and spheroidal. The toroidal free oscillations are characterized by the radial
component of the displacement vector and the volume dilatation being zero.
Consequently, these oscillations are not concommitent with changes of density,
nor with perturbations of the gravitational potential. The toroidal equations of
motion consist of a system of two ordinary differential equations of the 1st
order. Whereas the energy of the toroidal oscillation is restricted to the solid
elastic regions of the Earth model, spheroidal oscillations may ‘‘propagate” even
through a liquid. These oscillations are characterized by a zero radial com-
ponent of the rotation of the displacement vector, but the other quantities are,
in general, non-zero. The spheroidal equations of motion consist of a system of
six ordinary lIst-order differential equations. Radial oscillations (n = 0) are a
special case of spheroidal oscillations.

In defining the initial values of numerical integration of the equations of
motion and in the matrix solution of free escillations, the eigenfunctions for the
homogeneous model have to be known. We have proved that, for this particular
model, the eigenfunctions of the oscillations can be expressed by a combination
of spherical Bessel functions. In defining the initial values of numerical integra-
tion of systems of equations of motion in the neighbourhood of the model’s
centre, we used a different method, i.e. the expansion of the eigenfunctions into
a power series in r in the neighbourhood of the origin.

Another important problem is determining the roots of the secular function.
For the SNREI Earth model, we have derived a relation for computing an
improved value of the eigenfrequency, using the variation method with a boun-
dary term, with the aid of the tested frequency and the eigenfunctions computed
for this tested frequency. The first three sections of Chapter 8 describe the
method of solving the system of ordinary differential equations numerically for
the free oscillations of the SNREI Earth model. This then involves the descrip-
tion of program functions, inclusive of instructions for using them, as written for
the purpose of solving the problems on hand numerically. In Section 4 of
Chapter 8, we present some of the eigenperiods of model 1066A and compare
them with observed eigenperiods.

SUPPLEMENT A. TENSOR ANALYSIS
A.l. Introduction

To facilitate the understanding of the principal part of this study, we shall

briefly deal with tensor analysis in this supplement. Tensor analysis is a natural
expansion of vector analysis. As in the case of vectors, we shall formulate the
tensor calculus for an arbitrary coordinate system. We shall introduce tensor
with the aid of invariant properties of coordinate transformation. Since physical
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laws are invariant with respect to a particular coordinate system, the introduc-
tion of tensors via their invariant properties will provide a natural and powerful
tool for formulating physical laws. There exist a large number of books and
monographs of various sophistication on the subject. We recommend [65, 82,
89, 104, 125]). An account particularly suitable to continuum physics can be
found in [56—59].

A.2. Curvilinear coordinates

Assume the position of an arbitrary point P in three-dimensional space to be
determined by its Cartesian coordinates y', %, y°.
Consider the transformation of these coordinates,

(A.1) X =x0L ), k=123,

under the assumption that functions x* are defined and continuously differenti-
able at least up to the first order in a particular region of point P(y', y?, *). Also
assume that the Jacobian of the transformation,

o dy'/ox' oy'/ox? oy'/ox
(A2) szeta——|= Oyox' Oyoxt Oy ox’

oy’fox' 9y fox 0y’jox?

differs from zero in the region being considered. From the implicit function
theorem it follows that transformation (A.1) has a uniquely inverse transforma-
tion

(A'3) yk = yk(xla x2’ x3)a k = 1’ 23 3.

Under these assumptions the coordinates x* are uniquely assigned to coordina-
tes y* and vice versa. Coordinates x* determine the position of point P in space
uniquely and, therefore, they are referred to as the curvilinear coordinates of the
point (Fig. Al).

Fig. Al. Curvilinear coordinates.
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A set of points in E; one of whose curvilinear coordinates is constant, is called
a coordinate surface. Three different coordinate surfaces may pass through each
point in E;. The line of intersection of two mutually corresponding coordinate
surfaces is called the coordinate line, i.e. a set of points in E; whose two
curvilinear coordinates are constant. Once again, three different coordinate lines
may pass through each point in E;.

In Cartesian coordinates, the position vector p of point P is given by the
relation

(A4) C p=M,

where . are unit basis vectors in Cartesian coordinates. In Eq. (A.4) and
throughout the text as a whole we shall use Einstein’s summation rule, i.e. we
sum from one to three over all repeated indices which occur in diagonal position.
No summation is carried out over the underscore indices.

We shall introduce the base vectors g,(x!, x%, x*) as follows:

op oy
A5 n=P_%,
(A.5) gi( o ok
If we multiply (A.5) by 0x*/0y”, we obtain
ox*
A6 i=%g.
(A.6) o G

Equation (A.5) implies that the vectors g, are tangential to coordinate lines x*
like the vectors J,, which are located on the Cartesian axes il
The infinitesimal vector at point P can be expressed as

op

A7 dp=—dx* = g dx*.
(A7) P " k
The square of the distance between two infinitesimally distant points is
(A.8) ds’ =dp.dp = g, (0 dx*dx’,
where g,,(x) is the covariant metric tensor defined by the relation

oy" 0y"
A9 X)=g. g=—=—39,,,
(A.9) gkl()“ G- 6 3t o

where 8, is Kronecker’s delta symbol, equal to unity if the indices are the same
and to zero if the indices are different. If the metric tensor is known, the length
of the vector and the angle between two vectors can be determined. Note that
in general curvilinear coordinates g, # 0 for k s /. Therefore, vector g, need not
be orthogonal to vector g,. We shall refer to the coordinates as orthogonal if
8u =0 everywhere when k # /. Nor is g, necessarily equal to unity and,
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therefore, vectors g, are not necessarily unit vectors. Equation (A.9) further
implies that the covariant metric tensor is symmetric, g, = gx-
The reciprocal base vectors g*(x) is determined by a system of nine equations

(A.10) g.9=38,
where & is Kronecker’s delta symbol. The solution to system (A.10) reads
(A.11) g =g,
where
alg. cofactor
(A.12) g == Bu, g = det(gu).

From Eqs (A.9), (A.10) and (A.11) it is easy to derive the formulas
(A.13) g=9.9,.8i=69=6"gu=9"

Tensor g is called the contravariant metric tensor. One can see that it is
symmetric, g = g*. Tensor g} is a mixed metric tensor with the components
gt = 8, where 8} is Kronecker’s delta symbol.

A.3. Tensors

Definition 1: We shall say that tensor A is defined in three-dimensional space
if 37 *¢ numbers A¥* are assigned to every coordinate system, so that the
coordinate transformation x* = x*(x', x?, x*) transforms these numbers accor-
ding to the relations

(A.14) AT () = Gl ARy (),

where

ety OXT Ox dxM Oxk
(A.15) Gt = ST
ax ke gyt Ot

We shall say that tensor A is p-times contravariant and g-times covariant. The
total number of indices p + q is the rank (degree) of the tensor, and the numbers
A4+, are referred to as the coordinates of the tensor.

Example 1 (scalar) : If we assign the same number 4 to every coordinate system,
the number determines a zero-order tensor (p = ¢ = 0), which is called a scalar,

(A.16) A (xX)=Ax).
Example 2 (vector): In changing the coordinates, the contravariant (p = 1,
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g = 0), or covariant (p =0, ¢ = 1) coordinates of a vector are transformed
according to the formulas

(A.17) A¥(x) = A*(x) 0x* jOx*,
or
(A.18) A (X) = A (x)0x*/0x*
respectively.
An example of a contravariant vector is the differential vector dx*,
(A.19) dxt = (0x* /ox*) dx*,

which agrees with (A.17) with 4* = dx*.
Similarly, the partial derivatives of a scalar is a covariant vector,

(A.20) dD/Ox* = (d/dx*) dx*/ox*,

which agrees with (A.18) with 4, = 0@/dx*.

Example 3 (2nd-order tensor): In changing the coordinates, the contravariant
(P =2, q=0),covariant (p = 0, ¢ = 2) and mixed (p = 1, ¢ = 1) coordinates of
a 2nd-order tensor are transformed according to the formulas

(A21) A¥T(x') = A (x) (@x* [9x*) (x' [ox')
(A22) Ar(X) = Ay () (0x*/0x*) (Bx'/0x"),
(A.23) A¥ (X)) = A% (x) (0x* [ox*) (Bx' [3x").

An example of a covariant or contravariant 2nd-order tensor is the metric
tensor g, or g¥, respectively, since

(A24) g (X) = g(x).g(x) = g(x). g(x) Bx"/0x") (Bx'/ox").

The same applies to quantities g’. The quantities g*, = 8} are the coordinates of
a mixed 2nd-order tensor, since

(A.25) 85(x0) (0x* J0x*¥) (0x/0x') =
= (0x*/dx*) (0x*/0x") = Ox* Jox" = 8K (X).

Lemma 1 (index law): Let Ak""k”,l_,_,q be any p-times contravariant and g-times
covariant tensor and let s > g, ¢ > p. If the multiplication

g A .
(A.26) Xll T gk = B ke

produces an arbitrary (s——q)-tlmes contravariant and (#—p)-times covariant
tensor B, the quantity X is an s-times contravariant and #-times covariant tensor.
Proof: Assume Eq. (A.26) to hold in some coordinate system, i.e.

ky..kp 1ol ks el
(A.27) AT X = B
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Since A and B are tensors, the following transformation relations apply to them,
kply..dg L ky..k
/,1 ’1 &= Gl;l k:"l ’ZA l p’l""q

and the same applies to tensor B. By substituting these transformations into
(A.27) we obtain

kply.. g gky.kp gk (1 Bkt k P
(A.28) G Y. S L X “Mekpods = CRIIE M B L k-

If we multiply (A.26) by Gji* |2+ !~ and subtract the result from (A.28), we
arrive at :

kl deplyodg gky.p WA k- k,ll &l
(A29)  Gulgd A", X = G X ) =0,

where we have made use of the following properties of the quantities Gk " Zlf: 1,:

defined by Eq. (A.15),
(A30) 1kp G’] g kpekply g

kyoodp Tt ty = kgt s
1okp KKy ok oky o
...k 1,...1,,‘p =8,'9,...87

Since the factor preceding the parentheses in Eq. (A.29) is an arbitrary tensor,

the necessary and sufficient condition for (A.29) to be satisfied is that the
expression in the parentheses should be zero. It then follows that

o A wokdd . o
| R —_ 1 1--%8 1eoeds
XUy = G X

Q.E.D.

Definition 2 (transposed tensor): A tensor which is created by the permutation
of two superscripts or two subscripts, is referred to as a tensor transposed with
respect to these indices.

Example 4: The contravariant, covariant and mixed components of a transposed
2nd-order tensor are (AT)Y = A%, (AT),, = 4,, (AT, = 4,%, (AT),* = 4%,.
Definition 3 (symmetric tensor): We shall refer to a tensor as symmetric with
respect to the superscripts or subscripts, provided its coordinates remain un-
changed under any permutation of these indices, e.g. tensor 4", is symmetric
with respect to the first two subscripts provided 4%, = 4",,..

Example 5: Metric tensors g, g and g, are symmetric tensors because
8u= G-9 = 99 = &, and similarly for tensors g and g*,. This implies the
symmetry of Kronecker’s delta symbol: &, = §,%.

A4. Tensor algebra

Definition 4 (equality of tensors) : We say two tensors are equal if they are p-times
contravariant and g¢-times covariant and if their coordinates are equal at least
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in one coordinate system. Their coordinates are then equal in any coordinate
system. Their coordinates are then equal in any coordinate system.

Definition 5 (addition of tensors) : If two tensors are of the same order and type,
the sum or difference of these tensors is a tensor of the same order and type, e.g.

(A.31) CH, =AY + BY .

Definition 6 (outer product of tensors): The outer product of two tensors is
obtained by simple multiplication of the tensor components, e.g.

(A.32) CY = A"B,.

Lemma 1 implies that this operation yields a tensor whose order is equal to the
sum of the orders of the factors.

Example 6 (dyadic product): The outer product of two vectors is called the
dyadic product, ‘

(A.33) C"=A4*B'  contravariant component,
Cu=A,B covariant component,
Ct, = 4*B,  mixed component.

Definition 7 (tensor contraction): The algebraic operation in which we put the
covariant and contravariant indices of a tensor equal to each other and add with
respect to these identical indices is reffered to as tensor contraction, e.g.

(A.34) Ay, Ay

Lemma 1 implies that the order of the contracted tensor is lower by two than
the order of the original tensor. The type of contracted tensor is determined by
the number of free indices. It is easy to prove that no tensor quantity is obtain,
if this procedure is applied to two indices of the same type, i.e. either to both
covariant or to both contravariant indices.

Definition 8 (raising and lowering the indices) : The algebraic operation in which
we assign the quantity Ap,..kp,..q, tO €VeEry p-times contravariant and g-times

. ky.. .k .
covariant tensor 4", , by the relation

(A.35) Ak,...k,l,...lq = Empk,++ Bmpky Am'mmp/,...l,,,

where g, are the components of the covariant metric tensor, is referred to as
lowering the indices of tensor A. Lemma 1 implies that the quantity Ap, .1, 18
a (p + g)-times covariant tensor.

Similarly, the algebraic operation in which we construct to tensor Ak""k”,l___,q
a new (p + g)-times contravariant tensor

Rydplidg _ myl o qkik
(A.36) At o gmh gl gl

m;..mg>
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where g are the components of the contravariant metric tensor, is referred to
as raising the indices of tensor A.

If we raise or lower only some of the indices of a tensor, we again obtain a
tensor quantity. With tensors of higher orders than the first we use a gap
(sometimes a dot) to indicate the original position of the indices we have lowered
or raised. By raising or lowering indicates of a given tensor we obtain so-called
associated tensors.

Example 7: By lowering the contravariant coordinates * of vector v, we obtain
its covariant coordinates and vice versa,

(A.37) v, = gut's vF = gy,
Example 8: Raising the indices of a 2nd-order tensor can be expressed as
(A.38) Akl = g""‘Am,, A/k = 8’""141»:-

In general, tensors A% and 4/ are not equal. Only if tensor A is symmetric,
A* = A/ and the relative positioning of the indices is unimportant.
Similarly, lowering the indicies can be expressed as

(A.39) A = g, A", Af = g dA™.
The following relations also hold:

(A.40) =g A4, =g" 4", = &g A,

(A41) Ay = A" = imA™ | = Eim&1nA™

(A.42) A4 =g"g,4,".

The associated tensors 4%, 4%, A%, A, characterize one and the same 2nd-order
tensor A.

Definition 9 (inner product of tensors) : We define the inner (scalar) product of
tensors by contraction of the outer product of two tensors. The inner (scalar)
product of vectors and tensors will be denoted by a dot.

Example 9 (scalar product of vectors) : By contracting the dyadic product of two
vectors, we define the inner (scalar) product of two vectors:

(A43) u.v=ur=uv,.

Lemma 2: The scalar product of vectors is an invariant, i.e. it is independent of
the coordinate system.

Proof: With a view to Eqgs (A.17) and (A.18)

(A44) W0 (X) = 1 (%) v, (1) (Ox* 0x*) (Ox*/0x*) = 1 v (x).

Example 10 (scalar product of a vector and 2nd-order tensor ) : By contracting the
outer product of a vector v and 2nd-order tensor A, we define the left-hand and
right-hand scalar product of a vector and 2nd-order tensor,
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(A.45) (v.AY = 4fv' = A%y,
and
(A.46) (A.v) = A0 = Ay,

respectively. By lowering the indices we obtain the covariant components of
these vectors,

(A.47) (v.A), = Ay v' = A" v,
and

(A.48) (A. V), = A, v = 4/,
respectively.

Lemma 3: Assume ¢ to be a scalar v, v,, v,, v; to be vectors and A, A,, A, to be
2nd-order tensors. It then holds that

(A.49) (Ai+A).v=A.v+A,.v,
(A.50) Avi+tv)=A.vy+A. v,
(A.51) (A.ov)=@(A.v),
(A.52) A.v=v.AT,

(A.53) (vivy). vy = v(v,. v3)7
(A.54) v,.(v,¥) = (v;.v)v,,

where AT is the tensor transposed to tensor A and v, v, is the dyadic product of
vectors v, and w,.

Proof: Equations (A.49)—(A.52) follow immediately from the definition of the
scalar product of a vector and 2nd-order tensor. Let us prove Eq. (A.53), e.g.
for the contravariant component,

[(vw). v] = (v, Vz)kl v, = |/1‘("'2)1 vy = [vi(v,. ).

Equation (A.54) can be proved in very much the same way.

Example 11 (scalar product of 2nd-order tensors): By contracting the outer
product of two 2nd-order tensors A and B, we define the scalar product of these
tensors:

(A.55) (A.B)*, = 4*, B",.

By lowering and raising the indices we obtain the second mixed component of
this tensor:

(A.56) (A.B)* = A"B,*.
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Lemma 4: Let ¢ be a scalar, v, v,, v,, v;, v, vectors,A, A, ,A,, B, B,, B, 2nd-order
tensors. It then holds that

(A.57) (A, +A,).B=A_.B+A,.B,
(A.58) A.B,+B,)=A.B,+A.B,,
(A.59) (¢A).B = o(A.B),
(A.60) A.(¢B)=9(A.B),
(A.61) (A,.A).B=A,.(A,.B),
(A.62) (A.B)T = BT. AT,
(A.63) (A.B).v=A.(B.v),
(A.64) v.(A.B) = (v.A).B,
(A.65) T (mn).(nv) = (v )y,

Proof: Equations (A.57)—(A.60) follow immediately from the definition of the
scalar product of two 2nd-order tensors. Therefore, let us only prove the
remaining Egs (A.61)—(A.65):

[(A.A,). B]kl = (A 'AZ)km B, =
= (Al)kn (Az)"m B™ = (Al)kn (Az . B)"l = [Al ‘(Az . B)]kl,

[(A.B)'f,=(A.B)*= 4B, =(@B"),.A")y",=[(B".AN],
[(A.B). v =(A.B),/ = 4, B" v/ = A4 ,(B.v)"=[A.(B. V[,
[v.(A.B)} = (A.B)/v/ = A" B,*¢/ = (v.A)"B,* = [(v.A).B},

[(viw). (vl = (v Vz)km(V3V4)m1 = (Vl)k(Vz)m(')s)m(V4)1 =
= [(v,. w) (v W],

The proofs for the other components are similar.

A.5. Physical components

We have so far represented a vector by its contravariant or covariant com-
ponents

(A.66) v=v'g, = ng",

where g, is the vector tangential to the kth coordinate line at point x*. Since
vectors g, and g* are not generally unit vectors, components v* and v, do not
have the same physical dimension as vector v. Let us assign the unit vectors e,
and € to vectors g, and g*. However, the square of the length of a vector is given
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by the scalar product of this vector with itself; in virtue of Eqs (A.9) and (A.13)
(A.67) G- O = B> g.¢ =g

where no summation is carried out over the underscore indices. The unit vectors
to vector g, and g" are then defined by the relations

(A.68) & = gk/(gﬂ)”zs e =g/gH".
With a view to (A.66), vector v can be resolved into these unit vectors as
(A.69) V= v(k)ek = U(k)d‘,

where the quantities v*’ and vy, are the physical components of vector v. We use
the term physical because these components have the same physical dimension
as vector v. By substituting Eqs (A.66) and (A.68) into (A.69), we obtain the
formula for the physical components of vector v,

(A.70) v(k) - Uk(g]_‘!i)llz, v(k) = Uk(g{‘— 12 .

By substituting Eq. (A.37) into (A.70), we can derive the relation between the
two kinds of physical components:

(A.71) Vo = Zl:gkl(gk—k/gu)m”(’)-
If the curvilinear coordinates are orthogonal, g,, = g = 0 for k # [,
(A.72) Vg = v,

i.e. the difference between the two kinds of physical components of the vector
vanishes.

This definition of the physical components can also be extended to tensors of
higher orders with the aid of their relations with vectors. Let us demonstrate the
resolution of the stress tensor t into physical components. For the time being,
let us not assume that the stress tensor t is a symmetric 2nd-order tensor. The
projection of the stress tensor t onto the unit external normal n defines the stress
vector {,

(A.73) t=t.n,
i.e. the components expressed with the aid of Eqs (A.46) and (A.48) read
(A.74) tk = tk,nl = tkln,, tk = tkln, - t,dnl.

If we express vectors tand n in terms of physical components (A.70), we obtain
the relations

(A.75) = (9, 10 = POy

—r Oy )

. Iy = ley Mo = lpeh
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where the quantities
(A.76) 0 = (gu/g)'"”
0 = Pi(g,g)",
' t(k)m = tkl(gg/gg)'/za
twe = tu8ugn) ™",
are the physical components of the stress tensor t. Let it be emphasized that the
quantities 1%, 90, £,® and ¢,,, are not tensor components. The relation

between the right-hand and left-hand physical component can be derived with
the aid of (A.42) and (A.76):

(A.77) 10® = Y. (Gun8u/8us&rm) " Bim€" 1™ -

If the curvilinear coordinates are orthogonal, g,, = g¥ =0,

i.e. the physical components of the stress tensor t in orthogonal curvilinear
components are the same for all types of tensor coordinates.

A.6. Covariant derivative

As compared to Cartesian coordinates, the greatest difficulty in the system of
curvilinear coordinates is that the basis vectors g, and g* are functions of the
curvilinear coordinates x*, so that in differentiating and integrating these vectors
do not behave like constants. Therefore, let us first derive the formulas for
differentiating these vectors with respect to the curvilinear coordinates. We shall
put ‘

9. _ i(ﬁl) o,
(A.79) ox ox\oxt) oxoxt ™

because the Cartesian unit vectors /, do not depend on coordinates. After
substituting for Z, from (A.6),

og, Jm
where the quantities

m)] _ &y ox"
(A8D) {k 1} " ax'ox’ Oy

are referred to as Christoffel’s symbols of the 2nd kind. Christoffel’s symbols of
the 1st kind are defined by the relations

197



(A82) [ki,m] = gm{k" ,} or {,:",} = g™kl n.
By using (A.9) it is no difficult to prove that

1 agkm ag Im agkl)
A.83 klim=-\—+—""——1}.
(A.83) [kt, m] 2 < ox'  ox* ox™

Let it be emphasized that Christoffel’s symbols are not tensors. However, they
are symmetric with respect to indices k, /,

m m
(A.84) kl,m] = [lk,m], {k l} = {l k}'
By making use of (A.11), we obtain a similar result to (A.79),
og k

(A.85) 5;= —{1 m}d"-

We can now calculate the partial derivatives of vector v,

ov 0 o™ og, (60’" {m} ,)
A.86 —=—("g,)=—g,+V"—=|—+ V)G
(A.86) oxk axk(g) o ¥ oxt \oxt |kl
which can be abbreviated to
ov
A.87 — =", G,
( ) o «G
where the expression
or" my{

A.88 v, =+ { }v
(A.88) Ry

is the covariant partial derivative of the contravariant vector v™.

A covariant partial derivative, or the partial derivative of any tensor is
denoted by adding a semi-colon after the last tensor index, or a comma, and a
further index appropriate to the coordinate with respect to which the covariant
partial derivative, or partial derivative, respectively, is being performed.

By differentiating the expression v = v,,g", we obtain the covariant partial
derivative of the covariant vector v,,,

0
(A.89) é = Dy @™
where
I
(A90) Uk = U= {m k} v;.
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The reason for introducing, besides ordinary partial derivatives, also covariant
partial derivatives, is that applying the covariant derivative to any tensor increases
the order of the tensor by one covariant index, whereas a partial derivative of a
tensor is not, in general, a tensor quantity.

Since Christoffel’s symbols are identically equal to zero in Cartesian coordina-
tes, covariant partial derivatives in this coordinate system reduce to “‘ordinary”’
partial derivatives.

The covariant partial derivative of a scalar is identical with an “ordinary”
partial derivative, because a scalar is a covariant tensor of order zero. Covariant
partial derivatives of higher-order tensors are defined in a similar fashion as the
covariant derivatives of vectors, e.g. the covariant partial derivative of a 2nd-or-
der tensor,

k l
kI gkl nl kn
(A.91) A =4 ,,,,+{ n}A +{ n}A ,

k 4k n k k n
e L F L,

n n
Akl;m = Ak[,m - {k m} A,,, - {1 m} Akn’

is a tensor of the 3rd order.

Lemma 5 (Ricci): The covariant partial derivatives of any metric tensor are
Zero,

(A92) gkl;m = gkl;m = gkl;m = g;k = 0’

where g = det(g,,).
Proof: With a view to (A.91),,

n n
(A.93) Exim = Sktm — {k m}g”’ - {I m}g""'

By using Eqs (A.82), and (A.83) we can prove that the r.h.s. of Eq. (A.93) is
equal to zero, gy, = 0. The other relations of (A.92) can be proved in very much
the same way.

Equation (A.92), yields the following useful relation:

(A.94) (log+/g), = { m'"k}, g = det(g,).

Lemma 5 implies that metric tensors under covariant differentiation behave
like constants, consequently, whether we raise or lower the index before cova-
riant differentiation or after it is unimportant. It is easy to prove, for example,
that

(A.95) | A5 = (@A), = B Ay
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It is also easy to prove that the product rule of differentiation holds for the
covariant partial differentiation, e.g.,

(A.96) (4*B,,),, = A*,B,, + A*B,,.,.

Sometimes, by means of the covariant partial derivative, we also introduce
the contravariant partial derivative as

(A.97) Akl;m = Akl;ng"m .

A.7. Invariant differential operators

The invariant differential operators gradient (grad) of scalar @, divergence
(div) and rotation (rot) of vector v, are defined by the relations

(A.98) gradd =, g,

(A.99) divv =1,

(A.100) rotv= ¢y .g,,

(A.101) &M =" g, Eum = um/g

and ¢” and e,,,, are Levi-Civita alternating symbols,

(A102) e123 — e3|2 — eZ3l = _e2|3 — _e321 - _el32 — 1 s

and the other ¥ = 0. The symbols ¢,,, are defined similarly. Let us remind the
reader of some of the important relations:

. 5 of o
(A.103) Eue™ = |87 & &7,
& & &
(A.104) Es™ = 8787 — 313,
(A.105) G = 28], £t =6.

The operators (A.98)—(A.100) are invariant with respect to a general trans-
formation of coordinates.
It is sometimes advantageous to introduce the nabla operator 7,

0
A.l vV =g—.
(A.106) ﬂka |

By using this symbol we can express Eqs (A.98)—(A.100) in the following form:
(A.107) grad d=vVo=go,,
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o

A.108 divv=V.v=¢g".
( ) ive=V.v a"w

(Ulﬂl) =g. glvl;k = Uﬁ;k s

(A.109) rotv=V x v=gx %(v’g,) =g x gv'y = &™v,.8.
If we use Eq. (A.94), we can express div v in a more convenient form:

(A.110)  dive=1tr, =", + {kkl}v’ =vf, + *(log\/g), =
= V(@) 1/\/8-
Laplace’s operator is '

(A.111) VP =divgrad @ = (g @), = g(P ), = [/ (€)' P14/ \/2.-

Let us generalize the above differential operations also for tensors of higher
orders. The gradient, divergence and rotation of tensor A are defined by the
relations

(A.112) gradA = VA,

(A.113) divA=V.A,

(A.1149) rotA=Y xA.

If A is a tensor of order p,

(A.115) A=A""g . g, =4 10" 9%

and, consequently,

(A116)  gradA=4, .. ¢"9"...¢" = (gradA),, ., g"9"...g",
(A.117) divA=A""" g .. g, =(divA)**g,..g,,
(A118)  rotA =4y ., 09" ..g% = (totAY,, ,0.0"...9".

By lowering and raising the indices, we can express the above tensors in terms
of associated components.

Example 12: The gradient of vector v = v,g is defined as

(A.119) gradv=v,¢'¢' = (grad v),g'¢g .
Example 13: For the 2nd-order tensor A = A'g,g, = 4,,¢"¢
(A.120) divA = 4", g, = (divA)g,
(A.121) rotA = ¢4, .,g.g" = (rotAY,g.g".
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Lemma 6: Let @, ¥ be scalars, u, v vectors and A a 2nd-order tensor. It then

holds that

(A.122) grad (@¥) = @grad ¥+ Wgrad @,
(A.123) div(®u) = @ddivu+ u.grad @,
(A.124) rot(Pu) = Protu+ grad d x u,
(A.125) grad(u.v) =gradu.v+ gradv. u,
(A.126) div(u x v) = v.rotu— u.rotv,
(A.127) rot(ux v)=v.gradu— u.gradv + udivv — vdivu,
(A.128) uxrotv=gradv.u— wu.grad v,
(A.129) rotgrad @ =0, divrotu=0,
(A.130) grad div u = div[(grad 7], "
(A.131) rotrot u = graddivwu — divgrad v,
(A.132) grad (Qu) = Dgrad u + (grad D)u,
(A.133) div(@A) = OdivA + grad @. A,
(A.134) rot(@A) = drotA + grad P x A,
(A.135) div(uv) = vdivu + u.grad v,
(A.136) rot(uv) = (rotu)v — u x gradv.
Proof:

grad (PY¥) = (9¥), 8" = ¥, ¢ + YD, ¢ =
div(®u) = (Pu)*, = Qv + D, = Odivu+ u.grad D,

Pgrad ¥ + Ygrad @,

rot(Pu) = &"(du),,,g, = &"u,, D,g, + DMy, g, = Protu+ grad @ x u,
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grad (v.v) = (u. v), g = (' v), g = ulkvlgk + U'U/ g =
= (grad u),.v,¢" + (grad v),i/g* = gradu. v + gradv.u,

div(u x v) = (u x v,

= &"uv, — " up,, = v.rotu — u.rot v,

rot (u X V) = gklm(u X v)m G = gk ( mpqupvq) G =
= (3,8,' — 3,8 ’)(u”,v"+u"u",)gk—
(u",v - u’v",+u“v  — w1 g, =
= (v'(grad u)} — w/(grad v)* + #*div v — *div u)g, =
=v.gradu— u.grad v+ udivv — vdivu,

/

(8klmulvm)k = gt (u,), = et (U1 + U,,p) =



u x ot v = gy, (rot vy"gt = &, ', g" = (3481 — 8/8Du'v, g =
= (W — W) g" = (W(grad v),, — ¥/(grad v),)g" = gradv.u— u.grad v,

rot grad @ = ¢"(grad @), g, = ¢ P,.9. =0,
divrot u=(rot uf", = é"u,, =0,
graddivu = (div ");kgk = ul;lkgk = ' ,g" = [(grad u)T]lk;lgk = div[(grad u)'],

rotrot u = g, (rotw)"/'d" = &, u,.,'d" = 6,8 — 8/8,)u,,'g" =
= “1;klgk - “k;/’gk = u[;Ikgk - uk;ld( = (div ");kf — (grad u)lk;ld‘ =
= graddivu — divgrad u,

grad (Qu) = (Pu),.g"g' = (Puy, + D, u)g'g =
= [P (grad u),, + (grad P),ug"g = Pgrad u + (grad P)u,

div (@A) = (PA)Y, g = @A"Y, g + A'D,g = PdivA + grad D.A,

rot (QA) = & lm((DA)mn;lgkg" = @g" " A1 GG + & Im¢,lAmngkgn =
= @ProtA + grad ® x A,

div(uv) = (UV)kl;kgl = (11(171);1:91 = (uk;kvl + ukvl;k)d =
= [v,divu + * (grad v), )¢ = vdivu + u.grad v,

rot (uv) = & (u,,. v, + U,0,.)gg" = (rotu)v — u x grad v

A8. Orthogonal curvilinear coordinates

Let us first express the differential operators given above in general
orthogonal curvilinear coordinates, and then in spherical coordinates. Since the
physical components of tensors, and vectors, are the same in orthogonal cur-
vilinear coordinates for all kinds of tensor components, we shall represent the
tensors, and vectors, by physical components.

In orthogonal curvilinear coordinates holds:

(A.137) gu=8"=0 fork#1, g%=1/g,,
d = gli,fgks g = 182833,
(A138) ds* = gn(dx) + gn(dx?) + g5 (dx’)za,g "
iy = L [ag"* 5+ Somg, —ﬂs,m],

I'm g 281 LOX™ ox! ax*

1 0 1 0@ 1 o0
. D= —e —_—t ———6;,
A1¥)  grd el = T o @)
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(A.140)

(A.141)

(A.142)

(A.143)

(A.144)

(A.145)

(A.146)

. a[,
divu= m{a_x’[(&?g”)mum] +

+ %[(gug 11)1/2’1(2)] + %[(gn 1822)”21‘(3 ]} s

__ 1 fo 112 (3)] _
rotu = (gz;g”)l 3 { o [(833) u

0 12..3 1 0 12, (2
“aal 0 ot sl eme] -

1 0 [(gzzgsa)madi]
oo 1[0 [(eug)"00]
v (81182:833)" {ax' (g )"? ox'
2 [esh o), o [an oo
ox*L (gx)"* ox*1  ox’L (g, ax*lS’

gradu = ul;kd‘ ¢ = (grad u),'g* g = (grad u)(k)mek e,

1 ou®

Zro
ORI 12 ggkk) 3 ™ 3(e. )2
(&) ki U (gy)

C @ugd” O ()i g ) ox”
divA = 4, ¢’ = (divA),g’ = (divA),/,

. 2§10 "
(divA), = kgl {(g)l/z&["(k)(o (gkk)l/z] +

1 3(g)"” qo 1 ogw)'"” JCRS
112 U 12 g ®
(8ugn)'” ox* (8uc&u) o 4

(grad u),,) =

b

Note: Sometimes it is advantageous in orthogonal curvilinear coordinates to
introduce Lame's coefficients H, by

(A.147)

H, = (gkk)llz .

Example 14: Express above relation in spherical coordinates r, 3, .
The definition relation between Cartesian and Spherical coordinates is

(A.148)
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y! = rsin 9cos ¢,
¥* = rsin 3sin ¢,
¥} =rcosd.



Lamé’s coefficients read
(A.149) H =1, Hy=r, Hy=rsin$.
Christoffel’s symbols of the 2nd kind,

(A.150) { 9’ 9} = —r, {q)’(p} = —rsin29, {r‘gg} =1/r,

{ 9 }= —sin 8cos 3, { ‘p}= 1/r,
?9 re

o1 _ kl_
{9 ¢} = cot 9, others{l m} =0.

(A.151) grad¢=a—(pe,+-l--alpeg+ 1 a—¢e¢,
or r 09 rsin $0¢

. 10 1 © . 1 Ou
(A.152) divu=—=—("u)+ — (ugsin 9) + -2,
Aor O Cn gpg e rsin 809
(A.153) rotu= —\ [a("ws‘“ 9 _ a—’i’] e+
rsin g 09 oo

1 du, 13(u )] 1 [a(rus) 6u] '
Do roniairal L7 e B ited L
[rsin 900 r or 10 Tar " 20l®

10,00 1 8/ 00 1 0
(A.154) Vo= __<r2—) + -—-(sm .9—) + —.
P?or\ o/ Psin 909 09/  Psin9d¢?

"AY9. Tensor of small deformations
and equations of motion of the continuum
in curvilinear orthogonal coordinates

We shall introduce the tensor of small deformations e as (see Supplement B)

(A.155) e = }[grad u + (grad w)"],

where uis the displacement vector. Using Eq. (A.144), we can express this tensor
in terms of the physical components,

(A.156) e=¢",6,0,
(A.157) eV = e (gu/e)'” =
___l{(gkk)mi[ u® ]+ &) 9 [ u® ]}+
D) (gﬂ)lﬂ ox' (g_k&)lﬂ (gk_k)l/zaxk (81_1)1/2
By ¢ _u” &)™
(gl_l)llz'"='(gm)l/2 ™
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Example 16: Express the components of the tensor of small deformations in
spherical coordinates r, 9, ¢.

Let us denote the physical components of the displacement vector u by the
symbols (u, v, w). Then

Ou 10v  u
(A.158) e, =-—, €g9=—— + —,
) or” ¥ rog r
1
=— @+E+Ecot9,
rsin30%¢ r r
26,0 100 v
or. rod r
¢ ow 1 Ou w
2e =z_Z

" o rsin8d¢ r

2ey, = <§K + 1o wcot 3)
08 sin $0¢

where e, e, ..., e4, are the physical components of the tensor of small
deformations e.

We shall express the equations of motion of the continuum in vectorial form

(see Supplement B),
2
(A.159) du_ or+ divt,
d?

where ¢ is the density, fthe body force per unit mass, u the displacement vector
and t Cauchy'’s stress tensor. If we use Eq. (A.146), the 1th equation of motion,
expressed in ferms of physical components will read

: 1 0 )>”2 1 ogy)”
A160) Y {ﬁ_[ﬂ% (& W] b L),
=1 Ug)"? ox* (8 (88 ; ox*
_ ‘1 a(gkk) t(k) } + Qﬂo _ Qd u;,) .
(gﬂgg)m ox' ds

Example 17: Express the equations of motion of the continuum in spherical
coordinates r, 9, @.

Let us denote the physical components of Cauchy’s stress tensor, of the body
force and displacement vector in spherical coordinates by the symbols (¢,,, ¢4, ...
t90)s (f3s o, fp) and (u, v, w). In these coordinates the equations of motion of the
continuum can be expressed as follows:

d2 ot 1 101, O 1o,

(A.161) 0S¥ = of 4
dr o+ or r6.9 rsin $ 0¢

+ —(2t,, — tgg— ty + tgcOt 9,
r

+
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d% azs 10t 1 ot
b r 98 TS
NP ot or 708 rsin 9 9

+ —-[3t,9 + (295 — tp,) cot 9],
r

d’w 19t 1
A et
or r6.9 rsin 3 0¢

+ —(3t,¢ + 2tg4,cot 9).
r

A.10. Two-point tensor field

Definition 10: The quantities 4* (x, X) that transform like tensors with respect
to the indices k and K under transformation of the coordinate systems x* and

X¥, are referred to as two-point tensors.
Therefore, if

(A.162) X =¥, XX = XXX

are differentiable transformations of coordinates, and if
ox* oxM

A.163 AX (X, X)) = A™ -

(A.163) RO X) = AT 0=

then 4*, is a two point tensor. If g, and Gy are base vectors and g and G¥
vectors reciprocal to the former in coordinate systems x* and X*, then 4% are
components of the tensor

(A.164) A(x, X) = A (%, X) g.(x) G*(X) .
An example of a two-point tensor are shifters defined by
(A.165) g% X) = g (1. Gu(X),

g5 X) = G(X). g (x).

Another example are deformation gradients

| ox* ax
.166 X e=—, XX
(A.166) K=o Xe= 5

The two-point tensor character of these quantities is implied by the relation

ax* _ ox* ox" ox¥
oX* ox"oxMox*’

L
where we have made use of rule of chaine of differentiation. Equation (A.167)

(A.167)
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has the form of (A.163). Multiple-point tensors of higher orders are similarly
defined.

Definition 11: The total covariant derivative of the two-point tensor A4*(x, X),
when x is related to X by the a mapping x = x(X), is defined by

(A.168) Ay = Agp + Ay,

where 4%, is the covariant partial derivative of A*, with respect to metric G,
at the fixed point x, and A*,, is the covariant partial derivative with respect to
metric g, at the fixed point X, i.e.,

. 04k M
(A.169) Ay, = aXLK - { I3 K} Ay,
0A4* k
k - K m
Therefore,
04, M o4* k ox!

k _ K __ k bl 4 m | A

A0 A= {L K}A M+[8x’ M {1 m}A "]axt‘

Note that this result is produced by differentiating Eq. (164) with respect to
- X* and by using Eqs (A.80) and (A.85) to express the derivatives of vectors g,
and G*. Therefore,

(A.17i) aA/aXK= AkL:ngGL-
By using Eq. (A.170) for x* ,(X), where the vector xis missing in the argument
x> We arrive at A
0%k {M}ax" {k}axmax'
A.172 X5 )., = ——— = = =
Note that (A.168) is a generalization of the total derivative of the scalar
function of two variables, &(x, X) with x = x(X), i.e.,

(A173) 49 _020x | 00

dx¥ dxoxY ox

The same formal rules apply to the total covariant derivative as to the
covariant partial derivative, e.g.,

(A.174) &xm=Grrm=8um =0,
(A*xB" ).y = A . B" + A* By,
(A + B )py = A grs + Bpns.
For other accounts, see [58].
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A.11. Projection of tensors onto a surface

Let S be an oriented surface in three-dimensional space represented in
Gaussian form,

(A.175) x = x(p°) a=1,2, or
= X', p») k=123,

where p', p? are curvilinear coordinates on surface S and x* are space curvilinear
coordinates of point x on surface S. Assume n(x) to be the unit normal external
to surface S at point x on S.

We shall refer to vector von S as a vector tangential to S, if n. v = 0 at every
point x on S. We shall refer to the 2nd-order tensor A on S as a tensor tangential
to S,if n.A = A.n=0atevery point xon S. If Vis a three-dimensional identical

tensor, IF, =38, ie. a 2nd-order tensor such that v.I=1.v=v and
A.l=1.A = A for any vector v and 2nd-order tensor A, then the equation
(A.176) I,=1—nn

defines the tangential 2nd-order tensor on S which we refer to as the surface
identical tensor since, if vis the vector tangential to S and A the 2nd-order tensor
tangential to S, then v.I, =1, . v=v,A.l,=1.A=A.

The projection of vector v on surface S is the tangential vector v,,

(A.177) v,=v.I,=L.v.

If vis the vector tangential to S, then v, = v. Assume grad to be the gradient
operator in three-dimensional space. The surface gradient, grad,, at point x on
surface S is defined as the projection of operator grad onto surface S,

(A.178) grad, = |,. grad = grad — n(n.grad).
For example, if ¢ is a scalar field on S,
(A.179) grad; @ = grad ¢ — n(n. grad ¢).

Since grad, only contains derivatives in the direction tangential to surface S, the
operator grad, may be applied to any field, defined on surface S, regardless of
whether this field is defined elsewhere in space or not.

Assume Q to be a scalar, vector or tensor field defined on surface S. If we
move this field from point x on S to a point infinitesimally close, x + dx, also
lying on S, the field @ will change by the value dQ:

(A.180) dQ = dx.grad, Q.
The projection of the 2nd-order tensor A on surface § is tensor

(A.181) A,=1,A=A—nn.A=A—-n(n.A).
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Tensor A, is, in general, not tangential to surface S. If A = grad v, the surface
gradient of vector v is defined bys the relation

(A.182) grad, v= grad v— n(n.gradv).

The surface divergence of vector v is defined as

(A.183) div,v= tr(grad,v) = divv— n.grad v. n.

Using (A.132), (A.123) and (A.125), it is easy to prove the identities

(A.184) grad,(pv) = pgrad,v + (grad,p)v,
div,(pv) = pdiv,v + v.grad, ¢,
grad (u.v) = grad,u. v + grad,v. u.

SUPPLEMENT B. FUNDAMENTAL RELATIONS OF THE THEORY OF ELASTICITY l

This supplement is devoted to a brief recapitulation of the fundamental !
relations of the theory of elastic bodies. Strain geometry is described with the
aid of the theory of differential geometry, and laws of conservation are described ;
in natural (deformed) and reference (undeformed) systems of coordinates.

A detailed discussion of theory of elasticity and continuum physics is given
in [28, 37, 64, 73, 74, 76, 91, 95, 96, 99, 109, 129, 130]. Our brief description
follows books of Eringen [S6—60].

B.1. Strain tensor

B.1.1. Coordinates, deformation, motion

Consider an continuum body at two different states of time. In the first,
assume the body to be unstrained, in pre-strain state, or the initial undeformed
state. In the second, assume the body to be strained, in the post-strain state, or
deformed state. Assume the undeformed body B to have volume V and surface
S. Assume the deformed body b to have volume v and surface s. The position
of material point P in body B will be described by the curvilinear coordinates
X', X%, X°, or by the position vector P (also X) which extends from the origin O
of the coordinates to point P. In the deformed state, assume the material point
p to be represented by a new set of curvilinear coordinates x', x2, x°, or by a
position vector p (also x) that extends from the origin o of the new coordinates
to point p. Often it is advantageous to select these two systems of coordinates.
The coordinates X* are called the Lagrangian or material coordinates and x* the
Eulerian or spatial coordinates.
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The motion of the body carries various material points through various
spatial positions. This is expressed by

(B.1) X = xHX5 1), X*= X505 1)
fork=1,2,3and K=1, 2, 3. (B.1) can be abbreviated to read
(B.2) x=x(X,t), X=X(x,1).

Equation (B.1), states that at time 7 a material point X* of B occupies the spatial
position x* in b. Equation (B.1), describes the opposite.

. We shall assume that functions x* and X* are continuously differentiable at
least up to the first order in the neighbourhood of point P(X), or p(x), and that
the Jacobian of transformation is not identically zero, i.e.

) oxt
(B.3) | j=det <§<> #0

describes unique inverse transformations.

The assumptions mentioned express the axiom of continuity, the consequence
of which is, on the one hand, the axiom of indestructability of matter, i.e. no
region of a finite positive volume can be deformed into a region of zero volume,
and, on the other, the axiom of impenetrability of matter, i.e. under motion every
volume is again transformed into a volume, every surface into a surface, and
every curve into a curve. However, in some cases it must be assumed that, within
a particular interval of time, there may exist singular surfaces, curves and points
in which the axiom of continuity is not satisfied.

We shall denote the quantities relating to the undeformed body B by capital
letters, to the deformed body b by lower-case letters. The components of vectors
and tensors relative to coordinates X* will have capital Roman letter indices,
those relative to coordinates x* lower-case Roman letters. For example, G, (X)
and g,/(x) are the covariant metric tensors in B and b, respectively.

B.1.2. Base vectors, metric tensors, shifters

The position vector P of point P in B and the position vector p of point p in
b are expressed in Cartesian coordinates Y* and y* as

(B.4) P= Y, p=)'%,

where /g and j, are unit base vectors in Cartesian coordinates Y* and y*. We are
again going to use Einstein’s summation rule, i.e. we summate from one to three
over every diagonally repeated index (Fig. B1).
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Fig. Bl. Coordinate systems for an undeformed body B and a deformed body 5.

We shall introduce the base vectors Gy(X) and g, (x) at X* and x*, respectively,

oP oYv op oy
B.5 G =—=—\,, gxX)=—=="I,.
(B.5) x(X) Xt ox* s Gi(X) ok ook
The infinitesimal differential vectors dP at point P and dp at point p are
oP op
B.6 dP = —dX¥ = G, dX*, dp = ——dx* = g, dx*.
(B.6) | X~ [ p o /%

The base vectors G and g, are tangential to the coordinate lines X* and x*.
The squares of the lenghts in B and b are

B.7) d§?=dP.dP = Gy, dX*dXx*, ds’ = dp.dp = g, dx* dx,
respectively, where

oYMar”
(B.8) Gy(X)=Gk.G, =

oy" oy"
—Buns GulX) =G .G = "5
ox*oxt " o T axkax!
are metric tensors in B and b, respectively. Kronecker’s delta symbols 3,,, 3,
84 and 8 are equal to unity if their indices are the same and to zero if they are
different.
The reciprocal base vectors GX(X) and g*(x) are defined by the equations

(B.9) G*.G, =%%, g.9,=8.
The solution to these equatio;ls reads

-(B.10) G*=G"G, ¢ =¢"g,
where '

t
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(B.11) GKE = alg. cofactor G,(L, ' glg. cofactor 8
det (Ggy) det (g)

The scalar product of (B.10) with vectors G* and ¢ yields

(B.12) G =G .G ¢' =g ¢

The representation of vectors and tensors with respect to coordinates X* or
x* is separated, e.g. the components of the position vectors Pand pin coordina-
tes X* and x* are

(B.13) PF=P.G", p'=p.g".

We would like to express the vectors and tensors from one coordinate system in
terms of their projection into the other coordinate system and vice versa. For
this purpose, let us shift vector p parallelly to point P(X). If p* are the com-
ponents of vector p in X*,

(B.14) p=p"G(X) =p'g(0).

The scalar product of (B.14) with the vectors G and ¢’ yields
(B.15) P =g", pF=g",

where

(B.16) g5(X, 0 = GX(X) . g.(x), &"k(X, x) = g"(x). Gx(X)

are so-called shifters. These are two-point tensor (see A.10); i.e., they transform
as tensors with respect to indices K and k under transformation of coordinates
X* and x*. With the aid of shifters it is possible to express vectors and tensors
from one coordinate system with the aid of their projection into another
coordinate system.

In very much the same way we now define

®.17) 2 1) = g, X, 1) = g,(0). G0,
25X, 1) = g5(X, %) = g*(%). GX(X).

By raising and lowering the capital-letter indices with the aid of tensors GX* and
Gy., and by raising and lowering the lower-case indices with the aid of metric
tensors g¥’ and g,,, we arrive at

(B.18) gx = 8u€'x = Gri8"s = 8uGrif™,

‘ g% =g"g" = GX'g =G gy,
g5 = gug™ = G*gu = 2,G* ¢,
gKkgll(:alks gxkgkL=8KL-

By substituting (B.5) into (B.17) we obtain
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ar oy
ax<oxk”
This equation implies not only the two-point character of tensor gy, but also
the relation

(B.20) gxx = Ok gKk = 8Kk9

provided both coordinates X* and x* are Cartesian.

(B.19) g = Oy

I=’L'il'

B.1.3. Deformation gradients, deformation tensors

Equation (B.1) for a fixed time yields
(B.21) dx* = x* dX*, dX* = XX, dx*,

where the indices following the commas represent partial derivatives with res-
pect to X¥, if the index is a capital letter, and with respect to x*, if the index is
a lower-case letter, i.e.,

(B.22) X = o x* _x

The quantities defined by Eq. (B.22) are referred to as deformation gradients.
According to the chain rule of partial differentiation,

(B.23) xk,KXK‘, = 8"[, XK’kxk,L = SKL.

Each of these systems represents nine linear algebraic equations for nine
unknowns x* , or X*,. Since the Jacobian of transformation is non-zero by
assumption, there exists a unique solution to these equations. According to
Cramer’s determinant rule,

(B.24) X<, = alg. cofa.ctor x* x _ l_eKLMeklm PR

J 2j

where e and ¢, are Levi-Civita’s permutation symbols and

(B.25) j = dct (xk,,() = %eKLMek,mxk,le,Lxm,M.
By differentiating (B.24) and (B.25) we obtain two important Jacobi'’s identities:
(B.26) GX*) k=0 and (G 'x* ), =0,

o

= alg. cofactor x* , = jX*,.
ax",,( g . K=,
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By substftuting (B.21) into (B.7) we obtain

(B.27) dS2 = Ck,(X, t) dxk dxl, d.5'2 = CKL(X’ t) dXKdXL s
where
(B.28) (X, 1) = G (X) X* . X",

Crr(X, 1) = gu(X) x* xx' |

are Cauchy’s and Green’s deformation tensors. Both tensors are symmetric,
¢y = cy, Cx. = Cpx, and both are positive definite. Equations (B.28) indicate
that the metric tensor G, (X) transforms to tensor c,(x, f) through the motion.
Tensor Cy; can be said to do the same in inverse motion.

New base vectors, so-called Cauchy’s and Green’s base vectors ¢,(x,t) and
Ci(X, 1), can be defined with respect to these two new tensors:

oP _ 0P aXK
(B.29) c.(x, ¢ X<,
(X, 1) = o o ok G (X) X",

op _ Op ox*
Ci(X)=—=——=g (0 x,.
x(X, 1) X WYY g () X" ¢

This immediately yields

(B.30) Cu=Cp=6.6, Cpp=Cprx=0C;.Cy.

Equations (B.29) indicate that the base vectors Gi and g, deform to vectors ¢,
and Cj through the motion.

We now have two different representations for the differential vectors dP and
dp. One in coordinate system X* and the other in x*, i.e.,

(B.31) dP = G (X)dX* = ¢ (x, 1) dx*,
dp = Cx(X, ) dX* = g, (x)dx*.

Similarly, the square of length elements are

(B.32) dS? = G (X) dXKAXE = ¢, (x, ) d* d,
ds* = Cir(X, ) dXXdXE = g (x) do* d’.

B.1.4. Strain tensors, displacement vectors

Lagrange’s and Euler’s strain tensors are defined as

(B.33) Ex; = 3[Cr(X, ) — G (X)],
e = 3 [gu(®) — cu(x, 1)].

(B.32) and (B.33) then yield the following important relation
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(B.34) ds* — dS? = 2E,, (X, ) dX¥dX* = 2e,(x, 1) dx* dx'.

When the body undergoes only a rigid displacement there will be no change
in the differential length in which case the difference ds* — dS” given by (B.34)
vanishes. If this is true for all directions dX* and dx*, then E,, and ¢, vanish.
Therefore, these tensors represent a measure of deformation of the body.
Equation (B.34) immediately yields

(B.33) Ey = eklxk,le,L y €y = EKLXK,k XL,I'

These relations indicate that E;; and e, are 2nd-order tensors.

Strain tensors can also be expressed in terms of the displacement vector u,
defined as the vector extending from point P of the undeformed body B to its
spatial point p of the deformed body b (see Fig. B2):

Fig. B2. Displacement vector.

(B.36) u=p—P+b.

The displacement vector can be represented by Lagrange’s or Euler’s com-
‘ponents U* and *,

(B.37) u= UGy = g,.
The scalar product of both sides of Eq. (B.36) with vectors G* and g* yields
(B.38) UK = pX — PX + BX, u* = p* — P + b,

where pX, PX, BX and p*, P*, b* are the components of vectors p, P and b in X*
and x*, respectively.

Let us express the strain tensors in terms of the displacement vector. By
substituting (B.28), and (B.29), into (B;;), we can express Lagrange’s strain
tensor as
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(B.39) Ey = %(gk-glxk,xxl,L —Gy).
Substituting from (B.5), into the last equation yields

1/0p Op )
B.40 Ey=-|— £ _Gu).
(B.40) KL 2<aX'< oxt

If we also make use of (B.36) we obtain
(B.41) Ey = %[(UM;KGM + Gy) . (UM;LGM + Gp) — Gg ],

in which the semi-colon indicates covariant partial differentiation, du/oX* =
= U,.xG". After some algebra, (B.41) yields

(B.42) Ey = %(UK;L + Upx+ UM;KUM;L)'
Euler’s strain tensor can be expressed in very much the same way:
(B.43) € = 3 (s + Ui — Upytd™) .

B.1.5. Changes of lengths and angles

Let us demonstrate the geometric significance of the components of the strain
tensor. According to (B.31), the parallelepiped with sides G,dX’, G,dX? G,dX?,
located at point P(X) deforms into a parallelepiped with sides €, dX?, C,dX?,
C,dX?, located at point p(x). It holds that
(B44) dx= GKdXK, dX= chXK, CK = gk.x{‘,(.

The unit vectors N and n along dX and dx are defined as

K X
(B.45) Nf = dx” = d—Xf, n* de' _ dxt
idX¥ dS |[dx  ds
where dS and ds are the lengths of vectors dX and dx. The relative change of the
length of vector N is defined by
ds —dS
s

Let us express Langrange’s strain tensor in terms of the quantity E . Equations
(B.34) and (B.45) yield

ds* — d§?
ds?

If Nis a vector tangential to coordinate line X!, N' = dX'/dS = 1/(G,))'”,
N = N* =0, then

(B.47) 2EKLNKNL = = E(m (E(m + 2) .
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(B.48) 2E,)[Gy = Ey (Epy + 2).

The last equation can also be expressed as

(B.49) Ey=—1+4(1+2E,/G,)'".
If the strains are small, E;, < 1, the following approximate relation applies:
(B.50) E, /G, = E,.

Analogous relations also hold for components E,, and E;;.

Now, assume N,, N, to be unit vectors along dX, dX, at point X, and n,, n,
unit vectors along dx,, dx, at point x. The angle O, x, between dX; and dX,
deforms into angle Jn,.ny Detween dx, and dx, (see Fig. B3). We also have

Fig. B3. Angle change.

(B.51) N 9% g
[dX,] |dx,]
Let us now calculate the angles Oy u, and 9, ) from
dx, dx
B.52 cos @, =N.N,=—"L. =2
522 T 1A
Gy dX* dX
— KL 1 2 = GKLNK]NLZ.
ldXx] |dX|
Similarly,
d d
(B.53) COS Jpg my = My . 1 = axn  dx _
, [dx| |dx,]
Cre AX*5, dX, CuN N,

(CundX™M, dXY,)2 (Crp dXT X272 (Egyy + 1) (Egy + 1)

The difference Op,, ) — In,.n) determines the change of the angles of directions
N, and N, due to the motion

(B.54) Loy = Yooy = Otwmy = Finymy -
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Here we have again dual representation, I"and 7, for the same physical quantity,
i.e. the change of angle of two directions is denoted differently in Lagrange’s and
Euler’s representations. (B.53) and (B.54) yield

(B.SS) Sin ENI'NZ) = HSin @(NI’NZ) - (1 - H2)1/2 Ccos 19(”1,"2) 5

which, for the orthogonal directions before deformation, @(NI’NZ) = 1n, reduces
to

- Cr N N5
(Ewp + D(Eny + 1)
If we eliminate directions N, and N, from Egs (B.52) and (B.53), we obtain

(B.57) COs @(KL) = GKL/(GMGL_L)I/Z,
Ccos S(KL) = CKL/(CﬁCLL)l/Z =
= (G + 2Ex)/[Gygx + 2Ex) (G + 2E_L£)]'/Z.

If X* are Cartesian coordinates, (B.57) will simplify to

(B.SS) cos @(KL) = SKL’
€08 Jzy = sin [ yyy =
= (Og + 2E )1 + 2Eﬂ()(1 + 2EL_L)]1/2-

By using (B.49) in (B.58), we may also write
(B.59) 2E; = (1 + Eg) (1 + Eg))sin gy for K# L.

In the case of small strains, E, < 1, Ey < 1, the following approximate relation
applies

(B.60) 2Ex; =sinT gy = Tyyy.

(B.56) sinly ny=H

B.1.6. Changes of areas and volumes

The element of area bounded by vectors G, dX" and G, dX? after deformation
change to the area bounded by vectors €, dX' and C,dX*. The deformed area
is thus given by '

(B.61) d83 = cl Xm X chX2 = xk_]xl‘zgk X g[Xm dXz.
waever,
(B.62) g X @ = &md" =g"%€ng",

where e, is Levi-Civita’s alternating symbol. By substituting (B.62) into (B.61)
we obtain

(B.63) da:; = gmxk,]xlyzek,mg’"Xm dl\,2 .
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The element of area prior to deformation is

(B.64) dA; = G, x G,dX'dX* = G'*GdX' dX*.
Consequently,

(B.65) d4; = G'2dx'dx?.

By substituting (B.65) into (B.63) we obtain

(B.66) da, = (2/G)"*x* X' ,e.,,9" dA;.
Equation (B.24) yields |

(B.67) JX = egmX* X' 5,

so that

(B.68) da, =JX,g"d4,,

where

(B.69) J = (g/G)"j.

Similar relations also hold for da, and da,. Therefore,
(B.70) da=da, + da, + da, = JX* ,g*dA4,,
the kth component of which yields the important relation
(B.71) da, = JX*,dA,.

Let us also determine the change of volume under deformation. The defor-
med volume element is

(B.72) dv = da,. C,dX® = JX* ,g* . g, x" ,d A, dX° =
=JX,x" 8, d4,dX} = JdA4,dX°.

The undeformed volume element is

(B.73) dV=dA3.G3dX3= G"-G}dA:;an =dA3dX3.
Finally, (B.72) and (B.73) yield the following important relation:

(B.74) dv = Jav.

B.2. Stress Tensor

B.2.1. Stress vector and tensor

We shall denote the surface force per unit surface in the deformed body with
external normal n by £, and refer to it as the stress vector. In particular, the
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stress vector which acts on the kth unit coordinate surface from the side of the
external normal, will be denoted by #; we shall refer to its /th component, 7,,,
as the stress tensor:

(B.75) tk = tklg‘('

To be able to find the relation between the components of the stress tensor
t,,and the components of the stress vector £, acting on any surface in any point
of the continuum, let us consider the condition of equilibrium of an infinitesimal
tetrahedron, volume Av whose three sides Ag® lie in the coordinate surfaces
passing through point p, and the fourth side Aa is perpendicular to n (see
Fig. B4). The equation of equilibrium of the acting forces can be estimated with
the aid of the mean-value theorem,

Fig. B4. Tetrahedron.

(B.76) %(g* v*Av) = t5Aa — thAd® + o*FAv,

where o*, v* and f* are the density, velocity and body force per unit mass at
some interior point of the tetrahedron, £ and £}, are the values of the stress
vector &, on surface Aa and on the coordinate surfaces Aa®. The limiting
transition for Av — 0 yields

(B.77) Q") da = Qk) da(k) N

However,

(B.78) da = nda =Y da%g/(g.)" = dd*g,.
k

The last equation yields
(B.79) da®/(gy)"” = da* = n*da.
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(B.80) lw = ;Qk) (g@)]/z n = '(k) n® = tn* = tn,

where n® is the physical component of the vector of the external normal n and

(B.81) b=, (gk_k)l/2= t= gkl'/, n® = ”k(g.kk)”z-
Substituting (B.75) into (B.80) leads to
(B.82) o= tun'g, or Loy = tunt*.

We can see that the stress vector, acting on any surface, is fully described by the
components of the stress tensor at this point. Equation (B.80) also yields

(B.83) bom=—1,.

B.2.2. Equations of motion in integral form

Independently of the geometry of strain and rheological relations, the follow-
ing laws of conservation are postulated in continuum mechanics.
Axiom 1 (Conservative of Mass): The total mass of a body does not change with
motion.

The existence of a continuous function of mass density g is postulated in
continuum mechanics. The total mass is given by the expression

(B.84) M=JQdV, 0<po<w,
: 1%
where the integration is taken over the material volume of the body.

The law of mass conservation in turn postulates that the initial total mass of
a body is equal to the total mass of the body at any other time, i.e.

(B.85) J QOdV=Jde.
Vv t
By using the transformation relation dv = JdV, we may write
(B.86) L(QO —oN)dV =0.
Alternatively, we may take the material derivative of (B.85). Thus
d
(B.87) — | odv=0.
de e

The law of mass conservation may thus be mathematically expressed as either
Eq. (B.86) or Eq. (B.87).
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Axiom 2 ( Balance of Momentum) : The time rate of change of the total momentum
of a body is equal to the resultant of external forces F acting on the body.

Mathematically,

(B.88) EI ovdv = F,

drdv
where the L.h.s. represents the time rate of change of the total momentum of the
body. The external forces acting on a body are the body forces such as gravity,
on the one hand, and surface forces, generated by contact of the body with other
bodies, on the other. Consequently,

(B.89) F= J £, da + j ofdv,

where £, is the stress vector per unit area of the surface s with external normal
n. The body force f refers to unit mass. The balance of momentum thus takes
the form

(B.90) (%f ovdy = I t,da + J ofdv.
t v s v

Axiom 3 (Balance of Moment of Momentum): The time rate of change of the
moment of momentum of a body is equal to the resultant moment of all external
Sorces.

Mathematically,

(B.91) g—jgp x vde = jp X t,da + Jgp x fdv,
tJe s v ’

where the Lh.s. is the time rate of change of the total moment of momentum of
the body about the origin. The surface integral on the r.h.s. of (B.91) is the
resultant moment of the surface forces about the origin, and the volume integral
is the resultant moment of the body forces about the origin.

Let us emphasize that these relations do not follow from similar equations for
a system of mass points and a rigid body, but that they are independent physical
laws.

B.2.3. Equations of motion in differential form

The two following integral theorems [57, 59] are important for deriving the
equations of motion in differential form.
Consider a continuum, volume v, intersected by surface of discontinuity o(r)
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moving at velocity v (see Fig. B.5). The material derivative of the volume integral
of tensor field @ then reads

o .
(B.92) 4 Ddv =J [— + le((DV)] dv + f [@(v— v)]!.da.
dtdv-¢ v—0 Ot o
The Green-Gauss theorem generalized for a 2nd-order tensor field,
t=1'g.g is

(B.93) J -div rdv + J [1F.nda = f r.nda.
By volume integral over v — ¢ we understand the volume integral over volume

v excluding the material points lying on the surface of discontinuity o. The same
applies to the surface integral over s — o. Therefore (see Fig. B5).

Fig. B5. Region with discontinuity surface.

v—o=v"+v,s5—~0=s"+s5".
The symbol [ ]* indicates a jump of the function in brackets at boundary o,
N:=r -1
Let us apply these two theorems to balance laws postulated in the preceding

section. If we put @ = g in (B.92), we shall obtain the law of mass conservation
in the following form:

(B.94) J [Z—f + div(gv)]dv+ f [o(v—v)]'.da=0.

For the last equation to hold in any part of the body and on any surface of
discontinuity, the integrands in both integrals must be equal to zero:

(B.95) 2—9 +diviov) =0 in v— o,
t
[e(v—¥)]):.n=0 on o.
These equations express “locally” the law of mass conservation in continuum
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together with the boundary condition. Equation (B.95), is called the equation of
continuity. It is none other than the material derivative of

(B.96) 00 =0J.

In virtue of Eq. (B.80), the equation of global balance of momentum now
reads

(B.97) c%j ovdv = J t'n, da + J ofdv.
tJv—0o s~ o v— o

However,

(B.98) tn, = tn.g = (n.t)g = nt=t.n,

since, as we shall show in the next, the stress tensor is symmetric. Using Eqgs
(B.92) and (B.93) @ = gv and 7 =t, we obtain

(B.99) f [igﬂ + div(ow) — divt — Qf] do +
+f[gv(v— v)—t]f.nda=0

This is postulated to be valid for all parts of the body. Thus the integrounds
vanish separately.

(B.100) divt+ o(f—a)=0 inv—o,
[ov(v—v)—t]Z.n=0 on o,

where

(B.101) a=0v/Oot+ v.grad v.

These equations express “locally” the balance of momentum together with the
boundary condition. Equation (B.100), is frequently referred to as Cauchy’s first
law of motion, and the stress tensor t, which occurs in it and which is referred
to the deformed body, as Cauchy’s stress tensor.

Equation (B.100), in component form reads

(B.102) 4+ o(ff —d)=0.
By lowering the indices we obtain the associated equation
(B.103) ft+ ol —a) =0,

tlk;l + Q(/;: = ak) =0.

By substituting Eq. (B.80) into the equation of balance of the moment of
momentum (B.91) and using Eqgs. (B.92), (B.93) and (B.100), we arrive at
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(B.104) gxt=0 inv—o.

The associated jump conditions have already been expressed by Eqs (B.95), and
(B.100),. The substitution of (B.75) and (B.62) into (B.104) yields

(B.105) M=t ¢ =1,

which is the expression for Cauchy’s second law of motion.
To conclude, let us express Cauchy’s first law of motion in terms of the.
physical components of vectors and tensors. Equation (B.103), will read

(B.106) r + {ml 1} " — {,:" 1} '+ 08u(f —d) =

Vectors f and @’ are expressed in terms of the physical components f* and a* in
Eq. (A.70),, the stress tensor X, = 7/ in terms of the physical components /¥,
in Eq. (A.76),. If we now use Eq. (A.94), Eq. (B.106) can be modified to read

3 12
(B.107) Z {ﬁ;[zm‘“——————&))l 2] + 1, ® ((;’:))l, il og ()] —

’ m (g Y ')‘ : _
- le I:{[ ’71} (k)‘ )(g::")l ’jI (gl\/\)]m [fk) a(k)]} a 0

This equation is valid in any curvilinear coordinate system provided the stress
tensor is symmetric. If the curvilinear coordmates are orthogonal, Eq. (B.107)
converts to Eq. (A.160).

B.2.4. Equations of motion in the reference coordinate system

Cauchy’s equations of motion have been expressed in terms of Euler’s coor-
dinates. However, in many cases it is convenient to formulate the problem in the
reference (Lagrange’s) coordinate system.

Let us now, therefore, express the equations of motion in the reference system
X%, Equation (B.96) followed from the law of mass conservation:

(B.108) o =0J, J=(g/G)'"%, j=det(x).

Let us introduce the stress vector T at spatial point x and time ¢ relative to the
underformed surface dA,, located at point X = X(x, ):

(B.109) t,da = tda, = T"dA4,.
By using Eq. (B.71) we obtain
(B.110) t=J KT TN =Xk

Let us introduce the Piola-Kirchhoff pseudostress tensor TX and T** by
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(B.lll) TK=T'Klgl=]1KfoLg1.
Equations (B.110) and (B.75) then yield
(B.112) ™ = JXx* ¢,

T* = TMXE = JX¥, X",

Equations (B.109) and (B.111), indicate that 7% expresses the stress at x measu-
red per unit undeformed area at X = X(x,t). From (B.112) it also follows that

(B.113) =T Xk TR = gk X TR

The equations of motion (B.102) can be expressed in terms of the components

T as
k
(B.114)  TH, + T’"”{m ,}x’,x+ T""{LLK} + off —d)=0.

If we introduce total covariant derivatives of the two-point tensor field 7%(X, x)
— refer to Supplement A — Eq. (B.114) can be expressed in a more consise form

(B.115) T, + o(ff —a) =0.
Cauchy’s second law of motion now has a* more complicated form,
(B.116) T, = T .
The equations of motion, expressed in terms of the components 7%, now read
(B.117) (T¥ ) g+ ({mk 1} X" g+
+ {MMK}x",L) T + ooff* — d) =0,
T = Tk,

It is easy to prove that, if the deformations are small, there is no difference
between the equations of motion expressed in Euler’s and Lagrange’s coordina-
tes. '

To be able to express the jump conditions in the reference system, we shall
first derive the relation for the external normals n and N of the deformed and
undeformed surfaces s and S. With a view to (B.71) we have

(B.118) da, = JXX,dAy.
However, )
(B.119) n, = da,/da = da,/(dd'da)"?,

Ny = dA,/d4 = dA,/(d4*dA4,)'"",
and, therefore,
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(B.120) n, = JX*,NydA/da.
By using (B.118) we obtain

(B.121) dA/da = J ' (C*ENN,) "2,
where

(B.122) CK = g x*, x*,

is Piola’s deformation tensor. Finally, we obtain
(B.123) n, = (CX-NyN,)" "2 X" N,,.

By substituting Eqs (B.109) and (B.120) into (B.95), and (B 100),, we arrive
at the jump conditions in the reference system:

(B.124) [Qo(v - V‘)XKANK(;A:I =0 on X,
al-
k K d4
(B.125) [[gov(v - V)X~ TK]NKd ] =0 on X,

At a solid surface of discontinuity (solid elastic substance — solid elastic
substance boundary) it also holds that

(B.126) [da]* = [dA]* =0

and conditions (B.124) and (B.125) can be expressed as
(B.127) [0(t* — V)XX,]* Ny=0 on Z,
(B.128) [oo¥(t* — V) X*, — T|* Ny=0 on .

However, at a liquid surface of discontinuity (solid elastic substance — liquid
boundary) only the following holds (see Fig. B6):

(B.129) [da]* =0

Fig. B6. Liquid boundary before and after deformation.
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and conditions (B.124) and (B.125) can be expressed as
(B.130) [eo(* — V) X*,dA]* =0 on %,
(B.131) Hoov(v* — V) X*, — ] NydA): =0 on X.

SUPPLEMENT C. LIMITING VALUE OF FUNCTION z,(x)
Equation (8.10) defines function z,(x),

(C.1) Zy(X) = Xy 1 1 (X)Jn(X)
where j,(x) is a spherical Bessel function of the 1st kind,

€2 ) = \/ (£)nss0

and J,(x) is Bassel's function of the 1st kind. Let us seek to determine the
limiting value of function z,(x) for n — oo for a fixed value of x. According to

(1],

. 1 ex\’
(C.3) lim J,(x) = (—-) for fixed x,
n-» o ( ) \/(21tX) 2n

where e = 2.718 281 828. This yields the limiting value of function z,(x) for a
fixed x,

. ex? (n+%)"+'
C4 lim z,(x) = —z) .
©4 im a0 =20

However, according to [125], for any finite number a

(C.5) lim (1 + a/n)" = €.

Equation (C.4) can then be modified to read
1 1Y
14+ — (1 + —)
ext . 2n .. © 2n
lim lim

3y +i"w(l +‘3‘)
2n

(C.6) lim z,,(x) =

The first limiting value on the r.h.s. of (C.6) is equal to 1, the second limit is 1 Je.
Finally,

C.7 lim z,(x) = .
€7 fim ) = 27
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