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I2ELVIS - Taras Gerya

staggered grid, markers

regional studies, benchmarks

3D version not elastic yet - I3VIS

Ellipsis - Moresi, Muhlhaus

finite elements, markers used as integration points

regional studies

StagYY - Paul Tackley

staggered grid, global studies, 3D, spherical shell

not elastic yet
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Model

Extended Boussinesq - nondimensionalised

equation of motion + continuity + thermal equation

−∇p +∇ · σ = −RaT ~ez

∇ · ~v = 0

∂T

∂t
= ∇2T − ~v · ∇T

rheology

σ +D O
σ = 2ηD

η(p,T ) = exp(−A(T − Tref ) + B(p − pref ))
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Method

Constitutive equation

σ +D O
σ = 2ηD D(p,T ) := τrel

κ

h2
=

ηκ

Gh2

O
σ :=

∂σ

∂t
+ (~v∇)σ + (σW−Wσ)− a(Dσ + σD)

advection co-rotation co-deformation

Discretization (mixed euler, 1st order accurate)

σn =
dt

dt +D
2ηDn +

D
dt +D

σn−1 +
D dt

dt +D
(Wσ−σW+a(Dσ+σD))
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Method

σn =
dt

dt +D
2ηDn +

D
dt +D

(
σn−1 +dt (Wσ − σW + a (Dσ + σD))

)

σ̃n−1 := σn−1 + dt (Wσ − σW + a (Dσ + σD ) )n−1/n

σn = 2ηnnumDn +
Dn

dt +Dn
σ̃n−1; ηnum :=

dt

dt +D
η

Viscoelasticity parameter Z

Z :=
dt

dt +D
; σn = 2Z ηnDn + (1− Z) σ̃n−1
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Method

dtn−1 , n = stability(~vn−1, D, d); dta; dtel

T n = advection-diffusion (T n−1, ~vn−1 , dta)

σ̃n−1 = σn−1 + deadvection (σn−1, ~vn−1 , dta)

ηn = η(T n); ηnnum = ηnnum(ηn ,dtel, Dn)

rhsn = ∇ ·
(

Dn

dtel+Dn σ̃
n−1

)
− RaT n ~ez

Stokes(ηnnum, ~v
n, pn) = rhsn

σn = σn(σ̃n−1, ηnnum, ~v
n)

no decoupling:

dta = dtn−1 , n

dtel = dtn−1 , n
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Thermal convection

Harder - Journal of Non-Newtonian Fluid Mechanics, 39 (1991) 67-88
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Thermal convection

Co-rotational derivative (Jaumann, a = 0)

Viscoelasticity in mantle convection Charles University in Prague



Implementation Testing Results Deriving the equation

Thermal convection

Upper convected derivative (a = 1)

Viscoelasticity in mantle convection Charles University in Prague



Implementation Testing Results Deriving the equation

Thermal convection

Viscous case
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Mechanical deformation

Bending of an elastic slab (under gravity for 20 Kyr)

ρ1 = 4000; η1 = 1 e27; G1 = 1 e10;

ρ2 = 1; η2 = 1 e21; G2 = 1 e20;
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Numerically instaneous behaviour

Onset of convection is related to ”numerically instaneous” elastic
behaviour for Deborah number above certain critical value.

Ra = 104 → Dcritical = 1.5 · 10−3
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Numerically instaneous behaviour

Example of velocity singularity
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Numerically instaneous behaviour

Jaumann - parametric study, failed runs
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Time step decoupling

dtn−1 , n = stability(~vn−1, D, d); dta; dtel

T n = advection-diffusion (T n−1, ~vn−1 , dta)

σ̃n−1 = σn−1 + deadvection (σn−1, ~vn−1 , dta)

ηn = η(T n); ηnnum = ηnnum(ηn ,dtel, Dn)

rhsn = ∇ ·
(

Dn

dtel+Dn σ̃
n−1

)
− RaT n ~ez

Stokes(ηnnum, ~v
n, pn) = rhsn

σn = σn(σ̃n−1, ηnnum, ~v
n)

Gerya / Moresi
decoupling:

multiple advection
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Time step decoupling

dtn−1 , n = stability(~vn−1, D, d); dta; dtel

T n = advection-diffusion (T n−1, ~vn−1 , dta)

σ̃n−1 = σn−1 + deadvection (σn−1, ~vn−1 , dta)

ηn = η(T n); ηnnum = ηnnum(ηn ,dtel, Dn)

rhsn = ∇ ·
(

Dn

dtel+Dn σ̃
n−1

)
− RaT n ~ez

Stokes(ηnnum, ~v
n, pn) = rhsn

σn = σn(σ̃n−1, ηnnum, ~v
n)

convection
decoupling:

interpolation
needed

Viscoelasticity in mantle convection Charles University in Prague



Implementation Testing Results Deriving the equation

Time step decoupling

Realistic case: separate viscous and viscoelastic parts of the domain

Z :=
dtel

dtel +D
; σn = 2Z ηnDn + (1− Z) σ̃n−1

bulid-up relaxation

Desired behaviour: viscoelastic material does not move across
many cells within elastic time step (viscous material can - elastic
time step does not play any role in viscous part of the domain).

D = ηD0; dtel = 0.01 τrel
κ

h2
= 0.01D0; Z =

1

1 + η
0.01

;
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Time step decoupling

Jaumann - failed runs, decoupled
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Time step decoupling

Upper convected - failed runs, decoupled
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Time step decoupling

Jaumann - not ”trusted” runs, decoupled
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Time step decoupling

Critical Deborah, time step decoupled
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Time step decoupling

Critical Deborah, time step decoupled: elastic strain rate

Viscoelasticity in mantle convection Charles University in Prague



Implementation Testing Results Deriving the equation

Time step decoupling

Critical Deborah, time step decoupled: upper convected
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Elastic episodes
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Elastic episodes

Undercritical Deborah number - time step/scheme convergence
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Elastic episodes

Overcritical Deborah number - time step convergence
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Elastic episodes

Overcritical Deborah number - time scheme convergence
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Elastic episodes

Time step analysis - overcritical Deborah number
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Four ways to derive our rheological equation

• 1D analogs

objective rate not specified

• Entropy production maximization

dissipation needs to be prescribed

objective rate specified

• 3D analogs - is it new?

objective rate specified

• Microscopical model

e.g. dumbbells diluted in newtonian fluid

We need to know how the equation was derived for interpretation:
elastic strain rate, elastic energy, dissipation ...
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3D analogs

3D analogs
Geodynamical texts often use σij = 2ηε̇ij - incorrect

Four possible strain tensors: eulerian/lagrangian, full/linearized

εlin :=
1

2
(∇u + (∇u)T); ξlin :=

1

2
(GradU + (GradU)T)

ε :=
1

2
(I− F−TF−1); ξ :=

1

2
(FTF− I)

which have following material time derivatives

ε̇lin = D− 1

2
((∇u)L + LT(∇u)T) ε̇ = D− (εL + LTε)

ξ̇lin = D− 1

2
((∇u)TLT + L(∇u)) ξ̇ = FTDF
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3D analogs

Maxwell rheology is based on this idea:

Elastic and viscous deformations add together, but stress is the
same for both elastic and viscous parts of the deformation

τ = −p + σ; D = Dvis + Del

σ = 2ηDvis = 2Gεel

Choice of ε or ξ or εlin or ξlin gives us the relation εel → Del and
thus specifies the rate used in our rheology (only for ε we get an
objective rate - lower convected one)
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Rajagopal

Entropy production maximization

Motivation - interpretation of physical quantities:
what is dissipation, elastic strain rate, elastic energy ...

σ : ∇~v = σ : D =
σ : σ

2η
+
σ :

O
σ

2G

Dissipation? Rate of change of elastic energy?
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Rajagopal

Oldroyd B model - ICC
Thermodynamic considerations

e(δ, ρ, BKp(t)) = e0(δ, ρ) +
G

2ρ
(trBKp(t) − 3− log detBKp(t))

−→ ζ = (T− G (BKp(t) − I))d : Dd + G (CKp(t) − I) : DKp(t)

Prescribed dissipation

ζ = 2η2|D|2 + 2ηDKp(t)CKp(t) : DKp(t)

Resulting model

T = −pI + 2η2D + G (BKp(t) − I)

O
BKp(t) = −G

η
(BKp(t) − I)
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Rajagopal

After setting η2 = 0, we get Maxwell model

T = −pI + G (BKp(t) − I) T = −pI + σ

O
BKp(t) = −G

η
(BKp(t) − I) σ + τrel

O
σ = 2ηD

But now we now the dissipation of our model, we prescribed it

ζ = 2ηDKp(t)CKp(t) : DKp(t)

So the question is

2ηDKp(t)CKp(t) : DKp(t)
?
=

σ : σ

2η
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Rajagopal

By using σ = 2ηD− τrel
O
σ and σ = G (BKp(t) − I), this question

reduces to (kinematic consideration regarding the natural
configuration needed):

(FKp(t)DKp(t) F
T
Kp(t)

) : (FKp(t)DKp(t) F
T
Kp(t)

)
?
=

?
= (DKp(t) F

T
Kp(t)

FKp(t)) : DKp(t)

which is clearly not satisfied
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Rajagopal

Conclusions

• We used a grid based method to implement viscoelastic
rheology into a simple thermal convection model

• Time step decoupling which could be trusted in realistic cases
was proposed

• Simulations show that locally high stresses are produced by
viscoelasticity, which means that viscoelasticity could trigger
plasticity in visco-elasto-plastic code
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Rajagopal

Thank you
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