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Chapter 1

Laws of conservation

In this chapter we shall formulate laws of conservation of mass, momentum and energy for
a moving continuum. These basic laws will be employed throughout the whole textbook.
Start with the two fundamental formulas:

The Gauss theorem is expressed in the formula

/ h-ndS:/ [h]i’-ndS—l—/ V-h"dv, (1.1)
S(1) () V(O\Z()

where h is a vector or tensor function continuously differentiable inside V() \ X(¢); V(¢)
is a region in the continuum with a regular boundary S(t) (see chapter 777) m is the outer
normal to S(¢) or X(¢) and T means the transposition. Y(¢) is an inner interface, where
one of the two possible orientations of n is chosen as positive, and [h]T = h™ —h~ denotes
the jump of h across the interface obtained by subtracting its value on the negative side
from that on the positive side. Finally, - represents the scalar product and ¢ is time. We
will consider below only the case, where the boundary S(%) is formed by the same particles
of continuum throughout the whole time interval taken into account. In other words S()
is “frozen” into the continuum.

Consequently, the Reynolds transporting theorem can be written as

D o/ } ) |
Dt W= oY av — )]t -nds .
bt V@‘)f /wt)\z(t) [at VY +/z<t>[f(v v)IT - ndS, (1.2)

where D/ Dt is the material derivative, f represents a scalar, vector or tensor property of
the continuum, v is the velocity of particles, whereas the velocity of the interface v may
be, in general, different from the particle velocity. Both f and v are again required to be
continuously differentiable inside V() \ X(¢).



1.1 Comnservation of mass, momentum and moment
of momentum

Since there is no mass flow through S(t), the law of mass conservation can easily be
expressed in the form

D
— pdV =10, 1.3

where p represents the mass density. The Reynolds transporting theorem (1.2) yields

/V(t)\z(t) [% +V- (pv)} dV + /E(t)[,o('v V)]t ndS =0. (1.4)

The result must hold for arbitrary volume V(t) (defined by its boundary S(t)) and thus
both integrands must vanish. This is the reason why the integral (global) principle (1.4)
can be replaced by a differential (local) principle

% LV (pr) =0 inside V(1) \ S(1), (1.5)

which is usually called the equation of continuity, with the boundary condition
[p(v —v)]T-n=0 on X(t). (1.6)

It should be noted that (1.6) does not represent a definition of a kind of an interface. For
example, a chemical interface between two kinds of material is usually characterized by
v = v and the no-slip boundary is then defined by the simple relation [v]T = 0. The inte-
gral principle (1.3) is more general than the equation of continuity (1.5) (complemented
by the boundary condition (1.6)) since the integral principle does not require the existence
of derivatives of density.

Combining (1.2) and (1.5) we get another useful formula

D _ d(pl) } e
Dt = o Y dv — )|t ndS =
Dt v(t)pf /V(t)\E(t)[ o TV (efv) + /E (t)[Pf(” v)]T-n

of ] [ (8,0 >] . -
a, -V dV — YV - dv _ ndS —
/V<t>\2<t> ['0 or troNd —I—/V(t)\z(t) MG TV (o) +/z<t>['0f (v—v)Zn
Df
- oV — )]t nds. 1.7
/wt)\z(t) "ot /zm pf{v=v)l=-m (1.7)

The law of momentum conservation expresses a balance between changes of momentum
and acting forces; its integral form is

D
— pvdV:/ png—'Z/ p()xvdV—/ p()x(()xr)dV—l—/ T-ndS,
Di V(1) V(1) V(t) S(1)

(1.8)



where g is the gravity acceleration, §2 is the angular frequency of the planet’s rotation,
T 1s the Cauchy stress tensor and x denotes the vector product. This means that we
neglect all body forces except the gravitational, the Coriolis and the centrifugal forces.
After applying (1.7) and (1.1) we will get

D
/ [—v—pg—l—Zp.QX’v—l—p.QX(.QXr) V-rt| dv
VO\E()

Dt
—I—/ [pv(v —v)— 7] -ndS=0. (1.9)
()
Hence,
T . Dv _ Ov o
V-ri4+pg—2pR2 xv—p2x(2xr) = P = (8t +v-Vo) inside V(¢)\X(¢) (1.10)
and
[pv(v —v)—7]T-n=0 on X(¢). (1.11)

Analogically, the law of conservation of moment of momentum can be written as

D

— rvadV:/ r X pgdV—
Dt Jyv V(1)

—'2/ rx(p()xv)dV—/ rx(p()x(()xr))dV—l—/ rxT-ndS, (1.12)
V(1) V(1) 5(1)

DY

where 7 is the radius vector. Since fv(t) rxpvdV = fv(t) plr xv]dV, Z(rxv) =rx LV

Vr = I (I is the identity tensor) and [r]* = 0, the application of (1.7) and (1.1) to (1.12)
now leads to

D
/ rx(—v—pg—l—Zp.va—l—p.Qx(.er) V-TT>dV—
VO\Z(1) Dt

—/ I>.<TdV—|—/ X [pv(v—v)—T1]T-ndS=0, (1.13)
V(H\Z(?) (1)

where x is the double product consisting of vector and scalar products. ' By virtue of
(1.10) and (1.11) we have
Ixr=0 = = ()", (1.14)

i.e. T is a symmetric tensor and thus the transposition in (1.10) may be omitted.

Tn Cartesian coordinates IxT = ij €i10j17r1, 051 is the Kronecker d-symbol and ;51 is the Levi-

Civita permutation symbol.



1.2 Conservation of energy

The principle of conservation of energy can be expressed in the form,

D 1
“ v ) dV =
D1 V(p6+.2pv v)

:/ 'U-T-ndS—l—/ pg-vdV—'Z/ p(ﬂxv)-vdV—/ p(2x(2xr))-vdV—
5(1) V(1) V(1) V(1)

(1.15)
—/q-ndS—l—/HdV,
s v

where ¢ is an internal energy per unit mass, q represents the heat flow and H denotes
the heat sources per unit volume. Note that the first term on the right-hand side of
this energy balance equation is a work produced by surfaces forces per unit time, the
three following terms describe the work produced by the considered body forces (gravity,
Coriolis and centrifugal). However, v is perpendicular to §2 x v and thus the Coriolis
force does not produce any work. Let us denote these terms by

E:/ v-T-ndS—l—/ pg-vdV—/ p(()x(()xr))-vdV—E l,0'0-'0alV.
() v Vi) Dty 2
(1.16)

It holds
/ v-T-ndS:/ [v-(V-T)—I—V'v:T]dV—I—/ [v-7]t-ndS, (1.17)
5() VO\Z() (1)

where : denotes the double scalar product. ? Since p%—g cv = %p

/ v-(V-1)dV =
V(O\Z(3)

1 D
:/ _—p—('v-'v)dV—/ pg-vdV—l—/ p(2 x (2 xr))-vdV. (1.18)
viree 2 D1 V() Vi)

D (v - v), (1.10) yields

Hence, after putting 7, fV(t) 3pv-vdV = — fv(t)\E(t) 3pi(v - v)dV —
- fz(t) [%/’(’U -v)(v — I/)E_ -ndS into (1.16), we get

1
&= / T: V'vdV—l—/ [v-7]t-ndS —/ [=p(v-v)(v—v)]T-ndS. (1.19)
V(O\E() £(1) =) 2
After applying (1.1) to — [; g - mdS and (1.7) to % Ji pedV, we finally get

De

Pp; = —V.-q+1:Vo+ H inside V(1) \ X(1), (1.20)

dv;

?In Cartesian coordinates Vo : 7 = > i S Tij -



[ -n=[v -7t -n—[(pc+ %pv ‘v)(v—v)]T-n on 3(1). (1.21)

In the Earth, a substantial part R of internal heating is caused by a decay of radioactive
isotopes, i.e.

H=R+H, (1.22)
R = pz Zicie_%i ) (1.23)

where Z; is the heat production of 1 kg of pure -th radioactive element per 1 sec, ¢; is
the mass concentration of the sum of “mother” and “daughter” isotopes and A;' is the
rate constant of decay. * However, if we do not consider diffusion of atoms of radioactive
isotopes and the mass changes during decays, the equation of continuity (1.5) as well as
the boundary condition (1.6) hold also for pe;, i.e.

%—f—l—V(Rv) = Z [—pcif—je_%i + 3(5;2) Zie_%i +V. (pciv)Zie_%i} =— 22: pcif—je_%i .

7

(1.24)

We will consider now that the continuum is a classical viscous heat-conducting fluid.

Then it holds,

T=—pl +o(v), %ir%cr('v) =0, (1.25)
where p is the thermodynamic pressure *, and
q=—k-VT, (1.26)

where k is the thermal conductivity tensor and 7' is the absolute temperature. Now we
will employ the Gibbs relation

T— =p=—+pV-uv, (1.27)

where s is the entropy per unit mass (for the details see section 6.2 and, especially, the
relation (6.34) in the lecture notes on continuum mechanics by 7. Martinec). If we employ
the energy balance (1.20), (1.21), we obtain the heat transfer equation expressed by means
of entropy in the form:

pT% =V-(k-VT)+0o:Vvo+ H inside V(1) \ X(1), (1.28)

where o : Vv is the dissipation of heat,

k-VT)" n=—[v-7]"-n+[(pe+ %pv ‘v)(v—v)]T-n on X(1). (1.29)

3We characterize each decay series by means of only one rate constant.
4In general, & is not a deviatoric part of 7, i.e., p # —%Zi Tiie



1.3 Heat equation expressed by means of the state
variables

A state of classical viscous heat-conducting fluid is determined by means of the three
state variables — the absolute temperature 7', the pressure p and the volume V. In what
follows, we will consider a fluid of unit mass, i.e., V = 1/p. These three variables are
not independent because the thermodynamic properties of the medium are given by the
equation of state, which may be formally written as

fp, T,V)=0. (1.30)
Usually, we will consider it in the form
p=pp.T). (1.31)

Therefore, only two variables may be independent.

1.3.1 Heat equation in 7', V variables

If we choose temperature and volume as independent variables, we must express the
dependence of entropy s on T and V. We may derive

Ds (35) DT (35) DV DT pDp DT
T — + pT — =

T = 7 = pe,
T Lo P\av ), o T D T oD Dt

oT
(1.32)

@>T. In what follows, we will try to

where ¢, is the isochoric specific heat and p =T <8V
express p by means of measurable quantities. The second and first thermodynamic laws

are
s s
Tds_T<a—T>VdT—l—T<W>TdV_cUdT—|—,udV, (1.33)
oU oU
Tds = dU + pdV = (6—T>V T + KW)Tﬂ] AV = cydT + pdV.  (1.34)

The second thermodynamic law (1.33) implies
dc, o s 1
_ (2 = (=) =L 1.35
(5v),~ (), = (), =+ 1)
but the first thermodynamic law (1.34) yields
dc, o dp
_(ZE == 1.36
(o), - (57), =~ (&%), 0

500~ 90 4y Vp=2 4V (pw)—pV-v=—pV v
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and thus the combination of (1.35) and (1.36) gives

dp
T 1.
=1 (%) - (137
An isochoric basic equation is
aV aV
v =1—) d dT'=0 1.38
(), o+ (), 139
and thus
0 aV 0 1 [oVvV 0
(9,3 (), L)) @)oo 0o
ar )., aT ) ,\oV ) ¢ V\arT/, v ),
where o = % (%)p = —% (g—;) is the thermal expansion coefficient and K = —V <_€>T =
p <g—i> is the isothermal bulk modulus. Carrying (1.39) into (1.37), we get
T
u="TaKr = pe, Ty, (1.40)

where v = aKr1/pc, is the dimensionless Griineisen parameter. Now, we may put (1.32)
into (1.28) and obtain the final form of the heat equation:

pcvaa—f? =V-(k-VT)=pc,v-VT —pc, TYV-v+0o : Vo+ H inside V(1)\X(¢). (1.41)

Here the 1.h.s. represents local time changes of temperature and the term —pec,v - VT is

the advection of heat.

1.3.2 Heat equation in p, T variables

Consider pressure and temperature to be independent variables. Then

Ds ds\ DT ds\ Dp DT
T2 = T Z T _P 1.42
PPor="* <8T> i (a) Dt pth—I—pf (142)

where ¢, is the isobaric specific heat and £ = T <g—;> . We again need to express ¢ by
T

means of measurable quantities. The same procedure as in the section 1.3.1 gives

0s 0s
TdS_T<3—T> dT—I—T<6p>po—cpdT—|—§dp, (1.43)
ou aV ou aVv
TdS =dU+pdV = (3—T>p+p<3—T>p dT—I_[(ap) —|—p<ap> }dp—cpdT—l-fdp.

(1.44)



Now (1.43) and (1.44) yield

(), -(9,--(),

and P ¢ oV
Cp
— ] - (=) == . 1.46
( P >T (8 >p <6T>p ( )
Hence av T
@
— 7)) = TVa=—— 1.47
¢=—1 (57 ) =-1va=-2] (1.47)
and the final form of the heat equation is
oT dp
P gy :V-(k-VT)—pcpv-VT—I—aT(a—I—v-Vp)—I—cr:V'U—I—H. (1.48)

The equation of continuity (1.5) yields
1Dp . Dp DT

V.opo_1PP_ 2L 1.49
h>Y ‘D T D (1.49)

and thus the heat equation (1.48) becomes the same as (1.41) with
¢, = cp(1 +7vaT). (1.50)

1.3.3 Heat equation in a continuum with dominant hydrostatic
pressure

Suppose that there exists a motionless state (v=0), characterized by a reference temper-

ature Ty and a reference density distribution pg. According to the momentum equation
(1.10) and the rheological relationship (1.25) it holds

Vpo = podo — poﬂ X (Q X ’I°>7 (151)

where g, is the gravity acceleration due to the gravitational potential of the reference
density distribution py and the centrifugal potential. ® Throughout this section we will
assume that even in a moving continuum this hydrostatic pressure is much higher than
the difference p — po and thus we will consider only the hydrostatic pressure dependences.

Assuming the dominance of the hydrostatic pressure we may now put dp/dt+v-Vp =
—v,pg, with v, being the radial component of velocity, and g = |g|, g = go— 2 x (2 x r),
" and obtain thus the usual form of the heat equation

oT
P gy = V-(k-VT)—pc,v- VT — pv,aTg+o :Vv+ H. (1.52)

5In a general case, external sources of the gravity field may be considered by means of a constant part
of the tidal potential.
"Here we simply suppose that the radial unit vector e, = —g/g.
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Interpret now the term —pv,aTg. The second thermodynamic law (1.43) for an adia-
batic process states
aT T
ory _ & _of (1.53)
), PG
according to (1.47). Since

D-GE-E.

we obtain that the adiabatic gradient in the continuum is

(%f) __olg (1.55)

5 Cp

If we add together the radial advection of heat —pc,v,.0T/0r and the term —pv,aTg =

— ,ocp-vrﬁ7 we can easily see that a radial motion can locally heat or cool the continuum
Cp

only in the case when the vertical component of the gradient of temperature is not equal

to the adiabatic gradient. This is the reason why the term pv,.aTg is called the adiabatic
heating.

1.3.4 Summary of fundamental equations

The basic equations in the region V(¢)\ X(t) are:

Equation of continuity

dp
—+ V- =0.
5tV (o)

Equation of continuity of radioactive heat sources

aR ZZ _t
— + V.- (Rv) =— g —e i,
ot * (Fv) : pe /\ie
Momentum equation

v

V-T—I—pg—'Zp.va—p.Qx(.er):pa

+ pv-Vo.

Conservation of moment of momentum

Rheological relationship



Heat equation

aT
pcpa:V-(k-VT)—pcp'v-VT—vaaTg—l—cr:V'v—l—H.

Equation of state
p=rppT).

The basic boundary conditions expressing the laws of conservation (as well as the
thermodynamic requirement on continuity of temperature) on an internal interface ()
are:

Equation of continuity
(v — )]t n=0.

Momentum equation

[pv(v—v)—7]" - n=0.

Energy balance
[k-VT)" -n=[pe(v—-v)t - n+ [%p('v-'v)('v V)|t n—[v-1]"-n.

Continuation of temperature

[T =0.

Moreover, it is necessary to describe a physical nature of the interface ¥. Let us
start with properties in the normal direction to the interface. In the Earth, a typical
interface can be formed by the contact boundary between two different materials with
no flow passing through. In geodynamics, such a boundary is frequently called chemical
to emphasize that the contact is ususally caused by the existence of two regions with
chemically distinct properties. In such a case, the equation of continuity is replaced
simply by
I* Fn=0 (1.56)

[v—v|]T n=v—v] - n=0 = v

as [V]T = 0. The momentum equation thus simplifies to
[r]f-n=0 (1.57)
and the energy conservation law comes into the form
k-VT]T - n=—[(v—(v-n)n)-7]7-n; (1.58)

(here we used both (1.56) and (1.57)). On the other side, if the interface is created by
a phase transition, its kinetics is a complicated matter controlled by the pressure, the
temperature and particle velocities, i.e., v = v(p,T,v) (it is usual to consider simply
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v = 0 in many geodynamical applications). In this case all laws of conservation on the
interface must be taken into account in their original form.

To complete the boundary conditions on (%), it is also necessary to determine its
tangential slip properties. For example, no slip internal boundary is defined by the con-
ditions

[v—(v-n)n]t =0, (1.59)

whereas in the case of the free-slip internal boundary
T-n=((r-n)-n)n (1.60)
must hold on both sides of the interface 3(¢). In the both cases (1.58) simplifies to
k-VT)T-n=0, (1.61)

i.e. in the cases of the no slip or the free slip contact boundary the heat flux passing
through the boundary is continuous.

In the case of the contact interface with no slip, (1.56) and (1.59) can be joined into
the concise form

[v]t =0, (1.62)

which, together with (1.57), represents six independent mechanical conditions. On the
other side, the equation (1.60) represents four independent conditions. The consequence
of (1.60) is that the momentum equation on ¥(¢) can be rewritten as follows,

[p(v-n)(v—v) n]f =[(r-n)-n]’ (1.63)

and

[p(v — (v-n)n)(v—v)-n]t =0. (1.64)

Hence, in the case of the contact interface with free-slip, (1.64) is satisfied implicitly,
(1.63) reduces to
(7 -n)-n]t=0 (1.65)

and the system (1.56), (1.60) and (1.63) again consists of six independent mechanical
conditions.

Finally, we need to add the boundary conditions on the surface of the planet. Neglect-
ing all forces due to, e.g., winds, water etc., we may consider the surface to be the free
boundary, i.e.,

T-n=0 on S(1). (1.66)

Note that we consider here that the surface is moving. In fact, this boundary condition
defines the topography undulations caused by internal dynamical forces throughout the
time evolution. However, it is a complicated problem from the numerical point of view,
if one deals with the studied system of partial differential equations in a domain with a
moving boundary. This is the reason why the boundary condition (1.66) is sometimes

11



replaced by the fized impermeable boundary with the free-slip, i.e., the condition (1.60) is
considered together with the demand

v-n=0 on S(t)=29, (1.67)

where Sy is an a priori chosen fixed surface. One then obtains a force acting just along
the normal direction to the surface, which may be interpreted as the linearization of the
dynamic force, which could modulate the surface in the case of the free boundary. As
to the heat equation, it is well known that the surface temperature is determined by the
balance between the energy falling to the surface from the Sun and the energy radiated
from the Earth’s surface because the internal heat flow, which could break this balance,
may be omitted in these considerations. Therefore,

T(t)=To(t) on S(t) (1.68)

is an independent boundary condition with T5(?) being a function defined on S().

12



Chapter 2

Thermal conduction

In this chapter we will deal with the equation of heat conduction in the form

oT
pcpa =V -(kVT)+ R. (2.1)

In geophysics, this form of the heat equation is applicable to problems associated with
the heat state of a part of a lithospheric plate. If the reference frame is attached to
a lithospheric plate and if we do not take into account such effects like the motion of
underground water, motion of hot magma, deformation of the lithospheric plate etc.,
there is no motion of material relatively to the axes of a reference frame, in which the
heat equation is expressed. Interactions of the lithospheric plate with its exterior may
be included by means of boundary conditions. We will start with the simplest one-
dimensional (1-D) cases that are characterized by only a depth-dependence of a problem.
If the physical properties of continuum are constant, then it is possible to find analytical
solutions as demonstrated in the next section.

2.1 Analytical solutions of 1-D problems

2.1.1 Homogeneous equation for a finite depth interval

Let us start with the problem how to determine the temperature distribution in a layer
of thickness h if the surface temperature T' = T, the bottom temperature 7" = T}, and
the initial temperature distribution in time ¢ = 0 is described by a function ¢(z), where
z is the depth. We will not take into account any internal heating now. Density, specific
heat and thermal conductivity will be constant. This means that (2.1) reduces to

oT T

E = /iw, (22)
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where we introduced the thermal diffusivity &, which is defined by the relation & = k/pc,,
with the initial condition

T(z,0) = () (2.3)

and the boundary conditions
T0,t)="Ty, T(h,t)="T. (2.4)
To satistfy the nonhomogeneous boundary condition, we will write
T(z,t)="To+ h(Th —To) +T'(2,1). (2.5)

T" satisfies (2.2) with homogeneous boundary conditions 7"(0,¢) = T"(h,t) = 0 and the
initial condition

z
T'(:.0) = 9(2) = 6(z) — Ty~ (T~ Ty (2.6)
Let us try to find the solution of the problem by means of the separation of variables,
le.,

T'(z,t) = Z(2)X(1). (2.7)

Equation (2.2) then yields

1 90X 109%°Z

= (2.8)

kX Ol 7 9%
This equation can hold only if both sides are equal to a constant ¢. Then X ~ exp(ckt)
and, therefore, ¢ must be negative to obtain a convergent solution. Hence, Z = a sin \/HZ—I-
b cos \/HZ, where a and b are constants. The homogeneous boundary conditions require

b =0 and sin y/|c|h = 0. This implies that the admissible values of ¢ create the infinite
set

nm\ 2
cn:—<7> n=1,23,... (2.9)

and the solution 7" may be expressed in the form of the series
o 2
T'(z,t) = ;an exp (—/4; <%> t) sin %Z (2.10)

The constants a, can be determined from the initial condition (2.6) as follows

o0

Zan sin %Z = ¢'(2). (2.11)
n=1
The L.h.s. of (2.11) represents the Fourier series with the basis functions sin (T ) Any
coefficient @, may be obtained in a standard way multiplying (2.11) by sm( Z) and

integrating over the depth.

_foﬁr;i <f> ?’;fd)f =2 [ (k—g) #1¢) de (2.12)

h
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Hence,
T'(z,t) = i % /Oh sin <%§> ¢ (&) exp (—/4; <%>2t> sin <%Z> dé¢ . (2.13)

If ¢ is a bounded function, we have for any ¢ > 0
nw

sin (A7) o€y exp (= (2F) ¢ sin (4F2)

if n — co. We can thus change the order of summation and integration and write
L Ny nm nm nm\ 2

’ o . . ’ _

T'(z,1) = /0 {321 7 sin <7§> sin <72> exp (—/4; <7> t) (&) dE =

- / Gz 1) (€) de |

< g, @l (— (F)'r) o
(2.14)

(2.15)

where G/(z,&,t) is the Green function of the homogeneous problem. Since ¢'(£) is given
by (2.6), let us try to express — foh G(z,&1)[To + %(Th —To)] d€. Tt holds

h . /nT h nw 1h h .
/0 Ty sin <7§> d¢ = TOE — cos 75}0 = To—ﬂ_ ((—1) 1y 1) (2.16)
and
h h
& . /nxw T =T nw 1h Ty — 1o nw B
=Ty sin () e = P [eeon e+ [ R eos () e =
Th — To
= h(—1)"*". 2.1
— Ty (247)
Therefore,
bonw h
—/0 sin (75) [To + %(Th - TO)] d€ = —— (To + (~1)"*'T}) (2.18)
and thus the final expression of 1" is
z = 2 nm\ 2 nw
— - _ _ - _1\nt1 _ e : e
T(Z,t)—TO—I—h(Th To) ;nﬂ' (TO—I—( 1) Th>exp< /<;<h> t)sm<h2>—|—
(2.19)

" / Gz, 6,1)6(6) de
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2.1.2 Equation with heat sources for a finite depth interval

Let us extend the equation (2.2) by the heating term, i.e.,

aT 62
o0 =g TRk, Qat)=Ez1)/pe (2.20)

and try to find the solution satisfying the initial and boundary conditions (2.3), (2.4). If
we write T' = Ty 4T, where T} is given by (2.19) and T} represents the influence of internal
heating, T, must satisfy the extended equation (2.20) with homogeneous boundary and
initial conditions Ty(z,0) = T5(0,1) = Tz(h,t) = 0. Expand T3 into the series

an sm< > \ (2.21)

where we choose k,(0) = 0 Vn > 1 to satisfy the initial condition.

Expand analogically heat sources

- iqnu) in(F) s wlo=7 [ () Qends. )

Putting the expansions (2.21) and (2.22) into (2.20) we arrive at the system of decoupled
ordinary differential equations
d k(1) n?r?
7 + &K 2 kn(t) = qu(t) Yn>1. (2.23)
Solution of (2.23), with the initial condition k, = 0, is given by the convolution of a
transfer function wu, with ¢,

kn(t) = /0 un(t — 7)ga(7) dr . (2.24)

Then

wa(0)(1) +/0 W%@dr + K”Zf/o walt = 7)gu(7) d7 = qu(t). (2.25)

Choosing the initial value u,(0) = 1 it is clear that w, must satisfy (2.23) with zero r.h.s.

Hence
2.2

un(t) = exp (-ﬂhj t) . (2.26)

It @ is bounded, we may again rearrange summation and integration and obtain from

(2.21), (2.22), (2.24) and (2.26)

e = [ [ {3 o () (=) ove (s () 0= m) ey o

(2.27)
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Comparing (2.27) with (2.25) we can see that the influence of internal heating is expressed
by means of the same Green function as the influence of the initial condition. The final
solution of the problem described by the equations (2.20), (2.3) and (2.4) thus attains a
relatively simple form

T(zt) = To + %(Th Ty — i nQ—W (T + (=177} exp <_/<; (%)2 t) sin (%zj +

n=1

+/Oh G(z,&,1)6(€) d§+/0t (/Oh G(z,g,t—r)Q(g,r)d5> dr . (2.28)

2.1.3 Half-space problems

In the applications concerning the cooling of shallow subsurface parts of the Earth it is
advantageous to approximate the Earth simply by a half-space, i.e., to consider the depth
z €< 0,00). Such an approximation provides us with the basic physics of the problem if
the influence of the lower boundary condition is negligible. In this section, we will first
find the Green function for the heat conduction in the whole-space (z € (—o0,0)) and
then we will employ it for heat conduction in a half-space.

Choosing ¢'(£) = 6(£ — a) (6 is the Dirac delta-function) in (2.15), we get T7(z,t) =
G/(z,a,t). This is the reason why we may find the Green function for whole-space problems
directly as the solution of the problem

oG 0°G
with the initial condition
G(2,6,0) = 8= — £). (2:30)

We will be employing the Fourier transform

N 1 > .
G\ &) = — G(z, &, t)e™ ™ dz 2.31
et == [ ) (2:31)
where A is the wavenumber. The inverse Fourier transform is given by the formula
1 < :
G(z,6,1) = — G(N &) e dX. 2.32
60 =—= [ donen (2.32)

Application of the Fourier transform to (2.29), (2.30) yields

oG _ —kX2G, G(AE,0) =

—iNE 9
T e ( .33)

1
V27
and the solution of this problem is

. 1 . )
G(AE 1) = Ee—mf“ ") (2.34)
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To obtain G(z,£,t) we must apply the inverse transform (2.32) to (2.34). It holds

Gz 6,1) = o / Nigpww=in gy L[ SRR G gy

o 21 J_ o
ﬁ_l
(¢=2)? v 2 du I =22 [ _2 du 1 (e=2)2
4Kt = —¢ 4Kt e = (& 4Kt 5 (235)

oot §LE22) z) /gt 2m —co Vet 27kt

where we have used the residuum theorem to change the integration path and the formula
[oe) 2
o e du = /7.

A general formulation of the half-space problem is

88_1; = 82 -5 T 0@, 2€<0,00), (2.36)
T(0,t) = To, (2.37)
T(z,0) = To+ ¢(z). (2.38)
Writing the solution in the form T' = Ty 4+ T} we have
% = 82T1 +Q, z€<0,00), (2.39)
T1(0,t) = 0, (2.40)
Ti(z,0) = o(z). (2.41)

Let us formally define ¢(z) = —¢(—z) and Q(z,t) = —Q(—=z,t) for z < 0. Then we may
solve the equation (2.39) with the initial condition (2.41) on the whole space. Because
of the symmetry of the continuation of the initial condition as well as heat sources, it is
clear that the condition (2.40) is satisfied, too. We have thus arrived at the solution of
the system (2.36)—(2.38) as follows

T="1T0+

1 &0 (z—¢)? (z46)2
T 4kt —_ T 4kt d —I—
—— [ ‘ ]qs(f) ¢

13 o] 2 . 2
4 / / [e—ir«f—% _ e—imﬁﬁ—%] Q&) e (2.42)
276 Jo Jo

If (&) = ¢o = const., we may write

1 ©o (z=¢)2 (z4¢)?
T4kt —_ T 4kt d = Tant d =
—— [ ‘ ]45(6) ¢ -

¢0 22% .2 2 /2—\5H .2 ( A )
= Y du = gg—— Ydu = f , 2.43
= J_e u %ﬁ i e u = ¢per N (2.43)

where the function erf(x) is defined by the relation

erf(x == / — du . (2.44)
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If, moreover, distribution of heat sources does not depend on the depth z, ie., Q(z,t) =
(Qo(t), we may write the final formula in the form

T = To+</5oerf< > /Qo )erf (ﬁ) dr . (2.45)

If Ty is not a constant but a function of time, Ty = Ty(1), (2.42) does not satisfy the heat
equation (2.36) since dTy/0t # 0. It is necessary to add the term — fo 9o erf(2 Z(t_ )) dr

7
to the r.h.s. of (2.42). The special case is when we deal with the influence of time-periodic
changes of the boundary condition, i.e., with the system

oT 0*r
W = /iw, 'Z e< 0,00), (246)
T0,8) = To+Toc™, € (—oo0,00). (2.47)

When we try to find the solution in the form T = Ty + Ty(2)e'™?, it is easy to get
T =Ty + T Vol (Wmy/5) (2.48)

Basic properties of a heat wave generated by time—periodic changes of the surface temper-
ature are thus described by means of {/5%: 4 / % js the characteristic depth of penetration
and ,/+-z is the phase shift of the wave.

2.1.4 Cooling of the oceanic lithosphere
Half-space model

The mid-oceanic ridges are the locations where mantle material of temperature 7T}, flows
upward creating thus new oceanic lithosphere. If we suppose that the lithosphere after its
creation moves only horizontally and if we take into account only vertical conduction of
heat (neglecting thus conduction in horizontal direction), the temperature of the cooling
lithosphere is described by the system (2.36)—(2.38), where ¢ is the age of the lithosphere,
Ty is the temperature of the bottom of the ocean and ¢(z) = T,, — To. Heat sources do
not play a substantial role in the oceanic lithosphere and, therefore, will be neglected,
too. According to (2.45), the model is given by the relation

T =Ty + (T, — Tp)ert (2?&) . (2.49)

The averaged oceanic floor is not flat but the depth of the ocean rises with increasing
age. Suppose that, in the first approximation, the lithosphere is in an isostatic equilibrium,
i.e., the excess of mass due to the lower depth of the oceanic floor is compensated by the
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lower density caused by higher temperature of the lithosphere. If p,, is the mass density of
the lithosphere under the temperature T, p,, is density of water and b() is the difference
between the depth of the ocean of the age ¢t and the depth of the mid-ocean ridge, the
equilibrium may be expressed as follows

(P = pu)b = / pna(Ty —T)dz, (2.50)
0
le.,
(T — T &0
b= M/ erfc( - ) dz, (2.51)
Pm — Puw 0 2\/E
where
erfe(z) =1 —erf(a). (2.52)

The integral in (2.51) may be computed per partes

o'e] z z o0 1 o'e] _( =z )2
1 erf dz = f 1 / 2t) dy =
/0 e“(z@) § [Ze“(NE)L el :

- NE/ vy = 20 (2.53)
VT Jo Ve
and, hence,
p = (L = To) 2Vl (2.54)

Pm — Puw ﬁ
In this model, the depth of the ocean is increasing with the square root of the age of the
oceanic floor.

The surface heat flow is
0z |,_ B Vert

The model thus suggests that the heat flow should diverge (¢ ~ 1/v/1) for t — 0. This
functional dependence was confirmed by measurements. On the other side, the heat
flow should disappear for ¢ — oo. However, observations in old oceanic basins give
approximately constant value for ¢+ > 100 My. The reason is that the lithosphere is a

4 =k (2.55)

plate of finite thickness and not an infinite half-space. The influence of the temperature
at the bottom of the lithosphere, which is kept more or less constant by mantle processes,
is thus not negligible and becomes even dominant for very old lithosphere since it generates
constant contribution kT’"h;TO to the total heat flow (& is the thickness of the lithosphere).
Better approximation is, therefore, plate model that will be described below.
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Plate model

As mentioned above, the plate model is characterized by the condition T' = T), at the
depth z = h. According to (2.19) the temperature distribution is

o0

T( ) T —|— Z n27r Ty _|_ )n-l-le) exp (—/4; <%>2 t) sin <%Z> +

n=1

h
—I_/ G(Z,f,t)defz

=T, + %(Tm —1Ty) + i nQ_ﬂ'(Tm —Ty) exp (—/4; <%>2 t) sin <%Z> ) (2.56)

The surface heat flow of the plate model can now be simply expressed as follows

04 kZ _ Ty)exp ( (%)2) . (2.57)

Similarly, the increase of the depth of the sea-floor is

h
b= ——Lm /(Tm—T)dz:
0

pm_pw

_apu(Tn = To)
pm - pw

2.2 Downward heat flow continuation

In this section we will deal with the evaluation of the subsurface temperature and heat
flow from their surface values. In the first approximation, we may neglect changes in time
and consider the temperature field to be steady-state. This means that the fundamental
equation of heat conduction is reduced to

V. (kVT)+ R=0. (2.58)

Throughout the whole section we will assume that the thermal conductivity & depends
only on the depth z. However, we will distinguish two cases: (i) fully one-dimensional
(1-D) problem, where temperature is only a function of depth, too; (ii) three-dimensional
(3-D) problem, where temperature may change also in horizontal directions.
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2.2.1 1-D problem

Since the horizontal component of VT is equal to zero in this approximation, the equation

(2.58) is simple relation
d dT(z)

Denoting the magnitude of the upward heat flow by ¢, we may write

() —ale) = = [ Ry (2.60)

and

T(z) — T(z1) = / ki; dz = q(zl)/: % —/ k(lz) (/ R(¢) dg) d=. (2.61)

Introducing the vector consisting of temperature and heat flow, (2.60) and (2.61) may be
rewritten as follows

(DGR ) () e

This expression relates temperature and heat flow in two arbitrary depths. For example,
let z = zg denote the Farth’s surface. We can thus easily compute temperature and heat
flow in any depth if we know their surface magnitudes. A special case is a layered model
which consists of layers of constant thermal conductivity and heat source. Denoting z;_1

=

and z; the top and the bottom of the ¢-th layer, respectively, we may write the following
matrix scheme

( T )_ — M, (Mo (.. Ma( M, ( g ) — S1) = S2)..) = Sumt) = S

q
1 e
. — - Qki ; .
M; (0 ) S i) R (2.63)

where h; is the thickness of the ¢-th layer, &; is its thermal conductivity and R; represents
the heat source located in the layer.

—

2.2.2 3-D problem

Throughout the whole section, we will suppose that we are dealing with anomalies only,
i.e., the surface temperature, the surface heat flow as well as the subsurface heat sources
are square integrable over the horizontal plane F5. This means that we do not take into
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account a background temperature and heat sources distribution yielding, e.g., constant
heat flow. We consider the equation

a% (k@)%) + k(2) (aa—l - %) T(x.y.2) + Rlz,y.2) =0,  (2.64)

where x and y are horizontal coordinates. Now we will employ the Fourier transform over
x and y

= / / (r,z)exp (—iA-r)dedy , (2.65)
where X is the wavenumber vector and r = («,y), and obtain
0 oT P
5 (k(z)$> — k()T + R(2) = 0. (2.66)

In the case of a layered model, the equation in the i-th layer is

S L 2.
The solution is
T = Acosh Az —zi21) + Bsinh A(z — z;.1) + lf;?
- lr%z qu(Zi—l) aT
A="T(z_{) — B= =k—. 2.
(2i-1) PSYR P 5 (2.68)
This means that
. . . sinh Mo, R
T(zi) = T(zi—1) cosh Ah; + ¢-(zi-1) Sy (cosh Ah; — 1),
. A . . Ri .
G-(z) = T(zi—1)kiAsinh Ah; + §.(z;—1) cosh Ah; — T(smh AR ). (2.69)

Hence, we may again use the matrix scheme (2.63) with

o cosh Ah;  (Ak;)™!sinh Ak, o (k;A?)Ycosh AR; — 1) 1\ 2 '
M; = ( Ak; sinh Ah; cosh Ah; ) > 5= ( A~Lsinh Ah; Ri. (2.70)

Formally, ) )
9= 2=z 9= 2=zg

n

n—1
A=MM, ..My, B==Y MM, y.Mi5; -5, (2.71)
=1
or, inversely,
(1) (L) e
@ ), ., q o
ATV = MM MY, AT'B = ZM ML MLS; (2.72)

=1

23



Regularization of the 3-D downward heat flow continuation

It is clear that A exponentially diverges if A — oo. Therefore, we must choose a regular-
ization which suppresses this amplification. There are two basic ways of doing this: either
to filter data (surface values) in the short-wavelength domain or to confine ourselves to
a certain set of admissible models of subsurface values of heat flow and/or temperature
and to seek the result of the downward continuation only from this set.

We will demonstrate here the second possibility. In order to simplify the problem, let
us fix the surface boundary condition T'= 0. Then

G:(zn) = A22q:(20) + B> (2.73)

and the subsurface heat flow is now only a function of the surface heat flow and heat
sources, i.e. (2.73) is an analogy of (2.60). Let us define a set D of admissible subsurface
heat flows symbolically as

D = {G.(z); ¢:(2n) is “good” from the physical point of view} .

It we now consider only ¢ € D, we may define the cost functional F', which expresses a
compatibility of ¢, with the surface heat flow data go:

F(¢:) = lldo — Az (4 — Ba)llL2 () - (2.74)

where || [|z2(g,) is the norm in the space of quadratically integrable functions over the
plane E, formed by the wavenumber vectors A. The term A} B, does not diverge and
thus it can be added to ¢o without any difficulty. The heat flow ¢o+ A22B then represents
data which should be interpreted by a heat flow in the depth z,. The crucial point is
that A3y <1 and A3} ~ exp(—A(z, — 20)) if A — co. Hence, the definition (2.74) has a
good sense for any D bounded in L%*(E;). The term A3, . represents an operator acting

to ¢.. From this point of view, the operator Ay, is linear, continuous and injective on
L*(E;). Therefore, if D is non-empty, closed, bounded and convex set, then one and only
one minimum of F' on D exists. This is the reason why it is natural to replace direct
downward heat flow continuation by seeking for the minimum of F' on D.

The choice of D must be made with care. For example, the definition
Dy = {Cjz,

ensures the existence of a unique minimum but the minimum need not be stable as ¢, € D,

4:||r2(m) < ¢,¢> 01is a given Constant} (2.75)

need not be small at high wavenumbers. This obstacle can be overcome by constraining
the derivatives. Let us define

Dy = {4.;1|¢:|lwr2(m,) < d,d > 0 is a given constant } | (2.76)

where the norm of a function from Sobolev’s space W'2(E,) is

[PA[ A /E £+ /E Vol dr =
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2dX. (2.77)

:/ G2 dX + |quZ|2d>\:/ (14 \2)4
Es> FEs by

Hence, all §. € Dy are “almost the same” in the domain of high wave number, for they
tend to zero if A — oo, thus yielding the stability of the problem.
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Chapter 3

Thermal convection

In this chapter we will take again into account the heat transfer associated with a motion
of mass. We will first reformulate the fundamental laws of conservation (see the section
1.3.4) into a form applicable to convection in the Earth and introduce dimensionless
quantities. Then we will show the basic characteristics of the Earth’s thermal convection
from the view of the theory of nonlinear dynamical systems.

3.1 Approximations of the fundamental equations

3.1.1 The Boussinesq approximation of the laws of conserva-
tion

The idea of the Boussinesq approximation consists in the linearization of the basic laws of
conservation near a reference hydrostatic state, when v = 0. If the rheological relationship
is in the form

T=—-pl+o(v), limo(v)=0, (3.1)

—0

the pressure py and density po, which characterize (together with temperature Ty) the
reference state, are related by the equation

Vpo = podo — poﬂ X (Q X T‘) . (32)

It we neglect density changes caused by the pressure deviations Il = p — py, we may
linearize the state equation with respect to the temperature deviations T' — Ty and write

p=po(l —a(T —Tp)), (3.3)

where « 1s the thermal expansion coefficient. This approximation means that the influence
of hydrostatic pressure (as well as temperature Tj) on density is hidden into a spatial
dependence of the reference density po.
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The reference density pg is assumed to be a time-independent function. Considering
only the largest term in the equation of continuity, i.e. neglecting thermal expansion, we
arrive at the simplified equation

After putting (3.1)—(3.3) into the momentum equation we get
v
~ VIL+ V-0 = poa(T = To)go + po(g = go) = po | 5 +v- Vv ], (3.5)

where we neglected the quadratic term —poa(T — Ty)(g — g.), the Coriolis force and the
thermal expansion on the right hand side, i.e., the changes of the inertial force due to
thermal expansion. Note that the deviation of the gravity acceleration g — g, is due to
the selfgravitation of the Earth. Usually the magnitude of this term is about one order
lower than that of the buoyancy term —poa(T — Ty)g,, therefore, it does not influence
substantially the basic physics of the thermal convection. This is the reason why we will
omit the selfgravitation term throughout the rest of this chapter. The linearization of the
heat equation consists in replacing p by po, i.e.

orT
pocpa =V.-(k-VT)— poc,v - VT — pov,algo+0o :Vo+ R+ H. (3.6)

The system (3.4)—(3.6) is referred to as the compressible extended Boussinesq approvima-
tion of the basic laws of conservation. If we neglect compressibility, i.e., if we replace (3.4)
by the equation V - v = 0, the obtained system of equations is called (incompressible)
extended Boussinesq approvimation.

The classical Boussinesq approximation represents a further substantial simplification
of the studied system of equations: The reference density pg, the reference gravity accel-
eration g, the thermal expansion coeflicient «, the isobaric specific heat ¢,, the thermal
conductivity k are constant; R as well as H are spatially constant (they may be time-
dependent), and the above mentioned system is applied to the Newtonian fluid

o =n(Vv + (Vo)) (3.7)

with constant dynamic viscosity . Moreover, both dissipation o : Vv and adiabatic
heating —pov,aT'gy are not taken into account. We thus get the system

Vov=0, (3.8)
0

— VI + 7V — pocl T — To)go = po (a—"t’ to- W) : (3.9)
oT Q

— = sV —v-VT 3.10

5 = " v + v (3.10)

where ) = R+ H.
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3.1.2 Boundary conditions

There are several possibilities how to choose the boundary conditions. If the moving
continuum is in contact with a solid body, we must fulfill the condition

v =0 (3.11)

to avoid infinite stresses on such an interface. This kind of condition is applicable for
the convection modelling in the core both on the inner core boundary and on the core-
mantle boundary. As to the thermal convection in the mantle, it may be used for the
asthenosphere-lithosphere boundary in some applications.

If the lithosphere is incorporated into modelling, we naturally get no-stress condition
on the surface:

T n=0. (3.12)

The problem is that in such a case there is a mass flux through the boundary, which means
that the surface is not fixed during time evolution. The problem must then be solved in a
domain with changing boundary. Instead, it is possible to employ the combined boundary
conditions in the form

v-n=0, (3.13)
T n—((r-n) - n)n=0. (3.14)

In this case, the normal component of the surface traction (7 -mn) - n need not be zero.
The usual procedure is to interpret it like a force keeping nonzero dynamic topography
undulations

h=—(r-n) -n/pygs, (3.15)

where the index s denotes the surface value of a corresponding quantity. The same
conditions may be applied to the core-mantle boundary (CMB). However, p, must be
replaced by the density jump between the core and the mantle.

In principal, there are two possibilities how to choose a boundary condition for temper-
ature: either to prescribe directly its magnitude (the Dirichlet condition) or to keep the
value of heat flow passing through the boundary (the Neumann condition). For example,

T =T, at the surface, (3.16)
T=T, at the CMB, (3.17)

or, respectively
EVT -n = g (3.18)

on a part of the boundary.
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3.1.3 Reference temperature

We have not specified the reference temperature distribution 7y yet. In geothermics, it
is usual to adopt a 1-D model of temperature growth in the lithosphere, which may, e.g.,
correspond with a depth-dependence of the half-space or plate model of the cooling of the
lithosphere for a chosen reference age. The extension into the asthenosphere and deeper
parts of the mantle is then carried out by means of the estimations of the magnitude of
the adiabatic gradient, i.e., it is assumed that the mantle is adiabatic from the bottom
of the lithosphere downwards to the top of the D”-layer. In other words, this assumption
means that the only boundary layers, where heat conduction plays an important role,
are the lithosphere and D”-layer. Since the temperature at the CMB may be estimated
from melting experiments with iron, we can also obtain estimations of temperature jump
between the top of D” and the CMB. It is clear that such an approach is rather question-
able, because the assumption of adiabaticity need not be valid in and near the transition
zone. For example, if the interface between the lower and the upper mantle is at least
partly impermeable for mass flow, heat conduction may be the dominant mechanism of
heat transfer through this boundary, which contradicts the assumption of adiabaticity.

However, in numerical modelling of thermal convection it is convenient to identify T
with the solution of the conduction problem

aT,
pocpa—to =V.-(k-VIy)+R+H, (3.19)

with corresponding boundary conditions, say (3.16), (3.17). In most of the applications,
neither heat sources nor boundary conditions for Ty are time-dependent, Ty thus does not
depend on time, and the L.h.s. of (3.19) is zero.

The temperature deviation @ = T — T satisfies

00
pocpa =V (k-VO)—poc,v-VO — pov,aBgo— poc,v - VI — pov,alpgo+o : Vo (3.20)

and zero boundary conditions. This is the reason why the role of the source that can
generate a nonzero solution of (3.20) is played only by the velocity v of continuum. Since
we assume zero 1.h.s. of the boundary conditions for velocity (see (3.11)—(3.14)), the only
source term in the momentum equation (3.5) is the buoyancy term —poa®g,. Owing
to our assumption limy_oo(v) = 0, we may conclude that the studied system yields
the trivial solution v = 0,0 = 0,1 = 0, which will be called the conduction solution
henceforth.

However, the system of equations (3.4), (3.5), (3.20) is nonlinear because of the exis-
tence of the terms pov - Vo, poc,v - VO, pov,a@gy and o : Vv (nonlinear rheology
and/or temperature dependent heat conductivity can represent further nonlinearities).
The terms —poc,v - VI — pov,alpgo in (3.20) can, therefore, be able to keep convection
alive. The conditions, when the conduction solution is not stable and convection appears
after a fluctuation from the conduction solution will be studied studied for a concrete
example in Section 777.
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3.1.4 Decomposition into poloidal and toroidal flow compo-
nents

In this section we will assume that velocity satisfies the equation of continuity in the form
V.-v =0, i.e., velocity is a solenoidal field. Let us try to express it in the form

v=Vx(Vxe®) +VxeV, (3.21)

where e, is the unit vertical vector pointing against the direction of g,. We will suppose
that in the cartesian geometry e, is a constant vector and in the spherical geometry e,
is identical to the unit radial vector. It is clear that the equation of continuity (3.8) is
fulfilled. The two “scalar potentials” ® and ¥ define two components of the solenoidal
field: the poloidal field vp (generated by @) and the toroidal field vy (generated by ).

It holds
vr-e, =0, (3.22)

i.e., the toroidal field is horizontal, and
(Vxwvp)-e =0. (3.23)

Note that a general field can be decomposed into the toroidal field (satisfying the equation
of continuity (3.8) together with the condition (3.22)) and the spheroidal field satisfying
only (3.23).

3.1.5 Dimensionless variables

To simplify slightly the problem, we will now consider that reference density pg, specific
heat ¢,, thermal conductivity k, gravity acceleration g, and heat sources to be constant.
This approximation is suitable for mantle convection modelling as the most changeable
parameters in the mantle are probably viscosity and thermal expansion coefficient.

Let us introduce new dimensionless variables (denoted by the primes) by means of the
relations
d? K

r=dr', ="t v="0, = "C;fn’, T =T, + (T, — T,)T', (3.24)
K

where 7 is the position vector, d is the characteristic dimension of the system—e.g., the

thickness of the mantle in mantle convection problems or the vertical dimension of the
fluid layer in the problems in cartesian geometry—and 7, is a surface value of viscosity.
The system (3.5), (3.6) and (3.8) in dimensionless variables thus reads

Vv =0, (3.25)
(T — T)god® oo’
V4V (nl(v'v’ + (v’v')T)>+O‘ (L — Jgo g(T’—Té)eT - Vﬁ (a_"t’/ Yo v’v’> ,

(3.26)
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where v = n/pg is the kinematic viscosity, and

a1" Qd’
— v/ZT/ Y v/T/
or v T

sgod / TS ) /:| sk 1o 1 [
— T + v, | + Viv' 4+ (Vo Vo' (3.27
¢ [ozs ( T, —1T, pocy(Ty — T)d? 775( ( ) ) ( )

We will be omitting the primes unless misunderstanding may arise.

The system (3.25)—(3.27) can be rewritten by means of the dimensionless numbers as

V-v=0, (3.28)
Ui T 4 [ Ov
—VII4+ V.- [ —=(Vo+ (Vo)) | + Ras;— (T To)e, = Prg E—I—v Vo), (3.29)
775 (&P
oT 5 Rag, T, D,
= V1T —v-VT -D,— (T : .
Fn =V v-V1T+ Ta. o ( + T, > Uy +Ra5 nS(V"v—I—(V'v) ): Vo, (3.30)
the (surface) Prandtl number Pry=1t%
b 4 duced the (surface) Rayleigh number Ra, = as(Tb;iT;)gwg
wherewe mroduee the (surface) Rayleigh number for heat sources  Ragqs = afsoidB
the (surface) dissipation number D, = 294

In applications to mantle convection, the inertial force forming the r.h.s. of (3.29)
is negligible. In other words, we may solve the system (3.28)—(3.30) for infinite Prandtl
number; if we rewrite it for © instead of T', we get

V-v=0, (3.31)
U T a _
—VII+ V- (—(V'v + (Vo) )) + Ra;—0Oe, =0, (3.32)
s O
a—®:V2®—v-VTO—v-V®—
ot
« T Ds n
- DS—S (TO + 0+ T, > r + a. nS(V'v +(Vo)l): Vo, (3.33)

where Ty is the conduction solution of the heat equation. The equations (3.31), (3.32)
represent now an equilibrium system. In other words, time-dependence is not explicit and
this system defines the mappings © — v and O +— II. This means that we may consider
O as the only independent variable of the nonlinear equation

9 _ 20— v(0). VT, - D, " <T0+ L )w(@) —v(0)- VO

8t Qg Tb T
- D200 (0) + ]fas L(V0(0) + (Ve(6))") : Vo(©). (3.34)
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The classical Boussinesq approximation in dimensionless variables takes the form

V.v=0, (3.35)
— VII + V*v + Ra®e, =0, (3.36)
%c;) = V0 —v(0)-VO —v(0)-VT. (3.37)

3.1.6 Fourier modes

In this section we will show how to use the Fourier technique to describe the full behaviour
of the dynamical system (3.35)—(3.37). We will analyse the problem for free-slip imper-
meable boundary conditions (3.13), (3.14) and for the Dirichlet boundary conditions for
temperature; T' = 0 on the top and T' = 1 on the bottom. This means that ® = 0 on
these boundaries of the system. Let us study the two most usual geometries: cartesian
and spherical.

Cartesian geometry

Here we will study a layer of a unit thickness perpendicular to gravity acceleration g.
This means that the plane z = 0 is the bottom and z = 1 is the top of the layer. We
will employ the 2-D Fourier transform over @ and y as in the previous chapter (see eqn.
(7?)). To satisfy the boundary conditions at the top and the bottom of the layer, we will
decompose the unknown quantities as follows,

OA,z;1) = i 10X )e*™ Oy = —6_,, (3.38)
k=—oco

Ux(A, z;t) = i i)A(k()\;t)eikm, X=X, (3.39)
k=—oco

by, z5t) = i V(A1) ™ YV =Y., (3.40)
k=—oco

b zt) = i (A t)er ™ L= =Ty, (3.41)
k=—oco

(A, z;t) = i (s )™ (3.42)
k=—oco

where 7 is the imaginary unit, A is the wavenumber vector corresponding to r = = (z,y)
and @k, Xk, Yk, Zk, Hk are real valued functions.

Eqn. (3.35) now reads )
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where ), = (Xk, f/k) Similarly, eqn. (3.36) yields

A + (A2 4 k2x2)dy, = 0 (3.44)
and ) ) )
kﬂ'Hk + ()\2 + kzﬂ'z)Zk = Ra ®k . (345)
We can express @y, from (3.44) and put it into (3.43). Then we easily obtain the solution
. kA A
N 22 N
Zy = ——————Ra0 3.47
k (A% + k2712)2 5% (3.47)
A kr N

Let us decompose Ty into the series,

o0

To = 6(A\2)8(N,) ((1 2+ Y @TOkek) . Tow=—To_p, (3.49)

k=—cc

where ¢ represents the Dirac é-function and To,k are the real numbers. The decomposition
on the right-hand side has the following physical meaning: (1 — z) is the solution of the
heat conduction equation with zero internal heating and non-zero boundary conditions,
whereas the sum represents the solution of this equation with a homogeneous internal
heating but with zero boundary conditions.

The classical Boussinesq approximation now reads
00, "
Y = —()\2 + n27r2)®n + 7,

+ Z <Xk * )\x(:)n—k + Y/k * )‘y(:)n—k + (n — k)FZk * (:)n—k + (n — k)ﬂ'jjom_kZAk) 5 (350)
k

where the operator * represents the 2-D convolution over the A-domain. If, moreover,
there is no internal heating, we get

00, . L o
= (40, + 2,4 ) <Xk c 00, 4+ Vit A O+ (0 — k)w @n_k)> .
k
(3.51)
In more details,
90 - A2 Ra A
n_ ()2 2.0 .
ot ( ‘|'n77)® +()\2+n27r2)2®+

— kX0, . — kA, Oy . n— kA0, .
Domha | o (AeOunk) + g * (4 Onnk) + % * O | -
- (A2 + k2x?) (A2 + k?n2) (A2 + k2m2)

(3.52)
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Spherical geometry

3.1.7 Omnset of convection

This section deals with the study of situations when the state of the dynamical system
(3.34) corresponding to the transfer of heat by pure conduction becomes unstable and
fluctuations in the system result in convection. Since the purely conductive state is
represented simply by @ = 0, its stability is given by the behaviour of the linear part
of (3.34). We can use the linear part of the classical Boussinesq approximation (3.50)
and add the term —Dy(To + Ts/(Ty — T5))v.(©) from (3.34). For simplicity, in the next
considerations we will assume that both viscosity and thermal expansion coefficient are
constant (that is why we will write Ra and D instead of Ras and Dy, respectively).

Now we can start with rewriting the linear part of (3.34) into the modal form if D # 0.
The Fourier transform of the Lh.s. of (3.34) 90/t = Yo 1(004/0t) exp(ikwz) is the sine
series owing to the symmetry O, = —O_,. This is the reason why we also need to express
the term Tov, by means of the sine series.

It is easy to decompose (1 — z) into the cosine series and to get from (3.49)

o0

) 1 — (=1)F -1, b ; i
Ty = <_ + Z %elkﬂﬁ 6(A2)o(Ay) + Z iTope™™, Tox = —Tox,

2 k25
k=—oc0,k#0

k=—cc

(3.53)
The vertical component of velocity v, is decomposed into the sine series (3.41). The part
of Ty expressing the influence of internal heating is expressed by means of the sine series
and thus we will have to deal with the product of this two sine series as follows,

V% Z iTleikm = Z Z —ZAj*T07k_jeik7TZ = Z Z —ZA]'*TOJC_JQ cos krz. (3.54)
k=—c0 k=—c0 j=—0 k>0 j=—o0
Since
1 1 k 1
/ coskmz sinnwzdz = — [— cos knz cos nﬂ'z]é - — / sin kwz cosnrzdz =
o nw n Jo
-1 k4+n+1 1 k2 1 )
— (=1) + + = coskrnz sinnwzdz,
nw n? Jo
we obtain
L n((=1)*"-1)
/ coskmz sinnwzdz = m(k?—n?) n#k
0 0 n=k
Taking into account the norms fol sinfnrzdz = %, we can finally write
—2cos krz = Z —[(=1)Ftm — 1]4771 sinnrz =
(k2 —n?)r

n=1,n#k
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2n :
— Z[(—l)k+|”| —1] e
n:—;ﬂ;ﬁk (kQ o nQ)ﬂ-
which implies that
00 . ' 00 o o - A A |
~ . tkrz __ . kRl _2n | | .
v,k k:z_:oo 11 pe™™ = n;m ? k>(%;é| |[( 1) 1] (& —n?)r j;oo Zi*Top_; | €™ .

(3.55)

As already written above, the conduction solution is given simply by zero-point in the
space of state vectors O, i.e.

0=0. (3.56)

If a fluctuation © # 0, ||(§|| & 1 appears, the start of its evolution may be approximated
by linearized version of (3.34),

= AN)O(A). (3.57)

It follows from (3.50) and from the fact that the constant part of (Ty + T5/(Ty, — T5)) in

(3.34) is %(Tb +T)/(Ty, — T;) according to (3.53) that the diagonal part of A is
A Ra

(A2 + n2x2)2

Ann()\) — _()\2 +n2772) T (1 . 2Tb‘|’Ts>

ST T (3.58)

Simultaneously, (3.50), (3.53) and (3.55) yield

(—1)”"“ —1 A Ra

Ank(X)=—-D (n — k)2x? (A2 + k272)?

— kA, . —kA,

7 * ()\xTO,n—k) + m *

+WRa<DF:EZ§T =N )

(A2 + k2r2)? * Ton—k

S0 Y e e ()t Ak B3

3>0,5#(n|

The solution of (3.58)—(3.59) is
O(A) = C exp(AA)), (3.60)

where C is the vector of integration constants. If real parts of all eigenvalues of A(X)
are negative for any wavenumber vector A, (3.60) represents the solution of exponen-
tially damped system. From the physical point of view, this means that all fluctuations
disappear after some time and the conductive solution is thus stable. However, if there
exist such A that at least one eigenvalue has positive real part, then fluctuations of the
corresponding wavelength can be amplified.
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To study the problem in more details, let us confine to the classical Boussinesq ap-
proximation (D = 0) with no internal heating (7o, = 0 Vk). In this case the matrix A is
diagonal, its eigenvalues are

A\ Ra
_ 2 2_2
and #y > 3 > f3.... Therefore, in this stability analysis it is sufficient to deal with 3,

only. Tt is clear that 3; < 0 VA & Ra < (A* + 72)%/A? VA. Let us find the minimum of
the function f(A) = (A + 72)?/A% As Of/ON = A7HO6AP (A2 + 72)? — 20(\? + 7%)°), f

attains its minimum in A, = 7/v/2; fAm) = 24—771'4. To conclude: if

27
Ra < Ra, = ZT(A, (3.62)

the transfer of heat due to conduction represents the stable state and no convection
arises. However, if the Rayleigh number is greater than the critical Rayleigh number Ra..,
convection is generated by fluctuations in the system.

3.2 2-D problems

To study the basic physics of various problems, it is often sufficient to use only 2-D
approximations when we suppose that the flow does not depend on one of the dimensions.
This approach saves a lot of computer requirements and enables thus to solve thermal
convection problems even on PCs. Moreover, because of the equation of continuity, the
convection can be fully described by a scalar function in such a case. We will again
concentrate on the two geometries which are usually used in geophysics: cartesian and
spherical.

3.2.1 Cartesian geometry

Let us suppose that velocity does not depend on the y-coordinate and that v, = 0. In this
case, we can obtain the solenoidal field satisfying the equation of continuity (V- v = 0)
by expressing velocity in the form

d d
v = (Vg,0,) = (a—f, —a—i)> , (3.63)

where ¢ = ¢(x, z) is the stream function. As
vV =0, (3.64)

it is clear that the isolines of ¢ are the streamlines of velocity.
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The momentum equation(3.32) can be now rewritten to

ol o9 [.n dv, 0 Ov, v, _

_8x+8x [ZE&%]—I—az[ <8z+8x>] =0 (3.65)
ol 0 n dvu, 0 Jv,  Ov, B o

PR [Qg az] o [n_ (82 ’ a)] = ~Rel 0 (36)

or, in the stream function formulation,

oIl n 0% A
—a—ﬁa—x[%saxaz]*az[ <—az )] 70 (3.67)
oIl 0 [ .y 0% A o
—a‘a[ﬁaxaz] +ax[ (a?‘a?)] = ~Re0, (368)

After applying the operator 9/0z to (3.67), the operator d/dx to (3.68), and subtracting
both equations we obtain the final form of the momentum equation

92 0 O%h 9% ? [np o] . 9fa
(a__a—>[ <67_87>]+48va [gaxaz = Rag &0 (B9

The heat equation (3.33) reads

00 on  OY 0 o 0
S = VIO — Ty + 0) + o (s + 0)
o T, o D, on | [8% 0%\’ %\
+D5_5<T0+®+Tb— )%ﬂ%asi (W_@ TGz ) |- B0

For the classical Boussinesq approximation without internal heating the system (3.69),

(3.70) simplifies to

00
4
Vi = Ra—ax (3.71)
90 QY00 9400 9y
A S TR T T (3.72)

It we consider impermeable, free-slip boundary conditions for z = 0 and z = 1, we obtain
the boundary conditions in the form:

2
;/):%:0 for z=0,1. (3.73)

We can again convert the problem into the spectral domain by applying the Fourier
transform and sine decomposition as follows,

—iA\x
¢(A z,t) \/ﬁ/ (s z,t)e” " da, (3.74)
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(X 2, 1) Z Yo (As1)e™™ i, = =, (3.75)

n=—0oo

Oz, t)= > i0,(\t)c"™, 0,=-0_,. (3.76)

The solution of the biharmonic equation (3.71) in the spectral domain is

- —ARa A

Uy = (OF L ninoy2 (3.77)

In the case of no internal heating Ty = 1 — z, and thus the heat equation (3.72) attains
the form

00, B 5 5y 9\ A A Ra A
ot =—(A ‘|'n77)®n+()\2_|_n2ﬂ.2)2
—k\O . (n— k)A20), .
k

where the operator * means the 1-D convolution over x now.

3.2.2 Spherical geometry

In this section we will deal with the axisymmetric flow
v = (vhvﬁ?vw) = (UT(T,Ig),ng(T,Ig),O) (379)

confined between two spherical surfaces with the radii r; and 5. Here r, ¥ and ¢ are the
spherical coordinates. For simplicity, we will consider only depth-dependence of viscosity
and thermal expansivity, i.e. the momentum equation attains the form

V.o — VIl = —Ra,a (r)Oe, , (3.80)
o =1'(r) (Vv + (Vo)h), (3.81)
where
r (% ;. 77
[0 /— —— 77 = — .
(% 775

Due to the equation of continuity (3.31), V- (Vv)! = 0 and thus
V-o=9V -Vo+Vy (Vo4 (Vo)) = —VxVxv+Vy (Vo+ (Vo)) (3.82)
i.e. the momentum equation (3.80) may be written as

— 'V xVxv+Vy- (Vo+ (Vo)) = VI = —Ra,a'(r)Oe, . (3.83)
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Rotation of a vector field w expressed in the spherical coordinates is

O(ruy) ou,
a0 e Do T’SmﬂT_smﬁaﬂ)'
(3.84)

Y ox oy 1 <a(u@ sind)  duy  Ou, inﬁa(ruw)

rsin v

Therefore, after applying the operator rsin v Vx to (3.83) we get

—rsin ) V[ (r) VXV o] brsind) ¥ x[F/(r)- (o4 (Vo) )] = (0, 0, Rasa (r)sind 00).

(3.85)
Let w be the ¢-th component of vorticity V x v multiplied by rsin ), i.e.,
Vxv=(0,0, —), (3.86)
rsin v
and let D be the Laplacian-like operator
0* g 1 0 0* 1 02 cost 0
D=—+sind— — =4+ == — —. :
or? sin Y r2sind 99 Or? + r2 dv?  r?sind 09 (3:87)
Then
: : n Odw n Ow
—rsind V x [n'(r)V xV xv] = —rsind V x (rzsinﬂa_ﬁ T and O 0] =
d, 0w sind d, n Ow on' dw Iy
= —(n'— — —) ] = Dn'w) — —— — :
(07 0, ar(n 6r>+ r? aﬂ(sinﬂaﬂ)> (07 0. Dly'w) or ar  orr "
(3.88)

Let us introduce again the stream function i so that velocity should satisfy the equation
of continuity:

B B 1 oY 1 oY
v = (vT(rvﬁ) ) 1)19(7“,19) ) 0) - (ma_ﬁ s _mg ) 0) (389)
The relations (3.84), (3.86), (3.87) and (3.89) yield
L dv,. 0% 1 0% cost) Ny
YT smﬁ(a(rvﬁ) Y )= oz T r2902  r2sind 99 DY), (3:90)
We may thus rewrite (3.88) as follows,
. : _ N/ oy’
—rsind V x [n(r)V xV xv] = (0 , 0, D(n'w) + EEDW)) + 5,2 D(¢)> . (3.91)
Since oy
v =(5L,0,0), (3.92)
ar

(Vo + (Vo)'),, =2 + = — (3.93)
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we have

on' dv,  On' 1 0v, N Jvg vg) 7 0) ‘ (3.94)

Vi (Ve + (Vo ) )= (25 or ’ E(r o or

Now we are able to express the second term on the L.h.s. of (3.85) in the following form:
rsind V x [Vi'(r) - (Vo 4 (Vo))
B . 0%v, D*vg Oy’ Iy Ov, Jvg on' 0*v,
= (0’ 0, sind [(67“619 MR i A VI e e m R
2 2
:<0,0,sin19[<(81 cost) Oy 1 0% g 1 10y a¢)>

or r? (siHQﬁa_ﬁ_sinﬁaﬂz) arsmﬁ(r_za_;aT
1, cosd O 1 0% ro 1oy 10% 10y
+ o) ar

T_Q(_siHQﬂa_ﬁ—l_ sin v 8192) simﬂ(r2 or ror: ' rZor
B 9 9 200\ I’ 0% | 200 Oy
= (000 (g4 g 250) S () 255+ 220 S8Y L

Eqns. (3.85), (3.90), (3.91) and (3.95) yield the final momentum equation in the

vorticity-stream function formulation as follows,

, 00 0*n’ 5, L oy a 20y dn
D(n'w) = Rasa smﬂa—ﬁ _26 smﬂa—ﬁ (r smﬁ@ﬂ) E™ (FEE . (3.96)

D) = —w. (3.97)

The system (3.96), (3.97) must be completed by boundary conditions. We will con-
sider here impermeable, free-slip spherical boundaries, i.e. the flow on the boundaries is
characterized by the relations

v, =0, ag,53=0. (3.98)
It follows from (3.89) that the conditions v, = 0 can be easily satisfied by putting
=20 (3.99)

on the boundaries. Analogically, it follows from (3.93) that there is a free-slip on the

boundary if

10v, Ovyg vy B
v T T

Lo (1 ey o (1 ey 1 o
r oY \ r2sind ov Or \ rsind or r2sind or’

which may be written as

le.,

204
D

(v) = ror

If we take into account the relation (3.97), we get the boundary condition for vorticity in

the form
20

(3.100)
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3.3 Nonlinear dynamics

In the previous section the thermal convection in a layer was studied by means of the
decomposition of temperature into the discrete set of the Fourier modes. The discretiza-
tion was the consequence of the finite dimension of the studied geometry in the vertical
direction. However, each mode was a function of the continuously changing wavenum-
ber vector A because the system was not bounded in horizontal directions. To simplify
the problem, we will confine here to the thermal convection in bounded domains in all
directions to deal with purely discrete modes.

For example, if we study the 2-D convection in a cartesian box with the impermeable
and free-slip thermally isolating (07 /0x = 0) sidewalls at @ = 0 and = = d, we can
also decompose the stream function and thermal modes defined respectively in (3.75) and

(3.76) and to get

77[)71 = Z 77Z)mn(t)eim7T§ ) 77Z)mn = _@Z;—m,na 77Z)mn = _ﬂzm,_n, (3102)

m=—00

On= Y (D)™™, 0,y =0_pn, Opn=-0,_,. (3.103)

m=—00

The equations (3.77), (3.78) are then replaced by

” —md® Ra A
mn = mn 104
v 73(m? + n2d?)? (3.104)

and )
d@mn 7'('2 N m2d2 Ra R
dt - _ﬁ(mz T nzdz) ®mn + 7-‘-2(m2 + n2d2)2 mn
d* Ra o

+ 3 g g (=D PO 0) 06 (3103

kl

If we take into account only finite number of modes, we obtain a system, which can
formally be written as

dwi
dt

= Fi(w,Ra), i=1,2,...N, (3.106)

where w; are the coordinates of the phase-space formed by the N selected modes and Ra
represents the controlling parameter of the non-linear dynamical system. If we choose
any point wy € Ky representing a particular state of the studied dynamical system, we
can obtain the evolution path starting from wg by solving the system (3.106) with the
initial condition w = wg. In other words, the solution of (3.106) defines the operator

LBy BEx, ffoft=ftt (3.107)
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Since the system (3.106) is deterministic and enables, in principle, the study of the past by
changing the sign of time, it must hold f~" = (f*)~! and thus f is the identity operator.

Let us deal with the evolution of a volume dV in the phase-space corresponding to the

system (3.105). As (:)k,o =0,

0 o, 72 m?d* Ra
Z 5 ( o ) — Z —ﬁ(mz + n?d?) + (T 2 (3.108)

mn mn

This means that if we take into account a sufficient number of modes (in principle, there
is the infinite number of modes), then dV/dt < 0, i.e., the phase-space volume decreases
during the time evolution. Nonlinear dynamical systems with this property are called
dissipative. This, however, does not mean that the volume dV must contract in all
directions. The modes satisfying the condition

7 m?d* Ra

2 2 12
B )+ ey > (3.109)

correspond to the phase-space directions of dV dilatations during its time evolution along
the evolution path. The consequence of dissipation is that there may be a set of states
(points in the phase-space) which is asymptotically reached for long positive times by all
evolution paths. This property is specified in the next definition.

Definition:
The attracting set A with the fundamental neighbourhood U satisfies the following properties
1. AcC U, U is open.
2. For any open V D A there exists ¢ > 0 such that f/(U) C V.
3. fY{(A)= AVt
The domain of influence of the attracting set A is | J,_o f'(U). If the domain of influence is
the whole phase-space, we call A to be the universal attracting set. !

Let w;(t; wy) is the evolution path satisfying (3.106) with the initial condition w = wy
at t = 0. Employing the Taylor expansion to (3.106), we may write

w;
wi(t; Wo + 6wo) = wilt: wo) + Y ;" (t; wo)dwo; | (3.110)

Let U; and Us be two fundamental neighbourhoods of the attracting set A. Then there exists
s > 0 such that f*(U;) C Us. Therefore, fY(Us) D fi+5(Uy) for any ¢t € Fy. It holds Ut<0ft(U2) D
Uiers ffU2) D Uy, F°(U1) = Useo £1(Ur). By changing Uy with Uy we can analogically prove
Ui<o (U)o Ui<o f1(Uz2), which means that the domain of influence does not depend on the choice of
the fundamental neighbourhood.
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where p
L (1 Wo) = ———(t; o) (3.111)

o awoj

is the propagator matrix of the selected evolution path. The expansion (3.110) can be
thus rewritten into the form

ow(t; wo; d6wo) = I (t;wo) - dwyg . (3.112)

The Lyapunov exponents A; may be then defined by the relation

Ai = lim sup $In |oy(2)|], (3.113)

t—o00

where «;(t) are the characteristic values of the propagator matrix.

The Lyapunov exponents represent the rate of exponential growth or damping of
infinitesimal displacements with time, i.e., the inverse of the highest positive Lyapunov
exponent gives the characteristic time of predictability of a selected evolution path. To
demonstrate such an exponential behaviour, suppose that F; are smooth enough and
expand the nonlinear dynamical system (3.106) into

d F;
—(w; + 6w;) = Fi(w(t)) + 0 Sw; . (3.114)
a 903wy
Eqn. (3.106) then immediately yields
d F;
—571)2' = a 571)]‘ . (3115)
dt 8wj w(t)
If wo is the stationary point, i.e., if w(t) = wq, we can write the solution of (3.115) in
the form
sw = 9Wlgw, | (3.116)
where
OF; 1
Gij(w) = Ju, |, exp(Gt) = ; H(Qt) , (3.117)

and hence the exponential growth or damping is characterized by the real parts of the
eigenvalues of the matrix G. Remember that we already constructed the matrix G for the
stationary point corresponding to purely conducting state in Section 3.1.7.

The alternative definition of the Lyapunov exponents stems from phase-space volu-
metric considerations: The equation

§wo - dwo = € (3.118)

describes an initial ball in the phase-space with the radius e. Putting (3.112) into (3.118)
gives

T (1 wo) 11 (1 wo ) owi (1) 8wi(t) = €, (3.119)
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which is the equation of an ellipsoid. If d7 are the eigenvalues of the symmetric matrix
IT - II", where T denotes the transposition, the lengths of the ellipsoid axes are |d;|.
Therefore, we may define Lyapunov exponents alternatively by the relation

l; = tlir?o sup +In [d;(1)] ] . (3.120)

As one can see from the exponential growth of the solution variations, the Lyapunov
exponents can serve as a tool for quantifying the chaoticity of the studied dynamical
system. Note that for a symmetric propagator matrix both definitions of the Lyapunov
exponents would be identical. However, this is not the case of realistic systems, like those
studied in thermal convection.
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Chapter 4

Mass and momentum equation for
mantle convection

Now we will deal in detail with the mass and momentum equations. We will formulate
them in a variational form and apply this general approach to both Newtonian and power-
law rheologies, which are advocated by rheological experiments with mantle minerals.
The variational approach leads to a minimization of corresponding energy functionals
expressed in terms of velocities. The existence and uniqueness of the solution will be
proved and general gradient optimization techniques prior to discretization will be studied.
We will also outline difficulties with the transformation of the nonlinear problem to a
series of linear problems and mention the interaction between a domain with the linear
creep law and a domain with the nonlinear rheology. There are complications with the
determination of pressure after introducing compressibility; we will try to explain them
by employing the Lagrange multipliers. To avoid powers of the nabla operator, that
appear when the principles are expressed only in terms of velocities, we will formulate
also alternative hybrid variational principles, that will be expressed in terms of velocities
and stresses. Finally, we will show how to apply the spherical harmonic functions to this
problem.

4.1 Variational principles for the Newtonian rheology

In the previous chapters, mantle convection has been studied on the assumption that the
momentum equation expresses a balance between the buoyancy force and the deformation
force; the inertial force has been neglected. In the case of Newtonian incompressible flow,
we have just dealt with the so-called steady-state Stokes problem which can be reformulat-
ed by means of a variational principle (Temam, 1979). Similar problems of elasticity can
also be formulated in variational ways (Necas & Hlavacek, 1981). From the physical point
of view, these variational formulations express fundamental laws of theoretical mechan-
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ics. Consequently, the solutions of the variational principles have to satisfy mathematical
requirements that are weaker than those for the solutions of corresponding differential
equations. The application of modern functional analysis then leads to success in proving
the existence, the uniqueness and the stability of the variational solutions, as well as the
convergence of optimization techniques designed to achieve them. Moreover, variational
formulations naturally serve as the starting points for numerical discretizations of prob-
lems by means of basis functions with both local supports (finite elements) and global
supports (polynomial series). That is why the study of variational principles used for the
momentum equation is of primary importance.

4.1.1 Basic equations

The viscous flow in the mantle is governed by the principles of mass and momentum
conservation, which will be considered in the form,

V.v=0, (4.1)

V-er+f=0, (4.2)

where v is the velocity, 7 is the stress tensor and f is the body force induced by den-
sity heterogeneities. It is necessary to add a constitutive law describing the rheological
behaviour of the mantle material. Here we will consider it in the form

T=—-pl+o(e), (4.3)

where p = —%TT(T) is the pressure, I is the identity tensor, o is the deviatoric part of
the stress tensor and e = %(V’v + (V'v)T) is the strain-rate tensor.

The mantle boundaries are usually considered impermeable, i.e.
v-n=0 (4.4)

at the boundaries with the unit outer normal denoted by n. To complete the boundary
conditions, the free-slip is considered in the tangential direction:

T n—(n-T-nn=>0. (4.5)
Alternatives to the system (4.4), (4.5), common in geophysical problems, are either no-slip
v =0 (4.6)

or stress-free

T n=0 (4.7)

boundary conditions.
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4.1.2 Introductory concepts and motivation

We start with a Newtonian flow which is characterized by the linear dependence of the
deviatoric stress on the velocity: o(é) = 2ne, where the viscosity n, n1 > n > no > 0,
is a 3-D function of spatial variables and 1y < 7y are constants. We use this rheology to
demonstrate basic principles of variational approaches to the problem formulated in the
previous subsection.

Introduce the functional
F(v):/n(é:é)dV—/f-vdV, (4.8)
e e

where (¢ is the domain under study and the symbol “:” denotes again the total scalar
product of tensors, i.e. e : e = ¢;;¢;; in Cartesian coordinates. The physical meaning
of the functional is clear: the first term expresses one half of the dissipative energy and
the second term is the power of the body forces. The variation of F' considered in the
(Gateaux sense,

d
OF (v;dv) = EF(’U + tév)

9
t=0

reads

5F(v;5v):2/n(é:5é)dV—/ fovdv, (4.9)

where §é = L(Vév + (V§v)T). The symmetry of € and the Green theorem yield

§F(v; 6v) = /

oG

2n(n-é-5v)d5—/

G[V-(Zné)]-(SvdV—/Gf-(SvdV, (4.10)

where JG is the boundary of G.

Now we shall deal with the minimization of F' constrained on sets X, given by the
kernels of linear operators £y : v — V- v, L3 :v+— v-n|,,, and L3: v +— |,

Xe=A{v; L1(v) =0 and Li(v) =0} = Ker(L1)N Ker (L), k=1,2,3. (4.11)

To minimize F' on Xj, only v € X}, are taken into account in the definition (4.8) of F'(v),
and the equation

§F(v:6v) =0 Yéve Xy, k=1,2,3, (4.12)

is solved. This constrained minimization can be converted onto an unconstrained mini-
mization by means of the Lagrange multiplier method, which will help us with the inter-
pretation of eqn. (4.12). The method is based on introducing the functional

Fr(v, A, v,p) = F(v) —I-/

)\V-vdV—l-(Szk/
G

z/n-vdS—l—(Sgk/ peovdS,  (4.13)
I

oG

where ¢;; 1s the Kronecker 6-matrix. The equation

OFL(v, A\ v, pu; 60,6, 6v,6p) =0 ¥V (6v,0A, 6v, o) (4.14)
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is then equivalent to (4.12) but the solution represents the saddle-point since Fy, is linear
with respect to the Lagrange multipliers A, v and .

Since

OFL(v, A\, v, pu; 60,6, 6v,6p) = 6 F (v, 5'0)—|—/

An-&vdS—/ V)\-(SvdV—l—/ SNV -vdV+
e e e

5%/ yn-&vdS—l—(Szk/ 51/n-vd5—|—53k/ u-&vdS—l—(Sgk/ op-vdS  (4.15)
oG oG oG oG

it is clear from (4.10)—(4.14) that the case k = 3 corresponds to the system (4.1)—(4.3),
(4.6) with A = —p, p = —7 - n|,,. The kernel of the mapping v +— é consists of rigid
body translations and rotations (Necas & Hlavacek, 1981) and thus the linear mapping
X3 — e(v) is injective, i.e. Ker(e) N X5 = 0. Analogously, if & = 2, eqn. (4.12) is
equivalent to the system (4.1)-(4.5) with v = —7 - n - n but Ker(é) N X, is non-zero (if
(¢ is a spherical shell, Ker (€) consists of functions describing the rigid-body rotation).
Finally, if £ = 1, eqn. (4.12) is equivalent to the system (4.1)—(4.3), (4.7) and Ker(e)NX;
consists of rigid-body translations and rotations for an arbitrary geometry of GG. In all
cases solutions exist only if

/f-(S'UdVZO Voév € Ker(e) . (4.16)
G

Otherwise there is no solution of (4.12).

4.1.3 Functional spaces, existence of the solution and gradient
searching with projection

Start with general optimization considerations as summarized in the next theorem (see

e.g. Necas & Hlavacek, 1981):
Let H be a Hilbert space with a scalar product ( , ) and the norm |ju|| = /(u,u) and let

X be a linear subspace of H. Let ® be a functional differentiable in the Gateaux sense, i.e.
§®(u; Su) = $B(u + tou)|,_, exists Vu € H, and Véu € H. Suppose that the differential is

strongly monotone on H, I.e.,
der >0, 6O (u + Su; du) — §B(u; 6u) > oi||6u||®, Vu € H,Véu € H (4.17)
and Lipschitz continuous on H, i.e.,

dey >0, [6P(u+ du; dw) — 6P (u; dw)| < eo|du||||éw|| Yu € H, Voéu € H,Vow € H .
(4.18)
Then there is a unique u,, € X that minimizes ® on X, i.e. ®(u) > P(uy) YVu € X, u # uy,.
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Introduce V®(u) € H by the relation,
§®(u;du) = (VO(u),éu) Véue H (4.19)
and the projection operator u € H — P(u) € X as usual,
(u— P(u),w— P(u)) =0 Ywe X . (4.20)

The following fundamental theorem (Necas & Hlavacek, 1981) shows that the minimum of
functionals with the strongly monotone and Lipschitz continuous variation can be found
by means of the gradient searching with projection:

Let the variation §® be strongly monotone and Lipschitz continuous and let ©® € X be
arbitrary. Then the limit of the iterations

utt = P(u' — 4V O(u')) v € (0,2¢/c3) (4.21)

exists and is equal to u,, that minimizes ® on X.

Now go back to the functional F' defined by (4.8). To be able to deal with the
mathematical properties of the minimization of F', we have to define the functional space
of velocities to satisfy an existence of integrals in the definition of F. Let L*(G) be the
space of square integrable functions on G and W'?(() the Sobolev space defined by

Wh(G) = {v; v; € L*(G), S—Z € L*(G) Vi,j} (4.22)
with the scalar product
(v1,vy) = /le cvodV + /GVvl : Vo, dV (4.23)
and let the velocities be confined to this space. Then
OF (v + dv;0w) — 6 F(v;dw) = 2/G775é(v) :de(w)dV (4.24)

and the Lipschitz continuity is clear. According to the so-called Korn’s inequality (Necas
& Hlavéacek, 1981) there exists ¢ > 0 such that

OF (v + dv;6v) — 6 F(v;6v) = 2/ née(v): de(v)dV >
G

2no/ Se(v) : 66(v)dV > c||6v|3n. Vv € WH(G) & Ker (&) | (4.25)
G

where & denotes the linear subtraction of spaces. The solution of (4.12) is therefore
unique if X = X3. In the two other cases, X = X; and X = X3, the solutions exist and
are unique except for the kernels of the operators X — € if and only if (4.16) is satisfied.
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Remark:

The question arises how to obtain the pressure and the surface traction if we employ
the gradient method with projection to minimize F. According to (4.14) the Lagrange
multipliers are determined by the linear problem

OF (v, A\, v, s 6v) =0 Vv, (4.26)

where the multipliers are considered in corresponding L?-spaces and where the left-hand
side denotes the partial variation of F7, with respect to v. The linear problem (4.26) is,
however, singular as the equation is identically fulfilled for év € Xj. Let ¢p € W2, Since
for ¢ € WH3(G)

/Vc,o-zde:/ c,ozb-ndS—/ch-zﬁdV (4.27)
G oG G
and for p € W*((G)

/G(ngo)-¢dV:/aGgo-(¢><n)dS—|—/go-(V><¢)dV, (4.28)

G

where x denotes the vector product, it is possible to prove that the orthogonal comple-
ments of X with respect to Ly-norms in the cases £ = 1 and k& = 2 are

X ={w; w=Vo; 6 € W**(G); Vo xn|y =0}, Xg ={w; w=Ve¢; ¢ WG}

(4.29)
(Neittaanmaki & Kitzek, 1984; Kitzek & Neittaanmaki, 1985). The singularity of (4.26)
mentioned above can be removed by confining év to the spaces X because they are
linearly independent on Xj.

4.1.4 Application of Uzawa’s algorithm

An alternative approach to the constrained minimization described above is the direct
search for the saddle-point defined by (4.14). Let the partial gradient with respect to the
multipliers V5, F1.(v) be defined as usual:

§Fp(0:6X, 61, 618) = (V (awu FL(v), (6X, 61, 6p1)) V(8 v, 6p1) | (4.30)

where the right-hand side of (4.30) means the scalar product in the corresponding Ls-
spaces of the multipliers. Since the dependence of F1 on the multipliers is linear, the
partial variation with respect to the multipliers depends only on the velocity. Knowing
some approximation (A, v, ) of the multipliers, we obtain the corresponding v,, from
the equation

OFL(Vn, Ay Uiy 1,5 00) = 0 YU, (4.31)

which is equivalent to minimizing Fr(v, A,, vy, ft,,) with respect to v. Now making short
steps
(Angts Vagts Bgy) = (Ao Vs ) + 0V 0 FL(0n) (4.32)

with «, > 0 being small enough, we arrive at the iteration procedure which is a special
application of the so-called Uzawa algorithm (Necas & Hlavacek, 1981).
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4.1.5 Ritz-Galerkin approximation of the projection operator

In this paragraph we will first remember how to construct finite-dimensional subspaces
H, C H and X,, C X to achieve the convergence of the “discrete solutions” minimizing ¢
on X, to the solution of the original problem. Secondly, we will deal with the construction
of the projection operator in “discrete problems” to be able to employ the projection
method.

Let H, C H be finite-dimensional subspaces, H, — H in the following sense: For any
u € H there exist u,, € H, such that u,, — u. Suppose that X, are subspaces in H, and
that:
(i) for any u € X there exist u,, € X, such that u,, — u,
(i) if w, € X,, and w,, — w then w € X (— denotes the weak convergence).
Suppose that ¢ satisfies (4.17), (4.18). Denote by v, € X, solutions of the problem
minyex, ®(v) = ®(v,). Then v, — v, where v,, solves the problem min,cx ®(v) = ®(v,,)

(Netas & Hlavagek, 1981).

Let {v;}"_, is the set of basis functions of H,. Using Einstein’s summation rule we
can write

d 0P
baj(V®(aithi), ;) = (VO(awhi), b)) = —®(aihs + toaey)| = 2—|  ba
dt o O i
(4.33)
This means that
(VO(ai), ) = oo (1.34)
RS _aaj i ‘
which yields the components of V&:
1 0P
(VO)m(ithi) = (A7 Jmj 5—|  » Amj = (Vm, %)) - (4.35)
aa? ot

Let the subspace X, be generated by means of the linear constraints
BZ']‘Oé]‘ =0 , = 1,2,...,l<n . (436)

Employing the definition (4.20), it is easy to show that the projection matrix is then given
by

P=E-A"'B"BA'B)"'B, (4.37)
where E is the identity matrix. The relations (4.35-4.37) show that the gradient and the

projection do not depend only on the choice of the basis {¢;}7_; but they depend also on
the choice of the scalar product.

51



4.2 Variational principles for the power-law rheology

4.2.1 Basic functionals and their peoperties

The real rheology of the Earth is probably governed by a nonlinear power-law under a
wide range of temperatures and pressures. The aim of this study is to show that the
application of realistic rheologies does not complicate the variational formulations by
themselves but that it may lead to some mathematical problems while seeking solutions.
To overcome these problems, the power-law rheological relationship should be slightly
modified as demonstrated below: we can use, e.g., a composite power-law and Newtonian
rheology or the Carreau rheology.

The power-law rheology can be characterized by the following relationship,
e=Alo:0)" V%, n>0, (4.38)

where A will be considered as a function of spatial variables with its values limited by
two constants 0 < Ag < Ay, 1.e., A1 > A > Ag > 0, and n is a material parameter. The
Newtonian flow is characterized by n = 1. Denote é, = (& : €)%, o, = (o : a)'/%. As
é; = Ao’ the inverse relation to (4.38) is

o=A""(e: &)= ng (4.39)

Eq. (4.39) will be employed now to construct the analogy to the functional in (4.8).
Since the first integral in (4.8) expresses the half of the rate of the dissipative energy with
its volumetric density o : e, we will deal with the generalization of (4.8) in the form:

n (é:e)nt/m
F(v) = dVv — codV . 4.4
o= [ = [ ey (4.40)

Then the analogy of (4.9) is

§F(v; 6v) = /

A e e av — [ fsudy ()
el €

and the analogy of (4.10) is

§F(v; 6v) = /

ATV (e &)/ (e bv) dS — / [V (A7Y (e - e)=/2e)] . so dV
oG

G

—/f-&v dv . (4.42)
G

To ensure an existence of integrals in /' defined by (4.40), introduce the space

81;2»
’ al']‘

M(G) = {v; v; € L}(G) € Lnni(G)} (4.43)
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with the norm

o]y = (/Gv-vdv>% + (/G(é : é)<”+1>/2”>"nT : (4.44)

By Kondrashov embedding theorem (Ciarlet, 1978), M () is equal to the Sobolev space
Wl’(”+1)/”(G) for n > %

It is easy to show that 6 F is not strongly monotone on M((G) if n # 1. In general,

OF (v + dv;év) — 6F (v 6v) =

/A—l/n((é_|_5é) L (e466))I/ (e g ge) (5é)dv—/A—l/n(é:é)<1—n>/2n(é:5e)dv.

G
(4.45)
We now examine now the properties of the mapping év — 6F(0, év):
Let ¢ be a positive constant. Then

§F (e6v;edv) — 61(0; cbv) = / ATV (ebe : ebe) 12 gy < D AT ]| (T

G
(4.46)
Let ¢ > 0 be an arbitrary constant and v # 0 fixed. If 0 < n < 1 there exists € small
enough such that

6(1+n)/nA(;1/nH5’UHE\Z-I—H)/TL < 062"5’0"]2\4 = CHG(S'UH?W . (447)

On the other hand, if n > 1 then there exists e large enough such that (4.47) again
holds. In the both cases we have thus found the situation when the strong monotonicity
is broken.

To study the problem of strong monotonicity more deeply, let us deal with

d
§*F(v;év,6w) = —8F (v + téw; 6v)
dt o
We have

1l—n .

52F(v;5v,5v):/ - (é:e) 17326 . gé)(e : 6é)dV+
G nA"

/ ATV &)=/ (§é &) dV . (4.48)
G
According to the Schwarz inequality

(é:0¢e)(e:de) < (e:e)(be:de). (4.49)

Since 1= > —1 for n > 0, §*F(v;6v,6v) > 0 if é(v) # 0 almost everywhere, as follows
from (4.48) and (4.49). Therefore 6 F'(v;év) is not strongly monotone only if there is a
subdomain of ¢, where the strain is zero.
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Nevertheless, the problem of uniqueness of the solution can be solved by means of the
convex analysis:

Let £ € (0,1), n > 0 and et +* ¢® be two strains. Then
[(é(l) + t(é@) _ é(l))) . (é(l) + t(é(z) _ é(1)))](n+1)

60 ]I 16— )y (@) _ gy (I (4.50)

This inequality satisfies the mapping e — F' to be strongly convex for any n > 0 and,
therefore, the mapping v — F' is also strongly convex except for Ker(€). Since it is

/2n

also continuous on M if f; € L*((), there is one and only one v, that minimizes F' on
M except for Ker (é) (Fu¢ik and Kufner, 1980). However, the gradient searching of the
solution may fail.

4.2.2 Effective viscosity and transformation of the non-linear
problem into a sequence of linear problems

Let us go back to eqn. (4.39). Introducing the so-called effective viscosity

1 .

n(v) = §A_1/”(e ce)(-mizn (4.51)
we can interpret the basic rheological relationship as that of a Newtonian fluid with
velocity-dependent viscosity. Having the ¢-th approximation v, of the problem, it is
natural to seek v,4; as the solution of the problem for the linear rheology

o =2n(v,)é, (4.52)

which is the basic idea of the method of secant modules. The convergence of the method
in its abstract version can be proved for functionals with strongly monotone variation
defined on a Hilbert space (Necas & Hlavacek, 1981). Our functional is not strongly
monotone if there is a subdomain of G with zero strain and, moreover, the space M ()
is not a Hilbert space. In general, we are thus not able to prove the convergence of the
method for the problems with the power-law rheology. This, of course, does not mean
that the method cannot converge at alll The method was used with a great success in
mantle dynamics problems. We should,however, be aware of the fact that the application
of the method is not universal. To avoid problems with possible zero deformations, i.e.,
with zero (0 < n < 1) or infinite (n > 1) effective viscosity, it is possible, e.g., to consider
a composite non-Newtonian and Newtonian rheology: (van den Berg et al., 1993): if
0 < n < 1 it 1s sufficient to assume that the deviatoric stress consists of the two terms,
Newtonian and non-Newtonian; if, on the other hand, n > 1, it is sufficient to split the
strain tensor into analogous terms. The other possibility is to use the Carreau rheology
which is a generalization of the power-law stress-strain relationship. In such a case the
effective viscosity is

1
n(v) = §A_l/”(’y +e: é)(l_”)/2” , (4.53)

where v > vy > 0 is a function of spatial coordinates — usually considered as a constant.
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4.2.3 Interaction between subdomains with different rheology

Up to now we have implicitly assumed that the power n in the basic rheological relation-
ship (4.38) is the same throughout the whole domain (. However, this is not necessary
as clear from the variational formulation (4.40). Hence, n may be a function of spatial
variables, which corresponds, e.g., to whole mantle problems as the rheology of the up-
per mantle is probably non-linear but the lower mantle may be Newtonian. This is the
special situation because the style of convection in the Newtonian subdomain is a linear
function of the inner forces and the conditions on the boundary of the subdomain. After
constructing this function, it is possible to confine the problem only to the non-linear part
as will be demonstrated below.

Let G = G1 UGy U {0Gh N 0GL}, Gh, G be adjacent, and let n = 1 in Gy. We may

write

1(e:é€
F(v):Fl(v)—l-Fz(fv)E/ —@dv—/ fovdv+
G12 A G1
n (é:e)nt/m
dv — vd 4.54
[ A= [ v (151

where v € M(G) N X;. To be able to split the problem into the minimization of F; and
F5 it is necessary to split also the space M(G):

M(G) = {v; vlg, = v, € WH(G)), vlg, = v, € M(Gy), vy = vy on §G4 N 5G2} )

(4.55)
The minimization of F'(v) is then equivalent to the searching a saddle point of
Fvson) = Blo) + P~ [ (o= vs)ds. (4.56)
AGE1NAG,

where v; € W'(G) N Xy, vy € M(Gy) N Xg. Taking into account the expressions
for performing the variation (4.41) and (4.42), we can see that the multiplier g can be
interpreted as the boundary force acting between the subdomains Gy and (/5. Since the
rheology in (G is linear, it is possible to construct the linear affine mappings v — v and
v — p defined on 0G1 N 0G5, where p is the force acting again on 9G1 N dG, and both
mappings are the results of the linear problem on (; with the boundary condition v; = v
on 0G1 N JG,. After constructing these mappings, the rest of the problem is given by the
seeking the critical point of the functional

Fy1(ve,v) = Fy(vy) — / nv)- (v—uv,)ds, (4.57)

AGE1NAG,
where vy € M(Gy) N X.

4.2.4 Materials compressed by a hydrostatic pressure

In geophysical applications, the body force f may be usually split into two parts
F=f+Ffi, [Hil<Ifol, (4.58)
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where f, generates the hydrostatic pressure py, i.e.,
—Vpo+ fo=0. (4.59)

Assume that the mass density distribution in the region under study can be described by
a function py when only force f, acts in the system. Neglecting other influences on the
changes of density, we may rewrite eqns. (4.1)—(4.3) into the system

V- (pow) =0, (4.60)
Veri+f,=0, (4.61)
= —plta(e), é— %(w + (Vo) — %(v o)) . (4.62)

where p; = p— po. Comparing the system (4.60)—(4.62) with (4.1)—(4.3), one can see that
the only substantial change consists in replacing the solenoidal field (4.1) by the velocity
field (4.60). The substitutions f — f,, 7 — 71 and p — p; are, from the mathematical
point of view, only formal. In the definition (4.11) of the spaces X} the change of the
operator £ is thus necessary. Its new expression is as follows; L1 : v +— V- (pov), where
po 18 considered to be a known function p,ar > po > pmin > 0. Consequently, the meaning
of the Lagrange multiplier A is different and (4.13) must be replaced by

FL(v,)\,y,u):F(v)—l—/)\V-(pov)dV—l—(Sgk/ z/n-vdS—l—(Sgk/ p-vdS, (4.63)
G 2

G oG

After performing 6 Fp,, similarly as in (4.15), it is clear that
Vpr+poVA=0 inG, (4.64)
P14+ por =0 on JdG . (4.65)
The applying of the operator V- to (4.64) yields
Vp1 = =V - (poV) . (4.66)

The equation (4.66) with the boundary condition (4.65) can serve for computing the
pressure after the Lagrange multiplier A was obtained.

4.3 Hybrid variational principles

Up to now, the only variable that has been used to construct the energy functional F' has
been the velocity. The solution v,, minimizes the energy functional on the chosen set Xj.
This enables us to use a variety of optimization techniques to find the solution — in the
previous section we demonstrated the possibility of employing the gradient searching with
projection. There is, however, a very important problem that arises when F' is evaluated
numerically: in the case of the power-law rheology, the non-linear term in (4.40) contains
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the power of the differential operator v +— e and its numerical realization for a real n may
be complicated. To avoid this problem, we will present here a hybrid principle, where the
pressure and the deviatoric stress are additional independent variables. The dissipative
energy can then be expressed by means of the deviatoric stress only, and thus e disappears
from the non-linear term.

The functional we will deal with is

A
H(cr,v,p):/ (o-:o-)(”+1)/2dV—/é:(—pI—I—a)dV—I—/f-vdV—l—
an+1 G G

5%/ n(v-n) - (—pl +o0) ndS+ 53k/ v-(—pl+o) ndS, (4.67)
Cle: Cle:

where index k distinguishes boundary conditions as in the previous sections. From the
mathematical point of view, it is important that there are no derivatives of the deviatoric
stress or of the pressure. On the other hand, the derivatives of the velocity must have a
“good meaning” if they are integrated — if n = 1, it is sufficient if p € L*(G), D;; € L*(G)
and v; € WH2(G).

The variation of H reads

OH(o,v,p;00,0v,6p) = / Ao : 0')(”_1)/2(0' 200)dV —
G

/é:(—5pI—|—50')dV—/5é:(—pI—|—0')dV—|—/f-5vdV—|-
G G G

5%/ n(év-n)- (—pl+0o) -ndS+ 5%/ n(v-n)-(—épl + o) -ndS+
Cle: Cle:

53k/ bv-(—pl +o) -ndS+ 53k/ v-(—o6pl +é0)-ndS . (4.68)
oG oG
The Green theorem yields

—/5é:(—pI—|—0')dV:—/ 5v-(—pI—|—0')-ndS—|—/5v-(—Vp—|—V-0')dV, (4.69)
G oG G

where we have used the symmetry of 6o. After putting (4.69) into (4.68) one can see that
the equation 6 H = 0 corresponds to the basic set of equations (4.1)—(4.7): the variation of
H with respect to the pressure gives the condition of incompressibility, the variation with
respect to the deviatoric stress gives the power-law rheology relationship, the variation
with respect to the velocity gives the momentum equation and the variations of boundary
integrals imply that the boundary conditions are satisfied.

In the case of compressed flow the expression of H is

A
H(cr,v,)\):/ (0':0')(”+1)/2dV—/(V(pov):)\I—I—é:cr)dV—I—/f-’vdV—l-
agn+l G G

5%/ n(v-n)- (poAl + o) -ndS+ 53k/ v-(poAl + o) -ndS, (4.70)
Cle: Cle:

and the pressure can again be computed from (4.65), (4.66) a posteriori.
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