Deriving the equation 00 000000

Viscoelasticity in mantle convection

Mgr. et Mgr. Vojtěch Patočka Supervised by: RNDr. Ondřej Čadek, CSc.

Charles University in Prague

[patocka@karel.troja.mff.cuni.cz]

5th June 2015

同 ト イ ヨ ト イ ヨ ト

Testing		Deriving the equation
	000 00000000 00000	00 00000

Content

Method of implementation Model Method

Testing the method

Thermal convection Mechanical deformation

Results

Numerically instaneous behaviour Time step decoupling Elastic episodes

Construction of the constitutve equation

3D analogs Entropy production maximization

I2ELVIS - Taras Gerya

staggered grid, markers regional studies, benchmarks 3D version not elastic yet - I3VIS

Ellipsis - Moresi, Muhlhaus

finite elements, markers used as integration points regional studies

StagYY - Paul Tackley

staggered grid, global studies, 3D, spherical shell not elastic yet

글 🖌 🖌 글 🕨

Implementation		
000	000 00000000 00000	00 000000

Extended Boussinesq - nondimensionalised

equation of motion + continuity + thermal equation

$$-\nabla \rho + \nabla \cdot \sigma = -\operatorname{Ra} T \vec{e_z}$$
$$\nabla \cdot \vec{v} = 0$$
$$\frac{\partial T}{\partial t} = \nabla^2 T - \vec{v} \cdot \nabla T$$

rheology

$$\sigma + \mathcal{D} \, \overset{\nabla}{\sigma} = 2\eta \mathbb{D}$$

 $\eta(p, T) = \exp(-A(T - T_{ref}) + B(p - p_{ref}))$

Implementation		
0 000	000 00000000 00000	00 000000
Method		

Constitutive equation

$$\sigma + \mathcal{D} \,\overline{\sigma} = 2\eta \mathbb{D} \qquad \mathcal{D}(p, T) := \tau_{\mathrm{rel}} \frac{\kappa}{h^2} = \frac{\eta \kappa}{Gh^2}$$
$$\overline{\sigma} := \frac{\partial \sigma}{\partial t} + (\vec{v} \nabla) \,\sigma + (\sigma \mathbb{W} - \mathbb{W} \sigma) - \mathrm{a}(\mathbb{D}\sigma + \sigma \mathbb{D})$$
advection co-rotation co-deformation

Discretization (mixed euler, 1st order accurate)

$$\sigma^{n} = \frac{\mathrm{d}t}{\mathrm{d}t + \mathcal{D}} 2\eta \mathbb{D}^{n} + \frac{\mathcal{D}}{\mathrm{d}t + \mathcal{D}} \sigma^{n-1} + \frac{\mathcal{D} \,\mathrm{d}t}{\mathrm{d}t + \mathcal{D}} (\mathbb{W}\sigma - \sigma \mathbb{W} + \mathrm{a}(\mathbb{D}\sigma + \sigma \mathbb{D}))$$

Implementation		
0 0●0	000 00000000 00000	00 000000
Method		

$$\sigma^{n} = \frac{\mathrm{d}t}{\mathrm{d}t + \mathcal{D}} 2\eta \mathbb{D}^{n} + \frac{\mathcal{D}}{\mathrm{d}t + \mathcal{D}} \left(\sigma^{n-1} + \mathrm{d}t \left(\mathbb{W}\sigma - \sigma \mathbb{W} + \mathrm{a} \left(\mathbb{D}\sigma + \sigma \mathbb{D} \right) \right) \right)$$

$$\tilde{\sigma}^{n-1} := \sigma^{n-1} + \mathrm{d}t \left(\mathbb{W}\sigma - \sigma \mathbb{W} + \mathrm{a} \left(\mathbb{D}\sigma + \sigma \mathbb{D} \right) \right)^{n-1/n}$$

$$\sigma^{n} = 2\eta_{\text{num}}^{n} \mathbb{D}^{n} + \frac{\mathcal{D}^{n}}{\mathrm{d}t + \mathcal{D}^{n}} \tilde{\sigma}^{n-1}; \qquad \eta_{\text{num}} := \frac{\mathrm{d}t}{\mathrm{d}t + \mathcal{D}} \eta$$

Viscoelasticity parameter ${\rm Z}$

$$\mathrm{Z} := rac{\mathrm{d}t}{\mathrm{d}t + \mathcal{D}}; \qquad \sigma^{\mathrm{n}} = 2 \,\mathrm{Z} \,\eta^{\mathrm{n}} \,\mathbb{D}^{\mathrm{n}} + (1 - \mathrm{Z}) \,\tilde{\sigma}^{\mathrm{n}-1}$$

<ロト <問 > < 注 > < 注 >

Implementation
000

Testing 0000 Results 000 000000000 00000 Deriving the equation 00 000000

$dt^{n-1,n} = \text{stability}(\vec{v}^{n-1}, \mathcal{D}, d); \quad dt^{a}; \quad dt^{el}$ $T^{n} =$ advection-diffusion ($T^{n-1}, \vec{v}^{n-1}, dt^{a}$) no decoupling: $\tilde{\sigma}^{n-1} = \sigma^{n-1} + \text{deadvection} (\sigma^{n-1}, \vec{v}^{n-1}, dt^a)$ $dt^{a} = dt^{n-1, n}$ $\eta^{n} = \eta(T^{n});$ $\eta^{n}_{num} = \eta^{n}_{num}(\eta^{n}, dt^{el}, \mathcal{D}^{n})$ $dt^{el} = dt^{n-1, n}$ $\mathsf{rhs}^{\mathrm{n}} = \nabla \cdot \left(\frac{\mathcal{D}^{n}}{\mathrm{d}t^{\mathrm{el}} + \mathcal{D}^{n}} \, \tilde{\sigma}^{n-1} \right) - \operatorname{Ra} \mathcal{T}^{\mathrm{n}} \, \vec{e_{z}}$ $Stokes(\eta_{num}^n, \vec{v}^n, p^n) = rhs^n$ $\sigma^n = \sigma^n (\tilde{\sigma}^{n-1}, \eta_{\text{num}}^n, \vec{v}^n)$

Viscoelasticity in mantle convection

Charles University in Prague

同 ト イヨ ト イヨ ト ヨ うくで

Harder - Journal of Non-Newtonian Fluid Mechanics, 39 (1991) 67-88

Fig. 5. As Fig. 4, but with upper convected Maxwell rheology (a = 1, $\lambda = 0.0015$, De = 0.34). Additional isolines for the stress trace: $\mu(75, 275, ..., 1075)$.

Viscoelasticity in mantle convection

Charles University in Prague

79

Testing 0●00 Results 000 000000000 00000 Deriving the equation 00 000000

Thermal convection

Co-rotational derivative (Jaumann, a = 0)

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

э

Testing 00●0 Results 000 000000000 00000 Deriving the equation 00 000000

Thermal convection

Upper convected derivative (a = 1)

<ロ> <同> <同> < 同> < 同>

Viscoelasticity in mantle convection

Charles University in Prague

э

	Testing 000● 0	Results 000 000000000 00000	Deriving the equation 00 000000
Thermal convection			

Viscous case

<ロ> <同> <同> < 同> < 同>

æ

Testing		Deriving the equation
0000 [°]	000 00000000 00000	00 000000

Bending of an elastic slab (under gravity for 20 Kyr)

$$\rho_1 = 4000; \quad \eta_1 = 1 \text{ e27}; \quad G_1 = 1 \text{ e10};$$

 $\rho_2 = 1; \quad \eta_2 = 1 \text{ e21}; \quad G_2 = 1 \text{ e20};$

Charles University in Prague

・ 同 ト ・ ヨ ト ・ ヨ ト

Onset of convection is related to "numerically instaneous" elastic behaviour for Deborah number above certain critical value.

$$\operatorname{Ra} = 10^4 \rightarrow \mathcal{D}_{critical} = 1.5 \cdot 10^{-3}$$

-

Image: A image: A

		Results	Deriving the e
		000 00000000 00000	00
Numerically instaneous behave	viour		

Example of velocity singularity

Viscoelasticity in mantle convection

э

<ロ> <同> <同> < 同> < 同>

Testing 0000 Results 00● 000000000 00000 Deriving the equation 00 000000

Numerically instaneous behaviour

Jaumann - parametric study, failed runs

Charles University in Prague

э

Implementation 0 000 Testing 0000 Results

Deriving the equation 00 000000

Time step decoupling

$$dt^{n-1,n} = \text{stability}(\vec{v}^{n-1}, \mathcal{D}, d); \quad dt^{a}; \quad dt^{el}$$

$$T^{n} = \text{advection-diffusion}(T^{n-1}, \vec{v}^{n-1}, dt^{a})$$

$$\tilde{\sigma}^{n-1} = \sigma^{n-1} + \text{deadvection}(\sigma^{n-1}, \vec{v}^{n-1}, dt^{a})$$

$$\eta^{n} = \eta(T^{n}); \quad \eta^{n}_{num} = \eta^{n}_{num}(\eta^{n}, dt^{el}, \mathcal{D}^{n})$$

$$\downarrow$$

$$rhs^{n} = \nabla \cdot \left(\frac{\mathcal{D}^{n}}{dt^{el} + \mathcal{D}^{n}} \tilde{\sigma}^{n-1}\right) - \text{Ra} T^{n} \vec{e_{z}}$$

$$\downarrow$$

$$Stokes(\eta^{n}_{num}, \vec{v}^{n}, p^{n}) = rhs^{n}$$

$$\sigma^{n} = \sigma^{n}(\tilde{\sigma}^{n-1}, \eta^{n}_{num}, \vec{v}^{n})$$

Viscoelasticity in mantle convection

э.

・ロン ・部 と ・ ヨ と ・ ヨ と …

Implementation 0 000 Testing 0000 Results 000 000000000 000000000 Deriving the equation 00 000000

 $dt^{n-1,n} = \text{stability}(\vec{v}^{n-1}, \mathcal{D}, d); \quad dt^{a}; \quad dt^{el}$ $T^{n} =$ advection-diffusion ($T^{n-1}, \vec{v}^{n-1}, dt^{a}$) convection $\tilde{\sigma}^{n-1} = \sigma^{n-1} + \text{deadvection} (\sigma^{n-1}, \vec{v}^{n-1}, dt^a)$ decoupling: $\eta^{n} = \eta(T^{n});$ $\eta^{n}_{num} = \eta^{n}_{num}(\eta^{n}, dt^{el}, \mathcal{D}^{n})$ $\mathsf{rhs}^{\mathrm{n}} = \nabla \cdot \left(\frac{\mathcal{D}^{n}}{\mathrm{d}t^{\mathrm{el}} + \mathcal{D}^{n}} \, \tilde{\sigma}^{n-1} \right) - \operatorname{Ra} \mathcal{T}^{\mathrm{n}} \, \vec{e_{z}}$ interpolation needed $Stokes(\eta_{num}^{n}, \vec{v}^{n}, p^{n}) = rhs^{n}$ $\sigma^n = \sigma^n (\tilde{\sigma}^{n-1}, \eta_{\text{num}}^n, \vec{v}^n)$

Charles University in Prague

同 ト イヨ ト イヨ ト ヨ うくで

Realistic case: separate viscous and viscoelastic parts of the domain

$$Z := \frac{dt^{el}}{dt^{el} + \mathcal{D}}; \qquad \sigma^{n} = 2 Z \eta^{n} \mathbb{D}^{n} + (1 - Z) \tilde{\sigma}^{n-1}$$

bulid-up relaxation

Desired behaviour: viscoelastic material does not move across many cells within elastic time step (viscous material can - elastic time step does not play any role in viscous part of the domain).

$$\mathcal{D} = \eta \mathcal{D}_0; \qquad \mathrm{d} t^{\mathrm{el}} = 0.01 \, au_{\mathrm{rel}} rac{\kappa}{h^2} = 0.01 \, \mathcal{D}_0; \qquad \mathrm{Z} = rac{1}{1 + rac{\eta}{0.01}};$$

伺 ト く ヨ ト く ヨ ト

Testin 0000 Results

Deriving the equation 00 000000

Time step decoupling

Jaumann - failed runs, decoupled

Viscoelasticity in mantle convection

Charles University in Prague

Testing

Results

Deriving the equation 00 000000

Time step decoupling

Upper convected - failed runs, decoupled

Charles University in Prague

э

Testing

Results

Deriving the equation 00 000000

Jaumann - not "trusted" runs, decoupled

Charles University in Prague

3

	Results ○○○ ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○	Deriving the equation 00 000000
Time step decoupling		

Critical Deborah, time step decoupled

Critical Deborah, time step decoupled: elastic strain rate

э

イロン イロン イヨン イヨン

Critical Deborah, time step decoupled: upper convected

э

イロン イロン イヨン イヨン

	Results 000 00000000 ●0000	Deriving the equation 00 000000

æ

	Testing	Results	Deriving the equation
		000 00000000 0●000	00 000000
Elastic episodes			

Undercritical Deborah number - time step/scheme convergence

Viscoelasticity in mantle convection

Charles University in Prague

э

Testing	Results	Deriving the equation
	000 00000000 00000	00 000000

Overcritical Deborah number - time step convergence

Viscoelasticity in mantle convection

Charles University in Prague

э

3

	Results 000 00000000 000●0	Deriving the equation 00 000000
Elastic episodes		

Overcritical Deborah number - time scheme convergence

Viscoelasticity in mantle convection

Charles University in Prague

э

⊸ ≣ ⊁

<⊡> <≣

	Testing	Results	Deriving the equation
		000 00000000 0000	00 000000
Elactic opicodos			

Time step analysis - overcritical Deborah number

э

▲□ ▶ ▲ □ ▶ ▲ □ ▶

Testing 0000 0 Results 000 000000000 00000 Deriving the equation

Four ways to derive our rheological equation

• 1D analogs

objective rate not specified

• Entropy production maximization

dissipation needs to be prescribed objective rate specified

- 3D analogs is it new? objective rate specified
- Microscopical model

e.g. dumbbells diluted in newtonian fluid

We need to know how the equation was derived for interpretation: elastic strain rate, elastic energy, dissipation ...

A 3 b

	Testing		Deriving the equation
		000 00000000 00000	0 00000
3D analogs			

3D analogs

Geodynamical texts often use $\sigma_{ij}=2\eta\dot{\varepsilon}_{ij}$ - incorrect

Four possible strain tensors: eulerian/lagrangian, full/linearized

$$egin{aligned} &arepsilon^{\mathrm{lin}} :=& rac{1}{2} \left(
abla u + (
abla u)^{\mathrm{T}}
ight); & \xi^{\mathrm{lin}} :=& rac{1}{2} \left(\mathrm{Grad} U + (\mathrm{Grad} U)^{\mathrm{T}}
ight) \ &arepsilon :=& rac{1}{2} (\mathbb{I} - \mathbb{F}^{-\mathrm{T}} \mathbb{F}^{-1}); & \xi :=& rac{1}{2} \left(\mathbb{F}^{\mathrm{T}} \mathbb{F} - \mathbb{I}
ight) \end{aligned}$$

which have following material time derivatives

$$egin{aligned} \dot{arepsilon}^{\mathrm{lin}} &= \mathbb{D} - rac{1}{2} ((
abla u) \mathbb{L} + \mathbb{L}^{\mathrm{T}} (
abla u)^{\mathrm{T}}) & \dot{arepsilon} &= \mathbb{D} - (arepsilon \mathbb{L} + \mathbb{L}^{\mathrm{T}} arepsilon) \ \dot{arepsilon}^{\mathrm{lin}} &= \mathbb{D} - rac{1}{2} ((
abla u)^{\mathrm{T}} \mathbb{L}^{\mathrm{T}} + \mathbb{L} (
abla u)) & \dot{arepsilon} &= \mathbb{F}^{\mathrm{T}} \, \mathbb{D} \, \mathbb{F} \end{aligned}$$

Maxwell rheology is based on this idea:

Elastic and viscous deformations add together, but stress is the same for both elastic and viscous parts of the deformation

 $\tau = -\mathbf{p} + \sigma; \quad \mathbb{D} = \mathbb{D}^{\mathrm{vis}} + \mathbb{D}^{\mathrm{el}}$

$$\sigma = 2\eta \mathbb{D}^{\mathrm{vis}} = 2G\varepsilon^{\mathrm{el}}$$

Choice of ε or ξ or ε^{lin} or ξ^{lin} gives us the relation $\varepsilon^{\text{el}} \to \mathbb{D}^{\text{el}}$ and thus specifies the rate used in our rheology (only for ε we get an objective rate - lower convected one)

・ 同 ト ・ ヨ ト ・ ヨ ト …

Results 000 000000000 00000 Deriving the equation $\circ\circ$ $\circ\circ\circ\circ\circ\circ\circ\circ$

Rajagopal

Entropy production maximization

Motivation - interpretation of physical quantities: what is dissipation, elastic strain rate, elastic energy ...

$$\sigma:\nabla \vec{v} = \sigma: \mathbb{D} = \frac{\sigma:\sigma}{2\eta} + \frac{\sigma:\overline{\sigma}}{2G}$$

Dissipation? Rate of change of elastic energy?

∃ ▶ ∢

		Deriving the equation
	000 00000000 00000	00000
Rajagonal		

Oldroyd B model - ICC

Thermodynamic considerations

٣

$$\begin{split} e(\delta, \, \rho, \, \mathbb{B}_{\mathcal{K}_{\mathrm{p}}(\mathrm{t})}) &= e_{0}(\delta, \, \rho) + \frac{G}{2\rho}(\mathrm{tr}\mathbb{B}_{\mathcal{K}_{\mathrm{p}}(\mathrm{t})} - 3 - \log \det \mathbb{B}_{\mathcal{K}_{\mathrm{p}}(\mathrm{t})}) \\ &\longrightarrow \zeta = (\mathbb{T} - G(\mathbb{B}_{\mathcal{K}_{\mathrm{p}}(\mathrm{t})} - \mathbb{I}))^{\mathrm{d}} : \mathbb{D}^{\mathrm{d}} + G(\mathbb{C}_{\mathcal{K}_{\mathrm{p}}(\mathrm{t})} - \mathbb{I}) : \mathbb{D}_{\mathcal{K}_{\mathrm{p}}(\mathrm{t})}) \end{split}$$

Prescribed dissipation

$$\zeta = 2\eta_2 |\mathbb{D}|^2 + 2\eta \mathbb{D}_{\mathcal{K}_{\mathrm{p}}(\mathrm{t})} \, \mathbb{C}_{\mathcal{K}_{\mathrm{p}}(\mathrm{t})} : \, \mathbb{D}_{\mathcal{K}_{\mathrm{p}}(\mathrm{t})}$$

Resulting model

$$\mathbb{I}=-\pmb{
ho}\mathbb{I}+2\eta_2\mathbb{D}+\textit{G}(\mathbb{B}_{\mathcal{K}_{\mathrm{p}}(\mathrm{t})}-\mathbb{I})$$

$$\stackrel{\scriptscriptstyle
olymbol {
extstyle}}{\mathbb{B}}_{\mathcal{K}_{\mathrm{p}}(\mathrm{t})} = -rac{\mathsf{G}}{\eta}(\mathbb{B}_{\mathcal{K}_{\mathrm{p}}(\mathrm{t})} - \mathbb{I})$$

Testing		Deriving the equation
	000 00000000 00000	000000

After setting
$$\eta_2 = 0$$
, we get Maxwell model

But now we now the dissipation of our model, we prescribed it

$$\zeta = 2\eta \mathbb{D}_{\mathcal{K}_{\mathrm{p}}(\mathrm{t})} \mathbb{C}_{\mathcal{K}_{\mathrm{p}}(\mathrm{t})} : \mathbb{D}_{\mathcal{K}_{\mathrm{p}}(\mathrm{t})}$$

So the question is

$$2\eta \mathbb{D}_{\mathcal{K}_{\mathrm{p}}(\mathrm{t})} \mathbb{C}_{\mathcal{K}_{\mathrm{p}}(\mathrm{t})} : \mathbb{D}_{\mathcal{K}_{\mathrm{p}}(\mathrm{t})} \stackrel{?}{=} rac{\sigma:\sigma}{2\eta}$$

By using $\sigma = 2\eta \mathbb{D} - \tau_{rel} \overset{\nabla}{\sigma}$ and $\sigma = \mathcal{G}(\mathbb{B}_{\mathcal{K}_p(t)} - \mathbb{I})$, this question reduces to (kinematic consideration regarding the natural configuration needed):

$$(\mathbb{F}_{\mathcal{K}_{p}(t)} \mathbb{D}_{\mathcal{K}_{p}(t)} \mathbb{F}_{\mathcal{K}_{p}(t)}^{T}) : (\mathbb{F}_{\mathcal{K}_{p}(t)} \mathbb{D}_{\mathcal{K}_{p}(t)} \mathbb{F}_{\mathcal{K}_{p}(t)}^{T}) \stackrel{?}{=} \\ \stackrel{?}{=} (\mathbb{D}_{\mathcal{K}_{p}(t)} \mathbb{F}_{\mathcal{K}_{p}(t)}^{T} \mathbb{F}_{\mathcal{K}_{p}(t)}) : \mathbb{D}_{\mathcal{K}_{p}(t)}$$

which is clearly not satisfied

伺 ト く ヨ ト く ヨ ト

		Deriving the equation
	000 00000000 00000	0000000
Rajagonal		

Conclusions

- We used a grid based method to implement viscoelastic rheology into a simple thermal convection model
- Time step decoupling which could be trusted in realistic cases was proposed
- Simulations show that locally high stresses are produced by viscoelasticity, which means that viscoelasticity could trigger plasticity in visco-elasto-plastic code

		Deriving the equation
	000 00000000 00000	00 00000
Raiagonal		

Thank you