonic wave
propagating in a homogeneous medium (see the analogous problem in Section
1.3). Assume that the wave propagates along the x-axis. The displacement may
then be expressed as

u= Asin(ar — kx) , (13.10)
where the usual notations have been used. Since the particle velocity is
v=1u=awdcos(ot — kx) , (13.11)

we get the instantaneous density of the kinetic energy in the form

1
E, =Epa)2Azcosz(a)t—kx) . (13.12)

Instead of calculating the potential energy according to the formula given
above, we shall apply the law of the conservation of mechanical energy. This
energy should be equal to the maximum kinetic energy (because E p =0 for

E; =max.). This yields the following formula for the energy density in a
plane harmonic wave:

1
=5pa)2,42 . (13.13)

The latter formula has frequently been used generally, without a deeper
analysis, also for arbitrary waves in arbitrary inhomogeneous media. However,
for the ray approximation in an inhomogeneous medium, an analogous formula
really holds true (Cerveny, 1978; Psencik,1994). Therefore, in the ray
approximation we may write

1 2
E:—ipwz\UO\ . (13.14)

In Section 13.6 we shall only need that the energy density is proportional to

2
the density of the medium and to the quadratic amplitude, E ~ p| UO' .

242



13.5 Ray Coordinates and Ray Tubes

In many problems of the ray theory, it is convenient to introduce so-called ray
coordinates,

(5,71.72) - (13.15)

Parameter s specifies the position of a point on a selected ray. This may be an
arbitrary parameter along the ray. Usually this is the length of the ray (length of
the arc) measured from some reference point, where we put s = 0. In the case
of a point source, coordinate s may be the length of the ray from this source.
Instead of a length we may also use the travel time 7, and then we write the ray
coordinates as

(2, 71,72) - (13.16)

The remaining two ray coordinates, y; and y,, specify the selected ray. They

are usually introduced in two ways:

a) In the case of a point source, we may use the spherical coordinates &, and
@ which determine the direction of the ray at the source (Fig. 13.1). Angle
& 1s usually measured from the vertical towards the ray, and so 0< 6, < .
Angle ¢, is then the angle in the horizontal plane (“geographical
longitude™), varying in the interval 0 < @y <27.

Fig. 13.1. Ray coordinates
for a point source and a ray
tube. (After Cerveny (1978)).

b) We may select an arbitrary wavefront (for some reference time 7;), and
choose y; and y, as curvilinear coordinates on this wavefront (Fig. 13.2).
Quantities g; and g, are also called the ray parameters.

243



Fig. 13.2. Ray parameters on a references wavefront and a ray tube. (After
Cerveny (1978)).

A very important quantity in the ray theory is also the Jacobian of the

transformation from Cartesian coordinates (x, ¥, z) to ray coordinates

(s, V1» 72) . We shall denote this determinant by .J,

ox  Jy oz
Os Os os
g ox Jdy Oz (13.17)
Jr1 Oy | '
ox Oy Oz
Oyy Oyy Oy

We shall speak of a regular ray field in a region if J # 0 at every point of the
region. The ray field will be called irregular at a point M if J(M) =0. In the

region where J # 0, the relation between coordinates (s, Y1» }/2) and (x, ¥, z)
is unique. In this region, just one ray passes through a given point. In other
words, the rays in this region neither cross one another, nor a “ray shadow” is
formed.

Note that the well-known Jacobian for the transformation between Cartesian

and spherical coordinates has the form J =2 sin 9 see Chapter 9. The reader
may verify this result by substituting (9.1) into the determinant analogous to
(13.17). For an infinitesimal volume element in spherical coordinates we then
have dV =Jdrd8dA.

Another important notion in the ray theory is the ray tube. We shall define
the ray tube as the set of rays, the parameters of which are within the intervals
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(71:71+d71)> (72>72 +d7’2)> (13.18)

see Fig. 13.2. Since we consider infinitesimal quantities dy; and dy,, we also
speak of an elementary ray tube. Ray tubes are used in studying ray amplitudes.

13.6 Ray Method for Amplitudes — Energetic Approach

Preliminary information about seismic amplitudes can be obtained from ray
diagrams. For example, consider the model of a vertically inhomogeneous
medium as shown in Fig. 13.3. The corresponding ray diagrams, computed
with a constant step of the angle at the source, are shown in Fig. 13.4.

© 5 S5 6 65 vikmis)
0 T T T T =

0r

20f
Fig. 13.3. Velocity cross-section for a

i model with a low-velocity channel.
b (After Cerveny (1978)).
(kM)

8 ' g

8 - B

8 8

2 ; : ' : ; 8

8 s.00 $0.00 100,00 150.00 E]

Fig. 13.4a. Ray diagram for the model in Fig. 13.3 and a surface source. (After
Cerveny (1978)).

The regions of concentrated seismic rays indicate the places of the
concentration of seismic energy and, consequently, of large amplitudes.
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Conversely, small amplitudes of seismic waves may be expected in the regions
where the seismic rays are sparse.

6.0 50.00 100.00 150.00

1
t - t
8 c.00 X $0.00 100.00 150.00 8

Fig. 13.4b. Ray diagram for the model in Fig. 13.3 and a source in the low-
velocity channel. (After Cerveny (1978)).

The previous considerations on seismic amplitudes were only qualitative,
but we need quantitative estimates. For this reason, let us consider the
propagation of the mechanical energy of elastic waves.

13.6.1 Basic assumptions of the propagation of energy

Let us adopt the following assumptions concerning the wave propagation in the
ray approximation:
) For high frequencies, the wavefield in inhomogeneous media is separated

into P and S waves, propagating at velocities o = a(x, Vs z) and

B= ﬂ(x, ¥, z), respectively. We thus assume, in the ray approximation, an

analogous separation of the wavefield as in homogeneous media.

II) Mechanical energy propagates along the rays. Energy thus does not
penetrate through the surface of a ray tube. The part of energy, which was
radiated by the source into a wave tube, remains in this tube.

The application of the above-mentioned postulate of the independent
propagation of P and S waves, together with the postulate on the energy
propagation, makes it possible to calculate the amplitudes of seismic waves in
inhomogeneous media, including general three-dimensional media.

Nevertheless, the energetic considerations are not sufficient to answer all
questions about the propagation of seismic waves. If we are interested in
amplitudes only, we shall obtain the comprehensive answer, at least for P
waves. However, in constructing ray synthetic seismograms, these results are
not sufficient. One encounters the following limitations of the energetic
approach:
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a) Amplitudes must be considered as complex quantities (they contain, e.g.,
phase shifts due to total reflections). In computing the form of a signal, we
need to know both the real and imaginary parts of the complex amplitude.
The energetic approach will yield only the absolute value of this complex
amplitude.

b) The amplitude factor is generally a vector quantity. In the case of P waves
we know that the displacement has the direction of the ray. However, in the
case of S waves, the direction is not known in full, we know only that this
direction is perpendicular to the ray. In other words, the energetic approach
does not allow us to determine the polarisation of S waves.

In spite of these disadvantages, the energetic approach yields satisfactory
result in many problems. Moreover, this also gives a physical insight into more
complicated results obtained from the elastodynamic equations.

13.6.2 Energy flux and a general formula for amplitudes

We assume that seismic energy neither leaks through the surfaces of ray tubes,
nor is transformed into other forms of energy. For harmonic waves, which we
consider here, this means that the energy flux through various cross-sections of
the same ray tube is identical.

Consider an arbitrary ray, e.g., the ray which passes through points 4, and
A in Fig. 13.2. Consider further an elementary tube which surrounds this ray, or
is tangent to it. Let do be an arbitrary section of the ray tube which is
perpendicular to the rays. The energy flux through this cross-section is then

E = Evdo, (13.19)

where E is the energy density, and v the wave velocity. We must thus put
v=a for P waves, and v=/ for S waves. Let us restrict ourselves to
P waves. The conservation of the energy flux mentioned above, together with
formula (13.14) for the energy density, then yield the conclusion that

,oosz|U0‘2 = const (13.20)
along the ray tube.
Let us specify the latter equation for points A, and A4 with ray coordinates
sy and s, respectively (see Fig. 13.2 where coordinates 7, and 7 are indicated).
We obtain the following general formula

(13.21)

oo Idotso)|elso)elso)) o
06 =[Gt | et © (ol

For S waves we must replace « by fin Egs. (13.20) and (13.21).
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Note that the cross-section d o is sometimes introduced in such a way that
it may attain not only positive, but also negative values. For this reason, in
formula (13.21) we have introduced the absolute values of these quantities.

If the amplitude of a harmonic wave is known for some reference ray
coordinate s, (e.g., close to the seismic source), formula (13.21) makes it
possible to calculate the amplitudes along the corresponding ray.

The calculation of the ratio da(so)/d o(s) usually represents the most

complicated step in determining seismic amplitudes by means of formula
(13.21). The simplest way is, in principle, to estimate this ratio numerically, i.e.
by replacing infinitesimal surface elements by finite ones. However, one ray is
not sufficient for this purpose, but at least three rays are needed in the case of a
3-D medium, and at least two rays in a 2-D medium. In a 3-D medium we

must determine three rays for parameters (;/1, ;/2), (7/1 + Ay, yz) and

(7/1 Yy + Ayz) , where Ay, and Ay, are small increments. In a 2-D medium,
two rays for parameters y; and y; + Ay, are sufficient.

Other methods of computing the ratio of these elementary surfaces will be
mentioned below. For a vertically inhomogeneous medium and a point source,

this ratio can be determined from simple geometrical considerations (Section
13.7).

13.6.3 Another form of the general formula for amplitudes. The
Jacobian J

A volume element in ray coordinates can be expressed as
dV =Jdsdy;dy, , (13.22)

where J is the determinant of the transformation (the Jacobian) from Cartesian
to ray coordinates; see the analogous case of spherical coordinates, mentioned
in Section 13.5. Determinant J is given by formula (13.17).

A volume element in ray coordinates can also be expressed as dV =dods,
where d o is the area of the corresponding cross-section. By comparing this
expression with (13.22) we obtain

do=Jdy, dy, . (13.23)

Since increments dy; and dy, are constant along the ray tube, we get

da(so) = J(so)dy1 dy,, dols)=J(s)dy,dy, . (13.24)

This makes it possible to replace the ratio of the infinitesimal surface elements
in (13.21) by the ratio of the Jacobians at the corresponding points:
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on(S)|: |J(So)i“(SO)P(SO)‘UO(SO)‘_

I J(s) ’ als) p(s) (13.25)

In addition to the definition (13.17), many methods have been suggested for
computing the Jacobian J, such as the computation of the radii of curvature of
the ray, or solving systems of additional ordinary differential equations. A
special formula for function J will be derived in the next section.

13.7 Ray Amplitudes of Waves Generated by a Point
Source

In deriving formulae (13.21) and (13.25), no assumptions of the source and
medium were introduced. Both the source and the medium might be quite
arbitrary. In this section we shall specify these formulae for a point source in a
general inhomogeneous medium, and for a point source in a vertically
inhomogeneous medium.

13.7.1 Point source in a general medium. The geometrical
spreading

For a point source, it is convenient to express the formulae for amplitudes in
another form. To simplify the problem, we shall consider the following,
slightly idealised situation.

Consider a point source which generates, say, P waves. Surround the source
with a spherical surface of a sufficiently large radius, so that the whole surface
will lie in the “elastic zone”, where the elasticity theory may be applied.
Assume that this vicinity of the source may be regarded as locally
homogeneous (although the source may be located in a general inhomogeneous
medium). Without loss of generality we may put the radius of the sphere to be
equal to unity. Any point of the surface is described by two spherical
coordinates, &, and ¢; see Fig. 13.1. Angle &, is usually measured from the
vertical towards the ray, and so it lies within the interval 0< ¢, <. Angle ¢,
is the angle in the horizontal plane (“geographical longitude”), and so
0<¢y<27. Since a surface element on the sphere of radius r is

do =r?sin 09 d &y d ¢y, for the unit sphere we get

dO'O :Sin50d50 d¢0 . (1326)

It then follows from (13.24) that J (so) = sind, on the unit sphere.

Moreover, assume that the distribution of the ray vector amplitude U° on
the unit sphere is known as a function of &, and ¢,. Denote this distribution

by function g P(50 3 goo) , called complex vector directional radiation
characteristics of P waves. Formula (13.25) can then be expressed as
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|U0 (s)( _ \/ sin g a(so) p(so)

|7(s) ex((s) pls) |27 (%. 90) - (13.27)

If the reference wavefront is the unit sphere (so = 1) , the following function
is frequently introduced:

L(s) = \/ dotd) _ \/ J(s) —\/ ) (13.28)

d a(so ) J (SO ) | sing,

Function L is referred to as the geometrical spreading of a wavefront. Using
this notation, formula (13.27) takes the form

0°Gs) = |gP (%-20)] [a(s0) Also) .

L) N als)pls)

(13.29)

This is the final formula for the amplitudes of P waves in an inhomogeneous
medium, in the case of a point source.
The final formula for S waves is similar to (13.29), only instead of velocity

a we must write S, and instead of g, write the directional characteristics for S

waves, gg (60, (po). Note that vector gp is perpendicular to the unit sphere,
whereas vector gg is tangent to this surface.

Note that the definition of the geometrical spreading must be modified if
there are interfaces in the medium.

As a very simple example, consider the body waves generated by a point
source in a homogeneous medium. At a distance R from the source, one gets

do=R? singyddydey, ie. J= R? sind, . From (13.28) we then get L =R,
and formula (13.29) yields

U°(s) = %Igp(éo,qoo)\ : (13.30)

This is the well-known formula for the amplitudes of spherical waves in a
homogeneous medium.
Another special case will be considered in the following subsection.

13.7.2 Point source in a vertically inhomogeneous medium

Consider the situation as shown in Fig. 13.1. For the surface element at point M
we have d o( M) = d/,.d [, , where the length of the horizontal edge is

dll =I"d¢0 5
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and the length of the edge in the vertical plane is

or
dl, =drcosd(M) = —=cosS(M)d s, .
26,

Note that here we must write the partial derivative Jr/d6,, because the

horizontal distance depends not only on angle &, but also on depth z (or ray
coordinate s). Formulae (13.23) and (13.28) then yield

J=r2 s(M) (13.31)
—1’0,’50 cos X .

and

_ | I coss(M)

_\/r 35, sind, Wiz
By inserting the latter formula into (13.29), we arrive at the formula for the ray
amplitude at an arbitrary point of the ray. Angle 6(M) in formula (13.32) can
be determined from Snell’s law, and formulae for the horizontal distance r
were derived in Chapter 3.

The derivative or/J5, can be estimated by numerical differentiation, or by
analytically differentiating the corresponding formulae in Chapter 3. Note that
the expression (13.32) for the geometrical spreading becomes indeterminate at
the turning point (deepest point) of a ray. Namely, at this point we have
S(M)=90°, cosS(M)=0, but the derivative Jr /05, becomes infinite.
Hence, a modified formula for the geometrical spreading must be used in a
vicinity of the turning point.

13.8 Principles of the Method of Ray Series

In this section we shall briefly describe a more advanced method of solving the
wave propagation problems in inhomogeneous media which differs from the
previous approaches in the following substantial aspects:

1) the method proceeds directly from the elastodynamic equations;

2) the solution is not sought in the form of one term, but in the form of a
series (although only the leading term of the series is predominantly used
in practice).

We may expect that this method will be more general and more accurate
than the methods described above. In particular, the main principles and
assumptions on which the previous approaches were based, such as Fermat’s
principle, should follow from this more general method as its consequences.

The ray series solutions of the elastodynamic equations were first suggested
by Babich and his colleagues in Russia (see, e.g., Babich and Alekseev (1958)).
Nearly at the same time, an analogous approach was used by Karal and Keller
(1959) in the USA.
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13.8.1 Ray series in the frequency domain

We shall seek the displacement vector for a harmonic wave in the form of the
so-called deformed plane wave,

u(x,,.t, 0) = U(x,, a))e"""(f“’(""’)) : (13.33)

which is practically identical with the form (13.6). As opposed to a plane wave,
the amplitude coefficient U is not constant now, but depends on coordinates,
and the phase function 7 is not a linear function of coordinates, but is more
complicated. Moreover, the amplitude coefficient may be a function of angular
frequency . Note that, as opposed to (13.6), here we shall use the negative
sign in the argument of the exponential (in order to obtain the positive sign in
the term ¢'“7). The choice of this sign is not substantial, but the change of the
sign leads to the complex conjugate results, which must be taken into
consideration.

In the previous sections we approximated the amplitude coefficient by a
high-frequency limit (we used the zero-order ray approximation). The
approximation by a series, which will be used here, should yield more accurate
results.

Let a function f(w) be continuous together with its higher derivatives in a
vicinity of the origin. The corresponding Taylor expansion of this function,

F(@)=f@)+L ;(!O)a)+ OB

2 o

is then convergent in the mentioned vicinity. If @ is the angular frequency, this
formula represents the low-frequency expansion of function f. Replacing @ by
1/w we get the corresponding high-frequency expansion (for large w),

flw)= fleo

el el 1 (13.34)
' o

cee s
2! @2

where (), f'(), etc., are the limits for @ — .

Analogously to (13.34), we shall seek the amplitude coefficient in (13.33) in
the form

1

(-iw)

1

(i)

U(x,,, ®) =0%x,, )+ U'(x,,)+ U%(x,)+..., (13.35)

where U : U! , etc., are unknown functions which are to be determined.
However, there is a substantial difference between formulae (13.34) and

(13.35). Namely, the coefficients in series (13.34) are expressed in terms of the

derivatives of function f. Since this series is convergent, the more terms of the
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series are used, the more accurate approximation will be obtained. As opposed
to this, function U is unknown, and we do not know in advance whether the

unknown functions U* (k =0, 1, ) will be related to the corresponding
derivatives of U. Consequently, such a series may not be convergent, and rather
has the character of the so-called asymptotic series (Popov, 1996). In summing
up such a series, the accuracy generally increases only to some term, and by
adding further terms, the approximation becomes even worse. This situation is
schematically shown in Fig. 13.5. The accuracy of the series may only be
increased be passing to higher values of w.

R |

e n

nﬁ: 0 1 ‘»2 3 4
Fig. 13.5. Typical behaviour of errors if a function is approximated by an
asymptotic series: n is the number of terms of the series, and the errors are
plotted on the vertical axis. (After Popov (1996)).

Since we shall write the elastodynamic equations in components, we shall
also express the displacements in components. We shall thus express the i-th
component of the displacement for a harmonic wave in the form of the
following ray series:

—-ia)(t~z'(x,,, )) i Ul'n (xm)

ul-(xm,z‘,a)):e nzom ]

(13.36)

Since the ray series generally has the character of an asymptotic series, only
a few terms of the series are usually used. The higher will be the angular
frequency w, the fewer terms will be sufficient. For high @ we may neglect all
terms with the exception of the first term, i.e. the term for » = 0. The ray series
then reduces to the ray approximation (we also speak of the zero-
approximation of the ray theory).

13.8.2 Equations of motion for an inhomogeneous medium

The equations of motion for an elastic medium are also called the
elastodynamic equations. We shall use the equations of motion of a continuum
without body forces, i.e.



%y _ 0 13.37

where o; are the components of the stress tensor. Let us restrict ourselves to

isotropic media described by Hooke’s law

oy = /L%}j +2,uel-j s (13.38)
where
9 = di _% __1_ %_i_é)i (13.39)
= 1vu—é,Xk s € =5 0”xj 7%, . .

Inserting these expressions into (13.37) yields

Fu;  Pu, A Ou o",u(o"ul- u;

()t ; ; =p§2”" (13.40)
ox  Ox; Ox;  Ox;\Ox;  Ox o '

é’xlé)xj i

This is the equation of motion for an isotropic inhomogeneous medium.

Let us derive also the simpler equations for the acoustic case. Introduce the
pressure p=-19, and put x4 =0. Hooke’s law then yields the well-know
formula for liquids, o; =-pd;, which is also known as Pascal’s law.
Consequently, the equation of motion (13.37) simplifies to read

_op _ 3,
é,x[ #~ 0”[2

(13.41)

Differentiate this equation with respect to x;, and neglect the derivatives of
density p:
’p 39

i

By inserting 3 = — p/ 4, we arrive at the wave equation for pressure p,

1 o”zp
Vip=——t | 13.42
p T o3 ( )

where the velocity c¢=./4/p is a function of coordinates, ¢ = c(xm) . For
harmonic waves, the latter equation yields the Helmholtz equation,

V2p+kip=0, (13.43)
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where the wavenumber k = w/c is again a function of coordinates (and of ).

After neglecting the derivatives of density, we have arrived at the wave
equation for an inhomogeneous medium. This equation was also considered by
Popov (1996). The more general equation, including the derivatives of density,
was considered by Psencik (1994). However, in solving the corresponding
equations by the ray method, both results are very similar.

13.9 Equations of the Ray Methods for the Acoustic
Case

We shall solve the wave equation (13.42) approximately by the method of ray
series in the frequency domain. Analogously to the ray series (13.36), we shall
seek the solution in the form

—ia)(t—r(x,,,)) i Pn(xm)

; (13.44)
n=0 ('— la))n

p(xm, o a)) =e

note that the letter » with P" means again a superscript, not a power. In this
way, our task is reduced to the determination of the eikonal T(xm) and the

amplitude coefficients P” (xm) :

We shall insert the trial solution (13.44) into the wave equation (13.42), or
into the Helmholtz equation (13.43). First, calculate the derivative

io— P" +
Ox; r{ l‘a))”L ox; Ox;

o ; = P

Differentiating this expression with respect to x; once more, one gets \ p.
The Helmholtz equation, after omitting the exponential term, then yields

e 1 [ o o0, ap”]
z i io P" + +
n=0(_iw) L é’xik é’xi ﬁxi
+i o P+ e &P + 7P +Co2 P*|=0 13.46
io| —= e =0 . .

This equation can be rewritten as

= 1 2| Ot o 1|,
> {(za)) {:é)xi o, 22 }P &

n=0(_ ia))n

+ (ia)){Z

or 3P" Fr | FP"
P =0. (13.47)

+
Ox; Ox; 5xl-2 é’xiz
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13.9.1 Eikonal equation

In order to satisfy Eq. (13.47), the coefficients with the individual powers of @

must be zero. The highest power appearing in the series is ®? . The term with
this power yields the eikonal equation,

— ol (13.48)

where ¢ = c(x] 5 X755 x3) . Other forms of this equation are

g 2 y)
or or or 1
— e —] m— 13.49
(ﬁxlj +(5’x2) +(é’x3j c2 ’ ( )
or

1
(grad7)’ == . (13.50)

&

From the mathematical point of view, the eikonal equation is a nonlinear,

first-order partial differential equation for 7 = T(xm). This can be solved, e.g.,
by using rays. As opposed to the simple case of a homogeneous medium, here
the velocity ¢ may vary with coordinates.

As a special case, let us solve the eikonal equation for a homogeneous
medium. It now follows from Eq. (13.49) that the sum of squares of the first
derivatives of zmust be equal to a constant. This equation can thus be satisfied,
e.g., if eikonal 7is a linear function of Cartesian coordinates:

T =da1X|1 T dyXy +dzX3 ,
where

2 2 2

aj +a5 +a;3 =c7

These equations will be satisfied if 7is of the form

X1 €08y + X5 COSQy + X3 COSQl3

r : (13.51)

&
where a;, a,, az are directional cosines, satisfying the condition

cos’ o +cos? oy + cos’ a3 =1.

The expression (13.51) for 7 describes a plane wave. We have thus arrived at
the result that a plane wave represents one solution of the eikonal equation for a
homogeneous medium.
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13.9.2 Transport equations

Let us go back to Eq. (13.47). In view of the eikonal equation, the term in the
first square bracket in (13.47) vanishes, which yields

- P 2 2 pn
$ {(iw){2 or OP arPn}Laf;}:O_ (13.52)

+
,,:0(— iw)" ox; Ox; 5’xi2 ox;

Assume this series to be only finite, from n=0 to n= N. Compare the

coefficients with the lower powers of w, i.e. with a)l, w® up to o~V . This
yields the following system of equations:

ot AP° Fr

— + —— P = 0,
&, O%; Ox?
dr oP! Ca 2 po
: (13.53)
or opPY Py _u ' il
Yoo Tl T a2 T
i i i i
&2PN
— = 0.
Ox

These are the transport equations for determining the amplitude coefficients

4 O(xm) to PV (xm) The first of these equations is a linear partial differential
equation of the first order, the remaining equations are linear partial differential
equations of the second order. They can be solved along rays. In that case they
reduce to ordinary differential equations.

System (13.53) represents N +2 equations for N +1 unknown functions

P% to PV, Consequently, the last equation in (13.53) is superfluous. This
equations can be used to check the accuracy of the approximate solution.

Very frequently we use the ray approximation only (N =0). In this case,
system (13.53) reduces to two equations:

ot 6P° 7

PP = 0
é’xi é’xl- * é’xlz ’
52 po (13.54)
3 = 0.
Ox;

1

The second of these equations is again superfluous.
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13.10 Equations of the Ray Method for an Isotropic
Inhomogeneous Medium

Let us consider the elastodynamic equations (13.40) for an isotropic
inhomogeneous medium. We shall solve them again by the ray method in the
frequency domain. However, in the order to simplify the problem, let us restrict
ourselves to the ray approximation only, i.e. to the leading term for » = 0 in the
ray series (13.36). Therefore, assume the displacements to be of the form

u; (X, 1, @) = U, (xm)e"'“’(t‘f(x'")) : (13.55)

where we write simply U, instead of U. For the first and second derivatives
of u; with respect to coordinates we get

(0, 2] i,
Ox Ix ; Ox
(13.56)
2 2
I u; _|.2U; +ia)Li-k—a)2U~—0”—?—— or ¢ io(1=1)
Ox ;0x | Ox ;0% 4 " Ox; Oxy ’
where we have denoted
. AU, dr AU, o &t
(13.57)

k= o, x| dxy Ox, lax,dxy

By inserting (13.55) into (13.40), and omitting the common exponential term

g ~io(t=7) , we then obtain

(/1+,u) fidly =@ U ;~——— i+

Ox;0x ! Ox; Ox;
+ 2 +iol U o ot +
# sz Ry T @ Ox; Ox
oA 5Uj U ot
—— + o= L
Ox;| Ox; e Ox
GO s iy 2 L 2y 13.58
+ =t == == - :
Ox;| 0x; Ox; e Ox; 7 Ox; Sl ( )
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From the same reasons as in the acoustic case, we shall put the coefficients

with 0?, @' and @° equal zero. The coefficient with w? yields the equation

A+udr dr yu dr Or
pn 5 =0 |U;=0. 13.59

This equation is similar to that which we obtained in Chapter § when we
studied the propagation of plane waves. However, in general, the elastic
parameters and density are not constant now. Consequently, the decomposition
of the wavefield into plane waves will hold locally. Equations (13.59) for
i=1,2,3 can thus be identified as the local Christoffel equations for an
isotropic medium,

(Fl-j—é}j)Uj =0, (13.60)
where the elements of the Christoffel matrix I" are

A+udr dr u dr Ot
e += -
¥ p Ox; Ox; pox; Ox; Y

(13.61)

The corresponding Christoffel determinant must be equal to zero, which again
yields a cubic equation for determining the eigenvalues. The eigenvectors are
again mutually perpendicular; see the analogous derivation in Section 8.1. Here
we shall use another simple derivation.

The equation 7 = const is the equation of the surface with a constant phase,
i.e. the equation of a wavefront. The gradient of function 7 has the direction
perpendicular to the wavefront, i.e. the direction of a ray. Therefore,

decompose the vector U = (U 1, U, U 3) into the component along the ray, and
the component perpendicular to it. Let us study these components as two new
amplitude vectors.
Firstly, assume the amplitude vector U to be parallel with the gradient of 7,
ie.
or

U; = KaTj , (13.62)

K= K(xm) being a coefficient. Inserting (13.62) into (13.59) yields

ox;

1

Or|A+u or Jdr u Jdr Ot
K = -11=0.
p Ox;0x; pox; Ix

In order to satisfy this equation, the term in the square brackets must be equal
to zero. Replacing the dummy index & by j, we arrive at the eikonal equation
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dr Ot 1

g;g;:? , (13.63)

where a:,/(/1+2,u)/ p is the local velocity of P waves (it varies with

coordinates).
Secondly, assume the vector U to be perpendicular to the gradient of 7,
U.grad7 =0, i.e.
or

— =0 . 13.64
U, ox ( )

Under this condition, the first term in Eq. (13.59) vanishes, and we arrive at the
eikonal equation in the form

e (13.65)

where f = W is the local velocity of S waves.

Hence, we have arrived at the important conclusion that, under the
assumption of high frequencies, the wavefield separates into two independent
wave processes even in slightly inhomogeneous media.

The transport equations can easily be obtained as the conditions that the

coefficients with @' and »° in Eqgs. (13.58) should be zero. We shall not
present these equations here, but refer the reader to the lecture notes by Psencik
(1994) and Popov (1996). As opposed to the simple methods which were based
on energy considerations (Section 13.6), the solution of the transport equations
yields not only the absolute values of wave amplitudes, but also the
polarisation of S waves.

13.11 Relations between the Eikonal Equation and
Fermat’s Principle

In Chapters 3 to 5 we postulated the validity of Fermat’s principle, and then we
used this principle to calculate seismic rays. In the method of ray series, we
build the theory on the elastodynamic equations. Therefore, we should clarify
the relation between Fermat’s principle and the solutions of the elastodynamic
equations. We can, e.g., compare the corresponding differential equations
which follow from these approaches.

The eikonal equation is a nonlinear first-order partial differential equation,
which can be solved by the method of characteristics (Psencik, 1994). In this
case, the characteristics are determined by the system of ordinary differential
equations which are identical with the equations following from Fermat’s
principle (Chapter 5). This proves the equivalence of the eikonal equation and
Fermat’s principle for the purposes of computing seismic rays. Hence, instead
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of solving the eikonal equations, we could calculate seismic rays on the basis
of Fermat’s principle. The advantage of applying this principle consisted in the
fact that we could calculate many kinematic characteristics of seismic waves
without knowledge of the elasticity theory. However, at last the conclusions
following from Fermat’s principle should be verified and compared with the
more exact solutions of the elastodynamic equations.

13.12 Other Approaches

In this chapter we considered only harmonic waves, and studied them by the
method of ray series. Let us briefly mention other approaches.

13.12.1 Description in the time domain

The description of wave phenomena in the frequency domain is convenient in
many branches of physics (optics, acoustics), but less convenient in
seismology, where we usually encounter waves of a short time duration
(transient waves). Consequently, seismic waves are frequently studied in the
time domain (Psencik, 1994). Two important notions are used for these
purposes, namely the Hilbert transform and the analytic signal.

The Hilbert transform of a function g(¢) is defined by the formula

M0=% (13.66)

8 —8
=%
Wi

Functions g(¢) and A(¢) form the so-called Hilbert transform pair.
The analytic signal F(¢), corresponding to function g(z), is defined by

F(r) = g(t) +in(s) |

where A(¢) is the Hilbert transform of g(z) .
It can be shown that functions g(¢), #(t) and F(z) behave like cost,

—sinz and e . Since it is convenient to describe harmonic waves in terms of
exponentials, in the time domain it is analogously convenient to use analytic
signals.

Thus, we usually work with the analytic signal F(f), but the physically

meaningful signal is g(¢) . For further details we refer the reader to the lecture
notes by Psencik (1994).

13.12.2 Other methods

The ray methods, described above, consider the propagation of energy only
along individual rays. Consequently, these high-frequency approximations
yield unreal results in some regions (transitions into shadow zones, caustics,
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etc.). More accurate approximations are, for example, the paraxial
approximation or the method of Gaussian beams, which consider the wavefield
also in a certain vicinity of the ray. Detailed descriptions of these method can
be found in Popov (1996).

A comprehensive description of the contemporary ray methods in
seismology should soon be available in the monograph by Cerveny (in press).
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