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Summary: Using general curvilinear coordinates, the fundamental relations of continuum
mechanics have briefly been derived. Description in terms of Lagrange’s and Euler’s coordinates was
distinguished on principle. This mathematical and physical method was used to derive the equations of
motion and boundary conditions of elastic oscillations of a body prestressed by finite static stresses. It
is assumed that the free oscillations cause small deviations from equilibrium position, such that the
tensor of finite deformations can be approximated by the tensor of small deformations. The expression
of boundary conditions at a fluid boundary, using Lagrange’s description, is relatively complicated.
From the point of view of this theory, the case of free elastic gravitational oscillations, treated for a
general model of the Earth, is particular.

1. INTRODUCTION

Considerable attention is being devoted to the problems of free oscillations of the Earth in
geophysics from the point of view of observation techniques, recording and processing, as well as
from the point of view of theoretical study of the free oscillations of the Earth. One of the main
reasons for this is that the free oscillations of the Earth have expanded the interval of periods of
seismic elastic waves roughly from periods of 5 mins to 1 hour. The interval of short periods already
partly covers the interval of long-period seismic surface waves, whereas the lohgest eigenperiods are
close to the values of periods of Earth tides.

By observing the free oscillations of the Earth, [5, 6, 16—20, 26, 27, 29, 47, 48, 53—55, 62, 63,
87,92, 105, 108, 110, 120, 128, 129, 135, 138], new data have been obtained on the internal structure
of the Earth, in particular on the radial density distribution within the Earth. By solving the inverse
problem of free oscillations, the Earth model with a solid inner core has again been justified [49, 52,
54}. The positions of the inner core — outer core and core — mantle boundaries were determined
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more accurately [50]. The radial variation of the density and velocity of seismic waves was deter-
mined in the whole body, inclusive the low-velocity channel in the upper mantle [10, 32, 49, 50, 70,
75, 88, 93, 94, 106, 107, 122, 143].

The Earth’s free oscillations are oscillations of the elastic Earth bounded, with respect to the
propagation of elastic waves, by the outer boundary formed by the Earth’s surface. The oscillations
are generated by severe earthquakes. There are two fundamental types of free oscillations for the
spherically symmetric, non-rotating, isotropic, lmearly elastic model of the Earth (hereinafter
referred to as the SNREI Earth model):

1. Toroidal oscillations which are characterized by the displacement vector having only hori-
zontal components non-zero, and also by the volume dilatation being zero. From this it immediately
follows that these oscillations do not perturb the gravitational field of the Earth and that they cannot
be recorded by gravity meters. They are recorded only by means of long-period seismographs and
strain-seismographs. These types of oscillations are only related to a solid elastic medium and,
therefore, toroidal oscillations “propagate’ only through the Earth’s mantle and crust.

2. Spheroidal oscillations for which only the radial component of the rotation of the displace-
ment vector is zero. These oscillations perturb the gravitational field of the Earth; therefore, they
can be recorded not only by means of long-period seismographs and strain-seismographs, but also
by means of tide gravity meters. These types of oscillations occur not only in a solid, but also a fluid
elastic medium and, therefore, spheroidal oscillations ‘“‘propagate” through the whole of the Earth’s
body.

The components of the displacement vector of both types of free oscillations and the additional
gravitational potential can be described by the spherical function Y,,(3, @), or by its gradient and
a function of the coordinate r.

An important property of the free oscillations of the Earth is that, for a given mode, the
maximum amplitudes of the free oscillations move from the central regions of the Earth to the
surface with increasing n. This means that the various intervals of periods of free oscillations are
determined by the properties of the various regions within the Earth. The free oscillations of the
Earth, therefore, enable us to study the physical properties of the Earth not only mtegrally, like the
Earth tides, but also differentially. ‘

There is a direct relation between the free oscillations of higher orders and long-period surface
waves. For example, it can be proved [9, 27, 127] that, for short-period free oscillations of the
fundamental mode 25 < n < 200 (50 < T < 300), gravitational forces can be neglected and the
Earth may be approximated by a layered halfspace. Spheroidal oscillations then reduce to Rayleigh
waves and toroidal oscillations to Love waves. :

The free oscillations of the Earth can be classified with regard to their amplitudes, on the one
hand, and to their periods, on the other. The former aspect is prevalently determined by the
properties of the source, the latter depends on the internal structure of the Earth.

The objective of this study is

a) to present a detailed theoretical interpretation of the free oscillations of the Earth, particular-
ly as regards their periods;

b) to process the studied problem numerically on a computer;

¢) to test the relevant programs by computing the free periods and eigenfunctions for the given
theoretical SNREI Earth model.

This study has nine chapters, three supplements, a list of references and two appendices.
Chapter 1 is devoted to the introduction into the problems of free oscillations of the Earth.
Chapter 2 presents the equations of motion derived in general curvilinear coordinates and the
boundary conditions of elastic oscillations of a body pre-stressed by finite static stresses. The
relations which have been derived, are expressed in component as well as vectorial form.

Results specified for the free oscillations of a general model of the Earth are derived in Chapter 3.
A rotating, inhomogeneous model of the Earth is considered, composed of solid and liquid regions.
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Chapter 4 is devoted to the equations of motion and boundary conditioas of the free oscillations
of the SNREI Earth model. It is proved that the wave field of the free oscillations for this
model can be resolved precisely into two types of oscillations — toroidal and spheroidal. The syt‘gems
of differential equations of the individual types of free oscillations are then derived together with'the
boundary conditions. It was found advantageous to introduce new variable functions. One special
type of spheroidal oscillations with n = 0, so-called radial oscillations, is also discussed.

In Chapter 5, we deal with the free oscillations of a homogeneous Earth m¥del. In this casse, the
eigenfunctions of the oscillations can be expressed analytically in terms of Bessel’s spherical
functions, or their combinations. Both types of oscillations are again studied. These problems are
particularly important for the matrix solution of free oscillations and for defining the initial values
of the numerical integration of the systems of .differential equations for free oscillations. The
expansions of the eigenfunctions of sphe:oxda}"@scnllatlons in the neighbourhood of the origin
(Earth’s centre) for the SNREI Earth mqge! are derived in Chapter 6. The solutions derived for a
solid and liquid medium are usc{um particularly in defining the initial values of numerical integration
of equations of motions in the nezghbourhood of the Earth’s cfentre for radlal or spheroidal
oscillations of low orders.

The variation method used to determine the roots of the secular function for the SNREI Earth
model is derived in Chapter 7. The result is a relation for computing an improved value of the
eigenfrequency with the aid of the tested function and of the eigenfunctions computed for the tested
frequency. Chapter 8 describes the method of numerical solution of the system of ordinary differen-
tial equations for the free oscillations of the SNREI Earth model. The numerical integration was
carried out using the Runge—Kutta method of the 4th order. Some of the eigenperiods of model
1066A are tabulated in the second part of this chapter. The conclusion summarizes the most
important results achieved in this study.

Supplement A is devoted to tensors. The tensors are introduced with the aid of the invariant
properties of coordinate transformation. Some of the relations of tensor algebra have also been
derived. Invariant differential operators have been introduced by means of covariant partial deriva-
tives. The general relations are specified in orthogonal curvilinear coordinates. These coordinates
have also been used to express the most important tensors occurring in the theory of elasticity.

Supplement B gives a brief recapitulation of the fundamental relations of continuum mechanics.
Strain geometry is described with the aid of differential geometry. The equations of motion ¢

continuum mechanics are postulated in integral and differential form. On principle, the description
in Lagrange coordinates is distinguished from that in Euler coordinates. The limiting quotient of
two Bessel spherical functions is derived in Supplement C.

To conclude, I should like to thank Prof. K. P&¢ for his valuable help and constant interest
in this work.

2. SMALL ELASTIC MOTIONS IN A MEDIUM WITH FINITE STATIC STRESSES

In this Section we derive the fundamental equations, i.e. the equations of
motion and boundary configurations of small elastic vibrations in a medium
with finite static stress. The general problem of infinitesimal displacements
superimposed on a large elastic deformation has been tackled by many inves-
tigators. Here we mention only a few: Biot {25], Dahlen [42], Eringen and
Suhubi [59], Truesdell and Noll [139].
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2.1. Equations of motion

Consider a general inhomogeneous elastic body. Assume that, in the initial
unstrained configuration, no forces act on the body, and that no elastic displace-
ments are generated within it or on its surface. We shall say that the body is in
its natural configuration B,. Its volume and surface will be denoted by V, and
Sy, respectively.

Let us also assume that, due to finite static stress which will begin to act a
particular instant, the body will change from its natural configuration B, to
strained configuration B. Assume that in this configuration equilibrium is again
established between the acting static forces and the internal stresses. In the
strained configuration B we shall denote the volume of the elastic body by ¥ and
its surface by S. Let us consider configuration B as reference, i.e. the equations
of motion and boundary conditions are referred to this configuration.

We shall describe the position of a mass particle in natural configuration B,
in terms of the curvilinear coordinates X!, X2, X?, and in the reference configura-
tion B in terms of the curvilinear coordinates x', x%, x>. The static deformation
from configuration B, to configuration B is described by the equations

2.1) x=x(X), X=X(x).
Assume that the Jacobian
2.2) Jo = det (0x*/3 X%)

is continuous and different from zero within a certain neighbourhood of point

Xx.

The assumption that the strained configuration B is equilibrium, yields the
following equilibrium conditions:

@3 divg+ 0,6 =0 inV,
ix + Cofouy =0 inV,

where t, is Cauchy’s tensor of initial static stress, g, is the density of material in
configuration B, £ is the initial body force per unit mass in configuration B. Note
that the indices following the semi-colon or comma are used to denote covariant

partial derivatives or “ordinary” partial derivatives with respect to x*, if the
- indices are lower-case letters, and with respect to X, if the indices are capital
letters.

We now consider a time- and space-dependent field of additional elastic stress
which is superimposed on the initial static stress. Assume that the additional
elastic stress is small compared to the initial static stress. We restrict ourselves
to the linear theory of elasticity, i.e. we assume that the field of displacement and
strain of configuration B due to the elastic stress are small. In order to carry out
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the linearization of the problem properly, we shall express the displacement
vector as u(x, t), where ¢ is a small parameter.

The displacement field deforms the body from reference configuration B into
another time-dependent configuration B’(r) with volume V’(#) and surface S'(#).
Assuming that the deformations are small, volumes ¥ and V’(¢) will be similar.
The coordinates of the mass particle in configuration B'(#) with respect to the
reference configuration B are (se¢ Fig. 1)

Fig. 1. Small motion superimposed on large static pre-stress.

(2.4) X = x+ cu(x, ).

We shall not introduce. a new curvilinear coordinate system for the strained
configuration B'(7), but we shall refer all the quantities to the curvilinear system
describing configuration B, i.e. ‘

(2.5 x* = xk ¥ = Xk,

This also means that the basis vectors, the determinants of metric tensors and
Jacobians in configurations B and B'(z) are identical,

2.6) Ie=0.8=g,7=j.
Equation (2.4) in terms of components is expressed as
2.7 x’”=x”‘=#‘+sz/‘(x,t)=#’+eu"’(x,t)=x"’+su”"()(,t).

The stress vector T* in B'(#), referred to unit area in B, is characterized by the
first Piola—Kirchhoff pseudostensor 7*,. With a view to (B111), and (2.5),

(2.8) raTh g =Tk,
which means that
2.9 T, = T*,.
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According to our assumption, the additional elastic stress is small compared
with the initial static stress. Consequently, with an accuracy of the quantities of
the order of £ we may put

(2.10) T(x, 1) = t,(x) + €T(x, 0,
Tkl(xs t) = tgl(x) + ngl(x9 t) s

where €¥(x,7) is the increment of the Piola—Kirchhoff tensor of stress T(x, ?)
with respect to configuration B due to the infinitesimal displacement eu.
The stress vector in B'(f), referred to unit area in B’(f) is characterized by

Cauchy’s stress tensor t. The expression for it in terms of tensor T follows from
(B.113);:

(2.11) =)t @x*px") T, .
Taking into consideration Egs (2.5) and (2.9),

2.12) &, =j @x*pxm) T,

where j is the small strain Jacobian, i.e.

(2.13) j =7 = det(0x™[0x") = det (Ox™/dx").

If we use (2.7) in (2.13) and neglect quadratic and higher terms in &, we arrive
at

(2.14) j=1+el,, j't=1—eu,,
because
(2.15) ox*jox! = 8, + et,.

If, according to (A113), we defined the gradient of the displacement vector #in
terms of tensor H, )

(2.16) HY =ut,
H=gradu=y*g.g = (gradu),0.9' = H,0:¢,

where g, g is the dyadic product of the basis vectors in configuration B, Eq.
(2.15) can be expressed as .

@.17) -~ oxMox =8 +eHt
If we use Eqs (2.14), and (2.17), Eq. (2.12) can be approximated by the relations .
(2.18) * =1 +_8?‘,,
t=1t, + &t,
in which the increment of Cauchy’s stress tensor ¥ is given by
(2.19) =T+ H}re—tH",

t=T+H.t{, - (trH)Y,.
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If we express the latter relations in terms of the displacement vector u, we obtain

(220) {kl = Tk! + uk;mtg; - tlélum;m’
T=T+ (grad )".t, — (diva)t,.

According to (B.115), the equations of motion in reference system B read

(2.21) Th(x 0 + olf (X, ) —a',(x,0] =0,
in which the linearized relation for acceleration (B.101) is
(2.22) a'y = 0%, [0 = Q%u,/or.
According to (A.168),

(2.23) Thyw=Try + TF X .

Since the second term on the r.h.s. of Eq. (2.23) is identically equal to zero and
since (2.9) holds true,

(224) Tkl':k = Tkl;k'
If we now consider Eq. (2.5), the equation of motion (2.21) will become
(2.25) Tkl;k + Qof; = 800 azu[/atz,

divT + g, = £0,0%u/or.

Taylor’s expansion of bo;iy force fi(x', 1) in the neighbourhood of point x,
retaining terms of the order of &, reads

(2.26), JIX 1) = fi(x, 1) + df foxH ik (x, 1) + &, 1) =
= fu(X) + &[(grad f)d,uCx, 1) + fi(x, 1)],
where f(x, {) is the additional body force per unit mass which may be generated

by elastic oscillations, e.g. disturbances of the gravitional potential due to the
displacement of masses under elastic oscillations. In vectorial for (2.26), reads

(2.26), (X, 1) = £,(0) + e[u(x, 1) grad (%) + Kx, 7)].

If we substitute from (2.10) and (2.26) into the equation of motion (2.25) anc
apply the equilibrium condition (2.3), we arrive at the equations of motion in
reference system B for the increment of the Piola—Kirchhoff tensor ¥,

.27 Tk,;k + oo(fouzt* + 1) = 0, 0%u,/0¢?
divT + gy(u.grad £, + H = g, dufor.

By using Eqs (2.3), (2.20) and (A.1 13), we can express the equations of motion
(2.27) in terms of the increment of Cauchy’s stress tensor t and of the initial static
stress t;, .
(2.28) divt — div{(grad &)".4,] + graddivu.t, +

+ oo(u.grad f — divuf, + H = g,0%u/ot.
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The equations of motion derived above do not depend on the type of
material. However, the stress increments T and t can only be determined after
the rheological model of the material has been defined. Below we shall study
so-called hyperelastic materials for which [56, 59]

(2.29) Tk[ = Boklm” l[n’m ’

Bt = Cof a4 815,
here, C,¥ ", are the elastic coefficients of the body in natural configuration B,),
for which the following symmetry holds:

(2-30) . Coklmn = COIkmn = C()klnm = Comnkl'

Thus, the elastic 4th-order tensor C, only has 21 independent components. By
substituting (2.29) into (2.20) we obtain the increment of Cauchy’s stress tensor
in configuration B'(¢),

(2.31) t-kl = (/wclm M;m&
Cr=Cfm+ 8k, + &, 1o — 8™, 15k,

where C*/",, are the elastic coefficients of the body in configuration B. For a
general anisotropic elastic body with the initial anisotropic static stress, tensor
C has 27 independent components: 21 independent components of tensor C, and
6 independent components of tensor t,.

Let us investigate the special case of an elastic body which is isotropic in
natural configuration B,, i.e. C, is an isotropic 4th-order tensor,

(2:32) Co* " = 28,8, + (8%, 8" + £ g1),

where 4, and 4, are Lamé’s elastic coefficients of the body in natural configura-
tion B,. If this body is transformed to configuration B by an anisotropic finite
static stress, Eqs (2.31), and (2.32) indicate that it loses its isotropic properties
and begins to manifest itself as an anisotropic body. If, in particular, the initial
static stres is hydrostatic,

(2.33) : b= —p(M1,
t' = —py(X) 8%,

the body will preserve its isotropy even in strained configuration B, because €
is an isotropic 4th-order tensor. _
In the next part of this study, we shall study the free oscillations of gravitating
bodies, i.e. of bodies whose oscillations do not allow its inherent gravitational
field to be neglected. In these cases, in which the initial statis stress tensor L is
given by the inherent gravitation of a body, it is meaningless to refer the
equation of motions to the natural configuration B, because it does not exist. It
is more expedient and more advantageous, especially for the boundary con-
ditions, to refer the equations of motion to reference configuration B, and to
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consider the coefficients of tensor € as independent. Equation (2.20) yields the
relation for the increment of the Piola—Kirchhoff stress tensor,

(2.34) Tkl = Aklm" ll";m >
Aklmn = Cklmn + 8mn tOkl - 6kn tOlm ’

where C*", are the independent elastic coefficients of the body in con-
figuration B. :
In the special case when the body is isotropic in configuration B,

(2.35) M= A84,8", + (s, 8" + g"g,),

A and u being Lamé’s coefficifents of body B, the increment of Cauchy’s stress
tensor in B'(¢) /

(2.36) 7 = Aum, 8, + pt, + u®).

If we now introduce the tensor of small strains e = ¢*,g,g’ by the relations

(2.37) e=1}[gradu + (grad v)"],
& = %(“k;z-,\'*' u),

the increment of Cauchy’s stress tensor becomes

(2.38) T=Adivul +2pue,
t-kl= lu"",,,sk,-i- 2;tek,.

2.2. Boundary conditions

Assume that the physical properties of an elastic body vary discontinuously
over surface o, in natural configuration. Assume that, due to the initial stress t,,
- surface g, will change to surface o and, due to elastic motions, surface o will
change to surface o’(z). Surface o’(¢) is thus moving with velocity v = du/dz. In
Supplement B it is shown that equations of motion (2.27) and/or (2.28) must be
complemented with boundary conditions on this surface of discontinuity. We
“shall again express the boundary conditions in the reference configuration, i.e.
on surface o.
Three types of boundaries are important for the problems being studied:
a) solid elastic medium — solid elastic medium, the so-called solid boundary;
b) solid elastic medium — liquid elastic medium, the so-called liquid boundary;
¢) solid elastic medium or liquid elastic medium — free space, the so-called free
boundary.
Boundary condition (B.100), for Cauchy’s initial static stress tensor t, reads

(2.39) . nt]t=0 ato,
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if surface o represents a solid or liquid boundary. The symbol []* indicates a
jump of the function in brackets at the boundary, n is the unit vector of the
normal external to surface o. There is yet another boundary condition for vector
n.t, at the liquid boundary o. Let us assume that the shear motion along the
liquid boundary o takes place without friction. It follows that the tangential
component of the stress vector n.t, must be zero,

(2.40) nt,.(1—nn)=0.

If we denote the projection of the stress vector n.t, along the normal n by the
symbol m,,

(2.41) H=n.t.n,
condition (2.40) can be expressed as
242) nt, = mn.

The two following boundary conditions must be satisfied for elastic oscilla-
tions:

1. For the axiom of body continuity to be preserved, i.e. to avoid creating
cavities at the boundary or, on the contrary, to avoid concentrations of material
at the boundary, on the deformed surface o’(¢)

a) the displacement vector u must be continuous, if surface o/(¢) is a sohd
boundary,

b) the normal component of displacement must be continuous, if ¢’(¢) is a
liquid boundary. Moreover, both tangential components of the displacement
vector may, of course, be discontinuous across the boundary, because the liquid
medium may slip along the boundary. Moreover, the effect of friction is not
considered under slipping. With a view to (2.4) and with an accuracy of the
quantities of the order of ¢, we may adopt the approximation

(2.43) cu(x) = eu(x).

The conditions given for the displacement vector u may be expressed mathemati-
cally as

(2.44) Wt =0 at the solid boundary o, ;
[p.ult =0 at the liquid boundary o.

No boundary conditions are imposed on the displacement vector at a free
boundary.

2. For boundary condition (B.100), to be satisfied, i.e. for the pressure to be
continuous at the boundary and to avoid the accumulation of surface shear
forces at the boundary, Cauchy’s stress vector a’ .t must be continous on the
surface of discontinuity o’(¢),  being the unit vector of the normal external to
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surface o’(#) and t Cauchy’s stress tensor in strained configuration B'(f). The
boundary condition at the solid and liquid boundary is

(2.45) n.r=0 at o@).

As proved in Section B.2.4, boundary condition (2.45) is equivalent to the
condition '

(2.46) [T}in. =0 at the solid boundary o,
[T*n,da)t =0 at the liquid boundary o.

By applying (2.8) these conditions can be changed to read

(2.47) n.[T]f=0 at the solid boundary o,
[n.Tda]lt =0  at the liquid boundary o.

If we substitute for the Piola—Kirchhoff stress tensor T from (2.10) and make
use of condition (2.39), boundary condition (2.47), will adopt the final form _

(2.48) n[fF=0 at the solid boundary o.

At the liquid boundary the situation is more complicated. Boundary con-
dition (2.47), now reads

(2.49) [(n.t, + n.T)da]* =0.

Let us select elementary surfaces da* with the radius-vectors x* so that they are
located on opposite sides of the liquid boundary, and so that they are equal at
the strained boundary o’(¢) (see Fig. B.6),

(2.50) da'*(t)=da’~ (1) = da,
X =x"+eut=x +eu .
Since vector n. 14, is cqntinuoué on surface o, Taylor’s expansion ap to the order
of magnitude of the displacement vector can be expressed as
(2.51) n* &5 —n .ty = —¢glu]t .grad,(n* .t)),
n* .7 —n 7 = —¢[u]t .grad,(n" .Y;),

“where grad, is the surface gradient, i.e. the projection of operator grad onto

surface o, _
(2.52) grad, = (I — nn) . grad = grad — n(n.grad).

Further properties of operator grad, are derived in Section A.11.
From Eq. (2.51) it follows that

(2.53) [n.x])E = —¢lu]* . grad,(n.t,),

where grad, (n.4)) is considered either at point x* or at point x~.
To be able to modify condition (2.49), we must first derive the geometric
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relation between the elementary surfaces at the unstrained and strained boun-
daries. According to (B.121),

(2.59) da/da’ = () ' g x* o X'y mem) 'R
With a view to Egs (2.5) and (2.6),
(2.55) da/da’ = j~'[g" (0x'/Ox™*) (0x*/0x") n,n,} "7

and by substituting from (2.14), and (2.15) we arrive at
(2.56) da/da’ = (1 — eu”,) [g¥ (8, — ew' ) (8", — ew’ ) n,n} '~
After some minor algebra we obtain the relations

(2.57) da/da’ = l - E(If;k - uk;,nknl),
da/da’ =1 — ¢(divu— n.gradu.n),

in which we have neglected the quadratic and higher terms in &. We now rewrite
Eq. (2.57) in terms of tensor H = grad u and its normal component #,,

(2.58) hy=n.H.n,

in the following form,

(2.59) da/da’ =1 — g(trH — hy),

an then in terms of the surface divergence of the displacement vector u,
(2.60) divvu=divu—n.gradu.n=trH — h,,

in the following form,

(2.61) da/da’ = 1 — ediv,u.

Let us now go back to condition (2.49). If we substitute into this condition
from (2.53) and (2.61) and if we neglect the quadratic terms in &, we arrive at

(2.62) [n.T —div,u(n.t,) — u.grad,(n.t)]* =0.

The linearized boundary condition (2.62) we have just derived expresses the
continuity of Cauchy’s stress vector at any displacement boundary and was also
derived in [42]. We are interested in a special type of displacement boundary at
which no friction occurs, i.e. an ideal liquid boundary. If no friction occurs
along this boundary, Cauchy’s stress vector has the direction of the vector of
normal o at point x/, i.e. -

2.63) .9.0—nm)=0.

To be able to express this condition at the unstrained boundary o, we must
first derive' the geometric relation between the unit normal n and o’ at the
unstrained and strained boundaries. According to (B.120),
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(2.64) me = j x* . ndajda’.
With a.view to Egs (2.5) and (2.6),
(2.65) n, = j(Ox'/9x"*)n,da/da’

and, by substituting from (2.14),, (2.15) and (2.57,, we obtain
(2.66) m=>0+e", )0 —cady) [1— &W, — v nnn,.
After some minor algebra we arrive at the relations

(2.67) = n, — €l on — w ' n),
n=n—¢MH.n—hyn),

in which we have neglected the quadratic and higher terms in £&. We can now

rewrite Eqgs (2.67) in terms of the surface gradient of the displacement vector u,

(2.68) gradu=(I— nn).gradu =

=gradu — nn.grad u = gradu — n(n.grad u),
in the following form:
(2.69) n =n-— ggrad.u.n.

Let us go back to condition (2.63). Let us express the termas occuring in this
condition, using (2.18), (2.20) and (2.67) with the accuracy of the quantities of
the order of &: :

(2.70) nt=nt+¢enT—(rH —h)(n.v)],
nn =nn—¢[H.nn+nH.n)— 2k nn].

By substituting into (2.63) from (2.70) and using condition (2.40) and (2.42), we
obtain condition (2.63) expressed at the unstrained boundary,

.71 [n.T+ mH.n—hyn)].( — pn) =0,
which can further be modified using the operator grad,,
2.72) [n.T + mgradu.nl.() — An) = 0.

By making use of condition (2.42) in the linearized condition (2.62), we
obtain

2.73) [n.T — ny(div,u) n — u.grad, (z, n))* = 0.

Modification of the last equation with the aid of Eqs (A.184) yields
2.749) [n.T — div,(myu)n — myu.grad,nj* = 0.

With a view to condition (2.44),, which requires the normal component of the
displacement vector u to be continuous, the changes in function n.u must be
equally large along the boundary, i.e.
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2.75) [grad,(n.w)]* =0.

If we expand (2.75) accordihg to (A.184) and make use of the symmetry of tensor
grad,n, (2.75) can be expressed as

(2.76) [u.grad,n + grad,u.n}f = 0.

If we substitute for the last term in condition (2.74) form (2.76) and make use
of the continuity of the normal stress m,, condition (2.74) becomes

.77 [n.T — div,(m,u)n + mygrad,u. n]t =0,

By comparing conditions (2.72) and (2.77) we find that the vector

(2.78) b=n.T—div(m,uyn + mygrad,u.n

must be continuous at and normal to the unstrained liquid boundary o,
@.79) . [B* =0, b= n(n.b):

To conclude, we shall review the boundary conditions expressed in terms of
the vector b at the individual types of boundaries:

*

(2.80) solid boundary: [ulf =0,
(Bl =0,
liquid boundary: [p.ulf =0,
[b]* =0, \
b=n(n.b), '

free boundary: b=0.

3. EQUATIONS OF MOTION AND BOUNDARY CONDITIONS
OF FREE OSCILLATIONS
OF A GENERAL MODEL OF THE EARTH

In this Section we derive the Lagrangian equations of motion and boundary
conditions bf free oscillations of a completely general Earth model with interior
fluid-solid boundaries. This problem was also discussed in [40—42, 45, 145,
146].

Consider a general, inhomogeneous, elastic model of the Earth, consisting of
solid and liquid regions. The physical properties of each region are described by
continuous functions of position. These regions are separated by internal boun-
daries, which are simple, smooth, closed surfaces which do not intersect. The
internal boundaries are of two types, solid and liquid. The union of the internal
boundaries will be denoted by o. The model is bounded by an external boundary
S — a free surface. The volume of the model is V. In equilibrium configuration,
the model of the Earth rotates uniformly with the angular frequency £ about
the origin located at the Earth’s centre of gravity. The position of any particle
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in ¥ or on § will be described by radius-vector x relative to this rotating system.
The rotating equilibrium configuration B (volume of the model V, surface of the
boundary S) is considered to be the reference configuration, i.e. the equations
of motion and boundary conditions will be expressed relative to this system.
Assume gy(x), ¢,(x) and t,(x) to be the initial density, initial gravitational
potential and Cauchy’s tensor of the initial static stress of the Earth model in
configuration B. Let y(x) be the potential of the centrifugal force,

(3.1 v = -3¢ - (2.97].
The geopotential in configuration B will be denoted’ by @,
(3.2 D=0+ y.

In volume V, the initial equilibrium state of the Earth is described by the
equation

(3.3) divt, + g, £, =0,
where

.

3.4 h= —grad @,

is the initial body force per unit mass, and by Poisson’s equation for the
gravitational potential ¢,

L ]
(3.5 Vig, =4nGoy,

where G is the gravitational constant. On surface S and at the boundaries o,
these equations must be supplemented with the conditions

(3.6) . n.[t]* =0,

[¢0]t = O,
n.[grad )]t =0,

where n is the unit vector of the normal external to surface S or boundary o.

Functions g,(x) and t,(x) are zero outside the Earth model. It is also required
that the gravitational potential @, vanish in infinity. If we denote the normal
component of the initial static stress by

3.7 m=n.%.n,
at the liquid boundary also condition (2.42) must hold: \
(3.8) nt,=mn.

If an external force now begins to act on the Earth model at time 7 = t,, just
for a certain interval of time after which it stops doing so, the Earth model will
begin to perform free elastic gravitational oscillafions. The characteristic is then
the time-variable field of displacement, eu(x,f), which describes the transfer
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of the particle from equilibrium configuration B to strained configuration
B'(1) — see Eq. (2.4),

3.9 X = x4 eu(x,t).

We restrict ourselves to the linear theory of elasticity, i.e. we assume that the
strains of configuration B are siall, ¢ is then a small parameter. The displacement
field will change the volume V7(¢), as well as the surface S’'(7). At a fixed point
of the body, the oscillations will be characterized by a change of density, of the
gravity potential and of the stress tensor.

Let us first derive the relation for the change of density. From the law of mass
conservation, i.e. from the equation of continuity, follows Eq. (B.96),

(3.10) o(X) = 0u(Mj = 0(1 — &u",,) = @[l — £A(x,1)],

in which we have made use of Eq. (2.14), and g,(x) is the density prior to the
deformation in configuration B, o(x') the density after the deformation in
configuration B’(f), and A(x, ¢) is the relative change of volume. Taylor’s expan-
sion of function g(x') in the neighbourhood of point x reads

3.1 o(x) = o(x) + egrado. ul, = o(x) + sgrad o, . u,,

where we have retained the absolute term and the terms linear in & If we
compare Eqs (3.10) and (3.11), under the given linearization the density after
deformation at point x may be expressed as

(3.12) o(x, 1) = g(X) + eo,(x, 1),
where £
(3.13) oi(x, 1) = — (3 A(x, 1) — grad g,. ¥}, = —div (g, U)

is the increment of density after deformation at point x.
The geopotential d(x, ¢) after deformation at point x can be expressed as the

sum of the geopotential @,(x) before the deformation at point x and of the

increment of the geopotential @,(x, ¢) after the deformation at point x,

(3.149) _ D(x, 1) = Oy(x) + eD\(x,1),

where @,(x, ¢) is the sum of the increments of the gravitational potential and of
the potential of the centrifugal force. However, the increment of the potential of
the centrifugal force is of the order of &, i.e. a term which is not considered in
our linearization. Consequently, the increment of the geopotential is equal to
the increment of the gravitational potential,

(3.15) D(x,0) = (x,1).
The resultant potential after the deformation at point x is then
(3.16) B(x, 1) = p(x,1) + v(),
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where

3.17) o(x, 1) = @p(X) + e@i(x, 1)

is the resultant gravitational potential after deformation at point x. The incre-
ment of the grav1tat10nal potential @,(x, #) is created as a result of the gravitional
attraction of the strained volume of density g,(x,¢) and, therefore, Poisson’s
equation

(3.18) Ve =4nGo

must hold. The body force per unit mass after deformation at point x is
(3.19) f(x, 1) = f(x) + ef(x,1),

where .

(3.20) fi(x,f) = —grad ¢,(x, 1)

is the increment of the body force per unit mass after deformation at point x.
If we substitute (3.19) and (3.20) into the linearized equation of motion (2.27),
we arrive at

aZ

(3.21) go(a 3

+2.Qx2—+grad¢1+gradgrad¢0 ) divT,

where the non-symmetric 2nd-order tensor T is the increment of the Piola—
Kirchhoff stress tensor. In Eq. (3.21) we have also made use of the symmetry of
tensor grad grad @, i.e. ‘

(3.22) u.grad grad @, = gradgrad @,. u

By using (2.28) we can express the equations of motion in terms of the increment
of Cauchy s Stress tensor t,

© (O*u ou
3.23 +2.Q><—-+ rad
(3.23) oo<at2 o7 grad ¢, +

+ grad grad @,. v — divugrad d>0> =

= divt — div[(grad w)".t)] + graddivu.t,. .

The equations of motion, derived above, are independent of the rheological
model of the Earth. We shall assume the hyperelastic rheologxcal model of the
Earth for which the increment of Cauchy’s stress tensor is given by Eq. (2.31),

(324 7= O

I n¥ m>
f

where C*/", are the elastic coefficients of the Earth model in con'ﬁguration B,
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which we shall consider to be independent. According to (2.34), the increment
of the Piola—Kirchhoff stress tensor T is given by the formula

(3.25) Tkl = Aklm" u",,, s
A= O+ 8 0t — 81y
The boundary conditions for the increment of the gravitational potential
@,(x, ) can be obtained from the condition of continuity of the total gravita-
‘tional potential and of the normal component of its gradient in the Earth model

as a whole, i.e. also on the deformed surface S'(f) and surface of discontinuity
a'(t), )

(3.26) [p(X)] =0,
[ .grad’ (X))t =0,

where @(x') is the resultant gravitational potential after deformation at point x,
given by Eq. (3.17). With the accuracy of the quantities of the order of the
displacement vector it holds that

(.27) o(X)= (x) + eu.grad ¢l, = @y(x) + ¢[u. grad @y, + ¢,(0)],
(3.28) grad’ o(x') = grad o(x) + €u. grad grad ¢}, =
+ = grad @y(x) + ¢[w. grad grad ¢/, + grad @,(x)].

By taking the scalar product of Eq. (3.28) and Eq. (2.69), we obtain the normal
component of the gradient of the gravitational potential,

(3.29) ' .grad’ ¢(x') = n.grad ¢,(x) + ¢[n. u. grad gradeg|, +
+ n.grad ¢,(x) — grad,u. n. grad g,(x)].

For the real Earth, the approximate relation

(3.30) grad ¢, = (n.grad @) n.

holds true. If we substitute (3.27) and (3.29) into (3.26) and if we use conditions
(3.30), (3.6) and (2.44), i.e. also the continuity of tensor grad,u and Poison’s
equation (3.5), we can derive boundary conditions for the increment of the
gravitational potential @,(x, #) on surface S and boundary o,

(3.31) [plf=0,
[n.grado, + 4G gen.ult =0.

To these two boundary conditions for the increment of the gravitational poten-
tial @,, we also add the boundary conditions for the displacement vector and
stress tensor which we derived in Chapter 2. To conclude, let us review the
boundary conditons at the individual boundaries (compare with [146]):

(3.32) solid boundary: [ulf =0,
[b]t =0,
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liquid boundary: [n.u)t=0,

(b]Z=0,
b=(n.bn,
free boundary: b=20,
all boundaries: [@]r =0,
[gl]i =0,
where .
(3.33) b=n.T — ndiv(nu) + n,grad,u.n,

gi=n.gradp, +4nGgyn.u.

4. FREE OSCILLATIONS OF THE SNREI MODEL OF THE EARTH

The plan of this Section is as follows. We begin with derivation of the
equations of motion and boundary conditions of free oscillations of a sphe-
rically symmetric Earth. The equations of motion are then separated into two

parts-toroidal and spheroidal. Following the formulation by Alterman et al. 8]

we modify the fundamental equations for both parts into forms which are most

convenient for numerical calculations. This problem was discussed by many
authors [8, 13, 85, 118, 134].

4.1. Equations of motion and boundary conditions

To study the free oscillations of a spherically symmetric, non-rotating, per-
fectly elastic, isotropic, gravitating model of the Earth (hereinafter referred to
as the SNREI Earth model), it is advantageous to use spherical coordinates
r, 3, @ with their origin in the centre of the Earth. Assume this model to be
composed of solid and liquid concentric spherical shells, separated by internal
boundaries which are concentric spherical surfaces. The internal boundaries are
again solid and liquid. The model is bounded by an external spherical bounda-
ry — a free surface. In equilibrium unstrained configuration the Earth model
does not rotate, £2 = 0, y = 0. This equilibrium configuration B is considered

‘to be the reference system, i.e. the equations of motion, boundary conditions
and other relations will be expressed relative to this configuration B.

Assume the physical properties of the individual spherical shells to be des-
cribed by the density prior to deformation, g,(r), and by Lamé’s coefficients A(r)
and u(r) which are only functions of r, the radial distance from the centre of the
Earth model. The liquid regions are characterized by a zero parameter u.
Assume the initial static stress t, to be hydrostatic,

4.1) b= —p(N,
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where py(r) is the hydrostatic pressure prior to deformation. The quantity =,
given by Eq. (2.41), is then equal to —p,. The inital equilibrium configuration
of the Earth model is described by Eqgs (3.3) and (3.4) which, in this particular
case, read

4.2) gradp, = — g, grad ,,
dpy_ _ doy.
dr 0 dr

The derived quantities, the gravitational potential @y(r) of the equilibrium
configuration, the hydrostatic pressure p,(r) and the gravitational acceleration
prior to deformation,

d
(4.3) &, 9, 0) = —g( e, gfr) = d—“: >0,

are also functions of the radial distance r only. In this particular case, Poisson’s
equation (3.5) takes the form

@.4) %+%%=4nGQ‘,,
% + %go =4nGg,.

Boundary conditions (3.6) now reduce to

4.5) [pf =0, [@)t=0, [g]t=0.

The elastic gravitational free oscillations of the Earth model will be described
by the time-variable displacement field, u(r, f), £ now having been put equal to
unit. It is again assumed that the deformations of the model are small in the
sense that the tensor of finite strains is approximated by the tensor of small
strains. If the position of a mass particle before and after deformation is given
by the vectors r and r, with a view to (3.9) the displacement vector may be
expressed as '

4.6) u=r—r.

Note: Since spherical coordinates are orthogonal curvilinear coordinates, we shall represent tensors
or vectors by their physical components (ref. to Section A.5), because these components are the same
in orthogonal curvilinear coordinates for all kinds of tensor components. Moreover, we shall not
denote physical components by indices in parentheses, but only by covariant indices. For example,
the physical components of the displacement vector ware u,, uy, ,,; for the sake of simplicity we shall
denote them by u, v, w.

The resultant stress after deformation in the reference configuration B is
given by the Piola—fKirchhoﬂ' stress tensor T, see (2.10),
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4.7 T =t + Ty,

where the increment of the Piola—KirchhofT stress tensor T is expressed in terms
of the increment of Cauchy’s stress tensor t by Eq.-(2.20), which now reads

4.8) T =1+ pol(grad w)" — divul].

By substituting Eqs (4.1) and (4.2) into the equatlons of motion (3.21) and
(3.23), these equations can be expressed in terms 'of the inc ;ement of the
Piola—Kirchhoff stress tensor T and of the irlcrement of Cauchy’s stress tensor
1, respectively,

; ,
4.9) Qo <Z_t';! + grad ¢, + grad grad g,. u) =divt,
and

du ) =
4.10) o, & + grad @, + grad (u. grad @,) — divugrad ¢, ) = divt.

The last equation may be modified by using the increment of density g,, given
by Eq. (3.13), e K e
R’

4.11) QD%F + g, grad @, + Q, grad @, +grad (g, . grad %5 = divi.

\ ———————

It should be emphasized that Poisson’s equation (3.18),

(4.12) Ve +4n Gdiv(u) = 0. | 42 w

should be added to the equation of motion (4.9) or (4.10). .

The equations of motion, mentioned above, do not depend on the rheological
model of the Earth. We are assuming a linearly elastic and isotropic Earth
model. As already explained in Chapter 2, we consider the elastic coefficients of
the Earth model in configuration B to be independent. From these two assump-
tions it then follows that the increment of Cauchy’s stress tensor

(4.13) t=Adivul + 24E,
where E is the tensor of small strains,
4.149) ' E = }[grad u + (grad u)T].

By substituting (4.13) into (4.8) we would be able to express the increment of the
Piola—K irchhoff stress tensor. Using Eqs (A.129)—(A.133), we can express the
r.hs. of the equation of motion (4.10), |

(4.15) divt= (A + 2 p) grad Givu + divugrad A —
— protrotu + grad u.[grad u + (grad u)").
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Conditions (3.32) hold true without change for the vector of boundary con-
ditions b and scalar g, which are, in this case, expressed by the relations

(4.16) b=nf,
: . ,g]=a¢]/ar+4n690u.

4.2. Separation of the equations of motion

We have derived the equations of motion (4.9) and (4.10) for the Earth model
being considered. If we substitute from (4.15) into (4.10), the equations of
motion take the form

2.
4.17) o} [2 7 + grad o, + grad (u grad %) div ugrad (po] )
A A

= (Ah 2y)gradd1vu+ dlvugradl - div t 17
— protrot u + grad u. [grad u + (grad JI] LT '

Considering that the physical parameters g, 4, 4 are functions of coordinate r
only, we can express Eq. (4.17) for the r-component,

u )
(4.18) E_go +"'(¢1+gou) =
=(1+2 )—-—+ L [Vzu——-——(rzA) += ( + )] 4+ oSHO
dr or r dr or
where we have put A = div v and used the relation
4.19) (rotrotu), = —Vu + (,2 A) — _(gﬁ‘. + E>.
r r

We shall now apply operation rot to Eq. (4.17) and use Eq. (A.124):

2
(4.20) [6 ;;t v_ grad div u x grad %] +
du
+ grad g, x a_tz + grad ¢, + grad (u.grad ¢,) —

— div ugrad (po] =grad (A + 2 p) x graddivu +
+ graddivu x grad A — urotrotrotu —
— grad yt x rotrot u + rot {grad u.[gradu+ (grad o).
Let us express the last equdtion for the r-component only,
aZ

4.21) 90—57 = —u(rotrotrotu), + du —(gradrot u),,,
l'



where we have put @, = (rot u),. If we use the relation

2(0
4.22) (rotrotrotu), = — V2w, ( P+ >,
o r
we can express Eq. (4.21) in the following form
) 2u (6(0 > dudw,
4.23 L= 2 o, + — + + — .
*23) on MV @ o 1) dror \
We now apply the differential operator div to the equation of motion (4.17),
2 1 .
“240 [a g:: - + V*(@, + u.grad @) —

. 62
—div (div ugrad %)] + grad g, . I}é?u + grad ¢, +
+ grad (u. grad @) — div ugrad %] =

=(A+2u)V*divu + grad (A + 2 ). graddivu +
+ div(divugrad A) — grad u.rotrot u +
+ grad u. [div grad u + grad div 4] + tr {grad grad . [grad v + (grad u)"]},

where we have used the relation for vector u and the 2nd-order tensor A,

(4.25) div(u.A) = u.divAT + tr(grad u. A) .
Equation (4.24) can be further modified to read

aZ
(4.26) (o) I:Et‘; + V(@ + gou) — ——(r2 oA)]

%u 0
+d—Q°|:—_go +-—(¢1+g°u):|=(/'l.+2/1)v2A+
ar or

0A d
——A+2p+——|rPA= )
+6r A+ )+r2 r( dr

dp[ . 2 2(6u >] dudu
2% V2 -2+ (2 ) |4 oS
* dr r or r dror’

We have derived the equations of motion (4.18), (4.23) and (4.26) from the
equations of motion (4.17). Equation (4.23) only contains the variable w,,
whereas the remaining two equations contain the variables # and A. It folows
that the general solution of the equations of motion of the free oscillations of
the SNREI Earth model consists of two parts. From the part for which « and A
are zero, whereas w, satisfies Eq. (4.23), and from the part for which @, is zero,
whereas u and A satisfy Eq. (4.18) and Eq. (4.26). In the latter case, Poisson’s
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equation (4.12) for the additional potential @, is added to the equations of
motion (4.18) and (4.26).

43. Toroidal free oscillations

Let us first study the oscillations for which u and A are equal to zero. Such
oscillations are referred to as toroidal, because the radial component of the
displacement vector is equal to zero (the horizontal components are non-zero),
or also as torsional, because the volume dilatation A is equal to zero. Since no
radial motions occur and the volume changes are zero, it follows from (3.13) that
toroidal oscillations are not accompanied by changes of densxty, o: = 0, nor by
disturbances of the gravitational potential, ¢, = 0.

Using the relation u = 0, the equation A = 0 can be expressed in spherical
coordinates, see (A.152), as follows: '

@27 ovsing  Ow_
09 O
This yields the components of the displacement vector,
(4.28) =t &, Y
sin $0¢ - 09

where f'is any function of the coordinates and time. Since we are studying the
free oscillations of a body of finite dimensions, the-eigenfrequencies will be
discrete values. We, therefore, resolve the displacement vector into an infinity
sum of normal oscillations with discrete angular frequencies @,, i.e.

4.29) fr,8,0,0) =3 F(r,9 p)e™.

‘ n=0
For the SNREI Earth model, let us seek to determine the functions F,(r, .9, )
in a partly separated form, .
(4.30) F(r,9,0) = W,(n)S.(3 9,

where S,(8, @) is a spherical function of the nth degree which satisfies the
differential equation

431 V2S.(3,9) = —n(n + 1)S,(3,9). ‘

The symbol /% represents the angular part of Laplace’s operator V2 By using
Eq. (A.154), we can express (4.31) as

2 \
4.32) _l_P_(sin .9-6-“3) +L S, e+ 1S, =0.
i 098/ sin’ 8 0¢?

sin 309
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To summarize, we are seeking to determine function f(r, 9, 0, t) in the following
form: : :

4.33) £, 9,0,0) = f W,(r) 5,05, 9) ™.

It also holds that

(4.34) Sa(9, @) = Z Yor(5, 0)

m= —n

where Y,.(39, ) is a fully normalized spherical function of degree n and order
m, expressed in terms of the associated Legendre function P (cosS) by the
formula [1, 12, 77]

i 2n+1(n—m)!]
(4.35) Y..(90) =e "\/[ (et m)! P,.(cos 9.

If we substitute expansion (4.33) into Eq. (4.28), we can express the com-
ponents of the displacement vector for a single given normal toroidal oscillations
with the angular frequency w, in the following norm:

- (4.36) u=9,
o= WD 0) i fiyy
sing do

0S:(%, @) jomt
_—Wn ldh ¢
n——= 53 By

Now, substitute (4.36) into the equation of motion (4.23) and use Eq. (4.32). For
n # 0 this yields an ordinary 2nd-order differential equation for function W, (1),

dw. 2dW) dp(dW,, W,,)
4.37 + + (ST g
(4.37) (dr2 r dr dr\ dr r

+[Qowﬁ-&;—l)’{|Wn'=0-

The components of the increment of Cauchy’s stress tensor t on spherical surface
r then read

(4.38) =0,
- dW,, W,,) 1 aSn(sa ¢) iamt
o= 2pes= T ) A ¢
Hers = H ( dr sind dg
5 (dW W)aS (% ) iom
fro = SHew = —H\ TG, r 09 :

The boundary conditions for displacement vector & and for the vector of
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boundary conditions b, which is given by Eq. (4.16), are expressed by relations
(3.32).

The horizontal component of the displacement vector (the normal com-
ponent is zero) and the components 7,;and 7, of the increment of Cauchy’s stress
tensor t must be continuous across a solid undeformed boundary. This yields the
following conditions for function W,(r) at the solid boundary o:

(4.39) WMt =0,

(&) o
dr T/l

At a liquid and free boundary, the horizontal components of the displace-
ment vector may vary arbitrarily, and components 7,; and 7,, are zero at these

boundaries. This yields the following condition for function W,(r) at liquid and
free boundaries:

(4.40) ﬂ(de _”_’_) ~0.
dr r

It is advantageous to transform the ordinary 2nd-order differential equation
(4.37) for function W,(r) with boundary conditions (4.39) and (4.40) to a system
of two ordinary differentjal equations of the 1st order with simpler boundary
conditions. For this purpose we shall introduce new variables

- aw, w,
(4'41) = Wna y2=”( d - )’
r r

. where y,(r) is the radial part of horizontal displacements and y,(r) the radial part
of horizontal stresses for a given normal toroidal oscillation with frequency w,,
as

4.42) =0,
,,:N 35,(5,0) o
sing O¢ ’
aS,,(S, ¢’) iowt
W= — — el
ey
(4.43) i =0,
7, =40 (1 3S.(5,9) gion
" sing Op
0S5:(9, @) giam
=y () ——— 93 :

The ordinary 2nd-order differential equation (4.37), after substituting (4.41),
143



changes to an equivalent system of two ordinary differential equations of the st
order,

dy, 1 1

(4.44) A=y 4+,
dr r u
d —)(n+2 3
_&=[w_wﬁ]y,_%
dr r r

At a solid boundary, functions y,(r) and y,(r) must be continuous, at liquid and
free boundaries function y,(r) is arbitrary, but finite, and function y,(r) zero,

4.45) y,(r)=0.

44. Spheroidal free oscillations

We shall now deal with the second type of free oscillations for which the
r-component of the vector rotu is zero, @, = 0, but the quantities ¥ and
A = div uare non-zero. Such oscillations are referred to as spheroidal. Since the
volume dilatation is non-zero, we must also take disturbances of the gravita-
“tional potential into account. .

In spherical coordinates, equation , = 0 reads (see A.153))

(4.46) Bwsind % _o,
09 Gl

We may thus put

4.47) v=a— w-——l——az

09 sin8d¢

where f is a function of the coordinates and time. We shall again seek to
determine this function in the form of (4.33),

| (4.48) 1,9, 0,0) = i V,(r) (9, ).

Stinilarly, we seek to determine the radial displacement component and the
additional gravitational ‘potential in the form of series:
/

(4.49) u(r, 8,0,0= 3 U S8 p)e™,
n=0

0,7, 8, 0,1) = Zo F /() S,(9, pye™.

144

Q0 Teaume Génphysicues



5 -5 Lo Yy - ¢ o=
e S L “, - Y
A X o SN \,1 W

For a particular normal spheroidal oscillations' with frequency ®, the com-
ponents of the displacement vector are

(450) u= Un(r) Sn(‘99 ¢) ein).t E] . ) J k\ "
v = V,,(r) aSn('99 ¢) eiox.t’ }L_/{ o ot ty
29
= Vn(r) asn(ss ¢) eimut . I
sing O¢ ‘
and the additional gravitational potential :{‘ S BT
4.51) | o = F()S8pe=. u | (

With the aid of Eqs (4.50) it is easy to derive the formula for the relative change
of volume under strain,

4.52) . A=X,0) 55 9™,
where

gg!+_2_Ul_n(n+l)V,,
dr r r '

(4.53) X)) =

Poisson’s equation (4.12) will reduce to an ordinary 2nd-order diﬂ'eréntial
equation for function F,(r),

d&?F, 2dF, n(n+ 1)F < do,
4.54 a2 T Jn e —4nGl 0o X, + U, 2.
4.54) dr* r dr r dr

After substituting Eqs (4.50)—(4.53) into the equations of motion (4.18) and

(4.26) and by using Eq. (4.32), we arrive at SN
e A LSy LAV
T dF,
(4.55) ‘ 00 U, + 008X, — QOT_
r
: du, 4dU,
= oo— (g U)+ — (AX+2 )+[————— +
;_M%dr(go j # dr a r dr rzv
| N U, 1dVv, 3V,
+n(n + 1 (—-—-’-’———"+—")]= ,
n(n+1) o ordr 7P 0
[ o , ..
(4.56) @@V, — 0oF, — 0ugoUy + AX, 4 z w—’»"» /v :} sdlinAll
(G- e onfeo
+r—jpul———+—=—}+=]50, " 2n(n+ 1)V, |=0.
dr dr r r L //dr/‘ ¢ )
"/'
Equations (4.54}—(4.56)/§p!eséﬁa system of three ordinary differential equa-
P
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tions of the 2nd order for functions U,, ¥, and F,. These equations were first
derived in [8].

The components of the increment of Cauchy’s stress tensor t on spherical
surface r read

(4-57) t-rr = M + 2;‘err - ( ddU> n(‘9’ w) eim't ’
- an V" U,, aSn(‘97 ¢) iont
7o = 2ue, = — 4 2n) 2 B g
rd #ers Il( dr r r ) ag .
- dv, V, U\ 1 0S(9,0) .
7, = 2ue, = — ) — o g,
0 = SHer ”( roor ) sing g

The boundary conditions for the displacement vector u, for the vector of
boundary conditions b, given by Eq. (4.16),, and the additional gravitational
potential ¢, are expressed by Egs (3.32). These yield the boundary conditions for

functions U,(r), V,(r) and F,(r),
(4.58) solid boundary [U,my =
V.t =

[/lX + 2;1 ] =0,

(=T 7)L -

[FMlZ =0,
+
[dF,. U,] —o,
dr -
(4.59) liquid boundary Um0t =0,
I:lX + 2;1de| =0,
dr 4-

ﬂ(an_}_/“yl): 0,
dr r r

[F,(M:=0,

+
[dF U] —o,
d -
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(4.60) free boundary AX, + 2;1% =0,

dr

(Lo ) o,
dr r r

[Flt =0,
dF,  nt e | 4nGo U, = 0.
dr r .

Let us derive the last boundary condition (4.60),. Let ¢, denote the additional
gravitational potential within the Earth model, ¢ the additional gravitational
potential in free space outside the model. At the surface of the Earth model
(r = a) according to condition (3.32),

(4.61) . d=d,
% + 4nGoyu = ?-ﬁ
or or

The additional potential ¢ outside the Earth can be expressed as [12]

@O

- (4.62) #i(r, 9, 0) = ;()F:(r) S,(3 ) =
= i <g>n+1S,,(.9,¢) for r>a.
n=0\rI

Consequently, function F;(r) satisfies the equation

(4.63) dF; _ _ntlp.
dr r
Equation (4.61), may then be altered to read
(4.64) s 2t e 4nGoU,=0 for r=a,

r r

in which the quantities involved refer only to the internal regions of the Earth
model.

It is again convenient to introduce new variables [8),

(4.65) n="U0U,, \
du i lws (7

Vo= lX" + 2#_"’ x {\;: {,i“f» 4 ‘@—{« -
dr A8

¢
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y3=V(5’
v, v, U,
Ya=pl————+—)

dr r r
y5=Fn9
y6=dF"+"+1F,,+41tGgoU,,,
dr r

where y, is the radial part of vertical displacement, y, the radial part of vertical
stress, y; the radial part of horizontal displacements, y, the radial part of
horizontal stresses, y; the radial part of the additional gravitational potential,
and y, the radial part of the gradient of the additional gravitational potential for
a single normal spheroidal oscillation with frequency ®,, because it holds that

4.66) u=y,(r)S,(8, o)™,
asn('gs ¢) iamt
V= r)—————¢™,
»i(r) 29
w = y3(r) aSn('ga (p) eim.l ,
sind 0O¢
(4.67) 1, = y2(r) S,(3, p) ™,
- 0S.(3, .
tr.‘) = y4(r) né‘g w) elfh’ ’
t‘ — y‘4(r) aSn(‘95 (P) eiam
* sing o¢ ’
(4.68)

o = ys(r) S, (9, ¢) e,

After applying substitution (4.65), the system of three ordinary differential
equations of the 2nd order (4.54)—(4.56) will convert to the following system of
six ordinary differential equations of the Ist order,

@69) W_ _ 24y oy NA gy
dr A+2ur A+4+2u A+42ur
S‘_&___[_oowzn_4gogo+4ﬂ(3l+2;l)] _ 4y &4—
dr r A+2mr A+2ur
+N[9°g°_2"(3"+2ﬂ)] el _@+Da
r (3'+2;t)r2 r r
+90y6~’
Do _n, B n
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%=[oogo_2u(3l+2ﬂ)] A o»n

dr ro(A+2p)P A+2ur @
114uN A
L A+2u r

@ _%J’s,

d n+1

o o AnGoyy, — ——ys + ys,
dr r .

dy,

= —4nGoy(n + D)X + 4nGo, N2 + (n — 1)2e,
dr r r r

where N = n(n + 1). We shall use this system of differential equations to cal-
culate the spheroidal free oscillations in the solid regions of the Earth model. In
the liquid regions,

(4.70) u=0, y,=4X,, y,=0.

Equations (4.69) then reduce to

4.71) dn _ ._2_y1+}2+1v~b,

dr r A r

d 4 n+1

& —(Qow,z,'*'&g'g))ﬁ'*‘}vgogo}h_( )Qoy5+90y6’
dr r r I_

d n+1

s = _ anGoyy, — Ys+ Vs

dr

dy,

5= _4nGoy(n + DL + 4nGo, N2 + (n — 1),
dr r r r

bl b ——

1 y
Y3 = m,:(goyx “;:"’}’5)-

The boundary conditions are as follows:
Solid boundary: all functions y; must be continuous and finite at the origin
(r=0);
Liquid boundary: y,, y,, y5 and y, must be continuous, y, = 0, y, arbitrary and
may even change at a jump;
Free boundary: y, = y, = y, = 0.
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4.5. Radiai free oscillations:

A special type of spheroidal free oscillations are oscillations with n = 0.
These oscillations are called radial, because only the radial component of the
displacement vector is non-zero. As Eq. (4.50) indicates, the horizontal com-
ponents of displacement are zero,

4.72) u=Ure*, v=w=0.
Equations (4.52) and (4.53) yield the relation
dU 20U\
4.73) A= (— + —U)e“”‘.
dr r

With a view to (4.51), the additional gravitational potential
4.749) o, = F(r)e”,

where function F(r) satisfies Eq. (4.54) which, in this particular case, takes the
form

1d df) 4nG d
. _—— "2— _— r2 l}’=0.
@75 rzdr( dr + r dr( @

By integrating (4.75) with respect to r we arrive at

(4.76) -‘;—F + 4nGo,U = 0.
r

and this yields the relation for function y,:

1 1
4.77) Ye=-ys=—F.
, r r

The system of differential equations (4.69) reduces to a system of two differen-
tial equations,

@18y W __ 24y, »n
dr A+2ur A+2u /!
g&=[_00w2_490g0+4y(3}.+2y)]I_L&.
dr r A+2pPr A+2ur

The boundary conditions require that functions y, and y, be continuous at the
solid and liquid boundaries. At the free boundary y, must equal zero.

The radial part of the gravitational potential can then be derived from the
relation
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4.79) (—1& = —4nGgyy, .
dr

‘To conclude, let us express the displacement vector and the increment of
Cauchy’s stress tensor on a spherical surface in a uniform way for toroidal and
spheroidal free oscillations. Let us resolve the gradient nabla operator to read

(4.80) V—-e£+ -Vs,
or r

where V/, is the surface gradient nabla operator on the spherical surface give by
the relation
0 1 0
481 V.= +—e,—
“.81) 969 sin9 ‘op

and e,, e,, @, are unit vectors in the directions of r, 9, @. The displacement vector
for a single normal free oscillations with frequency @, may then be expressed as

(4.82) u(n) = {U,(n) S,(3, 0) 8, + V. (1) V, S,(3, 9) —
— W,(le, x V,S,(3, )} e

Functions U,(r), V,(r) and W,(r) satisfies the differential equations (4.54)—
(4.56) and (4.37), respectively.
The increment of Cauchy’s stress tensor on a spherical surface is

(4.83) nt=e.t=(,.141,).
For a single normal free oscillation with frequency o,
(4.84) n (D = (P(r)S,(3, 0 e +
+ 2.(NV,5.(3,0) — R, (N6, x V,S,(3, 9} e,
where

(4.85)

b4

PRTCUNE A R AP
dr r r

Q,,=#(dV Y, U)

dr r r

dr

daw, _&)

R"=#<dr r
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5. FREE OSCILLATIONS OF A HOMOGENEOUS MODEL OF THE EARTH

We shall now study the free oscillations of an Earth model which is homo-
geneous and isotropic, i.e. we shall assume that the density g, and Lamé’s
constants 4 and u are constant and independent of the coordinates. This
problem is important especially in two cases: a) in the matrix solution of the free
oscillations of the Earth, b) in defining the initial values of numerical integration
of derived ordinary differential equations of free oscillations.

The free oscillations of uniform sphere were first considered by Lamb [90] and
the additional effect of gravity was included by Love [95]. Several authors
[118, 134] have dealt with this problem, especially with regard to defining the
initial values of numerical integration. However, the solutions given are incom-
plete with respect to the matrix solution of free oscillations. Application of
Thomson—Haskell method to the calculatiion for the torsional oscillations was
made by Gilbert and McDonald [72] and to the Rayleigh waves in spherical
medium was made by Bhattacharya [22, 23, 24], Gaulon et al. [66], Teng [136].
We shall now deal with the detailed solution of this problem.

5.1. Toroidal free oscillations

This type of oscillation is described by the equation of motion (4.37) which,

in the case of a homogeneous Earth model, takes the form
d&’w,  2dw, [eowi n(n + 1)
+E ="+ -
da* r dr H r

If we define the £ operator as
2

4 2d nn+])

(5.1) ]W,,=0.

©-2) TP rar P
Eq. (5.1) can be expressed in a more compact form,
(5.3) (L2+KHyW,=0,
where

5.4 I = gy [y, x =kr.

Equations (5.1) and (5.4) are Bessel’s differential equations for spherical wave
functions. Their general solution is given by the linear combination either of
Bessel’s spherical functions of the 1st and 2nd kind,

(5.5) ) = \/ (5";) Ty, yax) = \/ (5";) Yy,
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or of Hankel’s spherical functions of the 1st and 2nd kind,

G0 EO(x) = jiy (%) + i,(%) = \/ (;‘—x) CHY, (%),

1) 1) — i = () B,

where J,(x) and Y,(x) are Bessel’s functions of the 1st and 2nd kind, and H{(x)
and H?(x) are Hankel’s functions of the Ist and 2nd kind. Only Bessel’s
spherical function of the 1st kind, j,(x), satisfies the condition of regularity at
the origin. To save space, let us put

aljn(x) + a, yn(x)
by KO (x) + by KD (x)

where q;, b, i = 1, 2, are constants. We shall use the following recurrent for-
mulas [1, 12] in the computations that follow:

6.7 fi0) = {

(58) Fy @)+ fren) = FE2 100,
nf () = (n+ 1f, () = @n + 1)%,
d

— X" L] =t (%),
dx

4 0] = —x ).
dx

Let us go back to Eq. (5.1) and (5.3). Their solution is
(5.9) 7 = W,(r) = £,(),

where x is given by (5.4) and f,(x) by (5.7). Using recurrent formulas (5.8) it is
easy to to derive

(5.10) yir) = #(

— 28 = B{n = Df(0) = xf, 1] /
dr r

%’(1.'1'
5.2. Sphergidal free oscillations

Let us again consider a homogeneous Earth model. We shall first prove that
for this model the acceleration of gravitation within the Earth model is a linear
function of distance from the Earth’s centre. Poisson’s equation (4.4) applies,
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(5.11) 980, 280 _ 4rGo,,
dr r 4

in which g, is now constant. The solution of this equation reads
(5.12) & =1, ¥=14nGg,.

For the homogeneous Earth model, the equations of motion (4.17), (4.20)
and (4.24) take the following form:

(5.13) 6_ + grad @, + ygrad (ru) + g,A = A+ 2”gradA — £ rotrot u,
or e Q
2.
(5.14) Orotw _ g x gradA = —ﬁrotrotrotu,
or @
2
(5.15 f)—13—37A+ YW (ru) — yA — yr?A=l—+—2£V2A.
o or @

We shall now derive the relation for volume dilatation A. The components of
vector rot u for spheroidal free oscillations can be expressed, using (A.153) and
(4.50), as

(5.16) o, =0,

1 25,5,0)
0y = —
’ ()sm.9 6(0

0= ) B0

emu.l s

b

where

dVVU

5.17 H
617 A= dr r r

Using these relations, it is easy to derive the formulas

(5.18) (rotrotrot u)y = ¥*H,—— L GS,, el
sin 9 0@
(rot rotrotu), = — ¥*H, Z‘i" et

in which the #2-operator is defined by Eq. (5.2). It also holds that

(5.19) (g x grad A)g = yX,(r)—— OSngimt
sin $ O¢
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(@ x gradA), = — }’Xn(r) “"”',

where function X, (r) is defined by Eq. (4.53). Using Eqs (5.18) and (5.19) we can
now express the & and g-component of Eq. (5.14). In both cases we arrive at
the equation

(5.20) Loy + ?H, = yX,.
@
If we also make use of Eqs (A.122), (4.52) and (4.53), Eq. (5.15) becomes
(5.21) AY 2 gy 4 (@4 ADX, = m(n+ D H,.
@

By applying the operator (1/g,) £ + @7 to Eq. (5.21) and then using Eq. (5.20),
we arrive at

(5.22) (ﬂ.sf’z + w’) [wﬁ.zﬂx,, + (@ + 4) X,,:l = Pnin+ 1 X,.
o o

An analogous equation holds for function H,; indeed, if we apply the operator
[(A + 2p)/0,) £* + @ + 4y to Eq. (5.20) and use Eq. (5.21), we obtain
(5.23) (—li &L+ a)f,) I:f'+—2”$2H,, + (&} + 47) H,,:I = ¥n(n + 1) H,.

4] @

We shall modify Eq. (5.22) to read
(5.24) (L + )L+ )X, =0,

where
\/ (@ +4y wz> 4n(r;2 +ﬂ21)f]}

and a, B are the velocities of longitudinal and transverse seismic waves. The
general solution of Eq. (5.24) is given by Bessel’s or Hankel’s spherical functions
of the 1st and 2nd kind which are denoted uniformly as f,(kr) — see (5.7),

(5.25) kiz—%{

(5.26) X,(r) = a fy(kir) + arfy(kor) s
a; and a, being ¢onstants. Equation (5.20) now yields

(5.27) H,(r) = f; ) — 2 7 a(kar)

71 2
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where
(5.28) fir= 17 R, — ai).

We have thus obtained the relations for functions X,(r) and H,(r). If we
substitute (5.26) into (4.53) and (5.27) into (5.17), we obtain a system of two
ordinary lst-order differential equations,

(5.29) av, [ 2U, _n@r+ DV, _ af.(kr),
dr r r
&, V.U

a
—L = ——f (kr).
dr r r f/()

We first solve the homogeneous system by substituting r = e'. The solution of the
homogeneous system is

(5.30) Ur) =b," '+ byr—""2,
12409) =ﬁr"‘1 b ro-t,
n n+1

Using the method of variations of constants, b, = b,(r), b, = b,(r) , we now solve

system (5.29). By applying recurrent formulas (5.8), we obtain the particular
solution:

(5.31) rU(r) = nhf,(x) — fxf, . /(x),
rVn(r) = h.f;l(x) + xf;l + l(x) s ‘
where
(5.32) x=kr,h=f—(n+1).
The general solution of the system of differential equations (5.29) is
(5-33) () = rULr) = by + byr™""' + nhf,(x) — fxf, . (),
i) =¥ ) =2 e e ) 4o ),
n n+1

b, and b, being constants. From this we determine the multiplicative constémt of
function X,(r),

(5.34) X,(r) = —k*f,(kr).
Function y,(r) = F,(r) can be determined, for example, from Eq. (4.56):

(5.35) ys(n)= —b,(}'— %)r" - b2(7+ @ l)r”"" — 3y (kr).

n+
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The remaining functions y(r) can be determined from the definition relations
(4.65):

(5.36) Pyy(r) = 2uby(n — 1) — 2pby(n + D r—"=" —
— A+ 20 r) + 2u{n(n — DAk + (2 + m(n + D] fo (k)
(5.37) Pyr) = U0 = 1)1+ 2" * 2y g
+ DA 0kr) + 208 — DRk = 2+ Dty (KD,
(5.38) ryr) = — @+ )b, (y - %)r" + 39" +

+3ybyr "' =32n+1) Yu(kr) + 3nyhf,(kr).
If 4 = 0, one of the solutions (5.25) will vanish, and we are left with

n(n+ 1) yz], ot

1
5.39 k2.—._[w§+4 ~ =2 h=—f—m+1).
(5.39) e 14 pe f » f—m+1)

6. EQUATIONS OF MOTION OF SPHEROIDAL
FREE OSCILLATIONS AT THE EARTH’S CENTRE

The equations of motion of spheroidal free oscillations (4.69) have a singular
point at the origin of the coordinate system, which is placed in the Earth’s centre
of gravity. In integrating the equations of motion numerically, particularly if
oscillations of low orders are involved, this singularity has to be eliminated. This
problem can be solved in two ways. One way is defining the initial values of
numerical integration by analytical solution of the equations of motion for a
homogeneous medium (see Chapter 5). The second is to use the expansions of
the equations of motion into a power series in r in the neighbourhood of the
origin (r = 0). Although this problem has already been discussed in the litera-
ture [36], a detailed derivation has not been published yet. Since most of the
more recent Earth models assume a solid inner core, we shall begin with the
expansion of the equations of motion of spheroidal free oscillations for a solid
medium.

Let us solve the system of equations of motion (4.69) for spheroidal oscilla-
tions of a solid elastic body in the neighbourhood of the origin by expansion into
the series

6.1) =Y 4,7, i=1,2,..,6.
m=0

where m, k; are integral variables and 4, ,, are the coefficients we are seeking to
determine. By differentiating (6.1) with respect to r, we arrive at

157



6.2) DA _ S g kA, i
dr m=0

However, Eqs (4.69) immediately yield the relation for the integral constants k;,
(6.3) ky=k—1, ky=k, ky=k—1, ks=k+1, ks=k,

where k = k, is the only unknown integral constant. Equations (6.1) and (6.3)
then yield the relation

6.4) yn= Y A, =% A4,,r,
m=10 m=0

fori=1, 2, ..., 6, in which we have put s =k + m to save space. We can
determine the constant j in the following manner: j = —1 for i = 2, 4; j =0 for
i=1,3,6;j=1fori=>5.

Let us now expand the gravitational acceleration g, into a series in the
neighbourhood of the origin. Let

oC

6.5 g=3 ar

k=0

. However, a, = 0 since g, = 0 for r = 0. By substituting into Poisson’s equation
(4.4) and comparing the coefficifents of the powers 7, we find that a, = 7,
a, = ay = ... = 0. Therefore,

(6.6) & =1, ¥=4%nGg,,

where g,'is the density in the neighbourhood of the Earth’s centre. Now
substitute (6.6) into the equations of motion (4.69),

' d ¢ c
6n D= 2y + ey + 2y,

dr
d c c c c
\ P (Cgl + Jl))’l +2y,+ (ch + _223).]’3 +2y,+
dr r? r r r
c
+ -:2}’5 + €)%
d c c
DGy 1 By 4 e,
dr r r
d c) c c) c c
s (Cgl + i)J’l + ﬁ)’z + ("23 + ﬁ))"s + ﬁ)’:ﬁ + _42}’5,
dr r r r r r
d c
s eV + 25 + csee s
dr r
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where
(6.8)

dys _ ca
—— —— +
dr r ’

E?Jh +%y6’

¢y = —24b, ¢, = b, ¢3 = NAb,

&S = — @, — 4oy, o =24,

¢n= —4ub, 53 = Noyy, 3= —Nd,
=N, cs=—n+1)00, ¢x= 0,
ci=~-1, =1, 3= 1/u,

=0 ch=—d, co=—Ab,

¢ = — 0k, chy=4Nu(A+ b —2p,
Caa= —3, Cis= 09> C5; = =37, .
css=—Mm+1), cs=1, ¢ =—3y(n+1),

Ce3 =3YN, ce=n—1.

In Eqs (6.8) we have put

(6.9)

b=1/(A+2u), d=2u(3A + 2u)b,
y=%nGg,, N=n(n+1).

Let us substitute expansions (6.1) and (6.2) together with conditions (6.3) into
Eqs (6.7). If we compare the coefficients of powers of r, we arrive at the following
system of equations:

(6.10)

(6.11)

(6.12)

(6.13)

(cn—8)Aym+ Ccpdym+ 1343, =0,
C3l Al,m + (C33 - S)A3’m + c34A4,m = 0, fOI‘ m= 0, 1, 2, ceey

Ayt (en—s+ DA, 4 3 ds+ Ay, =0,

ca Ayt CoAyp,+ ciyAs , +
+(u—s+1)A4,,=0, form=0,1,

cglAl,m—Z + A, +n—8s+1)A,+hAs, +

+ e Asm+ CouAamt CosAsm_2+ CogAgm-2=0,
CiAim-2t CaAim+ CoAom+ Ay s + s Ay +
t(Cuy—s+ DAy p+ CisAs =0, form=2,3,...,
e Aym+ (€55 — 5 — 1) A5y + c.‘;6A6,m =0,

Co1 Ay + Co3 Az m + (Cos — 8) A = 0, form=0,1,2, ....
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We can calculate the coefficients 4, ,,, A, ,,, 45, and A, from system (6.10) and
(6.13) with the aid of the coefficients 4, ,, and 4,

S—C“

C13
Al,m - _A3,m ’
C12 C12

6.14) 4, =

A4,m = _ﬁAl,m + 1%
C C3
3, 5+D4,,— N4,
C+2+n@Gs+1—n)
AG,m = _3},(" + l)Al,m — NA3,m’
s+1—n

A3,m’

AS,m =

form=0,1,2,....

If we substitute from (6.14) into (6.11) and (6.12), we arrive at the following
system of equations:

(6.15) Ou(s) A4, + 01x(5) 4, ,, = 0.
QZ](S)Al,m + QZZ(S) A3,m = 0’ for m= Os 1 ’
(6.16) 0u) A+ Q) Ay + S Ay s + Ay oy +

+ s Asm_rt CAgm-2=0,

00(8) Ay + 0n(8) Ay + €y Ay s +
+c23A3’m_2+C45A5’m_2=0, fOI‘m= 2, 3, e s

In the preceding system we put

6.17) Qu(s) =ch + (n—s+D(s—cy) cycn

9’

Ci2 Cy4

0n() =cy + (Cu—s+1) (s = cy) _ i3

b

Cq . C12

c c
Q@) =c—2(en— s+ 1)+ 2~ cy),
12 Ci4

C, C
0:(s) = calu + “Q(S —cy) — —3‘]'(044 -5+ 1),
Ci2 47}

If we substitute from (6.8) into (6.17), we obtain

(6.18) O0n(s)=@A+2u) (1 —5)(s+2)+ Ny,
Qi) = —ps(s+ 1)+ N(A + 2p),
Q1(s) = Ns(A + p) — 4 - 34],
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0u@) = —s(@+mw—2(A+2p).
The determinant of the system of equations (6.15) is

(6.19) Dg(s) = 011(s) @a(8) — Q12(s) @1 (5) .
By making use of Eqs (6.18), we obtain
(6.20) D) =pA+20)[s"+ 25 — 2N + 1) §* —

—2(N+1)s+ NN -2).
The determinant of (6.20) can then be expressed as

6.21) Dy()=pA+20)(s—n—1D(—n+1D)E+n(G+n+2).

For the system of equations (6.15) to have a non-trivial solution, the determinant
of the system must be equal to zero,

(6.22) Dys)=0, form=0,1,

which is an algebraic equation of the 4th degree in the unknown parameters s
or k. Its solution are the values s=k+m=n+1,n—1, —n, —n— 2 for
m =0, 1. We shall eliminate the values —n, —n — 2, because functions y,(r)
would then diverge at the origin of the coordinate system. Equation (6.4) yields

(6.23) V) = ATP T L At

+ i (A,_’—mrm+n—l+j + A‘:,i-mrm+n+l+j)
m=2

fori=1, 2, ..., 6, where 4, represents the coefficients 4,,, for m =0, 1, the
suffices — and + of the coefficients 4, and 4, ,, indicate whether the coefficient
refers to parameter s=n—1,ortos=n+ 1.

Before attempting to determine the coefficifents A7 and AZ%,, we shall deter-
mine the auxiliary quantities Q,(s), i, j = 1, 2, for the values s =n — 1 and
s = n + 1. Substituting these values into (6.18) yields

(6.24) Onir—1D=—-(+DA0N-2)+ p@n-9),
On(r =D =n[A@m+1)+ pu@n+3),
Qu(r—D=n@r+DMA0r—-2)+p@n -9,
On(r—1)=—-[A@r+ 1)+ pum+3),

(6.25) Oun+1)= —pup,,
On(n+1)= —pup,/n,
Qu(n+ 1) =nn+1)z,
On(n+1)=@n+1)z,
where
(6.26) pr=nm+5+nn+ 3/,
zy=An+u(n-2).
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The solution of Eq. (6.15) for s=n— 1 and s = n + 1 reads

(6.27) ;=4 4y =P g

n Nz,
We have adopted 4 and A4 as the independent coefficients. Coefficients A3
and AF can be obtained from Eqs (6.14),

(6.28) A7 =2(n— Dpdy, 47 = 20D,
n

629 AF =2 —n—3)+ p(F —n— )47, A7 =214
z 2

where

(6.30) Py =27%n + 2) A+ 2n(i + 21 — ) .

The coefficients A5 and 4 will be determined from the system of equations
(6.13) for s = n — 1. Since the second equation in this system is satisfied iden-
tically for this value of parameter s, we shall adopt another independent coef-
ficient, e.g. 4 ; consequently,

_ 3y . 1 _
6.31 Ay = — AT + Ag .
©31 YT a1 Tt
Coefficients 45 and 4] can be determined from Eqs (6.14) for s =n + 1:
(6.32) A7 =4 ar = ak Gn+ D4t
' 2 Z

Let us now solve the system of equations (6.16) for m =2 and k=n — 1
(s =n+ 1), i.e. determine the coefficients 4,5, i=1, 2, ..., 6. For the given
parameters m and k, this system contains two linearly independent equations,
because
(6.33) AT + B AT + ey AT + e A7 =
=n(ca AT + A7 + cis A7) =

a? n—l] 1 }
=<n ——-!+2 A_+ A+ =z
{Qo[ n 7,2n+1 : n+1° 2

and the determinant of the system is equal to zero. For example, let us take the
coefficient A7, to be independent. Equation (6.16), then yields

(6.34) A, =240 22
Nz, Nz,
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The remaining coefficients can be calculated from (6.14) for m =2 and

s=n+1,

(6.35)

’ | Az
A7, =20 —n—3) 4 po —n— 2 A, + 22,
z 2
- KDy HRZ,
A, =P 4o _HT
4,2 Zl 1,2 Nz‘
3 _ 3 z
Asjz:_mAl,z___Y__Z
z, 2(2n+3) z,
3722
Asz—_["/l+(3n+1)ﬂ]A|2
Z] zl

The resultant coefficients of the powers of *! will read

(6.36)

B,.=A,?'+A,.‘2 fori=1,2,..,6.

For example, let as take the coefficient B, to be independent. Equations (6.29),
(6.32), (6.34) and (6 35) then yield

(6.37)

202 —n—3) + p0? —n— 2B + 22,
zl z,
B=tp_ 2
Nz, Nz,
B. = HD, B, lmzz,
Nz, Nz,
BS = mBl —_— __L é’
z1 2(2n+3) z,
i +Gn+ 1) B, - 3.

It is convenient to adopt B, as the independent coefficifent. Consequently,

(6.38)

where

33 =&B4 +;Q_0{—
Dy D

B, = —q,B; + ¢, B,

ti+|at - 220 D],

2n 41 2n+1

B, = —nB; + ‘1'34,
U

3y
Bs = —m[( +3)B—n(n+ 1By,

Bs = (2n + 3) B; + 3yB,,
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|
;
|
KE,
|
|
]

(6.39) g=2n(n+2)A+2n(n+ Hu,
$=2(n+1)+ @+ 3) (4.

To summarize: The expansions into a series of functions y(r),i=1, 2, ..., 6,
in the neighbourhood of the origin of the Earth model for spheroidal free
oscillations take the form

(6.40) n=Ar'+Brt'+..,
=AY+ B, + ...,
V3=A, 7P+ Byt 4L,
Vo=A" 4+ B, + ...,
ys=Asr"+ B;r'ti + ...,
Ye=Ag”" "'+ Bt + ...

Among the coefficients 4, = 4,7, which are given by Eqs (6.27),, (6.28) and
(6.31), there are two independent coefficients, 4, and Aq,

(6.41) Ay =2(n— 1)pd,,

= - 37 Al+ l A6'
2n+1 2n +-1

Among the cofefﬁéients B,, which are given by Eqs (6.38), there is one indepen-
dent coeﬁicient, B,,

(642) Ba=’284+@{— L A6+[aﬁ—2y"—‘”—‘—"]Al},
P D 2n+ 1 2n+1

B,= —q,B; + q,B,,

B, = —nB; + 134,
H

- __ 3 _
2on+ 3)[(n +3)B, —n(n+ 1)B,],

Bs = (2n + 3) B; + 3yB,,
where
(6.43) D =2n2(n+2)l+2p(n2+2n -y,
pr=nn+5)+nn+3) (Ap),

@i=2nn+2)A+2n(n+ Dy,
$=2(n+1)+(n+3)A/p).
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It would seem that functions y,(r) and y,(r) in Eqs (6.40) are singular at the
origin for n = 1. However, the relations for 4, and A, clearly show that these
coefficients are zero for n = 1. Consequently, expansion (6.40) holds for n = 1.

Since three arbitrary constants 4,, A; and B, occur in the solution (6.40) to
equations (6.7), Egs (6.7) have to be integrated three times with three boundary
conditions to determine the eigenfunctions y,(r). It is then convenient to adopt
the following values for constants 4,, 4, and B,,

(6.44) A, = (1,0,0), 4, = (0,1,0), B, = (0,0,1)

at a small distance, r = r,, from the origin. The initial values of functions y,(r)
are

B 1 7] B 0 T B, r |
2(n — Dy/r, 0 B,r,
) — 1/n @ _ 0 3 _ Bs’%
Y 2= Dymr, I’V T 0 LA B

where B, are given by Eqs (6.42) for B, = 1.

Solution (6.40) with the constants given by Eqs (6.41) and (6.42) was valid in
the solid regions of the Earth model. We shall now specify this solution for the
liquid regions for which Eq. (4.70) holds true. 4, = 4, = 0 follows from the
condition that u = 0. Since y, = 0, also B, = 0. The expansions into series of
eigenfunctions in the neighbourhood of the origin for a liquid medium then read

(6.46) =Ar '+, = Bzr"+

y5 AP + .. Ve = Asr" +
where

o’ n—-1 1
6.47 B ={ [——+2 ]A + A},
( ) 2 @ n 7,2n+1 : 2n+1 ¥
1
A5= - 37 A|+ A6

2n+1 2n+1

and A, and A, are arbitrary constants. It is easy to prove that expansions (6.46)
satisfy the differential equations (4.71).

For completeness, let us give the senes expansion of the eigenfunctions for
radial free oscillations in the nelghbourhood of the origin. Since the first part of
solution (6.10) with the coefficients A, is singular at the origin for n = 0, we shall
only use the second part with the coefﬁcients B, for n =0,

|
(6.48) y1=B1r+-..,y2 Bz ...,y5 Bsr2+
The relations for coefficients B, and B, follow from (6.37),
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(6.49) B, =(34+2wB,, B;= —3yB,,

B, being an arbitrary constant.

7. SOLUTION OF THE SECULAR EQUATION BY MEANS
OF THE VARIATION PRINCIPLE

Here we follow the formulation by Verreault [142] and Backus, Gilbert [15],
who have pointed out that a generalization of variational principle for torsional
[142] and spheroidal [15] modes by including a boundary term provides a rapidly
convergent iterative scheme for numerical calculation of the eigen frequencies.

Let us, once again, study the SNREI Earth model. Assume a certain angular
frequency w, which is not necessarily an eigenfrequency of the Earth model, a
vector field &(r) and scalar field ¢,(#) which, within the Earth model, satisfy the
equations of motion (4.10) and Poisson’s equation (4.12),

(7.1) &’gu= —divi+ g,grad ¢, + grad (u. grad ;) — div ugrad ¢,,
1

7.2 di (——— rad o, + u) =0.

(7.2) Viam G grad ¢, + @,

Assume that the characteristic field «(r) and @:(n) satisfy the boundary con-
ditions at the internal boundaries, surface o, but not necessarily at the outher
boundary — surface S. The problem is to change the angular frequency o so
that the boundary condition is satisfied also at the external boundary, and that
our knowledge of functions w«(r) and ¢,(r) can be exploited.

Let us multiply Eq. (7.1) scalarly by the vector u and integrate is over the
volume of the model V. By using Gauss’ theorem, we obtain

(7.3) aff ou’dV = I {tr(gradu.d + g,[u.grad ¢, +
’ 1 4 4
+ u.grad (u. grad gy) — div u(u. grad ¢,)]} dV — f (u.f.n)ds,
S

where we have made use of Eq. (4.25) and denoted the vector of the normal
external to surface S by n. With a view to the assumptions made, we have used

(7.4) J [vu.8*.ndS=0.

Let us also assume that the additional gfavitational potential ¢, satisfies
Laplace’s equation outside the volume ¥,
(7.5) Vip,=0  outside V,

and that ¢, is a continuous function on surface S. Now multiply Eq. (7.2) by
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function @, and integrate over the whole of space E. By using Gauss’ theorem
- we obtain

\

(7.6) J o,u . grad ¢,dV+—1—J |grad @2 dV +
| V. : 4nG JE
) gradg, ]+
J|=—+gu| dS=0.
+ J;(pln [ 4nG QO _
Adding Egs (7.3) and (7.6) yields
a7 FI=RK—B,
where
. (18) T = J oV,
. 4
(7.9 K= J {tr(gradu. ) + g,[2u.grad ¢, +
V \

+ u.grad(u. grad @,) — divu(u. grad )]} dV + ZI—GI |grad ¢,|2dV,
714 E

+
, (7.10) m=fn.{u.t'— ¢1[M+Qou] }dS.
s anG _

The expression T represents double the kinetic energy of elastic oscillations with
; the angular frequency w. The expression K is equal to double the total potential
energy which is composed of the elastic energy of oscillations, the work perfor-
med against hydrostatic pressure, gravitational energy and the energy used to
change the density by g,.

If «&r) and @,(r) are eigenfunctions of the oscillations, the boundary con- .
ditions on surface S imply that B = 0, and (7.8) will reduce to the functional of
the action of the system,

(7.11) & = K.

If the Earth model is spherically symmetrical, the displacement vector and the
increment of Cauchy’s stress tensor on a spherical surface are given by Eqs (4.82)
and (4.84). By substituting these relations into (7.8) and (7.:10), we obtain

712 I= L a(r) {Us(r) + n(n + D[V;() + Wi} P dr,

(1.13) B = az{Un(a) P.(@) + n(n + D[V(@) 0u(a) +
1
+ W R@] + = £ Gn(a)},
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where r = a is the radius of the surface S of the Earth model. Functions U,, V,
and F, are given by Eqs (4.65), function W, by Eq. (4.41), functions P,, 0, and
R, by Eqgs (4.85), and function G, = y, by (4.65). In Eqs (7.12) and (7.13) in
which we have omitted the factor 2n 4 1 on the r.h.s., we have made use of the
relations [1]

28 PR
(7.14) J I S.(3, 0) SXI, p)sin 9d9dp =2n + 1,

n an * *
J ”as ost, 1 as, as]smsdsw_
09 6.9 sin? 8 dp O

=nn+ 1)2n+1).

If o, u, and @,, are close to some free oscillation, we obtain a better estimate
of the eigenfrequency @, due to the validity of Hamilton’s variation principle
(7.11), with the aid of the relation

(1.15) R=+BT+e

where ¢ is a term of the order of magnitude of |u, — u* and |@,, — @,,)>. The
terms B and T are determined with the aid of functions u, and ¢,,.

If we integrate the equations of motion from a particular r = r, to r = a for
some frequency w,, close to the eigenfrequency m,, Eq. (7.15) without the term
€ can then be used to improve the estimate of the eigenfrequency w,.

8. CALCULATION OF THE PERIODS
OF THE FREE OSCILLATIONS OF THE EARTH

We integrated the systems of ordinary differential equations of the 1st order,
describing the free oscillations of the SNREI Earth model, numerically on a
computer. We used the one-step Runge—Kutta method of the 4th order [81]. It
is important that the integration take place from the Earth’s centre to the
surface. If we integrate in the opposite sense, the numerical error of the integra-
tion will increase exponentially with depth [3, 35, 100, 103,.112, 132—134].

8.1. Toroidal free oscillations.

According to (4.42), the components of the displacement vector for toroidal
free oscillations with the frequency o take the form

@.1) u=0,
(3559
sind O¢ -
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09 '

The components of the increment of Cauchy’s stress ténsor on a spherical
surface, in virtue of (4.43), read

8.2) i,=0,

= —n(r)

3]

Y2(r) 8S,(5, 9) gior.
sind O¢

0S,(3, 9) gl
yo(r) ———= 59

The scalar functions y,(r) and yo(r) satlsfy the system of two ordinary 1st-order
differential equations (4.44), e
z‘g l = "c l > G! -0

28 e o 0

=~

8=

(8.3)

with the boundary conditions

(8.4) y(a) =y,(b)=0

at the Earth’s surface (r = ) and at the core-mantle boundary (r = b).

The system of toroidal equations (8.3) is integrated from the core-mantle
boundary to the Earth’s surface. The initial value for the integration of function
y4(r) is given by condition (8.4),, and of function y,(r) by a selected initial value,
ie.

(8.5 1) =1, yb)=

The integration is caried out from the core-mantle boundary to the Earth’s
surface where condition (8.4), must be satisfed. The secular equation for to-
roidal free oscillations then reads

(8.6) Dy(w,n) = y)(a; 0,n) = 0

At the beginning of the integration we select a series of free oscillations » and
an estimate of the eigenfrequency ,. If the selected initial frequency does not
render the secular function y,(a) zero at the surface of the Earth model, the
angular frequency is improved to value @, by means of the variation method
with the boundary terms described in Chapter 7,

@8.7) o = o} + B/T,
in which, fbr toroidal oscillations,
(8.8 B = a’y,(a) y:(9),

T = J ey (r) Pdr
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functions y,(r) and y,(r) being computed for the tested frequency w,. This
procedure is applied iteratively until the eigenfrequency of the toroidal oscilla-
tion is reached. After determining the eigenfrequency of the normal mode, the
last values of functions y,(r) and y,(r) correspond to the eigenfunctions of
differential operator (8.3) with the eigenvalue w.

For higher toroidal modes of a higher order n, the integration from the
core-mantle boundary may lead to an overflow of the value’s magnitude during
numerical computation. In this case, we begin to integrate at a higher level in the
mantle (r = r, > b). Moreover, we assume that the material is homogeneous
inside the sphere of radius r,. This assumption is easy to satisfy because we can
. always take r; small enough to avoid the properties within the sphere, radius r,,
affecting the characteristic functions on the Earth’s surface. The appropriate
initial values of functions y,(r) and y,(r) are then given by the solution of the
toroidal free oscillation of the homogeneous sphere, radius r = r, (see Chap-
ter 5),

(8.9) () = jkr),
yr) = ’;‘[(n — 1)jkr) — (kr)ji 4, (k7]
K = g?/u,

where j,(kr) is a spherical Bessel function of the 1st kind which is convergent in
the neighbourhood of the origin. In Eqs (8.9) for calculating the initial values
of functions y, and y,, only the ratio :

(8.10) Zy(X) = Xfpy 1 1(X)[Jn()
occurs. The initial values are then

@8.11) O =1, p) = f[(n — 1) — z,(kr)].

The recurrent formula (5.8), immediately yields the recurrent relation for
function z,(x),

x2
@n+1)—z,(x)

The limiting value of function z,(x) for n — oo,

(8.12) Zy_1(%) =

. x2 {
8.13 () =—"_

is derived in Supplement C. If we start with a sufficiently large # in the initial
value of z,(x) according to (8.13), the recurrent formula (8.12) can be used to
calculate function z,(x) of a lower degree. '
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8.2. Spheroidal free oscillations

The spheroidal free oscillations of the Earth perturb the gravitational field of
the Earth. We therefore consider coupled elastic and gravitational oscillations
which simultaneously satisfy the elastic equationis of motion and Poisson’s
equation. The components of the displacement vector for spheroidal free oscilla-
tions with frequency @ take the form of (4.66),

(8.14) u=y,(r) S,(% @) €,

v = yy(n 2559 ;3 ®) giox

— y3(r) 85,(3, 9) el
sing Ogp

The additional gravitational potential
(8.15) ‘ @1 = y5(r) S«(9, p) €,

The increment of Cauchy’s stress tensor on the spherical surface, according to
(4.67), is

(8.16) . 1, =y,(r) S,(9, 9) €,
¢ aSn(‘gs ¢) iox
Iy = yu(r)—22 12 giex,
b Va(r) 29
\ i = y4(r) 8S,(39, ) i
o . .
sing 0¢

The scalar functions y(r), i=1, 2, ..., 6, satisfy the system of six ordinary
differential equations of the 1st order (4.69), which we shall express in matrix
form,

(8.17) dy = Ay,

dr
where y* = (3, 5, ..., V) and the elements of matrix A4, ¢ are
(8.18) A5, = =22br~', 45, =b, Aj; = NAbr!',

Ay = — @’ + 4(dr™? — ogyr"),
Azz = —4ubr~', A5 = N(owgor™' — 2dr™?),
=Nr', djs=—(n+ 1)00"-l A3 = 0o,

-1 -1 -
31——" d n=r, 34—11 s

Ay =08y~ — 2dr™%, Ay = —Abr',
= — o + 4N (A + )b — 2172,

_ -1 — -1 —
24"‘ =3r ] is—Oo" ’ ;l_ _373
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A= —(n+Dr7', A =1.
4= —=3y(n+ 1)r-‘, Ag = 3yNrt,
=Mn-1rt,

where

(8.19) =1/(A+ 2w, d=p(3A+2u)b,
7 =4nGgy, N =n(n+1).

The other elements of matnx A’ are zero. The boundary conditions at the
Earth’s surface are

(8.20) ¥:(a) = (@) = ysa) =

The system of six ordinary Ist-order differential equations (8.17) has six
independent solutions. However, we are only interested in the solutions which
are regular at the origin. Therefore, we shall start by integrating three regular
solutions in the solid inner core and integrate up to the Earth’s surface. The
secular equation for spheroidal eigenoscillations then reads

yu(a), y»(a), yi(a)
Ya(a), yo(a), yu(@)| =
V61(@), ys(a), ye(a)

(8.21) D,(o,n) =

If the outer core of the Earth is modelled by a liquid layer with a zero modulus
of torsion, the system of six differential equations will reduce to a system of four
differential equations (4.71), because no tangential stresses can exist in this
medium. In Eqs (8.17) b= 1/4,d =0 and

(8.22) V3= ﬁ (g — o + ys)

i 2, vy w0
dr r A r

4
dy, _ _(Qomz_'_ Qogo>yl+NQogoy3_(”+1)Qoy5+
r r

dr o
d +00y6s
n+1
—)':i= —4nGoyy, — s+ Ys,
dys

6~ —4nGoy(n + DL + 48GENL + (n — 1) 8.
dr r r r

In integrating the differential equations of free oscillations from the inner
core to the Earth’s surface, we must extend the solution from one region of the
Earth into the other in such a way that the conditions at the boundary are
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satisfied. Let us, therefore, describe the method of connecting up the solutions
in the individual regions.

The solution in the solid inner core can be expressed as the superposition of
three regular solutions,

(8.23) Y=y, + Ky + Kys,  i=12,..,6,

where the superscript s indicates quantities relating to the solid inner core, and
K3, K5 and K] are integration constants.
In the liquid outer core,

(8'24) yf = K’lyfl + KI?)'{‘Z + %’ i= 1, 2a 55 6a

where the superscript / indicates quantifies relating to the liquid outer core.
Finally, in the mantle, ’

(8.25) = Kiyqi + K3yh + K3y, i=1,2,..,6,

~+ where the superscript m indicates quantities relating to the solid Earth’s mantle.

At the inner-outer core boundary the tangential component of stress y,; will
vanish and, consequently, one of the three integration constants in the inner
core may be eliminated, for example,

(8.26) K;@ LYY Y
43 43

By substituting (8.26) into (8.23) and comparing with Eq. (8.24) we find that

(8.27) Ko+ Kt = K (v~ 2 +

43

+K;<yf2-£i‘3yf3>, i=125,6.

43

At the inner-outer core boundary the conditions of continuity of functions y,,
Y2 Vs, Ve are guaranteed by the folowing relations:

(8.28) Yh=yi =Ly,

43

ﬁ=m—%m, i=1,2,5,6,

43
K-{"_"-Kll, K;=Kl2

Once the integration reaches the outer core — mantle boundary, both solutions
can be extended directly from the core to the mantle,

(8.29) W=y, i=1,2,56,j=12
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Vi=Ya=yp=ya=0,
K=K', j=1,2.

The third system of boundary conditions at the core-mantle boundary follows
from the fact that the tangential displacement y; does not necessarily have to be
continuous at this boundary. One may, therefore, take the values

(8.30) Ya=1y3=0, i=1,2,4,56.

We shall determine the integration constants K7, K7 and K7 by satisfying the
boundary conditions at the Earth’s surface — see below.

For spheroidal free oscillations we again integrate the differential equations
for a particular order n, chosen in advance, and we vary the angular frequency
of the oscillations until the secular function D (®, n) is zero. Using the variation
method with the boundary term, described in Chapter 7, we can obtain a better
estimate @, from the estimate of the eigenfrequency ®, with the aid of the

relation

831) . G=a+ 9B,
in which, for spheroidal oscillations,

(8.32)

B = a’[yl(a)yz(a) +n(n + D ys(@) y(a) +

+ ﬁys(a) ys(a)]’

T- f QPO + nn + 1)y3)] P dr

The system of functions Yii=12,...,6,used in these relations, must be a good
approximation of the eigenfunctions of the oscillations.

As we have seen, the numerical integration produces three independent
regular solutions y;, i=1, 2, ..., 6, j=1, 2, 3. It remains to determine the
integration constants K7, K7 and K7 in such a way that the eigenfunctions of the
oscillations are suitably approximated. For this purpose, we select coefficifents

- K", j=1,2, 3, in the same way as if a, were the eigenfrequency. If @, is the
eigenfrequency of the oscillation, the matrix

Y2(@), yp(@), yx(a)
(8.33) Ya(@), y(a), yu(a)
61(@), V62(a), ys:(@)

is then singular and the matrix adjoint to it, Q;(a), i.e. the transposed matrix of
cofactors, has rank 1, The eigenvectors are then
¥

3 .
®@34)  y()=Y 0@y, i=1,2..,6 k=12 0r3
j=1

174 ‘ -
Xt‘\ '&L\_ Jit iC; §

| S{G" f\..v = (&«.‘L‘&M - (&l’b Xeq »

< \ @ ! '{1{

-y

ket i i e T A
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If @, is not the eigenfrequency , we define function y,(r) in the same way but, for
reasons of numerical stability, we select the index k to maximize the largest
element of matrix Q,;. ’

The initial values of numerical integration may be defined in two ways. For
spheroidal oscillations of higher orders and higher modes, it is convenient to
define function y,(r) on the surface of an oscillating sphere, radius r,. Should the
magnitude of the number represented in the computer overflow during the
computation, we define the initial values at a higher level. In Chapter 5 we
derived the analytical solution of the equations of motion for a homogeneous
body. To define the initial values, we shall use three of the six solutions, regular

at the origin. The first two sets of initial values are )
(8.35) ryi(r) = nhj(X) — fXjy 1 1(%) . o - - {x ‘\«
Pyar) = — (A + 2)fx%,(x) + 2u{n(n — Dhj,(x) + = -G
+ [2f + n(n + D]y, .1 (x)}, 0 [k xn

rys(r) = hj(x) + xjp 41 (x),
ryu(r) = plx%(x) + 2(n — Dhj(x) — 2(/ + Dxj, . ,(x)],
ys(r) = = 3ulja(x),
rys(r) = 3nyhj(x) + (2n + Dys(r),
where x = kr and j,(x) is a spherical Bessel function of the 1st kind,
1 {e? +4y o & +4y &\ An(n+1
@39 #=1{" gt \/[( 7 7‘?) e )

a, P being the velocities of longitudinal and transverse seismic waves,

(8.37) .7=§nGgo,f=l(ﬂ2k2—wz),h=f—(n+1).
4

In Eqgs (8.35), which define the initial values, there again only occurs the ratio
2,(X) = Xj, 4 1(x)/ju(x) , for which recurrent formula (8.12) and the limiting value

(8.13) hold true. _
The third set of initial values regular at the origin 4 !“\\}?. At /Y’L 8‘4 -
s =1, o - »
Py (r) = 2u(n — 1)r",

ys(r) = (& — np)r",

/ \&e'{” - 31 e 175
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rys(r) = 2n + Dys(r) + 3nyr”.

If p=0, one of the solutions (8.35) will vanish and we shall be left with

639 k=tloray"ED0] .
; Y

For spheroidal oscillations of low orders, for which the integration is carried
out from the vicinity of the Earth’s centre, the second way of defining the initial
values is convenient, i.e. by expanding function y(r) into a power series in 7 in
the neighbourhood of the origin. According to the results of Chapter 6, at a
small distance r = r, from the Earth’s centre

1 0
2(n — D p/ry 0
8.40 M - ln @ _ 0
(8.40) Y 20— Vpjnr, "7 0 ’
—3m/2n+1) r,/2n+1)
L 0 - L 1 -
By ]
Byr,
§O = By} N
r -
Byr,
—Bﬁr%—
where
(8.41) B; = p,/p:»
B, = —q\B; + ¢,
Bl = _nB3 + 1/”,
B;= —3y[(n + 3)B, — n(n + 1)B5]/2(2n + 3),
B6 = (2n + 3)B5 + 3731
and
(8.42) p =2n*(n+ DA+ 2n(n* + 2n — Dy,

p2=n(n+5)+ n(n + 3)(A/p),
¢ =2n(n+ 2)A + 2n(n + Dy,
G=2n+ 1)+ @n+3)A/y).

If u = 0, the initial values of functions y(r), i =1, 2, 5, 6, are
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0 ' 1

or/Cn + 1y Qo,[_i + 2(2" - 11)7]
8.43) YyV= YD = n n +
r/(2n + 1) —37/2n + 1)
1 0

- 83 Radial free oscillations

If we are considering spheroidal oscillations of zero order, n = 0, the dis-
placement vector and the increment of Cauchy’s stress tensor on the spherical
surface only have radial components:

(8.44) u=y,Ne”, v=w=0,
1, = yor)e”, ty=1,=0.

Functions y,(r) and y,(r) satisfy the system of two ordinary 1st-order differential
equations,

(8.45) dy/dr = Ay,
where y' = (y;,y,) and the elements of matrix 4}, , are
(8.46) = —=2Abr!', A5, =0b,

b= —0® +4dr? — ogy"), Ay = —4ubr',

quantitiés » and d being defined by (8.19). The boundary condition at the
Earth’s surface reads

(8.47) y2(@) =0.

The initial conditions of integration for function y,(r) may, for example, be
defined from the expansion of functions y,(r) into power series in r in the
neighbourhood of the origin,

(848 @) =r, y(r)=32+2p.

The integration is carried out from a small distance r = r, from the Earth’s
centre to its surface, using the same system of differential equations in the solid
and liquid parts of the Earth; consequently, there is no problem with extending
functions y,(r) from the solid to the liquid region and vice versa. The secular
function for radial oscillations is the surface value of function y,(r).

The radial part of the additional gravitational potential can then be derived
by solving the 1st-order differential equation
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(8.49) dy,/dr= —4nGoyy, .

The estimate of eigenfrequency @, can again be improved using the variation
method, described in Chapter 7. The improved estimate of the eigenfrequency
, is

(8.50) . =+ B/,

in which, for radial oscillations,

(8.51)  ®- az[y,(anz(a) + 41:Gay§(a)],

1= [ aviore

with functions y,(r) computed for the tested frequency o,.

8.4. Periods of the free oscillations of the Earth

Drawing on the theory we derived, we have written programs for computing
the free oscillations of the SNREI Earth model. We tested them on Earth model
1066A, the physical parameters of which are given in [70] and tabulated by
subroutine M1066A. This SNREI Earth model consists of the solid inner core,
liquid outer core and solid mantle and crust.

The normal modes of this Earth model are described by the type of oscillation
(toroidal, spheroidal and radial), by the angular number #, radial number & (also
- by the mode number), the period or angular frequency of oscillation and by the
eigenfunctions of the oscillations. We shall denote the periods of the toroidal,
spheroidal and radial characteristic mode, which is given by the spherical
function

8.52) 59.0= Y Ym0,

m= —n

by the symbols .
(8.53) «Tns 05, and S,

respectively. _

The geometric configuration of the oscillations can be illustrated in relation
to nodal surfaces. Nodal surfaces are defined as surfaces on which the displace-
ment vector is zero. There are three types of nodal surfaces: a) concentric
spherical surfaces within the Earth; b) concentric conical surfaces with apexes
in the Earth’s centre, which intersect the Earth’s surface in parallel circles. The
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number of circles is n — |m|; c) planes which pass through both poles (one of
them is the origin of the earthquake) and which intersect the Earth’s surface in
meridional circles. The number of circles is 2m.

The simplest spheroidal oscillations are oscillations with » = 0, radial oscilla-
tions. The fundamental mode, ,S,, represents alternate densification and rarifi-
cation. Higher modes, ,S,, ,S,, ... have one, two, ... nodal surfaces within the
Earth. The fundamental spheroidal mode, ,S,, is referred to as the “football
mode”. In this case, the Earth is alternately flattened and elongated. Funda-
mental mode S, represents an alternate change to pear shape. In mode ,T, two
hemispheres shear oscillate in opposite phase with a nodal plane between them.
Higher fundamental toroidal modes divide the Earth’s surface into 3, 4, ...
zones with opposite motions. Some types of free oscillations cannot be observed.
For example, mode ,S, represents the translation of the whole surface and centre
of gravity of the Earth, mode ,T, represents the variation of the Earth’s rotation-
al velocity.

In Table 1, some of the theoretical periods T4 Of free oscillations of Earth
model 1066A are compared with the observed periods T,,,. These were taken
from [70]; they are the average values, mostly observed during the large earth-
quakes in Chile (May 22, 1960), Alaska (Mar. 28, 1964) and Columbia (July 31,
1970). Moreover, the periods of the oscillations of the lowest orders were
averaged in the sense of the diagonal summation rule [67]. According to this
rule, the period of a spherically symmetric and non-rotating Earth model is -
equal to the average period of the observed spectral muitiplet. Note that the void
positions in the T, column indicate that these modes have as yet not been
recorded.

The theoretical periods T, Of the free oscillations of Earth model 1066A
were computed using the numerical method described in the preceding sections.
Let us briefly summarize our experience with this method. The advantage of this
method is the relative simplicity and illustrativeness of the operations it consists

-~ of. The accuracy of the method is comparatively high. Practical numerical

computations have shown that the eigenperiods and eigenfunctions can be
determined with a relative error not exceeding 0.01—0.05 %. Another advan-
tage is the minimal demand on the inherent computer store. In the ICL 4-72
computer we used an inherent store of up to 110 k bytes.

The main disadvantage of the method described is the required computer
time, particularly for computing the spheroidal modes. The computer time
required to compute the periods and eigenfunctions of one spheroidal mode is
100—200 ETU (6—12 mins) with an ICL 4-72 computer. The time required to
compute the periods and eigenfunctions of one toroidal mode is shorter, about
20—30 ETU.

From Table 1 we can draw two conclusions: a) The maximum differences
between the observed T, and theoretical periods T4 are 0.5 %. This indicates
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Table 1. Comparison of observed eigenperiods 7, and theoretical values 7o, , computed for

model 1066A

Tobs TIMA Tobs T|066A
Mode @) @) Mode ® ®
0T 2 2631.8 0T47 174.0
0T 3 - 1706.0 1703.2 0TA48 170.7
0T 4 1305.5 1304.2 0T 49 167.5
0T 5§ 1076.0 1076.0 0TS0 164.5
0T 6 925.8 925.9
0T 7 819.3 818.3
0T 8 736.9 736.7 1T 2 756.6 756.5
0T 9 671.8 672.0 1T 3 695.2 694.0
0T 10 619.0 619.3 1T 4 630.0 630.0
0T11 574.6 575.3 1T § 570.6
0T 12 536.8 5378 1T 6 519.1 518.7
0T 13 505.0 505.4 1T 7 475.2 474.8
0T 14 471.5 477.1 1T 8 438.5 438.0
0T 1S 451.8 452.1 IT 9 407.7 407.3
0T 16 429.2 429.8 1T10 381.2 381.3
0T 17 4‘]0.2 400.7 1TI11 359.1 359.0
0TI18 391.0 391.6 1TI12 339.5 339.5
0T 19 374.8 375.1 1TI13 322.1 322.4
0T20 359.6 3599 1T14 307.0 307.1
0T21 346.1 346.1 1TI1S 293.3 2933
0T?22 333.2 333.2 1T16 280.6 280.8
0T23 321.2 3214 1T l'_7 269.7 269.5
0T24 3104 3104 1TI18 259.1 259.2
0T25 300.2 300.1 1TI19 249.6 249.6
0T26 290.3 290.5 1T20 240.8 240.9
0T27 2814 281.5 1T21 232.5 2328
0T28 2729 273.0 1T22 225.2 2254
0T29 264.9 265.0 1T23 218.4 218.4
0T 30 257.3 257.5 1T24 2119 212.0
0T31 250.3 250.5 1T25 - 205.9 205.9
0T 32 2443 243.8 1T26 200.3 200.3
0T33 2374 2374 1T27 1949 195.0
0T34 231.3 2314 1T28 190.1 190.1
0T35 2249 225.6 1T29 185.3 185.4
0T36 220.7 220.2 1T30 180.8 181.0
0T37 2139 215.0 1T 3t 176.8 176.8
0T38 209.8 210.0 1T32 173.0 172.9
0T39 204.3 205.3 1T33 169.2 169.2
0T 40 200.0 200.8 1T34 165.7 165.7
0T41 195.9 196.5 1T35 162.3 162.3
0TA42 191.3 192.3 1T 36 159.1 159.1
0T43 187.4 188.3 1T37 156.0 156.0
0T 44 183.8 184.5 1T38 153.1 153.1
0T45 180.3 180.8 1T39 150.3 150.3
0T46 - 176.9 177.3 1T40 147.7 147.7
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Table 1 (continued)

Tobs TI066A Toln TI066A

Mode ©) ©® Mode ®) ®)
2T 15 238.3
1T41 145.1 145.1 2T 16 228.6
1T42 142.7 142.6 2T 17 2199 2199
1T43 140.2 140.2 2T 18 2119 212.0
1T44 138.0 138.0 2T19 204.6 204.7
1T45 135.6 135.8 2T20 198.0
1TA46 133.6 133.6 . 2T21 1919 191.8
1T47 131.6 131.6 2T22 186.2 186.1
1T48 129.6 129.6 2T23 180.7
1T49 127.7 127.7 2T24 175.7
1T50 1259 125.8 2T25 170.9 170.9
1T51 124.1 124.0 2T26 166.5 166.5
1TS2 122.3 122.3 2T27 162.3 162.3
1TS53 120.6 2T28 158.4 158.4
1TS54 119.0 119.0 2T29 154.7 154.7
1TSS 117.4 2T30 151.1
1T56 115.8 27131 147.7 147.7
1TS57 1144 114.3 2T32 144.6 144.5
1T58 1129 112.8 2T33 141.5 141.5
1TS59 111.4 i11.4 2T34 138.6 138.6
1 T60 110.2 110.0 2T35 135.7 135.8
1 T61 108.7 2T36 “133.1 133.1
1T62 107.4 107.4 2T37 130.5 130.6
1T63 106.1 2T38 128.2 128.2
1T64 104.9 104.8 2T39 125.7 125.8
1T65 : 103.6 2T40 123.6 123.6
1T66 102.6° 102.4 2T41 1213 1214
1Té67 101.2 2T42 119.3 119.4
1T68 100.1 2T 43 117.5
1T69 99.0 2T 44 115.5 115.5
1T70 979 2TA45 113.6 113.7
2TA46 1119
2T47 110.2 110.2
2T 2 4473 447.6 2T48 108.6
2T 3 435.2 2T49 107.0 107.0
2T 4 4194 419.8 2T50 105.5
2T 5 401.8 402.2 2TS51 104.0 104.0
2T 6 383.1 2T52 102.6 102.6
2T 7 363.7 363.2 2TS53 | 101.3
2T 8 343.3 3433 2T54 99,9 99.9
2T 9 324.1 2T55 98.6 98.7
2T10 348.4 2TS56 97.4 97.4
2T11 289.3 2T57 96.2
2T 12 2743 27T58 95.1 95.1
2T13 260.9 2T59 ’ 94.0
2T 14 249.0 2T60 929
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Table 1 (continued)

Tobl TIO“A ch! T1066A
Mode ® ) Mode ®) @)
2T61 91.9 91.8 3T41 108.9 108.9
2T62 90.8 3T42 107.0 107.1
2T63 89.8 3T43 105.4
2T64 88.8 3T44 103.7
2T65 87.9 3TA45 102.1
3TA46 100.6 100.5
3T47 99.1 99.1
3T 2 308.9 3T48 97.6
3T 3 304.6 3T49 96.2
3T 4 299.1 3TS0 94.9
3T 5 292.6 3TS1 93.7 93.5
3T 6 285.2 3T5S2 92.3
3T 7 277.1 3TS3 91.2 91.0
3T 8 268.5 3T54 89.9 89.8
3T 9 259.3 259.5 3T55 88.7
3T10 250.3 3TS56 87.7 87.5
3TIr 240.5 241.0 3TS7 86.4 86.4
3T12 231.8 3TS58 85.3 85.4
-3T13 222.7\ 3TS59 84.4 84.4
3T14 214.0 3T60 833
3T15 205.7 3Té61 824 82.3
3T16 198.0 3T62 814 814
3T17 190.0 190.9 3T63 80.5
3TI18 184.1 184.4 3T64 79.6
3TI19 178.2 178.4 3Té65 78.7 78.7
3T20 172.7 172.9 3Té66 77.8
3T21 167.7 167.8 3T67 77.0
3T22 163.1 3T68 76.2 76.2
3T23 158.5 158.7 3T69 75.4 75.4
3T24 154.6 154.6 3T70 74.6
3T25 150.7 150.8 3T71 73.9
3T26 147.2 147.1 3TT72 73.2 73.2
3T27 143.7 143.7 3T73 724 72.4
3T 28 140.4 140.4 3T74 71.7
3T29 137.2 137.2 3T75 71.1
3T30 134.2 134.2
3T3l 1314 131.5
3T32 128.7 128.7 4T 2 231.0
3T33 126.2 126.1 4T 3 229.2
3T34 123.8 123.6 4T 4 2270
3T3S 121.3 4T § 224.2
3T36 119.0 4T 6 2209
3T37 116.9 116.8 4T 7 216.8 © 2173
3T38 114.7 114.7 4T 8 213.4
3T39 112.7 4T 9 209.2
3T40 110.7 4T 10 204.7
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Table 1 (continued)

Tobl T1066A Tobs T1066A
Mode ® ) Mode ©) s)
4T 11 199.7 200.0 4T 57 80.0
4T 12 195.3 4T 58 79.0
4T13 190.4 4T 59 78.1
4T 14 184.9 185.4 4 T 60 77.2
4T15 180.4 4T 61 76.3
4T 16 174.7 175.3 4T62 75.5 75.5
4T 17 169.7 170.3 4T 63 74.7 74.6
4T18 164.7 165.4 4T 64 73.8 73.8
4T19 160.1 160.5 4T 65 72.9 73.0
4T20 155.6 155.9 4T 66 72.3 722
4T21 151.2_ 151.5 4T 67 71.1 71.5
4T22 147.5 147.3
4T23 143.7 143.4
4T?24 139.7 0S0 1227.6 1230.5
4°T?25 136.3 136.2 1S0 613.6 613.8
4T?26 133.0 280 398.6 398.5
4T27 130.0 129.9 380 305.8 305.8
4T28 127.0 480 243.7 243.7
. 4T29 124.3 580 204.6 204.9
4 T30 121.7 6S0 174.3 174.3
4T 31 119.2 780 151.9 152.0
4T32 116.8 8S0O 134.6 134.6
4T/33 114.6 9SS0
4T 34 112.4 10S0 110.7 1104
4 T35 1104 11S0 101.3 101.1
4T 36 108.4 1280 93.5 93.5
4T 37 106.5
4T 38 104.7
4T39 -102.9 0S 2 3233.3 32324
4T 40 101.3 101.3 0S 3 2133.6 2135.1
4T 41 99.7 99.7 0S 4 1547.3 1545.9
4T 42 98.1 0S8 § 1190.1 11904
4T43 96.6 0S 6 963.2 963.7
4 T4 95.2 0S 7 811.5 8124
4 T45 93.8 93.8 0S 8 707.6 708.0
4T 46 92.3 924 0S 9 634.0 634.1
4T47 91.1 91.1 0S10 580.1 579.6
4T48 89.8 89.9 0sS11 537.0 5374 ~
4T 49 88.6 0S12 502.3 502.9
4T 50 87.5 - 87.5 0S13 473.2 473.7
4TS51 86.3 0S14 448.3 448.5
4T 52 85.2 0S15 426.2 426.5
4T53 84.1 0S 16 406.8 407.1
4T 54 83.0 83.0 0S17 389.3 389.8
4T 55 82.0 0S18 374.0 374.3
4T 56 81.0 0S19 360.2 360.3
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Table 1 (continued)

Tobs T1066A Tobs T1066A
Mode ® ©®) Mode ® )
0S20 347.7 347.6 0866 141.2 141.1
0821 336.0 336.0 0S67 139.3
0S22 325.3 325.3 0S68 137.5
0823 3154 315.5 0S 69 135.7
0S24 306.3 306.3 0S70 134.0
0S25 297.7 297.8 0S 71 132.3
0S26 289.7 289.8 0S 72 130.7
0S27 282.3 282.4 0S73 129.1
0S28 275.2 275.3 0S 74 127.6
0S29 268.5 268.6 0S75 126.1
0S30 262.2 262.3 0S76 124.6
0S31 256.1 256.3 0S77 123.1
0832 250.3 250.5 0S78 121.7
0S33 245.0 245.1 0S79 120.3
0S34 239.7 239.8 0S80 118.9
0S35 234.7 234.8
0S 36 229.9 230.0
0S37 225.2 225.3 1S 2 1470.9 1470.3
0S38 220.8 220.9 18 3 1060.8 1063.5
0S39 216.5 216.6 1S 4 852.7 852.1
0S40 212.4 212.5 1S 5 730.6 729.4
0S4l 208.4 208.6 1S 6 657.6 657.0
0842 204.6 204.7 18 7 603.9 604.3
0843 200.9 201.0 1S 8 556.0 556.1
0S4 197.4 197.5 1S 9 510.0 509.7
0S45 194.0 194.0 1S10 465.5 466.0
0846 190.6 190.7 1511 ) 426.4
0S 47 187.4 187.4 1S12 367.7
0S48 184.3 184.3 1813
0S49 181.3 181.3 1S14 337.0 336.5 .
0S50 178.3 178.3 1S15 316.1 315.5
0S5t 175.4 175.5 18516 299.5 299.4
0S52 172.6 172.7 1S17 286.0 286.1
0S53 170.1 170.0 1518 274.8 2743
0S54 167.4 167.4 1S19 263.6 263.5
0855 164.8 164.9 1520 254.0 253.7
08556 162.4 162.4 i1s21 2449 244.6
0857 160.2 160.0 1S22 236.2 236.2
0S 58 157.7 157.7 1823 228.4 228.4
0S59 155.6 155.4 1524 221.0 221.1
0S60 153.4 153.3 1825 214.4 2142
0S 6l 151.2 151.1 1526 207.7 2079
0S62 149.2 149.0 1827 201.7 201.9
0S63 147.1 147.0 1828 196.3 196.2
0S64 145.0 145.0 1829 190.9 191.0
0S65 143.0 143.0 1S30 185.9 185.9
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Table 1 (continued)

Tobs T|066A Tobs T1066A
Mode © ® Mode 3 ®
1 S'31 1847 . 1315 131.4
1832 176.7 176.8 1848 129.2 129.3
1533 172.3 172.6 1S49 127.1 127.3
1834 168.3 168.6 1850 125.4 1254
1835 164.6 164.8 1851
1836 161.4 161.3 1852 121.7 . 121.7
1837 157.7 157.8 1S53 120.1 120.0
1S38 154.7 154.6 1S54 118.5 118.4
1839 151.5 151.5 1S55 116.8 116.7
1S40 148.6 148.6 1856 115.3 115.2
1S 41 145.8 ~ 145.8 1857
1842 143.2 143.1 1S58 - 1123 112.2
1843 140.6 140.6 » 1859 110.9 110.8
1S4 138.3 138.1 1S60
1S45 1861 108.1 108.1
1846

that Earth model 1066A reflects the distribution of physical parameters within
the Earth relatively well; b) With a view to the objective of this study, this model
is also suitable for comparing the periods of free oscillations which we have
computed, using the relevant programs, with the periods of the free oscillations
of the same Earth model, published in [70]. The comparison indicates very good
agreement. This test at least partly verified the correct function of the programs.

9. CONCLUSION

Let us summarize the most important results of this study. Using general
curvilinear coordinates, introduced in Supplement A, we briefly derived the
fundamental relations of continuum mechanics. On principle, we differentiate
between descriptions in Lagrange and Euler coordinates. The relations we
derived are used to derive the equations of motion and boundary conditions of
elastic oscillations of a body pre-stressed by finite static stresses. We assume that
the free oscillations will cause small deviations from equilibrium position, such
that the tensor of finite deformations can be approximated by the tensor of small
deformations. The expression of the boundary conditions at the liquid boun-
dary in Langrange’s description of oscillation is relatively complicated. The case
of the free oscillations of the general Earth model, which we then dealt with, is
special from the point of view of this theory.

The first approximation of the real Earth is a spherically symmetric, non-ro-
tating, isotropic, linearly elastic (SNREI) model. The wave field of free oscilla-
tions of this model resolves precisely into two types of oscillations, viz. toroidal
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and spheroidal. The toroidal free oscillations are characterized by the radial
component of the displacement vector and the volume dilatation being zero.
Consequently, these oscillations are not concommitent with changes of density,
nor with perturbations of the gravitational potential. The toroidal equations of
motion consist of a system of two ordinary differential equations of the 1st
order. Whereas the energy of the toroidal oscillation is restricted to the solid
elastic regions of the Earth model, spheroidal oscillations may ‘“‘propagate” even
through a liquid. These oscillations are characterized by a zero radial com-
ponent of the rotation of the displacement vector, but the other quantities are,
in general, non-zero. The spheroidal equations of motion consist of a system of
six ordinary 1st-order differential equations. Radial oscillations (n = 0) are a
special case of spheroidal oscillations.

In defining the initial values of numerical integration of the equations of
motion and in the matrix solution of free ascillations, the eigenfunctions for the
homogeneous model have to be known. We have proved that, for this particular
model, the eigenfunctions of the oscillations can be expressed by a combination
of spherical Bessel functions. In defining the initial values of numerical integra-
tion of systems of equations of motion in the neighbourhood of the model’s
centre, we used a different method, i.e. the expansion of the eigenfunctions into
a power series in r in the neighbourhood of the origin.

Anothet important problem is determining the roots of the secular function.
For the SNREI Earth model, we have derived a relation for computing an
improved value of the eigenfrequency, using the variation method with a boun-
dary term, with the aid of the tested frequency and the eigenfunctions computed
for this tested frequency. The first three sections of Chapter 8 describe the
method of solving the system of ordinary differential equations numericaily for
the free oscillations of the SNREI Earth model. This then involves the descrip-
tion of program functions, inclusive of instructions for using them, as written for
the purpose of solving the problems on hand numerically. In Section 4 of
Chapter 8, we present some of the eigenperiods of model 1066A and compare
them with observed eigenperiods.

SUPPLEMENT A. TENSOR ANALYSIS
A.l. Introduction

To facilitate the understanding of the principal part of this study, we shall

briefly deal with tensor analysis in this supplement. Tensor analysis is a natural
expansion of vector analysis. As in the case of vectors, we shall formulate the
tensor calculus for an arbitrary coordinate system. We shall introduce tensor
‘with the aid of invariant properties of coordinate transformation. Since physical
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laws are invariant with respect to a particular coordinate system, the introduc-
tion of tensors via their invariant properties will provide a natural and powerful
tool for formulating physical laws. There exist a large number of books and
monographs of various sophistication on the subject. We recommend [65, 82,
89, 104, 125]). An account particularly suitable to continuum physics can be
found in [56—59].

A.2. Curvilinear coordinates

Assume the position of an arbitrary point P in three-dimensional space to be
determined by its Cartesian coordinates y', %, y°.
Consider the transformation of these coordinates,

(A.1) X =x0L ), k=123,

under the assumption that functions x* are defined and continuously differenti-
able at least up to the first order in a particular region of point P(y', y?, *). Also
assume that the Jacobian of the transformation,

o dy'/ox' oy'/ox? oy'/ox
(A2) szeta——|= Oyox' Oyoxt Oy ox’

oy’fox' 9y fox 0y’jox?

differs from zero in the region being considered. From the implicit function
theorem it follows that transformation (A.1) has a uniquely inverse transforma-
tion

(A'3) yk = yk(xla x2’ x3)a k = 1’ 23 3.

Under these assumptions the coordinates x* are uniquely assigned to coordina-
tes y* and vice versa. Coordinates x* determine the position of point P in space
uniquely and, therefore, they are referred to as the curvilinear coordinates of the
point (Fig. Al).

Fig. Al. Curvilinear coordinates.
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A set of points in E; one of whose curvilinear coordinates is constant, is called
a coordinate surface. Three different coordinate surfaces may pass through each
point in E;. The line of intersection of two mutually corresponding coordinate
surfaces is called the coordinate line, i.e. a set of points in E; whose two
curvilinear coordinates are constant. Once again, three different coordinate lines
may pass through each point in E;.

In Cartesian coordinates, the position vector p of point P is given by the
relation

(A4) C p=M,

where . are unit basis vectors in Cartesian coordinates. In Eq. (A.4) and
throughout the text as a whole we shall use Einstein’s summation rule, i.e. we
sum from one to three over all repeated indices which occur in diagonal position.
No summation is carried out over the underscore indices.

We shall introduce the base vectors g,(x!, x%, x*) as follows:

op oy
A5 n=P_%,
(A.5) gi( o ok
If we multiply (A.5) by 0x*/0y”, we obtain
ox*
A6 i=%g.
(A.6) o G

Equation (A.5) implies that the vectors g, are tangential to coordinate lines x*
like the vectors J,, which are located on the Cartesian axes il
The infinitesimal vector at point P can be expressed as

op

A7 dp=—dx* = g dx*.
(A7) P " k
The square of the distance between two infinitesimally distant points is
(A.8) ds’ =dp.dp = g, (0 dx*dx’,
where g,,(x) is the covariant metric tensor defined by the relation

oy" 0y"
A9 X)=g. g=—=—39,,,
(A.9) gkl()“ G- 6 3t o

where 8, is Kronecker’s delta symbol, equal to unity if the indices are the same
and to zero if the indices are different. If the metric tensor is known, the length
of the vector and the angle between two vectors can be determined. Note that
in general curvilinear coordinates g, # 0 for k s /. Therefore, vector g, need not
be orthogonal to vector g,. We shall refer to the coordinates as orthogonal if
8u =0 everywhere when k # /. Nor is g, necessarily equal to unity and,

188



therefore, vectors g, are not necessarily unit vectors. Equation (A.9) further
implies that the covariant metric tensor is symmetric, g, = gx-
The reciprocal base vectors g*(x) is determined by a system of nine equations

(A.10) g.9=38,
where & is Kronecker’s delta symbol. The solution to system (A.10) reads
(A.11) g =g,
where
alg. cofactor
(A.12) g == Bu, g = det(gu).

From Eqs (A.9), (A.10) and (A.11) it is easy to derive the formulas
(A.13) g=9.9,.8i=69=6"gu=9"

Tensor g is called the contravariant metric tensor. One can see that it is
symmetric, g = g*. Tensor g} is a mixed metric tensor with the components
gt = 8, where 8} is Kronecker’s delta symbol.

A.3. Tensors

Definition 1: We shall say that tensor A is defined in three-dimensional space
if 37 *¢ numbers A¥* are assigned to every coordinate system, so that the
coordinate transformation x* = x*(x', x?, x*) transforms these numbers accor-
ding to the relations

(A.14) AT () = Gl ARy (),

where

ety OXT Ox dxM Oxk
(A.15) Gt = ST
ax ke gyt Ot

We shall say that tensor A is p-times contravariant and g-times covariant. The
total number of indices p + q is the rank (degree) of the tensor, and the numbers
A4+, are referred to as the coordinates of the tensor.

Example 1 (scalar) : If we assign the same number 4 to every coordinate system,
the number determines a zero-order tensor (p = ¢ = 0), which is called a scalar,

(A.16) A (xX)=Ax).
Example 2 (vector): In changing the coordinates, the contravariant (p = 1,
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g = 0), or covariant (p =0, ¢ = 1) coordinates of a vector are transformed
according to the formulas

(A.17) A¥(x) = A*(x) 0x* jOx*,
or
(A.18) A (X) = A (x)0x*/0x*
respectively.
An example of a contravariant vector is the differential vector dx*,
(A.19) dxt = (0x* /ox*) dx*,

which agrees with (A.17) with 4* = dx*.
Similarly, the partial derivatives of a scalar is a covariant vector,

(A.20) dD/Ox* = (d/dx*) dx*/ox*,

which agrees with (A.18) with 4, = 0@/dx*.

Example 3 (2nd-order tensor): In changing the coordinates, the contravariant
(P =2, q=0),covariant (p = 0, ¢ = 2) and mixed (p = 1, ¢ = 1) coordinates of
a 2nd-order tensor are transformed according to the formulas

(A21) A¥T(x') = A (x) (@x* [9x*) (x' [ox')
(A22) Ar(X) = Ay () (0x*/0x*) (Bx'/0x"),
(A.23) A¥ (X)) = A% (x) (0x* [ox*) (Bx' [3x").

An example of a covariant or contravariant 2nd-order tensor is the metric
tensor g, or g¥, respectively, since

(A24) g (X) = g(x).g(x) = g(x). g(x) Bx"/0x") (Bx'/ox").

The same applies to quantities g’. The quantities g*, = 8} are the coordinates of
a mixed 2nd-order tensor, since

(A.25) 85(x0) (0x* J0x*¥) (0x/0x') =
= (0x*/dx*) (0x*/0x") = Ox* Jox" = 8K (X).

Lemma 1 (index law): Let Ak""k”,l_,_,q be any p-times contravariant and g-times
covariant tensor and let s > g, ¢ > p. If the multiplication

g A .
(A.26) Xll T gk = B ke

produces an arbitrary (s——q)-tlmes contravariant and (#—p)-times covariant
tensor B, the quantity X is an s-times contravariant and #-times covariant tensor.
Proof: Assume Eq. (A.26) to hold in some coordinate system, i.e.

ky..kp 1ol ks el
(A.27) AT X = B
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Since A and B are tensors, the following transformation relations apply to them,
kply..dg L ky..k
/,1 ’1 &= Gl;l k:"l ’ZA l p’l""q

and the same applies to tensor B. By substituting these transformations into
(A.27) we obtain

kply.. g gky.kp gk (1 Bkt k P
(A.28) G Y. S L X “Mekpods = CRIIE M B L k-

If we multiply (A.26) by Gji* |2+ !~ and subtract the result from (A.28), we
arrive at :

kl deplyodg gky.p WA k- k,ll &l
(A29)  Gulgd A", X = G X ) =0,

where we have made use of the following properties of the quantities Gk " Zlf: 1,:

defined by Eq. (A.15),
(A30) 1kp G’] g kpekply g

kyoodp Tt ty = kgt s
1okp KKy ok oky o
...k 1,...1,,‘p =8,'9,...87

Since the factor preceding the parentheses in Eq. (A.29) is an arbitrary tensor,

the necessary and sufficient condition for (A.29) to be satisfied is that the
expression in the parentheses should be zero. It then follows that

o A wokdd . o
| R —_ 1 1--%8 1eoeds
XUy = G X

Q.E.D.

Definition 2 (transposed tensor): A tensor which is created by the permutation
of two superscripts or two subscripts, is referred to as a tensor transposed with
respect to these indices.

Example 4: The contravariant, covariant and mixed components of a transposed
2nd-order tensor are (AT)Y = A%, (AT),, = 4,, (AT, = 4,%, (AT),* = 4%,.
Definition 3 (symmetric tensor): We shall refer to a tensor as symmetric with
respect to the superscripts or subscripts, provided its coordinates remain un-
changed under any permutation of these indices, e.g. tensor 4", is symmetric
with respect to the first two subscripts provided 4%, = 4",,..

Example 5: Metric tensors g, g and g, are symmetric tensors because
8u= G-9 = 99 = &, and similarly for tensors g and g*,. This implies the
symmetry of Kronecker’s delta symbol: &, = §,%.

A4. Tensor algebra

Definition 4 (equality of tensors) : We say two tensors are equal if they are p-times
contravariant and g¢-times covariant and if their coordinates are equal at least
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in one coordinate system. Their coordinates are then equal in any coordinate
system. Their coordinates are then equal in any coordinate system.

Definition 5 (addition of tensors) : If two tensors are of the same order and type,
the sum or difference of these tensors is a tensor of the same order and type, e.g.

(A.31) CH, =AY + BY .

Definition 6 (outer product of tensors): The outer product of two tensors is
obtained by simple multiplication of the tensor components, e.g.

(A.32) CY = A"B,.

Lemma 1 implies that this operation yields a tensor whose order is equal to the
sum of the orders of the factors.

Example 6 (dyadic product): The outer product of two vectors is called the
dyadic product, ‘

(A.33) C"=A4*B'  contravariant component,
Cu=A,B covariant component,
Ct, = 4*B,  mixed component.

Definition 7 (tensor contraction): The algebraic operation in which we put the
covariant and contravariant indices of a tensor equal to each other and add with
respect to these identical indices is reffered to as tensor contraction, e.g.

(A.34) Ay, Ay

Lemma 1 implies that the order of the contracted tensor is lower by two than
the order of the original tensor. The type of contracted tensor is determined by
the number of free indices. It is easy to prove that no tensor quantity is obtain,
if this procedure is applied to two indices of the same type, i.e. either to both
covariant or to both contravariant indices.

Definition 8 (raising and lowering the indices) : The algebraic operation in which
we assign the quantity Ap,..kp,..q, tO €VeEry p-times contravariant and g-times

. ky.. .k .
covariant tensor 4", , by the relation

(A.35) Ak,...k,l,...lq = Empk,++ Bmpky Am'mmp/,...l,,,

where g, are the components of the covariant metric tensor, is referred to as
lowering the indices of tensor A. Lemma 1 implies that the quantity Ap, .1, 18
a (p + g)-times covariant tensor.

Similarly, the algebraic operation in which we construct to tensor Ak""k”,l___,q
a new (p + g)-times contravariant tensor

Rydplidg _ myl o qkik
(A.36) At o gmh gl gl

m;..mg>
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where g are the components of the contravariant metric tensor, is referred to
as raising the indices of tensor A.

If we raise or lower only some of the indices of a tensor, we again obtain a
tensor quantity. With tensors of higher orders than the first we use a gap
(sometimes a dot) to indicate the original position of the indices we have lowered
or raised. By raising or lowering indicates of a given tensor we obtain so-called
associated tensors.

Example 7: By lowering the contravariant coordinates * of vector v, we obtain
its covariant coordinates and vice versa,

(A.37) v, = gut's vF = gy,
Example 8: Raising the indices of a 2nd-order tensor can be expressed as
(A.38) Akl = g""‘Am,, A/k = 8’""141»:-

In general, tensors A% and 4/ are not equal. Only if tensor A is symmetric,
A* = A/ and the relative positioning of the indices is unimportant.
Similarly, lowering the indicies can be expressed as

(A.39) A = g, A", Af = g dA™.
The following relations also hold:

(A.40) =g A4, =g" 4", = &g A,

(A41) Ay = A" = imA™ | = Eim&1nA™

(A.42) A4 =g"g,4,".

The associated tensors 4%, 4%, A%, A, characterize one and the same 2nd-order
tensor A.

Definition 9 (inner product of tensors) : We define the inner (scalar) product of
tensors by contraction of the outer product of two tensors. The inner (scalar)
product of vectors and tensors will be denoted by a dot.

Example 9 (scalar product of vectors) : By contracting the dyadic product of two
vectors, we define the inner (scalar) product of two vectors:

(A43) u.v=ur=uv,.

Lemma 2: The scalar product of vectors is an invariant, i.e. it is independent of
the coordinate system.

Proof: With a view to Eqgs (A.17) and (A.18)

(A44) W0 (X) = 1 (%) v, (1) (Ox* 0x*) (Ox*/0x*) = 1 v (x).

Example 10 (scalar product of a vector and 2nd-order tensor ) : By contracting the
outer product of a vector v and 2nd-order tensor A, we define the left-hand and
right-hand scalar product of a vector and 2nd-order tensor,
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(A.45) (v.AY = 4fv' = A%y,
and
(A.46) (A.v) = A0 = Ay,

respectively. By lowering the indices we obtain the covariant components of
these vectors,

(A.47) (v.A), = Ay v' = A" v,
and

(A.48) (A. V), = A, v = 4/,
respectively.

Lemma 3: Assume ¢ to be a scalar v, v,, v,, v; to be vectors and A, A,, A, to be
2nd-order tensors. It then holds that

(A.49) (Ai+A).v=A.v+A,.v,
(A.50) Avi+tv)=A.vy+A. v,
(A.51) (A.ov)=@(A.v),
(A.52) A.v=v.AT,

(A.53) (vivy). vy = v(v,. v3)7
(A.54) v,.(v,¥) = (v;.v)v,,

where AT is the tensor transposed to tensor A and v, v, is the dyadic product of
vectors v, and w,.

Proof: Equations (A.49)—(A.52) follow immediately from the definition of the
scalar product of a vector and 2nd-order tensor. Let us prove Eq. (A.53), e.g.
for the contravariant component,

[(vw). v] = (v, Vz)kl v, = |/1‘("'2)1 vy = [vi(v,. ).

Equation (A.54) can be proved in very much the same way.

Example 11 (scalar product of 2nd-order tensors): By contracting the outer
product of two 2nd-order tensors A and B, we define the scalar product of these
tensors:

(A.55) (A.B)*, = 4*, B",.

By lowering and raising the indices we obtain the second mixed component of
this tensor:

(A.56) (A.B)* = A"B,*.
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Lemma 4: Let ¢ be a scalar, v, v,, v,, v;, v, vectors,A, A, ,A,, B, B,, B, 2nd-order
tensors. It then holds that

(A.57) (A, +A,).B=A_.B+A,.B,
(A.58) A.B,+B,)=A.B,+A.B,,
(A.59) (¢A).B = o(A.B),
(A.60) A.(¢B)=9(A.B),
(A.61) (A,.A).B=A,.(A,.B),
(A.62) (A.B)T = BT. AT,
(A.63) (A.B).v=A.(B.v),
(A.64) v.(A.B) = (v.A).B,
(A.65) T (mn).(nv) = (v )y,

Proof: Equations (A.57)—(A.60) follow immediately from the definition of the
scalar product of two 2nd-order tensors. Therefore, let us only prove the
remaining Egs (A.61)—(A.65):

[(A.A,). B]kl = (A 'AZ)km B, =
= (Al)kn (Az)"m B™ = (Al)kn (Az . B)"l = [Al ‘(Az . B)]kl,

[(A.B)'f,=(A.B)*= 4B, =(@B"),.A")y",=[(B".AN],
[(A.B). v =(A.B),/ = 4, B" v/ = A4 ,(B.v)"=[A.(B. V[,
[v.(A.B)} = (A.B)/v/ = A" B,*¢/ = (v.A)"B,* = [(v.A).B},

[(viw). (vl = (v Vz)km(V3V4)m1 = (Vl)k(Vz)m(')s)m(V4)1 =
= [(v,. w) (v W],

The proofs for the other components are similar.

A.5. Physical components

We have so far represented a vector by its contravariant or covariant com-
ponents

(A.66) v=v'g, = ng",

where g, is the vector tangential to the kth coordinate line at point x*. Since
vectors g, and g* are not generally unit vectors, components v* and v, do not
have the same physical dimension as vector v. Let us assign the unit vectors e,
and € to vectors g, and g*. However, the square of the length of a vector is given
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by the scalar product of this vector with itself; in virtue of Eqs (A.9) and (A.13)
(A.67) G- O = B> g.¢ =g

where no summation is carried out over the underscore indices. The unit vectors
to vector g, and g" are then defined by the relations

(A.68) & = gk/(gﬂ)”zs e =g/gH".
With a view to (A.66), vector v can be resolved into these unit vectors as
(A.69) V= v(k)ek = U(k)d‘,

where the quantities v*’ and vy, are the physical components of vector v. We use
the term physical because these components have the same physical dimension
as vector v. By substituting Eqs (A.66) and (A.68) into (A.69), we obtain the
formula for the physical components of vector v,

(A.70) v(k) - Uk(g]_‘!i)llz, v(k) = Uk(g{‘— 12 .

By substituting Eq. (A.37) into (A.70), we can derive the relation between the
two kinds of physical components:

(A.71) Vo = Zl:gkl(gk—k/gu)m”(’)-
If the curvilinear coordinates are orthogonal, g,, = g = 0 for k # [,
(A.72) Vg = v,

i.e. the difference between the two kinds of physical components of the vector
vanishes.

This definition of the physical components can also be extended to tensors of
higher orders with the aid of their relations with vectors. Let us demonstrate the
resolution of the stress tensor t into physical components. For the time being,
let us not assume that the stress tensor t is a symmetric 2nd-order tensor. The
projection of the stress tensor t onto the unit external normal n defines the stress
vector {,

(A.73) t=t.n,
i.e. the components expressed with the aid of Eqs (A.46) and (A.48) read
(A.74) tk = tk,nl = tkln,, tk = tkln, - t,dnl.

If we express vectors tand n in terms of physical components (A.70), we obtain
the relations

(A.75) = (9, 10 = POy

—r Oy )

. Iy = ley Mo = lpeh
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where the quantities
(A.76) 0 = (gu/g)'"”
0 = Pi(g,g)",
' t(k)m = tkl(gg/gg)'/za
twe = tu8ugn) ™",
are the physical components of the stress tensor t. Let it be emphasized that the
quantities 1%, 90, £,® and ¢,,, are not tensor components. The relation

between the right-hand and left-hand physical component can be derived with
the aid of (A.42) and (A.76):

(A.77) 10® = Y. (Gun8u/8us&rm) " Bim€" 1™ -

If the curvilinear coordinates are orthogonal, g,, = g¥ =0,

i.e. the physical components of the stress tensor t in orthogonal curvilinear
components are the same for all types of tensor coordinates.

A.6. Covariant derivative

As compared to Cartesian coordinates, the greatest difficulty in the system of
curvilinear coordinates is that the basis vectors g, and g* are functions of the
curvilinear coordinates x*, so that in differentiating and integrating these vectors
do not behave like constants. Therefore, let us first derive the formulas for
differentiating these vectors with respect to the curvilinear coordinates. We shall
put ‘

9. _ i(ﬁl) o,
(A.79) ox ox\oxt) oxoxt ™

because the Cartesian unit vectors /, do not depend on coordinates. After
substituting for Z, from (A.6),

og, Jm
where the quantities

m)] _ &y ox"
(A8D) {k 1} " ax'ox’ Oy

are referred to as Christoffel’s symbols of the 2nd kind. Christoffel’s symbols of
the 1st kind are defined by the relations
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(A82) [ki,m] = gm{k" ,} or {,:",} = g™kl n.
By using (A.9) it is no difficult to prove that

1 agkm ag Im agkl)
A.83 klim=-\—+—""——1}.
(A.83) [kt, m] 2 < ox'  ox* ox™

Let it be emphasized that Christoffel’s symbols are not tensors. However, they
are symmetric with respect to indices k, /,

m m
(A.84) kl,m] = [lk,m], {k l} = {l k}'
By making use of (A.11), we obtain a similar result to (A.79),
og k

(A.85) 5;= —{1 m}d"-

We can now calculate the partial derivatives of vector v,

ov 0 o™ og, (60’" {m} ,)
A.86 —=—("g,)=—g,+V"—=|—+ V)G
(A.86) oxk axk(g) o ¥ oxt \oxt |kl
which can be abbreviated to
ov
A.87 — =", G,
( ) o «G
where the expression
or" my{

A.88 v, =+ { }v
(A.88) Ry

is the covariant partial derivative of the contravariant vector v™.

A covariant partial derivative, or the partial derivative of any tensor is
denoted by adding a semi-colon after the last tensor index, or a comma, and a
further index appropriate to the coordinate with respect to which the covariant
partial derivative, or partial derivative, respectively, is being performed.

By differentiating the expression v = v,,g", we obtain the covariant partial
derivative of the covariant vector v,,,

0
(A.89) é = Dy @™
where
I
(A90) Uk = U= {m k} v;.
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The reason for introducing, besides ordinary partial derivatives, also covariant
partial derivatives, is that applying the covariant derivative to any tensor increases
the order of the tensor by one covariant index, whereas a partial derivative of a
tensor is not, in general, a tensor quantity.

Since Christoffel’s symbols are identically equal to zero in Cartesian coordina-
tes, covariant partial derivatives in this coordinate system reduce to “‘ordinary”’
partial derivatives.

The covariant partial derivative of a scalar is identical with an “ordinary”
partial derivative, because a scalar is a covariant tensor of order zero. Covariant
partial derivatives of higher-order tensors are defined in a similar fashion as the
covariant derivatives of vectors, e.g. the covariant partial derivative of a 2nd-or-
der tensor,

k l
kI gkl nl kn
(A.91) A =4 ,,,,+{ n}A +{ n}A ,

k 4k n k k n
e L F L,

n n
Akl;m = Ak[,m - {k m} A,,, - {1 m} Akn’

is a tensor of the 3rd order.

Lemma 5 (Ricci): The covariant partial derivatives of any metric tensor are
Zero,

(A92) gkl;m = gkl;m = gkl;m = g;k = 0’

where g = det(g,,).
Proof: With a view to (A.91),,

n n
(A.93) Exim = Sktm — {k m}g”’ - {I m}g""'

By using Eqs (A.82), and (A.83) we can prove that the r.h.s. of Eq. (A.93) is
equal to zero, gy, = 0. The other relations of (A.92) can be proved in very much
the same way.

Equation (A.92), yields the following useful relation:

(A.94) (log+/g), = { m'"k}, g = det(g,).

Lemma 5 implies that metric tensors under covariant differentiation behave
like constants, consequently, whether we raise or lower the index before cova-
riant differentiation or after it is unimportant. It is easy to prove, for example,
that

(A.95) | A5 = (@A), = B Ay
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It is also easy to prove that the product rule of differentiation holds for the
covariant partial differentiation, e.g.,

(A.96) (4*B,,),, = A*,B,, + A*B,,.,.

Sometimes, by means of the covariant partial derivative, we also introduce
the contravariant partial derivative as

(A.97) Akl;m = Akl;ng"m .

A.7. Invariant differential operators

The invariant differential operators gradient (grad) of scalar @, divergence
(div) and rotation (rot) of vector v, are defined by the relations

(A.98) gradd =, g,

(A.99) divv =1,

(A.100) rotv= ¢y .g,,

(A.101) &M =" g, Eum = um/g

and ¢” and e,,,, are Levi-Civita alternating symbols,

(A102) e123 — e3|2 — eZ3l = _e2|3 — _e321 - _el32 — 1 s

and the other ¥ = 0. The symbols ¢,,, are defined similarly. Let us remind the
reader of some of the important relations:

. 5 of o
(A.103) Eue™ = |87 & &7,
& & &
(A.104) Es™ = 8787 — 313,
(A.105) G = 28], £t =6.

The operators (A.98)—(A.100) are invariant with respect to a general trans-
formation of coordinates.
It is sometimes advantageous to introduce the nabla operator 7,

0
A.l vV =g—.
(A.106) ﬂka |

By using this symbol we can express Eqs (A.98)—(A.100) in the following form:
(A.107) grad d=vVo=go,,
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o

A.108 divv=V.v=¢g".
( ) ive=V.v a"w

(Ulﬂl) =g. glvl;k = Uﬁ;k s

(A.109) rotv=V x v=gx %(v’g,) =g x gv'y = &™v,.8.
If we use Eq. (A.94), we can express div v in a more convenient form:

(A.110)  dive=1tr, =", + {kkl}v’ =vf, + *(log\/g), =
= V(@) 1/\/8-
Laplace’s operator is '

(A.111) VP =divgrad @ = (g @), = g(P ), = [/ (€)' P14/ \/2.-

Let us generalize the above differential operations also for tensors of higher
orders. The gradient, divergence and rotation of tensor A are defined by the
relations

(A.112) gradA = VA,

(A.113) divA=V.A,

(A.1149) rotA=Y xA.

If A is a tensor of order p,

(A.115) A=A""g . g, =4 10" 9%

and, consequently,

(A116)  gradA=4, .. ¢"9"...¢" = (gradA),, ., g"9"...g",
(A.117) divA=A""" g .. g, =(divA)**g,..g,,
(A118)  rotA =4y ., 09" ..g% = (totAY,, ,0.0"...9".

By lowering and raising the indices, we can express the above tensors in terms
of associated components.

Example 12: The gradient of vector v = v,g is defined as

(A.119) gradv=v,¢'¢' = (grad v),g'¢g .
Example 13: For the 2nd-order tensor A = A'g,g, = 4,,¢"¢
(A.120) divA = 4", g, = (divA)g,
(A.121) rotA = ¢4, .,g.g" = (rotAY,g.g".
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Lemma 6: Let @, ¥ be scalars, u, v vectors and A a 2nd-order tensor. It then

holds that

(A.122) grad (@¥) = @grad ¥+ Wgrad @,
(A.123) div(®u) = @ddivu+ u.grad @,
(A.124) rot(Pu) = Protu+ grad d x u,
(A.125) grad(u.v) =gradu.v+ gradv. u,
(A.126) div(u x v) = v.rotu— u.rotv,
(A.127) rot(ux v)=v.gradu— u.gradv + udivv — vdivu,
(A.128) uxrotv=gradv.u— wu.grad v,
(A.129) rotgrad @ =0, divrotu=0,
(A.130) grad div u = div[(grad 7], "
(A.131) rotrot u = graddivwu — divgrad v,
(A.132) grad (Qu) = Dgrad u + (grad D)u,
(A.133) div(@A) = OdivA + grad @. A,
(A.134) rot(@A) = drotA + grad P x A,
(A.135) div(uv) = vdivu + u.grad v,
(A.136) rot(uv) = (rotu)v — u x gradv.
Proof:

grad (PY¥) = (9¥), 8" = ¥, ¢ + YD, ¢ =
div(®u) = (Pu)*, = Qv + D, = Odivu+ u.grad D,

Pgrad ¥ + Ygrad @,

rot(Pu) = &"(du),,,g, = &"u,, D,g, + DMy, g, = Protu+ grad @ x u,
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grad (v.v) = (u. v), g = (' v), g = ulkvlgk + U'U/ g =
= (grad u),.v,¢" + (grad v),i/g* = gradu. v + gradv.u,

div(u x v) = (u x v,

= &"uv, — " up,, = v.rotu — u.rot v,

rot (u X V) = gklm(u X v)m G = gk ( mpqupvq) G =
= (3,8,' — 3,8 ’)(u”,v"+u"u",)gk—
(u",v - u’v",+u“v  — w1 g, =
= (v'(grad u)} — w/(grad v)* + #*div v — *div u)g, =
=v.gradu— u.grad v+ udivv — vdivu,

/

(8klmulvm)k = gt (u,), = et (U1 + U,,p) =



u x ot v = gy, (rot vy"gt = &, ', g" = (3481 — 8/8Du'v, g =
= (W — W) g" = (W(grad v),, — ¥/(grad v),)g" = gradv.u— u.grad v,

rot grad @ = ¢"(grad @), g, = ¢ P,.9. =0,
divrot u=(rot uf", = é"u,, =0,
graddivu = (div ");kgk = ul;lkgk = ' ,g" = [(grad u)T]lk;lgk = div[(grad u)'],

rotrot u = g, (rotw)"/'d" = &, u,.,'d" = 6,8 — 8/8,)u,,'g" =
= “1;klgk - “k;/’gk = u[;Ikgk - uk;ld( = (div ");kf — (grad u)lk;ld‘ =
= graddivu — divgrad u,

grad (Qu) = (Pu),.g"g' = (Puy, + D, u)g'g =
= [P (grad u),, + (grad P),ug"g = Pgrad u + (grad P)u,

div (@A) = (PA)Y, g = @A"Y, g + A'D,g = PdivA + grad D.A,

rot (QA) = & lm((DA)mn;lgkg" = @g" " A1 GG + & Im¢,lAmngkgn =
= @ProtA + grad ® x A,

div(uv) = (UV)kl;kgl = (11(171);1:91 = (uk;kvl + ukvl;k)d =
= [v,divu + * (grad v), )¢ = vdivu + u.grad v,

rot (uv) = & (u,,. v, + U,0,.)gg" = (rotu)v — u x grad v

A8. Orthogonal curvilinear coordinates

Let us first express the differential operators given above in general
orthogonal curvilinear coordinates, and then in spherical coordinates. Since the
physical components of tensors, and vectors, are the same in orthogonal cur-
vilinear coordinates for all kinds of tensor components, we shall represent the
tensors, and vectors, by physical components.

In orthogonal curvilinear coordinates holds:

(A.137) gu=8"=0 fork#1, g%=1/g,,
d = gli,fgks g = 182833,
(A138) ds* = gn(dx) + gn(dx?) + g5 (dx’)za,g "
iy = L [ag"* 5+ Somg, —ﬂs,m],

I'm g 281 LOX™ ox! ax*

1 0 1 0@ 1 o0
. D= —e —_—t ———6;,
A1¥)  grd el = T o @)
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(A.140)

(A.141)

(A.142)

(A.143)

(A.144)

(A.145)

(A.146)

. a[,
divu= m{a_x’[(&?g”)mum] +

+ %[(gug 11)1/2’1(2)] + %[(gn 1822)”21‘(3 ]} s

__ 1 fo 112 (3)] _
rotu = (gz;g”)l 3 { o [(833) u

0 12..3 1 0 12, (2
“aal 0 ot sl eme] -

1 0 [(gzzgsa)madi]
oo 1[0 [(eug)"00]
v (81182:833)" {ax' (g )"? ox'
2 [esh o), o [an oo
ox*L (gx)"* ox*1  ox’L (g, ax*lS’

gradu = ul;kd‘ ¢ = (grad u),'g* g = (grad u)(k)mek e,

1 ou®

Zro
ORI 12 ggkk) 3 ™ 3(e. )2
(&) ki U (gy)

C @ugd” O ()i g ) ox”
divA = 4, ¢’ = (divA),g’ = (divA),/,

. 2§10 "
(divA), = kgl {(g)l/z&["(k)(o (gkk)l/z] +

1 3(g)"” qo 1 ogw)'"” JCRS
112 U 12 g ®
(8ugn)'” ox* (8uc&u) o 4

(grad u),,) =

b

Note: Sometimes it is advantageous in orthogonal curvilinear coordinates to
introduce Lame's coefficients H, by

(A.147)

H, = (gkk)llz .

Example 14: Express above relation in spherical coordinates r, 3, .
The definition relation between Cartesian and Spherical coordinates is

(A.148)
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y! = rsin 9cos ¢,
¥* = rsin 3sin ¢,
¥} =rcosd.



Lamé’s coefficients read
(A.149) H =1, Hy=r, Hy=rsin$.
Christoffel’s symbols of the 2nd kind,

(A.150) { 9’ 9} = —r, {q)’(p} = —rsin29, {r‘gg} =1/r,

{ 9 }= —sin 8cos 3, { ‘p}= 1/r,
?9 re

o1 _ kl_
{9 ¢} = cot 9, others{l m} =0.

(A.151) grad¢=a—(pe,+-l--alpeg+ 1 a—¢e¢,
or r 09 rsin $0¢

. 10 1 © . 1 Ou
(A.152) divu=—=—("u)+ — (ugsin 9) + -2,
Aor O Cn gpg e rsin 809
(A.153) rotu= —\ [a("ws‘“ 9 _ a—’i’] e+
rsin g 09 oo

1 du, 13(u )] 1 [a(rus) 6u] '
Do roniairal L7 e B ited L
[rsin 900 r or 10 Tar " 20l®

10,00 1 8/ 00 1 0
(A.154) Vo= __<r2—) + -—-(sm .9—) + —.
P?or\ o/ Psin 909 09/  Psin9d¢?

"AY9. Tensor of small deformations
and equations of motion of the continuum
in curvilinear orthogonal coordinates

We shall introduce the tensor of small deformations e as (see Supplement B)

(A.155) e = }[grad u + (grad w)"],

where uis the displacement vector. Using Eq. (A.144), we can express this tensor
in terms of the physical components,

(A.156) e=¢",6,0,
(A.157) eV = e (gu/e)'” =
___l{(gkk)mi[ u® ]+ &) 9 [ u® ]}+
D) (gﬂ)lﬂ ox' (g_k&)lﬂ (gk_k)l/zaxk (81_1)1/2
By ¢ _u” &)™
(gl_l)llz'"='(gm)l/2 ™
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Example 16: Express the components of the tensor of small deformations in
spherical coordinates r, 9, ¢.

Let us denote the physical components of the displacement vector u by the
symbols (u, v, w). Then

Ou 10v  u
(A.158) e, =-—, €g9=—— + —,
) or” ¥ rog r
1
=— @+E+Ecot9,
rsin30%¢ r r
26,0 100 v
or. rod r
¢ ow 1 Ou w
2e =z_Z

" o rsin8d¢ r

2ey, = <§K + 1o wcot 3)
08 sin $0¢

where e, e, ..., e4, are the physical components of the tensor of small
deformations e.

We shall express the equations of motion of the continuum in vectorial form

(see Supplement B),
2
(A.159) du_ or+ divt,
d?

where ¢ is the density, fthe body force per unit mass, u the displacement vector
and t Cauchy'’s stress tensor. If we use Eq. (A.146), the 1th equation of motion,
expressed in ferms of physical components will read

: 1 0 )>”2 1 ogy)”
A160) Y {ﬁ_[ﬂ% (& W] b L),
=1 Ug)"? ox* (8 (88 ; ox*
_ ‘1 a(gkk) t(k) } + Qﬂo _ Qd u;,) .
(gﬂgg)m ox' ds

Example 17: Express the equations of motion of the continuum in spherical
coordinates r, 9, @.

Let us denote the physical components of Cauchy’s stress tensor, of the body
force and displacement vector in spherical coordinates by the symbols (¢,,, ¢4, ...
t90)s (f3s o, fp) and (u, v, w). In these coordinates the equations of motion of the
continuum can be expressed as follows:

d2 ot 1 101, O 1o,

(A.161) 0S¥ = of 4
dr o+ or r6.9 rsin $ 0¢

+ —(2t,, — tgg— ty + tgcOt 9,
r

+
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d% azs 10t 1 ot
b r 98 TS
NP ot or 708 rsin 9 9

+ —-[3t,9 + (295 — tp,) cot 9],
r

d’w 19t 1
A et
or r6.9 rsin 3 0¢

+ —(3t,¢ + 2tg4,cot 9).
r

A.10. Two-point tensor field

Definition 10: The quantities 4* (x, X) that transform like tensors with respect
to the indices k and K under transformation of the coordinate systems x* and

X¥, are referred to as two-point tensors.
Therefore, if

(A.162) X =¥, XX = XXX

are differentiable transformations of coordinates, and if
ox* oxM

A.163 AX (X, X)) = A™ -

(A.163) RO X) = AT 0=

then 4*, is a two point tensor. If g, and Gy are base vectors and g and G¥
vectors reciprocal to the former in coordinate systems x* and X*, then 4% are
components of the tensor

(A.164) A(x, X) = A (%, X) g.(x) G*(X) .
An example of a two-point tensor are shifters defined by
(A.165) g% X) = g (1. Gu(X),

g5 X) = G(X). g (x).

Another example are deformation gradients

| ox* ax
.166 X e=—, XX
(A.166) K=o Xe= 5

The two-point tensor character of these quantities is implied by the relation

ax* _ ox* ox" ox¥
oX* ox"oxMox*’

L
where we have made use of rule of chaine of differentiation. Equation (A.167)

(A.167)
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has the form of (A.163). Multiple-point tensors of higher orders are similarly
defined.

Definition 11: The total covariant derivative of the two-point tensor A4*(x, X),
when x is related to X by the a mapping x = x(X), is defined by

(A.168) Ay = Agp + Ay,

where 4%, is the covariant partial derivative of A*, with respect to metric G,
at the fixed point x, and A*,, is the covariant partial derivative with respect to
metric g, at the fixed point X, i.e.,

. 04k M
(A.169) Ay, = aXLK - { I3 K} Ay,
0A4* k
k - K m
Therefore,
04, M o4* k ox!

k _ K __ k bl 4 m | A

A0 A= {L K}A M+[8x’ M {1 m}A "]axt‘

Note that this result is produced by differentiating Eq. (164) with respect to
- X* and by using Eqs (A.80) and (A.85) to express the derivatives of vectors g,
and G*. Therefore,

(A.17i) aA/aXK= AkL:ngGL-
By using Eq. (A.170) for x* ,(X), where the vector xis missing in the argument
x> We arrive at A
0%k {M}ax" {k}axmax'
A.172 X5 )., = ——— = = =
Note that (A.168) is a generalization of the total derivative of the scalar
function of two variables, &(x, X) with x = x(X), i.e.,

(A173) 49 _020x | 00

dx¥ dxoxY ox

The same formal rules apply to the total covariant derivative as to the
covariant partial derivative, e.g.,

(A.174) &xm=Grrm=8um =0,
(A*xB" ).y = A . B" + A* By,
(A + B )py = A grs + Bpns.
For other accounts, see [58].
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A.11. Projection of tensors onto a surface

Let S be an oriented surface in three-dimensional space represented in
Gaussian form,

(A.175) x = x(p°) a=1,2, or
= X', p») k=123,

where p', p? are curvilinear coordinates on surface S and x* are space curvilinear
coordinates of point x on surface S. Assume n(x) to be the unit normal external
to surface S at point x on S.

We shall refer to vector von S as a vector tangential to S, if n. v = 0 at every
point x on S. We shall refer to the 2nd-order tensor A on S as a tensor tangential
to S,if n.A = A.n=0atevery point xon S. If Vis a three-dimensional identical

tensor, IF, =38, ie. a 2nd-order tensor such that v.I=1.v=v and
A.l=1.A = A for any vector v and 2nd-order tensor A, then the equation
(A.176) I,=1—nn

defines the tangential 2nd-order tensor on S which we refer to as the surface
identical tensor since, if vis the vector tangential to S and A the 2nd-order tensor
tangential to S, then v.I, =1, . v=v,A.l,=1.A=A.

The projection of vector v on surface S is the tangential vector v,,

(A.177) v,=v.I,=L.v.

If vis the vector tangential to S, then v, = v. Assume grad to be the gradient
operator in three-dimensional space. The surface gradient, grad,, at point x on
surface S is defined as the projection of operator grad onto surface S,

(A.178) grad, = |,. grad = grad — n(n.grad).
For example, if ¢ is a scalar field on S,
(A.179) grad; @ = grad ¢ — n(n. grad ¢).

Since grad, only contains derivatives in the direction tangential to surface S, the
operator grad, may be applied to any field, defined on surface S, regardless of
whether this field is defined elsewhere in space or not.

Assume Q to be a scalar, vector or tensor field defined on surface S. If we
move this field from point x on S to a point infinitesimally close, x + dx, also
lying on S, the field @ will change by the value dQ:

(A.180) dQ = dx.grad, Q.
The projection of the 2nd-order tensor A on surface § is tensor

(A.181) A,=1,A=A—nn.A=A—-n(n.A).
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Tensor A, is, in general, not tangential to surface S. If A = grad v, the surface
gradient of vector v is defined bys the relation

(A.182) grad, v= grad v— n(n.gradv).

The surface divergence of vector v is defined as

(A.183) div,v= tr(grad,v) = divv— n.grad v. n.

Using (A.132), (A.123) and (A.125), it is easy to prove the identities

(A.184) grad,(pv) = pgrad,v + (grad,p)v,
div,(pv) = pdiv,v + v.grad, ¢,
grad (u.v) = grad,u. v + grad,v. u.

SUPPLEMENT B. FUNDAMENTAL RELATIONS OF THE THEORY OF ELASTICITY l

This supplement is devoted to a brief recapitulation of the fundamental !
relations of the theory of elastic bodies. Strain geometry is described with the
aid of the theory of differential geometry, and laws of conservation are described ;
in natural (deformed) and reference (undeformed) systems of coordinates.

A detailed discussion of theory of elasticity and continuum physics is given
in [28, 37, 64, 73, 74, 76, 91, 95, 96, 99, 109, 129, 130]. Our brief description
follows books of Eringen [S6—60].

B.1. Strain tensor

B.1.1. Coordinates, deformation, motion

Consider an continuum body at two different states of time. In the first,
assume the body to be unstrained, in pre-strain state, or the initial undeformed
state. In the second, assume the body to be strained, in the post-strain state, or
deformed state. Assume the undeformed body B to have volume V and surface
S. Assume the deformed body b to have volume v and surface s. The position
of material point P in body B will be described by the curvilinear coordinates
X', X%, X°, or by the position vector P (also X) which extends from the origin O
of the coordinates to point P. In the deformed state, assume the material point
p to be represented by a new set of curvilinear coordinates x', x2, x°, or by a
position vector p (also x) that extends from the origin o of the new coordinates
to point p. Often it is advantageous to select these two systems of coordinates.
The coordinates X* are called the Lagrangian or material coordinates and x* the
Eulerian or spatial coordinates.
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The motion of the body carries various material points through various
spatial positions. This is expressed by

(B.1) X = xHX5 1), X*= X505 1)
fork=1,2,3and K=1, 2, 3. (B.1) can be abbreviated to read
(B.2) x=x(X,t), X=X(x,1).

Equation (B.1), states that at time 7 a material point X* of B occupies the spatial
position x* in b. Equation (B.1), describes the opposite.

. We shall assume that functions x* and X* are continuously differentiable at
least up to the first order in the neighbourhood of point P(X), or p(x), and that
the Jacobian of transformation is not identically zero, i.e.

) oxt
(B.3) | j=det <§<> #0

describes unique inverse transformations.

The assumptions mentioned express the axiom of continuity, the consequence
of which is, on the one hand, the axiom of indestructability of matter, i.e. no
region of a finite positive volume can be deformed into a region of zero volume,
and, on the other, the axiom of impenetrability of matter, i.e. under motion every
volume is again transformed into a volume, every surface into a surface, and
every curve into a curve. However, in some cases it must be assumed that, within
a particular interval of time, there may exist singular surfaces, curves and points
in which the axiom of continuity is not satisfied.

We shall denote the quantities relating to the undeformed body B by capital
letters, to the deformed body b by lower-case letters. The components of vectors
and tensors relative to coordinates X* will have capital Roman letter indices,
those relative to coordinates x* lower-case Roman letters. For example, G, (X)
and g,/(x) are the covariant metric tensors in B and b, respectively.

B.1.2. Base vectors, metric tensors, shifters

The position vector P of point P in B and the position vector p of point p in
b are expressed in Cartesian coordinates Y* and y* as

(B.4) P= Y, p=)'%,

where /g and j, are unit base vectors in Cartesian coordinates Y* and y*. We are
again going to use Einstein’s summation rule, i.e. we summate from one to three
over every diagonally repeated index (Fig. B1).
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Fig. Bl. Coordinate systems for an undeformed body B and a deformed body 5.

We shall introduce the base vectors Gy(X) and g, (x) at X* and x*, respectively,

oP oYv op oy
B.5 G =—=—\,, gxX)=—=="I,.
(B.5) x(X) Xt ox* s Gi(X) ok ook
The infinitesimal differential vectors dP at point P and dp at point p are
oP op
B.6 dP = —dX¥ = G, dX*, dp = ——dx* = g, dx*.
(B.6) | X~ [ p o /%

The base vectors G and g, are tangential to the coordinate lines X* and x*.
The squares of the lenghts in B and b are

B.7) d§?=dP.dP = Gy, dX*dXx*, ds’ = dp.dp = g, dx* dx,
respectively, where

oYMar”
(B.8) Gy(X)=Gk.G, =

oy" oy"
—Buns GulX) =G .G = "5
ox*oxt " o T axkax!
are metric tensors in B and b, respectively. Kronecker’s delta symbols 3,,, 3,
84 and 8 are equal to unity if their indices are the same and to zero if they are
different.
The reciprocal base vectors GX(X) and g*(x) are defined by the equations

(B.9) G*.G, =%%, g.9,=8.
The solution to these equatio;ls reads

-(B.10) G*=G"G, ¢ =¢"g,
where '

t
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(B.11) GKE = alg. cofactor G,(L, ' glg. cofactor 8
det (Ggy) det (g)

The scalar product of (B.10) with vectors G* and ¢ yields

(B.12) G =G .G ¢' =g ¢

The representation of vectors and tensors with respect to coordinates X* or
x* is separated, e.g. the components of the position vectors Pand pin coordina-
tes X* and x* are

(B.13) PF=P.G", p'=p.g".

We would like to express the vectors and tensors from one coordinate system in
terms of their projection into the other coordinate system and vice versa. For
this purpose, let us shift vector p parallelly to point P(X). If p* are the com-
ponents of vector p in X*,

(B.14) p=p"G(X) =p'g(0).

The scalar product of (B.14) with the vectors G and ¢’ yields
(B.15) P =g", pF=g",

where

(B.16) g5(X, 0 = GX(X) . g.(x), &"k(X, x) = g"(x). Gx(X)

are so-called shifters. These are two-point tensor (see A.10); i.e., they transform
as tensors with respect to indices K and k under transformation of coordinates
X* and x*. With the aid of shifters it is possible to express vectors and tensors
from one coordinate system with the aid of their projection into another
coordinate system.

In very much the same way we now define

®.17) 2 1) = g, X, 1) = g,(0). G0,
25X, 1) = g5(X, %) = g*(%). GX(X).

By raising and lowering the capital-letter indices with the aid of tensors GX* and
Gy., and by raising and lowering the lower-case indices with the aid of metric
tensors g¥’ and g,,, we arrive at

(B.18) gx = 8u€'x = Gri8"s = 8uGrif™,

‘ g% =g"g" = GX'g =G gy,
g5 = gug™ = G*gu = 2,G* ¢,
gKkgll(:alks gxkgkL=8KL-

By substituting (B.5) into (B.17) we obtain
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ar oy
ax<oxk”
This equation implies not only the two-point character of tensor gy, but also
the relation

(B.20) gxx = Ok gKk = 8Kk9

provided both coordinates X* and x* are Cartesian.

(B.19) g = Oy

I=’L'il'

B.1.3. Deformation gradients, deformation tensors

Equation (B.1) for a fixed time yields
(B.21) dx* = x* dX*, dX* = XX, dx*,

where the indices following the commas represent partial derivatives with res-
pect to X¥, if the index is a capital letter, and with respect to x*, if the index is
a lower-case letter, i.e.,

(B.22) X = o x* _x

The quantities defined by Eq. (B.22) are referred to as deformation gradients.
According to the chain rule of partial differentiation,

(B.23) xk,KXK‘, = 8"[, XK’kxk,L = SKL.

Each of these systems represents nine linear algebraic equations for nine
unknowns x* , or X*,. Since the Jacobian of transformation is non-zero by
assumption, there exists a unique solution to these equations. According to
Cramer’s determinant rule,

(B.24) X<, = alg. cofa.ctor x* x _ l_eKLMeklm PR

J 2j

where e and ¢, are Levi-Civita’s permutation symbols and

(B.25) j = dct (xk,,() = %eKLMek,mxk,le,Lxm,M.
By differentiating (B.24) and (B.25) we obtain two important Jacobi'’s identities:
(B.26) GX*) k=0 and (G 'x* ), =0,

o

= alg. cofactor x* , = jX*,.
ax",,( g . K=,
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By substftuting (B.21) into (B.7) we obtain

(B.27) dS2 = Ck,(X, t) dxk dxl, d.5'2 = CKL(X’ t) dXKdXL s
where
(B.28) (X, 1) = G (X) X* . X",

Crr(X, 1) = gu(X) x* xx' |

are Cauchy’s and Green’s deformation tensors. Both tensors are symmetric,
¢y = cy, Cx. = Cpx, and both are positive definite. Equations (B.28) indicate
that the metric tensor G, (X) transforms to tensor c,(x, f) through the motion.
Tensor Cy; can be said to do the same in inverse motion.

New base vectors, so-called Cauchy’s and Green’s base vectors ¢,(x,t) and
Ci(X, 1), can be defined with respect to these two new tensors:

oP _ 0P aXK
(B.29) c.(x, ¢ X<,
(X, 1) = o o ok G (X) X",

op _ Op ox*
Ci(X)=—=——=g (0 x,.
x(X, 1) X WYY g () X" ¢

This immediately yields

(B.30) Cu=Cp=6.6, Cpp=Cprx=0C;.Cy.

Equations (B.29) indicate that the base vectors Gi and g, deform to vectors ¢,
and Cj through the motion.

We now have two different representations for the differential vectors dP and
dp. One in coordinate system X* and the other in x*, i.e.,

(B.31) dP = G (X)dX* = ¢ (x, 1) dx*,
dp = Cx(X, ) dX* = g, (x)dx*.

Similarly, the square of length elements are

(B.32) dS? = G (X) dXKAXE = ¢, (x, ) d* d,
ds* = Cir(X, ) dXXdXE = g (x) do* d’.

B.1.4. Strain tensors, displacement vectors

Lagrange’s and Euler’s strain tensors are defined as

(B.33) Ex; = 3[Cr(X, ) — G (X)],
e = 3 [gu(®) — cu(x, 1)].

(B.32) and (B.33) then yield the following important relation
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(B.34) ds* — dS? = 2E,, (X, ) dX¥dX* = 2e,(x, 1) dx* dx'.

When the body undergoes only a rigid displacement there will be no change
in the differential length in which case the difference ds* — dS” given by (B.34)
vanishes. If this is true for all directions dX* and dx*, then E,, and ¢, vanish.
Therefore, these tensors represent a measure of deformation of the body.
Equation (B.34) immediately yields

(B.33) Ey = eklxk,le,L y €y = EKLXK,k XL,I'

These relations indicate that E;; and e, are 2nd-order tensors.

Strain tensors can also be expressed in terms of the displacement vector u,
defined as the vector extending from point P of the undeformed body B to its
spatial point p of the deformed body b (see Fig. B2):

Fig. B2. Displacement vector.

(B.36) u=p—P+b.

The displacement vector can be represented by Lagrange’s or Euler’s com-
‘ponents U* and *,

(B.37) u= UGy = g,.
The scalar product of both sides of Eq. (B.36) with vectors G* and g* yields
(B.38) UK = pX — PX + BX, u* = p* — P + b,

where pX, PX, BX and p*, P*, b* are the components of vectors p, P and b in X*
and x*, respectively.

Let us express the strain tensors in terms of the displacement vector. By
substituting (B.28), and (B.29), into (B;;), we can express Lagrange’s strain
tensor as
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(B.39) Ey = %(gk-glxk,xxl,L —Gy).
Substituting from (B.5), into the last equation yields

1/0p Op )
B.40 Ey=-|— £ _Gu).
(B.40) KL 2<aX'< oxt

If we also make use of (B.36) we obtain
(B.41) Ey = %[(UM;KGM + Gy) . (UM;LGM + Gp) — Gg ],

in which the semi-colon indicates covariant partial differentiation, du/oX* =
= U,.xG". After some algebra, (B.41) yields

(B.42) Ey = %(UK;L + Upx+ UM;KUM;L)'
Euler’s strain tensor can be expressed in very much the same way:
(B.43) € = 3 (s + Ui — Upytd™) .

B.1.5. Changes of lengths and angles

Let us demonstrate the geometric significance of the components of the strain
tensor. According to (B.31), the parallelepiped with sides G,dX’, G,dX? G,dX?,
located at point P(X) deforms into a parallelepiped with sides €, dX?, C,dX?,
C,dX?, located at point p(x). It holds that
(B44) dx= GKdXK, dX= chXK, CK = gk.x{‘,(.

The unit vectors N and n along dX and dx are defined as

K X
(B.45) Nf = dx” = d—Xf, n* de' _ dxt
idX¥ dS |[dx  ds
where dS and ds are the lengths of vectors dX and dx. The relative change of the
length of vector N is defined by
ds —dS
s

Let us express Langrange’s strain tensor in terms of the quantity E . Equations
(B.34) and (B.45) yield

ds* — d§?
ds?

If Nis a vector tangential to coordinate line X!, N' = dX'/dS = 1/(G,))'”,
N = N* =0, then

(B.47) 2EKLNKNL = = E(m (E(m + 2) .
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(B.48) 2E,)[Gy = Ey (Epy + 2).

The last equation can also be expressed as

(B.49) Ey=—1+4(1+2E,/G,)'".
If the strains are small, E;, < 1, the following approximate relation applies:
(B.50) E, /G, = E,.

Analogous relations also hold for components E,, and E;;.

Now, assume N,, N, to be unit vectors along dX, dX, at point X, and n,, n,
unit vectors along dx,, dx, at point x. The angle O, x, between dX; and dX,
deforms into angle Jn,.ny Detween dx, and dx, (see Fig. B3). We also have

Fig. B3. Angle change.

(B.51) N 9% g
[dX,] |dx,]
Let us now calculate the angles Oy u, and 9, ) from
dx, dx
B.52 cos @, =N.N,=—"L. =2
522 T 1A
Gy dX* dX
— KL 1 2 = GKLNK]NLZ.
ldXx] |dX|
Similarly,
d d
(B.53) COS Jpg my = My . 1 = axn  dx _
, [dx| |dx,]
Cre AX*5, dX, CuN N,

(CundX™M, dXY,)2 (Crp dXT X272 (Egyy + 1) (Egy + 1)

The difference Op,, ) — In,.n) determines the change of the angles of directions
N, and N, due to the motion

(B.54) Loy = Yooy = Otwmy = Finymy -
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Here we have again dual representation, I"and 7, for the same physical quantity,
i.e. the change of angle of two directions is denoted differently in Lagrange’s and
Euler’s representations. (B.53) and (B.54) yield

(B.SS) Sin ENI'NZ) = HSin @(NI’NZ) - (1 - H2)1/2 Ccos 19(”1,"2) 5

which, for the orthogonal directions before deformation, @(NI’NZ) = 1n, reduces
to

- Cr N N5
(Ewp + D(Eny + 1)
If we eliminate directions N, and N, from Egs (B.52) and (B.53), we obtain

(B.57) COs @(KL) = GKL/(GMGL_L)I/Z,
Ccos S(KL) = CKL/(CﬁCLL)l/Z =
= (G + 2Ex)/[Gygx + 2Ex) (G + 2E_L£)]'/Z.

If X* are Cartesian coordinates, (B.57) will simplify to

(B.SS) cos @(KL) = SKL’
€08 Jzy = sin [ yyy =
= (Og + 2E )1 + 2Eﬂ()(1 + 2EL_L)]1/2-

By using (B.49) in (B.58), we may also write
(B.59) 2E; = (1 + Eg) (1 + Eg))sin gy for K# L.

In the case of small strains, E, < 1, Ey < 1, the following approximate relation
applies

(B.60) 2Ex; =sinT gy = Tyyy.

(B.56) sinly ny=H

B.1.6. Changes of areas and volumes

The element of area bounded by vectors G, dX" and G, dX? after deformation
change to the area bounded by vectors €, dX' and C,dX*. The deformed area
is thus given by '

(B.61) d83 = cl Xm X chX2 = xk_]xl‘zgk X g[Xm dXz.
waever,
(B.62) g X @ = &md" =g"%€ng",

where e, is Levi-Civita’s alternating symbol. By substituting (B.62) into (B.61)
we obtain

(B.63) da:; = gmxk,]xlyzek,mg’"Xm dl\,2 .
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The element of area prior to deformation is

(B.64) dA; = G, x G,dX'dX* = G'*GdX' dX*.
Consequently,

(B.65) d4; = G'2dx'dx?.

By substituting (B.65) into (B.63) we obtain

(B.66) da, = (2/G)"*x* X' ,e.,,9" dA;.
Equation (B.24) yields |

(B.67) JX = egmX* X' 5,

so that

(B.68) da, =JX,g"d4,,

where

(B.69) J = (g/G)"j.

Similar relations also hold for da, and da,. Therefore,
(B.70) da=da, + da, + da, = JX* ,g*dA4,,
the kth component of which yields the important relation
(B.71) da, = JX*,dA,.

Let us also determine the change of volume under deformation. The defor-
med volume element is

(B.72) dv = da,. C,dX® = JX* ,g* . g, x" ,d A, dX° =
=JX,x" 8, d4,dX} = JdA4,dX°.

The undeformed volume element is

(B.73) dV=dA3.G3dX3= G"-G}dA:;an =dA3dX3.
Finally, (B.72) and (B.73) yield the following important relation:

(B.74) dv = Jav.

B.2. Stress Tensor

B.2.1. Stress vector and tensor

We shall denote the surface force per unit surface in the deformed body with
external normal n by £, and refer to it as the stress vector. In particular, the

220



stress vector which acts on the kth unit coordinate surface from the side of the
external normal, will be denoted by #; we shall refer to its /th component, 7,,,
as the stress tensor:

(B.75) tk = tklg‘('

To be able to find the relation between the components of the stress tensor
t,,and the components of the stress vector £, acting on any surface in any point
of the continuum, let us consider the condition of equilibrium of an infinitesimal
tetrahedron, volume Av whose three sides Ag® lie in the coordinate surfaces
passing through point p, and the fourth side Aa is perpendicular to n (see
Fig. B4). The equation of equilibrium of the acting forces can be estimated with
the aid of the mean-value theorem,

Fig. B4. Tetrahedron.

(B.76) %(g* v*Av) = t5Aa — thAd® + o*FAv,

where o*, v* and f* are the density, velocity and body force per unit mass at
some interior point of the tetrahedron, £ and £}, are the values of the stress
vector &, on surface Aa and on the coordinate surfaces Aa®. The limiting
transition for Av — 0 yields

(B.77) Q") da = Qk) da(k) N

However,

(B.78) da = nda =Y da%g/(g.)" = dd*g,.
k

The last equation yields
(B.79) da®/(gy)"” = da* = n*da.
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(B.80) lw = ;Qk) (g@)]/z n = '(k) n® = tn* = tn,

where n® is the physical component of the vector of the external normal n and

(B.81) b=, (gk_k)l/2= t= gkl'/, n® = ”k(g.kk)”z-
Substituting (B.75) into (B.80) leads to
(B.82) o= tun'g, or Loy = tunt*.

We can see that the stress vector, acting on any surface, is fully described by the
components of the stress tensor at this point. Equation (B.80) also yields

(B.83) bom=—1,.

B.2.2. Equations of motion in integral form

Independently of the geometry of strain and rheological relations, the follow-
ing laws of conservation are postulated in continuum mechanics.
Axiom 1 (Conservative of Mass): The total mass of a body does not change with
motion.

The existence of a continuous function of mass density g is postulated in
continuum mechanics. The total mass is given by the expression

(B.84) M=JQdV, 0<po<w,
: 1%
where the integration is taken over the material volume of the body.

The law of mass conservation in turn postulates that the initial total mass of
a body is equal to the total mass of the body at any other time, i.e.

(B.85) J QOdV=Jde.
Vv t
By using the transformation relation dv = JdV, we may write
(B.86) L(QO —oN)dV =0.
Alternatively, we may take the material derivative of (B.85). Thus
d
(B.87) — | odv=0.
de e

The law of mass conservation may thus be mathematically expressed as either
Eq. (B.86) or Eq. (B.87).
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Axiom 2 ( Balance of Momentum) : The time rate of change of the total momentum
of a body is equal to the resultant of external forces F acting on the body.

Mathematically,

(B.88) EI ovdv = F,

drdv
where the L.h.s. represents the time rate of change of the total momentum of the
body. The external forces acting on a body are the body forces such as gravity,
on the one hand, and surface forces, generated by contact of the body with other
bodies, on the other. Consequently,

(B.89) F= J £, da + j ofdv,

where £, is the stress vector per unit area of the surface s with external normal
n. The body force f refers to unit mass. The balance of momentum thus takes
the form

(B.90) (%f ovdy = I t,da + J ofdv.
t v s v

Axiom 3 (Balance of Moment of Momentum): The time rate of change of the
moment of momentum of a body is equal to the resultant moment of all external
Sorces.

Mathematically,

(B.91) g—jgp x vde = jp X t,da + Jgp x fdv,
tJe s v ’

where the Lh.s. is the time rate of change of the total moment of momentum of
the body about the origin. The surface integral on the r.h.s. of (B.91) is the
resultant moment of the surface forces about the origin, and the volume integral
is the resultant moment of the body forces about the origin.

Let us emphasize that these relations do not follow from similar equations for
a system of mass points and a rigid body, but that they are independent physical
laws.

B.2.3. Equations of motion in differential form

The two following integral theorems [57, 59] are important for deriving the
equations of motion in differential form.
Consider a continuum, volume v, intersected by surface of discontinuity o(r)
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moving at velocity v (see Fig. B.5). The material derivative of the volume integral
of tensor field @ then reads

o .
(B.92) 4 Ddv =J [— + le((DV)] dv + f [@(v— v)]!.da.
dtdv-¢ v—0 Ot o
The Green-Gauss theorem generalized for a 2nd-order tensor field,
t=1'g.g is

(B.93) J -div rdv + J [1F.nda = f r.nda.
By volume integral over v — ¢ we understand the volume integral over volume

v excluding the material points lying on the surface of discontinuity o. The same
applies to the surface integral over s — o. Therefore (see Fig. B5).

Fig. B5. Region with discontinuity surface.

v—o=v"+v,s5—~0=s"+s5".
The symbol [ ]* indicates a jump of the function in brackets at boundary o,
N:=r -1
Let us apply these two theorems to balance laws postulated in the preceding

section. If we put @ = g in (B.92), we shall obtain the law of mass conservation
in the following form:

(B.94) J [Z—f + div(gv)]dv+ f [o(v—v)]'.da=0.

For the last equation to hold in any part of the body and on any surface of
discontinuity, the integrands in both integrals must be equal to zero:

(B.95) 2—9 +diviov) =0 in v— o,
t
[e(v—¥)]):.n=0 on o.
These equations express “locally” the law of mass conservation in continuum
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together with the boundary condition. Equation (B.95), is called the equation of
continuity. It is none other than the material derivative of

(B.96) 00 =0J.

In virtue of Eq. (B.80), the equation of global balance of momentum now
reads

(B.97) c%j ovdv = J t'n, da + J ofdv.
tJv—0o s~ o v— o

However,

(B.98) tn, = tn.g = (n.t)g = nt=t.n,

since, as we shall show in the next, the stress tensor is symmetric. Using Eqgs
(B.92) and (B.93) @ = gv and 7 =t, we obtain

(B.99) f [igﬂ + div(ow) — divt — Qf] do +
+f[gv(v— v)—t]f.nda=0

This is postulated to be valid for all parts of the body. Thus the integrounds
vanish separately.

(B.100) divt+ o(f—a)=0 inv—o,
[ov(v—v)—t]Z.n=0 on o,

where

(B.101) a=0v/Oot+ v.grad v.

These equations express “locally” the balance of momentum together with the
boundary condition. Equation (B.100), is frequently referred to as Cauchy’s first
law of motion, and the stress tensor t, which occurs in it and which is referred
to the deformed body, as Cauchy’s stress tensor.

Equation (B.100), in component form reads

(B.102) 4+ o(ff —d)=0.
By lowering the indices we obtain the associated equation
(B.103) ft+ ol —a) =0,

tlk;l + Q(/;: = ak) =0.

By substituting Eq. (B.80) into the equation of balance of the moment of
momentum (B.91) and using Eqgs. (B.92), (B.93) and (B.100), we arrive at
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(B.104) gxt=0 inv—o.

The associated jump conditions have already been expressed by Eqs (B.95), and
(B.100),. The substitution of (B.75) and (B.62) into (B.104) yields

(B.105) M=t ¢ =1,

which is the expression for Cauchy’s second law of motion.
To conclude, let us express Cauchy’s first law of motion in terms of the.
physical components of vectors and tensors. Equation (B.103), will read

(B.106) r + {ml 1} " — {,:" 1} '+ 08u(f —d) =

Vectors f and @’ are expressed in terms of the physical components f* and a* in
Eq. (A.70),, the stress tensor X, = 7/ in terms of the physical components /¥,
in Eq. (A.76),. If we now use Eq. (A.94), Eq. (B.106) can be modified to read

3 12
(B.107) Z {ﬁ;[zm‘“——————&))l 2] + 1, ® ((;’:))l, il og ()] —

’ m (g Y ')‘ : _
- le I:{[ ’71} (k)‘ )(g::")l ’jI (gl\/\)]m [fk) a(k)]} a 0

This equation is valid in any curvilinear coordinate system provided the stress
tensor is symmetric. If the curvilinear coordmates are orthogonal, Eq. (B.107)
converts to Eq. (A.160).

B.2.4. Equations of motion in the reference coordinate system

Cauchy’s equations of motion have been expressed in terms of Euler’s coor-
dinates. However, in many cases it is convenient to formulate the problem in the
reference (Lagrange’s) coordinate system.

Let us now, therefore, express the equations of motion in the reference system
X%, Equation (B.96) followed from the law of mass conservation:

(B.108) o =0J, J=(g/G)'"%, j=det(x).

Let us introduce the stress vector T at spatial point x and time ¢ relative to the
underformed surface dA,, located at point X = X(x, ):

(B.109) t,da = tda, = T"dA4,.
By using Eq. (B.71) we obtain
(B.110) t=J KT TN =Xk

Let us introduce the Piola-Kirchhoff pseudostress tensor TX and T** by
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(B.lll) TK=T'Klgl=]1KfoLg1.
Equations (B.110) and (B.75) then yield
(B.112) ™ = JXx* ¢,

T* = TMXE = JX¥, X",

Equations (B.109) and (B.111), indicate that 7% expresses the stress at x measu-
red per unit undeformed area at X = X(x,t). From (B.112) it also follows that

(B.113) =T Xk TR = gk X TR

The equations of motion (B.102) can be expressed in terms of the components

T as
k
(B.114)  TH, + T’"”{m ,}x’,x+ T""{LLK} + off —d)=0.

If we introduce total covariant derivatives of the two-point tensor field 7%(X, x)
— refer to Supplement A — Eq. (B.114) can be expressed in a more consise form

(B.115) T, + o(ff —a) =0.
Cauchy’s second law of motion now has a* more complicated form,
(B.116) T, = T .
The equations of motion, expressed in terms of the components 7%, now read
(B.117) (T¥ ) g+ ({mk 1} X" g+
+ {MMK}x",L) T + ooff* — d) =0,
T = Tk,

It is easy to prove that, if the deformations are small, there is no difference
between the equations of motion expressed in Euler’s and Lagrange’s coordina-
tes. '

To be able to express the jump conditions in the reference system, we shall
first derive the relation for the external normals n and N of the deformed and
undeformed surfaces s and S. With a view to (B.71) we have

(B.118) da, = JXX,dAy.
However, )
(B.119) n, = da,/da = da,/(dd'da)"?,

Ny = dA,/d4 = dA,/(d4*dA4,)'"",
and, therefore,
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(B.120) n, = JX*,NydA/da.
By using (B.118) we obtain

(B.121) dA/da = J ' (C*ENN,) "2,
where

(B.122) CK = g x*, x*,

is Piola’s deformation tensor. Finally, we obtain
(B.123) n, = (CX-NyN,)" "2 X" N,,.

By substituting Eqs (B.109) and (B.120) into (B.95), and (B 100),, we arrive
at the jump conditions in the reference system:

(B.124) [Qo(v - V‘)XKANK(;A:I =0 on X,
al-
k K d4
(B.125) [[gov(v - V)X~ TK]NKd ] =0 on X,

At a solid surface of discontinuity (solid elastic substance — solid elastic
substance boundary) it also holds that

(B.126) [da]* = [dA]* =0

and conditions (B.124) and (B.125) can be expressed as
(B.127) [0(t* — V)XX,]* Ny=0 on Z,
(B.128) [oo¥(t* — V) X*, — T|* Ny=0 on .

However, at a liquid surface of discontinuity (solid elastic substance — liquid
boundary) only the following holds (see Fig. B6):

(B.129) [da]* =0

Fig. B6. Liquid boundary before and after deformation.
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and conditions (B.124) and (B.125) can be expressed as
(B.130) [eo(* — V) X*,dA]* =0 on %,
(B.131) Hoov(v* — V) X*, — ] NydA): =0 on X.

SUPPLEMENT C. LIMITING VALUE OF FUNCTION z,(x)
Equation (8.10) defines function z,(x),

(C.1) Zy(X) = Xy 1 1 (X)Jn(X)
where j,(x) is a spherical Bessel function of the 1st kind,

€2 ) = \/ (£)nss0

and J,(x) is Bassel's function of the 1st kind. Let us seek to determine the
limiting value of function z,(x) for n — oo for a fixed value of x. According to

(1],

. 1 ex\’
(C.3) lim J,(x) = (—-) for fixed x,
n-» o ( ) \/(21tX) 2n

where e = 2.718 281 828. This yields the limiting value of function z,(x) for a
fixed x,

. ex? (n+%)"+'
C4 lim z,(x) = —z) .
©4 im a0 =20

However, according to [125], for any finite number a

(C.5) lim (1 + a/n)" = €.

Equation (C.4) can then be modified to read
1 1Y
14+ — (1 + —)
ext . 2n .. © 2n
lim lim

3y +i"w(l +‘3‘)
2n

(C.6) lim z,,(x) =

The first limiting value on the r.h.s. of (C.6) is equal to 1, the second limit is 1 Je.
Finally,

C.7 lim z,(x) = .
€7 fim ) = 27
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