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Implementation

I2ELVIS - Taras Gerya

staggered grid, markers
regional studies, benchmarks

3D version not elastic yet - 13VIS

Ellipsis - Moresi, Muhlhaus

finite elements, markers used as integration points

regional studies

StagYY - Paul Tackley
staggered grid, global studies, 3D, spherical shell

not elastic yet
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Implementation

Model

Extended Boussinesq - nondimensionalised

equation of motion + continuity + thermal equation

~Vp+V-0=-RaTé,

V.-v=0
T _ w21 _y.vT
ot
rheology
v
oc+Do=2nD

77(P, T) = exp(—A(T - Tref) + B(p - pref))
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Implementation

@00

Constitutive equation

v K K
o +Do =2nD D(p, T) = Teel 3 = G2
g’Z:%—F(W)O’—F(O’W—WO’)—

advection co-rotation

Discretization (mixed euler, 1st order accurate)

dt D Ddt
n D" + n—1

T T A+ Tar 4D’ dt+ D

(Wo—oW+a(Do+oD))
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Implementation

oeo

dt D
M= 2nD" + n 1+ Wo — oW + a (Do + oD
o " ] " D(o* dt( o—0 a( o+ o )))

gl ="t 4 dt (Wa—aW+a(Da+aD))"_1/"

D" dt
n_ opn D" ~n—1, =
0= S DT QR O T = s

Ui

Viscoelasticity parameter 7

. dt . n __ n mn ~n—1
=D o' =27Zn"D"+(1-2)5
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Implementation

ooe

Method

[dtn_l’n:stability(V“_l,D, d); de del }—

|

T" = advection-diffusion (T°~%, vo—1 dt?)

no decoupling:
571 = o™~ 4 deadvection (o™, V@71 dt?)

a __ n—1,n
n __ Tn . n i n dtel Dn de* =dt
77 - 77( )' nnum nnum(n ’ ) )
! At = dgn-thn
s’ = V- (P 67) —RaT" g
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Testing

[ Jelele]

Thermal convection

Harder - Journal of Non-Newtonian Fluid Mechanics, 39 (1991) 67-88
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Fig. 5. As Fig. 4, but with upper convected Maxwell rheology (2 =1, A = 0.0015, De = 0.34).
Additional isolines for the stress trace: p(75,275,...,1075).
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Testing
[e] lele}

Thermal convection

Co-rotational derivative (Jaumann, a = 0)

wvorticity
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Testing
[e]e] e}

Thermal convection

Upper convected derivative (a = 1)

shear sfress
5.8

DA
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Testing
[eJe]e] ]

Thermal convection

Viscous case
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Implementation Testing s ng the equation

Mechanical deformation

Bending of an elastic slab (under gravity for 20 Kyr)

p1 =4000; m =1e27; G =1lel0;
pp=1 1m=1e2l; Gy =1e20;
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Results
@00

Numerically instaneous behaviour

Onset of convection is related to " numerically instaneous” elastic
behaviour for Deborah number above certain critical value.

Ra = 10* = D jticas = 1.5-1073

Nusselt
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Numerically instaneous behaviour

Results
oeo

Example of velocity singularity

=] F = = £ DA
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Results
ooe

Numerically instaneous behaviour

Jaumann - parametric study, failed runs
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0.01nodecouple.dat [l
0.001 u u [ ] [ ] u
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Implementation Results ng the equation

Time step decoupling

[dtn_l’n:stability(V“_l,D, d); de del }—

|

T" = advection-diffusion (T°~%, vo~—1 dt?)

521 = 6"~ 4 deadvection (o™, V@71 dt?) Gerya / Moresi
: ] decoupling:
n ny. n n n €. n
7 =n(T");  Mhum = Thum(”, dt%, D7) multiple advection
i
s’ = V- (P 67) —RaT" g
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Implementation Results ng the equation

Time step decoupling

[ de-1.n — sability(-L, D, d);  ;  ded }%
|
T" = advection-diffusion (T°~%, vo~—1 dt?)
D I e tion (O,n—l, g1 ,dt) convect'ion
decoupling:
7 =0(T");  Dhum = Maum (0™, dt®, D7)
v
rths® = V - (dtelpiJ:D" 5n—1) —RaT"§g, l. _ | __ interpolation
needed
Stokes(npym, V", p*) = rhs"
0" = "(5", s )
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Results

00@000000

Time step decoupling

Realistic case: separate viscous and viscoelastic parts of the domain

d tel

=g oh= 28Dt + (1-7)5m

Desired behaviour: viscoelastic material does not move across
many cells within elastic time step (viscous material can - elastic
time step does not play any role in viscous part of the domain).

1
= 0.01 Dy; 7 =

D=nDy;  dt” =0.01 —
770’ 00 Trelh 1+0j0_1,
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Results
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Time step decoupling

Jaumann - failed runs, decoupled
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Results
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Time step decoupling

Upper convected - failed runs, decoupled
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Results
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Time step decoupl

Jaumann - not "trusted” runs, decoupled
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Time step decoupling

Results

000000800
Critical Deborah, time step decoupled

=] F = = £ DA
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Time step decoupling

Results

000000080

Critical Deborah, time step decoupled: elastic strain rate

elastic_strainrate

temperature

8
0.3
o = = = < £
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Implementation Testing
o]
[e]e]e}

Results
0000 000
[e]

Deriving the equation

(e]e]
0O0000000e 000000
[e]e]e]e]e}

Time step decoupling

Critical Deborah, time step decoupled: upper convected

elenra

lets
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Results

Elastic episodes

20020600 Tvct01 dat ——
2a02Deb02vct01.dat ——
2a02Deb03vct01.dat ———
2202Deb04vct01 dat ——
2a02Deb05vcl01 dat
2a02Deb0BvctO1 dat ——

Nusselt
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Results

Elastic episodes

Undercritical Deborah number - time step/scheme convergence
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Results

Elastic episodes

Overcritical Deborah number - time step convergence
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Results

Elastic episodes

Overcritical Deborah number - time scheme convergence
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Results

Elastic episodes

Time step analysis - overcritical Deborah number
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Deriving the equation

Four ways to derive our rheological equation

e 1D analogs
objective rate not specified
e Entropy production maximization

dissipation needs to be prescribed
objective rate specified

e 3D analogs - is it new?
objective rate specified
e Microscopical model
e.g. dumbbells diluted in newtonian fluid

We need to know how the equation was derived for interpretation:
elastic strain rate, elastic energy, dissipation ...
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Deriving the equation
0

3D analogs

3D analogs

Geodynamical texts often use oj; = 27¢;; - incorrect
Four possible strain tensors: eulerian/lagrangian, full/linearized
lin .__

£ (Vu+ (Vu)T); ¢in ::% (GradU + (GradU)T)

=N =

e =—(I-F TF1) g::l(FTF—H)
2 2
which have following material time derivatives
; 1
gin —p — S(Vo)L+ LT(Vu)t) é=D-(eL+LT¢)

£ =D~ J(Vo)'LT +L(Vu)) €=F'DF
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Deriving the equation

oe

3D analogs

Maxwell rheology is based on this idea:

Elastic and viscous deformations add together, but stress is the
same for both elastic and viscous parts of the deformation

T=—p-+o0; D = D" + D!

o =2nD" =26

Choice of € or £ or €™ or £ gives us the relation £ — D°' and
thus specifies the rate used in our rheology (only for £ we get an
objective rate - lower convected one)
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Deriving the equation

®00000

Rajagopal

Entropy production maximization

Motivation - interpretation of physical quantities:
what is dissipation, elastic strain rate, elastic energy ...

v
o0 o0
VW=0:D= — + —
o V=0 2 °C

Dissipation?  Rate of change of elastic energy?
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Deriving the equation
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Rajagopal

Oldroyd B model - ICC

Thermodynamic considerations
e(0, p, B, (r)) = eo(d, p) + %(trB/cp(t) — 3 — logdet By, (t))
— (= (T =GB,y —I)? : D+ G(Cie, 1y — I) : D1y
Prescribed dissipation
¢ = 2m|DJ? + 21D 1) Cic, () © Drcy ()
Resulting model

T = —pH + 2772]D) + G(IBICp(t) — ]I)

v G
B, (1) = —;(Bicp(t) -1)
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Deriving the equation

[e]e] lele]e}

Rajagopal

After setting mo = 0, we get Maxwell model
T——p]I—l—G(IB%;C y— 1) T=-pl+o

v
BICp(t (EICP(t) — ]I) 0+ Tre10 = 21D
But now we now the dissipation of our model, we prescribed it

¢ = 21D, (1) Crepv) * Py (1)
So the question is

?7 0.0
21D, 0) Creo ) * Do) = 5,
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Rajagopal

Deriving the equation

[e]e]e] lele)

By using 0 = 21D — e 0 and 0 = G(Bg, () — [), this question
reduces to (kinematic consideration regarding the natural
configuration needed)

(Fre(t) Dicy(t) ]F;cp ) :

(Feov) Dicot) Ficy )
L (Do) Fie, ) Freo ()
which is clearly not satisfied

?

s Dy (1)
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Deriving the equation

0000e0

Rajagopal

Conclusions

e We used a grid based method to implement viscoelastic
rheology into a simple thermal convection model

e Time step decoupling which could be trusted in realistic cases
was proposed

e Simulations show that locally high stresses are produced by
viscoelasticity, which means that viscoelasticity could trigger
plasticity in visco-elasto-plastic code
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Deriving the equation

00000e

Rajagopal

Thank you
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